## ECOREGION STOCK

## North Sea <br> Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and IIIa West (Skagerrak)

Advice summary for 2011

| Management Objective (s) | Landings in 2011 |
| :--- | :--- |
| Transition to an MSY approach <br> with caution at low stock size | 5700 t to 40900 t for transition to the MSY framework <br> by 2011 to 2015, respectively. |
| Cautiously avoid impaired recruitment <br> (Precautionary Approach) | Zero |
| Cautiously avoid impaired recruitment and achieve other <br> objective(s) of a management plan (e.g., catch stability) | 32240 t |

Stock status

| Fishing mortality | 2007 | 2008 | 2009 |
| :---: | :---: | :---: | :---: |
| $\mathbf{F}_{\text {MSY }}$ | Above | Above | Above |
| $\mathbf{F}_{\mathbf{P A}} / \mathbf{F}_{\text {lim }}$ | Between | Between | Between |
|  |  |  |  |
| Spawning Stock <br> Biomass (SSB) | 2008 | 2009 | 2010 |
| MSY B $_{\text {trigger }}$ | Below | Below | Below |
| $\mathbf{B}_{\text {PA }} / \mathbf{B}_{\text {lim }}$ | Below | Below | Below |






Figure 6.4.2.1 Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and IIIa West (Skagerrak). Summary of stock assessment with percentiles $(5,25,75,95)$, catch recorded and estimated (from 1993), weights in tonnes.

SSB has increased since its historical low in 2006, but remains below $\mathrm{B}_{\text {lim }}$. Fishing mortality declined after 2000, and although its most recent trajectory is considered uncertain, it is estimated to be well above the long-term objectives of maximum yield, and likely above $\mathrm{F}_{\mathrm{pa}}$. Recruitment since 2000 is poor, The assessment this year is considered more uncertain than the assessment conducted last year.

## Management plans

The EU-Norway agreement management plan as updated in December 2008 (Annex 6.4.2). The EU has adopted a long-term plan for this stock with the same aims (Council Regulation (EC) 1342/2008). ICES evaluated both plans in 2009 and concludes they are in accordance with the precautionary approach if implemented and enforced adequately.

## Biology

Cod are widely distributed throughout the North Sea. Scientific survey data indicate that historically, young fish (ages 1 and 2) have been found in large numbers in the southern part of the North Sea. Adult fish have in the past been concentrated in the Southern Bight, the north east coast of England, in the German Bight, the east coast of Scotland and in the north-eastern North Sea. As stock abundance fluctuates, these groupings appear to be relatively discrete but the area occupied has contracted. During recent years, the highest densities of $3+$ cod have been observed in the deeper waters of the central to northern North Sea.

## Environmental influence on the stock

There is a negative effect of increasing temperatures on cod recruitment in the North Sea. The exact processes are still unknown and explanations range from changes in the availability of food resources for cod larvae to increasing predation pressure caused by high grey gurnard abundances. Age 1 and older cod are influenced by cannibalism and seal predation. Multi species model runs estimate a decrease in cannibalism rates for age 1 and age 2 cod at current low stock levels, while seal predation on ages 3 to 6 has increased over the years due to an increase in seal abundance.

## The fisheries

Cod are taken by towed gears in mixed demersal fisheries. Haddock is a specific target for some fleets, but is also caught as part of a mixed fishery catching haddock, whiting, Nephrops, plaice and sole. The meshsize for targeted fisheries was increased to 120 mm in 2002.

## Catch by fleet Total catch (2009) is unknown, 30.8 kt recorded landings, 14.6 kt recorded discards.

 Unaccounted removals are estimated between $40 \%$ and $100 \%$ of recorded catch
## Effects of the fisheries on the ecosystem

Gillnet fishery for cod results in a substantial bycatch of harbour porpoise. In 2001 the total bycatch in the cod fishery was around 2000 porpoises. Since 2001, effort reductions in this fishery have likely led to decreased bycatches of porpoises. The effect of otter trawling on the benthic invertebrate community in the northern North Sea is estimated to represent an annual mortality of approximately $25 \%$ of the standing-crop biomass.

## Quality considerations

There are conflicting trends from the IBTS Q1 and Q3 indices used in the assessment. The comparison of the outcomes of two independent assessment methods suggests that the long-term trends are well captured in the present assessment, Discards account for $30-50 \%$ of the total catch (2007-2009). Discards are estimated from relatively few numbers compared to landings. Raised discard information was not available for Dutch, French and Belgian fleets, respectively accounting for $10 \%, 6 \%$ and $4 \%$ of cod landings in 2009. These are sources of added uncertainty in the assessment.


Figure 6.4.2.2
Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and IIIa West (Skagerrak). Historical assessment results (final year recruitment estimates included).

## Scientific basis

| Assessment type | Age-based assessment model with estimates of unaccounted removals (B-ADAPT) <br> A state-space model with estimates of unaccounted removals (SAM) used as comparison |
| :--- | :--- |
| Input data | Two survey indices (from IBTS Q1 and IBTS Q3 surveys) |
| Discards and by-catch | Included in the assessment (since 2004) |
| Indicators | None |
| Other information | Latest benchmark was performed in 2009 |
| Working group report | WGNSSK |

## ECOREGION North Sea <br> STOCK <br> Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and IIIa West (Skagerrak)

## Reference points

|  | Type | Value | Technical basis |
| :---: | :---: | :---: | :---: |
| MSY <br> Approach | MSY ${ }_{\text {tri̇ger }}$ | 150000 t | The default option of $\mathbf{B}_{\mathrm{pa}}$ |
|  | $\mathrm{F}_{\text {MSY }}$ | 0.19 | Provisional proxy is $\mathrm{F}_{\max }$ 2010, within the range of Fishing mortalities consistent with $\mathrm{F}_{\mathrm{MSY}}(0.16-0.42)$ |
| Precautionary approach | $\mathrm{B}_{\text {lim }}$ | 70000 t | Bloss ( $^{\text {(1995) }}$ |
|  | $\mathrm{B}_{\mathrm{pa}}$ | 150000 t | $\mathbf{B}_{\mathrm{pa}}=$ Previous MBAL and signs of impaired recruitment below 150000 t . |
|  | $\mathrm{F}_{\text {lim }}$ | 0.86 | $\mathbf{F}_{\text {lim }}=\mathbf{F}_{\text {loss }}(\sim 1995)$ |
|  | $\mathrm{F}_{\mathrm{pa}}$ | 0.65 | $\mathbf{F}_{\mathrm{pa}}=$ Approx. th percentile of $\mathbf{F}_{\text {loss }}$, implying an equilibrium biomass $>$ Bра. |

(unchanged since: 2010)
Yield and spawning biomass per Recruit F-reference points (2010):
Fish Mort Yield/R SSB/R
Ages 2-4

|  | Ages 2-4 |  |  |
| :--- | :---: | :---: | :---: |
| Average last 3 years | 0.70 | 0.34 | 0.45 |
| $\mathbf{F}_{\max }$ | 0.19 | 0.62 | 3.36 |
| $\mathbf{F}_{0.1}$ | 0.13 | 0.59 | 4.73 |
| $\mathbf{F}_{\text {med }}$ | 0.84 | 0.28 | 0.30 |

## Outlook for 2011

Basis: Management plan assumption $\mathrm{F}(2010)=$ mean $(\mathrm{F} 2007-2009)$ rescaled to $\mathrm{F} 2009 * 0.87=0.74$; Recruitment
(2010) Resampled 1998-2009 bootstraped $=107 \mathrm{mln} ; \operatorname{SSB}(2011)=54.3 ;$ HC landings $(2010)=48.1$; Discards $(2010)$
$=25.2$;

| Rationale | Landings <br> $(\mathbf{2 0 1 1})^{1)}$ | Basis | F total <br> $(\mathbf{2 0 1 1})$ | F land <br> $(2011)$ | F disc <br> $(2011)$ | Discards <br> $(\mathbf{2 0 1 1})$ | SSB <br> $(2012)$ | \%SSB <br> Change $^{2)}$ | \%TAC <br> Change $^{3)}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Management <br> Plan | 32.2 | $\mathrm{F}_{08}{ }^{*} 0.55$ with TAC <br> constraint | 0.44 | 0.28 | 0.17 | 17.7 | 72.0 | $32 \%$ | $-20 \%$ |

Basis: $\mathrm{F}(2010)=$ mean $(\mathrm{F} 2007-2009)$ rescaled to $\mathrm{F} 2009=0.85$; Recruitment (2010) Resampled 1998-2009 bootstraped $=107 \mathrm{mln} ; \operatorname{SSB}(2011)=49.2 ;$ HC landings $(2010)=52.9$; Discards $(2010)=27.8$

| Rationale | Landings $(2011)^{1)}$ | Basis | $\begin{aligned} & \text { F total } \\ & (\mathbf{2 0 1 1}) \end{aligned}$ | $\begin{aligned} & \text { F land } \\ & (2011) \end{aligned}$ | $\begin{aligned} & \text { F disc } \\ & (\mathbf{2 0 1 1}) \end{aligned}$ | $\begin{array}{\|c} \hline \text { Discards } \\ (\mathbf{2 0 1 1 )} \end{array}$ | $\begin{gathered} \text { SSB } \\ (\mathbf{2 0 1 2}) \end{gathered}$ | $\begin{gathered} \text { \%SSB } \\ \text { Change }^{2)} \end{gathered}$ | $\begin{gathered} \text { \%TAC } \\ \text { Change }^{3)} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MSY framework | 5.7 | $\mathrm{F}_{\text {MSY }} * \mathrm{SSB}(2011) / \mathrm{B}_{\text {trigger }}$ | 0.07 | 0.04 | 0.03 | 3.1 | 93.4 | 90\% | -86\% |
| MSY transition scheme | 40.9 | Fpa | 0.65 | 0.41 | 0.24 | 23.3 | 53.9 | 10\% | +1\% |
| Management Plan | 32.2 | $\mathrm{F}_{08}{ }^{*} 0.55$ with TAC constraint, $\mathrm{F}_{2010}=\mathrm{F}_{\mathrm{sq}}$ | 0.48 | 0.30 | 0.18 | 18.2 | 62.9 | 29\% | -20\% |
| Zero Catch | 0.0 | $\mathrm{F}=0$ | 0.00 | 0.00 | 0.00 | 0.0 | 100.0 | 103\% | -100\% |
| Status quo | 48.2 | $\mathrm{F}_{\text {sq }}$ | 0.85 | 0.53 | 0.32 | 28.0 | 45.1 | -8\% | 20\% |
|  | 14.5 | $\mathrm{F}_{\text {MSY }}$ | 0.19 | 0.12 | 0.07 | 8.0 | 83.3 | 69\% | -64\% |

[^0]
## MSY approach

Following the ICES MSY framework implies fishing mortality to be reduced to 0.07 (lower than $\mathrm{F}_{\text {MSY }}$ because SSB $2011<$ MSY $\mathrm{B}_{\text {trigger }}$ ), resulting in landings including unallocated removals of less than 5700 t in 2011. This is expected to lead to an SSB of 93400 t in 2012.

Following the transition scheme towards the ICES MSY framework implies fishing mortality to be reduced to $\left(\left(0.8^{*} 0.85\right)+(0.2 *(0.19 * 0.33))\right)=0.69$, but as this is higher than $\mathrm{F}_{\mathrm{pa}}$, this is maximised at 0.65 . This results in landings including unallocated removals of less than 40900 t in 2011. This is expected to lead to an SSB of 53900 t in 2012.

The stock is below $\mathrm{B}_{\mathrm{lim}}$ and recruitment is poor. Therefore, a more rapid transition to the MSY framework may be necessary to rectify the situation. ICES highlights catch options for transition periods ranging from 1-5 years (2011 to 2015, respectively).

## PA approach

Even a zero catch in 2011 is not expected to result in SSB reaching $\mathrm{B}_{\mathrm{pa}}$ in 2012.

## Management plan

The EU-Norway agreement management plan as updated in December 2008 aims to be consistent with the precautionary approach and is intended to provide for sustainable fisheries and high yield leading to a target fishing mortality to 0.4. (for details see Annex 6.4.2).

The EU has adopted a long-term plan for this stock with the same aims (Council Regulation (EC) 1342/2008). In addition to the EU-Norway agreement the EU plan also includes effort restrictions reducing kw-days available to community vessels in the main metiers catching cod in direct proportion to reductions in fishing mortality until the target F of 0.4 has been reached. This implies a $13.3 \%$ reduction in effort in 2010.

In both plans fishing mortality should be reduced to levels corresponding to $75 \%$ of F2008 in 2009 and $65 \%$ of F2008 in 2010. As long as the long-term phase of the management plans is not reached, in subsequent years further successive reductions of $10 \%$ have to be applied leading to a F in 2011 equal to $55 \%$ of F 2008 . This would lead to a TAC reduction of more than $20 \%$. The management plans limits annual TAC variation to $20 \%$. According to these rules, landings should be 32240 tonnes in total for Subarea IV and Divisions IIIa West and VIId in 2011.

In spite of uncertainty in the assessment, all models and scenarios suggest that the management objectives in terms of reduction of fishing mortality specified in the LTMP cannot be achieved in 2011 unless catches are reduced beyond the $20 \%$ limit on inter-annual variability.

## Additional considerations

## Uncertainty in the assessment

The status of the stock cannot be estimated with certainty. There are conflicting signals from the IBTS Q1 and Q3 surveys used in the assessment. Two alternative assessment methods (B-Adapt and SAM models) using the same set of input data provide similar perception of the stock in the most recent year, but differ in the perception of the unallocated removals (Figure 6.4.2.7) varying between a factor 1.4 and 2.0 Both methods conclude that SSB in 2009 is still below $\mathrm{B}_{\mathrm{lim}}$ and F is still largely above any management target, indicating that the LTMP objective of reducing fishing mortality by $25 \%$ in 2009 compared to 2008 has likely not been achieved.

## MSY reference points

The choice of the proxy $\mathrm{F}_{\text {max }}$ as a provisional candidate for $\mathrm{F}_{\text {MSY }}$ was based on the clear peak at $\mathrm{F}=0.19$ in the yield per recruit analysis. Extensive simulations and investigations of the productivity of the stock provide a range of possible candidate values ( $\mathrm{F}_{\mathrm{MSY}}=0.16$ to 0.42 ). The estimate of $\mathrm{F}_{\mathrm{MSY}}$ is strongly dependent on the choice of stock-recruitment (S-R) model. Whilst the statistical fit varies with choice of S-R model, none of the S-R models explored for North Sea cod have a strong correlation between SSB and recruitment. Both the Ricker and the Beverton and Holt models peak beyond the highest observed SSB in the time series. The $\mathrm{F}_{\text {MSY }}$ value from the Ricker model estimates a $\mathrm{B}_{\text {MSY }}$ that is 20 times greater than the highest observed in the time series, and the Beverton and Holt estimates $\mathrm{B}_{\mathrm{MSY}} 200$ times higher. These results suggest that neither model is appropriate to estimate $\mathrm{F}_{\mathrm{MSY}}$. The segmented regression S-R model results in a $B_{M S Y}$ that is around 10 times higher than ever observed and an $F_{M S Y}$ of 0.19 , similar to $F_{\text {max }}$.

Based on these observations, $\mathrm{F}_{\max }$ is judged to be the most appropriate candidate for a provisional $\mathrm{F}_{\mathrm{MSY}}$.

## Management considerations

Although the most recent levels of SSB and fishing mortality are considered uncertain, fishing mortality rates have been reduced after 2000 and in combination with the 2005 year class, the stock has increased since 2006. The low average age of the spawning stock reduces its reproductive capacity as first-time spawners reproduce less successfully than older fish, a factor that has contributed to the continued low recruitment.

Mixed-fisheries considerations are of primary importance for the management of North Sea cod. ICES (2009a, b) quantitatively evaluated the consistency of the North Sea demersal single-stock exploitation boundaries in a mixedfisheries and fleet-based perspective, and concluded that the single-stock management objectives for cod could not be achieved under the current management system. The mixed-fisheries projections underlined that large over quota catches would continue to occur, due to restrictive cod TAC compared to other stocks. Achieving cod management objectives would require significant decrease of the fishing mortality exerted by all demersal fisheries. This would correspond to substantial reduction in TAC advice for all demersal stocks, and subsequent adjustment of major components of the fishing effort.

Similar evaluations of the single-species advice will be conducted on a yearly basis.
ICES has observed that there have been considerable problems with the effectiveness of the cod recovery plans. Despite the objective to reduce fishing mortality and to increase the SSB by combined TAC control and effort management, estimated total catches have been much higher than intended. Fishing mortality has been reduced but has remained well above the implied targets. Discarding contributes about half of the total fishing mortality. Under the present implementation and enforcement approach, large reduction in F and the recovery of the stock are unlikely. It is therefore urgent to pursue and improve the actions towards implementation and enforcement in order to achieve reduction in F by effective control of cod catches. ICES notes that there have been considerable efforts to reduce discards by some countries, which have had an impact in reducing their discard rates, the impact these have had on the stock dynamics is difficult to evaluate yet.

Surveys indicate that the year classes are depleting faster than one would expect from the catches and point to unaccounted removals. There is no documented information on the source of these unaccounted removals; while it is assumed that these removals originate mostly from fishing activities, changes in natural mortality may also have an influence. Plausible fishery-based contributions to these unaccounted removals are discards (undersized cod, highgrading and over-quota catches) that do not count against quota, mis- and under-reporting of catches. The recorded landings from 2005-2009 fluctuated between $32 \%$ and $56 \%$ of the estimated total removals, indicating that the management system has not been effective in controlling the catches.

In the catch options the unallocated removals are assumed part of the estimates of fishing mortality. If unaccounted removals are expected to occur as estimated for 2009 , then the total allowed landings for 2011 should be reduced accordingly by $50 \%$, which is the ratio between the sum of reported landings and estimated discard, and the total estimated removals. The unallocated removals in 2009 as estimated by the SAM model are lower than estimated by Badapt. If the results from the SAM model are applied, the TAC for 2011 should be reduced by $30 \%$ to take unallocated removals into account.

Several nations, who make substantial landings of cod, have not supplied ICES with estimates of discards that can be used within the assessment process, despite the requirement to do so according to EU data collection regulations. In order to improve the quality of the assessment, and hence management advice, these nations should be encouraged to do so.

Cod catch in Division VIId was managed by a TAC for Divisions VIIb-k,VIII, IX, X, and CECAF 34.1.1, (i.e. the TAC covers a small proportion of the North Sea cod stock together with cod in Divisions VIIe-k). Division VIId was allocated a separate TAC from 2009 which is adjusted in line with the revision to the North Sea TAC.

## Management plan evaluations

ICES has evaluated the EC management plan (EC 1342/2008 and Annex 6.4.2) and the EU-Norway agreed long term plan in March 2009 and concluded that this management plan is in accordance with the precautionary approach only if implemented and enforced adequately.

## Regulations and their effects

Spatial management has been attempted for cod, both in the form of a closure of a large area of the North Sea in 2001 (Council Regulation (EC) 259/2001) and through implementation of a cod protection area in 2004 (EC 2287/2003). None of these measures appeared to have had the desired effect and both were abandoned shortly after implementation.

In 2001, cod in the whole of NEAFC region 2 was a legitimate target species for towed gears with a minimum codend mesh size of 100 mm . As part of the cod recovery measures, the EU and Norway introduced additional technical measures from 1 January 2002 (EC 2056/2001). The basic minimum mesh size for towed gears for cod, apart from some transitional arrangements, has been 120 mm from 2002. This resulted in a shift in effort towards smaller meshed fisheries.

Effort restrictions in the EC were introduced in 2003 (annual annexes to the TAC regulations) for the protection of the North Sea cod stock. In 2008, STECF indicated that overall effort (kW/days) by demersal trawls, seines and beam trawls had been substantially reduced since 2002. Fishing mortality declined between 2003 and 2007 concomitant with this effort reduction, but F increased again in 2008 despite a further nominal reduction in effort. Marked changes have also occurred in the use of the different mesh size categories by demersal trawlers. A sharp reduction has occurred in the use of mesh sizes between 100 mm and 119 mm , while a pronounced increase is apparent in the use of mesh sizes of 120 mm and greater. Furthermore, a general increase in effort has been observed in vessels using mesh sizes of 7089 mm and $90-99 \mathrm{~mm}$.

In 2009, the management program switched from a days at sea to a $\mathrm{kW} /$ day system (2009 Council Regulation (EC) $\mathrm{N}^{\circ} 43 / 2009$ ), in which different amounts of kW/days are allocated within each area by Member State to different groups of vessels depending on gear and mesh size (see Section 1.2.1 for complete list). For 2010 Council Regulation (EC) $\mathrm{N}^{\circ} 53 / 2010$ has updated Council Regulation (EC) $\mathrm{N}^{\circ} 43 / 2009$ with new allocates, based on the same effort groups of vessels and areas as stipulated in Council Regulation (EC) N ${ }^{\circ} 43 / 2009$.

Scotland implemented in February 2008 a national scheme known as the 'Conservation Credits Scheme'. The principle of this two-part scheme involves additional time at sea in return for the adoption of measures which aim to reduce mortality on cod and lead to a reduction in discard numbers. ICES has not yet been able to evaluate the consequences of these measures. ICES notes that during the initial year of operation (2008) cod discarding rates increased substantially to $62 \%$. However, only 15 real-time closures were implemented in 2008 and involvement was voluntary. In 2009 there were 144 closures and involvement was mandatory for relevant Scottish vessels, and cod discarding rates have declined to $43 \%$. Recent work tracking Scottish vessels in 2009 has concluded that vessels did indeed move from areas of higher to lower cod concentration following real-time closures during the first and third quarters (there was no significant effect during the second and fourth quarters). However, this is still a work in progress and further evaluation is required.

A rights-based regulation (FKA - Vessel Quota Share) was put in force in Denmark from the 1st January 2007. With the new system, individual vessels are allocated a yearly share of the Danish quota, which can be taken at any time of the year. There is also a possibility to trade it, exchange it, or pool it with other fishers. The old regulation had a system with 14-day quotas, which continuously adjusted to the amount of national quota left. The new system gives the industry a possibility to plan better and is expected to lead to a more efficient fishery with less discards. ICES has not yet been able to evaluate the consequences of these measures.

## Changes in fishing technology and fishing patterns

ICES in 2009 (WGFTFB) note that the decline in fuel costs from 2008 to 2009 influenced the operational dynamics of some fleets that traditionally target mixed demersal species in the North Sea by lowering the costs associated with fishing in more distant areas. This has been further enhanced by the introduction of a more restrictive effort regime in IV, VIId and VIa and the absence of effort restrictions in other areas. These factors are thought to have contributed to a shift in effort away from IV towards fisheries in Rockall, the Celtic Sea and the Porcupine. The extent of the effort transfer cannot currently be quantified, but is likely to be significant and fishing patterns in 2009 may be very different to those observed in 2008.

The expected benefits from the increase in mesh size to 120 mm are not apparent from the available data. The effect of this increase is confounded by the transfer of effort from the fleets fishing with mesh sizes $>120 \mathrm{~mm}$ to fleets fishing with mesh sizes between 70 and 99 mm , i.e. fishing for Nephrops. The regulation differentiated between the number of fishing days allowed when fishing for Nephrops or when fishing for other demersal species ( $>120 \mathrm{~mm}$ ). Fishing for Nephrops with the smaller mesh allowed more days at sea than fishing with larger meshes.

The introduction of the one-net rule as part of the Scottish Conservation Credit Scheme is likely to improve the accuracy of reporting of metier-based landings. Scottish legislation implemented in January 2008, banning the use of multi-rigs ( $>2$ rigs per trawl), could limit the potential of uncontrolled increase in effort.

A move from the Farn Deeps Nephrops fishery into other fisheries for whitefish because of poor Nephrops catch rates, implies increased effort in whitefish fisheries.

## Environmental influence

The North Sea has seen a northerly shift in the mean latitudinal distribution of the stock. However, the evidence for this in the form of a migratory response is slight or non-existent. More likely, cod in the North Sea are composed of a complex of more or less isolated sub-stocks and the southern units have been subjected to disproportionately high rates of fishing mortality. The contracted range of the North Sea cod stock can be linked to reduced abundance as well as climate factors.

The consumption of cod in the North Sea in 2002 by grey seals has been estimated by Hammond and Grellier (2006). For the North Sea it was estimated that in 1985 grey seals consumed 4150 tonnes of cod ( $95 \%$ confidence intervals; 2484-5760 tonnes), and in 2002 the population tripled in size ( $21000-68000$ individuals) and consumed 8344 tonnes ( $95 \%$ confidence intervals; 5028-14 941 tonnes). Inclusion of the new grey seal diet data and seal population abundance are expected to reduce slightly the historic estimates of cod consumption in the North Sea by seals, generated from a multispecies model previously used. This suggests that the new estimates of seal predation will not alter the current perception of North Sea cod stock dynamics.

## Data and methods

The age-based assessment model (B-ADAPT) used landings and discards, calibrated with two survey indices (from IBTS quarter 1 and quarter 3 surveys). For ICES Subarea IV and Division VIId, discards were estimated from the Scottish discards sampling programme up until 2005 and raised to the total international fleet. For 2006 Denmark provided its own discard estimates. For 2007 to 2009 Scottish, Danish, German, and England and Wales discard estimates were combined and used to raise landings-at-age for remaining nations in Subarea IV. Discards in Division IIIa were based on observer estimates. For 2006-2009, Danish and Swedish discard estimates were combined to raise landings-at-age from the remaining nations in Division IIIa. The same input data are used in the alternative SAM model.

In 2009 Norway did not conduct its contribution to the IBTS quarter 3 survey. This results in substantial changes to the indices used for the assessment. The WGNSSK 2010 carried out some sensitivity analyses on the impact of this issue on assessment results; and further investigations will be conducted before the next meeting in 2011.

## Information from the fishing industry

Comparison between the fishers North Sea Stock Survey (Napier, 2010) and the IBTS survey data has been shown in previous years the time series are broadly in agreement in recording a stable overall stock abundance until 2003-2005 followed by an increase more recently. The IBTS surveys have more variability, due to the inherent spatial variation, but exhibit similar trends in the same areas as the fishers survey, with significant increases in the north and west although less so in the south.

The majority of the Fishers stock survey respondents reported increased abundance (of all sizes) in 2009 especially in the northern and southern areas where catches of large size cod were reported. The main reports of catches of 'mostly small' cod were from the central North Sea. Reports on trends in discarding rates were mixed, with $43 \%$ of respondents reported 'no change' in $2009 ; 22 \%$ reported 'less' and $36 \%$ reported 'more' discarding (in the northern, eastern and southern North Sea).

In May 2008, French fishers targeting cuttlefish in the eastern Channel reported discards of several tonnes per haul of undersized cod in ICES rectangle 28 F 0 , forcing them to leave their usual cuttlefish fishing area. They reported that this also occurred in 2007. Data collected in the Channel by French fishers and submitted to the ICES WGNSSK in 2009 indicate high rates of discards for lengths between 37 and 48 cm (ages 2 and 3), confirming the information from previous years and indicate recent improved recruitment and survivorship in the southern North Sea and VIId.

Both the Danish REX and UK northeast coast cod surveys (collaborative research projects with the fishing industry) indicate that catch rates of cod are significantly greater on the hard ground compared to the soft ground. The Danish REX survey also indicates much higher catch rates of cod in the 1st quarter compared to the 3rd quarter for a trawler and flyshooter, but not for a gillnetter, possibly explained by the high water turbidity caused by the more frequent storm events in the 1 st quarter (the gillnetter is not affected by this to the same extent as the other two vessels). A newly initiated UK whitefish survey indicates that catches of older cod are more frequent and less noisy in this survey than in the IBTS Q3 survey. This is supported by results from the Danish REX survey which shows good agreement with the IBTS Q3 survey for younger ages, but not for older ages.

## Comparison with previous assessment and advice:

The assessment updated according to the benchmark procedure is considered more uncertain than last year, in particular for the estimation of the most recent year. This is due in particular to conflicting signals between the survey indices used in the assessment. The assessment is informative of general status of the stock with regards to reference points. This is corroborated by the comparison with an alternative assessment method. Additional work will be conducted to investigate further the issues encountered during WGNSSK 2010 and address the before the next WG meeting. Last year's advice was based on the management plan. The basis for the advice is similar to last year, but extended by MSY considerations.

## Sources

ICES. 2010. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, 5-11 May 2010 ICES CM 2010/ACOM13.
Napier, I. R. 2010. Fishers' North Sea stock survey 2009. NAFC Marine Centre, Shetland, Scotland.


Figure 6.4.2 3 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Proportion of total numbers caught that are discarded in total and at age. In 2009, $93 \%$ of 1 year old, $62 \%$ of 2 year old, $34 \%$ of 3 year old and $18 \%$ of 4 year old cod (the abundant 2005 year class), were discarded.


Figure 6.4.2.4 Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and Division IIIa (Skagerrak). Results of the North Sea Commission fishers' survey 2009.


Figure 6.4.2.5 Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and Division IIIa (Skagerrak).
Estimates of factor for unallocated removals from B-Adapt (dotted line) and SAM (bold line with 95\% confidence limits)

Table 6.4.2.1 Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and Division IIIa (Skagerrak). ICES advice, management, and catch/landings. Landings for each of the three parts of this combined-area assessment, and for all areas combined are given in Table 6.4.2.2.

| North Sea (Subarea IV) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | ICES Advice | Predicted catch corresponding to advice | Agreed <br> TAC | Official landings | ICES landings |
| 1987 | SSB recovery; TAC | 100-125 | 175 | 167 | 182 |
| 1988 | $70 \%$ of F(86); TAC | 148 | 160 | 142 | 157 |
| 1989 | Halt SSB decline; protect juveniles; TAC | 124 | 124 | 110 | 116 |
| 1990 | 80\% of F (88); TAC | 113 | 105 | 99 | 105 |
| 1991 | 70\% of effort (89) |  | 100 | 87 | 89 |
| 1992 | 70\% of effort (89) |  | 100 | 98 | 97 |
| 1993 | 70\% of effort (89) |  | 101 | 94 | 105 |
| 1994 | Significant effort reduction |  | 102 | 87 | 95 |
| 1995 | Significant effort reduction |  | 120 | 112 | 120 |
| 1996 | $80 \%$ of $\mathrm{F}(94)=0.7$ | 141 | 130 | 104 | 107 |
| 1997 | $80 \%$ of $\mathrm{F}(95)=0.65$ | 135 | 115 | 100 | 102 |
| 1998 | $F(98)$ should not exceed $\mathrm{F}(96)$ | 153 | 140 | 114 | 122 |
| 1999 | $\mathrm{F}=0.60$ to rebuild SSB | 125 | 132 | 80 | 78 |
| 2000 | $F$ less than 0.55 | $<79$ | 81 | 62 | 59 |
| 2001 | lowest possible catch | 0 | 48.6 | 42.3 | 41 |
| 2002 | lowest possible catch | 0 | 49.3 | 44.2 | 44.3 |
| 2003 | Closure | 0 | 27.3 | 27.4 | NA |
| 2004 | Zero catch | 0 | 27.3 | 23.4 | NA |
| 2005 | Zero catch | 0 | 27.3 | 23.9 | NA |
| 2006 | Zero catch | 0 | 23.2 | 22.2 | NA |
| 2007 | Zero catch | 0 | 20.0 | 19.7 | NA |
| 2008 | Exploitation boundaries in relation to precautionary limits Total removals < 22000 t | <22 | 22.2 | 22.2 | NA |
| 2009 | Zero catch |  | $28.8$ | 25.7 | NA |
| 2010 | Management plan F (65\% of F2008) | $<40.3{ }^{1)}$ | 33.6 |  |  |
| 2011 | See scenarios | - |  |  |  |

Weights in ' 000 t .
${ }^{1)}$ For Subarea IV (North Sea), Division VIId (Eastern Channel), and Division IIIa (Skagerrak)

Table 6.4.2.1 Continued
Skagerrak (Division IIIa)

| Year | ICES Advice | Predicted catch corresponding to advice | Agreed TAC ${ }^{1}$ | Official landings | ICES landings ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 | $\mathrm{F}=\mathrm{F}_{\text {max }}$ | $<21$ | 22.5 | 19.9 | 20.9 |
| 1988 | Reduce F |  | 21.5 | 17.0 | 16.9 |
| 1989 | $F$ at $F_{\text {med }}$ | $<23$ | 20.5 | 18.7 | 19.6 |
| 1990 | F at $\mathrm{F}_{\text {med }}$; TAC | 21.0 | 21.0 | 17.8 | 18.6 |
| 1991 | TAC | 15.0 | 15.0 | 12.1 | 12.4 |
| 1992 | 70\% of F(90) |  | 15.0 | 14.0 | 14.8 |
| 1993 | Precautionary TAC |  | 15.0 | 14.7 | 15.3 |
| 1994 | No long-term gain in increased F + precautionary TAC |  | 15.5 | 13.3 | 13.9 |
| 1995 | If required precautionary TAC; link to North Sea |  | 20.0 | 12.1 | 12.1 |
| 1996 | If required precautionary TAC; link to North Sea |  | 23.0 | 16.2 | 16.4 |
| 1997 | If required precautionary TAC; link to North Sea |  | 16.1 | 14.9 | 14.9 |
| 1998 | If required precautionary TAC; link to North Sea | 21.9 | 20.0 | 15.3 | 15.3 |
| 1999 | $\mathrm{F}=0.60$ to rebuild SSB | 17.9 | 19.0 | 11.0 | 11.0 |
| 2000 | $F$ less than 0.55 | <11.3 | 11.6 | 9.3 | 9.3 |
| 2001 | lowest possible catch | 0 | 7.0 | 7.1 | 7.1 |
| 2002 | lowest possible catch | 0 | 7.1 | 7.5 | 7.5 |
| 2003 | Closure | 0 | 3.9 | 3.8 | NA |
| 2004 | Zero catch | 0 | 3.9 | 3.8 | NA |
| 2005 | Zero catch | 0 | 3.9 | 3.8 | NA |
| 2006 | Zero catch | 0 | 3.3 | 3.4 | NA |
| 2007 | Zero catch | 0 | 2.9 | 2.9 | NA |
| 2008 | Exploitation boundaries in relation to precautionary limits Total removals less than 22000 t | <22 | 3.2 | 3.3 | NA |
| 2009 | Zero catch | 0 | 4.1 | 3.9 | NA |
| 2010 | Management plan F (65\% of F2008) | $<40.3{ }^{2)}$ | 4.8 |  |  |
| 2011 | See scenarios | - |  |  |  |

## Weights in ' 000 t .

${ }^{1)}$ Norwegian fjords not included.
${ }^{2)}$ For Subarea IV (North Sea), Division VIId (Eastern Channel), and Division IIIa (Skagerrak)

Table 6.4.2.1 Continued
Eastern Channel (Division VIId)

| Year | ICES Advice | Predicted catch corresponding to advice | Agreed TAC ${ }^{1)}$ | Official landings | ICES landings |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 | Not assessed | - | - | 9.4 | 14.2 |
| 1988 | Precautionary TAC | - | - | 10.1 | 10.7 |
| 1989 | No increase in F; TAC | $10.0{ }^{2)}$ | - | n/a | 5.5 |
| 1990 | No increase in F; TAC | $9.0{ }^{2)}$ | - | n/a | 2.8 |
| 1991 | Precautionary TAC | $3.0{ }^{2)}$ | - | n/a | 1.9 |
| 1992 | If required, precautionary TAC | $5.5{ }^{2)}$ | - | 2.7 | 2.7 |
| 1993 | If TAC required, consider SSB decline | - | - | 2.5 | 2.4 |
| 1994 | Reduce F+ precautionary TAC |  | - | 2.9 | 2.9 |
| 1995 | Significant effort reduction; link to North Sea |  | - | 4.0 | 4.0 |
| 1996 | Reference made to North Sea advice |  | - | 3.5 | 3.5 |
| 1997 | No advice |  | - | 7.2 | 7.0 |
| 1998 | Link to North Sea | 4.9 | - | 8.7 | 8.6 |
| 1999 | $\mathrm{F}=0.60$ to rebuild SSB | 4.0 | - | n/a | 6.9 |
| 2000 | $F$ less than 0.55 | < 2.5 | - | 3.6 | 2.3 |
| 2001 | lowest possible catch | 0 | - | 2.0 | 1.6 |
| 2002 | lowest possible catch | 0 | - | 1.6 | 3.1 |
| 2003 | Closure | 0 | - | 1.3 | NA |
| 2004 | Zero catch | 0 | - | 0.2 | NA |
| 2005 | Zero catch | 0 | - | 0.7 | NA |
| 2006 | Zero catch | 0 | - | 1.1 | NA |
| 2007 | Zero catch | 0 | - | 1.7 | NA |
| 2008 | Exploitation boundaries in relation to precautionary limits Total removals less than 22000 t | <22 | - | 1.4 | NA |
| 2009 | Zero catch | 0 | 1.7 | 1.2 | NA |
| 2010 | Management plan F (65\% of F2008) | $<40.3{ }^{3)}$ | 2.0 |  |  |

2011 See scenarios

[^1]Table 6.4.2.2 Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and Division IIIa (Skagerrak). Nominal landings (in tonnes) of COD, 1991-2009, as officially reported to ICES, and as used by the Working Group.

| Sub-area IV |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| Belgium | 2,331 | 3,356 | 3,374 | 2,648 | 4,827 | 3,458 | 4,642 | 5,799 | 3,882 |
| Denmark | 18,997 | 18,479 | 19,547 | 19,243 | 24,067 | 23,573 | 21,870 | 23,002 | 19,697 |
| Faroe Islands | 23 | 109 | 46 | 80 | 219 | 44 | 40 | 102 | 96 |
| France | 975 | 2,146 | 1,868 | 1,868 | 3,040 | 1,934 | 3,451 | 2,934 |  |
| Germany | 7,278 | 8,446 | 6,800 | 5,974 | 9,457 | 8,344 | 5,179 | 8,045 | 3,386 |
| Greenland | - | - | - | - | - | - | - | - | - |
| Netherlands | 6,831 | 11,133 | 10,220 | 6,512 | 11,199 | 9,271 | 11,807 | 14,676 | 9,068 |
| Norway | 6,022 | 10,476 | 8,742 | 7,707 | 7,111 | 5,869 | 5,814 | 5,823 | 7,432 |
| Poland | 15 | - | - | - | - | 18 | 31 | 25 | 19 |
| Sweden | 784 | 823 | 646 | 630 | 709 | 617 | 832 | 540 | 625 |
| UK (ENW/NI) | 14,249 | 14,462 | 14,940 | 13,941 | 14,991 | 15,930 | 13,413 | 17,745 | 10,344 |
| UK (Scotland) | 29,060 | 28,677 | 28,197 | 28,854 | 35,848 | 35,349 | 32,344 | 35,633 | 23,017 |
| Total Nominal Catch | 86,565 | 98,107 | 94,380 | 87,457 | 111,468 | 104,407 | 99,423 | 114,324 | 77,566 |
| Unallocated landings | 1,968 | -758 | 10,200 | 7,066 | 8,555 | 2,161 | 2,746 | 7,779 | 826 |
| WG estimate of total landings | 88,533 | 97,349 | 104,580 | 94,523 | 120,023 | 106,568 | 102,169 | 122,103 | 78,392 |
| Agreed TAC | 100,000 | 100,000 | 101,000 | 102,000 | 120,000 | 130,000 | 115,000 | 140,000 | 132,400 |
| Division VIld |  |  |  |  |  |  |  |  |  |
| Country | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| Belgium | 182 | 187 | 157 | 228 | 377 | 321 | 310 | 239 | 172 |
| Denmark | - | 1 | - | 9 | - | - | - | - | - |
| France |  | 2,079 | 1,771 | 2,338 | 3,261 | 2,808 | 6,387 | 7,788 |  |
| Netherlands | - | 2 | - | - | - | - | - | 19 | 3 |
| UK (ENW/NI) | 341 | 443 | 530 | 312 | 336 | 414 | 478 | 618 | 454 |
| UK (Scotland) | 2 | 22 | 2 | <0.5 | <0.5 | 4 | 3 | 1 | - |
| Total Nominal Catch | 525 | 2,734 | 2,460 | 2,887 | 3,974 | 3,547 | 7,178 | 8,665 | 629 |
| Unallocated landings | 1,361 | -65 | -28 | -37 | -10 | -44 | -135 | -85 | 6,229 |
| WG estimate of total landings | 1,886 | 2,669 | 2,432 | 2,850 | 3,964 | 3,503 | 7,043 | 8,580 | 6,858 |
| Division Illa (Skagerrak)** |  |  |  |  |  |  |  |  |  |
| Country | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| Denmark | 10,294 | 11,187 | 11,994 | 11,921 | 15,888 | 14,573 | 12,159 | 12,339 | 8,682 |
| Germany | 3 | - | 530 | 399 | 285 | 259 | 81 | 54 | 54 |
| Norway | 924 | 1,208 | 1,043 | 850 | 1,039 | 1,046 | 1,323 | 1,293 | 1,146 |
| Sweden | 3,846 | 2,523 | 2,575 | 1,834 | 2,483 | 1,986 | 2,173 | 1,900 | 1,909 |
| Others | 38 | 102 | 88 | 71 | 134 | - | - | - | - |
| Norwegian coast * | 854 | 923 | 909 | 760 | 846 | 748 | 911 | 976 | 788 |
| Danish industrial by-catch * | 953 | 1,360 | 511 | 666 | 749 | 676 | 205 | 97 | 62 |
| Total Nominal Catch | 15,105 | 15,020 | 16,230 | 15,075 | 19,829 | 17,864 | 15,736 | 15,586 | 11,791 |
| Unallocated landings | -3,046 | -1,018 | -1,493 | -1,814 | -7,720 | -1,615 | -790 | -255 | -817 |
| WG estimate of total landings | 12,059 | 14,002 | 14,737 | 13,261 | 12,109 | 16,249 | 14,946 | 15,331 | 10,974 |
| Agreed TAC | 15,000 | 15,000 | 15,000 | 15,500 | 20,000 | 23,000 | 16,100 | 20,000 | 19,000 |
| Sub-area IV, Divisions VIld and IIla (Skagerrak) combined |  |  |  |  |  |  |  |  |  |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| Total Nominal Catch | 102,195 | 115,861 | 113,070 | 105,419 | 135,271 | 125,818 | 122,337 | 138,575 | 89,986 |
| Unallocated landings | 283 | -1,841 | 8,679 | 5,215 | 825 | 502 | 1,821 | 7,439 | 6,239 |
| WG estimate of total landings | 102,478 | 114,020 | 121,749 | 110,634 | 136,096 | 126,320 | 124,158 | 146,014 | 96,225 |

** Skaggerak/Kattegat split derived from national statistics

* The Danish industrial by-catch and the Norwegian coast catches are not included in the (WG estimate of) total landings of Division IIIa
. Magnitude not available - Magnitude known to be nil <0.5 Magnitude less than half the unit used in the table n/a Not applicable
Division IIIa (Skagerrak) landings not included in the assessment

|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Country | 854 | 923 | 909 | 760 | 846 | 748 | 911 | 976 | 788 |
| Norwegian coast * | 953 | 1,360 | 511 | 666 | 749 | 676 | 205 | 97 | 62 |
| Danish industrial by-catch * | $\mathbf{1 , 8 0 7}$ | $\mathbf{2 , 2 8 3}$ | $\mathbf{1 , 4 2 0}$ | $\mathbf{1 , 4 2 6}$ | $\mathbf{1 , 5 9 5}$ | $\mathbf{1 , 4 2 4}$ | $\mathbf{1 , 1 1 6}$ | $\mathbf{1 , 0 7 3}$ | $\mathbf{8 5 0}$ |
| Total |  |  |  |  |  |  |  |  |  |

Table 6.4.2.2.cont Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and Division IIIa (Skagerrak). Nominal landings (in tonnes) of COD, 1991-2009, as officially reported to ICES, and as used by the Working Group.

| Sub-area IV |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| Belgium | 2,470 | 2,616 | 1,482 | 1,627 | 1,722 | 1,309 | 1,009 | 894 | 924 |
| Denmark | 8,358 | 9,022 | 4,676 | 5,889 | 6,291 | 5,105 | 3,430 | 3,831 | 4,406 |
| Faroe Islands | 9 | 34 | 36 | 37 | 34 | 3 | - | 16 | . |
| France | 717 | 1,777 | 620 | 294 | 664 | 354 | 659 | 573 |  |
| Germany | 1,810 | 2,018 | 2,048 | 2,213 | 2,648 | 2,537 | 1,899 | 1,736 | 2,374 |
| Greenland | - | - | - | - | 35 | 23 | 17 |  |  |
| Netherlands | 3,574 | 4,707 | 2,305 | 1,726 | 1,660 | 1,585 | 1,523 | 1,896 | 3,297 |
| Norway | 4,369 | 5,217 | 4,417 | 3,223 | 2,900 | 2,749 | 3,057 | 4,128 | 4,234 |
| Poland | 18 | 39 | 35 | - | - | - | 1 | 2 | 3 |
| Sweden | 661 | 463 | 252 | 240 | 319 | 309 | 387 | 439 | 378 |
| UK (E/W/NI) | 4,087 | 3,112 | 2,213 | 1,890 | 1,270 | 1,491 | 1,587 | 1,546 |  |
| UK (Scotland) | 15,640 | 15,416 | 7,852 | 6,650 | 4,936 | 6,857 | 6,511 | 7,185 |  |
| UK (combined) | $\mathrm{n} / \mathrm{a}$ | n/a | 11,403 |
| Others | - | - | - | - | - | 786 |  |  |  |
| Norwegian indust by-catch * | . | . |  | . |  | 48 | 101 | 22 | 4 |
| Danish industrial by-catch * |  |  |  |  |  | 34 | 18 | 46 | 76 |
| Total Nominal Catch | 41,713 | 44,421 | 25,936 | 23,789 | 22,479 | 23,108 | 20,080 | 22,246 | 27,019 |
| Unallocated landings | -740 | -121 | -89 | -240 | 1,391 | -915 | -397 | -51 | -1,361 |
| WG estimate of total landings | 40,973 | 44,300 | 25,847 | 23,549 | 23,870 | 22,193 | 19,683 | 22,195 | 25,658 |
| Agreed TAC | 48,600 | 49,300 | 27,300 | 27,300 | 27,300 | 23,205 | 19,957 | 22,152 | 28,798 |
| Division VIId |  |  |  |  |  |  |  |  |  |
| Country | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| Belgium | 93 | 51 | 54 | 47 | 51 | 80 | 84 | 154 | 71 |
| Denmark | - | - | - | - | - | - | - |  |  |
| France | 1,677 | 1,361 | 1,730 | 810 | 986 | 1,124 | 1,743 | 1,326 |  |
| Netherlands | 17 | 6 | 36 | 14 | 9 | 9 | 59 | 30 | 44 |
| UK (E/W/NI) | 249 | 145 | 121 | 103 | 184 | 267 | 175 | 144 |  |
| UK (Scotland) | - | - | - | - | - | 1 | 12 | 7 |  |
| UK (conbined) | n/a | 134 |
| Total Nominal Catch | 2,036 | 1,563 | 1,941 | 974 | 1,230 | 1,481 | 2,073 | 1,661 | 250 |
| Unallocated landings | -463 | 1,534 | -707 | -167 | -197 | -354 | -333 | -307 | 996 |
| WG estimate of total landings | 1,573 | 3,097 | 1,234 | 807 | 1,033 | 1,127 | 1,740 | 1,354 | 1,246 |
| Agreed TAC |  |  |  |  |  |  |  |  | 1,678 |
| Division Illa (Skagerrak)** |  |  |  |  |  |  |  |  |  |
| Country | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| Denmark | 5,870 | 5,511 | 3,054 | 3,009 | 2,984 | 2,478 | 2,228 | 2,534 | 3,018 |
| Germany | 32 | 83 | 49 | 99 | 86 | 84 | 67 | 52 | 44 |
| Norway | 762 | 645 | 825 | 856 | 759 | 628 | 681 | 779 | 440 |
| Sweden | 1,035 | 897 | 510 | 495 | 488 | 372 | 370 | 365 | 459 |
| Others | - | - | 27 | 24 | 21 | 373 | 385 | 13 | 2 |
| Norwegian coast * | 846 | . | . | 720 | 759 | 524 | 494 | 498 | 342 |
| Danish industrial by-catch * | 687 |  |  | 10 | 18 | 9 |  |  | 1 |
| Total Nominal Catch | 7,699 | 7,136 | 4,465 | 4,483 | 4,338 | 3,935 | 3,731 | 3,743 | 3,963 |
| Unallocated landings | -613 | 332 | -674 | -696 | -533 | -569 | -785 | -445 | -85 |
| WG estimate of total landings | 7,086 | 7,468 | 3,791 | 3,787 | 3,805 | 3,366 | 2,946 | 3,298 | 3,878 |
| Agreed TAC | 7,000 | 7,100 | 3,900 | 3,900 | 3,900 | 3,315 | 2,851 | 3,165 | 4,114 |
| Sub-area IV, Divisions VIId and Illa (Skagerrak) combined |  |  |  |  |  |  |  |  |  |
|  | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| Total Nominal Catch | 51,448 | 53,120 | 32,342 | 29,246 | 28,047 | 28,524 | 25,884 | 27,650 | 31,232 |
| Unallocated landings | -1,816 | 1,745 | -1,470 | -1,103 | 661 | -1,838 | -1,515 | -803 | -450 |
| WG estimate of total landings | 49,632 | 54,865 | 30,872 | 28,143 | 28,708 | 26,686 | 24,369 | 26,847 | 30,781 |

** Skaggerak/Kattegat split derived from national statistics

* The Danish and Norwegian industrial by-catch and the Norwegian coast catches are not included in the (WG estimate of) total landings
. Magnitude not available - Magnitude known to be nil $<0.5$ Magnitude less than half the unit used in the table n/a Not applicable
Division IV and IIIa (Skagerrak) landings not included in the assessment

|  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Country | 2001 | 2002 | 2002 | 2004 | 2003 | 2006 | 2007 | 2008 | 2009 |
| Norwegian coast * | 846 | $\cdot$ | . | 720 | 759 | 524 | 494 | 498 | 342 |
| Norwegian indust by-catch * | . | $\cdot$ | . | . | . | 48 | 101 | 22 | 4 |
| Danish industrial by-catch * | 687 | . | . | 10 | 18 | 43 | 18 | 46 | 77 |
| Total | $\mathbf{1 , 5 3 3}$ | . | . | $\mathbf{7 3 0}$ | $\mathbf{7 7 7}$ | $\mathbf{6 1 5}$ | $\mathbf{6 1 3}$ | $\mathbf{5 6 6}$ | $\mathbf{4 2 3}$ |

Table 6.4.2.3 Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and Division IIIa (Skagerrak). Reported landings and estimated discards, in tonnes. Estimated removals from B-Adapt.

|  | Landings | Discards | Catch (L+D) | Total estimated <br> removals |
| :---: | :---: | :---: | :---: | :---: |
| 1985 | 214.6 | 31.5 | 246.1 | 247.0 |
| 1986 | 204.1 | 139.1 | 343.1 | 341.0 |
| 1987 | 216.2 | 27.8 | 244.1 | 244.8 |
| 1988 | 184.2 | 10.7 | 195.0 | 194.8 |
| 1989 | 139.9 | 62.1 | 202.1 | 202.6 |
| 1990 | 125.3 | 27.0 | 152.3 | 153.0 |
| 1991 | 102.5 | 18.6 | 121.0 | 121.2 |
| 1992 | 114.0 | 36.9 | 150.9 | 151.8 |
| 1993 | 121.7 | 21.9 | 143.6 | 174.2 |
| 1994 | 110.6 | 99.6 | 210.2 | 203.8 |
| 1995 | 136.1 | 32.2 | 168.3 | 222.2 |
| 1996 | 126.3 | 14.3 | 140.6 | 197.8 |
| 1997 | 124.2 | 33.6 | 157.8 | 173.9 |
| 1998 | 146.0 | 40.5 | 186.5 | 180.0 |
| 1999 | 96.2 | 14.2 | 110.4 | 137.0 |
| 2000 | 71.4 | 13.7 | 85.1 | 95.1 |
| 2001 | 49.7 | 13.9 | 63.6 | 75.7 |
| 2002 | 54.9 | 5.7 | 60.6 | 80.8 |
| 2003 | 30.9 | 6.4 | 37.2 | 75.8 |
| 2004 | 28.2 | 5.8 | 34.0 | 53.0 |
| 2005 | 28.7 | 6.3 | 35.0 | 51.5 |
| 2006 | 26.6 | 23.1 | 34.6 | 52.7 |
| 2007 | 24.4 | 14.6 | 48.1 | 66.4 |
| 2008 | 30.8 |  | 85.4 | 91.4 |
| 2009 |  |  |  |  |
|  |  |  |  |  |

Table 6.4.2.4 Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and Division IIIa (Skagerrak). Summary of the assessment

B-ADAPT median values

| RECRUIT |  |  |  | YIELD/SS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S | TSB | SSB | CATCH | B | FBAR |
|  | Age 1 <br> ('000) | (tons) | (tons) | (tons) |  | 2-4 |
| 1963 | 249718 | 443856 | 164821 | 128686 | 0.781 | 0.499 |
| 1964 | 462750 | 530389 | 166809 | 130740 | 0.784 | 0.477 |
| 1965 | 687286 | 695016 | 193421 | 210237 | 1.087 | 0.570 |
| 1966 | 835166 | 846628 | 225100 | 259416 | 1.152 | 0.581 |
| 1967 | 748976 | 900304 | 249059 | 276387 | 1.110 | 0.589 |
| 1968 | 329855 | 797607 | 254722 | 305911 | 1.201 | 0.704 |
| 1969 | 295479 | 654250 | 252744 | 205510 | 0.813 | 0.543 |
| 1970 | 1143743 | 993899 | 260553 | 243867 | 0.936 | 0.620 |
| 1971 | 1687701 | 1201678 | 264800 | 412264 | 1.557 | 0.781 |
| 1972 | 329293 | 863226 | 243532 | 387737 | 1.592 | 0.823 |
| 1973 | 561402 | 683266 | 205762 | 269139 | 1.308 | 0.797 |
| 1974 | 550554 | 650496 | 233150 | 253989 | 1.089 | 0.705 |
| 1975 | 1030925 | 728266 | 211890 | 242349 | 1.144 | 0.749 |
| 1976 | 769399 | 644409 | 180579 | 307102 | 1.701 | 0.948 |
| 1977 | 1898803 | 946599 | 163815 | 349038 | 2.131 | 0.837 |
| 1978 | 638410 | 817810 | 150864 | 328585 | 2.178 | 0.953 |
| 1979 | 1502822 | 964889 | 158450 | 430688 | 2.718 | 0.758 |
| 1980 | 2807522 | 1255362 | 179034 | 590678 | 3.299 | 0.873 |
| 1981 | 609627 | 844173 | 190515 | 393451 | 2.065 | 0.916 |
| 1982 | 983478 | 834918 | 184954 | 359372 | 1.943 | 1.009 |
| 1983 | 470856 | 638926 | 148887 | 281696 | 1.892 | 1.031 |
| 1984 | 1485857 | 825394 | 131990 | 379974 | 2.879 | 0.917 |
| 1985 | 272216 | 505132 | 124377 | 247031 | 1.986 | 0.918 |
| 1986 | 1668790 | 761629 | 115131 | 341047 | 2.962 | 0.957 |
| 1987 | 363028 | 563628 | 107497 | 244809 | 2.277 | 0.947 |
| 1988 | 238095 | 432248 | 98891 | 194798 | 1.970 | 0.992 |
| 1989 | 630948 | 469624 | 92916 | 202639 | 2.181 | 0.961 |
| 1990 | 199507 | 323785 | 81366 | 153021 | 1.881 | 0.973 |
| 1991 | 260126 | 301442 | 78101 | 121204 | 1.552 | 0.818 |
| 1992 | 546515 | 428467 | 77358 | 151755 | 1.962 | 0.776 |
| 1993 | 253683 | 372434 | 78840 | 174247 | 2.210 | 0.997 |
| 1994 | 933220 | 516805 | 75188 | 203846 | 2.711 | 0.724 |
| 1995 | 410258 | 528397 | 95221 | 222222 | 2.334 | 0.925 |
| 1996 | 233787 | 441378 | 103559 | 197824 | 1.910 | 0.978 |
| 1997 | 734884 | 537270 | 91452 | 173884 | 1.901 | 0.867 |
| 1998 | 96056 | 348556 | 76291 | 179993 | 2.359 | 0.992 |
| 1999 | 176681 | 254411 | 73461 | 137037 | 1.865 | 1.167 |
| 2000 | 298594 | 240251 | 48706 | 95119 | 1.953 | 1.075 |
| 2001 | 85979 | 181377 | 38605 | 75718 | 1.961 | 0.806 |
| 2002 | 153946 | 216204 | 46580 | 80830 | 1.735 | 0.790 |
| 2003 | 72800 | 150116 | 43109 | 75801 | 1.758 | 0.936 |
| 2004 | 106957 | 127624 | 39534 | 53023 | 1.341 | 0.898 |
| 2005 | 86305 | 131687 | 36347 | 51482 | 1.416 | 0.719 |
| 2006 | 209886 | 143726 | 34889 | 52674 | 1.510 | 0.681 |
| 2007 | 100583 | 184861 | 42853 | 66398 | 1.549 | 0.584 |
| 2008 | 104946 | 205398 | 58458 | 84110 | 1.439 | 0.709 |
| 2009 | 97958 | 212321 | 68560 | 91428 | 1.334 | 0.853 |
| 2010 |  |  | 55789 |  |  |  |

## Annex 6.4.2

## EU - Norway management plan

In 2008 the EU and Norway renewed their initial agreement from 2004 and "agreed to implement a long-term management plan for the cod stock, which is consistent with the precautionary approach and is intended to provide for sustainable fisheries and high yield.

## Transitional arrangement:

F will be reduced as follows: $75 \%$ of F in 2008 for the TACs in 2009, $65 \%$ of F in 2008 for the TACs in 2010, and applying successive decrements of $10 \%$ for the following years.

The transitional phase ends as from the first year in which the long-term management arrangement (paragraphs $3-5$ ) leads to a higher TAC than the transitional arrangement.

## Long-term management

1. If the size of the stock on 1 January of the year prior to the year of application of the TACs is:
a. Above the precautionary spawning biomass level, the TACs shall correspond to a fishing mortality rate of 0.4 on appropriate age groups;
b. Between the minimum spawning biomass level and the precautionary spawning biomass level, the TACs shall not exceed a level corresponding to a fishing mortality rate on appropriate age groups equal to the following formula:
0.4-(0.2* (Precautionary spawning biomass level - spawning biomass) / (Precautionary spawning biomass level - minimum spawning biomass level))
c. At or below the limit spawning biomass level, the TAC shall not exceed a level corresponding to a fishing mortality rate of 0.2 on appropriate age groups.
2. Notwithstanding paragraphs 2 and 3, the TAC for 2010 and subsequent years shall not be set at a level that is more than $20 \%$ below or above the TACs established in the previous year.
3. Where the stock has been exploited at a fishing mortality rate close to 0.4 during three successive years, the parameters of this plan shall be reviewed on the basis of advice from ICES in order to ensure exploitation at maximum sustainable yield.
4. The TAC shall be calculated by deducting the following quantities from the total removals of cod that are advised by ICES as corresponding to the fishing mortality rates consistent with the management plan:
a. A quantity of fish equivalent to the expected discards of cod from the stock concerned;
b. A quantity corresponding to other relevant sources of cod mortality.
5. The Parties agree to adopt values for the minimum spawning biomass level ( 70,000 tonnes), the precautionary biomass level (150,000 tonnes) and to review these quantities as appropriate in the light of ICES advice.

Procedure for setting TACs in data-poor circumstances
6. If, due to a lack of sufficiently precise and representative information, it is not possible to implement the provisions in paragraphs 3 to 6 , the TAC will be set according to the following procedure.
a. If the scientific advice recommends that the catches of cod should be reduced to the lowest possible level the TAC shall be reduced by $25 \%$ with respect to the TAC for the preceding year.
b. In all other cases the TAC shall be reduced by $15 \%$ with respect to the TAC for the previous year, unless the scientific advice recommends otherwise.

This plan shall be subject to triennial review, the first of which will take place before 31 December 2011. It enters into force on 1 January 2009.

The main changes between this and the plan of 2004 is the phasing (transitional and long-term phase) and the inclusion of an F reduction fraction,

## EU management plan

In December 2008 the European Council agreed on a new cod management plan implementing the new system of effort management and a target fishing mortality of 0.4 (EC 1342/2008). The HCR for setting TAC for the North Sea cod stock are as follows:

Article 7 1.(a) and 1.(b) are required for interpretation of Article 8.
Article 7: Procedure for setting TACs for cod stocks in the Kattegat the west of Scotland and the Irish Sea
1.Each year, the Council shall decide on the TAC for the following year for each of the cod stocks in the Kattegat, the west of Scotland and the Irish Sea. The TAC shall be calculated by deducting the following quantities from the total removals of cod that are forecast by STECF as corresponding to the fishing mortality rates referred to in paragraphs 2 and 3 :
(a) a quantity of fish equivalent to the expected discards of cod from the stock concerned;
(b) as appropriate a quantity corresponding to other sources of cod mortality caused by fishing to be fixed on the basis of a proposal from the Commission. [...]

Article 8: Procedure for setting TACs for the cod stock in the North Sea, the Skagerrak and the eastern Channel

1. Each year, the Council shall decide on the TACs for the cod stock in the North Sea, the Skagerrak and the eastern Channel. The TACs shall be calculated by applying the reduction rules set out in Article 7 paragraph 1(a) and (b).
2. The TACs shall initially be calculated in accordance with paragraphs 3 and 5. From the year where the TACs resulting from the application of paragraphs 3 and 5 would be lower than the TACs resulting from the application of paragraphs 4 and 5, the TACs shall be calculated according to the paragraphs 4 and 5 .
3. Initially, the TACs shall not exceed a level corresponding to a fishing mortality which is a fraction of the estimate of fishing mortality on appropriate age groups in 2008 as follows: $75 \%$ for the TACs in 2009, $65 \%$ for the TACs in 2010, and applying successive decrements of $10 \%$ for the following years.
4. Subsequently, if the size of the stock on 1 January of the year prior to the year of application of the TACs is:
(a) above the precautionary spawning biomass level, the TACs shall correspond to a fishing mortality rate of 0,4 on appropriate age groups;
(b) between the minimum spawning biomass level and the precautionary spawning biomass level, the TACs shall not exceed a level corresponding to a fishing mortality rate on appropriate age groups equal to the following formula: 0,4 - (0,2 * (Precautionary spawning biomass level - spawning biomass) / (Precautionary spawning biomass level - minimum spawning biomass level))
(c) at or below the limit spawning biomass level, the TACs shall not exceed a level corresponding to a fishing mortality rate of 0,2 on appropriate age groups.
5. Notwithstanding paragraphs 3 and 4, the Council shall not set the TACs for 2010 and subsequent years at a level that is more than 20 \% below or above the TACs established in the previous year.
6. Where the cod stock referred to in paragraph 1 has been exploited at a fishing mortality rate close to 0,4 during three successive years, the Commission shall evaluate the application of this Article and, where appropriate, propose relevant measures to amend it in order to ensure exploitation at maximum sustainable yield.

Article 9: Procedure for setting TACs in poor data conditions
Where, due to lack of sufficiently accurate and representative information, STECF is not able to give advice allowing the Council to set the TACs in accordance with Articles 7 or 8 , the Council shall decide as follows:
(a) where STECF advises that the catches of cod should be reduced to the lowest possible level, the TACs shall be set according to a $25 \%$ reduction compared to the TAC in the previous year;
(b) in all other cases the TACs shall be set according to a $15 \%$ reduction compared to the TAC in the previous year, unless STECF advises that this is not appropriate.

Article 10: Adaptation of measures

1. When the target fishing mortality rate in Article 5(2) has been reached or in the event that STECF advises that this target, or the minimum and precautionary spawning biomass levels in Article 6 or the levels of fishing
mortality rates given in Article 7(2) are no longer appropriate in order to maintain a low risk of stock depletion and a maximum sustainable yield, the Council shall decide on new values for these levels.
2. In the event that STECF advises that any of the cod stocks is failing to recover properly, the Council shall take a decision which:
(a) sets the TAC for the relevant stock at a level lower than that provided for in Articles 7, 8 and 9;
(b) sets the maximum allowable fishing effort at a level lower than that provided for in Article 12;
(c) establishes associated conditions as appropriate.

[^0]:    Units: ‘000 tonnes.
    ${ }^{1)}$ Landings are assumed to include unallocated removals other than the estimated discards. If unaccounted removals are expected to occur as estimated for 2009, then the total allowed landings for 2011 should be reduced accordingly by $50 \%$.
    ${ }^{2)}$ SSB 2012 relative to SSB 2011.
    ${ }^{3)}$ Landings 2011 (including unallocated removals) relative to TAC 2010.

[^1]:    Weights in ' 000 t .
    ${ }^{1)}$ Until 2008 this area was included in TAC for Subarea VII (except Division VIIa), from 2009 a separate TAC is set.
    ${ }^{2}$ ) Including Division VIIe.
    ${ }^{3)}$ For Subarea IV (North Sea), Division VIId (Eastern Channel), and Division IIIa (Skagerrak)

