IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group III: Mitigation of Climate Change

7.9.8 Air quality policies

Section 4.5.2 contains a more general discussion of the relationships between air quality policies and GHG mitigation. In general air quality and climate change are treated as separate issues in national and international policies, even though most practices and technologies that will reduce GHG emissions will also cause a net reduction of emissions of air pollutants. However, air pollutant reduction measures do not always reduce GHG emissions, as many require the use of additional energy (STAPPA/ALAPCO, 1999). Examples of policies dealing with air pollution and GHG emissions in an integrated fashion include: (1) the EU IPPC Directive (96/61/EC), which lays down a framework requiring Member States to issue operating permits for certain industrial installations, and (2) the Dutch plan for a NOx emission trading system, which will be implemented through the same legal and administrational infrastructure as the European CO2 emission trading system (Dekkers, 2003).

7.9.9 Waste management policies

Waste management policies can reduce industrial sector GHG emissions by reducing energy use through the re-use of products (e.g., of refillable bottles) and the use of recycled materials in industrial production processes. Recycled materials significantly reduce the specific energy consumption of the production of paper, glass, steel, aluminium and magnesium. The amount, quality and price of recycled materials are largely determined by waste management policies. These policies can also influence the design of products – including the choice of materials, with its implications for production levels and emissions. Prominent examples can be found in the packaging sector, for example the use of cardboard rather than plastic for outer sales packages, or PET instead of conventional materials in the beverage industry. Vertical and horizontal integration of business provides synergies in the use of raw materials and reuse of wastes. The paper and paper boards wastes generated in cigarette packaging and printing are used as raw materials in paper and paper board units (ITC, 2006).

Another important influence of waste policies on industrial GHG emissions is their influence on the availability of secondary ‘waste’ fuels and raw materials for industrial use. For example, the ‘EU Landfill Directive’ (EU-OJ, 1999), which limits the maximum organic content of wastes acceptable for landfills, resulted in the restructuring of the European waste sector currently taking place. It makes available substantial amounts of waste containing significant biomass fractions. Typically there is competition between the different uses for these wastes: dedicated incineration in the waste sector, co-combustion in power plants, or combustion in industrial processes, for example cement kilns. In order to provide additional inexpensive disposal routes, several countries have set incentives to promote the use of various wastes in industrial processes in direct competition with dedicated incineration. Emissions trading systems or project-based mechanisms like CDM/JI can provide additional economic incentives to expand the use of secondary fuels or biomass as substitutes for fossil fuels. The impact of switching from a fossil fuel to a secondary fuel on the energy efficiency of the process itself is frequently negative, but is often compensated by energy savings in other parts of the economy.

Mineral wastes, such as fly-ash or blast-furnace slag can have several competing alternative uses in the waste, construction and industrial sectors. The production of cement, brick and stone-wool provides energy saving uses for these materials in industry. For secondary fuels and raw materials, life-cycle assessment can help to quantify the net effects of these policies on emission across the affected parts of the economy (Smith et al., 2001). The interactions between climate policies and waste policies can be complex, sometimes leading to unexpected results because of major changes of industry practices and material flows induced by minor price differences.