
Effects of 
Climate Change 

on Energy 
Production and Use 
in the United States

U.S. Climate Change Science Program
Synthesis and Assessment Product 4.5

February 2008



FEDERAL EXECUTIVE TEAM
Acting Director, Climate Change Science Program ......................................................William J. Brennan

Acting Director, Climate Change Science Program Office ...........................................Peter A. Schultz

Lead Agency Principal Representative to CCSP;
Division Director, Department of Energy, Office of Biological 
and Environmental Research .........................................................................................Jerry W. Elwood

Product Lead; Department of Energy,
Office of Biological and Environmental Research ........................................................Jeffrey S. Amthor

Synthesis and Assessment Product Advisory Group Chair,
Associate Director, EPA National Center for Environmental
Assessment.....................................................................................................................Michael W. Slimak

Synthesis and Assessment Product Coordinator,
Climate Change Science Program Office ......................................................................Fabien J.G. Laurier

EDITORIAL AND PRODUCTION TEAM
Report Coordinator, ORNL............................................................................................Sherry B. Wright

Technical Advisor ..........................................................................................................David J. Dokken

Graphic Production ........................................................................................................DesignConcept

Disclaimer: This document, part of the Synthesis and Assessment Products described in the U.S. Climate Change Science Program (CCSP)
Strategic Plan, was prepared in accordance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year
2001 (Public Law 106-554) and the information quality act guidelines issued by the Department of Energy pursuant to Section 515
(http://cio.energy.gov/infoquality.htm). The CCSP Interagency Committee relies on Department of Energy certifications regarding com-
pliance with Section 515 and Department guidelines as the basis for determining that this product conforms with Section 515. For purposes
of compliance with Section 515, this CCSP Synthesis and Assessment Product is an “interpreted product” as that term is used in Depart-
ment of Energy guidelines and is classified as “highly influential.”   This document does not express any regulatory policies of the United
States or any of its agencies, or provide recommendations for regulatory action.



Effects of 
Climate Change 

on Energy 
Production and Use 
in the United States

Synthesis and Assessment Product 4.5
Report by the U.S. Climate Change Science Program
And the Subcommittee on Global Change Research

AUTHORS:
Thomas J. Wilbanks, Oak Ridge National Laboratory, Coordinator

Vatsal Bhatt, Brookhaven National Laboratory
Daniel E. Bilello, National Renewable Energy Laboratory
Stanley R. Bull, National Renewable Energy Laboratory

James Ekmann*, National Energy Technology Laboratory
William C. Horak, Brookhaven National Laboratory

Y. Joe Huang*, Lawrence Berkeley National Laboratory
Mark D. Levine, Lawrence Berkeley National Laboratory

Michael J. Sale, Oak Ridge National Laboratory
David K. Schmalzer, Argonne National Laboratory

Michael J. Scott, Pacific Northwest National Laboratory

*Retired.





January 2008

Members of Congress:

On behalf of the National Science and Technology Council, the U.S. Climate Change Science Program
(CCSP) is pleased to transmit to the President and the Congress this report, Effects of Climate Change
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This report was not originally scheduled to be a part
of the portfolio of Synthesis and Assessment Products
(SAPs) of the U.S. Climate Change Science Program
(CCSP).  It was added when the U.S. Congress com-
pared the proposed coverage of the SAP process with
subjects identified as national concerns in the U.S.
Global Change Research Act of 1990, which listed en-
ergy as one of the climate change impact sectors of na-
tional concern.  After this comparison, questions from
the Congress led CCSP in mid-2005 to add a report on
climate change effects on energy production and use
in the United States:  SAP 4.5.

This addition is important in at least two ways.  First,
it fills a gap left by the first U.S. National Assessment
of Climate Variability and Change (NACC), carried out
from 1997-2000.  NACC commissioned studies of five
sectors; but energy was not one of them, at least in part
because NACC was focused on impacts and it was felt
at that time that an energy sector impact assessment
could not be separated from politically controversial
issues related to emission reduction (mitigation).  Sec-
ond, it directly addresses a kind of myopia where rela-
tionships between the energy sector and climate
change are concerned.  The energy sector is universally
considered a key part of mitigation strategies that em-
phasize reductions in fossil fuel use; but it is also a sec-
tor that is subject to impacts of climate change.  Now
that climate change is increasingly being accepted as a
reality over the next century and more, it is important
to consider vulnerabilities and possible adaptation
strategies for this sector as well as others such as
health, water, agriculture, and forestry.  

For a combination of these reasons, SAP 4.5 is a timely
contribution to U.S. discussions of possible climate
change response strategies.   Although it is possible to
politicize issues of climate change implications for en-

ergy needs and energy supplies, it is also possible to
provide both a foundation for that discussion based on
available scientific and technological information and
to indicate where additional knowledge would be use-
ful in resolving issues and developing effective adap-
tation strategies.

This report has benefited from the thoughtful leader-
ship of Jerry Elwood of DOE’s Office of Science, with-
out whose perspectives the job would have been
impossible.  When Dr. Elwood succeeded Ari Patrinos
as acting Director of DOE’s Office of Biological and
Environmental Research (BER), Jeff Amthor moved in
smoothly and professionally as the activity contact and
manager, maintaining continuity and oversight.  The
report has also benefited from the steady roles of the
CCSP principals and the CCSP program office, who
have consistently insisted on such values as scientific
independence and stakeholder participation.  Finally,
we acknowledge and express our gratitude to Jim Ma-
honey, who as Director of CCSP recognized the value
of producing a set of statements of current knowledge
about the various aspects of climate change science as
a vitally important way to reduce uncertainties about
what actions make sense now. 

One of Jerry Elwood’s decisions was to rely on a team
of DOE national laboratory leaders and staff members
to produce the report.  This decision arose from a num-
ber of considerations, including the fact that the na-
tional laboratories as a family were in close touch with
all of the relevant research communities.  But it proved
to be especially important because of the imperatives
of the CCSP time schedule for the SAPs, which called
for the first draft of SAP 4.5 to be produced so quickly
that contracting with other participants would have
been incompatible with established deadlines.  The
schedule could not have been met otherwise. 
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Given this reality, the DOE national laboratories responded
with a collaboration among seven laboratories, including
high-level leaders of many of them, and produced drafts and
a final product that is intended as a starting point for a na-
tional discussion of a set of issues that had been previously
largely overlooked.

But SAP 4.5 is not just a product of the DOE national labo-
ratories.  It has benefited profoundly from comments, ques-
tions, and other insights from a host of stakeholders in
industry, federal, and state government, nongovernmental in-
stitutions, and academia.   For a list of specific contributors,
see Annex A; but research and assessment contributions
from many others have been included as well.  This is in-
tended to be a summary on behalf of interested parties across
the nation, not a summary of the knowledge of the national
laboratories.

Having said this, the fact is that a summary of the current
knowledge about possible effects of climate change on en-
ergy production and use in the United States, as of early
2007, does little more than scratch the surface of a very im-
portant and complex topic.  Because of a natural tendency to
focus on the energy sector as a driving force where climate
change is concerned, the impacts on the energy sector from
climate change have been under-studied.   Until this over-
sight is corrected, the energy sector – on both the energy use
and energy supply sides – is vulnerable to stresses from cli-
mate change that, if identified early enough, can probably
be addressed by adaptation strategies that will reduce un-
necessary costs to society and to the energy institutions that
seek to meet social needs for energy services.
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Effects of Climate Change on Energy Production and Use in the United States

This report summarizes what is currently known about effects of climate change on energy production and use in the United
States.    It focuses on three questions, which are listed below along with general short answers to each.  Generally, it is im-
portant to be careful about answering these questions for two reasons.  One reason is that the available research literatures on
many of the key issues are limited, supporting a discussion of issues but not definite conclusions about answers.  A second
reason is that, as with many other categories of climate change effects in the U.S., the effects depend on more than climate
change alone, such as patterns of economic growth and land use, patterns of population growth and distribution, technologi-
cal change, and social and cultural trends that could shape policies and actions, individually and institutionally. 

The report concludes that, based on what we know now, there are reasons to pay close attention to possible climate change
impacts on energy production and use and to consider ways to adapt to possible adverse impacts and take advantage of pos-
sible positive impacts.   Although the report includes considerably more detail, here are the three questions along with a brief
summary of the answers:

• How might climate change affect energy consumption in the United States? The research evidence is rela-
tively clear that climate warming will mean reductions in total U.S. heating requirements and increases in total cooling re-
quirements for buildings.  These changes will vary by region and by season, but they will affect household and business
energy costs and their demands on energy supply institutions.  In general, the changes imply increased demands for elec-
tricity, which supplies virtually all cooling energy services but only some heating services.  Other effects on energy con-
sumption are less clear.

• How might climate change affect energy production and supply in the United States? The research evi-
dence about effects is not as strong as for energy consumption, but climate change could affect energy production and sup-
ply (a) if extreme weather events become more intense, (b) where regions dependent on water supplies for hydropower
and/or thermal power plant cooling face reductions in water supplies, (c) where temperature increases decrease overall ther-
moelectric power generation efficiencies, and (d) where changed conditions affect facility siting decisions.   Most effects are
likely to be modest except for possible regional effects of extreme weather events and water shortages.
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Climate change is expected to have noticeable effects in the United States:

a rise in average temperatures in most regions, changes in precipitation

amounts and seasonal patterns in many regions, changes in the intensity

and pattern of extreme weather events, and sea level rise.   Some of these

effects have clear implications for energy production and use.  For instance,

average warming can be expected to increase energy requirements for

cooling and reduce energy requirements for warming.  Changes in precipitation could affect prospects for hydropower, pos-

itively or negatively.  Increases in storm intensity could threaten further disruptions of the sorts experienced in 2005 with

Hurricane Katrina.   Concerns about climate change impacts could change perceptions and valuations of energy technology

alternatives.  Any or all of these types of effects could have very real meaning for energy policies, decisions, and institutions

in the United States, affecting discussions of courses of action and appropriate strategies for risk management.

Executive Summary

Authors: Thomas J. Wilbanks, et al.
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• How might climate change have other
effects that indirectly shape energy
production and consumption in the
United States?  The research evidence
about indirect effects ranges from abundant
information about possible effects of climate
change policies on energy technology
choices to extremely limited information
about such issues as effects on energy secu-
rity.   Based on this mixed evidence, it ap-
pears that climate change is likely to affect
risk management in the investment behavior
of some energy institutions, and it is very
likely to have some effects on energy tech-
nology R&D investments and energy re-
source and technology choices.  In addition,
climate change can be expected to affect
other countries in ways that in turn affect
U.S. energy conditions through their partic-
ipation in global and hemispheric energy
markets, and climate change concerns could
interact with some driving forces behind
policies focused on U.S. energy security.

Because of the lack of research to date,
prospects for adaptation to climate change ef-
fects by energy providers, energy users, and so-
ciety at large are speculative, although the
potentials are considerable.  It is possible that
the greatest challenges would be in connection
with possible increases in the intensity of ex-
treme weather events and possible significant
changes in regional water supply regimes.  But
adaptation prospects depend considerably on
the availability of information about possible
climate change effects to inform decisions about
adaptive management, along with technological
change in the longer term. 

Given that the current knowledge base is so lim-
ited, this suggests that expanding the knowledge
base is important to energy users and providers
in the United States.  Examples of research pri-
orities – which call for contributions by a wide
range of partners in federal and state govern-
ments, industry, nongovernmental institutions,
and academia – are identified in the report.   

JSmith
Highlight

JSmith
Sticky Note
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These reports arise from the five goals of CCSP (http://www.climatescience.gov), the fourth of
which is to “understand the sensitivity and adaptability of different natural and managed ecosys-
tems and human systems to climate and related global changes.”   One of the seven SAPs related
to this particular goal is concerned with analyses of the effects of global change on energy pro-
duction and use (SAP 4.5).  The resulting SAP, this report, has been titled “Effects of Climate
Change on Energy Production and Use in the United States.” 

This topic is relevant to policy-makers and other decision-makers because most discussions to date
of relationships between the energy sector and responses to concerns about climate have been very
largely concerned with roles of energy production and use in climate change mitigation.  Along with
these roles of the energy sector as a driver of climate change, the energy sector is also subject to
effects of climate change; and these possible effects – along with adaptation strategies to reduce
any potential negative costs from them – have received much less attention.  For instance, the U.S.
National Assessment of Possible Consequences of Climate Variability and Change (NACC, 2001)
considered effects on five sectors, such as water and health; but energy was not one of those sec-
tors, even though the Global Change Research Act of 1990 had listed energy as one of several sec-
tors of particular interest.

As a major expression of its objective to provide the best possible scientific in-

formation to support decision-making and public discussion on key climate-

related issues, the U.S. Climate Change Science Program (CCSP) has commis-

sioned 21 “synthesis and assessment products” (SAPs) to summarize current

knowledge and identify priorities for research, observation, and decision sup-

port in order to strengthen contributions by climate change science to climate

change related decisions.



4

The U.S. Climate Change Science Program Chapter 1 - Introduction

Because the topic has not been a high priority
for research support and institutional analysis,
the formal knowledge base is in many ways lim-
ited.  As a starting point for discussion, this
product compiles and reports what is known
about likely or possible effects of climate
change on energy production and use in the
United States, within a more comprehensive
framework for thought about this topic, and it
identifies priorities for expanding the knowledge
base to meet needs of key decision-makers.

1.1  BACKGROUND

Climate change is expected to have certain ef-
fects in the United States: a rise in average tem-
peratures in most regions, changes in
precipitation amounts and seasonal patterns in
many regions, changes in the intensity and pat-
tern of extreme weather events, and sea level
rise [(IPCC, 2001a; NACC, 2001; also see other
SAPs, including 2.1b and 3.2)].   

Some of these effects have clear implications
for energy production and use.  For instance, av-
erage warming can be expected to increase en-
ergy requirements for cooling and reduce
energy requirements for warming.  Changes in
precipitation patterns and amounts could affect
prospects for hydropower, positively or nega-
tively.  Increases in storm intensity could
threaten further disruptions of the sorts experi-
enced in 2005 with Hurricanes Katrina and
Rita.   Concerns about climate change impacts
could change perceptions and valuations of en-
ergy technology alternatives.  Any or all of these
types of effects could have very real meaning
for energy policies, decisions, and institutions
in the United States, affecting discussions of
courses of action and appropriate strategies for
risk management.  

According to CCSP, an SAP has three end uses:
(1) informing the evolution of the research
agenda; (2) supporting adaptive management
and planning; and (3) supporting policy formu-
lation. This product will inform policymakers,
stakeholders, and the general public about is-
sues associated with climate change implica-
tions for energy production and use in the

United States, increase awareness of what is
known and not yet known, and support discus-
sions of technology and policy options where
the knowledge base is still at an early stage of
development.

The central questions addressed by SAP 4.5 follow:

• How might climate change affect energy
consumption in the United States?

• How might climate change affect energy
production and supply in the United States?

• How might climate change affect various
contexts that indirectly shape energy pro-
duction and consumption in the United
States, such as energy technologies, energy
institutions, regional economic growth, en-
ergy prices, energy security, and environ-
mental emissions?

SAP 4.5 is being completed by the end of the
second quarter of calendar year 2007 (June 30,
2007), following a number of steps required for
all SAPs in scoping the study, conducting it, and
reviewing it at several stages (see the section
below on How the Report Was Developed). 

1.2  THE TOPIC OF THIS
SYNTHESIS AND ASSESSMENT
REPORT

This report summarizes the current knowledge
base about possible effects of climate change on
energy production and use in the United States
as a contributor to further studies of the broader
topic of effects of global change on energy pro-
duction and use. It also identifies where re-
search could reduce uncertainties about
vulnerabilities, possible effects, and possible
strategies to reduce negative effects and increase
adaptive capacity and considers priorities for
strengthening the knowledge base.  As is the
case for most of the SAPs, it does not include
new analyses of data, new scenarios of climate
change or impacts, or other new contributions
to the knowledge base, although its presentation
of a framework for thought about energy sector
impacts is in many ways new.
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As indicated above, the content of SAP 4.5 in-
cludes attention to the following issues:

• possible effects (both positive and negative)
of climate change on energy consumption in
the United States (Chapter 2),

• possible effects (both positive and negative)
on energy production and supply in the
United States (Chapter 3), and

• possible indirect effects on energy con-
sumption and production (Chapter 4).

These chapters are followed by a final chapter
that provides conclusions about what is cur-
rently known, prospects for adaptation, and pri-
orities for improving the knowledge base.

1.3  PREVIOUS ASSESSMENTS 
OF THIS TOPIC

As mentioned on page 1, unlike some of the
other sectoral assessment areas identified in the
Global Change Research Act of 1990—such as
agriculture, water, and human health—energy
was not the subject of a sectoral assessment in
the National Assessment of Possible Conse-
quences of Climate Variability and Change,
completed in 2001 (NACC, 2001). As a result,
SAP 4.5 draws upon a less organized knowl-
edge base than these other sectoral impact areas.
On the other hand, by addressing an assessment
area not covered in the initial national assess-
ment, SAP 4.5 will provide new information
and perspectives.

The subject matter associated with SAP 4.5 is
incorporated in two chapters of the Working
Group II contribution to the Intergovernmental
Panel on Climate Change (IPCC) Fourth As-
sessment Report (Impacts, Adaptation, and Vul-
nerability), scheduled for completion in 2007.
Chapter 7, “Industry, Settlement, and Society,”
Section 7.4.2.1, briefly summarizes the global
knowledge base about possible impacts of cli-
mate change on energy production and use, re-
porting relevant research from the United States
but not assessing impacts on the United States.
Chapter 14, “North America,” summarizes the
knowledge base about possible impacts of cli-
mate change in this continent, including the
United States, in Sections 14.2.8 and 14.4.8.

1.4  HOW THE REPORT WAS
DEVELOPED

SAPs are developed according to guidelines es-
tablished by CCSP based on processes that are
open and public.  These processes include a
number of steps before approval to proceed, em-
phasizing both stakeholder participation and
CCSP reviews of a formal prospectus for the re-
port, a number of review steps including both
expert reviewers and public comments, and
final reviews by the CCSP Interagency Com-
mittee and the National Science and Technol-
ogy Council (NSTC).

The process for producing the report was fo-
cused on a survey and assessment of the avail-
able literature, in many cases including
documents that were not peer-reviewed but the
authors determined to be valid, using estab-
lished analytic-deliberative practices.  It in-
cluded identification and consideration of
relevant studies carried out in connection with
CCSP, the Climate Change Technology Program
(CCTP), and other programs of CCSP agencies
(e.g., the Energy Information Administration),
and consultation with stakeholders such as the
electric utility and energy industries, environ-
mental non-governmental organizations, and the
academic research community to determine
what analyses have been conducted and reports
have been issued. Where quantitative research
results are limited, the process considers the de-
gree to which qualitative statements of possible
effects may be valid as outcomes of expert de-
liberation, utilizing the extensive review
processes built into the SAP process to con-
tribute to judgments about the validity of the
statements.

SAP 4.5 is authored by staff from the Depart-
ment of Energy (DOE) national laboratories,
drawing on their own expertise and knowledge
bases and also upon other knowledge bases, in-
cluding those within energy corporations and
utilities, consulting firms, nongovernmental or-
ganizations, state and local governments, and
the academic research community. DOE has as-
sured that authorship by DOE national labora-
tory staff will in no way exclude any relevant
research or knowledge, and every effort is being
made to identify and utilize all relevant expert-
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ise, materials, and other sources.  For the author
team of SAP 4.5, see Box 1.1.

Stakeholders participated during the scoping
process, have provided comments on the
prospectus, and submitted comments on the
product during a public comment period, as well
as other comments via the SAP 4.5 web site.
The development of SAP 4.5 included active
networking by authors with centers of expertise
and stakeholders to assure that the process was
fully informed about their knowledge bases and
viewpoints. 

1.5   HOW TO USE THIS REPORT

The audience for SAP 4.5 includes scientists in
related fields, decision-makers in the public sec-
tor (federal, state, and local governments), the
private sector (energy companies, electric utili-
ties, energy equipment providers and vendors,
and energy-dependent sectors of the economy),
energy and environmental policy interest
groups, and the general public. Even though this
report is unable—based on existing knowl-
edge—to answer all relevant questions that
might be asked by these interested parties, the
intent is to provide information and perspectives
to inform discussions about the issues and to
clarify priorities for research to reduce uncer-
tainties in answering key questions. 

As indicated above, because of limitations in
available research literatures, in some cases the
report is only able to characterize categories of
possible effects without evaluating what the ef-
fects are likely to be.  In other cases, the report
offers preliminary judgments about effects, re-
lated to degrees of likelihood:  likely (2 chances
out of 3), very likely (9 chances out of 10), or
virtually certain (99 chances out of 100).

This report avoids the use of highly technical
terminology, but a glossary and list of acronyms
are included at the end of the report. 

Thomas J. Wilbanks Oak Ridge National Laboratory, Coordinator

Vatsal Bhatt Brookhaven National Laboratory

Daniel E. Bilello National Renewable Energy Laboratory

Stanley R. Bull National Renewable Energy Laboratory

James Ekmann National Energy Technology Laboratory

William C. Horak Brookhaven National Laboratory

Y. Joe Huang Lawrence Berkeley National Laboratory 

Mark D. Levine Lawrence Berkeley National Laboratory

Michael J. Sale Oak Ridge National Laboratory

David K. Schmalzer Argonne National Laboratory

Michael J.  Scott Pacific Northwest National Laboratory

Sherry B. Wright Oak Ridge National Laboratory, Administrative Coordinator

BOX 1.1  SAP 4.5 Author Team
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2.1  INTRODUCTION

In the United States, some of these effects of climate change on energy consumption have been
studied enough to produce a body of literature with empirical results.  This is especially the case
for energy demand in residential and commercial buildings, where studies of the effects of climate
change have been under way for about 20 years.  There is very little literature on the other effects
mentioned above.  

This chapter summarizes current knowledge about potential effects of climate change on energy
demand in the United States.  The chapter mainly focuses on the effects of climate change on en-
ergy consumption in buildings (emphasizing space heating and space cooling, but also addressing
net energy use, peak loads, and adaptation), because studies of these effects account for most of
the available knowledge. The chapter more briefly addresses impacts of climate change on energy
use in other sectors, including transportation, construction, and agriculture, where studies are far
less available.  The final section summarizes the chapter’s conclusions. 

7

As the climate of the world warms, the consumption of energy in climate-sen-

sitive sectors is likely to change.  Possible effects include  (1) decreases in the

amount of energy consumed in residential, commercial, and industrial buildings

for space heating and increases for space cooling; (2) decreases in energy used

directly in certain processes such as residential, commercial, and industrial water

heating, and increases in energy used for residential and commercial refrigera-

tion and industrial process cooling (e.g., in thermal power plants or steel mills);

(3) increases in energy used to supply other resources for climate-sensitive

processes, such as pumping water for irrigated agriculture and municipal uses;

(4)  changes in the balance of energy use among delivery forms and fuel types,

as between electricity used for air conditioning and natural gas used for heat-

ing; and (5)  changes in energy consumption in key climate-sensitive sectors of

the economy, such as transportation, construction, agriculture, and others.
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2.2   ENERGY CONSUMPTION 
IN BUILDINGS

2.2.1  Overview

U.S. residential and commercial buildings cur-
rently use about 20 quadrillion Btus (quads) of
delivered energy per year (equivalent to about
38 quads of primary energy, allowing for elec-
tricity production-related losses). This energy
consumption accounts directly or indirectly for
0.6 GT of carbon emitted to the atmosphere
(38% of U.S. total emissions of 1.6 GT and ap-
proximately 9% of the world fossil-fuel related
anthropogenic emissions of 6.7 GT (EIA,
2006).  The U.S. Energy Information Adminis-
tration (EIA) has projected that residential and
commercial consumption of delivered energy
would increase to 26 quads (53 quads primary
energy) and corresponding carbon emissions to
0.9 GT by the year 2030 (EIA, 2006).  However,
these routine EIA projections do not account for
the effects any temperature increases on build-
ing energy use that may occur as a result of
global warming, nor do they account for con-
sumer reactions to a warmer climate, such as an
increase in the adoption of air conditioning.

To perform an assessment of the impact of cli-
mate change on energy demand, it is helpful to

have as context a set of climate scenarios. The
Intergovernmental Panel on Climate Change
(IPCC) projected in 2001 that climate could
warm relative to 1990 by 0.4˚C to 1.2˚C by the
year 2030 and by 1.4˚C to 5.8˚C by the end of
the 21st century (Cubasch et al.,  2001 and Ru-
osteenoja,  et al. 2003) performed a reanalysis
of the seventeen 2001 IPCC climate simulations
by seven different climate models at the regional
level.  Their results for the United States are re-
ported for three subregions, four seasons, and
three major time steps, as summarized in Table
2.1.  This is not the only set of climate scenar-
ios available, and the energy studies cited in this
chapter often use other scenarios; but the table
broadly characterizes the range of average tem-
perature changes that might occur in the United
States in the 21st century and can provide con-
text for the various energy impact analyses that
have been done.

Approximately 20 studies have been done since
about 1990 concerning the effect of projected
climate change on energy consumption in resi-
dential and commercial buildings in the United
States.  Some of these studies concern particu-
lar states or regions, and the impacts estimated
depend crucially on local conditions.  

Region 
and

Season

TIME STEP

2010-2039 (2020) 2040-2069 (2050) 2070-2099 (2080)

Median Range Median Range Median Range

WESTERN U.S.
DJF 1.6 0.5-2.4 2.3 1.0-4.2 4.1 2.0-7.6

MAM 1.4 0.5-1.9 2.5 1.1-4.1 3.8 1.0-7.6

JJA 1.8 0.8-2.6 2.8 1.7-5.2 4.2 2.8-9.1

SON 1.3 0.5-2.1 2.8 1.4-4.6 3.9 1.6-8.0

CENTRAL U.S.

DJF 1.6 0.0-2.6 3.0 1.2-4.5 4.2 1.9-7.9

MAM 1.8 0.5-2.8 2.9 1.2-5.1 4.4 1.9-8.0

JJA 1.8 0.9-2.2 3.0 1.5-5.4 4.4 1.9-8.5

SON 1.3 0.4-2.3 2.8 1.2-5.0 4.1 1.8-8.8

EASTERN U.S.
DJF 1.8 0.4-2.6 2.6 1.4-5.8 4.6 2.2-10.2

MAM 1.7 0.6-3.2 2.7 1.4-6.0 4.4 1.9-9.6

JJA 1.6 0.8-1.9 2.8 1.4-5.5 4.2 1.8-8.6

SON 1.5 0.6-2.3 2.8 1.4-5.4 4.0 1.8-9.0

Table 2.1.  Seasonal
Temperature
Increases For Three
U.S. Regions (˚C) 
In Winter (DJF),
Spring (MAM),
Summer (JJA), And
Fall (SON).  Derived
From Ruosteenoja
et al., 2003.
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Some of the studies analyze only electricity.  Al-
most all show both an increase in electricity
consumption and an increase in the consump-
tion of primary fuels used to generate it, except
in the few regions that provide space heating
with electricity (for example, the Pacific North-
west).   The few studies that examine effects on
peak electricity demand emphasize that in-
creases in peak demand would cause dispro-
portionate increases in energy infrastructure
investment.  

Some studies provide demand estimates for
heating fuels such as natural gas and distillate
fuel oil in addition to electricity.  These all-fuels
studies provide support for the idea that climate
warming causes significant decreases in space
heating; however, whether energy savings in
heating fuels offset increases in energy demand
for cooling depends on the initial balance of en-
ergy consumption between heating and cooling,
which in turn depends upon geography.  Empir-
ical studies show that the overall effect is more
likely to be a significant net savings in delivered
energy consumption in northern parts of the
country (those with more than 4,000 heating de-
gree-days per year) and a significant net in-
crease in energy consumption in the south for
both residential and commercial buildings, with
the national balance slightly favoring net sav-
ings of delivered energy.

Studies vary in their treatment of the expected
demographic shifts in the United States, ex-
pected evolution of building stock, and con-
sumer reaction to warmer temperatures.

Roughly half of the studies use building energy
simulation models and account explicitly for the
current trend in U.S. population moving toward
the south and west, as well as increases in
square footage per capita in newer buildings and
increases in market penetration of air condi-
tioning in newer buildings (See Annex A for a
summary of methods).  They do not, however,
include consumer reactions to warming itself.
For example, the market penetration of air con-
ditioning is not directly influenced by warming
in these studies.  The other studies use econo-
metric modeling of energy consumption
choices.  Many of these studies emphasize that
the responsiveness of climate change of energy
use to climate change is greater in the long-run
than in short run; for example, consumers not
only run their air conditioners more often in re-
sponse to higher temperatures, but may also
adopt air conditioning for the first time in re-
gions such as New England, which still feature
relatively low market penetration of air condi-
tioning.  Commercial building designs may
evolve to reduce the need for heating by making
better use of internal energy gains and warmer
weather.  Rising costs of space conditioning
could modify the current trend in floor space
per capita.  Most econometric studies of build-
ing energy consumption estimate effects like
this statistically from databases on existing
buildings such as the Energy Information Ad-
ministration’s (EIA’s) Residential Energy Con-
sumption Survey (RECS) (EIA, 2001b) and
Commercial Building Energy Consumption
Survey (CBECS) (EIA, 2003). 

Table 2.2.  Summary
of Qualitative Effects
of Global Warming
on Energy
Consumption in the
United States 

Sector  National Effects Regional Effects Other Effects Comments

Residential and
Commercial
Buildings
Annual 
Energy Use 

Slight decrease or
increase in net
annual delivered
energy; likely net
increase in
primary energy 

Space heating
savings dominate
in North; space
cooling  increases
dominate in South

Overall increase
in carbon
emissions

Studies agree on
the direction of
regional effects;
national direction
varies with the
study 

Peak 
Electricity
Consumption

Probable increase Increase in
summer peaking
regions; probable
decline in winter
peaking regions

Increase in carbon
emissions

Most regions are
summer-peaking
due to air
conditioning

Market
Penetration of
Energy-Using
Equipment

Increase in market
penetration of air
conditioning 

Air conditioning
market share
increases primarily
in North

—
Very few studies.
Strength of the
effect is not clear.
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When losses in energy conversion and delivery
of electricity are taken into account, primary en-
ergy consumption (source energy) at the na-
tional level increases in some studies and
decreases in others, with the balance of studies
projecting a net increase in primary energy con-
sumption. When the higher costs per delivered
Btu of electricity are taken into account, the na-
tional-level consumer expenditures on energy
increase in some studies and decrease in others,
with the balance of studies favoring an increase
in expenditures. 

Various studies include a range of climate
warming scenarios as well as different time
frames and methods. Table 2.2 summarizes the
main qualitative conclusions that can be drawn
from an overview of this literature concerning
the marginal effect of climate warming on en-
ergy use in buildings.  These effects are dis-
cussed further in Sections 2.3 through 2.5.  

2.2.2   The Literature in Greater
Detail

The general finding about the net impact of cli-
mate warming on the consumption of delivered
heating fuel and electricity is that for regions
with more than about 4000 heating degree-days
Fahrenheit (EIA Climate Zones 1-3, roughly the
dividing line between “north” and “south” in
most national studies—see Figure 2.1) climate
warming tends to reduce consumption of heat-
ing fuel more than it increases the consumption
of electricity (e.g., Hadley et al., 2004, 2006).
The reverse is true south of that line.  By coin-
cidence, the national gains and losses in deliv-
ered energy approximately balance.  Existing
studies do not agree on whether there is small
increase or decrease. The picture is different for
primary energy and carbon dioxide.  Because
the generation, transmission, and distribution of
electricity is subject to significant energy losses,

Figure 2.1.   U.S.
Climate Zones
(Zones 1-3 are
“North,” Zones 4-5
are “South”).
Source: Energy Information
Administration, Residential
Energy Consumption
Survey (EIA, 2001c).
http://www.eia.doe.gov/
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national primary energy demand tends to in-
crease with warmer temperatures.  Finally, be-
cause electricity is about 50% generated with
coal, which is a high-carbon fuel, and about 3.2
Btu of primary energy are consumed for every
Btu of delivered electricity (EIA, 2006), carbon
dioxide emissions also tend to increase. The ex-
tent of this national shift in energy use is ex-
pected to depend in part on the strength of
residential adoption of air conditioning as the

length of the air conditioning season and the
warmth of summer increases in the north, where
the market penetration of air conditioning is still
relatively low.  The potential reaction of con-
sumers to a longer and more intense cooling
season in the future has been addressed in only
a handful of studies (e.g., Sailor and Pavlova,
2003) and must be considered highly uncertain.
There is even less information available on the-
off-setting effects of adaptations such as im-

Energy Use, Activity, Intensity and Other Factors in the Residential Sector - Delivered 
Energy, 1985-2004

Total energy use of delivered
energy in households in-
creased from 1985 to 2004.
While both the number of
households and housing size
has increased over the period,
the weather-adjusted inten-
sity of energy use has fallen.
Heating and cooling energy
use declined, while appliance
energy use increased enough
to offset the declines in other
end-uses. EIA (2006) projects
an increase in building resi-
dential floor space per household of 14% during the period 2003-2030.

Commercial Energy Use, Activity, Weather, and Intensity - Delivered Energy

Estimated total floor space in
commercial buildings grew
35% during the 1985-2004
period, while weather-ad-
justed energy intensity re-
mained about constant.
Declines in 1991 and since
2001 resulted from reces-
sions, during which commer-
cial vacancies increased and
the utilization of occupied
space fell. EIA (2006) projects
the ratio of commercial floor
space per member of the U.S.
labor force to increase by
23% in the period 2003-2030.

(Data from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, “Indicators of Energy Intensity
in the United States,” http://intensityindicators.pnl.gov/index.stm) and from EIA’s Annual Energy Outlook (EIA, 2006).

BOX 2.1  Trends in the Energy Intensity of Residential and Commercial Buildings
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proved energy efficiency or changes in urban
form that might reduce exacerbating factors
such as urban heat island effects. 

Box 2.1 provides insight into the recent trends
in the intensity of energy consumption in resi-
dential and commercial buildings in the United
States.  There are a number of underlying
trends, such as an ongoing population shift to
the South and West, increases in the floor space
per building occupant in both the residential and
commercial sectors, and improvements in build-
ing shell performance, the balance of which
have led to overall reductions in the intensity in
the use of fuels for heating.  Climate warming
could be expected to reinforce this trend.  At the
same time, the demographic shifts to the South
and West, increases in floor space per capita,
and electrification of the residential and com-
mercial sectors all have increased the use of
electricity, especially for space cooling.  This
trend also would be reinforced by climate
warming. 

Amato et al., (2005) observe that many studies
worldwide have analyzed the climate sensitiv-
ity of energy use in residential, commercial, and
industrial buildings and have used these esti-
mated relationships to explain energy con-
sumption and to assist energy suppliers with
short-term planning (Quayle and Diaz, 1979; Le
Comte and Warren, 1981; Warren and LeDuc,
1981; Downton et al., 1988; Badri, 1992;
Lehman, 1994; Lam, 1998; Yan, 1998;  Morris,
1999;  Considine, 2000; Pardo, et al., 2002).
The number of studies in the U.S. analyzing the
effects of climate change on energy demand,
however, is much more limited.  One of the very
early national-level studies was of the electric-
ity sector, projecting that between 2010 and
2055 climate change could increase capacity
addition requirements by 14–23% relative to
nonclimate change scenarios, requiring invest-
ments of $200–300 billion ($1990) (Linder and
Inglis, 1989).  The Linder-Inglis results are sim-
ilar to electricity findings in most of the studies
that followed.  Subsequently, a number of stud-
ies have attempted an “all fuels” approach and
have focused on whether net national energy de-
mand (decreases in heating balanced against in-
creases in cooling) would increase or decrease
in residential and commercial buildings as a re-
sult of climate change (e.g., Loveland and

Brown, 1990; Rosenthal et al., 1995; Belzer et
al., 1996; Hadley et al., 2004, 2006; Mansur et
al., 2005; Scott et al., 2005; Huang, 2006).  The
picture here is more clouded. While the direc-
tion of regional projections in these studies are
reasonably similar, the net impacts at the na-
tional level differ among studies and depend on
the relative balance of several effects, including
scenarios used, assumptions about demographic
trends and building stock, market penetration of
equipment (especially air conditioning), and
consumer behavior.  

In the sections that follow, this chapter discusses
the impacts of climate warming on space heat-
ing in buildings (divided between residential
and commercial), space cooling (again divided
between residential and commercial buildings),
net energy demand, market penetration of air
conditioning, and possible effects of adaptation
actions such as increased energy efficiency and
changes to urban form, which could reduce the
impacts of some compounding effects such as
urban heat islands. 

2.3    EFFECTS OF CLIMATE
WARMING ON ENERGY USE FOR
SPACE HEATING

2.3.1  Residential Space Heating 

Temperature increases resulting from global
warming are almost certain to reduce the
amount of energy needed for space heating in
residential buildings in the United States.  The
amount of the reduction projected by a number
of U.S. studies has varied, depending mainly on
the amount of temperature change in the climate
scenario, the calculated sensitivity of the building
stock to warming, and the adjustments allowed
in the building stock over time (Table 2.3).  

In most areas where it is available, the fuel of
choice for residential and commercial space
heating is natural gas, which is burned directly
in a furnace in the building in question.  There
are some exceptions.  In the Northeast, some of
these savings will be in fuel oil, since fuel oil
still provides about 36 % of residential space
heating in that region, according to the 2001
RECS.  In some other parts of the country with
relatively short, mild winters or relatively inex-
pensive electricity or both, electricity has a sig-
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nificant share of the space heating market.  For
example, electricity accounted for 15% of resi-
dential heating energy in the Pacific Census Di-
vision and 19% in the South Atlantic Census
Division in 2001 (EIA, 2001).

In Mansur et al., the impact of climate change
on the consumption of energy in residential
heating is relatively modest.  When natural gas
is available, the marginal impact of a 1°C in-
crease in January temperatures in their model is
predicted to reduce residential electricity con-
sumption by 2.8% for electricity-only con-
sumers and 2% for natural gas customers.  

Scott et al., (2005), working directly with resi-
dential end uses in a building energy simulation
model, projected about a 4% to 20% reduction
in the demand for residential space heating en-
ergy by 2020, given no change in the housing
stock and with winter temperature increases
ranging from 0.4° to 3.2° C, or roughly 6% to
10% decrease in space heating per degree C in-
crease.  This is roughly twice the model sensi-

tivity of Mansur et al., 2005.  The Scott et al.
analysis utilized the projected seasonal ranges
of temperatures in Table 2.1 (Ruosteenoja et al.,
2003).  Huang, 2006 also found decreases in av-
erage energy use for space heating.  While these
varied considerably by location and building
vintage as well, the overall average was about a
12% average site energy reduction for space
heating in 2020, or 9.2% per 1°C. 

Regional level studies show similar effects, with
a sensitivity of about 6% to 10% per 1°C in tem-
perature change among the studies using build-
ing models and only about 1% per degree 1°C
in studies using econometrics, in part possibly
due to reactive increases in energy consumption
(energy consumption “take-backs”) as heating
energy costs decline with warmer weather in
this type of model, but also due to choice of re-
gion.  In two studies with many of the same re-
searchers and using very similar methodologies,
Amato et al., 2005 projected about a 7% to 33%
decline in space heating in the 2020s in Massa-
chusetts, which has a long heating season, while

Study: 
Author(s) and Date

Change in 
Energy Consumption (%)

Temperature Change (˚C)
and Date for Change

National Studies

Rosenthal et al., 1995 -14% +1°C (2010)

Scott et al., 2005 -4% to -20%
+About 1.7°C median (varies from
0.4° to 3.2°C regionally and
seasonally) (2020)

Mansur et al., 2005
-2.8% for electricity-only
customers; -2% for gas customers;
-5.7% for fuel oil customers  

+1° C January temperatures (2050)

Huang, 2006

Varies by location 
and building. vintage average
HVAC changes:         

-12% heating in 2020 
-24% heating in 2050
-34% heating in 2080

18 US locations, (varies by
location, month, and time of day)
Average winter temperature increases

1.3° C in 2020
2.6° C in 2050
4.1° C in 2080

Regional Studies

Loveland and Brown,
1990 -44 to -73% 3.7°C to 4.7°C (Individual cities) 

(No date given)

Amato et al.,  2005
(Massachusetts)

-7% to -14%, natural gas
-15% to 20%, fuel oil

-15% to -25%, natural gas
-15% to -33%, fuel oil

-8.7% in HDD (2020)

-11.5% in HDD (2030)

Ruth and Lin, 2006
(Maryland)

-2.5% natural gas
-2.7% fuel oil 1.7°C-2.2°C (2025)

Table 2.3.  Effects of
Climate Change on
Residential Space
Heating in U.S.
Energy Studies
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Ruth and Lin, 2006 projected only a 2%-3% de-
cline space heating energy during the same time
frame in Maryland, which has a much milder
heating season and many days where warmer
weather would have no impact on heating de-
gree-days or heating demand.   

2.3.2 Commercial Space Heating 

Although historically the intensity of energy
consumption in the commercial sector has not
followed a declining trend in the residential sec-
tor (Box 2.1), the effects of climate warming on
space heating in the commercial sector (Table
2.4) are projected in most studies to be similar
to those in the residential sector.  

Belzer et al., (1996) used the detailed CBECS
data set on U.S. commercial buildings, and cal-
culated the effect of building characteristics and

temperature on energy consumption in all U.S.
commercial buildings.   With building equip-
ment and shell efficiencies frozen at 1990 base-
line levels and a 3.9°C temperature change, the
Belzer model predicted a decrease in annual
space heating energy requirements of 29% to
35%, or about 7.4% to 9.0% per 1°C.  Mansur
et al. 2005 projected that a 1°C increase in Jan-
uary temperatures would produce a reduction in
electricity consumption of about 3% for elec-
tricity for all-electric customers. The warmer
temperatures also would reduce natural gas con-
sumption by 3% and fuel oil demand by a size-
able 12% per 1°C.  This larger impact on fuel
oil consumption likely occurs because warming
has its largest impacts on heating degree days
in the Northeast and in some other northern tier
states where fuel oil is most prevalent.  Another
factor may be the fact that commercial build-
ings that use fuel oil may be older vintage build-

Study: 
Author(s) and Date

Change in 
Energy Consumption (%)

Temperature Change (˚C)
and Date for Change

National Studies

Rosenthal et al., 1995 -16% +1°C (2010)

Belzer et al., 1996 -29.0% to -35% +3.9°C (2030)

Scott et al., 2005 -5% to -24%
+About 1.7°C median (varies from
0.4° to 3.2°C regionally and
seasonally) (2020)

Mansur et al., 2005 -2.6% for electricity;  -3% for
natural gas;  -11.8% for fuel oi +1° C January temperatures (2050)

Huang, 2006

Varies by location 
and building vintage;  
Average heating savings:         

-12% heating in 2020 
-22% heating in 2050
-33% heating in 2080

5 US locations, (varies by
location, month, and time of day)
Average winter temperature increases

1.3° C in 2020
2.6° C in 2050
4.1° C in 2080

Regional Studies

Loveland and Brown,
1990 -37.3% to -58.8% 3.7°C to 4.7°C (Individual cities) 

(No date given)

Scott et al., 1994
(Minneapolis and
Phoenix)

-26.0% (Minneapolis);  
-43.1% (Phoenix) 3.9°C (no date)

Amato et al.,  2005
(Massachusetts)

-7% to -8%
-8% to 13%

-8.7% in HDD (2020)
-11.5% in HDD (2030)

Ruth and Lin, 2006
(Maryland) -2.7% natural gas 1.7°C-2.2°C  (2025)

Table 2.4.  Effects of
Climate Change on
Commercial Space
Heating in U.S.
Energy Studies
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ings whose energy consumption is more sensi-
tive to outdoor temperatures.  Similar to its res-
idential findings, Huang, 2006 showed that the
impact of climate change on commercial build-
ing energy use varies greatly depending on cli-
mate and building type.  For the entire U.S.
commercial sector, the simulations showed 12%
decrease in energy use for space heating or
9.2% per 1°C. 

Again, the regional level studies produce more
dramatic decreases in energy demand in colder
regions than in warmer ones; however, the dif-
ferences are less between cold regions and
warm regions than in residential buildings be-
cause commercial buildings are more domi-
nated by internal loads such as lighting and
equipment than are residential buildings.

2. 4    EFFECTS OF CLIMATE
WARMING ON ENERGY USE FOR
SPACE COOLING

2.4.1   Residential Space Cooling 

According to all studies surveyed for this chap-
ter, climate warming is expected to significantly
increase the energy demand in all regions for
space cooling, which is provided almost entirely
by electricity. The effect in most studies is non-
linear with respect to temperature and humid-
ity, such that the percentage impact increases
more than proportionately with increases in
temperature (Sailor, 2001).  Some researchers
have projected that increases in cooling eventu-
ally could dominate decreases in heating as tem-
peratures continue to rise (Rosenthal et al.,
1995), although that effect is not necessarily ob-
served in empirical studies for the temperature
increases projected in the United States during
the 21st century (Table 2.5). 

Study: 
Author(s) and Date

Change in 
Energy Consumption (%)

Temperature Change (˚C)
and Date for Change

National Studies

Rosenthal et al., 1995 +20% +1°C (2010)

Scott et al., 2005 +8% to +39%
+About 1.7°C median (varies from
0.4° to 3.2°C regionally and
seasonally) (2020)

Mansur et al., 2005
4% for electricity only customers;
6% for natural gas customers;
15.3% for fuel oil customers

+1° C July temperatures (2050)

Huang, 2006

Varies by location 
and building vintage;  
Average HVAC savings:         

+38% heating in 2020 
+89% heating in 2050
+158% heating in 2080

18 US locations, (varies by
location, month, and time of day)
Average summer temperature increases

1.7° C in 2020
3.4° C in 2050
5.3° C in 2080

Regional Studies

Loveland and Brown,
1990 +55.7% to +146.7% 3.7°C to 4.7°C (Individual cities) 

(No date given)

Sailor, 2001 +0.9% (New York) to
+11.6% (Florida) per capita 2°C (No date given)

Sailor and Pavlova, 2003
(Four states) +13% to +29% 1°C (No date given)

Amato et al.,  2005
(Massachusetts)

+6.8% in summer
+10% to +40% (summer)

+12.1% in CDD (2020)
+24.1% in CDD (2030)

Ruth and Lin, 2006
(Maryland)

+2.5% in May-Sep. (high energy
prices);  +24% (low energy prices) 1.7°C-2.2°C  (2025)

Table 2.5.  Effects of
Climate Change on
Residential Cooling
Space in U.S. Energy
Studies
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Electricity demand for cooling was projected to
increase by roughly 5% to 20% per 1ºC for the
temperature increases in the national studies
surveyed.  This can differ by location and cus-
tomer class.  For example, Mansur et al., 2005
projected that when July temperatures were in-
creased by 1ºC, electricity-only customers in-
creased their electricity consumption by 4%,
natural gas customers increased their demand
for electricity by 6%, and fuel oil customers
bought 15% more electricity. The impact on all
electricity consumption is somewhat lower be-
cause electricity also is used for a variety of
non-climate-sensitive loads in all regions and
for space heating and water heating in some re-
gions.  Looking specifically at residential sector
cooling demand (rather than all electricity) with
a projected 2020 building stock, Scott et al.
2005 projected nationally that an increase of
0.4° to 3.2°C summer temperatures (Table 2.5)
results in a corresponding 8% to 39% increase
in national annual cooling energy consumption,
or roughly a 12% to 20% increase per 1°C.
Huang’s (2006) projections show an even
stronger increase of about a 38% increase in
2020 for a 1.7°C increase in temperature, or
22.4% per 1°C, perhaps in part because of dif-
ferences in the in the details of locations and
types of new buildings in particular, which tend
to have more cooling load and less heating load.

Among the state studies, Loveland and Brown,
1990 found very high residential cooling sensi-
tivities in a number of different locations across
the country.  Cooling energy consumption in-
creased by 55.7% (Fort Worth, from a relatively
high base) up to 146% (Seattle, from a very low
base) for a temperature increase of 3.7°C to
4.7°C.  This implies about a 17% to 31% in-
crease in cooling energy consumption per de-
gree C.  Using a similar model in the special
case of California, where space heating is al-
ready dominated by space cooling, Mendel-
sohn, 2003 projected that total energy
expenditures for electricity used for space cool-
ing would increase nonlinearly and that net
overall energy expenditures would increase with
warming in the range of 1.5°C, more for higher
temperatures.  In such mild cooling climates,
relatively small increases in temperature can
have a large impact on air-conditioning energy
use by reducing the potentials for natural venti-
lation or night cooling.  The residential elec-

tricity results in Sailor,  2001, Sailor and
Pavlova, 2003; for several locations, and Amato
et al., 2005 for Massachusetts are consistent
with the national studies, with the expected di-
rection of climate effects and about the expected
magnitude, but the Ruth et al., 2006 results for
the more southerly state of Maryland turn out
to be very sensitive to electricity prices, rang-
ing from +2.5% at high prices (about 8 cents per
kWh, 1990$) prices to +24% if prices were low
(about 6 cents per kWh, 1990$). 

2.4.2 Commercial Space Cooling 

U.S. studies also have projected a significant in-
crease in energy demanded for space cooling in
commercial buildings as a result of climate
warming, as summarized in Table 2.6.

Commercial sector studies show that the per-
centage increases in space cooling energy con-
sumption tend to be less sensitive to
temperature than are the corresponding energy
increases in the residential sector for the same
temperature increase.  For example, Rosenthal
et al. 1995 found residential cooling increased
20% but commercial sector cooling only 15%
for a 1°C temperature increase.  The increase in
Scott et al. 2005 had a range of 9.4% to 15%
per 1°C for commercial and 12% to 20% per
1°C for residential customers.  As with heating,
in both cases this is likely to be in part because
of the relatively greater sensitivity of space con-
ditioning to internal loads in commercial build-
ings.  Mansur et al., 2005 econometric results
were less clear in this regard, possibly because
geographic and behavioral differences among
customer classes tend to obscure the overall ef-
fects of the buildings themselves. With building
equipment and shell efficiencies frozen at 1990
baseline levels, Belzer et al., 1996 found im-
pacts in the same range as the other studies.  A
3.9°C temperature change increased annual
space cooling energy requirements by 53.9% or
about 9.0% to 13.8% per 1°C.  Huang, 2006
also showed strong increases in cooling energy
consumption at the national level.  In 2020, his
average increase was 17% for a 1.7°C tempera-
ture increase, or +10% per 1°C.

State-level studies generally show impacts that
are in the same range as their national counter-
parts.  Analyses performed with building energy
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Study: 
Author(s) and

Date

Change 
in Energy Consumption

(%)

Temperature Change (˚C)
and Date for Change Comments

National Studies

Rosenthal et al.,
1995 +15% +1°C (2010)

Energy-weighted
national averages 
of census 
division-level data

Belzer et al., 1996 +53.9% +3.9°C (2030)

Scott et al., 2005 +6% to +30%
+About 1.7°C median (varies
from 0.4° to 3.2°C regionally
and seasonally) (2020)

Varies by region

Mansur et al.,
2005

+4.6% (electricity-only
customers); -2% (natural
gas customers);  +13.8%
(fuel oil customers) 

+1° C January temperatures
(2050)

A negative effect on
electricity use for
natural gas customers
is statistically
significant at the 10%
level, but unexplained

Huang, 2006

Varies by location 
and building vintage;  
Average HVAC 
savings:         

+17% heating in 2020 
+36% heating in 2050
+53% heating in 2080

5 US locations, (varies by
location, month, and time of day)
Average winter temperature
increases

1.7° C in 2020
3.4° C in 2050
5.3° C in 2080

Regional Studies

Loveland and
Brown, 1990
(general office
buildings in 6
individual cities)

+34.9% in Chicago
+75.0% in Seattle

3.7°C to 4.7°C (Individual
cities) 
(No date given)

Scott et al., 1994
(small office
buildings in
specific cities)

58.4% in Minneapolis  
36.3% in Phoenix 3.9°C (no date)

Sailor, 2001 
(7 out of 8
energy-intensive
states; one state–
Washington–
used electricity
for space heating)

+1.6%  in New York;
+5.0% in Florida
( per capita)

2°C (No date given)

Amato et al.,
2005
(Massachusetts)

+2% to +5%  summer
+4% to +10% summer

+12.1% in CDD (2020)
+24.1% in CDD (2030)

Monthly 
per employee

Ruth and Lin,
2006 (Maryland)

+10% per employee in
Apr-Oct +2.2°C  (2025)

Table 2.6.  Effects of
Climate Change on
Commercial Space
Cooling in U.S.
Energy Studies
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models generally indicate a 10% to 15% electric
energy increase for cooling per 1°C.   The
econometric studies also show increases, but
because the numerator is generally the change
in consumption of all electricity (including
lighting and plug loads, for example) rather than
just that used for space cooling, the percentage
increases are much smaller.

2.4.3 Other Considerations: Market
Penetration of Air Conditioning and
Heat Pumps (All-Electric Heating
and Cooling), and Changes in
Humidity  

Although effects of air conditioning market
penetration were not explicitly identified, the
late-1990s econometrically based cross-sec-
tional studies of Mendelsohn and colleagues
might be interpreted as accounting for increased
long run market saturations of air conditioning
because warmer locations in the cross-sectional
studies have higher market saturations of air
conditioning as well as higher usage rates.
However, more recent studies have examined
the effects directly.  In one example, Sailor and
Pavlova, 2003 have projected that potential in-
creases in market penetration of air conditioning
in the residential sector in response to warming
might have an effect on electricity consumption
larger than the warming itself.  They projected
that although the temperature-induced increases
in market penetration of air conditioning had lit-
tle or no effect on residential energy consump-
tion in cities such as Houston (93.6% market
saturation), in cooler cities such as Buffalo
(25.1% market saturation) and San Francisco
(20.9% market saturation), the extra market
penetration of air conditioning induced by a
20% increase in CDD more than doubled the
energy use due to temperature alone.  Using
cross-sectional data and econometric techniques
Mendelsohn, 2003 and Mansur et al., 2005 also
have estimated the effects of the market pene-
tration of space cooling into the energy market.
Mansur et al. found that warmer winter temper-
atures were associated with higher likelihood of
all-electric space conditioning systems in the
sample survey of buildings in EIA’s RECS and
CBECS datasets.  In warmer regions they noted
that electricity has a high marginal cost but a
low fixed cost, making it desirable in moderate
winters.  Electric heating is currently more

prevalent in the South than in the North (EIA,
2001a).  In general, however, the effects of
adaptive market response of air conditioning to
climate change have not been studied thor-
oughly in the United States.  

High atmospheric humidity is known to have an
adverse effect on the efficiency of cooling sys-
tems in buildings in the context of climate
change because of the energy penalty associated
with condensing water.  This was demonstrated
for a small commercial building modeled with
the DOE-2 building energy simulation model in
Scott et al., (1994), where the impact of an iden-
tical temperature increase created a much
greater energy challenge for two relatively
humid locations (Minneapolis and Shreveport),
compared with two drier locations (Seattle and
Phoenix).  A humidity effect does not always
show up in empirical studies (Belzer et al.,
1996), but Mansur et al., 2005 modeled the ef-
fect of high humidity by introducing a rainfall
as a proxy variable for humidity into their cross-
sectional equations.  In their residential sector,
a one-inch increase in monthly precipitation re-
sulted in more consumption by natural gas users
of both electricity (7%) and of natural gas (2%).
In their commercial sector, a one-inch increase
in July precipitation resulted in more consump-
tion of natural gas (6%) and of fuel oil (40%).

2.5    OVERALL EFFECTS OF
CLIMATE CHANGE ON ENERGY
USE IN BUILDINGS 

2.5.1  Annual Energy Consumption  

Many of the U.S. studies of the impact of cli-
mate change on energy use in buildings deal
with both heating and cooling and attempt to
come to a “bottom line” net result for either
total energy site consumed or total primary en-
ergy consumed (that is, both the amount of nat-
ural gas and fuel oil consumed directly in
buildings and the amount of natural gas, fuel oil,
and coal consumed indirectly to produce the
electricity consumed in buildings.)  Some stud-
ies only deal with total energy consumption or
total electricity consumption and do not de-
compose end uses as has been done in this chap-
ter.  Recent studies show similar net effects.
Both net delivered energy and net primary en-
ergy consumption increase or decrease only a
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Study: 
Author(s) 
and Date

Change in 
Energy 

Consumption (%)

Temperature 
Change (˚C) and 
Date for Change

Comments

National Studies

Linder-Inglis,
1989

+0.8% to +1.6% Annual
electricity consumption;
+3.4%  to +5.1% annual
electricity consumption.

+0.8°C to +1.5°C
(2010)
+3.5°C to +5.0°C
(2050)

Results available for 47 state
and substate service areas

Rosenthal, et al.,
1995

-11% Annual energy load;
balance of heating and
cooling nationally.

1ºC (2010) Space heating and air
conditioning combined

Mendelsohn,
2001

+1% to +22% 
Residential expenditures
-11% to +47%
Commercial Expenditures

+1.5°C to  +5°C (2060)

Takes into account energy
price fore-casts, market
penetration of air
conditioning. Precipitation
increases 7%.

Scott et al., 2005

-2% to -7% (Residential
and commercial heating
and cooling consumption
combined (site energy).
Energy used for cooling
increases, heating energy
decreases.

About +1.7°C median
(varies from +0.4° to
+3.2°C regionally and
seasonally) (2020)

Varies by region.  Allows for
growth in residential and
commercial building stock,
but not increased adoption
of air conditioning in
response to warming

Mansur et al.,
2005

+2% Residential
expenditures , 0%
commercial expenditures

+1°C  Annual
temperature (2050)

Takes into account energy
price forecasts, market
penetration of air
conditioning. Precipitation
increases 7%.

Hadley et al.,
2004, 2006

Heating -6%, cooling
+10%, +2% primary
energy
Heating -11%
cooling +22%
-1.5% primary energy

+1.2°C (2025)

+3.4°C (2025)

Primary energy, residential
and commercial combined.
Allows for growth in
residential and commercial
building stock.

Huang. 2006

Varies by location,
building type and vintage
average HVAC changes:
-8% site, +1% primary in
2020 -13% site, +0%
primary in 2050 -15%
site, +4% primary in 2080

18 U.S. locations (varies
by city, month, and time
of day); average summer
temperature increases:
1.7° C in 2020
3.4° C in 2050
5.3° C in 2080

Regional Studies

Loveland and
Brown, 1990

+10% to +35% HVAC
load in general offices;
-22.0% to +48.1% HVAC
load in single-family
houses

+3.2ºC to +4.0ºC
(2xCO2, no date)

Multiple state study: results
are for individual areas

Sailor, 2001 
(8 energy-
intensive states;
electricity only)

Residential: 
-7.2% in Washington  
to +11.6% in Florida
Commercial: 
-0.3% (Washington) 
to +5% in Florida

+2°C (Derived from
IPCC; but no date
given)

Table 2.7. Climate
Change Effects in
Combined
Residential-
Commercial Studies
and Combined
Results from Sector
Studies
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few percent; however, there is a robust result
that, in the absence of an energy efficiency pol-
icy directed at space cooling, climate change
would cause a significant increase in the de-
mand for electricity in the United States, which
would require the building of additional elec-
tricity generation (and probably transmission fa-
cilities) worth many billions of dollars. 

In much of the United States, annual energy
used for space heating is far greater than space
cooling; so net use of delivered energy would
be reduced by global warming.  Table 2.7 sum-
marizes the results from a number of U.S. stud-
ies of the effects of climate change on net
energy demand in U.S. residential and commer-
cial buildings.  The studies shown in Table 2.7
do not entirely agree with each other because of
differences in methods, time frame, scenario,
and geography.  However, they are all broadly
consistent with a finding that, at the national
level, expected temperature increases through
the first third of 21st Century (Table 2.1) would
not significantly increase or decrease net energy
use in buildings.  The Linder and Inglis, 1989
projections concerning increases in electricity
consumption have been generally confirmed by
later studies, but there are geographical differ-
ences.  For example, Sailor’s state level econo-
metric analyses (Sailor and Muñoz, 1997,
Sailor, 2001, Sailor and Pavlova, 2003) pro-
jected a range of effects.  A temperature in-
crease of 2°C would be associated with an
11.6% increase in residential per capita elec-
tricity used in Florida (a summer-peaking state
dominated by air conditioning demand), a 5%
increase per 1ºC warming.  On the other hand,
a 7.2% decrease in Washington state (which
uses electricity extensively for heating and is a
winter-peaking system), had about a 3% de-
crease per 1ºC warming. 

The Rosenthal et al., 1995 projections of re-
duced net total delivered energy consumption
and energy expenditure reductions have not
been confirmed. Results of more recent studies
follow a temperature increase of 2°C that would
be associated with an 11.6% increase in resi-
dential per capita electricity used in Florida (a
summer-peaking state dominated by air condi-
tioning demand) and a 5% increase per 1ºC
warming.  On the other hand, a 7.2% decrease in
Washington state (which uses electricity exten-

sively for heating and is a winter-peaking sys-
tem), had about a 3% decrease per 1ºC warming. 

Scott et al., 2005 projected that overall site en-
ergy consumption in U.S. residential and com-
mercial buildings is likely to decrease by about
2% to 7% in 2020 (0.4°C to 3.2°C warming).
This amounts to about 2% per 1ºC warming,
which is in the same direction of the Rosenthal
et al. results, but smaller.  This effect takes into
account expected changes in the building stock,
but not increased market penetration of air con-
ditioning that specifically results from climate
change.  For a 1°C increase in year-round tem-
peratures, Mansur et al., 2005 provide only pro-
jections of net energy expenditures—a 2%
increase in total residential energy expenditures
-- and no net change in commercial energy de-
mand for the year 2060.  In residences, elec-
tricity expenditures (presumably mainly for
cooling) generally increase, while use of other
fuels generally decreases.  Projected commer-
cial sector expenditures show increases in elec-
tricity expenditures that are almost exactly
offset by declines in the expenditures for natu-
ral gas and fuel oil.  Since the Mansur et al.
analysis claims to estimate long-term climate
elasticities that include fuel choices and com-
fort choices as well as the direct effect of
warmer temperatures on building energy loads,
its results likely reflect at least some of the in-
creased adoption of air conditioning that would
be expected in residences in currently cooler cli-
mates as temperatures increase; residential sec-
tor electricity use is projected to grow faster
than electricity use in the commercial sector,
where air conditioning is more common and in-
ternal loads such as lighting dominate electric-
ity use.    Hadley et al., 2004, 2006 also project
cooling energy consumption increasing and
heating energy consumption decreasing.  The
projected national net effect on delivered energy
consumption is slightly negative; but the impact
on primary energy consumption is a slight in-
crease.  For all three studies, the impact of 1°C
to 2°C warming is small. At the individual city
level, Loveland and Brown, 1990 projected
lower residential energy load in northern cities
such as Chicago, Minneapolis, and Seattle and
increased energy loads in southern cities such
as Charleston, Ft. Worth, and Knoxville.  A gen-
eral office building increase showed increased
overall energy loads in all six cities. 
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Most recently, Huang, 2006 used results from
the HADCM3 GCM that project the changes in
temperature, daily temperature range, cloud
cover, and relative humidity by month for 0.5º
grids of the earth’s surface to produce future
weather files for 18 U.S .locations. under 4
IPCC climate change scenarios (A1FI, A2M,
B1, and B2M) for three time periods (2020,
2050, and 2080).  These weather files were then
used with the DOE-2 building energy simula-
tion program to calculate the changes in space
conditioning energy use for a large set of proto-
typical residential and commercial buildings to
represent the U.S. building stock. This study
looked in detail at the technical impact of cli-
mate change on space conditioning energy use,
but did not address socio-economic factors or
adaptive strategies to climate change.  

These simulations indicate that the overall im-
pact of climate change by 2020 on the U.S.
building stock would be a 7% reduction in site
energy use, corresponding to a 1% reduction in
primary energy, when the generation and trans-
mission losses for electricity are taken into ac-
count.  The savings were noticeably larger for
residential buildings (9% reduction in site and
2% reduction in primary energy use) than for
commercial buildings (7% reduction in site, but
a 3% increase in primary energy use).  The
counterbalancing effect of heating savings in the
north, however, tends to mask the appreciable
impact that climate change can have on cool-
ing-dominant locations in the south.  For exam-
ple, cooling energy use in single-family houses
in Miami and New Orleans was expected to in-
crease by about 20%.  In the North or West, the
percentage increase of cooling was actually
much larger, but due to the short cooling sea-
son, the savings were more than offset by the re-
ductions in heating energy use.  For example,
cooling energy use was expected to rise by
100% in San Francisco, 60% in Boston and
Chicago, and 50% in New York and Denver.

Because of their larger internal heat gains and
less exposure to the outdoors in commercial
buildings, these simulations project that com-
mercial buildings would require less heating
and more cooling than residential houses.  Con-
sequently, some building types such as large ho-
tels and supermarkets showed an increase in site
energy use with climate change, and almost all

showed increases in primary energy use.  In Los
Angeles and Houston, commercial building en-
ergy use would increase by 2% and 4% in site
energy use, and by 15% and 25% in primary en-
ergy use. 

Huang, 2006 also looked at the impact of cli-
mate change out to 2050 and 2080, where there
are cumulative effects of further temperature in-
creases coupled with newer, tighter buildings
that require much less heating and proportion-
ally more cooling than older existing buildings.
By 2050, heating loads were expected to be re-
duced by 28%, and cooling loads increased by
85% due to climate change, averaged across all
building types and climates. By 2080, heating
loads were expected to be reduced by nearly
half (45%), but cooling loads were expected to
more than double (165%) due to climate
change, averaged across all building types and
climates.  With falling energy use for heating
and rising energy use for cooling, by 2080 the
ratio of cooling to heating energy use would be
60% in site energy and close to 180% in pri-
mary energy. 

There are also a number of specific regional-
level studies with similar outcomes.  For Mas-
sachusetts in 2020, Amato et al., 2005 projected
a 6.6% decline in annual heating fuel consump-
tion (8.7% decrease in heating degree days—
overall temperature change not given) and a
1.9% increase in summer electricity consump-
tion (12% increase in annual cooling degree-
days).    Amato et al. noted that per capita
residential and commercial energy demands in
Massachusetts are sensitive to temperature and
that a range of climate warming scenarios may
noticeably decrease winter heating fuel and
electricity demands and increase summer elec-
tricity demands.  For 2030, the estimated resi-
dential summer monthly electricity demand
projected increases averaged about 20% to
40%. Wintertime monthly natural gas demand
declined by 10% to 20%.  Fuel oil demand was
down about 15% to 30%.  For the commercial
sector, electricity consumption rose about 6%
to 10%.  Winter natural gas demand declined by
6% to 14%. 

The Hadley et al., 2006 study used the DD-
NEMS energy model. Two advantages of this
approach are that it provides a direct compari-
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son at the regional level to official forecasts and
that it provides a fairly complete picture of en-
ergy supply, demand, and endogenous price re-
sponse in a market model.  One disadvantage is
that the DD-NEMS model only projected to
2025 at the time of that study (now 2030),
which is only the earliest part of the period
where climate change is expected to substan-
tially affect energy demand. Hadley’s regional
results were broadly similar to those in Scott et
al., 2005.  For example, they showed decreases
in energy demand for heating, more than off-
setting the increased demand for cooling in the
north (New England, Mid-Atlantic, West North
Central and especially East North Central Cen-
sus Division). In the rest of the country, the in-
crease in cooling was projected to dominate.
Nationally, the site energy savings were shown
to be greater than the site energy increases, but
because of energy losses in electricity genera-
tion, primary energy consumption (primary en-
ergy) increased by about 3% by 2025, driving
up the demand for coal and driving down the
demand for natural gas.  Also, because electric-
ity costs more than natural gas per delivered
Btu, the increase in total energy cost per year
was found to be about $15 billion (2001 dollars). 

2.5.2 Peak Electricity Consumption  

Studies published to date project that tempera-
ture increases with global warming would in-
crease peak demand for electricity in most
regions of the country.   The amount of the in-
crease in peak demand would vary with the re-
gion.  Study findings vary with the region or
regions covered and the study methodology—
in particular, whether the study allows for
changes in the building stock and increased
market penetration of air conditioning in re-
sponse to warmer conditions.  The Pacific
Northwest, which has significant market pene-
tration of electric space heat, relatively low mar-
ket penetration of air conditioning, and a
winter-peaking electric system, is likely to be
an exception to the general rule of increased
peak demand.  The Pacific Northwest power
system annual and peak demand would likely
be lower as a result of climate warming (North-
west Power and Conservation Council, 2005). 

Concern for peak electricity demand begins
with the earliest studies of the climate impacts

on building energy demand.  Linder and Inglis,
1989, in their multiregional study of regional
electricity demand, found that although annual
electricity consumption increased from +3.4  to
+5.1% , peak electricity demand would increase
between 8.6% and 13.8% , and capacity re-
quirements between 13.1% and 19.7%, costing
tens of billions of dollars.   

One of the other few early studies of the effects
of climate change on regional electricity was
conducted by Baxter and Calandri, 1992 .  The
case of California has received particular atten-
tion (See Box 2.2).  For instance, the study used
degree day changes from General Circulation
Model (GCM) projections for 2010 to adjust the
baseline heating and cooling energy uses in res-
idential and commercial models that were de-
rived from building energy simulations of
prototypical buildings. Two climate change sce-
narios were considered; a low temperature in-
crease scenario of 0.72°C in the winter, 0.60°C
in the spring and fall, and 0.48°C in the sum-
mer, and a high temperature increase scenario
of 2.28°C in the winter, 1.90°C in the spring and
fall, and 1.58°C in the summer.  Results were
presented for the five major utility districts, and
showed a 0.28% decrease in heating coupled
with a 0.55% increase in cooling energy use for
the low-temperature increase scenario, and a
0.85% decrease in heating coupled with a
2.54% increase in cooling energy use for the
high-temperature increase scenario. The state-
wide impacts on energy demand were a 0.34-
1.51% increase in cooling electricity demand
for the low- temperature increase scenario, and
a 2.57-2.99% increase in cooling electricity de-
mand for the high-temperature increase scenario. 

The authors concluded that the impacts of cli-
mate change appear moderate on a percentage
basis, but because California's electricity sys-
tem is so large, a moderate percentage increase
results in sizeable absolute impacts. For energy
use, the 0.6% and 2.6% increases for the two
scenarios signify increases of 1741 GWh and
7516 GWh. For electricity demand, the 0.34-
1.51% and 2.57-2.99% increases correspond to
increased peak demand by 221-967 MW and
1648-1916 MW.  To put these impacts in per-
spective, uncertainties in the state’s economic
growth rate would have had comparable or
larger impacts on electricity demand over this
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There has been probably more analysis done in California on impacts of climate change than anywhere else
in the U.S. (also see Box 5.1).  The reasons for this are: (1) California’s relative mild climate has been shown
to be highly sensitive to climate change, not only in terms of temperature, but also in water resources, veg-
etation distribution, and coastal effects, and (2) California is vulnerable to shortfalls in peak electricity de-
mand, as demonstrated by the electricity shortage in 2001 (albeit mostly man-made) and the recent record
heat wave in July 2006 that covered the entire state and was of greater intensity and longer duration than
previously recorded. The pioneering work by Baxter and Calandri, 1992 on global warming and electricity
demand in California has already been described elsewhere in this report (see main text, this section).
Mendelsohn, 2003 investigated the impact of climate change on energy expenditures, while Franco 2005,
Franco and Sanstad 2006, and Miller et al,. 2006 have all focused on the impact of climate change on elec-
tricity demand.  Miller et al., 2006 studied the probability of extreme weather phenomena under climate
change scenarios for California and other Western U.S. locations. GCMs show that, over time, California
heat waves will have earlier onsets, be more numerous, and increase in duration and intensity. "For exam-
ple, extreme heat days in Los Angeles may increase from 12 to as many as 96 days per year by the end of
the century, implying current-day heat wave conditions may extend the entire summer period". Overall, pro-
jected increases in extreme heat by 2070-2099 will approximately double the historical number of days for
inland California cities, and up to four times for coastal California cities like Los Angeles and San Diego. The
following plots show how the duration of extreme periods in California increases based on GCM results
(from Miller et al., 2007).

BOX 2.2  California’s Perspective on Climate Change
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20-year projected estimation.  Actual growth in
noncoincident peak demand between 1990 and
2004 was actually 8,650 MW for total end use
load and 9,375 MW for gross generation (Cali-
fornia Energy Commission, 2006).

Much more recently, using IPCC scenarios of
climate change from the Hadley3, PCM, and
GFDL climate models downscaled for Califor-
nia, Franco and Sanstad 2006 found a  high cor-
relation between the simple average daily
temperature and daily peak electricity demand
in the California Independent System Operator
region, which comprises most of California.
They evaluated three different periods: 2005-
2034, 2035-2064, and 2070-2099.  In the first
period, depending on the scenario and model,
peak summer demand was projected to increase
relative to a 1961-1990 base period before cli-
mate change by 1.0%-4.8%; in the second,
2.2%-10.9%; in the third, 5.6%-19.5%.

A few U.S. regions could benefit from lower
winter demand for energy in Canada.  An ex-
ample is in the New England-Middle Atlantic-
East North Central region of the country, where
Ontario and Québec in particular are intertied
with the U.S. system, and where demand on ei-
ther side of the international border could in-
fluence the other side.  For example, since much
of the space heating in Québec is provided by
hydro-generated electricity, a decline in energy
demand in the province could free up a certain
amount of capacity for bordering U.S. regions
in the winter.  In Québec, the Ouranos organi-
zation (Ouranos, 2004) has projected that net
energy demand for heating and air conditioning
across all sectors could fall by 30 trillion Btus,
or 9.4 % of 2001 levels by 2100.   Seasonality
of demand also would change markedly.  Resi-
dential heating in Québec would fall by 15%
and air conditioning (currently a small source
of demand) would increase nearly fourfold.
Commercial-institutional heating demand was
projected to fall by 13% and commercial air
conditioning demand to double. Peak (winter)
electricity demand in Québec would decline.
Unfortunately, Québec’s summer increase in air
conditioning demand would coincide with an
increase of about 7% to 17% in the New York
metropolitan region (Ouranos, 2004); so winter
savings might be only of limited assistance in
the summer cooling season, unless the water not

used for hydroelectric production in the winter
could be stored until summer and the transmis-
sion capacity existed to move the power south
(Québec’s hydroelectric generating capacity is
sized for the winter peak and should not be a
constraint).  

Although they discuss the impacts of climate
change on peak electricity demand, Scott et al.,
2005 did not directly compute them.  However,
they performed a sensitivity analysis using nu-
clear power’s 90% average capacity factor for
2004 as an upper-thatbound estimate of base
load power plant availability and projected that
national climate sensitive demand consumption
(1.3 quads per year by 2080) would be equiva-
lent of roughly 48 GW, or 48 base load power
plants of 1,000 MW each.  At the much lower
2003 average U.S. generation/capacity ratio of
47%, 93 GW of additional generation capacity
would be required.  This component of demand
would be a factor in addition to any increases
due to additional climate-related market pene-
tration of air conditioning and any other causes
of increased demand for electricity that the na-
tional electrical system will be dealing with for
the rest of the century.

For further information about methods for esti-
mating energy consumption in buildings, see
Annex A.

2.6 ADAPTATION: INCREASED
EFFICIENCY AND URBAN FORM

Although improving building energy efficiency
should help the nation cope with impacts of cli-
mate change, there is relatively little specific in-
formation available on the potential impacts of
such improvements.  Partly this is because it has
been thought that warming would already be re-
ducing energy consumption, so that the addi-
tional effects of energy efficiency have not been
of much interest.  Scott et al., 1994 and Belzer
et al., 1996 concluded that in the commercial
sector, very advanced building designs could in-
crease the savings in heating energy due to cli-
mate warming alone. Loveland and Brown
1990, Scott et al. 1994, Belzer et al., 1996, and
Scott et al., 2005 all estimated the effects of en-
ergy-efficient buildings on energy consumption
in the context of climate change and also con-
cluded that much of the increase in cooling en-
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ergy consumption due to warming could be off-
set by increased energy efficiency.  

Loveland and Brown, 1990 projected that
changes leading to -50% lighting, +50% insu-
lation, and +75% window shading would reduce
total energy use in residential buildings by
31.5% to 44.4% in the context of a 3.2° to 4°C
warming.  This suggests that advanced building
designs are a promising approach to reducing
energy consumption impacts of warming, but fur-
ther verification and follow-up research is needed
both to confirm results and design strategies.

Scott et al., 1994 examined the impact of “ad-
vanced” building designs for a 48,000-square
foot office building in the context of climate
change in the DOE-2 building energy simula-
tion model.  The building envelope was as-
sumed to reduce heat transfer by about 70%
compared to the ASHRAE 90.1 standard.  It in-
cluded extra insulation in the walls and ceiling,
reduction in window conductivity by a factor of
6, and window shading devices.  The result was
that, assuming a 3.9°C increase in annual aver-
age temperature, rather than experiencing be-
tween an 8% reduction in energy use
(Minneapolis) and a 6.3% increase in overall
energy use (Phoenix), an advanced design
building would show a 57.2% to 59.8% de-
crease in energy used.  In addition, the cooling
energy impact was reversed in sign–a 47% to
60% decrease instead of a 35% to 93% increase.
Cost, however, was not analyzed (also see SAP 4.6).  

Belzer et al., 1996 projected that with a 3.9°C
increase in annual average temperature, the use
of advanced buildings would increase the over-
all energy savings in EIA’s year 2030 projected
commercial building stock from 0.47 quads
(20.4%) to 0.63 quads (27%).  Use of advanced
building designs in the 2030 commercial build-
ing stock would increase the overall energy sav-
ings by 1.15 quads (40.6%) relative to a 2030
building stock frozen at 1990 efficiency.  The
cooling component of building energy con-
sumption was only reduced rather than reversed
by advanced designs in this study. 

Finally, Scott et al., 2005 explicitly considered
the savings that might be achieved under the
Department of Energy’s energy efficiency pro-
grams as projected in August 2004 for the EIA

building stock in the year 2020 (temperature
changes of about 0.4°C at the low end to about
2.8°C at the high end).  This is the only study to
have estimated the national effects of actual en-
ergy efficiency programs in the context of
global warming.  (The analysis did not count
any potential increase in energy demand due to
additional climate change-induced market pen-
etration of air conditioning).  The efficiency
programs, which mainly targeted heating, light-
ing, and appliances instead of cooling, were less
effective if the climate did not change; however,
buildings still saved between 2.0 and 2.2 quads.
This was a savings of about 4.5%, which would
more than offset the growth in temperature-sen-
sitive energy consumption due to increases in
cooling and growth in building stock between
2005 and 2020.

Except for Scott et al., 2005, even where stud-
ies consider adaptive response (e.g., Loveland
and Brown, 1990; Belzer, et al. 1996; Mendel-
sohn, 2001), they generally do not involve par-
ticular combinations of technologies to offset
the effects of future climate warming.  Region-
ally, Franco and Sanstad, 2006 did note that the
very aggressive energy efficiency and demand
response targets for California’s investor-owned
utilities such as those recently enacted by the
California Public Utilities Commission could,
if extended beyond the current 2013 horizon --
provide substantial “cushioning” of the electric
power system against the effects of higher tem-
peratures.

2.7     OTHER POSSIBLE EFFECTS,
INCLUDING ENERGY USE IN
KEY SECTORS

2.7.1  Industry

Except for energy used to heat and cool build-
ings, which is thought to be about 6% of energy
use in industry (EIA, 2001b) and is generally
not analyzed for manufacturing activities in ex-
isting studies, it is not thought that industrial en-
ergy demand is particularly sensitive to climate
change.  For example, Amato et al. 2005 stated
that “industrial energy demand is not estimated
since previous investigations (Elkhafif, 1996;
Sailor and Munoz, 1997) and our own findings
indicate that it is non-temperature-sensitive.”
Ruth and Lin, 2006 observe that in contrast to



1Data supplied by Robert Boundy, Oak Ridge National Laboratory, based on Ward’s Automotive Yearbooks.

2 Data supplied by Lawrence Chaney, National Renewable Energy Laboratory
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residential households, which use about 58% of
their energy for space conditioning, and com-
mercial buildings, which use about 40%, indus-
trial facilities devote only about 6% of their
energy use to space conditioning.  In absolute
numbers, this is about a third of what the com-
mercial sector uses and about 8% of what the
residential sector uses for this purpose.  Ac-
cording to the 2002 Manufacturing Energy
Consumption Survey, among the energy uses
that could be climate sensitive, U.S. manufac-
turing uses about 4% of all energy for directly
space conditioning, 22% for process heating,
and 1.5% for process cooling (EIA, 2002a).

This does not mean, of course, that industry is
not sensitive to climate, or even that energy
availability as influenced by climate or weather
does not affect industry.  Much of the energy
used in industry is used for water heating; so en-
ergy use would likely decline in industry if cli-
mate and water temperatures become warmer.
Electrical outages (some caused by extreme
weather) cause many billions in business inter-
ruptions every year, and large events that inter-
rupt energy supplies are also nationally
important (see Chapter 3).  However, little in-
formation exists on the impact of climate
change on energy use in industry.  Considine,
2000 econometrically investigated industrial en-
ergy use data from the EIA Short Term Energy
Forecasting System based on HDD and CDD
and calculated that U.S. energy consumption per
unit of industrial production would increase for
an increase 0.0127% per increase in one heating
degree day (Fahrenheit) or by 0.0032% per in-
crease of one cooling degree day (Fahrenheit).
On an annual basis with a 1°C temperature in-
crease (1.8°F), there would be a maximum of
657 fewer HDD per year and 657 more CDD
(Fahrenheit basis, and assuming that all indus-
try was located in climates that experienced all
of the potential HDD decrease and CDD in-
crease). This would translate into 6.2% less net
energy demand in industry or a saving of
roughly 0.04 quads.

A few studies have focused on a handful of ex-
ceptions where it was assumed that energy con-

sumption would be sensitive to warmer temper-
atures, such as agricultural crop drying and ir-
rigation pumping (e.g., Darmstadter, 1993;
Scott et al., 1993).  While it seems logical that
warmer weather or extended warm seasons
should result in warmer water inlet temperatures
for industrial processes and higher rates of evap-
oration, possibly requiring additional industrial
water diversions, as well as additional municipal
uses for lawns and gardens, the literature review
conducted for this chapter did not locate any lit-
erature either laying out that logic or calculat-
ing any associated increases in energy
consumption for water pumping.  Industrial
pumping increases are likely to be small rela-
tive to those in agriculture, which consumes the
lion’s share (40%) of all fresh water withdrawals
in the United States (USGS, 2004).  Some ob-
servations on energy use in other climate-sen-
sitive economic sectors follow. 

2.7.2 Transportation 

Running the air conditioning in a car reduces its
fuel efficiency by approximately 12% at high-
way speeds (Parker, 2005).  A more extended
hot season likely would increase the use of au-
tomotive air conditioning units, but by how
much and with what consequences for fuel
economy is not known. Based on preliminary
unpublished data, virtually all new light duty
vehicles sold (well over 99% in 2005) in the
United Sates come with factory-installed air
conditioning (up from about 90% in the mid-
1990s)1 , but no statistics appear to be available
from public sources on the overall numbers or
percentage of vehicles in the fleet without air
conditioning.  No projections appear to be avail-
able on the total impact of climate change on
energy consumption in automotive air condi-
tioners; however, there are some estimates of the
response of vehicle air conditioning use to tem-
perature.  Based on a modeling of consumer
comfort, Johnson (2002) estimates that at am-
bient temperatures above 30°C (86°F), drivers
would have their air conditioning on 100% of
the time; at 21°C-30°C (70°F-86°F), 80%; at
13°C-20°C (55°F-70°F), 45%; and at 6°C-12°C
(43°F-55°F), 20% of the time.2 Data from the
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Environmental Protection Agency’s model of
vehicular air conditioning operation suggests
that U.S. drivers on average currently have their
air conditioning systems turned on 23.9% of the
time.  With an increase in ambient air tempera-
ture of 1°C (1.8°F), the model estimates that
drivers would have their air conditioning sys-
tems turned on 26.9% of the time, an increase of
3.0% of the time.3

Much of the food consumed in the United States
moves by refrigerated truck or rail.  One of the
most common methods is via a refrigerated
truck-trailer combination. As of the year 2000,
there were approximately 225,000 refrigerated
trailers registered in the United States, and their
Trailer Refrigeration Units (TRUs) used on av-
erage 0.7 to 0.9 gallons of fuel per hour to main-
tain 0°F.  On a typical use cycle of 7200 hours
per year (6 days per week, 50 weeks per year),
the typical TRU would use 5,000 to 6,000 gal-
lons of diesel per year (Shurepower, LLC,
2005), or between 26 and 32 million barrels for
the national fleet. Even though diesel electric
hybrid and other methods are making market in-
roads and over time could replace a substantial
amount of this diesel use with electricity from
the grid when the units are parked, climate
warming would add to the energy use in these
systems. No data appear to be available on the
total impact of climate change on energy con-
sumption in transportation, however (also see
SAP 4.7).

2.7.3 Construction

Warming the climate should result in more days
when outdoor construction activities are possi-
ble. In many parts of the northern states, the
construction industry takes advantage of the
best construction weather to conduct activities
such as some excavation, pouring concrete,
framing buildings, roofing, and painting, while
sometimes enclosing buildings, partially heat-
ing them with portable space heaters, and con-
ducting inside finishing work during “bad”
weather. While the construction season may
lengthen in the North, there also may be an in-

creasing number of high-temperature heat stress
days during which outdoor work may be hin-
dered. The net effects on energy consumption
on construction are not clear. The literature sur-
vey conducted for this chapter was not able to
locate any studies in the United States that have
investigated either the lengthening of the con-
struction season in response to global warming
or any resulting impacts on energy consumption.

2.7.4 Agriculture

Agricultural energy use generally falls into five
main categories: equipment operations, irriga-
tion pumping, embodied energy in fertilizers
and chemicals, product transport, and drying
and processing. A warmer climate implies in-
creases in the demand for water in irrigated
agriculture and use of energy (either natural gas
or electricity) for pumping. Though not a factor
in many parts of the country, irrigation energy is
a significant source of energy demand west of
the 100th meridian, especially in the Pacific
Southwest and Pacific Northwest. For example,
irrigation load in one early climate change im-
pact assessment increased from about 8.7% to
about 9.8% of all Pacific Northwest electricity
load in July (Scott et al., 1993), even with no
change in acreage irrigated. 

In some parts of the country, the current practice
is to keep livestock and poultry inside for parts
of the year, either because it is too cold or too
hot outside. Often these facilities are space-con-
ditioned. In Georgia, for example, there are
11,000 poultry houses, and many of the exist-
ing houses are air-conditioned due to the hot
summer climate (and all new ones are) (Uni-
versity of Georgia and Fort Valley State Uni-
versity, 2005). Poultry producers throughout the
South also depend on natural gas and propane
as sources of heat to keep their birds warm dur-
ing the winter (Subcommittee on Conservation,
Credit, Rural Development, and Research,
2001). The demand for cooling livestock and
poultry would be expected to increase in a
warmer climate, while that for heating of cattle
barns and chicken houses likely would fall.

3Data supplied by Richard Rykowski, Assessment Standards and Support Division, Environmental Protection Agency.
The model used in this analysis is described in Chapter III of the Draft Technical Support Document to the proposed
EPA rulemaking to devise EPA’s methodology for calculating the city and highway fuel economy values pasted on
new vehicles.
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There are no available quantitative estimates of
the effects on energy demand.

Food processing needs extensive refrigerated
storage, which may take more energy in a
warmer climate. However, there seem to be no
U.S. studies on this subject.

2.8   SUMMARY OF KNOWLEDGE
ABOUT POSSIBLE EFFECTS

Generally speaking, the net effects of climate
change in the United States on total energy de-
mand are projected to be modest, amounting to
between perhaps a 5% increase and decrease in
demand per 1ºC in warming in buildings, about
1.1 Quads in 2020 based on EIA 2006 projec-
tions (EIA, 2006). Existing studies do not agree
on whether there would be a net increase or de-
crease in energy consumption with changed cli-
mate because a variety of methodologies have
been used. There are differences in climate sen-
sitivities among models and studies as well as
differences in methodological emphasis. For ex-
ample, econometric models have incorporated
some market response to warming and fuel
costs but not necessarily differences in building
size and technology over time and space, while
the opposite is true of building simulation ap-
proaches. There are also differences in climate
and market scenarios. It appears likely that
some of the largest effects of climate change on
energy demand are in residential and commer-
cial buildings, however, with other sensitivities
in other sectors being of secondary or tertiary
importance.

Another robust finding is that most regions of
the country can be expected to see significant
increases in the demand for electricity, due both
to increases in the use of existing space-cooling
equipment and also to likely increases in the
market penetration of air conditioning in re-
sponse to longer and hotter summers. This is
likely in Northern regions where market pene-
tration of air conditioning is still relatively low. 

To some extent, it is possible to control for dif-
ferences in climate scenarios by comparing per-
centage changes in energy use per a standardized
amount of temperature change, as has been
done in this chapter. It is also possible to search
for a set of robust results and to compare im-
pacts, for example, that come from models that
have fixed technologies and no market re-
sponses with those that allow technology to
evolve and businesses and individuals to re-
spond to higher or lower energy bills. 

Some of the apparently conflicting results are
more likely to be correct than others. Because of
compensating market and technological re-
sponses, impacts of climate change should be
less with models that allow technology to evolve
and businesses and individuals to respond to
higher or lower energy bills. Because they also
assess more realistically the factors actually
likely to be in play, they are likelier to be closer
to correct. None of the models actually does all
of this, but Mansur et al., 2005 probably comes
the closest on the market side and Scott et al.,
2005 or Huang, 2006 on the technology side.
Using the results from these two approaches, to-
gether with Sailor and Pavlova, 2003 to inform
and modify the Hadley et al., 2006 special ver-
sion of NEMS, probably has the best chance of
being correct for buildings.
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This chapter discusses impacts on energy production and distribution in the United States associ-
ated with projected changes in temperature, precipitation, water resources, severe weather events,
and sea level rise, although the currently available research literatures tend to be limited in most
cases. Overall, the effects on the existing infrastructure might be categorized as modest; however,
local and industry-specific impacts could be large, especially in areas that may be prone to dis-
proportional warming (Alaska) or weather disruptions (Gulf Coast and Gulf of Mexico). The ex-
isting assemblage of power plants and distribution systems is likely to be more affected by ongoing
unidirectional changes, compared with possible future systems, if future systems can be designed
with the upfront flexibility to accommodate the span of potential impacts. Possible adaptation
measures include technologies that minimize the impact of increases in ambient temperatures on
power plant equipment, technologies that conserve water use for power plant cooling processes,
planning at the local and regional level to anticipate storm and drought impacts, improved fore-
casting of the impacts of global warming on renewable energy sources at regional and local lev-
els, and establishing action plans and policies that conserve both energy and water.

Energy production in the U.S. is dominated by fossil fuels: coal, petroleum, and

natural gas (Fig. 3.1).  Every existing source of energy in the United States has

some vulnerability to climate variability (Table 3.1). Renewable energy sources

tend to be more sensitive to climate variables; but fossil energy production can

also be adversely effected by air and water temperatures, and the thermoelec-

tric cooling process that is critical to maintaining high electrical generation 

efficiencies also applies to nuclear energy. In addition, extreme weather events

have adverse effects on energy production, distribution, and fuel transportation. 
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3.1 EFFECTS ON FOSSIL AND
NUCLEAR ENERGY

Climate change can affect fossil and nuclear en-
ergy production, conversion, and end-user de-
livery in a myriad of ways. Average ambient
temperatures impact the supply response to
changes in heating and cooling demand by af-
fecting generation cycle efficiency, along with
cooling water requirements in the electrical sec-
tor, water requirements for energy production
and refining, and Gulf of Mexico (GOM) pro-
duced water discharge requirements. Often
these impacts appear “small” based on the
change in system efficiency or the potential re-
duction in reliability, but the scale of the energy
industry is vast: fossil fuel-based net electricity
generation exceeded 2,500 billion kWh in 2004
(EIA 2006). A net reduction in generation of 1%
due to increased ambient temperature (Maul-
betsch and DiFilippo 2006) would represent a

drop in supply of 25 billion kWh that might
need to be replaced somehow. The GOM tem-
perature-related issue is a result of the forma-
tion of water temperature-related anoxic zones
and is important because that region accounts
for 20 to 30% of the total domestic oil and gas
production in the U.S. (Figure 3.2). Constraints
on produced water discharges could increase
costs and reduce production, both in the GOM
region and elsewhere. Impacts of extreme
weather events could range from localized rail-
road track distortions due to temperature ex-
tremes, to regional-scale coastal flooding from
hurricanes, to watershed-scale river flow excur-
sions from weather variations superimposed
upon, or possibly augmented by, climate
change. Spatial scale can range from kilometers
to continent-scale; temporal scale can range
from hours to multiyear. Energy impacts of
episodic events can linger for months or years,
as illustrated by the continuing loss of oil and

Energy Flow, 2006
(Quadrillion Btu)

Petroleum
2.79

Otherg
2.14

Othere
5.46

aIncludes lease condensate.
bNatural gas plant liquids.
cConventional hydroelectric power, biomass, geothermal, solar/PV, 
  and wind.
dCrude oil and petroleum products. Includes imports into the Strategic 
  Petroleum Reserve.
eNatural gas, coal, coal coke, fuel ethanol, and electricity.
fStock changes, losses, gains, miscellaneous blending components, 
 and unaccounted-for supply.
gCoal, natural gas, coal coke, and electricity.
hNatural gas only; excludes supplemental gaseous fuels.

iPetroleum products, including natural gas plant liquids and crude oil
 burned as fuel.
jIncludes 0.06 quadrillion Btu of coal coke net imports.
kIncludes 0.06 quadrillion Btu of electricity net imports.
lPrimary consumption, electricity retail sales, and electrical systems energy
 losses, which are allocated to the end-use sectors in proportion to each
 sector’s share of total electricity retail sales.
      Notes: •Data are preliminary. •Values are derived from the source data
prior to rounding for publication. •Totals may not equal sum of components
due to independent rounding. 

      Sources: Tables 1.1, 1.2, 1.3, 1.4, 2.1a, and 10.1.  
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gas production in the GOM (MMS 2006a,
2006b, and 2006c) eight months after the 2005
hurricanes.

3.1.1 Thermoelectric Power
Generation

Climate change impacts on electricity genera-
tion at fossil and nuclear power plants are likely
to be similar. The most direct climate impacts
are related to power plant cooling and water
availability.

Projected changes in water availability through-
out the world would directly affect the avail-
ability of water to existing power plants.  While
there is uncertainty in the nature and amount  of
the change in water availability in specific lo-

cations, there is agreement among climate mod-
els that there will be a redistribution of water,
as well as changes in the availability by season.
As currently designed, power plants require sig-
nificant amounts of water, and they will be vul-
nerable to fluctuations in water supply.
Regional-scale changes would likely mean that
some areas would see significant increases in
water availability, while other regions would see
significant decreases. In those areas seeing a de-
cline, the impact on power plant availability or
even siting of new capacity could be significant.
Plant designs are flexible and new technologies
for water reuse, heat rejection, and use of alter-
native water sources are being developed; but, at
present, some impact—significant on a local
level—can be foreseen. An example of such a
potential local effect is provided in Box 3.1—
Chattanooga: A Case Study, which shows how

Energy Impact 
Supplies

Climate Impact 
Mechanisms

Fossil Fuels
(86%)

Coal (22%) Cooling water quantity and quality (T), cooling
efficiency (T, W, H), erosion in surface mining

Natural Gas (23%)
Cooling water quantity and quality (T), cooling
efficiency (T, W, H), disruptions of off-shore
extraction (E)

Petroleum (40%)
Cooling water quantity and quality, cooling
efficiency (T, W, H), disruptions of off-shore
extraction and transport (E)

Liquified Natural Gas (1%) Disruptions of import operations (E)

Nuclear (8%) Cooling water quantity and quality (T), cooling
efficiency (T, W, H)

Renewables
(6%)

Hydropower
Water availability and quality, temperature-related
stresses, operational modification from extreme
weather (floods/droughts), (T, E)

Biomass

• Wood and forest 
products

Possible short-term impacts from timber kills or
long-term impacts from timber kills and changes in
tree growth rates (T, P, H, E, carbon dioxide levels) 

• Waste (municipal solid 
waste, landfill gas, etc.) n/a

• Agricultural resources
(including derived biofuels)

Changes in food crop residue and dedicated energy
crop growth rates (T, P, E, H, carbon dioxide levels)

Wind Wind resource changes (intensity and duration),
damage from extreme weather

Solar Insolation changes (clouds), damage from extreme
weather

Geothermal Cooling efficiency for air-cooled geothermal (T)

(Source:  EIA, 2004)

Table 3-1.
Mechanisms Of
Climate Impacts On
Various Energy
Supplies In The U.S.
Percentages Shown
Are Of Total
Domestic
Consumption; (T =
water/air temperature, W
= wind, H = humidity, P =
precipitation, and E =
extreme weather events) 



32

The U.S. Climate Change Science Program Chapter 3 - Effects of Climate Change on Energy Production and Distribution

Figure 3.2.
Distribution Of 
Off-Shore Oil And
Gas Wells In The Gulf
Of Mexico (GOM)
And Elsewhere In
The U.S.

cooling conditions might evolve over the 21st

century for generation in one locality. Situations
where the development of new power plants is
being slowed down or halted due to inadequate
cooling water are becoming more frequent
throughout the U.S. (SNL, 2006b). 

In those areas seeing an increase in stream flows
and rainfall, impacts on groundwater levels and
on seasonal flooding could have a different set
of impacts. For existing plants, these impacts
could include increased costs to manage on-site
drainage and run-off, changes in coal handling
due to increased moisture content or additional
energy requirements for coal drying, etc. The fol-
lowing excerpt details the magnitude of the inter-
section between energy production and water use. 

An October 2005 report produced by the Na-
tional Energy Technology Laboratory stated, in
part, that the production of energy from fossil
fuels (coal, oil, and natural gas) is inextricably
linked to the availability of adequate and sus-
tainable supplies of water. While providing the
United States with a majority of its annual en-
ergy needs, fossil fuels also place a high de-
mand on the Nation’s water resources in terms
of both use and quality impacts (EIA, 2005d).
Thermoelectric generation is water intensive; on
average, each kWh of electricity generated via
the steam cycle requires approximately 25 gal-
lons of water, a weighted average that captures
total thermoelectric water withdrawals and gen-
eration for both once-through and recirculating
cooling systems. According to the United States
Geological Survey (USGS), power plants rank

only slightly behind irrigation in terms of fresh-
water withdrawals in the United States (USGS,
2004), although irrigation withdrawals tend to
be more consumptive.  Water is also required in
the mining, processing, and transportation of
coal to generate electricity all of which can have
direct impacts on water quality. Surface and un-
derground coal mining can result in acidic,
metal-laden water that must be treated before it
can be discharged to nearby rivers and streams.
In addition, the USGS estimates that in 2000 the
mining industry withdrew approximately 2 bil-
lion gallons per day of freshwater. Although not
directly related to water quality, about 10% of
total U.S. coal shipments were delivered by
barge in 2003 (USGS, 2004). Consequently, low
river flows can create shortfalls in coal invento-
ries at power plants. 

Freshwater availability is also a critical limiting
factor in economic development and sustain-
ability, which directly impacts electric-power
supply. A 2003 study conducted by the Govern-
ment Accountability Office indicates that 36
states anticipate water shortages in the next 10
years under normal water conditions, and 46
states expect water shortages under drought
conditions (GAO 2003).  Water supply and de-
mand estimates by the Electric Power Research
Institute (EPRI) for the years 1995 and 2025
also indicate a high likelihood of local and re-
gional water shortages in the United States
(EPRI 2003).  The area that is expected to face
the most serious water constraints is the arid
southwestern United States. 

Oil Gas
Shallow-water

GOM
10%

Shallow-water
GOM
13%

Deepwater
GOM
18%

Other U.S.
72%

Other U.S.
80%

Deepwater
GOM

7%
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In any event, the demand for water for thermo-
electric generation will increasingly compete
with demands from other sectors of the econ-
omy such as agriculture, residential, commer-
cial, industrial, mining, and in-stream use. EPRI
projects a potential for future constraints on
thermoelectric power in 2025 for Arizona, Utah,
Texas, Louisiana, Georgia, Alabama, Florida,
and all of the Pacific Coast states. Competition
over water in the western United States, includ-
ing water needed for power plants, led to a 2003
Department of Interior initiative to predict, pre-
vent, and alleviate water-supply conflicts (DOI
2003). Other areas of the United States are also

susceptible to freshwater shortages as a result
of drought conditions, growing populations, and
increasing demand. 

Concerns about water supply expressed by state
regulators, local decision-makers, and the gen-
eral public are already impacting power projects
across the United States. For example, Arizona
recently rejected permitting for a proposed
power plant because of concerns about how
much water it would withdraw from a local
aquifer (Land Letter 2004). An existing Entergy
plant located in New York is being required to
install a closed-cycle cooling water system to

A preliminary analysis of one
IPCC climate change scenario
(A1B) provides one example
of how cooling conditions
might evolve over the 21st
century for generation in the
Chattanooga vicinity (ORNL
work in progress).  In this ex-
ample, a slight upward trend
in stream flow would provide
a marginal benefit for once-
through cooling, but would be
offset by increasing summer-
time air temperatures that
trigger limits on cooling
water intake and downstream
mixed temperatures.  Closed-
cycle cooling would also be-
come less effective as ambient
temperature and humidity in-
creased.  Utilities would need
to maintain generation capac-
ity by upgrading existing cool-
ing systems or shifting
generation to newer facilities
with more cooling capacity.
Without technology-based
improvements in cooling sys-
tem energy efficiency or
steam-cycle efficiency, overall
thermoelectric generation ef-
ficiency would decrease.

BOX 3.1  Chattanooga: A Case Study of Cooling Effects
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prevent fish deaths resulting from operation of
its once-through cooling water system (Green-
wire, 2003). Water availability has also been
identified by several Southern States Energy
Board member states as a key factor in the per-
mitting process for new merchant power plants
(Clean Air Task Force 2004).  In early 2005,
Governor Mike Rounds of South Dakota called
for a summit to discuss drought-induced low
flows on the Missouri River and the impacts on
irrigation, drinking-water systems, and power
plants (Billingsgazette.com 2005). Residents of
Washoe County, Nevada expressed opposition
to a proposed coal-fired power plant in light of
concerns about how much water the plant would
use (Reno-Gazette Journal. 2005).  Another
coal-fired power plant to be built in Wisconsin
on Lake Michigan has been under attack from
environmental groups because of potential ef-
fects of the facility’s cooling-water-intake struc-
tures on the Lake’s aquatic life (Milwaukee
Journal Sentinel, 2005).

Such events point toward a likely future of in-
creased conflicts and competition for the water
the power industry will need to operate their
thermoelectric generation capacity. These con-
flicts will be national in scope, but regionally
driven. It is likely that power plants in the west
will be confronted with issues related to water
rights: that is, who owns the water and the im-
pacts of chronic and sporadic drought. In the
east, current and future environmental require-
ments, such as the Clean Water Act’s intake
structure regulation, could be the most signifi-
cant impediment to securing sufficient water,
although local drought conditions can also im-
pact water availability. If changing climatic con-
ditions affect historical patterns of precipitation,
this may further complicate operations of exist-
ing plants, and the design and site selection of
new units.

EIA 2004a reports net summer and winter ca-
pacity for existing generating capacity by fuel
source. Coal-fired and nuclear plants have sum-
mer/winter ratios of 0.99 and 0.98 and average
plant sizes of 220 MW and 1015 MW, respec-
tively. Petroleum, natural gas, and dual fuel-
fired plants show summer/winter net capacity
ratios of 0.90 to 0.93, indicating higher sensi-
tivity to ambient temperature. Average sizes of
these plants ranged from 12 MW to 84 MW,

consistent with their being largely peaking and
intermediate load units.  Although large coal
and nuclear generating plants report little degra-
dation of net generating capacity from winter to
summer conditions, there are reports (University
of Missouri-Columbia 2004) of plant derating
and shutdowns caused by temperature-related
river water level changes and thermal limits on
water discharges. Actual generation in 2004
(EIA, 2004a) shows coal-fired units with 32%
of installed capacity provided 49.8% of gener-
ation and nuclear units with 10% of installed ca-
pacity provided 17.8% of power generated,
indicating that these sources are much more
heavily dispatched than are petroleum, natural
gas, and dual-fired sources. To date, this differ-
ence has been generally attributed to the lower
variable costs of coal and nuclear generation,
indicating that the lower average dispatch has
been more driven by fuel costs than tempera-
ture-related capacity constraints.

Gas turbines, in their varied configurations, pro-
vide about 20% of the electric power produced
in the U.S. (EIA 2006).  Gas turbines in natural
gas simple cycle, combined cycle (gas and
steam turbine), and coal-based integrated gasi-
fication combined cycle applications are af-
fected by local ambient conditions, largely local
ambient temperature and pressure.  Ambient
temperature and pressure have an immediate
impact on gas turbine performance. Turbine per-
formance is measured in terms of heat rate (ef-
ficiency) and power output. Davcock et al.
(Davcock, DesJardins, and Fennell 2004) found
that a 60°F increase in ambient temperature, as
might be experienced daily in a desert environ-
ment, would have a 1-2 percentage point reduc-
tion in efficiency and a 20-25% reduction in
power output. This effect is nearly linear; so a
10 degree Fahrenheit increase in ambient tem-
perature would produce as much as a 0.5 per-
centage point reduction in efficiency and a
3-4% reduction in power output in an existing
gas turbine. Therefore, the impact of potential
climate change on the fleet of existing turbines
would be driven by the impact that small
changes in overall performance would have on
both the total capacity available at any time and
the actual cost of electricity. 

Turbines for NGCC and IGCC facilities are de-
signed to run 24 hours, 7 days a week; but sim-
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ple cycle turbines used in topping and interme-
diate service are designed for frequent startups
and rapid ramp rates to accommodate grid dis-
patch requirements. Local ambient temperature
conditions will normally vary by 10 – 20°F on
a 24-hour cycle, and many temperate-zone areas
have winter-summer swings in average ambient
temperature of 25-35°F. Consequently, any
long-term climate change that would impact
ambient temperature is believed to be on a scale
within the design envelope of currently de-
ployed turbines. As noted earlier, both turbine
power output and efficiency vary with ambient
temperature deviation from the design point.
The primary impacts of longer periods of off-
design operation will be modestly reduced ca-
pacity and reduced efficiency. Currently
turbine-based power plants are deployed around
the world in a wide variety of ambient condi-
tions and applications, indicating that new in-
stallations can be designed to address long-term
changes in operating conditions. In response to
the range of operating temperatures and pres-
sures to which gas turbines are being subjected,
turbine designers have developed a host of tools
for dealing with daily and local ambient condi-
tions. These tools include inlet guide vanes,
inlet air fogging (essentially cooling and mass
flow addition), inlet air filters, and compressor
blade washing techniques (to deal with salt and
dust deposited on compressor blades). Such
tools could also be deployed to address changes
in ambient conditions brought about by long-
term climate change.

3.1.2 Energy Resource Production
And Delivery

Other than for renewable energy sources, energy
resource production and delivery systems are
mainly vulnerable to effects of sea level rise and
extreme weather events.

IPCC 2001a projected a 50-cm. (20-in.) rise in
sea level around North America in the next cen-
tury from climate change alone. This is well
within the normal tidal range and would not
have any significant effect on off-shore oil and
gas activities. On-shore oil and gas activities
could be much more impacted, which could cre-
ate derivative impacts on off-shore activities. 

A number of operational power plants are sited
at elevations of 3 ft or less, making them vul-
nerable to these rising sea levels. In addition,
low-lying coastal regions are being considered
for the siting of new plants due to the obvious
advantages in delivering fuel and other neces-
sary feedstocks. Significant percentages of
other energy infrastructure assets are located in
these same areas, including a number of the na-
tion's oil refineries as well as most coal im-
port/export facilities and liquefied natural gas
terminals. Given that a large percentage of the
nation’s energy infrastructure lies along the
coast, rising sea levels could lead to direct
losses such as equipment damage from flood-
ing or erosion or indirect effects such as the
costs of raising vulnerable assets to higher lev-
els or building future energy projects further in-
land, thus increasing transportation costs. 

IPCC 2001a and USGS 2000 have identified
substantial areas of the U.S. East Coast and Gulf
Coast as being vulnerable to sea-level rise.
Roughly one-third of U.S. refining and gas pro-
cessing physical plant lies on coastal plains ad-
jacent to the Gulf of Mexico (GOM), hence it
is vulnerable to inundation, shoreline erosion,
and storm surges. On-shore but noncoastal oil
and gas production and processing activities
may be impacted by climate change primarily
as it impacts extreme weather events, phenom-
ena not presently well understood. Florida’s en-
ergy infrastructure may be particularly
susceptible to sea-level rise impacts. (See Box
3.2 Florida).

Alaska represents a special case for climate
adaptation because the scale of projected im-
pacts is expected to be greater in higher lati-
tudes (See Box 3.3: A Case Study).  Extreme
weather events, which could represent more sig-
nificant effects, are discussed in 3.1.4. Even
coal production is susceptible to extreme
weather events that can directly impact open-
cast mining operations and coal cleaning oper-
ations of underground mines. 

Potential impacts on novel energy resources are
speculative at present. Oil shale resource devel-
opment, which is considered to be water inten-
sive, could be made more difficult if climate
change further reduces annual precipitation in
an already arid region that is home to the major
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oil shale deposits. Water availability (Struck
2006) is beginning to be seen as a potential con-
straint on synthetic petroleum production from
the Canadian oil sands. Coal-to-liquids opera-
tions also require significant quantities of water. 

3.1.3 Transportation of Fuels

Roughly 65% of the petroleum products sup-
plied in the Petroleum Administration for De-
fense (PAD) East Coast District (Figure 3.3)
arrive via pipeline, barge, or ocean vessel (EIA
2004). Approximately 80% of the domestic-ori-
gin product is transported by pipeline. Certain
areas, e.g., Florida, are nearly totally dependent
on maritime (barge) transport. About 97% of the

crude oil charged to PAD I refineries is im-
ported, arriving primarily by ocean vessels.
PAD II receives the bulk of its crude oil via
pipeline, roughly two-thirds from PAD III and
one-third from Canada. Both pipeline and barge
transport have been susceptible to extreme
weather events, with pipeline outages mostly
driven by interdependencies with the electrical
grid. In addition (see 3.3.2), increased ambient
temperatures can degrade pipeline system per-
formance, particularly when tied to enhanced
oil recovery and, if practiced in the future, car-
bon sequestration. The transportation of coal to
end users, primarily electrical generation facil-
ities, is dependent on rail and barge transporta-
tion modes (EIA 2004b). Barge transport is

Florida’s energy infrastructure may be particularly susceptible to sea-level rise impacts. Most of the petroleum
products consumed in Florida are delivered by barge to three ports (NASEO, 2005) two on the East Coast
of Florida and one on the West Coast. The interdependencies of natural gas distribution, transportation fuel
distribution and delivery, and electrical generation and distribution were found to be major issues in Florida’s
recovery from multiple hurricanes in 2004.  In addition, major installations such as nuclear power plants are
located very close to the seacoast at elevations very close to sea level. The map on the left shows major
power plants susceptible to sea-level rise in Florida.  The map on the right illustrates power plants in the path
of Tropical Storm Ernesto.

BOX 3.2  Florida
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Alaska represents a special case for climate adaptation where temperatures have risen (3°C) over the last few
decades, a rate that is almost twice that of the rest of the world.  Some models predict this warming trend
will continue, with temperatures possibly rising as much as 4-7°C over the next 100 years (ACIA 2004).

In areas of Alaska’s North Slope, change is already being observed.  The number of days allowed for winter
tundra travel dropped significantly since the state began to set the tundra opening date in 1969, and a chart
of that decline has been widely used to illustrate one effect of a warming Arctic (Alaska Department of Nat-
ural Resources 2004).  There is a significant economic impact on oil and natural gas exploration from a shorter
tundra travel season, especially since exploration targets have moved farther away from the developed Prud-
hoe Bay infrastructure, requiring more time for ice road building.  It is unlikely that the oil industry can im-
plement successful exploration and development plans with a winter work season consistently less than 120 d.

Further, melting permafrost can cause subsidence of the soil, thereby threatening the structural integrity of
infrastructure built upon it.  It was anticipated that the Trans-Alaska Pipeline System would melt surrounding
permafrost in the areas where it would be buried.  Therefore, extensive soil sampling was conducted and                   

in areas where permafrost soils were determined to be thaw-stable, conventional pipeline building techniques
were utilized.  But in ice-rich soils, the ground is generally not stable after the permafrost melts.  Therefore,
unique aboveground designs integrating thermal siphons were used to remove heat transferred in  the per-
mafrost via the pilings used to support the pipeline.  And in a few selected areas where aboveground con-
struction was not feasible, the ground around the pipeline is artificially chilled (U.S. Arctic Research
Commission 2003 and Pipeline Engineering 2007).   Such extensive soil testing and unique building techniques
add substantial cost to large development projects undertaken in arctic climates but are necessary to ensure
the long-term viability of the infrastructure.

Exploration in the Arctic may benefit from thinning sea ice.  Recent studies indicate extent of sea ice cover-
ing the Arctic Ocean may have reduced as much as 10%, and thinned by as much as 15%, over the past few
decades.  These trends suggest improved shipping accessibility around the margins of the Arctic Basin  with
major implications for the delivery of goods as well as products such as LNG and oil from high latitude basins
(ACIA 2004) .  A reduction in sea ice may also mean increased off-shore oil exploration (ACIA 2004).

BOX 3.3  Alaska: A Case Study
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susceptible to both short term, transient weather
events and to longer-term shifts in regional pre-
cipitation and snow melt patterns that may re-
duce the extent of navigability of rivers and
reduce or expand the annual navigable periods.
In addition, offshore pipelines were impacted
by Hurricane Ivan even before the arrival of
Hurricanes Katrina and Rita (see 3.1.4).

3.1.4 Extreme Events

Climate change may cause significant shifts in
current weather patterns and increase the sever-
ity and possibly the frequency of major storms
(NRC 2002). As witnessed in 2005, hurricanes
can have a debilitating impact on energy infra-
structure. Direct losses to the energy industry in
2005 are estimated at $15 billion (Market-
watch.com 2006), with millions more in restora-
tion and recovery costs. Future energy projects
located in storm prone areas will face increased
capital costs of hardening their assets due to
both legislative and insurance pressures. For ex-
ample, the Yscloskey Gas Processing Plant was
forced to close for 6 months following Hurri-
cane Katrina, resulting in both lost revenues to
the plant’s owners and higher prices to con-
sumers as alternative gas sources had to be pro-
cured. In general, the incapacitation of energy
infrastructure – especially of refineries, gas pro-

cessing plants and petroleum product terminals
– is widely credited with driving a price spike in
fuel prices across the country, which then in
turn has national consequences. The potential
impacts of more severe weather are not, in fact,
limited to hurricane-prone areas. Rail trans-
portation lines, which transport approximately
2/3 of the coal to the nation’s power plants (EIA
2002), often closely follow riverbeds, especially
in the Appalachian region. More severe rain-
storms can lead to flooding of rivers that then
can wash out or degrade the nearby roadbeds.
Flooding may also disrupt the operation of in-
land waterways, the second-most important
method of transporting coal. With utilities car-
rying smaller stockpiles and projections show-
ing a growing reliance on coal for a majority of
the nation’s electricity production, any signifi-
cant disruption to the transportation network has
serious implications for the overall reliability of
the grid as a whole.

Off-shore production is particularly susceptible
to extreme weather events. Hurricane Ivan
(2004) destroyed seven GOM platforms, sig-
nificantly damaged 24 platforms, and damaged
102 pipelines (MMS 2006). Hurricanes Katrina
and Rita in 2005 destroyed more than 100 plat-
forms and damaged 558 pipelines (MMS 2006).
The two photographs in Figure 3.4 show the
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Mars deepwater platforms before and after the
2005 hurricanes. The $250 million Typhoon
platform was so severely damaged that Chevron
is working with the MMS to sink it as part of an
artificial reef program in the GOM; the billion
dollar plus Mars platform has been repaired and
returned to production about 8 months post hur-
ricane. 

3.1.5 Adaptation to Extreme Events

Energy assets can be protected from these im-
pacts both by protecting the facility or relocat-
ing it to safer areas. Hardening could include
reinforcements to walls and roofs, the building
of dikes to contain flooding, or structural im-
provements to transmission assets. However, the
high cost of relocating or protecting energy in-
frastructure drives many companies to hedge
these costs against potential repair costs if a dis-
aster does strike. For example, it is currently es-
timated to cost up to $10 billion to build a new
refinery from the ground up (Petroleum Insti-
tute for Continuing Education undated), com-
pared with costs to fully harden a typical at-risk
facility against a hurricane and with the few
million dollars in repairs that may or may not
be required if a hurricane does strike. Reloca-
tion of rail lines also faces a similar dilemma.
BNSF’s capacity additions in the Powder River
Basin are expected to cost over $200 million
dollars to add new track in a relatively flat re-
gion with low land prices; changes to rail lines
in the Appalachian region would be many times
more due to the difficult topography and higher
land acquisition costs. 

Industry, government agencies, and the Ameri-
can Petroleum Institute met jointly in March
2006 (API 2006a) to plan for future extreme
weather events. Interim guidelines for jackup
(shallow water) rigs (API 2006b) and for float-
ing rigs (API 2006c) have been developed.
MMS, DOT, and several industry participants
have formed a Joint Industry Program (JIP)
(Stress Subsea, Inc. 2005) to develop advanced
capabilities to repair damaged undersea
pipelines.

3.2  EFFECTS ON RENEWABLE
ENERGY PRODUCTION 

Renewable energy production accounted for
about 6% of the total energy production in the
United States in 2005 (Figure 3.5); biomass and
hydropower are the most significant contribu-
tors (EIA 2005d), and the use of renewable en-
ergy is increasing rapidly in other sectors such
as wind and solar. Biomass energy is primarily
used for industrial process heating, with sub-
stantially increasing use for transportation fuels

Figure 3.4
Hurricane damage
in the Gulf of
Mexico – Mars
platform 

Before Hurricane

After Hurricane
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and additional use for electricity generation.
Hydropower is primarily used for generating
electricity, providing 270 billion kWh in 2005
(EIA, 2005d). Wind power is the fastest grow-
ing renewable energy technology, with total
generation increasing to 14 billion kWh in 2005
(EIA 2006). Because renewable energy depends
directly on ambient natural resources such as
hydrological resources, wind patterns and in-
tensity, and solar radiation, it is likely to be
more sensitive to climate variability than fossil
or nuclear energy systems that rely on geologi-
cal stores. Renewable energy systems are also
vulnerable to damage from extreme weather
events. At the same time, increasing renewable
energy production is a primary means for re-
ducing energy-related greenhouse gas emis-
sions and thereby mitigating the impacts of
potential climate change. Renewable energy
sources are therefore connected with climate
change in very complex ways: their use can af-
fect the magnitude of climate change, while the
magnitude of climate change can affect their
prospects for use. 

3.2.1 Hydroelectric Power

Hydropower is the largest renewable source of
electricity in the United States. In the period
2000-2004, hydropower produced approxi-
mately 75% of the electricity from all renewable
sources (EIA 2005d). In addition to being a
major source of base-load electricity in some re-
gions of the United States (e.g., Pacific North-
west states), hydropower plays an important role

in stabilizing electrical transmission grids,
meeting peak loads and regional reserve re-
quirements for generation, and providing other
ancillary electrical energy benefits that are not
available from other renewables when storage is
unavailable. Hydropower project design and op-
eration is very diverse; projects vary from stor-
age projects with large, multipurpose reservoirs
to small run-of-river projects that have little or
no active water storage. Approximately half of
the U.S. hydropower capacity is federally owned
and operated (e.g., Corps of Engineers, Bureau
of Reclamation, and the Tennessee Valley Au-
thority); the other half is at nonfederal projects
that are regulated by the Federal Energy Regu-
latory Commission. Nonfederal hydropower
projects outnumber federal projects by more
than 10:1.

The interannual variability of hydropower gen-
eration in the United States is very high, espe-
cially relative to other energy sources (Figure
3.6).  The difference between the most recent
high (2003) and low (2001) generation years is
59 billion kWh, approximately equal to the total
electricity from biomass sources and much
more than the generation from all other non-hy-
dropower renewables (EIA 2006). The amount
of water available for hydroelectric power varies
greatly from year to year, depending upon
weather patterns and local hydrology, as well as
on competing water uses, such as flood control,
water supply, recreation, and instream flow re-
quirements (e.g., conveyance to downstream
water rights, navigation, and protection of fish

Figure 3.5.
Renewable Energy’s
Share In U.S. Energy
Supply (2005)
(http://www.eia.doe.
gov/cneaf/solar.rene
wables/page/trens/hi
ghlight1.html)
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and wildlife). The annual variability in hy-
dropower is usually attributed to climate vari-
ability, but there are also important impacts
from multiple use operational policies and reg-
ulatory compliance.

There have been a large number of published
studies on the climate impacts on water resource
management and hydropower production (e.g.,
Miller and Brock 1988; Lettenmaier et al. 1999;
Barnett et al. 2004). Significant changes are
being detected now in the flow regimes of many
western rivers (Dettinger 2005) that are consis-
tent with the predicted effects of global warm-
ing. The sensitivity of hydroelectric generation
to both changes in precipitation and river dis-
charge is high, in the range 1.0 and greater (e.g.,
sensitivity of 1.0 means 1% change in precipi-
tation results in 1% change in generation). For
example, Nash and Gleick (1993) estimated
sensitivities up to 3.0 between hydropower gen-
eration and stream flow in the Colorado Basin
(i.e., change in generation three times the
change in stream flow). Such magnifying sen-
sitivities, greater than 1.0, occur because water
flows through multiple power plants in a river
basin. Climate impacts on hydropower occur
when either the total amount or the timing of
runoff is altered, for example when natural
water storage in snow pack and glaciers is re-
duced under hotter climates (e.g., melting of
glaciers in Alaska and the Rocky Mountains of
the U.S.). Projections that climate change is
likely to reduce snow pack and associated

runoff in the U.S. West are a matter of particu-
lar concern.

Hydropower operations are also affected indi-
rectly when air temperatures, humidity, or wind
patterns are affected by changes in climate, and
these driving variables cause changes in water
quality and reservoir dynamics. For example,
warmer air temperatures and a more stagnant at-
mosphere cause more intense stratification of
reservoirs behind dams and a depletion of dis-
solved oxygen in hypolimnetic waters (Meyer
et al. 1999). Where hydropower dams have tail-
waters supporting cold-water fisheries for trout
or salmon, warming of reservoir releases may
have unacceptable consequences and require
changes in project operation that reduce power
production.

Evaporation of water from the surface of reser-
voirs is another important part of the water
cycle that may be will be affected by climate
change and may lead to reduced water for hy-
dropower.  However, the effects of climate
change on evaporation rates is not straight-for-
ward.  While evaporation generally increases
with increased air or water temperatures, evap-
oration also depends on other meteorological
conditions, such as advection rates, humidity,
and solar radiation.  For example, Ohmura and
Wild (2002) described how observed evapora-
tion rates decreased between 1950 and 1990,
contrary to expectations associated with higher
temperatures.  Their explanation for the de-

Figure 3.6.
Historical Variability
Of Total Annual
Production Of
Hydroelectricity
From Conventional
Projects In The U.S.
(data from EIA
Annual Energy
Outlook, 2005).
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crease was decreased solar radiation.  Large
reservoirs with large surface area, located in
arid, sunny parts of the U.S., such as Lake Mead
on the lower Colorado River (Westenburg et al.,
2006), are the most likely places where evapo-
ration will be greater under future climates and
water availability will be less for all uses, in-
cluding hydropower.

Competition for available water resources is an-
other mechanism for indirect impacts of climate
change on hydropower. These impacts can have
far-reaching consequences through the energy
and economic sectors, as happened in the 2000-
2001 energy crises in California (Sweeney, 2002). 

Recent stochastic modeling advances in Cali-
fornia and elsewhere are showing how hy-
dropower systems may be able to adapt to
climate variability by reexamining management
policies (Vicuña et al., 2006). The ability of
river basins to adapt is proportional to the total
active storage in surface water reservoirs (e.g.,
Aspen Environmental Group and M-Cubed,
2005). Adaptation to potential future climate
variability has both near-term and long-term
benefits in stabilizing water supplies and energy
production (e.g., Georgakakos et al., 2005), but
water management institutions are generally slow
to take action on such opportunities (Chapter 4).

3.2.2 Biomass Power and Fuels

Total biomass energy production has surpassed
hydroelectric energy for most years since 2000
as the largest U.S. source of total renewable en-
ergy, providing 47% of renewable or 4% of total
U.S. energy in 2005 (EIA, 2006). The largest
source of that biomass energy (29%) was black
liquor from the pulp and paper industry com-
busted as part of a process to recover pulping
chemicals to provide process heat as well as
generating electricity. Wood and wood waste
from sources such as lumber mills provide more
than 19% (industrial sector alone) and com-
busted municipal solid waste and recovered
landfill gas provide about 16%, respectively, of
current U.S. biomass energy (EIA, 2005d). Be-
cause energy resource generation is a byprod-
uct of other activities in all these cases, direct
impacts of climate change on these or most
other sources of biomass power production de-
rived from a waste stream may be limited un-

less there are significant changes in forest or
agricultural productivity that are a source of the
waste stream. There are few examples of litera-
ture addressing this area, though Edwards notes
that climate-change-induced events such as tim-
ber die-offs could present a short-term oppor-
tunity or a long-term loss for California
(Edwards, 1991). 

Liquid fuel production from biomass is highly
visible as a key renewable alternative to im-
ported oil.  Current U.S. production is based
largely on corn for ethanol and, to a lesser ex-
tent, soybeans for biodiesel. In the longer term,
cellulosic feedstocks may supplant grain and
oilseed crops for transportation fuel production
from biomass.  Cellulosic crop residues such as
corn stover and wheat straw would likely be af-
fected by climate change the same way as the
crops themselves due to a rise in average tem-
peratures, more extreme heat days, and changes
in precipitation patterns and timing, with greater
impact on fuel production because that would
be their primary use. Potential dedicated cellu-
losic energy crops for biomass fuel, such as
grasses and fast-growing trees, would also be
directly affected by climate change. As dis-
cussed below, limited literature suggests that for
at least one region, one primary energy crop
candidate—switchgrass—may benefit from cli-
mate change, both from increased temperature
and increased atmospheric carbon dioxide levels.

Approximately 10% of U.S. biomass energy
production (EIA, 2005d), enough to provide
about 2% of U.S. transportation motor fuel
(Federal Highway Administration, 2003), cur-
rently comes from ethanol made predominantly
from corn grown in the Midwest (Iowa, Illinois,
Nebraska, Minnesota, and South Dakota are the
largest ethanol producers). Climate change suf-
ficient to substantially affect corn production
would likely impact the resource base, although
production and price effects in the longer term
are unclear.  Production of biodiesel from soy-
beans—growing rapidly, but still very small—is
likely a similar situation. In the long term, how-
ever, significant crop changes—and trade-offs
between them as they are generally rotated with
each other—would likely have an impact in the
future. Looking at Missouri, Iowa, Nebraska,
and Kansas, with an eye toward energy produc-
tion, Brown et al., 2000 used a combination of
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the NCAR climate change scenario, regional
climate, and crop productivity models to predict
how corn, sorghum, and winter wheat (poten-
tial ethanol crops) and soybeans (biodiesel crop)
would do under anticipated climate change.
Negative impacts from increased temperature,
positive impacts from increased precipitation,
and positive impacts from increased atmos-
pheric carbon dioxide combined to yield mini-
mal negative change under modest carbon
dioxide level increases but 5% to 12% yield in-
creases with high carbon dioxide level increases.
This assessment did not, however, account for po-
tential impact of extreme weather events – partic-
ularly the frequency and intensity of events
involving hail or prolonged droughts – that may
also negatively impact energy crop production.

Although ethanol production from corn can still
increase substantially (mandated to double
under the recently enacted renewable fuel stan-
dard), it can still only meet a small portion of
the need for renewable liquid transportation
fuels to displace gasoline if dependence on pe-
troleum imports is to be reduced. Processing the
entire projected 2015 corn crop to ethanol
(highly unrealistic, of course) would only yield
about 35 billion gallons of ethanol, less than
14% of the gasoline energy demand projected
for that year. Biomass fuel experts are counting
on cellulosic biomass as the feedstock to make
larger scale renewable fuel production possible.
A recent joint study by the U.S. Departments of
Agriculture and Energy (USDA and DOE), Bio-
mass as Feedstock for a Bioenergy and Bio-
products Industry: The Technical Feasibility of
a Billion-Ton Annual Supply, projected that by
2030, enough biomass could be made available
to meet 40% of 2004 gasoline demand via cel-
lulosic ethanol production and other technolo-
gies. The two largest feedstocks identified are
annual crop residues and perennial dedicated
energy crops (NREL, 2006). 

The primary potential annual crop residues are
corn stover—the leaves, stalks, and husks gen-
erally now left in the field—and wheat straw.
Corn stover is the current DOE research focus
in part because it is a residue with no incre-
mental cost to grow and modest cost to harvest,
but also particularly because of its potential
large volume. Stover volume is roughly equiva-
lent to grain volume, and corn is the largest U.S.

agricultural crop. As such, it would be affected
by climate change in much the same way as the
corn crop itself, as described above.

Frequently discussed potential dedicated peren-
nial energy crops include fast-growing trees
such as hybrid poplars and willows and grasses
such as switchgrass (ORNL, 2006) Switchgrass
is particularly attractive because of its large re-
gional adaptability, fast growth rate, minimal
adverse environmental impact, and ease of har-
vesting with conventional farm equipment. The
primary objective of the Brown et al. , 2000
study referenced above for Missouri, Iowa, Ne-
braska, and Kansas was to see how climate
change would affect growth of switchgrass. The
study projected that switchgrass may benefit
from both higher temperatures (unlike the grain
crops) and higher atmospheric carbon dioxide
levels, with yield increasing 74% with the mod-
est CO2 increase and nearly doubling with the
higher CO2 increase. Care should be taken in
drawing definitive conclusions, however, from
this one study. One may not expect the projected
impact to be as beneficial for southern regions
already warm enough for rapid switchgrass
growth or more northern areas still colder than
optimal even with climate change, but this
analysis has not yet been conducted.

3.2.3 Wind Energy 

Wind energy currently accounts for about 2.5%
of U.S. renewable energy generation, but its use
is growing rapidly, and it has tremendous po-
tential due to its cost-competitiveness with fos-
sil fuel plants for utility-scale generation and its
environmental benefits. In addition, wind en-
ergy does not use or consume water to generate
electricity. Unlike thermoelectric and fossil fuel
generation that is inextricably linked to the
availability of adequate, sustainable water sup-
plies, wind energy can offer communities in
water-stressed areas the option of economically
meeting increasing energy needs without in-
creasing demands on valuable water resources. 

Although wind energy will not be impacted by
changing water supplies like the other fuel
sources, projected climate change impacts--
such as changes in seasonal wind patterns or
strength--would likely have significant positive
or negative impacts because wind energy gen-
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eration is a function of the cube of the wind
speed. One of the barriers slowing wind energy
development today is the integration of a vari-
able resource with the utility grid. Increased
variability in wind patterns could create addi-
tional challenges for accurate wind forecasting
for generation and dispatch planning and for the
siting of new wind farms.

In addition to available wind resources, state
and federal policy incentives have played a key
role in the growth of wind energy. Texas cur-
rently produces the most wind power, followed
by California, Iowa, Minnesota, Oklahoma, and
Oregon (AWEA, www.awea.org/projects,
2006). These regions are expected to continue to
be among the leading wind-power areas in the
near term. Although North Dakota and South
Dakota have modest wind development, they also
have tremendous wind potential, particularly if
expanded transmission capacity allows for devel-
opment of sites further from major load centers. 

The siting of utility-scale wind generation is
highly dependent on proximity and access to the
grid and the local wind speed regime. Changes
in wind patterns and intensity due to climate
change could have an effect on wind energy
production at existing sites and planning for fu-
ture development, depending on the rate and
scale of that change. One study modeled wind
speed change for the United States, divided into
northern and southern regions under two cli-
mate-change circulation models. Overall, the
Hadley Center model suggested minimal de-
crease in average wind speed, but the Canadian
model predicted very significant decreases of
10%–15% (30%–40% decrease in power gen-
eration) by 2095. Decreases were most pro-
nounced after 2050 in the fall for both regions
and in the summer for the northern region
(Breslow and Sailor, 2002).

Another study mapped wind power changes in
2050 based on the Hadley Center General Cir-
culation Model—the one suggesting more mod-
est change of the two used by Breslow and
Sailor above. For most of the United States, this
study predicted decreased wind resources by as
much as 10% on an annual basis and 30% on a
seasonal basis. Wind power increased for the
Texas-Oklahoma region and for the Northern
California-Oregon-Washington region, although

the latter had decreased power in the summer. For
the Northern Great Plains and for the mountain-
ous West, however, the authors predicted de-
creased wind power (Segal et al. 2001).
Edwards suggests that warming-induced off-
shore current changes could intensify summer
winds for California and thus increase its wind
energy potential (Edwards, 1991). Changes in
diurnal wind patterns could also have a signifi-
cant impact on matching of wind power pro-
duction with daily load demands. 

3.2.4  Solar Energy

Photovoltaic (PV) electricity generation and
solar water heating are suitable for much of the
United States, with current deployment prima-
rily in off-grid locations and rooftop systems
where state or local tax incentives and utility in-
centives are present. Utility-scale generation is
most attractive in the Southwest with its high di-
rect-radiation resource, where concentrating
high-efficiency PV and solar thermal genera-
tion systems can be used. California and 
Arizona currently have the only existing util-
ity-scale systems (EIA, 2005d) with additional
projects being developed in Colorado, Nevada,
and Arizona. 

Pan et al. 2004 modeled changes to global solar
radiation through the 2040s based on the
Hadley Center circulation model. This study
projects a solar resource reduced by as much as
20% seasonally, presumably from increased
cloud cover throughout the country, but partic-
ularly in the West with its greater present re-
source. Increased temperature can also reduce
the effectiveness of PV electrical generation and
solar thermal energy collection. One interna-
tional study predicts that a 2% decrease in
global solar radiation will decrease solar cell
output by 6% overall (Fidje and Martinsen,
2006). Anthropogenic sources of aerosols can
also decrease average solar radiation, especially
on a regional or localized basis. The relation-
ship between the climate forcing effect of
greenhouse gases and aerosols is complex and
an area of extensive research. This field would
also benefit from further analysis on the nexus
between anthropogenic aerosols, climate
change, solar radiation, and impacts on solar en-
ergy production.
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3.2.5 Other Renewable Energy
Sources

Climate change could affect geothermal energy
production [6% of current U.S. renewable en-
ergy (EIA, 2005d) and concentrating solar
power Rankine cycle power plants] in the same
way that higher temperatures reduce the effi-
ciency of fossil-fuel-boiler electric turbines, but
there is no recent research on other potential im-
pacts in this sector due to climate change. For a
typical air-cooled binary cycle geothermal plant
with a 330°F resource, power output will decrease
about 1% for each 1°F rise in air temperature. 

The United States currently does not make sig-
nificant use of wave, tidal, or ocean thermal en-
ergy, but each of these could be affected by
climate change due to changes in average water
temperature, temperature gradients, salinity, sea
level, wind patterns affecting wave production,
and intensity and frequency of extreme weather
events. Harrison observes that wave heights in
the North Atlantic have been increasing and dis-
cusses how wave energy is affected by changes
in wind speed (Harrison and Wallace, 2005), but
very little existing research has been identified
that directly addresses the potential impact of
climate change on energy production from
wave, tidal, or ocean thermal technologies.

3.2.6 Summary

Of the two largest U.S. renewable energy
sources, hydroelectric power generation can be
expected to be directly and significantly af-
fected by climate change, while biomass power
and fuel production impacts are less certain in
the short term. The impact on hydroelectric pro-
duction will vary by region, with potential for
production decreases in key areas such as the
Columbia River Basin and Northern California.
Current U.S. electricity production from wind
and solar energy is modest but anticipated to
play a significant role in the future as the use of
these technologies increases. As such, even
modest impacts in key resource areas could sub-
stantially impact the cost competitiveness of
these technologies due to changes in electricity
production and impede the planning and fi-
nancing of new wind and solar projects due to
increased variability of the resource.

Renewable energy production is highly suscep-
tible to localized and regional changes in the
resource base. As a result, the greater uncer-
tainties on regional impacts under current cli-
mate change modeling pose a significant
challenge in evaluating medium to long-term
impacts on renewable energy production. 

3.3 EFFECTS ON ENERGY
TRANSMISSION, DISTRIBUTION,
AND SYSTEM INFRASTRUCTURE

In addition to the direct effects on operating fa-
cilities themselves, networks for transport, elec-
tric transmission, and delivery would be
susceptible to changes due to climate change in
stream flow, annual precipitation and seasonal
patterns, storm severity, and even temperature
increases (e.g., pipelines handling supercritical
fluids may be impacted by greater heat loads if
temperatures increase and/or cloud cover di-
minishes). 

3.3.1 Electricity Transmission 
and Distribution 

Severe weather events and associated flooding
can cause direct disruptions in energy services.
With more intense events, increased disruptions
might be expected. Electricity reliability might
also be affected as a result of increased demand
combined with high soil temperatures and soil
dryness (IPCC, 2001a).  Figure 3.7 illustrates
the major grid outage that was initiated by a
lightning strike, as one example.

Grid technologies in use today are at least 50
years old and, although “smart grid” technolo-
gies exist, they are not often employed. Two
such technologies that may be employed to help
offset climate impacts include upgrading the
grid by employing advanced conductors that are
capable of withstanding greater temperature ex-
tremes and automation of electricity distribution
(Gellings and Yeager, 2004).

3.3.2 Energy Resource
Infrastructure

A substantial part of the oil imported into the
United States is transported over long distances
from the Middle East and Africa in super-
tankers. While these supertankers are able to of-
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fload within the ports of other countries, they
are too deeply drafted to enter the shallow U.S.
ports and waters. This occurs because, unlike
most other countries, the continental shelf area
of the eastern United States extends many miles
beyond its shores and territorial waters. This

leads to a number of problems related to opera-
tion of existing ports, and to programs (such as
NOAA's P.O.R.T.S. Program) to improve effi-
ciency at these ports. In addition, the Deepwa-
ter Ports Act, 1975, has led to plans to develop
a number of deepwater ports either for petro-

Figure 3.7.
Approximate Area
of Blackout of 2003
In The United
States. Source:  NETL
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leum or LNG import. These planned facilities
are concentrated in relatively few locations, in
particular with a concentration along the Gulf
Coast (Figure 3.8). Changes in weather patterns,
leading to changes in stream flows and wind
speed and direction can impact operability of
existing harbors. Severe weather events can im-
pact access to deepwater facilities or might dis-
rupt well-established navigation channels in
ports where keel clearance is a concern
(DOC/DOE, 2001).

Climate change may also affect the performance
of the extensive pipeline system in the United
States. For example, for CO2-enhanced oil re-
covery, experience has shown that summer in-
jectivity of CO2 is about 15% less than winter
injectivity into the same reservoir. The CO2 gas
temperature in Kinder Morgan pipelines during
the winter is about 60°F and in late summer
about 74oF. At higher temperatures, compres-
sors and fan coolers are less efficient and are
processing a warmer gas. Operators cannot pull
as much gas off the supply line with the given
horsepower when the CO2 gas is warm (Source:
personal communication from K. Havens of
Kinder Morgan CO2).

Efficiencies of most gas injection are similar,
and thus major gas injection projects like pro-
duced gas injection on the North Slope of
Alaska have much higher gas injection and oil
production during cold winter months. Persist-
ently higher temperatures would have an impact
on deliverability and injectivity for applications
where the pipeline is exposed to ambient tem-
peratures.

3.3.3 Storage and Landing Facilities

Strategic Petroleum Reserve storage locations
(EIA 2004b) that are all along the Gulf Coast
were selected because they provide the most
flexible means for connecting to the commer-
cial oil transport network. Figure 3.9 illustrates
their locations along the Gulf Coast in areas
USGS 2000 sees as being susceptible to sea-
level rise, as well as severe weather events. Sim-
ilarly located on the Sabine Pass is the Henry
Hub, the largest gas transmission interconnec-
tion site in the U.S., connecting 14 interstate and

intrastate gas transmission pipelines. Henry
Hub was out of service briefly from Hurricane
Katrina and for some weeks from Hurricane
Rita, which made landfall at Sabine Pass. 

3.3.4 Infrastructure Planning And
Considerations For New Power
Plant Siting

Water availability and access to coal delivery
are currently critical issues in the siting of new
coal-fired generation capacity. New capacity,
except on coasts and large estuaries, will gen-
erally require cooling towers rather than once-
through cooling water usage based on current
and expected regulations (EPA, 2000) inde-
pendent of climate change issues. New turbine
capacity will also need to be designed to re-
spond to the new ambient conditions. 

Siting of new nuclear units will face the same
water availability issues as large new coal-fired
units; they will not need to deal with coal de-
liverability but may depend on barge transport
to allow factory fabrication rather than site fab-
rication of large, heavy wall vessels, as well as
for transportation of any wastes that need to be
stored off-site.

Capacity additions and system reliability have
recently become important areas for discussion.
A number of approaches are being considered,
such as to run auctions (or other approaches) to
stimulate interest in adding new capacity, such
as efforts by FERC to encourage capacity in-
vestments through regional independent system
operator (ISO) organizations, without sending
signals that would result in overbuilding (as has
happened in the past). Planning to ensure that
both predictions of needed capacity and mech-
anisms for stimulating companies to build such
capacity (while working through the process re-
quired to announce, design, permit, and build
it) will become more important as future de-
mand is affected by climatic shifts. Similarly,
site selection may need to factor in longer-term
climatic changes for technologies as long-lived
as coal-fired power plants (which may last for
50 - 75 years) (NARUC, 2006).
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3.4 SUMMARY OF KNOWLEDGE
ABOUT POSSIBLE EFFECTS

Significant uncertainty exists about the poten-
tial impacts of climate change on energy pro-
duction and distribution, in part because the
timing and magnitude of climate impacts are
uncertain. This report summarizes many of the
key issues and provides information available
on possible impacts; however this topic repre-
sents a key area for further analysis. 

Many of the technologies needed for existing
energy facilities to adapt to increased tempera-
tures and decreased water availability are avail-
able for deployment; and, although decreased
efficiencies and lower output can be expected,
significant disruptions seem unlikely. Incorpo-
rating potential climate impacts into the plan-
ning process for new facilities will strengthen
the infrastructure. This is especially important
for water resources, as electricity generation is
one of many competing applications for what
may be a (more) limited resource. 

There are regionally important differences in
adaptation needs. This is true for the spectrum
of climate impacts from water availability to in-
creased temperatures and changing patterns of
severe weather events. The most salient example
is for oil and gas exploration and production in
Alaska, where projected temperature increases
may be double the global average, and melting
permafrost and changing shorelines could sig-
nificantly alter the landscape and available op-
portunities for oil and gas production

Increased temperatures will also increase de-
mand-side use, and the potential system-wide
impacts on electricity transmission and distri-
bution and other energy system needs are not
well understood. Future planning for energy
production and distribution may therefore need
to accommodate possible impacts 

Figure 3.9. Strategic
Petroleum Reserve
Storage Sites  
(Source:  NETL) SPR Storage Sites
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4.1 INTRODUCTION

In order to provide a basis for such a discussion, this chapter of SAP 4.5 offers a preliminary tax-
onomy of categories of indirect effects that may be of interest, along with a summary of existing
knowledge bases about such indirect effects. Some of these effects are from climate change itself,
e.g., effects on electricity prices of changing conditions for hydropower production or of more in-
tense extreme weather events. Other effects could come from climate change related policies (e.g.,
effects of stabilization-related emission ceilings on energy prices, energy technology choices, or
energy sector emissions) (Table 4.1).

Most of the existing literature is concerned with implications of climate change mitigation poli-
cies on energy technologies, prices, and emissions in the U.S.  Because this literature is abundant,
relatively well-known, and in some cases covered by other SAPs (such as SAP 2.2), it will be only
briefly summarized here, offering links to more detailed discussions.  Of greater interest to some
readers may be the characterization of other possible indirect effects besides these.

49

Changes in temperature, precipitation, storms, and/or sea level are likely to have

direct effects on energy production and use, as summarized above; but they

may also have a number of indirect effects—as climate change affects other

sectors and if it shapes energy and environmental policy-making and regulatory

actions (Fig. 4.1). In some cases, it is possible that indirect effects could have a

greater impact, positive or negative, on certain institutions and localities than di-

rect effects.

* Retired
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4.2 CURRENT KNOWLEDGE
ABOUT INDIRECT EFFECTS 

4.2.1 Possible Effects On 
Energy Planning

Climate change is likely to affect energy plan-
ning, nationally and regionally, because it is
likely to introduce new considerations and un-
certainties to institutional (and individual) risk
management. Such effects can arise either
through anticipated changes in climate-related
environmental conditions, such as hydropower
potentials, possible exposure to storm damages
(see Chapter 3), or changed patterns of energy
demand (see Chapter 2), or through possible
changes in policies and regulations. 

For instance, a path-breaking study supported
by EPRI and the Japanese Central Research In-
stitute of Electric Power Industry (CRIEPI) as-
sessed possible impacts of global climate
change on six utilities, five of them in the
United States (ICF, 1995). The study considered
a variety of scenarios depicting a range of un-
derlying climate, industry, and policy condi-
tions. It found that GHG emission reduction
policies could cause large increases in electric-
ity prices, major changes in a utility’s resource
mix related to requirements for emission con-
trols, and significant expansions in demand-side
management programs. Major impacts are
likely to be on Integrated Resource Planning re-
garding resource and capacity additions and/or
plant retirements, along with broader implica-
tions of increased costs and prices. In another

Indirect Effect 
On Energy Systems

From 
Climate Change

From 
Climate Change Policy

On energy planning and investment Very limited Considerable literature

On technology R&D and preferences Very limited Considerable literature

On energy supply institutions Very limited Limited

On energy aspects of regional economies Very limited Some literature

On energy prices Almost none Considerable literature

On energy security Almost none Very limited

On environmental emissions 
from energy production/use Very limited Considerable literature

On energy technology/service exports Almost none Very limited

Table 4.1.  Overview
Of The Knowledge
Base About Possible
Indirect Effects Of
Climate Change
And Climate
Change Policy On
Energy Systems In
The U.S.

Figure 4.1 
This Chapter Is
Concerned With
The Dashed Lines In
This Flow Diagram
Of Connections
Between Climate
Change And Energy
Production And Use

Impacts on 
other systems 

and infrastructures

Climate
change

Impacts on 
energy production

and use

Climate change 
policy responses
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example, Burtraw et al., 2005 analyzed a nine-
state northeastern regional greenhouse gas ini-
tiative (RGGI), an allowance-based regional
GHG cap-and-trade program for the power sec-
tor. They found that how allowances are allo-
cated has an effect on electricity price,
consumption, and the mix of technologies used
to generate electricity. Electricity prices in-
crease in most of the cases. They also note that
any policy that increases energy costs in the re-
gion is likely to cause some emission leakage to
other areas outside the region as electricity gen-
eration or economic activity moves to avoid reg-
ulation and associated costs. 

Electric utilities in particular are already sensi-
tive to weather as a factor in earnings perform-
ance, and they utilize weather risk management
tools to hedge against risks associated with
weather-related uncertainties. Issues of interest
include plans for capacity additions, system re-
liability assurance, and site selection for long-
lived capital facilities (O’Neill, 2003). Even
relatively small changes in temperature/demand
can affect total capacity needs across the U.S.
power sector, especially in peak periods. 

Some current policy initiatives hint at what the
future might be like, in terms of their possible
effects on energy planning. U.S. national and
state climate policy actions include a variety of
traditional approaches such as funding mecha-
nisms (incentives and disincentives); regula-
tions (caps, codes, and standards); technical
assistance (direct or in kind); research and de-
velopment; information and education; and
monitoring and reporting (including impact dis-
closure) (Rose and Zhang, 2004). Covered sec-
tors include power generation, oil and gas,
residential, commercial, industry, transporta-
tion, waste management, agriculture, and
forestry. These sectors cut across private and
public sector facilities and programs, as well as
producers and consumers of energy (Peterson
and Rose, 2006).

A variety of policy alternatives and mechanisms
are described and analyzed in published litera-
tures, including production tax credits (incor-
porated in the Energy Policy Act of 2005),
investment tax credits, renewable energy port-
folio standards, and state or regional greenhouse
gas initiatives.

4.2.2 Possible Effects On Energy
Production And Use Technologies

Perhaps the best-documented case of indirect
effects of climate change on energy production
and use in the United States is effects of climate
change policy on technology research and de-
velopment and on technology preferences and
choices. 

For instance, if the world moves toward con-
certed action to stabilize concentrations of
greenhouse gases (GHG) in the earth’s atmos-
phere, the profile of energy resources and tech-
nologies being used in the U.S. – on both the
production and use sides – would have to
change significantly (CCTP, 2005). Developing
innovative energy technologies and approaches
through science and technology research and
development is widely seen as a key to reducing
the role of the energy sector as a driver of cli-
mate change. Considering various climate
change scenarios, researchers have modeled a
number of different pathways for the world and
for various regions, including the U.S., in order
to inform discussions about technology options
that might contribute to energy system strate-
gies (e.g., Edmonds et al., 1996; Akimoto et al.,
2004; Hoffert et al., 2002; van Vuuren et al.,
2004; Kainuma et al.,  2004; IPCC,  2005a;
Kurosawa, 2004; Pacala and Socolow,  2004 and
Paltsev et al.,  2005).   Recently published sce-
narios in CCSP SAP 2.1a, explore the U.S. im-
plications of alternative stabilization levels of
anthropogenic greenhouse gases in the atmos-
phere, and they explicitly consider the economic
and technological foundations of such response
options (CCSP, 2007a).  In addition, there have
been important recent developments in scenario
work in the areas of non-carbon dioxide GHGs,
land use and forestry emission and sinks, emis-
sions of radiatively important non-GHGs such
as black and organic carbon, and analyses of un-
certainties, among many issues in increasing
mitigation options and reducing costs (Naki-
cenovic and Riahi, 2003; IPCC,  2005b; van Vu-
uren et al.,  2006; Weyant et al., 2006; and
Placet et al., 2004).

These references indicate that an impressive
amount of emissions reductions could be
achieved through combinations of many differ-
ent technologies, especially if diversified tech-
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nology advancement is assumed. Although the
full range of effects in the future is necessarily
speculative, it is possible that successful devel-
opment of such advanced technologies could re-
sult in potentially large economic benefits,
compared with emission reductions without sig-
nificant technological progress.  When the costs
of achieving different levels of emission reduc-
tions have been compared for cases with and
without advanced technologies, many of the ad-
vanced technology scenarios projected that the
cost savings from advancement would be sig-
nificant (CCTP, 2005; Weyant, 2004; IPCC,
2007; CCSP, 2007a).  Note, however, that there
is considerable “inertia” in the nation’s energy
supply capital stock because institutions that
have invested in expensive facilities prefer not
to have them converted into “stranded assets.”
Note also that any kind of rapid technological
transformation would be likely to have cross-
commodity cost/price effects, e.g., on costs of
specialized components in critical materials that
are in greater demand.  

4.2.3 Possible Effects On Energy
Production And Use Institutions

Climate change could affect the institutional
structure of energy production and use in the
United States, although relatively little research
has been done on such issues. Institutions in-
clude energy corporations, electric utilities, gov-
ernmental organizations at all scales, and
nongovernmental organizations. Their niches,
size and structure, and operation tend to be sen-
sitive to changes in “market” conditions from
any of a variety of driving forces, these days in-
cluding such forces as globalization, techno-
logical change, and social/cultural change (e.g.,
changes in consumer preferences). Climate
change is likely to interact with other driving
forces in ways that could affect institutions con-
cerned with energy production and use.

Most of the very limited research attention to
this type of effect has been focused on effects
of climate change policy (e.g., policy actions to
reduce greenhouse gas emissions) on U.S. en-
ergy institutions, such as on the financial via-
bility of U.S. electric utilities (see, for instance,
WWF, 2003). Other effects could emerge from
changes in energy resource/technology mixes
due to climate change: e.g., changes in renew-

able energy resources and costs or changes in
energy R&D investment patterns.

Most of these issues are speculative at this time,
but identifying them is useful as a basis for fur-
ther discussion. Issues would appear to include
effects on planning, above.

4.2.3.1  EFFECTS ON THE INSTITUTIONAL

STRUCTURE OF THE ENERGY INDUSTRY

Depending on its impacts, climate change could
encourage large energy firms to move into re-
newable energy areas that have been largely the
province of smaller firms, as was the case in
some instances in the wake of the energy
“shocks” of the 1970s (e.g., Flavin and Lenssen,
1994). This kind of diversification into other
“clean energy” fields could be reflected in hor-
izontal and/or vertical integration. Possible ef-
fects of climate change on these and other
institutional issues (such as organizational con-
solidation vs fragmentation) have not been ad-
dressed systematically in the research literature;
but some large energy firms are exploring a
wider range of energy technologies and some
large multinational energy technology providers
are diversifying their product lines to be pre-
pared for possible changes in market conditions.

4.2.3.2 EFFECTS ON ELECTRIC UTILITY

RESTRUCTURING

Recent trends in electric utility restructuring
have included increasing competition in an open
electricity supply marketplace, which has sharp-
ened attention to keeping O&M costs for infra-
structure as low as possible. Some research
literature suggests that one side-effect of re-
structuring has been a reduced willingness on
the part of some utilities to invest in environ-
mental protection beyond what is absolutely re-
quired by law and regulation (Parker, 1999;
Senate of Texas, 1999), although this issue
needs further study. If climate change intro-
duces new risks for utility investment planning
and reliability, it is possible that policies and
practices could encourage greater cooperation
and collaboration among utilities.

4.2.3.3  EFFECTS ON THE HEALTH OF FOSSIL

FUEL-RELATED INDUSTRIES

If climate change is associated with policy and
associated market signals that decarbonization
of energy systems, industries focused on the
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production of fossil fuels, converting them into
useful energy forms, transporting them to de-
mand centers, and providing them to users
could face shrinking markets and profits. The
coal industry seems especially endangered in
such an eventuality. In the longer run, this type
of effect depends considerably on technological
change: e.g., affordable carbon capture and se-
questration, fuel cells, and efficiency improve-
ment. It is possible that industries (and regions)
concentrated on fossil fuel extraction, process-
ing, and use will seek to diversify as a hedge
against risks of economic threats from climate
change policy.

4.2.3.4 EFFECTS ON OTHER SUPPORTING

INSTITUTIONS SUCH AS FINANCIAL

AND INSURANCE INDUSTRIES

Many major financial and insurance institutions
are gearing up to underwrite emission trading
contracts, derivatives and hedging products,
wind and biofuel crop guarantee covers for re-
newable energy, and other new financial prod-
ucts to support carbon emission trading, while
they are concerned about exposure to financial
risks associated with climate change impacts. In
recent years, various organizations have tried to
engage the global insurance industry in the cli-
mate change debate. Casualty insurers are con-
cerned about possible litigation against
companies responsible for excessive GHG
emissions, and property insurers are concerned
about future uncertainties in weather damage
losses. However, it is in the field of adaptation
where insurers are most active, and have most to
contribute. Two hundred major companies in the
financial sector around the world have signed
up to the UN Environment Program’s - Finance
Initiative, and 95 institutional investment com-
panies have so far signed up to the Carbon Dis-
closure Project. They ask businesses to disclose
investment-relevant information concerning
their GHGs. Their website provides a compre-
hensive registry of GHGs from public corpora-
tions. More than 300 of the 500 largest
companies in the world now report their emis-
sions on this website, recognizing that institu-
tional investors regard this information as
important for shareholders (Crichton, 2005).

4.3 POSSIBLE EFFECTS ON
ENERGY-RELATED DIMENSIONS
OF REGIONAL AND NATIONAL
ECONOMIES 

It is at least possible that climate change could
have an effect on regional economies by im-
pacting regional comparative advantages related
to energy availability and cost. Examples could
include regional economies closely associated
with fossil fuel production and use (especially
coal) if climate change policies encourage de-
carbonization, regional economies dependent
on affordable electricity from hydropower if
water supplies decrease or increase, regional
economies closely tied to coastal energy facili-
ties that could be threatened by more intense
coastal storms (Chapter 3), and regional
economies dependent on abundant electricity
supplies if demands on current capacities in-
crease or decrease due to climate change.

Attempts to estimate the economic impacts that
could occur 50–100 years in the future have
been made using various climate scenarios, but
the interaction of climate and the nation’s econ-
omy remains very difficult to define. Most stud-
ies of the economic impacts of global warming
have analyzed the impacts on specific sectors
(such as agriculture) or on regional ecosystems
(e.g. Fankhauser, 1995; Mendelsohn and Neu-
mann, 1999; Nordhaus and Boyer, 2000;
Mendelsohn et al., 1994; Tol, 2002; Nordhaus,
2006). However, not many impact studies have
concentrated on the energy sector.  Significant
uncertainties therefore surround projections of
climate change induced energy sector impacts
on the U.S. or regional economies. Changnon
estimated that annual national economic losses
from the energy sector will outweigh the gains
in years with major weather and climate ex-
tremes (Changnon, 2005). Jorgenson et al.,
2004, studied impacts of climate change on var-
ious sectors of the U.S. economy from 2000 –
2100. In three optimistic scenarios, they con-
clude that increased energy availability and cost
savings from reduced natural gas-based space
heating more than compensate for increased ex-
penditures on electricity-based space cooling.
These unit cost reductions appear as productiv-
ity increases and, thus, improve the economy,
whereas other three pessimistic scenarios show
that electricity-based space conditioning expe-
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riences relatively larger productivity losses than
does space conditioning from coal, wood, pe-
troleum or natural gas; accordingly its (direct)
unit cost rises faster and thus produces no ben-
efits to the economy. Additionally, higher do-
mestic prices discourage exports and promote
imports leading to a worsening real trade bal-
ance. According to Mendelsohn et al., 2000, the
U.S. economy could benefit from the climate
change induced energy sector changes. How-
ever, Mendelsohn and Williams, 2004 suggest
that climate change will cause economic dam-
ages in the energy sector in every scenario. They
suggest that temperature changes cause most of
the energy impacts. Larger temperature in-
creases generate significantly larger economic
damages. The damages are from increased cool-
ing expenditures required to maintain desired
indoor temperatures. In the empirical studies,
these cost increases outweighed benefits of the
reduced heating expenditures unless starting cli-
mates are very cool (Mendelsohn and Neu-
mann, 1999; Mendelsohn, 2001) (also see
Chapter 2).

In California, a preliminary assessment of the
macroeconomic impacts associated with the cli-
mate change emission reduction strategies
(CEPA, 2006) shows that, while some impacts
on the economy could be positive if strategies
reduce energy costs, other impacts might be less
positive. For example, the study emphasizes that
even relatively small changes in in-state hy-
dropower generation result in substantial extra
expenditure burdens on an economy for energy
generation, because losses in this “free” gener-
ation must be purchased from other sources; for
example, a 10% decrease in hydroelectric sup-
ply would impose a cost of approximately $350
million in additional electricity expenditures an-
nually (Franco and Sanstad, 2006).  Whereas
electricity demand is projected to rise in Cali-
fornia between 3 to 20 % by the end of this cen-
tury, peak electricity demand would increase at
a faster rate. Since annual expenditures of elec-
tricity demand in California represent about $28
billion, even such a relatively small increase in
energy demand would result in substantial extra
energy expenditures for energy services in the
state; a 3 % increase in electricity demand by

2020 would translate into about $930 million (in
2000 dollars) in additional electricity expendi-
tures (Franco and Sanstad, 2006). Particular
concerns are likely to exist in areas where sum-
mer electricity loads already strain supply ca-
pacities (e.g., Hill and Goldberg 2001; Kelly et
al. 2005; Rosenzweig and Solecki, 2001) and
where transmission and distribution networks
have limited capacities to adapt to changes in
regional demands, especially seasonally (e.g.,
London Climate Change, Partnership 2002).

Rose and others have examined effects of a
number of climate change mitigation policies
on U.S. regions in general and the Susquehanna
River basin in particular (Rose and Oladosu,
2002; Rose and Zhang, 2004; Rose et al., 1999;
Rose et al., 2006). In general, they find that
such policy options as emission permits trad-
able among U.S. regions might have less than
expected effects, with burdens impacting at
least one Southern region that needs maximum
permits but whose economy is not among the
nation’s strongest. Additionally, they discuss
Pennsylvania’s heavy reliance on coal produc-
tion and use infrastructure that increases the
price of internal carbon dioxide mitigation.
They suggest that the anomalies stem from the
fact that new entrants, like Pennsylvania, into
regional coalitions for cap-and-trade configura-
tion may raise the permit price, may undercut
existing states’ permit sales, and may be able to
exercise market power. Particularly, they raise
an issue of the “responsibility” for emissions.
Should fossil fuel producing regions take the
full blame for emissions, or are the using re-
gions also responsible? They find that aggregate
impacts of a carbon tax on the Susquehanna
River Basin would be negative but quite modest. 

Concerns remain, however, that aggressive cli-
mate policy interventions to reduce GHG emis-
sions could negatively affect regional
economies linked to coal and other fossil energy
production. Concerns also exist that climate
change itself could affect the economies of
areas exposed to severe weather events (posi-
tively or negatively) and areas whose economies
are closely linked to hydropower and other as-
pects of the “energy-water nexus.”
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4.4    POSSIBLE RELATIONSHIPS
WITH OTHER ENERGY-RELATED
ISSUES 

Many other types of indirect effects are possi-
ble, although relatively few have received re-
search attention. Without asserting that this
listing is comprehensive, such effects might in-
clude the following types.

4.4.1    Effects Of Climate Change 
In Other Countries On U.S. Energy
Production And Use

We know from recent experience that climate
variability outside the U.S. can affect energy
conditions in the U.S.; an example is an unusu-
ally dry year in Spain in 2005 that led the coun-
try to enter the international LNG market to
compensate for scarce hydropower, which in
turn raised LNG prices for U.S. consumption
(Alexander’s Gas & Oil Connections, 2005).  It
is important, therefore, to consider possible ef-
fects of climate change not only on international
energy product suppliers and international en-
ergy technology buyers but also on other coun-
tries whose participation in international
markets could affect U.S. energy availability
and prices from international sources, which
could have implications for energy security (see
below). Climate change-related energy supply
and price effects could be coupled with other
price effects of international trends on U.S. en-
ergy, infrastructures, such as effects of aggres-
sive programs of infrastructure development on
China and India.  

As indicated in Chapter 2, a particularly impor-
tant case is U.S. energy inputs from Canada.
Canada is the largest single source of petroleum
imports by the U.S. (about 2.2 million barrels
per day) and exports more than 15% of the nat-
ural gas consumed in the U.S. (EIA 2005a,
2006). In 2004, it exported to the U.S. 33 MWh
of electricity, compared with imports of 22.5
MWh (EIA, 2005b). Climate change could af-
fect electricity exports and imports, for instance
if electricity demands for space cooling increase
in Canada or if climate change affects hy-
dropower production in that country.

4.4.2 Effects Of Climate Change 
On Energy Prices*

A principal mechanism in reducing vulnerabil-
ities to climate-related (and other) changes po-
tentially affecting the energy sector is the
operation of the energy market, where price
variation is a key driver. Effects of climate
change on energy prices are in fact interwoven
with effects of energy prices on risk manage-
ment strategies, in a dynamic that could work in
both directions at once; and it would be useful
to know more about roles of energy markets in
reducing vulnerabilities to climate change im-
pacts, along with possible adaptations in the
functioning of those markets. Although price ef-
fects of climate change itself are not analyzed
in the literature, aside from effects of extreme
events such as Hurricane Katrina, substantial re-
search has been done on possible energy price
effects of greenhouse gas emission reductions. 

Estimates of costs of emission reduction vary
widely according to assumptions about such is-
sues as how welfare is measured, ancillary ben-
efits, and effects in stimulating technological
innovation; and therefore any particular set of
cost estimates includes considerable uncer-
tainty. According to an Interlaboratory Working
Group (IWG, 2000), benefits of emission re-
duction would be comparable to costs, and the
National Commission on Energy Policy 2004
estimates that its recommended policy initia-
tives would be, on the whole, revenue-neutral
with respect to the federal budget. Other partic-
ipants in energy policymaking, however, are
convinced that truly significant carbon emission
reductions would have substantial economic im-
pacts (GAO, 2004).

Globally, IPCC, 2001 projected that total CO2

emissions from energy supply and conversion
could be reduced in 2020 by 350 to 700 Mt C
equivalents per year, based on options that could
be adopted through the use of generally ac-
cepted policies, generally at a positive direct
cost of less than U.S.$100 per t C equivalents.
Based on DOE/EIA analyses in 2000, this study
includes estimates of the cost of a range of spe-
cific emission-reducing technologies for power

* Adapted in part from CCSP SAP 2.2, State of the Carbon Cycle Report, Chapter 6, “Energy Conversion.”
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generation, compared with coal-fired power, al-
though the degree of uncertainty is not clear.
Within the United States, the report estimated
that the cost of emission reduction per metric
ton of carbon emissions reduced would range
from –$170 to +$880, depending on the tech-
nology used. Marginal abatement costs for the
total United States economy, in 1990 U.S. dol-
lars per metric ton carbon, were estimated by a
variety of models compared by the Energy
Modeling Forum at $76 to $410 with no emis-
sion trading, $14 to $224 with Annex I trading,
and $5 to $123 with global trading.

Similarly, the National Commission on Energy
Policy 2004 considered costs associated with a
tradable emission permit system that would re-
duce United States national greenhouse gas
emission growth from 44% to 33% from 2002
to 2025, a reduction of 760 Mt CO2 (207 Mt C)
in 2025 compared with a reference case. The
cost would be a roughly 5% increase in total
end-use expenditures compared with the refer-
ence case. Electricity prices would rise by 5.4%
for residential users, 6.2% for commercial
users, and 7.6% for industrial users.

The IWG 2000 estimated that a domestic car-
bon trading system with a $25/t C permit price
would reduce emissions by 13% compared with
a reference case, or 230 Mt CO2 (63 Mt C),
while a $50 price would reduce emissions by 17
to 19%, or 306 to 332 Mt CO2 (83-91 Mt C).
Both cases assume a doubling of United States
government appropriations for cost-shared
clean energy research, design, and development.

Net costs to the consumer, however, are bal-
anced in some analyses by benefits from ad-
vanced technologies that are developed and
deployed on an accelerated schedule due to pol-
icy interventions and changing public prefer-
ences. The U.S. Climate Change Technology
Program, 2005: pp. 3–19,  illustrates how costs
of achieving different stabilization levels can
conceivably be reduced substantially by the use
of advanced technologies, and IWG (2000) es-
timates that net end-user costs of energy can ac-
tually be reduced by a domestic carbon trading
system if it accelerates the market penetration
of more energy-efficient technologies (see Sec-
tion 4.2.2 above). 

4.4.3 Effects Of Climate Change 
On Environmental Emissions 

Climate change is very likely to lead to reduc-
tions in environmental emissions from energy
production and use in the U.S., although possi-
ble effects of climate change responses are com-
plex. For instance, cap and trade policy
responses might not translate directly into lower
total emissions. In general, however, the avail-
able research literature indicates that climate
change policy will affect choices of energy re-
sources and technologies in ways that, overall,
reduce greenhouse gas and other environmen-
tal emissions (see indirect impacts on technolo-
gies above).

4.4.4 Effects Of Climate Change 
On Energy Security 

Climate change relates to energy security be-
cause different drivers of energy policy interact.
As one example, some strategies to reduce oil
import dependence, such as increased use of re-
newable energy sources in the U.S., are similar
to strategies to reduce GHG emissions as a cli-
mate change response (e.g., IEA, 2004;
O’Keefe, 2005). Other strategies such as in-
creased domestic fossil fuel production and use
could be contradictory to climate change poli-
cies. The complexity of connections between
climate change responses and energy security
concerns can be illustrated by choices between
uses of biomass to reduce fossil fuel use in elec-
tricity generation, a priority for net greenhouse
gas emissions, and uses of biomass to displace
oil and gas imports, a priority for energy secu-
rity policy. Although the relative effects of the
two options are not entirely unrelated (i.e., both
could have some effect in reducing oil and gas
imports and both could have some effect in re-
ducing net greenhouse gas emissions), the bal-
ance in contributions to these two policy
priorities would be different.

As another example, energy security relates not
only to import dependence but also to energy
system reliability, which can be threatened by
possible increases in the intensity of severe
weather events. A different kind of issue is po-
tential impacts of abrupt climate change in the
longer run. One study has suggested that abrupt
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climate change could lead to very serious inter-
national security threats, including threats of
global energy crises, as countries act to defend
and secure supplies of essential commodities
(Schwarz and Randall, 2004). Clearly, then, re-
lationships between climate change response and
energy security are complex, but they are poten-
tially important enough to deserve further study.

4.4.5  Effects Of Climate Change 
On Energy Technology And 
Service Exports 

Finally, climate change could affect U.S. energy
technology and service exports. It is very likely
that climate change will have some impacts on
global energy technology, institutional, and pol-
icy choices. Effects of these changes on U.S. ex-
ports would probably be determined by whether
the U.S. is a leader or a follower in energy tech-
nology and policy responses to concerns about
climate change. More broadly, carbon emission
abatement actions by various countries are
likely to affect international energy flows and
trade flows in energy technology and services
(e.g., Rutherford, 2001).  In particular, one
might expect flows of carbon-intensive energy
forms and energy technologies and energy-in-
tensive products to be affected.

4.5  SUMMARY OF KNOWLEDGE
ABOUT INDIRECT EFFECTS

Regarding indirect effects of climate change on
energy production and use in the United States,
the available research literature tells us the most
about possible changes in energy resource/tech-
nology preferences and investments, along with
associated reductions in GHG emissions and ef-
fects on energy prices. Less-studied but also po-
tentially important are possible impacts on the
institutional structure of energy supply in the
United States, responding to changes in per-
ceived investment risks and emerging market
and policy realities, and possible interactions
between energy prices and roles of energy mar-
kets in managing risks and reducing vulnerabil-
ities. Perhaps the most important insight from
the limited current research literature is that cli-
mate change will affect energy production and
use not only as a driving force in its own right
but in its interactions with other driving forces
such as energy security. Where climate change
response strategies correspond with other issue
response strategies, they can add force to ac-
tions such as increased reliance on domestic
noncarbon energy supply sources. Where cli-
mate change impacts contradict other driving
forces for energy decisions, it is much less clear
what their net effect would be on energy pro-
duction and use.
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5.1 INTRODUCTION

Accordingly, this final chapter of SAP 4.5 will sketch out what appear, based on the current knowl-
edge base, to be the most likely types of effects on the energy sector. These should be considered
along with effects on other sectors that should be considered in risk management discussions in the
near term. As indicated in Chapter 1, conclusions are related to degrees of likelihood: likely (2
chances out of 3), very likely (9 chances out of 10), or virtually certain (99 chances out of 100).
The chapter will then discuss issues related to prospects for energy systems in the U.S. to adapt to
such effects, although literatures on adaptation are very limited. Finally, it will suggest a limited
number of needs for expanding the knowledge base so that, when further assessments on this topic
are carried out, conclusions about effects can be offered with a higher level of confidence.

59

The previous chapters have summarized a variety of currently available infor-

mation about effects of climate change on energy production and use in the

United States. For two reasons, it is important to be careful about drawing firm

conclusions about effects at this time. One reason is that the research literatures

on many of the key issues are limited, supporting an identification of issues but

not a resolution of most uncertainties. A second reason is that, as with many

other categories of climate change effects in the U.S., the effects depend on a

wide range of factors beyond climate change alone, such as patterns of eco-

nomic growth and land use, patterns of population growth and distribution, tech-

nological change, and social and cultural trends that could shape policies and

actions, individually and institutionally. 
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5.2 CONCLUSIONS 
ABOUT EFFECTS

Based on currently available projections of cli-
mate change in the United States, a number of
conclusions can be suggested about likely ef-
fects on energy use in the U.S. over a period of
time addressed by the research literature (near
to midterm).  Long-term conclusions are diffi-
cult due to uncertainties about such driving
forces as technological, change, institutional
change, and climate change policy responses.

• Climate change will mean reductions in total
U.S. energy demand for space heating for
buildings, with effects differing by region
(virtually certain).

• Climate change will mean increases in total
U.S. energy demand for space cooling, with
effects differing by region (virtually certain).

• Net effects on energy use will differ by re-
gion, with net lower total energy require-
ments for buildings in net heating load areas
and net higher energy requirements in net
cooling load areas, with overall impacts af-
fected by patterns of interregional migration
– which are likely to be in the direction of
net cooling load regions – and investments
in new building stock (virtually certain).

• Temperature increases will be associated
with increased peak demands for electricity
(very likely).

• Other effects of climate change are less
clear, but some could be nontrivial: e.g., in-
creased energy use for water pumping
and/or desalination in areas that see reduc-
tions in water supply (very likely).

• Lower winter energy demands in Canada
could add to available electricity supplies for
a few U.S. regions (likely).

A number of conclusions can be offered with
relatively high levels of confidence about ef-
fects of climate change on energy production
and supply in the U.S., but generally the re-
search evidence is not as strong as for effects on
energy use: 

• Changes in the distribution of water avail-
ability in the U.S. will affect power plants;
in areas with decreased water availability,

competition for water supplies will increase
between energy production and other sectors
(virtually certain).

• Temperature increases will decrease overall
thermoelectric power generation efficiency
(virtually certain).

• In some regions, energy resource production
and delivery systems are vulnerable to
effects of sea level rise and extreme weather
events, especially the Gulf Coast and the
East Coast (virtually certain).

• In some areas, the siting of new energy 
facilities and systems could face increased
restrictions, related partly to complex inter-
actions among the wider range of water uses
as well as sea-level rise and extreme event
exposures (likely

• Incorporating possible climate change im-
pacts into planning processes could
strengthen energy production and distribution
system infrastructures, especially regarding
water resource management (likely).

• Hydropower production is expected to be di-
rectly and significantly affected by climate
change, especially in the West and North-
west (very likely).

• Climate change is expected to mean greater
variability in wind resources and direct solar
radiation, substantially impacting the plan-
ning, siting, and financing of these tech-
nologies (likely).

• Increased temperatures and other climate
change effects will affect energy transmis-
sion and distribution requirements, but these
effects are not well-understood.

Overall, the current energy supply infrastruc-
ture is often located in areas where climate
change impacts might occur, but large-scale dis-
ruptions are not likely except during extreme
weather events. Most of the effects on fossil and
nuclear electricity components are likely to be
modest changes in water availability and/or
cycle efficiency.

California is one U.S. state where impacts on
both energy use and energy production have
been studied with some care (See Box 5.1: Cal-
ifornia: A Case Study).
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About indirect effects of climate change on en-
ergy production and use in the U.S., conclusions
are notably mixed. Conclusions related to pos-
sible impacts of climate change policy inter-
ventions on technology choice and emissions
can be offered with relatively high confidence
based on published research:

• Climate change concerns are very likely to
affect perceptions and practices related to
risk management behavior in investment by
energy institutions (very likely).

• Climate change concerns, especially if they
are expressed through policy interventions,
are almost certain to affect public and pri-
vate sector energy technology R&D invest-
ments and energy resource/technology
choices by energy institutions, along with
associated emissions (virtually certain).

• Climate change can be expected to affect
other countries in ways that in turn affect
U.S. energy conditions (very likely).

Other types of possible indirect effects can be
suggested as a basis for discussion, but conclu-
sions must await further research:

• Climate change effects on energy produc-
tion and use could in turn affect some re-
gional economies, either positively or
negatively (likely).

• Climate change may have some effects on
energy prices in the U.S., especially associ-
ated with extreme weather events (very
likely).

• Climate change concerns are likely to inter-
act with some driving forces behind policies
focused on U.S. energy security, such as re-
duced reliance on conventional petroleum
products (likely).

These conclusions add up to a picture that is
cautionary rather than alarming. Since in many
cases effects that could be a concern to U.S. cit-
izens and U.S. energy institutions are some
decades in the future, there is time to consider
strategies for adaptation to reduce possible neg-
ative impacts and take advantage of possible
positive impacts.

California is unique in the United States as a state that has examined possible effects of
climate change on its energy production and use in some detail (also see Box 2.2).  Led
by the California Energy Commission and supported by such nearby partners as the
Electric Power Research Institute, the University of California–Berkeley, and the Scripps
Institution of Oceanography, the state is developing a knowledge base on this subject that
could be a model for other states and regions (as well as the nation as a whole).

Generally, the analyses to date (many of which are referenced in Chapters 2 and 3) in-
dicate that electricity demand will grow due to climate change, with an especially close
relationship between peak electricity demand and temperature increases (Franco and
Sanstad 2006), and water supply – as an element of the “energy-water nexus” – will be
affected by a reduction in the Sierra snowpack (by as much as 70-90 % over the com-
ing century:  Vicuña et al. 2006).  Patterns of urbanization could add to pressures for
further energy supplies.  Adaptations to these and other climate change impacts appear
possible, but they could be costly (Franco 2005).  Overall economic impacts will depend
considerably on the effectiveness of response measures, which tend currently to em-
phasize emission reduction but also consider impact scenarios and potential adaptation
measures (CEPA 2006).

Other relevant studies of the California context for climate change effects reinforce an
impression that effects of warming and snowpack reduction could be serious (Hayhoe
et al. 2004) and that other ecosystems related to renewable energy potentials could be
affected as well (Union of Concerned Scientists 1999).

BOX 5.1  California: A Case Study
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5.3  CONSIDERING PROSPECTS
FOR ADAPTATION

The existing research literature tends to treat the
U.S. energy sector mainly as a driving force for
climate change rather than a sector subject to
impacts from climate change. As a result, there
is very little literature on adaptation of the en-
ergy sector to effects of climate change, and the
following discussion is therefore largely specu-
lative. 

Generally, both energy users and providers in
the U.S. are accustomed to changes in condi-
tions that affect their decisions. Users see en-
ergy prices fluctuate with international oil
market conditions and with Gulf Coast storm
behavior, and they see energy availability sub-
ject to short-term shortages for a variety of rea-
sons (e.g., the California energy market crises
of 2000/2001 or electricity blackouts in some
Northeastern cities in 2003). Energy providers
cope with shifting global market conditions,
policy changes, financial variables such as in-
terest rates for capital infrastructure lending,
and climate variability. In many ways, the en-
ergy sector is among the most resilient of all
U.S. economic sectors, at least in terms of re-
sponding to changes within the range of histor-
ical experience. For instance, electric utilities
routinely consider planning and investment

strategies that consider weather variables
(Niemeyer, 2005); and one important guide to
adaptation to climate change is what makes
sense in adapting to climate variability (Franco
2005).

On the other hand, such recent events as Hurri-
cane Katrina (Box 5.2: Hurricane Katrina and
the Gulf Coast: A Case Study) suggest that the
U.S. energy sector is better at responding to rel-
atively short-term variations and uncertainties
than to changes that reach beyond the range of
familiar short-term variabilities (Niemeyer
2005). In fact, the confidence of U.S. energy in-
stitutions about their ability to reduce exposure
to risks from short-term variations might tend
to reduce their resilience to larger long-term
changes, unless an awareness of risks from such
long-term changes is heightened.

Adaptations to effects of climate change on en-
ergy use may focus on increased demands for
space cooling in areas affected by warming and
associated increases in total energy consump-
tion costs. Alternatives could include reducing
costs of cooling for users through energy effi-
ciency improvement in cooling equipment and
building envelopes; responding to likely in-
creases in demands for electricity for cooling
through expanded generation capacities, ex-
panded interties, and possibly increased capac-

It is not possible to attribute the occurrence of Hurricane Katrina, August 29, 2005, to
climate change; but projections of climate change say that extreme weather events are
very likely to become more intense.  If so (e.g., more of the annual hurricanes at higher
levels of wind speed and potential damages), then the impacts of Katrina are an indica-
tor of possible impacts of one manifestation of climate change.

Impacts of Katrina on energy systems in the region and the nation were dramatic at the
time, and some impacts remained many months later.  The hurricane itself impacted
coastal and offshore oil and gas production, offshore oil port operation (stopping imports
of more than one million bbl/d of crude oil), and crude oil refining along the Louisiana
Gulf Coast (Figures 3.4 a-d).  Within only a few days, oil product and natural gas prices
had risen significantly across the U.S.  As of mid-December 2005, substantial oil and gas
production was still shut-in, and refinery shutdowns still totalled 367, 000 bbl/d (EIA
2005) (see Chapter 3).  

Possibilities for adaptation to reduce risks of damages from future Katrinas are unclear.
They might include such alternatives as hardening offshore platforms and coastal facili-
ties to be more resilient to high winds, wave action, and flooding (potentially expensive)
and shifting the locations of some coastal refining and distribution facilities to less vul-
nerable sites, reducing their concentration in the Gulf Coast. (potentially very expensive).

BOX 5.2  Hurricane Katrina and the Gulf Coast:  A Case Study



63

Effects of Climate Change on Energy Production and Use in the United States

ities for storage; and responding to concerns
about increased peak demand in electricity
loads, especially seasonally, through contin-
gency planning for load-leveling. Over a period
of several decades, for instance, technologies
are likely to respond to consumer concerns
about higher energy bills where they occur.

Many technologies that can enable adaptations
to effects on energy production and supply are
available for deployment. The most likely adap-
tation in the near term is an increase in percep-
tions of uncertainty and risk in longer-term
strategic planning and investment, which could
seek to reduce risks through such approaches as
diversifying supply sources and technologies
and risk-sharing arrangements.

Adaptation to indirect effects of climate change
on the energy sector is likely to be bundled with
adaptation to other issues for energy policy and
decision-making in the U.S., such as energy se-
curity: for instance, in the development of lower
carbon-emitting fossil fuel use technology en-
sembles, increased deployment of renewable en-
ergy technologies, and the development of
alternatives to fossil fuels and effects on energy
institutional structures. Issues related to effects
of climate change on other countries linked with
U.S. energy conditions are likely to be ad-
dressed through attention by both the public and
private sectors to related information systems
and market signals.

It seems possible that adaptation challenges
would be greatest in connection with possible
increases in the intensity of extreme weather
events and possible significant changes in re-
gional water supply regimes. More generally,
adaptation prospects appear to be related to the
magnitude and rate of climate change (e.g., how
much the average temperature rises before sta-
bilization is achieved, how rapidly it moves to
that level, and how variable the climate is at that
level), with adaptation more likely to be able to
cope with effects of lesser amounts, slower rates
of change, and less variable climate (Wilbanks
et al., 2007). 

Generally, prospects for these types of adapta-
tions depend considerably on the level of aware-
ness of possible climate changes at a relatively
localized scale and possible implications for en-

ergy production and use – the topic of this
study. When the current knowledge base to sup-
port such awareness is so limited, this suggests
that expanding the knowledge base is important
to the energy sector in the United States.

5.4  NEEDS FOR EXPANDING THE
KNOWLEDGE BASE

Expanding the knowledge base about effects of
climate change on energy production and use in
the United States is not just a responsibility of
the federal government. As the work of such in-
stitutions as the Electric Power Research Insti-
tute and the California Energy Commission
demonstrates, a wide variety of parts of U.S. so-
ciety have knowledge, expertise, and data to
contribute to what should be a broad-based
multi-institutional collaboration. 

Recognizing that roles in these regards will dif-
fer among federal and state governments, in-
dustry, nongovernmental institutions, and
academia and that all parties should be involved
in discussions about how to proceed, this study
suggests the following needs for expanding the
knowledge base on its topic, some of which are
rooted in broader needs for advances in climate
change science.

5.4.1 General Needs

• Improved capacities to project climate
change and its effects on a relatively fine-
grained geographic scale, especially of pre-
cipitation changes and severe weather
events: e.g., in order to support evaluations
of impacts at local and small-regional scales,
not only in terms of gradual changes but also
in terms of extremes, since many energy 
facility decisions are made at a relatively 
localized scale;  

• Research on and assessments of implica-
tions of extreme weather events for energy
system resiliency, including strategies for
both reducing and recovering from impacts;

• Research on and assessments of potentials,
costs, and limits of adaptation to risks of ad-
verse effects, for both supply and use infra-
structures; 

• Research on efficiency of energy use in the
context of climate warming, with an em-



4Note that CCSP SAP 4.7, The Impacts of Climate Change on Transportation:  A Gulf Coast Study, considers imacts
on pipelines and other transportation infrastructures in the Gulf Coast region (CCSP, 2007b).
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phasis on technologies and practices that
save cooling energy and reduce electrical
peak load;

• Research on and assessments of implica-
tions of changing regional patterns of energy
use for regional energy supply institutions
and consumers;

• Improvements in the understanding of ef-
fects of changing conditions for renewable
energy and fossil energy development and
market penetration on regional energy bal-
ances and their relationships with regional
economies;

• In particular, improvements in understand-
ing likely effects of climate change in Arctic
regions and on storm intensity to guide ap-
plications of existing technologies and the
development and deployment of new tech-
nologies and other adaptations for energy in-
frastructure and energy exploration and
production in these relatively vulnerable re-
gions; and

• Attention to linkages and feedbacks among
climate change effects, adaptation, and mit-
igation; to linkages between effects at dif-
ferent geographic scales; and relationships
between possible energy effects and other
possible economic, environmental, and in-
stitutional changes (Parson et al., 2003;
Wilbanks, 2005). 

5.4.2  Needs Related To Major
Technology Areas

• Improving the understanding of potentials to
increase efficiency improvements in space
cooling;

• Improving information about interactions
among water demands and uses where the
quantity and timing of surface water dis-
charge is affected by climate change;

• Improving the understanding of potential
climate change and localized variability on
energy production from wind and solar tech-
nologies;

• Developing strategies to increase the re-
silience of coastal and offshore oil and gas
production and distribution systems to ex-
treme weather events;

• Pursuing strategies and improved technol-
ogy potentials for adding resilience to en-
ergy supply systems that may be subject to
stress under possible scenarios for climate
change;

• Improving understandings of potentials to
improve resilience in electricity supply sys-
tems through regional intertie capacities and
distributed generation; and 

• Research on and assessments of the impacts
of severe weather events on sub-sea pipeline
systems, especially in the Gulf of Mexico,
and strategies for reducing such impacts.4

Other needs for research exist as well, and the
process of learning more about this topic in
coming years may change perceptions of needs
and priorities; but based on current knowledge,
these appear to be high priorities in the next sev-
eral years. 
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TECHNICAL NOTE: 
METHODS FOR ESTIMATING ENERGY
CONSUMPTION IN BUILDINGS

Previous authors have used a number of approaches to
estimate the impact of climate change on energy use
in U.S. buildings. Many of the researchers translate
changes in average temperature change on a daily, sea-
sonal, or annual basis into heating and cooling degree
days, which are then used in building energy simula-
tion models to project demand for space heating and
space cooling (e.g., Rosenthal et al. 1995, Belzer et al.
1996, and Amato et al. 2005). Building energy simu-
lation is often done directly with average climate
changes used to modify daily temperature profiles at
modeled locations (Scott et al. 2005, and Huang 2006).
(See Box A.1 on heating and cooling degree-days.) 

Building energy simulation models such as CALPAS3
(Atkinson et al. 1981), DOE-2 (Winkelmann et al.
1993), or FEDS and BEAMS (PNNL 2002, Elliott et
al. 2004) have been used to analyze the impact of cli-
mate warming on the demand for energy in individual
commercial buildings only (Scott et al. 1994) and in
groups of commercial and residential buildings in a va-
riety of locations (Loveland and Brown 1990, Rosen-
thal et al. 1995, Scott et al. 2005, and Huang 2006).

Other researchers have used econometrics and statisti-
cal analysis techniques (most notably the various

Mendelsohn papers discussed in Chapter 2, but also
the Belzer et al. 1996 study using the CBECS micro-
data, and Sailor and Muñoz 1997, Sailor 2001, Amato
et al. 2005, Ruth and Lin 2006, and Franco and Sanstad
2006, using various state-level time series.) A subcat-
egory of the econometric technique is cross-sectional
analysis. For example, Mendelsohn performed cross-
sectional econometric analysis of the RECS and
CBECS microdata sets to determine how energy use
in the residential and commercial building stock relates
to climate (Morrison and Mendelsohn 1999; Mendel-
sohn 2001), and then used the resulting equations to
estimate the future impact of warmer temperatures on
energy consumption in residential and commercial
buildings.  Mendelsohn 2003 and Mansur et al. 2005 sub-
sequently elaborated the approach into a complete and
separate set of discrete-continuous choice models of en-
ergy demand in residential and commercial buildings.

Finally, Hadley et al. 2004, 2006, directly incorporated
changes in heating degree-days and cooling degree-
days expected as a result of climate change into the res-
idential and commercial building modules of the
Energy Information Administration’s National Energy
Modeling System, so that their results incorporated
U.S. demographic trends, changes in building stock
and energy-using equipment, and (at least some) con-
sumer reactions to energy prices and climate at a re-
gional level. Hadley et al. translated temperatures from
a single climate scenario of the Parallel Climate Model

Energy analysts often refer to concepts called heating and cooling degree-days when calculating the
impact of outdoor temperature on energy use in buildings.  Buildings are considered to have a mini-
mum energy use temperature where the building is neither heated nor cooled, and all energy use is
considered to be nonclimate sensitive.  This is called the “balance point” for the building.  Each degree
deviation from that balance point temperature results in heating (if the temperature is below the bal-
ance point) or cooling (if the temperature is above the balance point).  For example, if the balance point
for a building is 60°F and the average outdoor temperature for a 30-d period is 55°F, then there are
5 x 30 heating degree days for that period.  Energy demand is usually considered to increase or de-
crease proportionately with increases in either heating degree-days or cooling degree-days.

Balance points by default are usually considered to be 65°F because many weather datasets come
with degree-days already computed on that basis (See Amato et al 2005).  However, empirical re-
search on regional datasets and on the RECS and CBECS microdata sets suggests that regional vari-
ations are common.  In Massachusetts, for example, Amato et al. found a balance point temperature
for electricity in the residential sector of 60°F and 55°F for the residential sector.  Belzer et al. (1996)
found that the newer commercial buildings have even lower balance point temperatures, probably be-
cause of tighter construction and the dominance of lighting and other interior loads that both aid with
heating and make cooling more of a challenge.  

BOX A.1  Heating and Cooling Degree-Days and Building Energy Use
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into changes in heating degree days (HDDs) and cooling de-
gree-days (CDDs) that are population-averaged in each of
the nine U.S. Census divisions (on a 65º F base –against the
findings of Rosenthal et al., Belzer et al., and Mansur et al.
2005, all of which projected a lower balance point tempera-
ture for cooling and a variation in the balance point across
the country). They then compared these values with 1971-
2000 average HDDs and CDDs from the National Climate

Data Center for the same regions. The changes in HDD and
CDD were then used to drive changes in a special version
(DD-NEMS) of the National Energy Modeling System
(NEMS) of the U.S. Energy Information Administration,
generally used to provide official energy consumption fore-
casts for the Annual Energy Outlook (EIA 2006). Table A.1
contains a summary of methods used in the various studies
employed in this chapter.

Authors Methods Comments

National Studies

Linder-Inglis 
1989 Electric utility planning model Electricity only. Results available for 47 state and substate

service areas. Calculates peak demand.

Rosenthal 
et al.  1995

Reanalysis of building energy consumption in
EIA Annual Energy Outlook Energy-weighted national averages of census division-level data

Belzer et al. 
1996

Econometrics on CBECS commercial sector
microdata Used HDD and CDD and estimated energy balance points

Mendelsohn 
2001

Econometric analysis of RECS and CBECS
microdata

Takes into account energy price forecasts, market penetration
of air conditioning. Precipitation increases 7%.

Scott et al. 
2005 Building models (FEDS and BEAMS)

Varies by region. Allows for growth in residential and
commercial building stock, but not increased adoption 
of air conditioning in response to warming

Mansur et al. 
2005

Econometric analysis of RECS and CBECS
microdata

Takes into account energy price forecasts, market penetration
of air conditioning. Precipitation increases 7%. 
Affects both fuel choice and use. 

Hadley et al. 
2004; 2006

NEMS energy model, modified for changes in
degree-days

Primary energy, residential and commercial combined. Allows
for growth in residential and commercial building stock. 

Huang et al. 
2006 DOE-2 building energy model Impacts vary by region, building type.

Regional Studies

Loveland and
Brown 1990 CALPAS3 Building Energy Model Single family detached house, commercial building, 

6 individual cities 

Baxter and
Calandri 1992 Building energy model Electricity only, California. 

Scott et al. 
1994 DOE-2 building energy model Small office building, 4 specific cities

Sailor 
2001 Econometric on state time series Total electricity per capita in 7 out of 8 energy-intensive states;

one state (Washington) used electricity for space heating

Sailor and
Pavlova 2003 Econometric on state-level time series Four states. Includes increased market saturation of air

conditioning

Mendelsohn 
2003

Econometric on national cross sectional data on
RECS and CBECS data

Impacts for California only. Residential and commercial.
Expenditures on energy.

Amato et al. 
2005 Time series econometric on state data Massachusetts (North), Winter monthly residential capita

consumption, commercial monthly per employee consumption

Ruth and Lin 
2006 Time series econometric on state data Maryland (borderline North-South), residential natural gas,

heating oil, electricity expenditures

Franco and
Sanstad 2006

Regression of electricity demand in California
Independent System Operator with average
daily temperature anddaily consumption in the
CalISO area in 2004, and the relationship
between peak demand and average daily max-
imum temperature over the period 1961–1990

Electricity only

Table A.1  Methods Used in U.S. Studies of the Effects of Climate Change on Engergy Demand in Buildings
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ORGANIZATIONS AND INDIVIDUALS CONSULTED

Vicki Arroyo Pew Center

Malcolm Asadoorian Massachusetts Institute of Technology

Kelly Birkinshaw California Energy Commission

Benjamin J. DeAngelo U.S. Environmental Protection Agency

Richard Eckaus Massachusetts Institute of Technology

Bill Fang Edison Electric Institute

Guido Franco California Energy Commission

Howard Gruenspecht Energy Information Administration

Jay Gullege Pew Center

Richard C Haut Houston Advanced Research Center

Haroon S. Kheshgi ExxonMobil Research and Engineering Co.

Joe Loper Alliance to Save Energy

Sasha Mackler National Commission on Energy Policy

Victor Niemeyer Electric Power Research Institute

Paul Pike Ameren Corporation

Will Polen U.S. Energy Association

Walt Retzch American Petroleum Institute

Terry Surles University of Hawaii

Tom Wilson Electric Power Research Institute

Laurie ten Hope California Energy Commission

Barry Worthington U.S. Energy Association

Kate Zyla Pew Center
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GLOSSARY

A
Adaptation 
In climate change discussions, refers to actions that re-
spond to climate change risks and/or impacts by reduc-
ing sensitivity to climate variables and/or increasing
coping capacity

Aerosols 
A substance packaged under pressure with a gaseous
propellant for release as a spray of fine particles

Ambient temperatures 
The temperature of the air surrounding a power supply
or heating/cooling medium

Analytic-deliberative practices  
Combining systematic analysis with processes for col-
lective qualitative consideration of broader issues

Aquifer 
An underground bed or layer of earth, gravel, or porous
stone that yields water

B
Biodiesel
An oxygenated fuel, primarily alkyl (methyl or ethyl)
esters, produced from a range of biomass-derived feed-
stocks including oilseeds, waste vegetable oils, cooking
oil, animal fats and trap grease, which can be used in
blends or in "neat" form in compression-ignition engines
to reduce emissions and improve engine performance

Btus 
British thermal units, a quantity of energy

Building equipment
Energy-using equipment within a building, such as elec-
tric appliances

Building shell
The external envelope of a building, including founda-
tion, floor, walls, windows, outside doors, and roof

Building stock 
The total quantity of buildings in an area or sector of in-
terest

C
Canadian model
A climate change projection model from the Canadian
Climate Change Centre (CGCM1), used in the U.S. Na-
tional Assessment of Possible Consequences of Climate
Variability and Change (2001)

Cap-and-trade
A market-based system of limiting emissions in which
a limited number of emissions permits are issued in the
aggregate (cap); these permits are then freely ex-
changeable in markets (trade)

Cellulosic 
Pertaining to cellulose, a constituent of plant tissues and
fibers

Climate change 
Changes in climate that depart from normal variability,
representing significant changes in averages and/or ex-
tremes

Climate change impacts 
Effects of climate changes such as temperature change,
precipitation change, severe weather events, and sea
level rise on human and/or natural systems

Climate change related policies 
Public policy interventions in response to concerns
about or impacts of climate change

Climate forcing effect
Increases in certain trace gas molecules in the atmos-
phere that change the balance between incoming solar
radiation and re-radiation of energy into space, leading
to long-term atmospheric warming

Climate variability 
Changes in climate around averages, not necessarily as-
sociated with climate change

Climate-sensitive 
Refers to systems or phenomena whose behavior is no-
ticeably affected by differences in climate

Effects of Climate Change on Energy Production and Use in the United States
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Closed-cycle cooling
A method of cooling power plants in which water is with-
drawn from a body of water, passed through the facility to cool
power-production processes, cooled down in a cooling tower
or similar method, and then reused for cooling

Combined cycle
An electric-power generating method in which combustible
gases are burned in a combustion turbine (topping cycle) and
high-temperature gases from that operation are used to raise
steam that is passed through a steam turbine (bottoming
cycle). Both cycles drive electric generators

D
Delivery forms 
Forms in which energy is delivered to users: solid, liquid,
gaseous, electricity

Demographic 
Related to the size, growth, and distribution of human popu-
lations

Discrete-continuous choice models
A family of economic models in which the probability of a
handful of choices (e.g., whether or not to select a particular
heating technology) are modeled mathematically as a func-
tion of continuous variables such as income and price

Distribution systems 
Systems for moving energy delivery forms from producers 
to users

E
Econometric 
A field of economics that applies statistical procedures to
mathematical models

Elasticities 
Refers to changes in one variable as the result of changes in
another variable

Empirical 
Derived from observation or experiment, generally implying
quantitative data

Energy consumption
The amount of fuels and electricity (measured in common
units such as British thermal units or Btus) utilized during a
period of time to provide a useful service such as heating,
cooling, or transportation

Energy conversion
Changing energy-bearing substances from one form to an-
other; e.g., petroleum refining or electric power generation

Energy demand
The quantities of energy desired in the marketplace at various
prices.

Energy infrastructure
The capital equipment used to supply energy; e.g., power
plants, refineries, natural gas pipelines, electric power lines
and substations, etc.
Energy intensity

The amount of energy consumed per unit of desired service

Energy markets
Groups of buyers and sellers of energy goods and services and
the institutions that make such exchanges possible

Energy prices
Prices of petroleum and petroleum fuels, natural gas and man-
ufactured gases, coal, uranium fuels, other fuels, and electric-
ity, formed in energy markets via buying and selling processes

Energy production
Extraction, conversion, and transportation of fuels and elec-
tricity to ultimate end use

Energy security
Reliable and predictable supplies of fuels and electricity in na-
tional markets at stable prices, usually associated with the con-
cerns about reliability of foreign supplies

Energy use
See energy consumption

Ethanol
An alcohol fuel produced chemically from ethylene or bio-
logically from the fermentation of various sugars from carbo-
hydrates found in agricultural crops and cellulosic residues
from crops or wood. Often made from plants such as corn and
typically blended in various proportions with conventional
gasoline to make transportation fuel (gasohol)

Extreme weather events 
Weather events that are infrequent or unusual in their magni-
tude or intensity
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F
Fossil fuels 
Hydrocarbon fuels derived from fossils: coal, petroleum, nat-
ural gas

Fuel types
End-use delivery forms for energy: solid, liquid, gaseous, elec-
tricity

G
Gas turbine
A rotary engine that extracts energy from a flow of combus-
tion gas

Global Change Research Act of 1990
An act of the U.S. Congress that established the U.S. Global
Change Research Program and called for periodic assessments
of climate change implications for the U.S.

H
Hadley Centre Model 
A well-known British model for projecting climate change

Heating loads
The amounts of energy necessary to keep the internal tem-
perature in a building above a specific temperature range

Hydropower 
Hydroelectric power, derived from the energy value of run-
ning water

I
Indirect effects
Effects derived not from the primary driver of interest but from
effects of that driver on another system, process, or phenom-
enon

Integrated Resource Planning
An approach to electric utility planning that integrates de-
mand-side planning with supply-side planning 

Intensity 
A measure of concentration, such as the amount of energy
consumed for a particular purpose

K
Knowledge base 
The stock of knowledge about a particular topi

kWh 
Kilowatt hour, a measure of electricity delivered or consumed

L
Likelihood 
A measure of probability and/or level of confidence

Long-run 
The relatively far future

M
Market penetration
The degree to which a new technology or practice enters a
market for a type of equipment or service, usually measured
as a percentage of sales

Market saturation 
The highest percentage of a market that can be captured by a
type of equipment, practice, or process

Mitigation 
In climate change discussions, refers to actions that respond to
concerns about climate change by reducing greenhouse gas
emissions or enhancing sinks

O
Once-through cooling
As distinct from the use of cooling towers, the practice in
power plants of taking in water from a body of water (e.g., a
river), using it to cool the power plant, and releasing the water
back to the body of water after a single pass through the plant

P
Peaking load units 
Electricity supply units designed to respond to demands, often
short-lived, that are significantly above normal base loads

Portfolio standards 
Guidelines or requirements that total electricity supply include
one or more set minimums for particular sources, such as re-
newable energy

Power plants 
Facilities that produce electricity
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Primary energy
The amount of energy embodied in natural resources (e.g.,
coal, crude petroleum, sunlight) before transformation by hu-
mans. Also known as source energy

Projections 
Characterizations of the future, often quantitative either from
extrapolations of historical trends or from models

Prospectus
A formal summary of a proposed venture or project or a doc-
ument describing the chief features of a proposed activity

Q
Quad 
Quadrillion Btus

Qualitative 
Characterized by units of measure that are not numerical

R
R&D 
Research and development

Renewable energy 
Energy based on resources that are naturally renewed over
time periods equivalent to resource withdrawals

Risk management
Practices followed by companies and individuals to limit ex-
posure to hazards and to limit the consequences of remaining
exposure

S
Scenario 
A characterization of changes in the future, often associated
with quantitative projections of variables of interest

Seasonal 
Pertaining to a season of the year, as in winter or summer

Sectors
Subdivisions of a larger population, most often subdivisions of
an economy such as residential, commercial, and industrial

Shell
See “building shell”

Short-run 
The relatively near future

Simulation models
Mathematical models designed to approximate the perform-
ance of a system (e.g., the energy market or the world’s cli-
mate) and commonly used to quantitatively forecast elements
of that system’s performance

Site energy consumption
The amount of energy consumed at the point of end use, not
accounting for conversion losses

Solar radiation
The Sun’s radiant energy (in the context of this study) as de-
posited on the Earth in all wavelengths

Space conditioning 
Human interventions to modify the temperature of built
spaces, including cooling and heating

Space cooling
Space conditioning processes used to reduce the temperature
in built spaces

Space heating
Space conditioning processes used to increase the tempera-
ture in built spaces

Spatial scale 
Geographical size

Stakeholders 
Individuals, groups, and/or institutions with a stake in the out-
come of a decision-making process

Statistical analysis
Analyzing collected data for the purposes of summarizing in-
formation to make it more usable and/or making generaliza-
tions about a population based on a sample drawn from that
population

Stochastic
Characterized by risk, randomness, or uncertainty. Random
or probabilistic but with some direction

Strategic Petroleum Reserve 
A U.S. national program and set of facilities to store petro-
leum as a protection against risks of supply disruptions
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T
Take back
A consumer reaction wherein beneficiaries of cost reductions
from improvement to a technology or process undermine the
improvement by using more of the improved technology or
process; e.g., be setting the thermostat higher when a building
is better insulated and therefore less expensive to heat

Thermal power plant 
A facility that produces electricity from heat

Thermoelectric 
See thermal power plant

Time series 
A series of measurements occurring over a period of time

Transient weather events 
Very short-lived weather happenings (e.g., thunderstorms, tor-
nadoes) as opposed to general, long-term changes in temper-
ature, precipitation, etc.

U
Uncertainties 
Unknowns that limit the completeness of an explanation or
the precision and accuracy of a prediction

Urban form 
The physical configuration and pattern of an urbanized area

Urban heat islands
The semipermanent warming of up to several degrees in urban
areas compared to nearby rural areas, due to density of popu-
lation, high use of energy, and prevalence of solar energy ab-
sorbing and reradiating surfaces such as concrete buildings
and streets

V
Vulnerability  
The degree to which a system is susceptible to, or unable to
cope with, adverse effects of climate change, including cli-
mate variability and extremes. Vulnerability is a function of
the character, magnitude, and rate of climate variation to
which a system is exposed, its sensitivity, and its adaptive ca-
pacity
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ACRONYMS

API American Petroleum Institute

ASHRAE American Society of Heating, 
Refrigerating and Air-Conditioning 
Engineers

AWEA American Wind Energy Association

BEAMS a building energy simulation model

CALPAS a building energy simulation model

CBECS Commercial Building Energy 
Consumption Survey

CCSP Climate Change Science Program

CCTP Climate Change Technology Program

CDD cooling degree days

CDM Clean Development Mechanism 

CEPA California Environmental Protection 
Agency

CO2 carbon dioxide

CRIEPI Japanese Central Research Institute of 
Electric Power Industry

DD-NEMS an energy system model based on 
NEMS (see below)

DOC U.S. Department of Commerce

DOE U.S. Department of Energy

DOE-2 building energy simulation software

DOI U.S. Department of the Interior

DOT U.S. Department of Transportation

EIA Energy Information Administration

EPA Environmental Protection Agency

EPRI Electric Power Research Institute

FEDS a building energy simulation model

GCM General Circulation Model of the earth’s 
atmosphere

GHG greenhouse gas(es)

GOM Gulf of Mexico

GW gigawatt

GWh gigawatt/hour

HADCM3 Hadley Center Coupled GCM Model, 
Version 3

HDD heating degree days

HVAC heating, ventilating, and air conditioning

ICF an international consulting firm 
in Washington, DC

IEA International Energy Agency

IGCC integrated gasification combined cycle

IPCC Intergovernmental Panel on 
Climate Change 

ITC investment tax credit

JIP Joint Industry Program

LNG liquefied natural gas

MMS U.S. Minerals Management Service

MW megawatt 

NACC U.S. National Assessment of Implications 
of Climate Variability and Change

NARUC National Association of Regulatory Utility 
Commissioners

NCAR National Center for Atmospheric Research

NEMS National Energy Modeling System 
(Energy Information Administration)

NGCC natural gas combined cycle

NOAA National Oceanic and Atmospheric 
Administration

NRC Nuclear Regulatory Commission

NREL National Renewable Energy Laboratory

NSTC National Science and Technology Council
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ORNL Oak Ridge National Laboratory

PAD Petroleum Administration for Defense

PCM parallel climate model

PTC production tax credit

PV photovoltaic

RECS Residential Energy Consumption Survey

RGGI Regional greenhouse gas initiative

SAP Synthesis and Assessment Product

SAP 4.5 Synthesis and Assessment Product 4.5 
(this document)

TRU Trailer Refrigeration Units

USDA U.S. Department of Agriculture

USGS U.S. Geological Survey

WWF World Wildlife Fund
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