IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability

8.2.6 Air quality and disease

Weather at all time scales determines the development, transport, dispersion and deposition of air pollutants, with the passage of fronts, cyclonic and anticyclonic systems and their associated air masses being of particular importance. Air-pollution episodes are often associated with stationary or slowly migrating anticyclonic or high pressure systems, which reduce pollution dispersion and diffusion (Schichtel and Husar, 2001; Rao et al., 2003). Airflow along the flanks of anticyclonic systems can transport ozone precursors, creating the conditions for an ozone event (Lennartson and Schwartz, 1999; Scott and Diab, 2000; Yarnal et al., 2001; Tanner and Law, 2002). Certain weather patterns enhance the development of the urban heat island, the intensity of which may be important for secondary chemical reactions within the urban atmosphere, leading to elevated levels of some pollutants (Morris and Simmonds, 2000; Junk et al., 2003; Jonsson et al., 2004). Ground-level ozone

Ground-level ozone is both naturally occurring and, as the primary constituent of urban smog, is also a secondary pollutant formed through photochemical reactions involving nitrogen oxides and volatile organic compounds in the presence of bright sunshine with high temperatures. In urban areas, transport vehicles are the key sources of nitrogen oxides and volatile organic compounds. Temperature, wind, solar radiation, atmospheric moisture, venting and mixing affect both the emissions of ozone precursors and the production of ozone (Nilsson et al., 2001a, b; Mott et al., 2005). Because ozone formation depends on sunlight, concentrations are typically highest during the summer months, although not all cities have shown seasonality in ozone concentrations (Bates, 2005). Concentrations of ground-level ozone are increasing in most regions (Wu and Chan, 2001; Chen et al., 2004).

Exposure to elevated concentrations of ozone is associated with increased hospital admissions for pneumonia, chronic obstructive pulmonary disease, asthma, allergic rhinitis and other respiratory diseases, and with premature mortality (e.g., Mudway and Kelly, 2000; Gryparis et al., 2004; Bell et al., 2005, 2006; Ito et al., 2005; Levy et al., 2005). Outdoor ozone concentrations, activity patterns and housing characteristics, such as the extent of insulation, are the primary determinants of ozone exposure (Suh et al., 2000; Levy et al., 2005). Although a considerable amount is known about the health effects of ozone in Europe and North America, few studies have been conducted in other regions.