IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability

14.4.3 Coastal regions

Added stress from rapid coastal development, including an additional 25 million people in the coastal U.S. over the next 25 years, will reduce the effectiveness of natural protective features, leading to impaired resilience. As property values and investment continue to rise, coastal vulnerability tends to increase on a broad scale (Pielke Jr. and Landsea, 1999; Heinz Center, 2000), with a sensitivity that depends on the commitment to and flexibility of adaptation measures. Disproportionate impacts due to socio-economic status are likely to be exacerbated by rising sea levels and storm severity (Wu et al., 2002; Kleinosky et al., 2006).

Sea-level rise has accelerated in eastern North America since the late 19th century (Donnelly et al., 2004) and further acceleration is expected (high confidence). For The IPCC Special Report on Emissions Scenarios (SRES, Naki?enovi? and Swart, 2000) scenario A1B, global mean sea level is projected to rise by 0.35 ± 0.12 m from the 1980 to 1999 period to the 2090 to 2099 period (Meehl et al., 2007: Section 10.6.5). Spatial variability of sea-level rise has become better defined since the TAR (Church et al., 2004) and the ensemble mean for A1B shows values close to the global mean along most North American coasts, with slightly higher rates in eastern Canada and western Alaska, and stronger positive anomalies in the Arctic (Meehl et al., 2007: Figure 10.32). Vertical land motion will decrease (uplift) or increase (subsidence) the relative sea-level rise at any site (Douglas and Peltier, 2002).

Superimposed on accelerated sea-level rise, the present storm and wave climatology and storm-surge frequency distributions lead to forecasts of more severe coastal flooding and erosion hazards. The water-level probability distribution is shifted upward, giving higher potential flood levels and more frequent flooding at levels rarely experienced today (very high confidence) (Zhang et al., 2000; Forbes et al., 2004). If coastal systems, including sediment supply, remain otherwise unchanged, higher sea levels are likely to be correlated with accelerated coastal erosion (Hansom, 2001; Cowell et al., 2003).

Up to 21% of the remaining coastal wetlands in the U.S. mid-Atlantic region are potentially at risk of inundation between 2000 and 2100 (IS92a emissions scenario) (Najjar et al., 2000). Rates of coastal wetland loss, in Chesapeake Bay and elsewhere (Kennish, 2002), will increase with accelerated sea-level rise, in part due to ‘coastal squeeze’ (high confidence). Salt-marsh biodiversity is likely to be diminished in north-eastern marshes through expansion of cordgrass (Spartina alterniflora) at the expense of high-marsh species (Donnelly and Bertness, 2001). Many salt marshes in less developed areas have some potential to keep pace with sea-level rise (to some limit) through vertical accretion (Morris et al., 2002; Chmura et al., 2003; Chmura and Hung, 2004). Where rapid subsidence increases rates of relative sea-level rise, however, as in the Mississippi Delta, even heavy sediment loads cannot compensate for inundation losses (Rybczyk and Cahoon, 2002).

Potentially more intense storms and possible changes in El Niño (Meehl et al., 2007: Sections and are likely to result in more coastal instability (medium confidence) (see Section 14.3.1) (Scavia et al., 2002; Forbes et al., 2004; Emanuel, 2005). Damage costs from coastal storm events (storm surge, waves, wind, ice encroachment) and other factors (such as freeze-thaw) have increased substantially in recent decades (Zhang et al., 2000; Bernatchez and Dubois, 2004) and are expected to continue rising (high confidence). Higher sea levels in combination with storm surges will cause widespread problems for transportation along the Gulf and Atlantic coasts (Titus, 2002). More winters with reduced sea ice in the Gulf of St. Lawrence, resulting in more open water during the winter storm season, will lead to an increase in the average number of storm-wave events per year, further accelerating coastal erosion (medium confidence) (Forbes et al., 2004).