Mitigation of Climate Change

CENTER FOR CLIMATE CHANGE AND SUSTAINABLE ENERGY POLICY

Diana Ürge-Vorsatz

Center for Climate Change and Sustainable Energy Policy,

Central European University

Vice Chair, WGIII, IPCC

Coordinating Lead Author, Buildings Chapter, WGIII, AR5, IPCC

Paris December 7, 2015

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

3CSEP

CLIMATE CHANGE 2014 *Mitigation of Climate Change*

Co-Chairs during AR5: Ottmar Edenhofer Youba Sokona Ramon Pichs Madruga

Working Group III contribution to the IPCC Fifth Assessment Report

GHG emissions growth has accelerated despite reduction efforts.

GHG emissions growth between 2000 and 2010 has been larger than in the previous three decades.

Limiting warming to 2°C is still possible However

it involves substantial technological, economic and institutional challenges.

Stabilization of atmospheric GHG concentrations requires moving away from business as usual.

Lower ambition mitigation goals require similar reductions of GHG emissions.

Delaying mitigation is estimated to increase the difficulty and narrow the options for limiting warming to 2°C.

Delaying mitigation is estimated to increase the difficulty and narrow the options for limiting warming to 2°C.

INDCs may cap 21st century warming at 2.7C

UNFCCC: SYNTHESIS REPORT ON THE AGGREGATE EFFECT OF INTENDED NATIONALLY DETERMINED CONTRIBUTIONS (INDCs), November 2015

Mitigation cost estimates vary, but do not strongly affect global GDP growth.

- Reaching mitigation goals does not have to compromise development :
 - a 0.04-0.14% loss in annual GDP growth (businessas-usual baseline: 1.6-3.0% GDP growth).

Mitigation opportunities in cities and buildings

A substantial share of emission increase in Asia in the next few decades will come from cities

3CSEP

- Urban areas generate 80% of GDP and 71% 76% of CO2 emissions from global energy use
- Each week the urban population increases by 1.3 million
- Over 70% of global building energy use growth until 2050 will take place in developing country cities
- This enormous expected increase poses both an opportunity and responsibility

Working Group III contribution to the IPCC Fifth Assessment Report

A broad diversity of opportunities exist to keep urban emissions at bay while increasing services

- Urban design and form
- Energy efficient buildings
 - Iow-energy architecture
 - avoiding mechanical cooling needs
 - High-efficiency appliances, lighting and equipment
 - High performance operation of buildings (mainly commercial)
- Fuel switch to low-carbon energy sources (RES) or highefficiency equipment using energy contributing to CC

3CSEP

Lowering embodied energy in the built infrastructure –
affordable low-carbon, durable construction materials

Mitigation opportunities through urban planning:

- 1. increasing accessibility
- 2. increasing connectivity
- 3. increasing land use mix
- 4. increasing transit options
- increasing and co-locating employment and residential densities
- 6. increasing green space and other carbon sinks

3CSEP

7. Increasing white and light-colored surfaces

Working Group III contribution to the IPCC Fifth Assessment Report

Energy efficiency in buildings can substantially lower sectoral energy use; thermal uses are most reducible

for further details on mitigation options and potentials, see Chapter 9

3CSEP

UNEP WMO

IPCC Fifth Assessment Report

Increased efficiency has been a very powerful tool to keep emission and energy demand increases at bay for decades

Working Group III contribution to the IPCC Fifth Assessment Report

P 20 energy residential use, 1990 - 2010 0 commercia

Thank you for your attention

ts st of a hubble by because south has hereba.

Diana Ürge-Vorsatz Diana

Center for Climate Change and Sustainable Energy Policy (3CSEP), CEU

http://3csep.ceu.hu www.mitigation2014.org Email: vorsatzd@ceu.hu

Supplementary slides

CENTER FOR CLIMATE CHANGE AND SUSTAINABLE ENERGY POLICY

Urban and buildings-level mitigation options can also contribute towards development goals

"Overall, the potential for co-benefits for energy end-use measures outweigh the potential for adverse side-effects, whereas the evidence suggests this may not be the case for all energy supply and AFOLU measures." (SPM 4.1)

How mitigation options can go hand-inhand with development goals (selected co-benefits, focus on developing countries)

- Health 2 m annually die from indoor air pollution from cooking, many women and children
- Increased productive time for women and children
- Air quality improvement indoor and outdoor
- decreasing the burden of energy generation capacity development needs
- Efficiency increases access to energy services
 - Contribution to poverty alleviation
- Decreased needs for energy imports (energy security)
- Better employment and economic opportunities through accessivity
- Reduced congestion
- Several mitigation options in buildings have been shown to have net negative social mitigation costs

3CSEP

Working Group III contribution to the IPCC Fifth Assessment Report

Working Group III contribution to the IPCC Fifth Assessment Report

Key Message 4: Infrastructure build-up over the next few decades will result in significant emissions

Total CO₂ emissions (per capita) needed to build up today's infrastructure

Key Message 4: Infrastructure build-up over the next few decades will result in significant emissions

Key Message 5: Large mitigation opportunities exist where urban form is not locked in, but often where there are limited financial and institutional capacities

Government Scale

Key Message 6: Thousands of cities are undertaking climate action plans, but their impact on urban emissions is uncertain

Summary

- 1. Urban areas contribute considerably to global primary energy demand and energy-related CO_2 emissions.
- 2. The feasibility of spatial planning instruments for climate change mitigation depends highly upon each city's financial and governance capability.
- **3.** Urban planning mitigation options include:
 - 1. increasing accessibility
 - 2. increasing connectivity
 - 3. increasing land use mix
 - 4. increasing transit options
 - 5. increasing and co-locating employment and residential densities

3CSEP

6. increasing green space and other carbon sinks

1. The building sector is responsible for a high share of emissions

- In 2010, the building sector accounted for
- 117 EJ or 32% of global final energy
- 25% of energy-related CO2 emissions (9.2 Gt CO2e)
- 51% of global electricity consumption
- a significant amount of F-gas emissions: up to a third of all such emissions
- app. one-third of black carbon emissions

3CSEP

Challenge #1 but if only direct emissions are reported, buildings are insignificant

Allocation of Electricity/Heat Generation Emissions to End-use Sectors for 2010

Source: Figure A.II.2

Historical development of emissions by sector (fig 5.18) (note: direct emissions only)

Baseline Scenarios: Direct vs. Indirect Emission Accounting

Source: Figure SPM.10, TS.15
Importance of building sector emissions

- In developed countries most future building emissions can be affected by retrofits....
- …while in developing countries through new construction.

Final Energy for SH&C and floor area by building vintage. Deep Efficiency Scenario

Lesson #2: importance of retrofits

CENTER FOR CLIMATE CHANGE AND SUSTAINABLE ENERGY POLICY

In developed countries, high-efficiency retrofits are the key to a low-emission building future; while in developing countries very high efficiency new buildings (cooling!!).

2. Efficient buildings have a very high mitigation potential

CENTER FOR CLIMATE CHANGE AND SUSTAINABLE ENERGY POLICY

Energy Demand Reduction Potential

Source: Figure SPM.11

Thermal energy uses have the highest potential for energy use reductions in the building sector

3. They are among the most costeffective options to mitigate CC

CENTER FOR CLIMATE CHANGE AND SUSTAINABLE ENERGY POLICY

AR4: The buildings sector offers the largest low-cost potential in all world regions by

Lesson #4: DURABILITY

Durability of (energy-efficient) buildings and their components are crucial in determining their mitigation cost-effectiveness; as well as improve their mitigation potential due to reduced embodied

emissions

Figure 9.14. Cost of conserved energy as a function of energy performance improvement (kWh/m2/yr difference to baseline) to reach 'Passive House' or more stringent performance levels, for new construction by different building types and climate zones in Europe

BUILDING TYPES

- Single-Family Buildings
- Multifamily Buildings
- △ Commercial Buildings
- Case Studies from Eastern Europe
 - Case Studies from Western Europe

Working G

IPCC Fifth

CLIMATE

- Only Heating Very High Heating Demand
- Only Heating High Heating Demand
- Only Heating Medium and Low Heating Demand
- High Heating and Low Cooling Demand
- Medium Heating and Low Cooling Demand
- Low Heating and Medium Cooling Demand
- Cooling and Dehumidification High Cooling Demand

Energy Performance Improvement Relative to Baseline [%]

Figure 9.15. Cost of conserved carbon as a function of specific energy consumption for selected best practices shown in Figure 9.14.

Working Group III cor IPCC Fifth Assessmen

Figure 9.16. Cost of conserved energy as a function of energy saving in percent for European retrofitted buildings by building type and climate zones.

Energy Saving Relative to Baseline [%]

BUILDING TYPES

- Single-Family Buildings
- Multifamily Buildings
- △ Commercial Buildings
- Case Studies from Eastern Europe
- Case Studies from Western Europe

CLIMATE

- Heating Only Very High Heating Demand
- Heating Only High Heating Demand
- Heating Only Medium and Low Heating Demand
- High Heating and Low Cooling Demand
- Medium Heating and Low Cooling Demand
- Low Heating and Medium Cooling Demand
- Cooling and Dehumidification High Cooling Demand

N IF

4. In addition, they have high cobenefits

CENTER FOR CLIMATE CHANGE AND SUSTAINABLE ENERGY POLICY

"Overall, the potential for co-benefits for energy end-use measures outweigh the potential for adverse side-effects, whereas the evidence suggests this may not be the case for all energy supply and AFOLU measures." (SPM 4.1)

Co-benefits and adverse side-effects of energy-efficient buildings

Buildings	/concerns		dditional objectives/
	Environmental	Other	cial
			e Table TS.3.
Fuel switching, RES incorporation, green roofs, and other measures reducing emissions intensity	 Health impact in residential buildings via ↓ Outdoor air pollution (r/h) ↓ Indoor air pollution (in DCs) (r/h) ↓ Fuel poverty (r/h) ↓ Ecosystem impact (less outdoor air pollution) (r/h) ↑ Urban biodiversity (for green roofs) (m/m) 	Reduced Urban Heat Island Effect (UHI) (I/m)) via energy cost) (I/m) en/children cookstoves) (m/h)
Retrofits of existing buildings (e.g., cool roof, passive solar, etc.) Exemplary new buildings Efficient equipment	Health impact via ↓ Outdoor air pollution (r/h) ↓ Indoor air pollution (for efficient cookstoves) (r/h) ↓ Indoor environmental conditions (m/h) ↓ Fuel poverty (r/h) ↓ Insufficient ventilation (m/m) ↓ Ecosystem impact (less outdoor air pollution) (r/h) ↓ Water consumption and sewage production (I/I)	Reduced UHI (retrofits and new exemplary buildings) (I/m)	s, efficient equipment) (m/h) st for housing due to the n) rofits and exemplary new en and children cookstoves) (m/h)
Behavioural changes reducing energy demand	 ↓ Health impact via less outdoor air pollution (r/h) & improved indoor environmental conditions (m/h) ↓ Ecosystem impact (less outdoor air pollution) (r/h) 		-

Working Group III contribution to the IPCC Fifth Assessment Report

3CSEP

Studies on employment effects due to improved building energy efficiency

Working Group III contribution to the IPCC Fifth Assessment Report

Further co-benefits, details

- monetizable co-benefits alone are at least twice the resulting operating cost savings.
- Energy efficient buildings may result in increased productivity by 1–9% or even higher.
- Productivity gains can rank among the highest value co-benefits when these are monetized, esp. in countries with high labour costs

Significant potential energy security gains:

e.g. a CEU study found that deep retrofitting the Hungarian building stock can save 39% of natural gas imports, and up to 59% of January imports (when most vulnerable to supply disruptions)

3CSEP

Working Group III contribution to the IPCC Fifth Assessment Report

While opportunities are great, there is also a substantial lock-in risk

"Infrastructure developments and long-lived products that lock societies into GHG-intensive emissions pathways may be difficult or very costly to change, reinforcing the importance of early action for ambitious mitigation" (SPM 4.2)

Increasing urban density is a necessary but not sufficient condition for lowering urban emissions

Climate Types

1. Only Heating (very HHD) 2. Only Heating (HHD) 3. Only Heating (MHD+LHD) 4. Heating and Cooling (very HHD+LCD) 5. Heating and Cooling (HHD+MCD) 6. Heating and Cooling (HHD+LCD) 7. Heating and Cooling (MHD+MCD) 8. Heating and Cooling (MHD+LCD) 9. Heating and Cooling (LHD+MCD) 10. Heating and Cooling (LHD+LCD) 11. Only Cooling (very HCD) 12. Only Cooling (HCD) 13. Only Cooling (LCD+MCD) 14. Cooling and Dehum (very HCD) 15. Cooling and Dehum (HCD) 16. Cooling and Dehum (LCD+MCD) 17. Heating, Cooling, Dehum

3CSEP

Working Group III contribution to the **IPCC Fifth Assessment Report**

*Lock-in Risk of Sub-Optimal Scenario Realative to Energy Use in 2005.

Substantial reductions in emissions would require large changes in investment patterns.

Cost of conserved carbon for implemented energy efficiency programs, post-ante evaluation results (based on data in **Table 9.9** (boza-kiss et.al 2013 in **COSUst**)

Key Message 1: Urban areas are focal points of energy use and CO₂ emissions

Urban energy use: 67–76% Urban CO₂ emissions: 71–76%

of global total

3CSEP

Working Group III contribution to the IPCC Fifth Assessment Report

Energy Demand Reduction Potential

Source: Figure SPM.11

Window of opportunity in next two decades as large portions of global urban areas have yet to be built

constructing and operating the built environment

3CSFP

To lower urban emissions, need diverse urban land use mix

INTERGOVERNMENTAL PANEL ON CLIMATE Change

WMO

Without additional mitigation, global mean surface temperature is projected to increase by 3.7 to 4.8°C over the 21st century.

3CSEP

IPCC Fifth Assessment Report

About half of the cumulative anthropogenic CO₂ emissions between 1750 and 2010 have occurred in the last 40 years.

GHG emissions rise with growth in GDP and population.

The long-standing trend of decarbonisation has reversed.

There is far more carbon in the ground than emitted in any baseline scenario.

Working Group III contribution to the IPCC Fifth Assessment Report

3CSEP

Climate change is a global commons problem.

Allocation of Electricity/Heat Generation Emissions to End-use Sectors for 2010

Source: Figure A.II.2

Industry I

From a short and mid-term perspective energy efficiency and behaviour change could significantly contribute to GHG mitigation

The energy intensity of the industry sector could be directly reduced by up to approximately 25% compared to the current level through the wide-scale deployment of best available technologies, upgrading/replacement, particularly in countries where these are not in practice and in non-energy intensive industries

Additional energy intensity reductions of up to approximately 20% may potentially be realized through innovation

3CSEP

Working Group III contribution to the IPCC Fifth Assessment Report

To lower urban emissions, need diverse urban land use mix

INTERGOVERNMENTAL PANEL ON CLIMATE Change

WMO
Systemic approaches to mitigation across the economy are expected to be most environmentally as well as cost effective.

3CSEP

450 ppm CO₂eq with Carbon Dioxide Capture & Storage

Accounting for indirect emissions has key implications on mitigation strategy!

Baseline Scenarios: Direct vs. Indirect Emission Accounting

Source: Figure SPM.10, TS.15

Five main options for reducing GHG emissions related to industry (considering also traded goods)

Industry

- In the long-term a shift to low-carbon electricity, radical product innovations (e.g. alternatives to cement), or CCS (for mitigating i.a. process emissions) could contribute to significant (absolute) GHG emissions reductions
- Systemic approaches and collaborative activities across companies and sectors and especially SMEs through clusters can reduce energy and material consumption and thus GHG emissions
- Important options for mitigation in waste management is waste reduction, followed by re-use, recycling and energy recovery

3CSEP

Mitigation through urban design

Infrastructure and urban form are strongly linked and lock-in patterns of land use, transport and housing use, and behavior

	VKT Elasticities	Metrics to Measure	CO-Variance	Ra	nges	
			With Density	High Carbon	Low Carbon	
Density	Population and Job Residential Household Job Population	- Household / Population - Building /Floor-Area Ratio - Job / Commercial - Block / Parcel - Dwelling Unit	1.00			
Land Use	Diversity and Entropy Index Land Use Mix	- Land Use Mix - Job Mix - Job-Housing Balance - Job-Population Balance - Retail Store Count - Walk Opportunities		EEEE BBBB BBBB		
Connectivity	Combined Design Metrics Intersection Density	 Intersection Density Proportion of Quadrilateral Blocks Sidewalk Dimension Street Density 	0.39			
Accessibility	Regional Accessibility Distance to CBD Job Access by Auto Job Access by Transit Road-Induced Access (Short-Run) Road-Induced Access (Long-Run)	 Population Centrality Distance to CBD Job Accessibility by Auto and/or Transit Accessibility to Shopping 	0.16		● <u>6</u> ● ● ★ ● ● ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆	inie

Increasing and co-locating residential and employment densities can lower emissions

	VKT Elasticities	Metrics to Measure	CO-Variance	Ranges		
			With Density	High Carbon	Low Carbon	
Density	Population and Job Residential Household Job Population	- Household / Population - Building /Floor-Area Ratio - Job / Commercial - Block / Parcel - Dwelling Unit	1.00			Higher density leads to less
Land Use	Diversity and Entropy Index Land Use Mix	- Land Use Mix - Job Mix - Job-Housing Balance - Job-Population Balance - Retail Store Count - Walk Opportunities	-			(i.a. shorter distances travelled).
Connectivity	Combined Design Metrics Intersection Density	- Intersection Density - Proportion of Quadrilateral Blocks - Sidewalk Dimension - Street Density	0.39			
Accessibility	Regional Accessibility Distance to CBD Job Access by Auto Job Access by Transit Road-Induced Access (Short-Run) Road-Induced Access (Long-Run)	 Population Centrality Distance to CBD Job Accessibility by Auto and/or Transit Accessibility to Shopping 	0.16			
-(0.4 -0.2 0.0 0.2	0.4 0.6 0.8 1	.0	2 X		- Constant

Increasing land use mix can significantly reduce emissions

	VKT Elasticities	Metrics to Measure	CO-Variance	Ranges		
			With Density	High Carbon	Low Carbon	
Density	Population and Job Residential Household Job Population	- Household / Population - Building /Floor-Area Ratio - Job / Commercial - Block / Parcel - Dwelling Unit	1.00			
Land Use	Diversity and Entropy Index Land Use Mix	- Land Use Mix - Job Mix - Job-Housing Balance - Job-Population Balance - Retail Store Count - Walk Opportunities	-	EEEE IIII IIIII IIIII IIIII		Mix of land-use reduces
Connectivity	Combined Design Metrics Intersection Density	- Intersection Density - Proportion of Quadrilateral Blocks - Sidewalk Dimension - Street Density	0.39			emissions.
Accessibility	Regional Accessibility Distance to CBD Job Access by Auto Job Access by Transit Road-Induced Access (Short-Run) Road-Induced Access (Long-Run)	 Population Centrality Distance to CBD Job Accessibility by Auto and/or Transit Accessibility to Shopping 	0.16			

Working Group III contribution to the IPCC Fifth Assessment Report

WM

Increasing connectivity can enable multiple modes of transport

	VKT Elasticities	Metrics to Measure	CO-Variance With Density	Ran		
				High Carbon	Low Carbon	
Density	Population and Job Residential Household Job Population	- Household / Population - Building /Floor-Area Ratio - Job / Commercial - Block / Parcel - Dwelling Unit	1.00			
Land Use	Diversity and Entropy Index Land Use Mix	- Land Use Mix - Job Mix - Job-Housing Balance - Job-Population Balance - Retail Store Count - Walk Opportunities				
Connectivity	Combined Design Metrics Intersection Density	 Intersection Density Proportion of Quadrilateral Blocks Sidewalk Dimension Street Density 	0.39			Improved infrastructural
Accessibility	Regional Accessibility Distance to CBD Job Access by Auto Job Access by Transit Road-Induced Access (Short-Run) Road-Induced Access (Long-Run)	 Population Centrality Distance to CBD Job Accessibility by Auto and/or Transit Accessibility to Shopping 	0.16		● #1 ● * 6% ● * 6%	density and design (e.g. streets) reduces emissions.

Working Group III contribution to the IPCC Fifth Assessment Report

WMC

However, there is a major lock-in risk

The Lock-in Risk: global heating and cooling final energy in two scenarios

3CSEP

*Lock-in Risk of Sub-Optimal Scenario Realative to Energy Use in 2005.

Working Group III contribution to AR5: Mitigation

1 Summary for Policymakers

1 Technical Summary

16 Chapters

235 Authors

900 Reviewers

More than 2000 pages

Close to 10,000 references

More than 38,000 comments

INTERGOVERNMENTAL PANEL ON Climate change

WHO UNEP

3CSEP

CLIMATE CHANGE 2014 Mitigation of Climate Change

WORKING GROUP III CONTRIBUTION TO THE FIFTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Regional patterns of GHG emissions are shifting along with changes in the world economy.

See also: IPCC-XL/Doc. 3 - Draft Report of the Thirty-Ninth Session, available at www.ipcc.ch

Regional patterns of GHG emissions are shifting along with changes in the world economy.

See also: IPCC-XL/Doc. 3 - Draft Report of the Thirty-Ninth Session, available at www.ipcc.ch

Co-location of activities reduces direct and indirect GHG emissions

	VKT Elasticities	Metrics to Measure	CO-Variance	Ran		
			With Density	High Carbon	Low Carbon	
Density	Population and Job Residential Household Job Population	- Household / Population - Building /Floor-Area Ratio - Job / Commercial - Block / Parcel - Dwelling Unit	1.00			
Land Use	Diversity and Entropy Index Land Use Mix	- Land Use Mix - Job Mix - Job-Housing Balance - Job-Population Balance - Retail Store Count - Walk Opportunities				Accessibility to
		112 11 122 1114 1216 003 121 21 21 14				people and
Connectivity	Combined Design Metrics Intersection Density	- Intersection Density - Proportion of Quadrilateral Blocks - Sidewalk Dimension - Street Density	0.39			places (jobs, housing, services, shopping)
Accessibility	Regional Accessibility Distance to CBD Job Access by Auto Job Access by Transit	 Population Centrality Distance to CBD Job Accessibility by Auto and/or Transit Accessibility to Shopping 	0.16		● # 1	reduces emissions.
;	Road-Induced Access (Short-Run) Road-Induced Access (Long-Run) -0.4 -0.2 0.0 0.	2 0.4 0.6 0.8	1.0			

Cost of conserved carbon for implemented energy efficiency programs, post-ante evaluation results (based on data in **Table 9.9** (boza-kiss et.al 2013 in **COSUst**)

Global costs rise with the ambition of the mitigation goal.

Substantial reductions in emissions would require large changes in investment patterns and appropriate policies.

