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Abstract
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Catastrophe risk models allow insurers, reinsurers 
and governments to assess the risk of loss from 
catastrophic events, such as hurricanes. These models 
rely on computer technology and the latest earth and 
meteorological science information to generate thousands 
if not millions of simulated events. Recently observed 
hurricane activity, particularly in the 2004 and 2005 
hurricane seasons, in conjunction with recently published 
scientific literature has led risk modelers to revisit their 
hurricane models and develop climate conditioned 
hurricane models. This paper discusses these climate 
conditioned hurricane models and compares their risk 
estimates to those of base normal hurricane models. 
This comparison shows that the recent 50 year period 
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of climate change has potentially increased North 
Atlantic hurricane frequency by 30 percent. However, 
such an increase in hurricane frequency would result in 
an increase in risk to human property that is equivalent 
to less than 10 years’ worth of US coastal property 
growth. Increases in potential extreme losses require the 
reinsurance industry to secure additional risk capital for 
these peak risks, resulting in the short term in lower risk 
capacity for developing countries. However, reinsurers 
and investors in catastrophe securities may still have a 
long-term interest in providing catastrophe coverage in 
middle and low-income countries as this allows reinsurers 
and investors to better diversify their catastrophe risk 
portfolios.
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1. Introduction 
 
Catastrophe models are complex and almost completely inaccessible to the non-specialist. Yet, 
these models tell policymakers what are the economic risks to society and form the basis of rate 
making for billions of dollars in insurance premiums per year in the United States alone. We 
summarize two important results from US hurricane catastrophe models: one for base normal 
(BN) hurricane risk and one for climate conditioned (CC) hurricane risk. Summary results are 
presented in Loss Exceedance Curve (LEC) form, which is a kind of cumulative distribution 
function and thus gives considerable summary information about what hurricane catastrophe 
models are saying about hurricane risk, both in the absence and in the presence of climate 
conditioning.  
 
This paper presents a simple method for the comparison of catastrophe model outputs based on a 
so-called intensity profile (IP) and residual intensity profile (RIP). The IP and RIP are used to 
compare the catastrophe model risk estimates of BN hurricane risk versus CC hurricane risk. CC 
hurricane models were implemented by catastrophe modeling companies in 2006 after a series of 
academic papers and the heightened hurricane activity of 2004 and 2005 gave impetus to the 
notion that tropical cyclones occur more frequently in the current climactic regime. CC 
catastrophe models offer the darkest view of U.S. hurricane risk that can be justified from 
historical observations of North Atlantic hurricanes. Therefore, a comparison of BN versus CC 
catastrophe models offers a glimpse into the assumed causes and costs of climatically driven 
increases in hurricane activity. Using our simple method of comparison, we show that CC 
catastrophe models imply that the recent 30 to 50 years’ worth of climate change has increased 
North Atlantic hurricane frequency to a level approximately 30% greater than normal. While a 
significant increase, we put this increase in perspective by pointing out that increases in U.S. 
coastal property density have exhibited a long-term secular trend of 50% real growth per decade. 
This means that the total impact of up to 50 years’ worth of climate change on U.S. Hurricane 
risk is worth less than 10 years’ worth of U.S. coastal property growth. The potential impact on 
non-U.S. reinsurance markets is a decline in coverage capacity. 
 
2.  Catastrophe models are not pricing models 
 
Before going on to discuss catastrophe models, it is important to emphasize that catastrophe 
models are not pricing models. The results of catastrophe models do not lead directly to insurance 
and reinsurance prices, mainly because of the cost of the capital which must be put-up against 
systemic insurance risks.2 An in-depth discussion of the issues and reasons behind the incomplete 
linkage between actuarial estimates of risk and market prices for risk transfer is beyond the scope 
of this report; however, the reader can gain some understanding to the issue through a simplified 
example of a reinsurance price function. A reinsurance broker might summarize for insurance 
clients the cost of reinsurance in a given year with something like the following formula:3

                                                 
2 Cummins, J.D. and Olivier Mahul (2009): “Catastrophe Risk Financing in Developing Countries: 
Principles for Public Intervention.” The International Bank for Reconstruction and Development / The 
World Bank. 
 
3 Cummins and Mahul (2009). See in particular Figure 2.2 on p.35. 
 

 
 
 ROL = LOL + 5%, (1) 
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where ROL is “rate on line,” the reinsurance premium divided by the limit of coverage, and LOL 
is “loss on line,” the average annual loss (AAL) of a reinsurance contract divided by the limit of 
coverage. The AAL is the expected annual loss averaged over a long period of time.  It is 
typically gotten from a catastrophe model, which performs detailed, stochastic scenario analyses, 
as will be discussed further in the next section below. Putting aside taxes, overhead, and other 
transactional costs, if reinsurance premiums were purely determined by actuarial risk, the 
additional 5% term in (1) would not exist: ROL would equal to LOL in a world with no cost of 
capital and no transaction costs. 
 
The impact of catastrophe model changes most often has a muted impact on insurance and 
reinsurance premiums, which is supported well by the form of price functional illustrated by (1). 
For example, the LOL might vary by up to 30% up or down from model to model (so a 1% LOL 
in one model might be 1.3% in another, equally valid model4), but the excess premium 
represented by the 5% term in (1) might range anywhere from 3% to 12% year to year, depending 
on the cost of insurance and reinsurance capital in a given year.5

Catastrophe models are specialized computer models

 This means, especially for 
catastrophic risks which have a low probability of occurrence, the majority of the year-to-year 
volatility in reinsurance prices might be attributed to factors outside of the variation in risk 
estimates produced by catastrophe models.  
 
All of this is not to say that catastrophe models do not matter. They matter a great deal because 
they form the basis of a market-driven conversation on prices and availability of insurance and 
reinsurance. Also, too, catastrophe models potentially form a constructive link between science, 
engineering, and commerce. By their integration into the global insurance and reinsurance 
market, catastrophe models subject scientific developments in meteorology and seismology to an 
intense examination, the results of which are disseminated annually into a market that involves 
hundreds of billions of dollars in premiums worldwide. When this model-based system of 
commerce functions as intended, risk is taken more deliberately and with the costs and benefits 
more clearly in mind. 
 
3.  Catastrophe models 
 

6

                                                 
4 The most commonly asked question (what is the characteristic model uncertainty in catastrophe models) 
is typically unanswered by modeling firms. Generalizations are difficult to come by. Model uncertainty 
varies according the hazard being modeled. In case of U.S. hurricane risks, a reasonable estimate of model 
uncertainty is plus or minus 30%. So, for example, if an event is judged to have an annual probability of 
occurrence of 1% by one modeler, another, equally expert modeler, might estimate the probability of 
occurrence of the same event at 1.3% and yet another, equally expert modeler, might estimate the 
probability of occurrence of the same event at .7%. More typically, the variance among expert opinion in 
U.S. hurricane would be expected to be closer to plus or minus 15%, so the plus or minus 30% range is 
intended to encompass a wide range of variance in expert opinion. 
 
5 In the Spring of 2009, in the reinsurance market for US hurricane risks, the ROL is anywhere from 8 to 
12% for a 1% LOL. 
 
6 Commercial models include those from Applied Insurance Research (AIR), EQECAT, Risk Management 
Solutions (RMS). Public domain models include the FEMA HAZUS model by Applied Research 
Associates (ARA) as well as the Florida Office of Insurance Regulation’s Florida Public Hurricane Model. 
 

 that use probabilistic scenario analysis to 
provide estimates of the probability of different size losses occurring in well-defined insurance 
systems. Catastrophe models first emerged in the late 1980s as affordable computing power 
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became available to those in the insurance industry who wanted to overlay hazard estimates on 
current estimates of property exposure7. Complex, largely non-transparent, and often subject to 
commercial non-disclosure agreements, catastrophe models nonetheless provide the support for 
public and private rate setting on billions of dollars of insurance in the United States each year—
consider, for example, the Florida Hurricane Catastrophe Fund8 and the California Earthquake 
Authority9

AAL = Wi Hi, j Dj
j=1

5

∑
i=1

n

∑ (2)

; public statements regarding their necessity and capital adequacy involve the use of 
catastrophe models. 
 
Catastrophe risk models are well developed for developed economies where there is a demand for 
such models, for example from insurance and reinsurance companies that offer catastrophe 
coverage to their clients.  In developing countries, where the property insurance market is usually 
under development (such as most middle income countries) or undeveloped (such as most low-
income countries), the demand for catastrophe insurance is almost non-existent and, 
consequently, catastrophe risk models are scarce.  The donor community has been recently 
sponsoring the development or the enhancement of catastrophe risk models.  Hurricane and 
earthquake risk models have been developed for the Caribbean region under the sponsorship of 
the Caribbean Catastrophe Risk Insurance Facility.  Likewise, donors have financed the 
development of country-specific catastrophe risk models for the South Pacific Islands.  In 
addition, there have recently been attempts to develop catastrophe risk models on open platform.  
For example, the Central American Probability Risk Assessment (CAPRA) initiative, supported 
by the World Bank and other development agencies, is based on an open and modifiable platform 
which allows governments and institutions to supplement the model with previous and ongoing 
initiatives (Cummins and Mahul, 2009).  Such models are not only useful for insurance purpose, 
but also they offer policy makers new tools for their country management and mitigation 
programs.  Such models are expensive to develop and the private sector may be reluctant to invest 
due to uncertainty about generating sufficient business to recover development costs.   There is 
clearly a role for donors to finance such models to help countries better assess their economic and 
fiscal exposure to natural disasters, and ultimately, help reduce the physical and financial 
vulnerability of developing countries to natural disasters. 
 
For those unfamiliar with catastrophe models, we describe here a highly simplified hurricane 
model. To calculate the Average Annual Loss (AAL) from US hurricanes, consider the following 
landfall model specification, outlined here only for illustration purposes: 
 

 

 
where 

 
i is a coastal segment (CS) index; 

                                                 
7 Karen Clark (1986): “A Formal Approach to Catastrophe Risk Assessment and Management,” 
Proceedings of the Casualty Actuarial Society, vol. LXXIII, no. 139. 
http://www.casact.org/pubs/proceed/proceed86/86069.pdf 
 
8 Florida Hurricane Catastrophe Fund (FHCF) website. See in particular the annual reports under the 
“FHCF Reports” section. http://www.sbafla.com/fhcf/ 
 
9 California Earthquake Authority (CEA) website. See in particular the history of the CEA reports under the 
“About the CEA” section. http://www.earthquakeauthority.com/ 
 

http://www.casact.org/pubs/proceed/proceed86/86069.pdf�
http://www.sbafla.com/fhcf/�
http://www.earthquakeauthority.com/�
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n is the total number of CSs; 
j is hurricane intensity given as Saffir-Simpson category 1 to 5. 
Wi is the property value in the ith CS; 
Hi,j is the annual probability of occurrence of a hurricane of intensity j in the ith CS; and 
Dj is the portion of property value lost to hurricane of intensity j. 

 
Wi can be described as an exposure distribution; Hi,j a hazard distribution, and Dj a damage 
function. These three elements of a catastrophe model determine annual probability of losses to 
property. The model underlying (2) above is highly simplified in many respects—for one, it 
assumes one hurricane, no more and no less, per year. The details of full blown catastrophe model 
are difficult to summarize into a simple model like this, but to give the reader a general feel for 
rough numbers, for major hurricanes (j=3,4,5), Dj is roughly 10 percent for insured losses. In a 
major coastal segment of property, such as around Miami, Florida, total property value, Wi 
(where i is suitably chosen to select the coastal segment that encompasses the greater Miami 
area), is effectively around 1 trillion USD1011. Therefore, given these simplified numbers, a major 
hurricane striking a major urban coastal segment of property is expected to cause an insured loss 
of property of about 100 billion USD. Such an event (major hurricane striking a major urban 
coastal segment of property) is expected to occur with annual probability of about 1 percent, or 
once every 100 years.12 Therefore, as of 2009 we would say that a 1-in-100 year hurricane 
insured loss is 100 billion USD. The hazard distribution is considered relatively stable and biased 
toward higher intensity storms in warmer, southern waters13. In an unfortunate, partial 
coincidence, the US East Coast exposure distribution is sometimes, though not always, peaked 
where the coastline juts out into the ocean as well14. The damage function is relatively stable over 
time, so the main factor affecting changes in hurricane risk is changes in the exposure 
distribution. For US hurricane, AAL is currently estimated at about 10 billion USD15

Catastrophe models use Monte Carlo techniques to generate 10 thousand years or more of 
simulated losses. Using the simple model above, a catastrophe model would generate random 
occurrence of hurricanes in simulated year via Hi,j, then overlays those random hurricanes on the 
fixed property distribution, Wi. The damage function Dj then translates the incidence of 

. 
 

                                                 
10 FHCF website. 
 
11 These figures are very high in absolute terms, and represent about 7 percent of the 2008 US GDP.  
Hurricanes hitting small islands can losses that are several times larger than their GDP.  For example, a 
major hurricane hitting Jamaica could cause losses of more than 200% of GDP. 
 
12 Note again that these numbers are rough and not consistently defined from researcher to researcher. For 
example, depending on how strictly one defines a hurricane strike on a particular location (from landfall 
within 5 miles to bypassing within 90 miles), the probability of a strike on a particular location can vary by 
a factor of 10 from model to model. Here, an emphasis was placed on giving round numbers that bear a 
reasonable resemblance to the kinds of numbers used in detailed commercial catastrophe models. 
 
13National Hurricane Center website. See in particular the Climatology section.  
http://www.nhc.noaa.gov/HAW2/english/basics.shtml 
 
14 Pielke, Jr., R. A., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., and R. Musulin (2008): 
“Normalized Hurricane Damages in the United States: 1900-2005,” Natural Hazards Review, vol. 9, no. 1, 
pp. 29-42. 
http://sciencepolicy.colorado.edu/publications/special/normalized_hurricane_damages.html 
 
15 Karen Clark & Company (2008): “Near Term Hurricane Models: How Have They Performed?” 
http://www.karenclarkandco.com/pdf/KCC_NearTermHurricanes.pdf 

http://www.nhc.noaa.gov/HAW2/english/basics.shtml�
http://sciencepolicy.colorado.edu/admin/publication_files/resource-2476-2008.02.pdf�
http://sciencepolicy.colorado.edu/publications/special/normalized_hurricane_damages.html�
http://www.karenclarkandco.com/pdf/KCC_NearTermHurricanes.pdf�
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hurricanes on property into realized losses, the end result being the generation of losses over 
many simulated years. 
 
The results of catastrophe model loss simulations are most often summarized in the form of a loss 
exceedance curve (LEC). A LEC essentially contains all the information of a cumulative 
distribution.  In particular, it gives the annual probability that a pre-determined loss is exceeded 
every year.  For example, consider a simple LEC as follows: 
 

LEC(z) =

0.6, z = 0,
27.7, z = 1,

101.2, z = 2,
204.0, z = 3,
325.3, z = 4,














(3)  

 
where this LEC (and any other LEC in this report) is in units of USD billions, z=Log10(return 
period) , return period = 1/p, and p is an annual occurrence probability. Some terminology is 
useful here: z is the log return period. We would read the above LEC as saying that a 1 billion 
USD loss or more is expected to occur every year (z=0), a 20 billion USD loss or more is 
expected to occur on average every 10 years (z =1), a 100 billion USD loss or more is expected to 
occur on average every 100 years (z=2), and a 180 billion USD loss is expected to occur on 
average every 1,000 years (z =3). In practice, the LEC available to the user of a catastrophe model 
has tens of thousands of specified, discrete values. A more complete version of the LEC given 
above would look like: 
 

 
Figure 1. A loss exceedance curve (LEC) versus log return period (z). 
Discrete points on the curve correspond to those given in (3) above. 

 
where the discrete points reported above are plotted as small, filled circles. Often a point of 
confusion, we must point out that the simple LEC in (3) above only gave sampled points from a 
fuller LEC. If the LEC in (3) had been the complete story, it would be graphed instead like this 
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Figure 2. An LEC based only on a handful of specified points. 

 
which can be understood if one recognizes that all discrete LECs may be imagined as being 
associated with discrete events in a sample space, but each such discrete event may be further 
subdivided into an equivalent multitude of events, each with the same outcome but with a finer 
probability measure. For example, if we use the notation {xi,; p}, were xi is the outcome of event i 
and pi is the probability of event i,  the discrete probability distribution {1,0; ½, ½} can be 
expressed as {1,1,0,0; ¼, ¼, ¼, ¼}, but in both cases, their associated LEC would be the same. If 
one follows this logic to fill in the gaps of a discrete LEC for a continuous plot, the result will be 
as seen immediately above. 
 
Despite these considerations, we use a simple polynomial form to approximate a LEC. The results 
are given as follows for base normal (BN) and climate conditioned (CC) US hurricane losses:  
 

BN(z) = ak zk , 0 ≤ z ≤ 4
k=0

6

∑ (4)

CC(z) = bk zk , 0 ≤ z ≤ 4
k=0

6

∑ (5)
 

where 
 

a0 = +0.591,  a1 = +10.4351,  a2 = +6.8906,  a3 = +14.5026,  
a4 = -5.726,  a5 = +0.9653,  a6 = -0.0675,

 

 
and 
 

 
b0 = +1.9547,  b1 = +12.8025,  b2 = +10.9584,  b3 = +11.1832,  
b4 = -3.8843,  b5 = +0.4982,  b6 = -0.0257.

 

 
The log return period, z, is restricted only because reasonable curve fits were not available for 
higher return periods, as Monte Carlo noise often becomes significant above z=4.16

                                                 
16 Non-disclosure is considered not to be violated here because these LECs are altered to produce stylized 
curves for the purposes of this paper. These LECs do not match the LECs from any one modeling firm. 

 To give a 
reader a feel for the model variances, we note that for a fixed return period, the LEC might vary 
by approximately plus or minus 10 percent among different models. We end this section by 
displaying BN(z) and CC(z) versus their corresponding, detailed LECs: 
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Figure 3. BN (solid blue curve) and CC (solid red curve) versus 

their detailed LEC results (dashed curves, same respective color). 
 
Before any notion of climate conditioned hurricane activity was implemented in catastrophe 
models in 2006, the BN curve was the industry standard. Beginning in 2006, the CC curve, which 
utilizes climate-conditioned hurricane statistics, became the industry standard, although not 
without objection and controversy.17

Note that BN(2) = 100, and CC(2) = 113. In other words, the base normal 1-in-100 year US 
hurricane insured loss is set to 100 billion USD, and the climate-conditioned 1-in-100 year US 
hurricane insured loss is set to 113 billion USD. Furthermore, as calculated in the Appendix, the 
AAL of BN is set to 11.4 billion USD, and the AAL of CC is set to 14.6 billion USD.

 
 

18 Finally, 
the reader might note that BN stochastically dominates CC to the first order, which, in the theory 
of decisions under uncertainty, means that BN is preferred to CC by all decision makers 
regardless of their attitudes toward risk.19

In 2006, the year following Hurricane Katrina, the three major catastrophe modeling firms—AIR 
Worldwide (AIR), EQECAT, and Risk Management Solutions (RMS)—introduced “near term” 
hurricane models that increased hurricane risks under the assumption that warmer than usual sea 
surface temperature (SST) in the North Atlantic would increase hurricane activity

 
 
4.  Climate conditioned hurricane models 
 

20

                                                 
17 For example, one of the “big three” modeling firms, AIR, objects to the scientific and statistical 
justification of CC catastrophe models, so AIR allows its clients to calculate climate-conditioned LECs as 
an alternative view of risk, while not officially endorsing the use of CC results. See Karen Clark & 
Company (2008) for further discussion. 
 
18 The technically involved reader might attempt to replicate this result by numerical method by implying 
the probability distribution implied by the cumulative distribution function represented by BN and CC. The 
numerical results for AAL should not deviate significantly from the values given in the Appendix; if they 
do, it is recommended that the resolution of the numerical method be increased to achieve a reasonable 
convergence to the analytic results presented in the Appendix. 
 
19 Quirk, J.P. and  R. Saposnik (1962): “Admissibility and Measurable Utility Functions,” Review of 
Economic Studies, 29, 140-146; Hadar, J. and W. Russell (1969): “Rules for Ordering Uncertain 
Prospects,” American Economic Review, 59, 25-34; Hanoch, G. and H. Levy (1969): “The Efficiency 
Analysis of Choices Involving Risk,” Review of Economic Studies, 36, 335-346. 
 
20 Karen Clark & Company (2008). 

. As already 
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hinted at in previous section, we call these near-term models climate conditioned. It is necessary 
to use such general terminology because there is disagreement among scientists about the 
ultimate causes of elevated hurricane activity in climate conditioned catastrophe models (CC 
catastrophe models). More specifically, there is disagreement among scientists about the 
significance of the observed approximate 0.5 oC rise in SST over the last 30 years. One group of 
scientists believes that this rise in SST is part of a multidecadal cycle that is signaled by 
variations in de-trended SST records21. Another group of scientists believes that this rise in SST 
directly drives increases in hurricane activity22,23. Since the IPCC has concluded that SST has 
risen approximately 0.5 oC over the last 30 to 50 years24, we might take CC models to reflect the 
maximum potential increase in hurricane activity that might occur from the last 30 to 50 years’ 
worth of climate change (CC)25

In the case of two out of the three major catastrophe modeling firms, both non-climate 
conditioned and climate conditioned models are available, which allows for a convenient non-CC 
versus CC study to be made

. 
 

26

                                                 
 
21 Goldenberg, S. B., Landsea, C. W., Mestas-Nunez, A. M., and W.M. Gray (2001): “The Recent Increase 
in Atlantic Hurricane Activity: Causes and Implications,” Science, 293, pp. 474-479. 

. We already laid the groundwork for this comparative study by 
giving the LECs BN and CC at the end of the previous section above. In the following section, we 
present a simple method for comparing these two different LECs and show how this method is a 
useful way to understand the differences among LECs in general. 
 
 
 
 
 

http://www.sciencemag.org/cgi/reprint/293/5529/474.pdf 
 
22 Emanuel, K. (2005): “Increasing destructiveness of tropical cyclones over the past 30 years,” Nature, 
436, pp. 686-688. 
http://www.nature.com/nature/journal/v436/n7051/pdf/nature03906.pdf 
 
23 Webster, P. J., Holland, G. J. , Curry, J. A., and H.-R. Chang (2005): “Changes in Tropical Cyclone 
Number, Duration, and Intensity in a Warming Environment,” Science, 309, pp. 1844-1846.  
http://www.sciencemag.org/cgi/reprint/309/5742/1844.pdf 
 
24 IPCC (2007): “Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. 
Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on 
Climate Change,” Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and 
H.L. Miller (editors), Cambridge University Press, Cambridge, United Kingdom  and New York, NY, 
USA. 
http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf 
 
25 In this report, depending on the context, CC stands for both climate conditioned and climate change. The 
apparent double meaning is tolerable as the underlying intention is the same. Climate change, according to 
the IPCC’s usage (see footnote 1 in [6]), refers to any change in climate over time, whether due to human 
activity or natural variability. Climate conditioned here means essentially the same thing: CC catastrophe 
models only gauge potential increase in hurricane activity correlated with past increases or variations in 
SST. Whether these SST increases or variations are ultimately driven by human-driven changes in SST or 
natural variability is not decided by CC catastrophe models 
 
26 Karen Clark & Company (2008). 

http://www.sciencemag.org/cgi/reprint/293/5529/474.pdf�
http://www.nature.com/nature/journal/v436/n7051/pdf/nature03906.pdf�
http://www.sciencemag.org/cgi/reprint/309/5742/1844.pdf�
http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf�
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5.  The intensity profile and residual intensity profile of two LECs 
 
Given two LECs, we can compare them by examining what we will call an intensity profile (IP). 
The intensity profile of two LECs, LEC1 and LEC2, is simply the ratio between the two as 
follows: 
 

IP(z) =
LEC1(z)
LEC2 (z)

, AAL(LEC1) ≥ AAL(LEC2 ). (5)  

 
By convention, in this report we ensure that the AAL of the LEC in the numerator of the IP is 
greater than or equal to the AAL of the LEC in the denominator. For reference, the IP is graphed 
versus the ratio 
 

Γ =
AAL(LEC1)
AAL(LEC2 )

, AAL(LEC1) ≥ AAL(LEC2 ), (6)  

 
where we again maintain the convention that the higher AAL goes in the numerator. We plot IP 
for BN and CC in Figure 4 below. Γ=1.28 in Figure 4 and, to be clear, CC is the numerator LEC, 
and BN is the denominator LEC.  

 
Figure 4. Intensity Profile (IP) of BN and CC (solid red curve). 

As in Fig. 3, detailed results are provided for comparison (dashed red curve). 
 
The Γ reference line is useful in IP graphs because the horizontal axis is not linear in probability, 
which makes the probability-weighted average intensity profile difficult to gauge at a glance. In 
Figure 4, the probability-weighted average of the smooth, red curve is equal to the Γ line. 
 
It is common to interpret the migration from the BN model to the CC model as reflecting an 
increase in losses per hurricane, presumably from more intense storms. For example, the 1-in-100 
year storm, in our case, seems 13% “more intense” when going from BN to CC, hence the rise 
from 100 to 113 billion USD loss at the 100 year return period. Certainly, in the absence of 
further analysis, the IP profile can be interpreted this way. The shift from BN to CC can be 
achieved by increasing event losses versus return period of the event in the manner implied by the 
IP profile: smaller, more frequent events have losses increased roughly 3 times; larger, less 
frequent events have losses increased roughly 10 percent; overall losses are increased by about 30 
percent. This, however, turns out not to be the most fundamental characterization of how BN 
models become CC models. To see this, we need to examine a residual intensity profile (RIP), 
which is calculated as follows: 
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RIP(z) =
LEC1(z)

LEC2 (z + ∆z)
, (7)

AAL(LEC1) ≥ AAL(LEC2 ),
∆z = Log10Γ freq ,
Γ freq has a value s.t. AAL(LEC2 (z + ∆z)) = AAL(LEC1(z)).

 

Loosely speaking, we are interested in how much of the IP can be explained by a shift in 
frequency of occurrences of events. Because our LECs are graphed versus log return period, a 
simple leftward translation of an LEC by amount ∆z is equivalent to multiplying the probability 
of occurrence (that is, the frequency of occurrence) of all underlying loss events by Γfreq=10∆z. 
Furthermore, when we choose a frequency shift, Γfreq, that eliminates all the difference in AAL 
between the two LECs being compared, the resulting residual intensity profile has a weighted 
average value of 1. If the RIP is close to unity, we can say that the difference between two LECs 
is mainly explained by a frequency shift in events and not by an intensity shift in events. If the 
RIP varies wildly or in a dramatic way from unity, we would say that the differences between two 
LECs are not simply explained by a frequency shift in events and that either intensity shifts or a 
combination of intensity and frequency shifts explains the difference between the two LECs. 
 

 
Figure 5. Residual Intensity Profile (RIP) of BN and CC (solid red curve). 

As in Fig. 3, detailed results are provided for comparison (dashed red curve). 
 

As we can see in Figure 5, the shift from BN to CC is largely driven by an increase in frequency 
of hurricane events. The RIP is not perfectly constant, however, which implies that effective 
hurricane intensities are being changed a little. In particular, the RIP implies a slight increase in 
loss intensity for larger events (higher return periods) when going from BN to the CC models. 
 
Let us review what we have done so far in this report. Hurricane catastrophe models are 
represented by BN(z) in the absence of climate conditioning and by CC(z) in the presence of 
climate conditioning. The shift from BN to CC increases annual expected hurricane insurance 
losses from 11.4 to 14.6 billion USD, which is an approximate 30 percent increase. Because an 
expectation value is effectively a summation over event probabilities multiplied times respective 
event losses, we can affect an increase in modeled expected loss by increasing event losses, 
increasing event probabilities, or both. It turns out that hurricane catastrophe models interpret 
climate conditioning as mainly involving an increase in hurricane frequency. This results in a 
signature, nearly constant RIP between BN and CC. 
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6.  Coastal property increases relative to Climate Change 
 
Normalized historical hurricane damage studies27 offer important evidence and insight for the 
estimation of hurricane catastrophe risks. Although these historical studies offer only a sample of 
risk, the damage normalization process itself offers insight into a kind of Moore’s Law, or a 
secular trend of faster than normal growth, associated with increases in productivity, that 
underlies the formation of natural catastrophe risks. Historical hurricane losses are normalized 
when each historical hurricane loss is adjusted for changes in population, per capita wealth, and 
inflation. The component of change outside of inflation might be referred to as property density 
(property asset real value per unit area). Before the late 1980’s, historical hurricane losses were 
only adjusted by inflation, which grossly understated historical loss experience in present day 
terms because US coastal property density has been growing rapidly, by about a factor of 1.5 
times in real terms per decade. This, in combination with inflation, has conspired to create an 
approximate doubling of nominal dollar losses every decade for a given hurricane scenario. For 
example, Hurricane Andrew is estimated to have caused 26.5 billion USD in economic damage in 
1992. A replay of the same event in 2005 is estimated to cause a loss of about 54 to 58 billion 
USD, depending on the normalization methodology used28. 
 

 
Figure 6. Normalized historical LEC (solid black lines & dots) compared with 

BN and BN doubled (dashed red lines). 
 

Using an LEC format, Figure 6 above compares normalized historical losses from 1900 to 2005 
to the BN model results. If agreement were perfect, the normalized historical LEC would center 
on the upper dashed line in Figure 6 because the normalized historical losses are meant to gauge 
total economic damage. Typically, total economic damages are taken to be roughly double the 
insured losses29

Let us assume for the sake of discussion that increases in US coastal property density, all other 
things being equal, are uniform across all areas affected by hurricanes and that the rate of real 
growth in such property density is 1.5 times per decade

. Yet, the agreement in Figure 6 is not bad as far as such historical comparisons to 
model results go. All of this is meant to say that not only is faster than normal growth in property 
density a clearly observed phenomenon, but normalizing historical losses for inflation and 
property density alone does a good job of providing a historical loss record that comes close to 
reproducing the risk estimates of considerably more sophisticated catastrophe models. 
 

30

                                                 
 
27 Pielke et al. (2008). 
28 Ibid. 
29 Ibid. 
30 Ibid. 

. This would lead directly to the 
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conclusion that real hurricane losses increase by a factor of 1.5 times every decade. We create a 
new LEC, BN10yr(z)=1.5BN(z), which we compare with BN and CC in Figure 7 below. 
 

 
Figure 7. BN10yr (solid red curve), CC (dashed red curve), and BN (black solid curve). 

 
The result is visually striking because it appears that 10 years’ worth of property density growth 
creates increases in hurricane losses way beyond any potential increases due to recent CC, but the 
graph is deceptive. As already mentioned above, because the horizontal axes of our graphs are in 
log return period, visual weighting does not correspond well to probability weighting. The BN10yr 
versus BN intensification profile is flat at 1.5 (not pictured), whereas the CC versus BN 
intensification profile starts out at approximately 3 at zero return period and drops down to 
approximately 1.1 at higher return periods (Figure 4 above). As stated before, the average 
weighted intensification of CC versus BN in Figure 4 is 1.28. Still, if property density increase 
were continuous and uniform over time, we would estimate that roughly 6 years of coastal US 
property growth might yield the equivalent growth in risk seen in CC catastrophe models.31

As previously stated above, CC catastrophe models are not free of controversy. More than one 
industry observer has asked aloud whether or not CC has been used as an excuse to raise 
insurance and reinsurance premiums. We will call this the Arbitrary Premium Hypothesis (APH). 
Such behavior is generally difficult to prove

 
 
In conclusion, we cannot say that property density increases create the same intensification 
profile as CC, but we can say that less than a decade’s worth of property density increases can 
have the same or worse impact on hurricane risk than is reflected in current, CC catastrophe 
models. Therefore, up to 50 years worth of CC impact on hurricane risk is only equivalent to less 
than a decade’s worth of property density increase. Over the next few decades, US coastal 
property density increases are likely to eclipse any foreseeable increases in hurricane risk from 
CC, both on an annual average expected loss basis and at a 1-in-100 year exposure level. 
 
7.  The arbitrary premium hypothesis 
 

32

                                                 
 
31 The growth factor 1.5 per 10 years implies a 4.138 percent real growth in property density per year. Such 
a growth rate would produce a 28 percent increase in property growth in 6 years. 
 
32 Duggan, Mark and Steven D. Levitt (2002): “Winning Isn’t Everything: Corruption in Sumo Wrestling,” 
American Economic Review, v92, 1594-1605. 
 

, especially because intention is difficult to 
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establish33

What happens in the US reinsurance market (USRM) often affects reinsurance markets abroad, so 
here we will discuss the USRM. The USRM, like the US insurance market, is the largest in the 
world

. Although beyond the scope of this paper, it is worthwhile to mention a possible 
strategy to prove or disprove the APH using some of the techniques of this paper. If one were to 
compare the LECs for US hurricane across all modeling companies and across all years going 
back to, say, 1999, it might be possible to see eventually, perhaps by 2016 (ten years after CC 
models were introduced) that property density growth alone will explain most model changes and 
that CC models eventually become indistinguishable from a BN model from 1999 trended up 
every year for property density growth. This would provide a hint that the APH is true. 
Depending on the actual LEC development versus the property density increase trend, CC models 
in 2006 might in retrospect be seen as either (i) a convenient way either to catch up on property 
density growth revealed by the active 2004 and 2005 US hurricane seasons or (ii) a way to get 
ahead of property density growth increases in the near future. 
 
8.  US reinsurance markets and the potential effect on developing countries 
 

34

                                                 
33 Transcripts of private conversations are sometimes used to establish that a transaction has been 
manipulated, but even this form of evidence is not without its issues. One of the authors (JS) has observed 
that traders will sometimes confess to rigging a price when they in fact did not. Ultimately, expressing only 
the desire, not the true ability, to gain an edge in a highly competitive market, a trader’s confession is often 
a lie about a lie. 
 

; it is estimated that North America (and mainly the USA) absorb 75% of the worldwide 
catastrophe reinsurance capacity (Cummins and Mahul 2009).  Currently, the USRM is 
experiencing important challenges. Demand for reinsurance coverage is going up, while the 
ability of the USRM to provide coverage is going down. Models have some part in this. If 
modeled risk increases, as they have with the transition to CC models, both the insurer and 
reinsurer need to raise more capital or shed risk. Loss events often harm insurer and reinsurer 
differently, but model change events affect both in the same way. This year, this awkward 
dynamic is exacerbated by a potential change in the way rating agencies view the capital 
adequacy of insures and reinsurers. As of this year, the Florida Hurricane Catastrophe Fund 
(FHCF), the largest provider of hurricane reinsurance in the world, is considered substantially 
hampered in its ability to meet its potential obligations. This is because coming into this year the 
FHCF has relied upon tens of billions of USD in contingent, post-disaster financing to cover 
losses to the FHCF should the Big One occur. The recent impairment of the credit markets makes 
such a massive, post-event financing of losses unfeasible. This has caused a 10 to 30 billion USD 
gap in hurricane reinsurance, which cannot be  easily filled. Furthermore, similar to the state of 
Florida, the rest of the reinsurance and insurance industry had been relying, at least in part, on 
post-event financing. Before the credit crisis, rating agencies expected that even substantial 
shortfalls in capital caused by a loss event could be healed over by the rapid mobilization of 
capital into the reinsurance and insurance markets after a large loss event—as had been the case 
in the past after Hurricane Andrew, the Northridge Earthquake, the terrorists attacks on 9/11, and 
Hurricane Katrina. Now, the outlook on post-event capital mobility and formation is uncertain. 
 
We are still watching the situation unfold, but it appears inevitable that USRM premiums are set 
to dramatically increase in 2009-2010. Unlike increases driven by a loss event, these premium 
increases are likely to be slower to wash out of the system becuase they are driven by underlying 
structural trends and not by a single, rare event of loss. 

34 Swiss Re website. See in particular the research and publications of Swiss Re’s sigma group. 
www.swissre.com 

http://www.swissre.com/�
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In the catastrophe bond market, we are seeing almost a doubling in premiums for 1-in-100 year 
hurricane risks, which are now approaching 10 to 11 times actuarial levels, versus 4 to 7 times 
actuarial levels in years past. The expected result is that reinsurance capacity is likely to dry up 
over the next 2 years for any market abroad that is not a major source of risk and premium. This 
could manifest itself not so much in rate increases for non-US reinsurance markets, but in non-
renewals of coverage or dramatic reductions in coverage in reinsurance coverage for developing 
countries. 
 
The hardening catastrophe reinsurance market, due to major insurance and reinsurance losses in 
2008, and the increased demand for capacity in some developed countries (particularly the US) 
may reduce the capacity available for middle and low-income countries, particularly in the short 
term. However, this impact may be limited in the medium term, given the growing interest of 
investors and reinsurers for non-peak risks, that is, risks that are not correlated with the peak risks 
(such as US hurricanes and earthquakes), particularly for middle and low-income countries, 
which contribute to their portfolio diversification. 
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 Appendix: How to calculate the AAL of an LEC 
 
It can be shown that the AAL, which is just an expected loss, can be calculated with the 
following expression: 
 

 AAL(LEC) = LEC(0) + 10− z dLEC(z)
dz0

zmax

∫ dz (A.1)  

 
where zmax is the upper bound of the valid range of the argument of LEC. As a reminder, 
in this report, we used zmax = 4 throughout. 
 
Because LEC(z) has polynomial form, the integral in (A.1) is solvable in closed form 
with the following result: 
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6

∑ , (A.2)

%ak =
ak

Ln[10]k k!,

%zmax = Ln[10]zmax .

 

 
Substituting into (A.2) the respective parameters of (4) and (5) in the main text, we get 
AAL(BN)=11.4 and AAL(CC)=14.6, where AAL is in billions of USD. 




