Human Settlements and Climate Change Mitigation: Key findings from AR5 WG3

Shobhakar Dhakal, shobhakar@ait.ac.th

Associate Professor and Head of Department Department of Energy, Environment and Climate Change Asian Institute of Technology, Thailand

Coordinating Lead Author, IPCC AR5 Mitigation

Chapter 12: Human Settlements, Infrastructure, and Spatial Planning \rightarrow A new chapter in AR5

2 Coordinating Lead Authors
30 Authors
2 Review Editors
2 Chapter Science Assistants

More than **110** pages Nearly **700** references More than **3,000** comments

Coordinating Lead Authors: Karen C. Seto (USA), Shobhakar Dhakal (Nepal/Thailand)

Lead Authors:

Anthony Bigio (Italy/USA), Hilda Blanco (USA), Gian Carlo Delgado (Mexico), David Dewar (South Africa), Luxin Huang (China), Atsushi Inaba (Japan), Arun Kansal (India), Shuaib Lwasa (Uganda), James McMahon (USA), Daniel B. Müller (Switzerland/Norway), Jin Murakami (Japan/China), Harini Nagendra (India), Anu Ramaswami (USA)

Contributing Authors:

Antonio Bento (Portugal/USA), Michele Betsill (USA), Harriet Bulkeley (UK), Abel Chavez (USA/Germany), Peter Christensen (USA), Felix Creutzig (Germany), Michail Fragkias (Greece/USA), Burak Güneralp (Turkey/USA), Leiwen Jiang (China/USA), Peter Marcotullio (USA), David McCollum (IIASA/USA), Adam Millard-Ball (UK/USA), Paul Pichler (Germany), Serge Salat (France), Cecilia Tacoli (UK/Italy), Helga Weisz (Germany), Timm Zwickel (Germany)

Review Editors: Robert Cervero (USA), Julio Torres Martinez (Cuba)

Chapter Science Assistants: Peter Christensen (USA), Cary Simmons (USA)

Stabilization of atmospheric concentrations requires moving away from the baseline – regardless of the mitigation goal.

IPCC Fifth Assessment Report

Urbanisation

- For most of human history: The world population mostly lived in rural areas and in small urban settlements, and growth in global urban population occurred slowly
- 1800: World population was around one billion, only 3% of the total population lived in urban areas and only one city—Beijing—had a population greater than one million (Davis, 1955; Chandler, 1987; Satterthwaite, 2007)
- **1900:** Global share of urban population 13%; **1950:** 29%
- **1960:** Global urban population surpassed one billion (UN DESA, 2012)
- It took only additional 26 years to reach two billion; time for additional billion is decreasing

Global urbanization trends

Urbanization is associated with increases in income and higher urban incomes correlated with higher energy and GHG emissions

Urbanization rates in developed regions are higher compared to Asia and Africa, but developing regions are catching up

The overall share of developed and developing regions in the global urban population have gone through a structural change in recent decades

- Urban areas account for between 71% and 76% of CO2 emissions from global final energy use and between 67-76% of global energy use
- Cities in non-Annex I countries have generally higher per capita final energy use and CO2 emissions than national averages

No single factor explains variations in per-capita emissions across cities, and there are significant differences within and across countries

- A variety of physical, economic, social factors, and urbanization histories specific to each city affect emissions
- Key factors include income, population dynamics, urban form, locational factors, economic structure, and market amongst others
- Key urban form drivers of energy and GHG emissions are density, land use mix, connectivity and accessibility
- A complex mix of drivers determines emissions

Key drivers for emissions from urban form are density, land use, connectivity and accessibility

	VKT Elasticities	Metrics to Measure	CO-Variance With Density	Ranges	
				High Carbon	Low Carbon
Density	Population and Job Residential Heusehold Job Population	- Household / Population - Building /Floor-Area Ratio - Job / Commercial - Block / Parcel - Dwelling Unit	1.00		
Land Use	Diversity and Entropy Index Land Use Mix	- Land Use Mix - Job Mix - Job-Housing Balance - Job-Population Balance - Retail Store Count - Walk Opportunities	-		
Connectivity	Combined Design Metrics Intersection Density	 Intersection Density Proportion of Quadrilateral Blocks Sidewalk Dimension Street Density 	0.39		
Accessibility	Regional Accessibility Distance to CBD Job Access by Auto Job Access by Transit Roard-Induced Access (Short-Run) Roard-Induced Access (Lung-Run)	 Population Centrality Distance to CBD Job Accessibility by Auto and/or Transit Accessibility to Shopping 	0.16		● 44 ● ● ★ 640 □ ● ● ●

Higher density leads to less emissions (i.a. shorter distances travelled).

Mix of land-use reduces emissions.

Improved connectivity through infrastructural density and design (e.g. streets) reduces emissions.

Accessibility to people and places (jobs, housing, services, shopping) reduces emissions.

Low carbon cities need to consider urban land use mix

Density is necessary but not sufficient condition for lowering urban emissions

Mitigation options vary by urbanization trajectories and are expected to be most effective when policy instruments are bundled

- The existing infrastructure stock of the average Annex I resident
 - 3 times that of the world average
 - about 5 times higher than that of the average non-Annex I resident
- The build-up of massive infrastructure in developing countries will result in significant future emissions

The next two decades present a window of opportunity for mitigation as a large portion urban areas will be developed during this period.

• The kinds of towns, cities, and urban agglomerations that ultimately emerge over the coming decades will have a critical impact on energy use and carbon emissions

UN DESA, (2010), GEA (2012)

- Two sources of emissions: Construction of infrastructure and buildings, usage of infrastructure and buildings
- **Problem "Lock-in":** Long life of infrastructure and built environment determines energy and emissions pathways including lifestyles and consumption patterns

The largest mitigation opportunities with respect to human settlements are in rapidly urbanizing areas with

- Small and mid-size cities
- Developing regions of the world
- Economical growing regions
- Infrastructure being built and yet not locked-in

The feasibility of spatial planning instruments for climate change mitigation is highly dependent on a city's financial and governance capability

Working Group III contribution to the IPCC Fifth Assessment Report

Sources: Bahl and Linn (1998); Bhatt (2011); Cervero (2004); Deng (2005); Fekade (2000); Rogers (1999); Hong and Needham (2007); Peterson (2009); Peyroux (2012); Sandroni (2010); Suzuki et al. (2013); Urban LandMark (2012); U.S. EPA (2013); Weitz (2003).

In decisions making, the policy leverages do not often match with the largest mitigation opportunities

Stylized Hierarchy of Urban Energy/GHG Drivers and Policy Leverages

Systemic changes have more mitigation opportunities but hindered by policy fragmentation

Working Group III contribution to the IPCC Fifth Assessment Report

Successful implementation of urban-scale climate change mitigation strategies can provide health, economic and air quality co-benefits

- Urban areas continue to struggle with challenges, including ensuring access to energy, limiting air and water pollution, and maintaining employment opportunities and competitiveness
- Action on urban-scale mitigation often depends on the ability to relate climate change mitigation efforts to local co-benefits

Mitigation	Effect on additional objectives/concerns				
measures	Economic	Social (including health)	Environmental		
Compact development and infrastructure	 ↑ Innovation and productivity¹ ↑↑ Higher rents & residential property values² ↑ Efficient resource use and delivery⁵ 	↑ Health from physical activity ³	↑ Preservation of open space ⁴		
Increased accessibility	↑ Commute savings ⁶	 ↑ Health from increased physical activity³ ↑ Social interaction & mental health⁷ 	Air quality and reduced ecosystem/health impacts ⁸		
Mixed land use	 ↑ Commute savings⁶ ↑↑ Higher rents & residential property values² 	 ↑ Health from increased physical activity³ Social interaction and mental ↑ health⁷ 	Air quality and reduced ecosystem/health impacts ⁸		

Mitigation can result in large co-benefits for human health and other societal goals.

Based on Figures 6.33 and 12.23

Thousands of cities are undertaking Climate Action Plans and mitigation commitments

- Little systematic assessment on their level of implementation & the extent to which reduction targets are being achieved
- Focused largely on energy efficiency
- Limited consideration to land-use planning strategies and other cross-sectoral, cross boundary measures

Yet, their aggregate impact on urban emissions is uncertain

Working Group III contribution to the IPCC Fifth Assessment Report

INTERGOVERNMENTAL PANEL ON CLIMATE Change

'Governance paradox' and need for a comprehensive approach

- 'Systemic changes' in urban areas have large mitigation opportunities but hindered by current patterns of urban governance, policy leverages and persisting policy fragmentation
- Governance and institutional capacity are scale and income dependent, i.e., tend to be weaker in smaller scale cities and in low income/revenue settings
 - However, the bulk of urban growth momentum is expected to unfold in small- to medium-size cities in non-Annex-I countries
 - The largest opportunities for GHG emission reduction might be precisely in urban areas where governance and institutional capacities to address them are weakest
- The feasibility of spatial planning instruments for climate change mitigation is highly dependent on a city's financial and governance capability
- For designing and implementing climate policies effectively, institutional arrangements, governance mechanisms, and financial resources all should be aligned with the goals of reducing urban GHG emissions

Knowledge gaps

- 1. Lack of consistent and comparable emissions and driver data at local scales
- 2. Little scientific understanding of the magnitude of the emissions reduction from altering urban form, and the emissions savings from integrated infrastructure and land use planning.
- 3. Lack of consistency and thus comparability on local emissions and accounting methods- and realistically comparing low carbon cities
- 4. Few evaluations of urban climate action plans and their effectiveness.
- 5. Lack of scientific understanding of how cities can prioritize climate change mitigation strategies, local actions, investments, and policy responses that are locally relevant for different city typologies
- 6. Large uncertainties as to how urban areas will develop in the future and implications of or opportunities for multiple pathways

For further information

www.mitigation2014.org

Shobhakar@ait.ac.th

Without additional mitigation, global mean surface temperature is projected to increase by 3.7 to 4.8°C over the 21st century.

- Increase the likelihood of severe, pervasive, and challenging impacts
- Potential adverse impacts on agricultural production, extensive ecosystem impacts, and increasing species extinction risk (high confidence), possible crossing of thresholds that lead to disproportionately large earth system responses (low confidence)

GHG emissions growth between 2000 and 2010 has been larger than in the previous three decades.

Total Annual Anthropogenic GHG Emissions by Groups of Gases 1970-2010

Working Group III contribution to the IPCC Fifth Assessment Report

WHO UNE