IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group III: Mitigation of Climate Change

7.5.3 Summary and comparison with other studies

Using the SRES B2 as a baseline (see Section 11.3.1), Table 7.10 summarizes the mitigation potential for the different cost categories. To avoid double counting, the total mitigation potential as given in Table 7.8 has been corrected for changes in emission factors of the transformation sectors to arrive at the figures included in Table 7.10 (see also Chapter 11, table 11.3).

Table 7.10: Estimated economic potentials for GHG mitigation in industry in 2030 for different cost categories using the SRES B2 baseline

Mitigation option Region Economic potential <100 US$/tCO2-eq Economic potential in different cost categories 
Cost category (US$/tCO2-eq) <0 0-20 20-50 50-100 
Cost category (US$/tC-eq) <0 0-73 73-183 183-367 
Low High   
Electricity savings OECD 300 70 70 150 
EIT 80 20 20 40 
Non-OECD/EIT 450 100 100 250 
Other savings, including non-CO2 GHG OECD 350 900 300 250 50 
EIT 200 450 80 250 20 
Non-OECD/EIT 1,200 3,300 500 1,700 80 
Total OECD 600 1,200 350 350 200 
EIT 250 550 100 250 60 
Non-OECD/EIT 1,600 3,800 600 1,800 300 
Global 2,500 5,500 1,100 2,400 550 

Two recent studies provide bottom-up, global estimates of GHG mitigation potential in the industrial sector in 2030. IEA (2006a) used its Energy Technology Perspectives Model (ETP), which belongs to the MARKAL family of bottom-up modelling tools, to estimate mitigation potential for CO2 from energy use in the industrial sector to be 5.4 Gt/yr (1.5 GtC/yr) in 2050. IEA’s base case was an extrapolation of its World Energy Outlook 2005 Reference Scenario, which projected energy use to 2030. IEA provides ranges for mitigation potential in 2030 for nine groups of technologies totalling about 2.5 to 3.0 GtCO2/yr (0.68 to 0.82 GtC/yr). Mitigation cost is estimated at <25 US$/tCO2 (<92 US$/tC) (2004 US$). While IEA’s estimate of mitigation potential is in the range found in this assessment, their estimate of mitigation cost is significantly lower.

ABARE (Matysek et al., 2006) used its general equilibrium model of the world economy (GTEM) to estimate the emission reduction potential associated with widespread adoption of advanced technologies in five key industries: iron and steel, cement, aluminium, pulp and paper, and mining. In the most optimistic ABARE scenario, industrial sector emissions across all gases are reduced by an average of about 1.54 GtCO2-eq/yr) (0.42GtC-eq/yr) over the 2001 to 2050 time frame and 2.8 GtCO2-eq/yr (0.77 GtC-eq/yr) over the 2030-2050 time frame, relative to the GTEM reference case, which assumes energy efficiency improvements and continuation of current or announced future government policy. The ABARE carbon dioxide only industry mitigation potential for the period 2030–2050 of approximately 1.94 GtCO2-eq/yr (0.53GtC/yr) falls below the range developed in this assessment. This outcome is the likely result of differences in the modelling approaches used – ABARE’s GTEM model is a top down model whereas the mitigation potentials in this assessment are developed using detailed bottom-up methodologies. ABARE did not estimate the cost of these reductions.

The TAR (IPCC, 2001a) developed a bottom up estimate of mitigation potential in 2020 for the industrial sector of 1.4 to 1.6 GtC (5.1 to 5.9 GtCO2) based an SRES B2 scenario baseline and on the evaluation of specific technologies. Extrapolating the TAR estimate to 2030 would give values above the upper end of the range developed in this assessment. The newer studies used in this assessment take industry-specific conditions into account, which reduces the risk of double counting.