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Abstract

Do serious climatic shocks lead to processes of persistent poverty and poverty traps? We have access to a panel data set
spread across 30 years, building on the ICRISAT data on six villages in the semi arid tropics to investigate this question.
We identify the dynamic income process showing the transition dynamics in response to rainfall shocks, using a fixed
effects dynamic model allowing for multiple equilibria. We show that there is serious persistence and evidence of
multiple equilibria in the data: in the data period analysed, many households were initially in a precarious (unstable)
equilibrium that could lead to a downward cycle into destitution, but also take-off if appropriate circumstances
presented themselves. Many managed to escape in the period 1984-2004 towards higher and stable equilibria, leading to
considerably better living conditions. For the median income houseold, the higher equilibrium is at roughly 155 US
dollars per year per adult at 1976 prices, and the unstable equilibrium below which a downward spiral would emerge is
about 55 US dollars. By investigating the fixed effects, we find that those with higher assets, especially in the form of
initial levels of education in the family in the 1970s, higher land holdings and/or high physical capital were faced with a
much lower level of income at which a downward spiral could have followed. Those with few assets in these different
forms could experience the downward spiral at much higher levels of income: their livelihood was far more precarious.
For them, climatic shocks, even at reasonable levels of incomes in preceding years could lead to destitution.

(Methodologically, we use Lokshin and Ravallion’s estimation method but using rainfall as instruments rather than black
box dynamic identification methods as in Arrellano-Bond estimators. The instruments are reasonably strong, and the link
between climate shocks and destitution appear to be very strong. We find that rainfall-induced lower income does not
only have a simple contemporaneous effect, as would be the case if rainfall caused the error in an income process that
would be described as independently distributed errors. Instead, we find that rainfall-induced income levels have a
persistent impact, possibly causing destitution.)

' Authors address: stefan.dercon@economics.ox.ac.uk and ingo.outes-leon@economics.ox.ac.uk. We are grateful to Joseph S. Shapiro
for excellent research assistance. We also thank Reena Badiani for extensive and insightful help in preparing and processing the data.




1 Introduction

With about 2.5 billion people receiving less than two dollars per day in income (Chen and Ravallion,
2008), the issue of whether and why the destitute escape poverty constitutes a central question in
economic research. Theories of poverty traps explain why living in poverty at some time causes a
person to remain poor in the future, or why a country's poverty causes the country to remain in
future poverty (Galor and Zeira, 1993). These theories imply stark conclusions: a positive income
shock could prevent a person from living in poverty for the indefinite future, while a sufficiently
grave negative shock to income could prevent a person from ever escaping poverty. Some such
theories assume that a person requires a fixed and indivisible investment to purchase a good like
education or credit (Banerjee and Newman, 1993); others assume increasing returns to income via
nutrition or another means (Dasgupta and Ray, 1993); while still others show how leaving the poor
without bargaining power can cause the poor not to save (Mookherjee and Ray, 2002). In this paper,

we offer a test for the existence of poverty traps using long-term panel data from India.

Admittedly imperfect tests of these elegant models have offered little empirical support, however,
leaving Dasgupta (1997) to describe that they reside ‘awkwardly’ in development thinking. A model
of nutrition poverty traps has received empirical criticism from several studies (Bliss and Stern, 1982;
Swamy, 1997; Rosenzweig, 1988), though Dasgupta (1997) argues that they use flawed tests. A
theory of fixed costs to entering businesses has received similarly little support (McKenzie and

Woodruff, 2003).

Several recent studies have proposed that a poverty trap could arise through a combination of
mechanisms, or through some unstudied mechanism. These studies essentially examine whether a
regression of some welfare measure (income, consumption, or assets) on its lag has a shape that
could indicate the presence of a poverty trap, as described in figure 1, linking the welfare measure Y
at t and t-1 in some non-linear way. A 45 degree line is drawn in to show equilibrium points, i.e.
where Y at t is the same as at t-1. As is well-known, the shape shown offers multiple equilibria, and
of those shown, a and c are stable (low and high) equilibria, and b is an unstable equilibrium, as once
removed from b, a household would drift towards a or c according the dynamic relationship shown

in the figure.
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Figure 1: Poverty trap and multiple equilibria

Nonparametric kernel regressions of current on lagged assets using small samples from Kenya,
Ethiopia, Madagascar, and South Africa show unstable equilibria over some low values of income
that suggest the presence of a possible poverty trap. These studies ignore the endogeneity of lagged
income in a dynamic panel models, however, and the potential bias in data obtained from many-year
recall questions, limited generalizability of sample sizes under 200 individuals, and bias of bivariate
kernel regressions at discontinuities (Fan, 1992) give their conclusions limited scope. In higher
income areas, studies applying methods with corrections for various econometric challenges in
estimating income dynamics to data from Eastern Europe, and Urban Mexico have found evidence
for some stable low-level equilibria but no evidence of a poverty trap; evidence from China shows
similar findings (Antman and McKenzie, 2007; Lokshin and Ravallion, 2004; Jalan and Ravallion,

2003).

The econometric challenges involved in testing for the presence of poverty traps are not trivial, and
most create bias towards failing to reject the hypothesis that poverty does not entrap people. Hence
one could reasonably conclude that the existing literature fails to establish whether poverty traps
actually do not exist or whether available data and methods have inadequate power to detect them
as there are econometric problems abound. Panel data with short duration--typically less than five
years (Dercon and Shapiro, 2007) --may not capture the dynamics that ensure poverty's persistence.

The nature of a dynamic panel model ensures that regression of income on its one-period lagged



value will inflate the effect of lagged income on current income. Measurement error in income
creates a mirage of income mobility, so a person whose true income remains constant over time
may appear to enter then escape poverty. Similarly the stochastic nature of income might result in

equally high levels of mobility (Barrett and Carter 2006).

Existing studies address some but not all of these concerns. Jalan and Ravallion (2003) and Lokshin
and Ravallion (2003) use the Arellano-Bond GMM (Arellano and Bond, 1991) estimator to identify
the association of a cubic polynomial of lagged income with current income. But if measurement
error has serial correlation, as at least one U.S. comparison of survey-reported income with
independent income reports suggests (Bound and Kruguer, 1991), then using distant lags of income
as instruments for once-lagged income, as Arellano-Bond methods do, will overstate mobility.
Antman and McKenzie (2007) for this and other reasons condemn the possibility of using panels for
identifying nonlinear income dynamics, and propose instead the use of pseudo-panels to average

out measurement error across individuals.

The present study shows how panel methods can address these econometric criticisms and
consistently test for the presence of a poverty trap. We test whether a poverty trap characterizes
the income dynamics of individuals in an unusually long 30-year panel from six villages in India's
semi-arid tropics, based on a recent extension of the ICRISAT Village Level Studies. We follow
(Lokshin and Ravallion, 2004) and others in estimating a dynamic equation where income is
modelled as a cubic polynomial of lagged income that allows for unobserved income heterogeneity.
However, unlike these studies, we use exogenous instruments to correct for endogeneity problems.
We interact rainfall shocks with household characteristics to provide valid and informative
instruments for a polynomial function of lagged income, obviating the need for Arellano-Bond

methods and addressing the critical problem of measurement error in income.

Further, the econometric specification allows for household heterogeneity in income dynamics. We
retrieve these individual effects and explore its correlates with starting period household
characteristics, therefore uncovering those household assets that could have led to sustained

increases in the trajectory of incomes.

What may look like an econometric solution to statistical problems, the method we use has clear
conceptual meaning as well. Theoretical models of poverty traps typically imply that only a ‘shock’

can move people between equilibria, as shown in figure 1. In semi-arid India, from which the data



are derived, the key is rainfall, and using rainfall as an instrument, we aim to make a direct causal
link between rainfall as a cause of lower or higher income, affecting whether the household
experiences a shock high enough to move between equilibria and the speed by which it moves to a

new equilibrium.

Furthermore, the household fixed effects will allow households to have different underlying
equilibria, reflecting for example different assets and human capital levels, offering a further

interpretation on the meaning of the precariousness and potential in their livelihoods.

Our analysis shows that income generating dynamics in rural India follow a quadratic polynomial
function with pronounced concavity. We find these results to be robust to sample trimming and
changes in the period of analysis. Further, point estimates, obtained applying the ‘weak IV’-robust

Fuller and LIML estimators, remain consistent with our original results.

Income simulations based on the estimated parameters suggest the presence of two equilibria: a
stable high-income equilibrium and a low-level unstable saddle point. While households with
sufficiently high fixed effect income follow the high-equilibrium dynamic path, almost half of our
sample has too low an income steady state to overcome the dynamic point of divergence. Unpacking
the household-specific fixed effects, we find that household assets in the early mid-1970s, especially
higher levels of education, land holdings and physical assets, are positively associated with higher

levels of steady state income.

Our analysis suggests, that over the past 30 years many households have managed to escape
towards higher and stable equilibria leading to considerably better living conditions. However, those
with few assets to start with could experience the downward spiral at much higher levels of income:
their livelihood was far more precarious. For them, climatic shocks, even at reasonable levels of

incomes in preceding years could lead to destitution.

The paper proceeds as follows. Section 2 outlines the econometric obstacles inherent in testing
those models of poverty traps which only consider income dynamics. Section 3 describes the 30-year

panel data set. Section 4 presents the main results, and section 5 concludes.



2 Econometric Methodology

An estimate of how lagged income affects current income must address four statistical problems: the
endogeneity of lagged income in a dynamic panel model; measurement error in income; individual
heterogeneity; and short panel duration. We discuss solutions for each, and we combine responses

to these potential biases in the final estimator that we propose and implement.

2.1 Dynamic panels and measurement error

We estimate an AR(1) model where the income y, of person i at time r depends on a linear

function of a polynomial of person i's lagged income,” and a composite error term with

time-invariant and idiosyncratic components p, and v, :

Yie = :Byi,z—l +p0tv, (1)

Since lagged income correlates positively with the composite error term p, +v, , estimating equation
(1) by OLS generates inconsistent estimates of . A first-differenced version of equation (1)

eliminates the individual effect p,:

Ay, = ﬁAyi,r—l +Av, (2)

where Ax, = x, —x,_,. However, the dynamic nature of the income generating process implies that
OLS estimation of equation £ in (2) will still produces inconsistent estimates, resulting from lagged

errors (v,,_,) affecting both Av, and Ay, ,_, (Nickell, 1981).

Arellano-Bond IV General Method of Moments (GMM) estimators use lags of the endogeneous

variable as instruments for Ay,,_,. If the error term Av, in equation (2) lacks second-order serial

correlation, and if equation (1) is dynamically complete, then the second lag and any further lags of

income can serve as valid instruments of Ay, _ (see Arellano and Bond (1991) for the Arellano-Bond

dif version of the estimator). Under these assumptions, the general method of moments provides

2 some studies describe such an estimate as a test of ““non-linear income dynamics" (Antman and McKenzie, 2007; Jalan
and Ravallion, 2003). While specifying lagged income as a higher-order polynomial allows current income to vary



consistent and effici;ent estimates of #, the parameter of interest (Anderson and Hsiao, 1982;

Arrellano and Bond, 1991; Blundell et al. 2000; Bond, 2002).

Several existing studies use Arellano-Bond type of estimators with short panels to test whether a
poverty trap characterizes income. One of these studies shows overidentification tests of the
instruments' validity and a test that the residuals have second-order autocorrelation (Jalan and
Ravallion, 2003); the other studies do not mention these tests Lokshin and Ravallion, 2004; Antman
and McKenzie, 2007], and none of the three studies evaluates the weakness of the instruments, an
important problem when a dynamic panel has a near-unit root (Stock et al., 2002, Blundell et al,

2000), and a problem which large samples do not eliminate (Bound et al., 1995).

Measurement error also creates a more substantial problem in these papers, since some U.S. data
suggest that measurement error in an individual's income has positive autocorrelation across waves
of a panel (Bound and Krueger, 1991). Antman and McKenzie (2005) show that in the presence of
such measurement error, GMM estimators provide inconsistent estimates of the parameters in
equation (2), and severity of the problem persists upon specifying lagged income as a higher-order

polynomial.

When applying Arellano-Bond methods, measurement error, the stochastic nature of income, as well
as poor instrument validity of higher-lags of income will all conspire in creating the mirage of an
income generating process with high levels of mobility. In this paper, instead, we propose the use of

exogenous instruments in the form of rainfall shocks.

Rainfall provides a useful instrument for income in poor agricultural areas.? Since the economies of
agricultural villages heavily depend on weather, flood and drought sharply affect the income of most
households in the village: agricultural households have lower yield in seasons of extreme weather,
households that earn income from agricultural labour find less work in times of extreme weather,

and most individuals in these communities depend on good weather for strong income.

Although our rainfall data is only available at the village level, we expect precipitation shocks to have
heterogenous effect across households. On the one hand, positive and negative rainfall shocks will

have different effects across households with different levels of reliance on agricultural income. At

nonlinearly with lagged income, the regression function itself is linear in the higher-order terms of lagged income.
* See, for example, Paxson (1992), Miguel (2005), and the review in Rosenzweig and Wolpin (2000).



the extreme, land cultivating households would benefit more from good rain than landless
households. On the other hand, in economies of household production with imperfect labour
markets such as rural India, labour-scarce households will not be able to make the most of a

particularly good rainy season.

We use three different exogenous instruments. First, we use as rainfall shock deviations in
percentage of a year’s precipitation relative to its historic mean. For this we use monthly village-level
rainfall measures from several Mandal-level collection stations. Second, we interact this rainfall
shock variable with the land area (in hectares) operated by the household in that year. Size of land
usage makes intuitive sense as an instrument, since households with larger plots will receive more
benefit from years with good rainfall and more harm from years with drought. We use as a third
instrument the interaction between rainfall shocks and the number of children aged 0-8, as a
measure of the labour-scarcity of the household. Households with more inactive members too young
to contribute and requiring care will be less flexible to insure their income against rainfall shocks.

For each rainfall instrument Z.

it—17

we require two conditions to be met:

cov(Z.

it—1°

Ay;, ) #0 (3)

cov(Z.

it—1°

Av,)=0 (4)

where yit_l denotes true, unobserved income. Condition (3) requires that the instrument strongly

correlates with true lagged income — the ‘strong’ IV condition —, while condition (4) requires the
instrument to be orthogonal to measurement error in lagged income or with other components of
the structural equation error term — the so-called ‘validity’ condition. One could interpret our

critique of Arellano-Bond estimates of equation (2) as violations of the validity condition.

While we expect our rainfall instruments to meet this condition, violations of assumption (3) might
pose a challenge to our results. Problems arising from ‘weak’ IVs are particularly severe when one
considers the finite-sample properties of IV estimators. Point estimates are rendered biased and
inconsistent, while standard errors are invalid (see Staiger and Stock (1997), Hahn and Hausman
(2005) and Murray (2006a) among others). As a robustness check on the IV GMM estimates, we

apply ‘weak’ IV-robust estimators. Fuller k-class estimators and limited information maximum



likelihood (LIML) estimators are understood to perform better under ‘weak’ IVs.* Furthermore, in a
world of weak IVs, the potential IV bias can be reduced when using a parsimonious set of
instruments (See Stock and Yogo (2005)). We re-estimate our model with a reduced set of
instruments. This will not only provide a further robustness check on our main results, but it can

provide valuable information on the direction of the remaining bias in our point estimates.
2.2 Individual heterogeneity

It is possible that individuals have multiple equilibria for income, or that poverty creates a trap for
some but not all individuals. Fixed individual factors -- education, geographic location, and others --
may affect the trajectory of an individual's income. Since these fixed factors may correlate with
income and hence bias regression estimates, equation (2) uses first-differencing to eliminate these

fixed effects.

But the effects themselves have economic interest, and recovering these parameters allows us to
observe the correlation between observable individual fixed characteristics and the part of an
individual's income trajectory which does not depend on short-term income dynamics. It will give us
insight in any factors that may cause household incomes to increase by a certain amount each year,
and the individual effects contain these effects. Furthermore, as will be shown further below, the
fixed effects will affect the location of the equilibrium, and we can give then meaning to the type of
households that have higher equilibria compared to others. Jalan and Ravallion (2005) and Antman
and McKenzie (2005) estimate models with household fixed effects, but fail to examine further its

correlates, even though they both highlight their relevance and how they shift a person’s trajectory.

Since the idiosyncratic errors have mean zero across the population, we estimate the individual
effect by the deviation of an individual's mean outcome from the predicted mean (Antman and

McKenzie, 2007):
A o Dv T A Yo
& =Yi=BYiin—B,Yii1— Y

where we average the dependent and independent variables across the years in which they would

4 Studies have shown that the Fuller k-class of methods dominates over other ‘weak’ IV-robust estimators. However,
LIML methods are also often used for its nesting properties: when the model is exactly identified GMM and LIML are
identical, and Fuller estimates are mean-square-error corrected versions of LIML. See Hahn, Hausman, and Kuersteiner



appear if we had not first-differenced the model.

To estimate the correlates of these fixed effects, we regress them on a vector Z; of fixed individual

characteristics:

a = ¢0 +Zi¢1 +¢,

The parameters ¢ show the correlation of individual characteristics with the fixed effects. A positive
association ¢, >0 for some element j of the vector Z;, implies that ¢,  gives an individual

continuously increasing income regardless of shocks. Since we observe income and several fixed
characteristics each wave only at the household level, all regression estimates in the paper use

standard errors robust to heteroskedasticity and serial correlation within household-years.

2.3 Panel Duration and Stability of Income Dynamics

The dataset we use has the advantage of an unusually long duration: 30 years, a length paralleled by
only a small handful of existing datasets (Dercon and Shapiro, 2007). Unfortunately the panel has a
gap of about fifteen years: households were surveyed yearly between 1975 and 1983, which we
name the VLS1 panel, and again between 2001 and 2005 — the VLS2 panel (see the following
section).” In the effort to examine the long-run factors that influence poverty and welfare, such
long-term panel duration provides critical information on income dynamics. But given our focus on
income dynamics, ignoring this gap in the middle and treating 1983 as if it preceded 2001 will yield

problematic estimates for later years.

To address the 1984-2000 gap, we use one-year lags of variables for all years. Taking the first
difference of income model with one-period lags as a repressor, drops two years in each of the two
period panels. Hence, in our model specification we use the first difference of current income from
nine waves of the panel (1977, 1978, 1979, 1980, 1981, 1982, 1983, 2003, 2004), while we use the
first difference of the independent variables (lagged income) from a different set of nine waves
(1976, 1977, 1978, 1979, 1980, 1981, 1982, 2002, 2003). Since we use lagged rainfall as an

instrument rather than the many lags of income used by Arellano-Bond estimators, the 1984-2001

(2003), Anderson, Kunitomo, and Matsushita (2005) and the review article Murray (2006b).

5Income data in year 1984 included only a small subset of individuals. A 1992 round of income data included few
individuals and had different methodology than other years, while 2005 data are still being processed.



gap creates no other obstacles in estimating the dynamic panel model.

The 15-year gap between the two annual survey panels raises a further concern. Our model
specification assumes that a single set of polynomial parameter values underlie the income
generating process. Similarly, the model assumes that the household-specific fixed effects are stable
over time. However, should the income dynamics in rural India have changed sufficiently during the
15-year gap between VLS1 and VLS2, our model specification might be grossly mis-specified resulting
in uninformative parameter estimates. We address this issue by testing the parameter stability of

the income polynomial function across the two panel periods.

Requiring a very long panel comes at at least one cost: attrition. Over a 30-year period, a
considerable number of households were lost, partly due to the well-documented rules of tracking
the ICRISAT panel (Foster and Rozenzweig, 2001), which in principle did not track anyone leaving the
household. In the new rounds, split-offs were largely included, but migration is not irrelevant, and
the main cause of attrition (Badiani et al., 2007). The sample is therefore a sample of households
that is living in the respective villages in 2001-05 that are directly related to households already in
these communities in the 1970s. This obviously affects external validity, but as long as coefficients
are interpreted exactly as relevant for this sample, there is not a problem, and obviously, given the
relative low mobility in rural India (Munshi and Rosenzweig, 2009), this is not an irrelevant
sub-population. Furthermore, the analysis in this paper is effectively to uncover a ‘technological’

relationship in the income process faced by a particular population: do poverty traps exist for them.

3 Data: the 30-year ICRISAT Panel

The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) near Hyderabad, India,
collected annual surveys between 1975 and 1984 (VLS1), then for the same households in the period
2001-2005 (VLS2). The core data included 60 households each from six villages (240 in total) in
India's semi-arid topics: the villages of Aurepalle and Dokur in the Mahbubnagar District of the Indian
state of Andhra Pradesh; the villages Shirapur and Kalman in the Sholapur District of the state of
Maharashtra, and the villages Kanzara and Kinkheda in the Akola District of Maharashtra. Villagers

generally work in dryland farming, with limited irrigation (Badiani et al. 2008).



For the early data collection, interviewers lived in the villages and interviewed households every 3-4
weeks to obtain income information. The more recent data (VLS2) use one interview per year for
2001-2003 and two per year for 2004. Detailed checks on comparability between these years and
with the VLS1 is reported in Badiani et al. (2008). A tracking survey allowed follow-up of individuals
interviewed in the 1975-84 rounds. Additionally, the 2001-2005 study re-surveyed new households
to compensate for the reduced sample sizes due to attrition. Walker and Ryan (1990) provide
detailed description of the early survey rounds and research stemming from them, while Badiani et
al. (2008) provide an appendix with further detail on the recent data collection. A key point to notice
is that this paper provides with an assessment of the comparability of different indicators, as the
frequency of data collection is different in the VLS1 and VLS2. Badiani et al. (2008) show that trends
in those variables that were collected with the same frequency in both surveys and those that were

not showed remarkable similarity suggesting that comparability may not be negatively affected.

Table (1) provides descriptive statistics of the general structure of the data. As one would expect of a
30-year long panel, household attrition is substantial. One reason was that especially in the first few
years, a considerable number of households (more than 10 percent) dropped out, and were replaced.
As for many of these replacements we have a long series, we have kept them. Migration and death
meant that a considerable number dropped from the sample over time; in later years, split-offs still

living in the village were included in the sample.

Interested in modelling income dynamics over a long period, we centre our attention on household
for which we have sufficient information in both VLS1 and VLS2 panels. In terms of our models
specification, this requires households to be measured at least for two continues waves in both
annual panels. Our analysis therefore does not include original VLS1 households that were not
resurveyed in the later years. Also, the samples were boosted in 2001, but these were not included
either. However, we do include split-off households by constructing an income series for the full
length of the panel based on matching their VLS2 income series to the VLS1 series of the households
they originated from. The result is 260 households, linked to 151 ‘original’ households that are used

in this paper.

This is hardly a ‘representative’ sample of either the households living in the villages at baseline or in
2005, even though it started as a random sample for each village in 1975. However, given that all
those initially included in the sample in the 1970s are included provided that they still were in the

village in 2001, it will give us inference of whether for this particular type of household. It may be



that some are trapped because they could not attrit via migration or that some that disappeared due

to mortality did so because they were trapped in poverty. Our study cannot address this.

Finally, before moving to the discussion of our results, we note that throughout the paper standard
errors reported correct for heteroskedasticity and autocorrelation in the error term for specific
clusters. All regressions reported apply clustering at the level of the household. However,
considering that some of our households are split-offs from an original VLS1 households, we have
also carried out estimates where we correct for autocorrelation across sibling and parent households.

We find results to be robust to this modification (results available upon request).

4 Results

4.1 Income Trends

Table [2] reports some descriptive statistics of our household income measure (household income
per adult equivalent per year in rupees in 1976 prices). The early panel, the VLS1 sample, shows a
slight upward trend, partly due to particularly low income in the first two years of the survey. Mean
income in the later panel, VLS2, is substantially higher than in VLS1, more notably due to the 70
percent increase between years 1983 and 2001, a finding that coheres with the regression results of
Badiani et al [2008] using the same data. Graph [1] provides an even more striking representation of
the income increases benefiting the household in the ICRISAT. The graph plots kernel densities of
income for individual years 1975, 1983, 2001 and 2004. We observe that not only has mean income

increased over this period, but the spread of the income distribution has also grown dramatically.

Before moving to the discussion of the results of our parametric analysis, it is instructive to plot the
raw income data. The econometric model assumes that the income generating process follows a
polynomial function. Graph [2] uses locally weighted (Lowess) methods to obtain a non-parametric

estimate of income lagged (y,, ;) on current income (y,,). The income patterns implied by the

graph suggest substantial convergence and few non-linearities in the income generating process. In
the next section, we assess whether this remains an accurate description of the true income

generating process once issues of measurement error, income stochastic patterns and unobserved



heterogeneity have been addressed.

4.2 Regression results

As discussed in section 3 above, our econometric methodology estimates the parameter of a
polynomial function of lagged income in first-differenced form, equation (2), using exogenous
instruments. Tables [3] and [4] report IV GMM first and second-stage estimates. We fit three
alternative polynomial functions — linear, quadratic or cubic —, and for each of these model we

estimate one specification with year dummies and another without.

Columns (1) and (2) in Table [3] show that our instruments are a good predictor of income; the joint
significance of our instruments is well above 10, and the implied Cragg-Donald suggests the absence
of weak instruments. When no year dummies are included, we find rainfall deviations significantly
increase household income. Similarly, the interaction effects between rainfall shocks and household
characteristics are also significant and take signs as expected. We find that households operating
larger plots and households with fewer kids among their members appear to benefit (lose) the most

when rainfall is abundant (poor).

While estimates for interaction instruments remain largely unchanged when year dummies are
included, rainfall shocks lose their significance. With year dummies, the income effect of rainfall
shocks is exclusively identified by the variation in village precipitation. Given that the pattern of
rainfall in the Indian sub-continent is mostly determined by the timing and profusion of the monsoon
season, we would expect rainfall shocks in a given year to be highly correlated across villages. It is
therefore not surprising to find rainfall shocks not to vary sufficiently across villages to be identified
beyond the annual effect. As other factors determining incomes may also be common across villages,
a specification with time dummies would seem more parsimonious and therefore we focus in the

rest of the paper of these results.

Further, evidence in columns (3) to (6) in Table [3] shows that the interaction instruments are not
only good predictors of the first moment, but also of the second and third moments of income,
although less strongly so than levels of income. Estimated coefficients both take signs that make

economic sense and are significant at standard levels of confidence.

In summary, we find that our set of instruments is strongly correlated with income. In fact, when we



test for their joint-significance we obtain a high F-Statistic for the first moment of income (11.47)
and non-negligible values for the higher moments, 5.48 and 3.55 for the quadratic and cubic terms
respectively. Even though encouraging, we cannot ignore inference problems arising from ‘weak’

instruments. We return to this issue in the next section.

In Table [4] we report our main results. As in Table [3], we report second-stage estimates for three
different polynomial specifications — linear, quadratic and cubic — and two variations of each model,
with and without year dummies. As mentioned before, here we focus on the results with year

dummies.

As expected, when fitting a linear model we find a positive correlation between lagged income and
current income (see column 2). The coefficient is statistically significant but modest in magnitude

suggesting a relatively high degree of income mobility, or high speed of convergence.

Estimates for the quadratic and cubic model specifications provide some striking results. First, we
find that the income generating process might not be linear in nature. When we include the
second-moment of lagged income we find it to be significant at the 5% level — see column (4). It loses
its significance when we allow for a third-moment in the income process — possibly due to

multicollinearity.®

Secondly, the point estimates for the first-moment of lagged income in columns (4) and (6) are
significant and very large in magnitude, suggesting convergence might be relatively slow or even
unachievable. Indeed, point estimates when allowing for higher-order polynomials show that the
income generating process might follow a concave pattern, opening the possibility for the existence
of multiple equilibria. In the Appendix, we discuss a number of checks for robustness of these results,

and generally, these findings are confirmed.
4.3 Multiple Equilibria and Household Heterogeneity

Showing that the current income follows a polynomial of lagged income with a concave pattern does

not constitute proof of the existence of multiple equilibria. For that we need to show that derivative

of the resulting polynomial is larger than unity when y,f,=g(y,f,,1) — where the g-function

6 Indeed, the correlation coefficient between the second and third moment of lagged income in these regressions is very high,
reaching 0.96 when estimating the model in column (6)).



represents the dynamic polynomial function — and that this condition is met within the range of
values of the income distribution. Furthermore, in our model specification, household heterogeneity
will shift the dynamic patterns and therefore any potential multiple equilibria will be household

specific (see also Antman and McKenzie (2005)).

The easiest way to illustrate this is graphically. Graph [3] plots income simulations based on the
parameter estimates of the polynomial from the quadratic model specification reported in Table

[4].

The results presented in Graph [3] are truly striking. First, when considering the dynamic path for the
median household, we find two equilibria in the range of reasonable values of income: namely a high
stable equilibrium, and a low unstable saddle point. The high stable equilibrium is approximately
1400 Rupees per adult per year in 1976 prices, approximately 155 US dollars at the exchange rates at
that time. The lower unstable equilibrium is about Rp 500 or 55 US dollars. The derived dynamic path
implies that households with fixed effect values close to the median will face a divergence point or
threshold whereby the dynamic paths separate. Namely, household lying above the saddle point will
converge over time towards the high equilibrium while households below the saddle point will
inevitably suffer further losses in their future income. Lying below the threshold or being pushed

over it by shocks such as rainfall would appear to put households on a path towards ‘perdition’.

A second aspect to note from Graph [3] is that not all households are exposed to the risk of
destitution. Household with sufficiently high individual fixed effects, as represented by the top decile
in Graph [3], have a single dynamic equilibrium. For this type of households, we expect their income
levels to converge — although the rate of convergence suggested by the concave polynomial would
appear to be very slow, even for relatively high values of lagged income. Furthermore, the existence
of a single equilibrium for this group of households cannot be understated. Even when faced with
large shocks, these households would appear to face little risk of being put on a path of structural
divergence. It is as if their livelihood faces no vulnerability: even if they occasionally have low

incomes, they won’t get stuck there permanently.

Thirdly, among households with low fixed effects, we find that the dynamic path also appears to

7 We report in the Appendix the full set of simulations based on all six of the specifications estimated in Table [4]. After recovering the
household fixed effects implied by the model estimates, we plot the dynamic simulations for different percentiles of the fixed effects
distribution. Specifically Graph [3] reports the simulated dynamic path for the 10th, 50" and 90% percentile of the individual
household fixed effects.



experience multiple equilibria. However, for this group vulnerability does have a qualitatively
different meaning than for other households. For low levels of fixed effect income, the stable
equilibrium and the divergence threshold are close to each other. In other words, for households
that have already reached their steady state equilibrium, a relatively small shock could push them
over the divergence threshold. Furthermore, it should be noted that the lower the fixed effects, the
higher lies the saddle point. In other words, households with low fixed effects could be set on a
structural divergence path even though they might have values of current income higher than
households with higher fixed effects that are on a convergence path towards their stable

equilibrium.

Two further points are worth noting. Analysing the median household dynamic path we see that the
threshold for this group lays on a relatively low value of income. It is therefore plausible that most
households might have current income above the threshold, resulting in a relatively low risk of
structural destitution. If this applies to the median, it is possible that the risk of being set on a
divergence path is only real for a relatively small sub-sample of households. However, Graph [3]
provides some evidence against this possibility. Comparing the median versus the bottom decile
households’ curves, we see that there is only a small vertical distance between the two. This means
that almost half of our sample of households face a dynamic threshold that lays between 200 and

750 Rupees — values that capture approximately [35%)] of the lagged income distribution.

Additionally, although clear from the graph, it is instructive to recognise the fact that households on
a convergence path will ultimatively converge to their own steady state equilibrium. The actual

equilibrium income they will reach will therefore depend on their own household fixed effects.

4.4 Unpacking Household Fixed Effects

The importance of the individual household fixed effects can hardly be overstated. Not only do they
determine the steady state income households will eventually reach, but households with fixed
effects approximately below the median are faced with the real possibility of suffering a shock that
might put them on a dynamic path towards destitution. It is with this in mind that we now move

towards understanding what lays behind these fixed effects.

To retrieve some idea of the correlates of income fixed effects, we regress them on a set of starting

period household characteristics as measured at the beginning of our panel in 1975. Columns (1) to



(6) in Table [5] report the correlates of fixed effect income as computed from models (1) to (6) in
Table [4]. While these six columns include only time-invariant household characteristics, columns (7)
to (12) add two additional time-varying household assets: land area owned and value of household

assets.

Results shown in Table [5] are robust across our six different model specifications. For our preferred
model, the quadratic polynomial with year dummies, we find that beyond village dummies,
education of the household head appears to be significantly correlated with fixed effect income.
When we add land ownership and value of assets to education, we find all three to be strongly
correlated with the fixed effects. Despite their geographic proximity, these villages have substantial
heterogeneity in soil and other characteristics (Walker and Ryan, 1990). Correspondingly, individuals
in different villages have different income trajectories: compared to village 1, the reference, villages

3, 4 and 6 have substantially lower fixed effects.

We interpret these results as suggestive that while changes in India over the past 30 years have
increasingly created opportunities for substantial welfare improvements, not all households have
been in the position to benefit. Human capital and physical assets appear crucial in ensuring that

households are well enough equipped to take up the opportunities.

5 Conclusions

A variety of theories suggest why a person who becomes poor at any time will remain poor
indefinitely. Most such theories focus on a technology with increasing returns to scale which arises
from a particular social mechanism--nutrition, education, fixed costs to entering a business, or
another. The ideas of poverty traps that arise from these theories constitute a central theory of
development economics at both the micro and macro levels. But these theories have received
extremely little empirical support, possibly due to econometric pitfalls in the methods underlying the
relevant empirical studies, as Dasgupta (1997) argues occurs for tests of the nutrition-efficiency

wage theory, or possibly because no poverty trap in fact exists.

The large number of people in extreme penury constitutes only one reason underpinning the
importance of understanding whether and why the destitute escape poverty. The presence of
poverty traps would also implies a startling policy conclusion: a small transfer to a poor individual or

household could change that person from low- to high-level equilibrium and permanently remove a



person from poverty.

Since most existing theories of poverty traps assume some form of fixed investment cost, or
increasing returns to assets or income, we examine whether income dynamics give evidence of
increasing returns. A variety of econometric problems arise in this analysis: lagged income is
inherently endogenous in a dynamic panel model; measurement error in income will cause OLS or
GMM estimates to understate income's persistence; individual heterogeneity may disguise the fact
that some individuals face a poverty trap even though the average individual does not; and short

panel duration may give inadequate time to observe sufficient movement in income.

The bivariate kernel regressions or Arellano-Bond methods that existing papers use address some
but not all of these pitfall. We apply IV GMM methods in a dynamic income equation that addresses
issues of measurement error and endogeneity of lagged income, while allowing household
heterogeneity in income steady state. Unlike similar studies (Jalan and Ravallion (2003) and Lokshin
and Ravallion (2004)), we use exogenous instruments in exploiting deviations in annual precipitation
to explain future income. Indeed, first-stage estimates reveal rainfall deviations to be a strong
predictor of year-on-year changes. In particular, when we interact rainfall with household land
operated and composition variables to obtain valid and relatively strong instruments for a

polynomial function of contemporaneous income.

Our analysis shows that income generating dynamics in rural India follow a quadratic polynomial
function with pronounced concavity. We find these results to be robust to sample trimming and
changes in the period of analysis. Further, point estimates, obtained applying the ‘weak IV’-robust
Fuller estimator, remain consistent with our original results.

Income simulations based on the estimated parameters suggest the presence of two equilibria: a
stable high-income equilibrium and a low-level unstable saddle point. While households with
sufficiently high fixed effect income follow the high-equilibrium dynamic path, almost half of our
sample has too low an income steady state to overcome the dynamic point of divergence. Analysis of
income fixed effects shows that schooling and other assets at the beginning of the sample period are

linked to high levels of steady state income.

We interpret our results as suggesting that changes in India over the past 30 years increasingly
provide opportunities for substantial welfare improvements, but not all households are well place to

benefit. Education appears crucial in ensuring these opportunities are being taken. Those with higher



assets have an income process with a much lower low-level unstable equilbrium than those with
fewer assets: the latter’s lives are far more precarious and even at higher income levels they risk
sliding down dramatically. For some with high assets, this low unstable equilibrium would
correspond to large negative current income positions. While in an agricultural setting occassional
negative incomes are possible (and indeed observed in the data), it suggests that only a rather high

and almost improbable income draws they would face such outcomes.

Appendix

A.1 Estimation with Weak Instruments

As discussed in section 2, consistent IV GMM estimates require for two instrumental variable
conditions to hold, the ‘validity’ condition and the ‘strong IV’ condition. The validity condition states
that the set of instruments should not be correlated with any unobserved determinant of income.
The exogenous nature of the rainfall shocks and its potential heterogeneous effects, suggest that our
set of instruments is unlikely to be invalid. Indeed, Hansen J Overidentification statistic reported in
Table [4] indicates that we cannot reject the null hypothesis that all excluded instruments are

exogenous.

However, Cragg-Donald F-statistics related to Table [4] suggest that our set of instruments might not
be sufficiently strong. Although our excluded instruments are good predictors of individual moments
of lagged income, the Cragg-Donald statistics test the null that the set of excluded instruments is
jointly sufficiently strongly correlated with the set of endogenous variables. We find that in spite of
first-stage F-Statistics of 11.47, 5.48 and 3.55 for the three-moments of changes in lagged income,
the Kleibergen-Paap rank corrected Cragg-Donald statistics amounts to values of 2.48 and 0.49 for
the quadratic and cubic models with year dummies. When compared with Stock-Yogo critical values,
these Cragg-Donald statistics suggest the presence of ‘weak’ instruments resulting in IV GMM

estimates containing absolute biases approximately exceeding 30%.

Such magnitude of bias casts doubts on the reliability of the results presented earlier. In this section,
we follow two alternative approaches designed to provide further evidence of the robustness of our
earlier results. First, we apply alternative estimators that are more robust to ‘weak’ instruments. We
use LIML and Fuller estimators to alternative point estimates for our main TSLS results. Secondly, in a

world of weak Vs, the size of the resulting bias is understood to increase with the number of



instruments. As a robustness checks we re-estimate our quadratic model, using only the interaction
effects of the rainfall shocks. While removing the rainfall shock itself from the instrument set might
reduce the bias, this comes at a little cost, as rainfall shock itself is not significant when including

year dummies alongside.

Table [Al] in the Appendix reproduces Table [4] for the alternative LIML and Fuller estimators.
Comparing these results with the IV GMM estimates, we find that, although significance is lost for
some coefficients, LIML and Fuller estimators provide remarkably similar point estimates. These
alternative estimators appear to suggest an income generating process that follows a quadratic
polynomial with concave trajectories. Although still suffering from substantial weak IV bias, we draw
some comfort from the fact that these alternative estimators provide point estimates consistent

with IV GMM estimates.

Additionally, Table [A2] reports results for our ‘parsimonious IV’ estimates of the quadratic model
with year dummies. Using only the rainfall shocks interacted with land area and with the number of
kids in the household, we improve the strength of our instrument. Indeed first-stage F-Stats increase
to 15.08 and 6.98 for first and second moments respectively, and the Cragg-Donald statistic reaches
a value of 3.35. Although the latter is not sufficiently high for weak IVs to be ruled out, the revised

estimates would be expected to contain a smaller bias.

Results reported in Table [A2] are broadly consistent with our earlier results. More interestingly from
our perspective is to see that relative to LIML and Fuller estimates with three excluded instruments,
points estimates increase in magnitude for both the first and second moment. We interpret this
change as an indication that the ‘weak’ bias included in our TSLS estimates might be biasing

downward the estimated parameters.

The weak IV bias also has consequences for our earlier results regarding simulation graphs. Graphs
[A2] in the Appendix, reproduces the simulation dynamics for the regressions using the
‘parsimonious IV’ set reported in Table [A2]. While GMM estimates remain largely unchanged, we
find that the lower magnitude in Fuller point estimates implies that the less pronounced concavity in

the dynamic function leads to a single equilibrium model.

While this has the consequence that no divergence thresholds would apply for any household in our

sample, regardless of their fixed effect size, concavity leads to a very slow rate of convergence. In



other words, should we take our Fuller estimates at face value they would suggest that temporary
unexpected shocks would have long and persistence effects on future income, even if it is not a
‘trap’. Furthermore, the speed of recovery would appear would be slowest for households with

lowest fixed effects.

A.2 Parameter Stability and Panel Structure

Our model specification assumes that a single set of polynomial parameter values underlie the
income generating process. However, considering the 15-year gap between VLS1 and VLS2, it is
plausible that income dynamics have dramatically changed during that time. We address this issue
by testing the parameter stability of the income polynomial function across the two panel periods.
Table [A3] reports results from estimating the quadratic model specification for the VLS1 and VLS2
panel samples separately. Although significance is lost in the short panel, point estimates are
remarkably similar to the estimates for VLS1 only. Indeed a test of parameter equality between the
two periods indicates that point estimates are not significantly different from each other. Similarly,
dynamic simulations based on these coefficients suggest that income dynamics between the two

periods are very similar.
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Graph [1]: Evolution of Income Distribution Over 30-Year Period
Kernel Densities of Income for Years 1975, 1983, 2001 and 2004
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Note: Kernel smoothing densities for specific years. For ease of presentation income plotted are
restricted to values -100 and 4000 Rupees in 1975 prices.



Graph [2]: Bivariate Lowess Estimates of Current Income on Lagged Income,
and Kernel Densities of Lagged Income
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Note: 45-degree line indicates locus where current income equals lagged income. Data used for the
graphs is restricted to the years used in the parametric analysis, namely 1977-1983, and 2003-2004. For
ease of presentation income plotted are restricted to values -100 and 4000 Rupees in 1975 prices.
Parametric analysis in the paper uses all income values.



Graph [3]: Simulated Income Dynamics for Median, 10" percentile and 90'" percentile of fixed effects
Model Specification: IV GMM Estimates of Quadratic Model with Year Dummies,

Panel A — Simulated Dynamics Panel B — Kernel Density of Lagged Income
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Note: Simulations of income dynamics have been computed using the estimated parameter of the polynomial of lagged income. Plotted simulation based on IV GMM estimates for model
specification with quadratic polynomial and year dummies. Computed fixed effects act as shifters of the locus of polynomial. Simulation curves are depicted for a realistic range of
lagged-income. Intersections between the dynamic trajectories and the 45-degree line indicate a potential equilibrium. Vertical line indicates zero income. Panel B kernel densities of
lagged income does not show 104 observations with values of lagged income above 3000 Rupees, as well as 10 observations with values below -500. In both cases, the values not shown
are otherwise included in all regressions.



Table 1: Tracking and attrition in the 2001-2004 survey

Status by 2004-05 Full sample of individuals Of which: Of which:
wi(t:Lugf;gklinn;E)i:g;?ns:tig/nLﬁs) Included in the Not included in the
2001 survey, i.e. in | VLS2, 2001 survey
2005 . ;
the village and in
the sample in 2001
Dead in 2005? 432 24 408
Migrated in 2005? 675 45 630
In village in 2005? 857 581 276
No information in 2005? | 34 4 30
Total 1998 654 1344

Note: based on attempts to track 1998 individuals included at some point between 1975-84 in the original households of the 1975-84 sample. Not including
servants.

Table 2. Mean and Standard Deviation of Income, by Survey Year
VLS 1 VLS?2

fo75 1976 1977 1978 1979 1980 1981 1982 1963 2001 2002 2008 2004 °@
Income 6403 8645 9821 10197 10358 9569 10185 11593 10444 19752 23530 13102 12578 119956

(567.) (744.1) (804.2) (7649) (7900) (7908) (806.0) (891.6) (7635) (7,378.1) (11,4084) (1850.0) (2351.0) (3,904.8)
Observations 255 258 262 262 263 273 273 214 274 26 260 258 255 3428

Note: Income measured in 1975 rupees per adult equivalent per year. Standard deviations appear in parentheses beneath mean values of continuous variables.
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Table 3. First Stage Results — Impact of Rainfall on Lagged Income

Dependent variable: AY AY,, AY,,? AY,,? AY,,° AY,,°
(1) 2 3) 4) (5) (6)
Rainfall shock, t-1 52.86*** 81.2200 66,382.51 725,763.91 126370329.2 5.80E+09
(18.290) (73.600) (9.81E+04) (4.64E+05) (7.94E+08) (3.78E+09)
Rainfall shock * land operated (ha), t-1 5.12%** 3.76** 30,448.00*** 26,181.76**  154787235.39*** 143272054.90**
(1.720) (1.690) (9.14E+03) (1.06E+04) (5.62E+07) (6.56E+07)
Rainfall shock * children 0-8 in HH, t-1 -19.83*** -31.10** -73,784.72**  -119,976.96***  -4.12e+08* -6.446+08***
(6.150) (5.340) (3.49E+04) (2.97E+04) (2.42E+08) (2.04E+08)
AYear: 1977 184.23* -58,039.18 -3.67E+09
(73.770) (4.67E+05) (3.80E+09)
AYear: 1978 79.3500 -438,700.81 -5.59E+09
(97.570) (5.92E+05) (4.54E+09)
AYear: 1979 -23.9900 -883,580.64 -7.74E+09
(108.860) (6.60E+05) (5.23E+09)
AYear: 1980 -35.7500 -602,736.51 -5.22E+09
(81.230) (5.00E+05) (3.90E+09)
AYear: 1981 -115.8400 -715,383.33 -5.54¢+09*
(71.960) (4.38E+05) (3.34E+09)
AYear: 1982 4.0500 -674,154.43 -5.95E+09
(96.550) (5.90E+05) (4.72E+09)
AYear: 1983 93.8100 -81,396.43 -2.69E+09
(58.050) (3.62E+05) (2.89E+09)
AYear: 2003 72.9800 -123,823.09 -9.47E+08
(105.660) (5.78E+05) (4.43E+09)
AYear: 2004 -689.96*** -3477212.11** -2.256+10**
(151.820) (1.23E+06) (1.07E+10)
Observations 2248 2248 2248 2248 2248 2248
R-squared 0.0000 0.0600 0.0000 0.0200 0.0000 0.0100
F Test for joint significance of IV 11.27 11.47 3.97 5.48 3.18 3.55

Note: Standard errors robust to heteroskedasticity and household-level clustering appear in parentheses. Income measured as real Rupees per adult equivalent.
Rainfall shock measured as deviation from mean rainfall across observed waves of the panel.
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Table 4. Modelling Income Dynamics, TSLS GMM Estimates

Dependent variable: AYt

Linear Polynomial

Quadratic Polynomial

Cubic Polynomial

(1) (2) 3) 4) 5) (6)
AY 4 -0.040221  0.5319124***  0.179322  1.4574380*** 0.891272  2.1515322**
(0.219) (0.187) (0.368) (0.479) (1.376) (0.924)
AY, ¢ -0.000065 -0.0002763** -0.000556 -0.000837
(0.000) (0.000) (0.001) (0.001)
AY,,° 0.000000 0.000000
(0.000) (0.000)
AYear: 1977 52.7805 -27.4243 1.7347
(47.369) (64.855) (68.988)
AYear: 1978 -53.9930 -81.8115 -44.8529
(48.196) (55.255) (61.983)
AYear: 1979 4.8351 -33.5984 -41.0478
(31.397) (40.812) (41.855)
AYear: 1980 -79.5996190* -72.2559 -74.1045621*
(42.504) (45.081) (44.390)
AYear: 1981 91.9102651** 138.9750006** 155.4561876*
(43.697) (58.681) (82.135)
AYear: 1982 95.5066867*** 69.4890 46.9323
(32.619) (43.444) (70.288)
AYear: 1983 -178.9808074*** -194.0245059*** -162.7718092**
(43.983) (47.057) (58.015)
AYear: 2003 -460.2581603*** -481.6388404*** -585.3554501**
(122.901) (138.147) (202.049)
AYear: 2004 603.2967086*** 322.8020 523.2767
(190.981) (238.326) (403.580)
Observations 2248 2248 2248 2248 2248 2248
R-squared 0.035 -0.728 0.044 -1.131 -2.131 -2.59
Second-Stage Diagnostics
Anderson-Rubin F stat 0.615 5.648 0.615 5.648 0.615 5.648
Prob > F 0.606 0.001 0.606 0.001 0.606 0.001
Hansen J Statistic (overidentification) 1.699 6.137 1.25 1.991 - -
Prob > chi-squared 0.428 0.0465 0.264 0.158 - -

Source: Analysis of ICRISAT VLS 1975-2004 data. Standard errors robust to heteroskedasticity and clustering within household-
year cells appear in parentheses. Income measured in 1975 Rupees per adult equivalent. Anderson Rubin F statistic tests the null
hypothesis that the endogenous regressors are jointly insiggicant in structural equation. Hansen J Statistic, reported for
overidentified models tests null hypothesis that the excluded instruments are uncorrelated with the structural equation error. Cragg-
Donald F-Statistics reported includes Kleibergen-Paap rank correction. Cragg-Donald 'Weak V' statistic tests for the null hypothesis
that instruments are strongly correlated with the set of endogeneous variables.



Table 5. Unpacking Household Fixed Effects - Correlates of HH Steady State Income

Dependent variable: HH Fixed Effect

Linear Polynomial

Quadratic Polynomial

Cubic Polynomial

Linear Polynomial

Quadratic Polynomial

Cubic Polynomial

()

()

@)

“4)

)

(6)

@)

(8)

9)

(10)

a1

(12)

HH Head Education, 1975 24636 118.02° 276.14"* 246.73 546.83°* 58592 15380  75.69° 17569~ 17033 35025  388.12"
(78.08)  (34.42)  (88.50)  (83.04)  (185.17) (203.52)  (55.20)  (23.86)  (61.61)  (56.58)  (129.98)  (143.43)
HH Head Age, 1975 7.58 2.42 7.88 3.83 11.31 8.94 4.98 1.30 5.05 1.68 5.30 2.82
(6.41) (3.06) (6.93) (5.57) (12.54)  (12.82) (4.75) (2.38) (5.09) (4.27) (9.02) (9.43)
HH Head Sex, 1975 28258 -170.78  -283.79  -17529  -544.82  -49539  -170.77  -11658  -163.28  -83.77  -332.96  -285.58
(312.02)  (165.44)  (315.90) (185.73)  (573.54)  (508.95)  (334.71)  (181.91)  (342.00) (219.82)  (604.79)  (551.13)
HH Size, 1975 14.30 18.92 10.80 3.66 19.27 11.70 -50.85 -11.63 -59.69 -49.91 -112.71  -120.26
(4122)  (20.65)  (44.00)  (33.96)  (84.86)  (86.37)  (35.80)  (18.89)  (39.69)  (36.57)  (74.57)  (82.20)
Nr of Members ages 9-14, 1975 -89.80 -42.28 -95.37 -66.31 23310 23354  -21.88 -11.74 -21.53 -10.13 -84.53 -83.48
(78.01)  (36.30)  (81.57)  (55.77)  (154.17) (148.28)  (53.14)  (27.37)  (55.35)  (43.30)  (102.38)  (102.19)
Nr of Members ages 0-8, 1975 -110.84*  -70.25"*  -111.52*  -7333  -15526  -13262  -11.51 -24.09 -3.94 8.46 49.51 72.61
(56.02)  (23.83)  (60.57)  (47.78)  (128.38)  (133.50)  (41.11)  (18.73)  (44.72)  (38.84)  (107.92)  (118.63)
Area Owned by HH (in Ha), 1975 59.40***  28.67***  64.05*  48.65"*  113.61™ 112.66™**
(8.48) (4.21) (8.66) (9.79) (16.25)  (18.32)
Value of HH Assets (in Ru), 1975 0.01*** 0.00** 0.01™  0.01™  0.03"**  0.03***
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01)
Low Caste Dummy -369.76** -169.44** -35329** -103.01 -459.95" -26597  -16523  -77.39  -130.91 66.17 -13.04 185.37
(104.06)  (53.48)  (111.57)  (101.97) (214.97) (222.30) (103.49)  (49.14)  (111.97) (103.30) (216.67)  (229.13)
Village 2 Dummy -106.04  -97.40  -10435  -92.37  -22221  -224.16 38.53 -33.77 53.22 27.57 105.68 108.51
(154.70)  (65.35)  (153.37)  (87.22)  (265.42)  (239.91) (154.22)  (65.91)  (151.60)  (81.37)  (251.54)  (214.30)
Village 3 Dummy -263.83  -164.05**  -280.17  -235.89*  -599.90* -619.39"*  -148.93  -115.86* -154.29  -139.98  -319.42  -332.37
(170.21)  (76.23)  (174.57)  (118.64)  (294.11) (274.35) (141.15)  (63.43)  (143.25)  (100.35) (232.85) (216.16)
Village 4 Dummy -250.42  -186.45"* -280.42* -313.79™* -543.10* -627.95 -290.62* -208.97*** -322.93** -345.95"* -593.98** -674.60**
(152.00)  (64.35)  (152.90)  (87.12)  (283.78) (261.88) (142.41)  (62.60)  (142.98)  (89.29)  (270.15)  (255.71)
Village 5 Dummy 194.40 35.75 215.46 128.33 187.48 138.30  323.20 9147 35610  235.41*  487.63*  443.82*
(196.18)  (83.84)  (205.46) (145.05) (301.39) (271.11) (158.79)  (66.63)  (164.71) (117.48) (247.54)  (219.64)
Village 6 Dummy 25622  -165.33*  -311.38  -400.40** -758.04* -932.66™  -62.27 -84.37 -98.79  -238.41  -281.39  -44452
(215.70)  (97.18)  (222.92)  (152.23)  (413.67)  (402.93) (164.56)  (72.82)  (166.67) (112.90) (320.36)  (317.25)
Village 7 Dummy 972.59*  537.80*  847.75 46.83 97537 25959  887.93*  500.34™ 75553 -23.36 785.03 66.67
(504.19)  (241.29)  (520.38)  (339.16)  (962.69)  (903.09)  (456.94)  (227.52)  (467.75)  (306.05)  (854.93)  (798.29)
Observations 219 219 219 219 219 219 219 219 219 219 219 219
R-squared 0.281 0.278 0.281 0.262 0.26 0.25 0.477 0.448 0.481 0.438 0.492 0.475

Note: Robust standard errors eported in parentheses. We restrict the sample size to the number of households for which we can compute income fixed effects. Fixed
effects used in columns (1) to (6) and (7) to (12) were obtained using parameter estimates corresponding to columns (1) to (6) model specifications reported in Table 3.
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Graph [A1]: Simulated Income Dynamics for Median, 10" percentile and 90" percentile of fixed effects
All Model Specifications: Linear, Quadratic and Cubic
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Panel B — Linear, Quadratic and Cubic with Year Dummies
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Note: Simulations of income dynamics have been computed using the estimated parameter of the polynomial of lagged income. Computed fixed effects act as shifters of the
locus of polynomial. Simulation curves are depicted for a realistic range of lagged-income. Intersections between the dynamic trajectories and the 45-degree line indicate a

potential equilibrium. Vertical line indicates zero income.
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Graph [A1]: Simulated Income Dynamics for Median, 10" percentile and 90" percentile of fixed effects
All Model Specifications: Linear, Quadratic and Cubic
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Panel B — Linear, Quadratic and Cubic with Year Dummies
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Graph [A3]: VLS1 and VLS2 Dynamics - Simulated Income Dynamics with Median, 10" percentile and 90" percentile of fixed
effects
Model Specification: Quadratic Polynomial Model with Year Dummies by Panel Period
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Note: Simulations of income dynamics have been computed using the estimated parameter of the polynomial of lagged income. Computed fixed effects act as shifters of the locus of
polynomial. Simulation curves are depicted for a realistic range of lagged-income. Intersections between the dynamic trajectories and the 45-degree line indicate a potential equilibrium.
Vertical line indicates zero income. Estimation methodology drops two years from each panel period, 1975-74 and 2001-2002 in VLS1 and VLS2 respectively.
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Table A1. Robustness Checks - TSLS LIML and TSLS Fuller

LIML TSLS Estimates

Fuller TSLS Estimates

Dependent variable: AYt Linear Quadratic Cubic Linear Quadratic Cubic
) Polynomial Polynomial Polynomial Polynomial Polynomial Polynomial
) (2) )] 4) (5) (6)
AY 0.5452230* 1.3747701* 2.1515322** 0.400700 1.0122233** 1.2135817***
(0.331) (0.708) (0.924) (0.268) (0.423) (0.395)
AY,? -0.0002157 -0.000837 -0.000154 -0.0003472**
(0.000) (0.001) (0.000) (0.000)
AY,.,° 0.000000 0.000000
(0.000) (0.000)
AYear: 1977 13.9849069 -47.7631 1.7347 46.2397 -1.9216 22.4936
(-70.758) (77.090) (68.988) (58.077) (58.182) (50.959)
AYear: 1978 -43.1131818 -81.7873 -44.8529 -23.7125 -53.7785 -36.8911
(-65.224) (63.281) (61.983) (56.029) (52.500) (49.302)
AYear: 1979 -6.3901965 -35.8641 -41.0478 -0.7069 -22.5017 -22.5806
(-36.227) (46.034) (41.855) (33.247) (38.195) (36.012)
AYear: 1980 -81.0020274*  -78.8992155*  -74.1045621*  -78.5088478*  -77.3101444*  -75.0904329*
(-45.205) (46.785) (44.390) (43.080) (44.237) (42.653)
AYear: 1981 96.6846359*  126.9684644* 155.4561876*  87.0024367*  109.8685011* 115.9691290*
(-51.380) (67.753) (82.135) (46.189) (56.448) (59.367)
AYear: 1982 98.9536262** 75.4202 46.9323 109.2556494*** 91.1450854**  85.2590449*
(-41.694) (50.390) (70.288) (36.976) (41.410) (44.673)
AYear: 1983 -189.8215336*** -208.1811944*** -162.7718092*** -169.8225183*** -185.4216336*** -165.6450532***
(-57.672) (51.149) (58.015) (49.766) (44.471) (43.423)
AYear: 2003 -466.4809810*** -478.5441391*** -585.3554501*** -448.3862661*** -459.2445232*** -486.9541585***
(-138.666) (149.300) (202.049) (127.306) (131.663) (140.723)
AYear: 2004 549.4638479** 437.2782 523.2767 456.0534739* 387.2351795*  385.8545412*
(-270.853) (273.683) (403.580) (233.061) (228.753) (227.718)
Observations 2248 2248 2248 2248 2248 2248
R-squared -0.7550 -0.9340 -2.5900 -0.4830 -0.5430 -0.6810
First-Stage Diagnostics
Number of Instruments 3 3 3 3 3 3
Cragg-Donald F-Statistic 11.47 2.48 0.49 11.47 2.48 0.49
Second-Stage Diagnostics
Anderson-Rubin F stat 5.648 5.648 5.648 5.648 5.648 5.648
Prob > F 0.001 0.001 0.001 0.001 0.001 0.001
Hansen J Statistic (overidentification) 5.427 1.761 - 1.360 0.520 -
Prob > chi-squared 0.066 0.185 - 0.507 0.471 -

Note: Standard errors robust to heteroskedasticity and household-level clustering appear in parentheses. Income measured in 1975 Rupees per adult equivalent. Anderson Rubin F
statistic tests the null hypothesis that the endogenous regressors are jointly insignificant in structural equation. Hansen J Statistic, reported for overidentified models tests null hypothesis
that the excluded instruments are uncorrelated with the structural equation error. Cragg-Donald F-Statistics reported includes Kleibergen-Paap rank correction. Cragg-Donald 'Weak IV'
statistic tests for the null hypothesis that instruments are strongly correlated with the set of endogenous variables.
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Table A2. Robustness Checks - Parsimonious IV Set: Interactions ( Rainfall x Land ) and ( Rainfall x Kids )

Dependent variable: AYt

Quadratic Polynomial Model

GMM or LIML Estimators

Fuller Estimator

(1)

(2)

AY 1.7268980** 1.1053874**
(0.581) (0.324)
AY 2 -0.0003471* -0.0002045**
(0.000) (0.000)
AYear: 1977 -51.1554 5.9872
(73.194) (54.238)
AYear: 1978 -84.7624 -49.3782
(62.102) (50.234)
AYear: 1979 -47.7931 -25.4332
(45.833) (37.261)
AYear: 1980 -74.9713 -75.0995174*
(47.679) (43.800)
AYear: 1981 135.1463401* 110.2271740*
(69.665) (55.891)
AYear: 1982 72.0140 92.7845468*
(57.392) (42.975)
AYear: 1983 -198.1413051*** -175.8830890***
(51.073) (42.719)
AYear: 2003 -466.6884612*** -449.5562886"**
(180.862) (135.899)
AYear: 2004 269.7582 296.6419
(289.062) (214.984)
Observations 2248 2248
R-squared -1.7200 -0.6300
First-Stage Diagnostics
F-Statistic - AY}4 15.08 15.08
F-Statistic - AY,.; 6.98 6.98
Number of Instruments 2 2
Cragg-Donald F-Statistic 3.35 3.35
Second-Stage Diagnostics
Anderson-Rubin F stat 0.166 8.436
Prob > F 0.847 0.000

Note: Standard errors robust to heteroskedasticity and household-level clustering appear in parentheses. Income measured in 1975 Rupees per adult equivalent. Anderson Rubin F
statistic tests the null hypothesis that the endogenous regressors are jointly insignificant in structural equation. Hansen J Statistic not defined since both models are only just-identified
Cragg-Donald F-Statistics reported includes Kleibergen-Paap rank correction. Cragg-Donald 'Weak IV' statistic tests for the null hypothesis that instruments are strongly correlated with the
set of endogenous variables. Parsimonious instruments are as follows: (Rainfall x Land Operated (Ha)) and (Rainfall x Nr Kids 0-8).
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Table A3. Robustness Checks - Stability of Parameters Between VLS1 and VLS2, TSLS GMM Estimator

Quadratic Polynomial Model

Dependent variable: AYt

VLSH VLS2
() () (3) 4)
AY ¢y 1.1690928*** 1.8247166*** 2.014811 2.063861
(0.298) (0.456) (2.413) (2.265)
AY,. 2 -0.0002431** -0.0003925*** -0.000274 -0.000398
(0.000) (0.000) (0.000) (0.000)
AYear: 1977 -66.8549
(49.887)
AYear: 1978 -79.1821
(53.281)
AYear: 1979 -53.1049
(38.517)
AYear: 1980 -85.3914316*
(44.409)
AYear: 1981 167.8761505***
(53.963)
AYear: 1982 54.2389
(42.624)
AYear: 1983 -198.5292210***
(42.751)
AYear: 2003 -485.4916698*
(251.244)
AYear: 2004 344.6865
(585.742)
Observations 1836 1836 412 412
R-squared -0.7050 -1.4630 -1.9170 -2.5500
First-Stage Diagnostics
Number of Instruments 3 3 3 3
F-Statistic - AY,4 57.37 13.14 3.52 1.8
F-Statistic - AY,.;? 20.21 8.9 1.94 1.69
Cragg-Donald F-Statistic 5.05 2.16 0.21 0.68
Second-Stage Diagnostics
Anderson-Rubin F stat 21.050 12.420 3.008 1.612
Prob > F 0.000 0.000 0.031 0.187
Hansen J Statistic (overidentification) 5.591 4.898 1.121 0.0173
Prob > chi-squared 0.018 0.027 0.29 0.895

Note: Standard errors robust to heteroskedasticity and household-level clustering appear in parentheses. Income measured in 1975 Rupees per adult equivalent. Anderson Rubin F statistic tests
the null hypothesis that the endogenous regressors are jointly insignificant in structural equation. Hansen J Statistic, reported for overidentified models tests null hypothesis that the excluded
instruments are uncorrelated with the structural equation error. Cragg-Donald 'Weak IV' statistic tests for the null hypothesis that instruments are strongly correlated with the set of endogenous
variables. Estimation methodology  drops two  years  from each panel period, 1975-74  and 2001-2002 in VLS1 and VLS2 respectively.
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