The Intergovernmental Panel on Climate Change (IPCC) was set up jointly by the World Meteorological Organization and the United Nations Environment Programme to provide an authoritative international statement of scientific understanding of climate change. The IPCC’s periodic assessments of the causes, impacts and possible response strategies to climate change are the most comprehensive and up-to-date reports available on the subject, and form the standard reference for all concerned with climate change in academia, government and industry worldwide. This Synthesis Report is the fourth element of the IPCC Fourth Assessment Report “Climate Change 2007”. Through three working groups, many hundreds of international experts assess climate change in this Report. The three working group contributions are available from Cambridge University Press:

Climate Change 2007 – The Physical Science Basis
Contribution of Working Group I to the Fourth Assessment Report of the IPCC
(ISBN 978 0521 88009-1 Hardback; 978 0521 70596-7 Paperback)

Climate Change 2007 – Impacts, Adaptation and Vulnerability
Contribution of Working Group II to the Fourth Assessment Report of the IPCC
(978 0521 88010-7 Hardback; 978 0521 70597-4 Paperback)

Climate Change 2007 – Mitigation of Climate Change
Contribution of Working Group III to the Fourth Assessment Report of the IPCC
(978 0521 88011-4 Hardback; 978 0521 70598-1 Paperback)

Climate Change 2007 – Synthesis Report is based on the assessment carried out by the three Working Groups of the IPCC. It provides an integrated view of climate change and addresses the following topics:
- Observed changes in climate and their effects
- Causes of change
- Climate change and its impacts in the near and long term under different scenarios
- Adaptation and mitigation options and responses, and the interrelationship with sustainable development, at global and regional levels
- The long-term perspective: scientific and socio-economic aspects relevant to adaptation and mitigation, consistent with the objectives and provisions of the Convention, and in the context of sustainable development
- Robust findings, key uncertainties
Climate Change 2007
Synthesis Report

Edited by

The Core Writing Team
Synthesis Report
IPCC

Rajendra K. Pachauri
Chairman
IPCC

Andy Reisinger
Head, Technical Support Unit
Synthesis Report, IPCC

Core Writing Team
Lenny Bernstein, Peter Bosch, Osvaldo Canziani, Zhenlin Chen, Renate Christ, Ogunlade Davidson, William Hare, Saleemul Huq, David Karoly, Vladimir Kattsov, Zbigniew Kundzewicz, Jian Liu, Ulrike Lohmann, Martin Manning, Taroh Matsuno, Bettina Menne, Bert Metz, Monirul Mirza, Neville Nicholls, Leonard Nurse, Rajendra Pachauri, Jean Palutikof, Martin Parry, Dahe Qin, Nijavalli Ravindranath, Andy Reisinger, Jiawen Ren, Keywan Riahi, Cynthia Rosenzweig, Matilde Rusticucci, Stephen Schneider, Youba Sokona, Susan Solomon, Peter Stott, Ronald Stouffer, Taishi Sugiyama, Rob Swart, Dennis Tirpak, Coleen Vogel, Gary Yohe

Technical Support Unit for the Synthesis Report:
Andy Reisinger, Richard Nottage, Prima Madan

Referencing this report
PUBLISHED BY THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

© Intergovernmental Panel on Climate Change, 2008

First published 2008

ISBN 92-9169-122-4

The right of publication in print, electronic and any other form and in any language is reserved by the IPCC. Short extracts from this publication may be reproduced without authorization provided that complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate articles in part or in whole should be addressed to:

IPCC
c/o World Meteorological Organization (WMO)
7bis avenue de la Paix Tel. : +41 22 730 8208
P.O Box No. 2300 Fax.: +41 22 730 8025
CH- 1211 Geneva 2, Switzerland E-mail: IPCC-Sec@wmo.int

The presentation of material and designations employed in this publication do not imply the expression of any opinion whatsoever on the part of the IPCC concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The mention of specific companies or products does not imply that they are endorsed or recommended by IPCC in preference to others of a similar nature which are not mentioned or advertised.

Typeface Times New Roman 9.5/11.5. *System* Adobe PageMaker 6.5

Layout and Graphics Design Support: TERI Press

Printed in Sweden

The Intergovernmental Panel on Climate Change was joint recipient of the 2007 Nobel Peace Prize

© The Nobel Foundation. Nobel Prize® and the Nobel Prize® medal design are registered trademarks of the Nobel Foundation
Foreword

The Intergovernmental Panel on Climate Change (IPCC) was jointly established in 1988, by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), with the mandate to assess scientific information related to climate change, to evaluate the environmental and socio-economic consequences of climate change, and to formulate realistic response strategies. The IPCC multivolume assessments have since then played a major role in assisting governments to adopt and implement policies in response to climate change, and in particular have responded to the need for authoritative advice of the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC), which was established in 1992, and its 1997 Kyoto Protocol.

Since its establishment, the IPCC has produced a series of Assessment Reports (1990, 1995, 2001 and this one in 2007), Special Reports, Technical Papers and Methodology Reports, which have become standard works of reference, widely used by policymakers, scientists, other experts and students. The most recent publications include a Special Report on “Carbon Dioxide Capture and Storage” and one on “Safeguarding the Ozone Layer and the Global Climate System”, published in 2005, and the “Guidelines for National Greenhouse Gas Inventories” re-edited in 2006. A Technical Paper on “Climate Change and Water” is under preparation.

This Synthesis Report (SYR), adopted in Valencia, Spain, on 17 November 2007, completes the four-volume Fourth Assessment Report (AR4), which was released in various steps throughout the year under the title “Climate Change 2007”. It summarises the findings of the three Working Group reports and provides a synthesis that specifically addresses the issues of concern to policymakers in the domain of climate change: it confirms that climate change is occurring now, mostly as a result of human activities; it illustrates the impacts of global warming already under way and to be expected in future, and describes the potential for adaptation of society to reduce its vulnerability; finally it presents an analysis of costs, policies and technologies intended to limit the extent of future changes in the climate system.

The AR4 is a remarkable achievement involving more than 500 Lead Authors and 2000 Expert Reviewers, building on the work of a wide scientific community and submitted to the scrutiny of delegates from more than one hundred participating nations. It is the result of the enthusiasm, dedication, and cooperation of experts from many different but related disciplines. We would like to express our gratitude to all of them, to the Members of the IPCC Bureau, to the staff of the Technical Support Units, particularly of the Technical Support Unit for the IPCC Synthesis Report in The Energy and Resources Institute (TERI) in Delhi, to Dr Renate Christ, Secretary of the IPCC, and to the Secretariat staff.

We acknowledge with gratitude the governments and organisations that contribute to the IPCC Trust Fund and provide support to experts in different ways. The IPCC has been especially successful in engaging in its work a large number of experts from the developing countries and countries with economies in transition; the Trust Fund enables extending financial assistance for their travel to IPCC meetings. We also acknowledge the cooperative spirit in which all government delegates have worked together in the IPCC Sessions to reach a meaningful and powerful consensus.

Finally, we would like to thank the Chairman of the IPCC, Dr Rajendra K. Pachauri, for leading tirelessly and with dedication the effort of all. This is particularly appropriate at this time as the IPCC as a whole, under his guidance, has been awarded the 2007 Nobel Peace Price.

We would also like at this occasion to express deep recognition and sorrow in remembrance of Prof. Bert Bolin, who led the way twenty years ago as first Chairman of IPCC, and who sadly passed away on 30 December 2007 after a brilliant career in meteorology and climate science.

Michel Jarraud
Secretary General
World Meteorological Organization

Achim Steiner
Executive Director
United Nations Environmental Programme
This Synthesis Report with its Summary for Policymakers is the fourth and final part of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) – “Climate Change 2007”. It draws together and integrates for the benefit of policy makers and those from others professions, up to date policy-relevant scientific, technical and socio-economic information on climate change. This report is intended to assist governments and other decision-makers in the public and private sector in formulating and implementing appropriate responses to the threat of human-induced climate change.

The scope of the Synthesis Report includes the information contained in the three Working Group contributions to the IPCC AR4, the Working Group I report on “The Physical Science Basis”, the Working Group II report on “Impacts, Adaptation and Vulnerability” and the Working Group III report on “Mitigation of Climate Change”. It also draws on other IPCC reports, in particular recently published IPCC Special Reports. The Synthesis Report was written by a team dedicated to this task drawn from the authors of each Working Group report of the AR4 led by the Chair of the IPCC. As instructed by the Panel, the authors prepared the draft in a non-technical style while ensuring that scientific and technical facts are recorded correctly.

The Synthesis Report addresses a range of broad policy-relevant questions, structured around 6 topic headings agreed by the Panel, and it gives careful attention to cross-cutting themes. It consists of two parts, a Summary for Policymakers (SPM) and a longer report. The sections of the SPM follow largely the topic structure of the longer report, but for brevity and clarity, certain issues covered in more than one topic are summarised in one section of the SPM.

Topic 1 brings together information from Working Groups I and II on observed changes in climate and the effects of past climate change on natural systems and human society.

Topic 2 addresses causes of change, considering both natural and anthropogenic drivers of climate change. It analyses the chain including greenhouse gas emissions and concentrations, to radiative forcing and resultant climate change, and evaluates whether observed changes in climate and in physical and biological systems can be attributed to natural or anthropogenic causes. In providing that information it draws on information contained in all three Working Group contributions to the AR4.

Topic 3 presents information from the three Working Group reports on projected future climate change and its impacts. It provides updated information on emissions scenarios and projected future changes in climate in the 21st century and beyond, and describes the projected impacts of future climate change on systems, sectors and regions. Special attention is given to issues of human well-being and development.

Topic 4 describes adaptation and mitigation options and responses as assessed in the reports of Working Groups II and III, and the inter-relationship of climate change and response measures with sustainable development. The focus of this topic is on response measures that can be implemented by 2030. Technologies, policies, measures and instruments as well as barriers to implementation are addressed along with synergies and trade-offs.

Topic 5 covers the long-term perspective and analyses scientific, technical and socio-economic aspects relevant to adaptation and mitigation, consistent with the objectives and provisions of the United Nations Framework Convention on Climate Change (UNFCCC). It places decision-making about climate change in a risk management perspective, paying attention to broader environmental and integration issues. The topic describes emissions trajectories for stabilisation of greenhouse gas concentrations at various levels and associated temperature increases, along with information about the costs of mitigation, required technology development and deployment, and avoided climate impacts. It also explores in detail five main reasons for concern regarding climate change, which it finds have become stronger due to new knowledge since the TAR.

Topic 6 highlights robust findings and key uncertainties.

While the Synthesis Report is a largely self-contained document, it needs to be viewed in the context of the other volumes of “Climate Change 2007” and it is recommended that for further details the contributions of the three Working Groups be consulted. Each of the Working Group reports consists of a series of chapters which contain a detailed scientific technical assessment, a Technical Summary, and a Summary for Policymakers that has been approved by the IPCC line by line.

The longer Synthesis Report contains extensive references to the relevant chapters in the Working Group contributions to the AR4 and other relevant IPCC reports. For easy reading, references in the Summary for Policymakers only lead to the relevant sections of the longer Synthesis Report. The CD RoM included in this report contains the full text of the three Working Group contributions to the AR4 in English, as well as the Summaries for Policymakers and Technical Summaries and the Synthesis Report in all official UN languages. References in these electronic versions are provided as hyperlinks to en-
able the reader to easily find further scientific, technical and socio-economic information. A user guide, glossary of terms, and lists of acronyms, authors, Review Editors and Expert Reviewers are provided in the Annexes to this report.

The preparation of the Synthesis Report was carried out in accordance with the Procedures for the Preparation, Review, Acceptance, Adoption, Approval and Publication of IPCC Reports, and it was adopted and approved by the IPCC at its Twenty Seventh Session (Valencia, Spain, 12-17 November 2007).

We take this opportunity to thank:

- the Core Writing Team who drafted this report and, with their meticulous and painstaking attention to detail, finalised it
- the Review Editors who made sure that all comments were taken into consideration and that consistency with the underlying reports was maintained
- the members of the Working Groups’ teams of Coordinating Lead Authors and Lead Authors who helped with the drafting
- the Head and staff of the SYR Technical Support Unit, particularly Dr Andy Reisinger, and the Technical Support Units of the three Working Groups, for logistical and editorial support
- the staff of the IPCC Secretariat for innumerable tasks performed in support of the preparation, release and publication of the report
- WMO and UNEP for supporting the IPCC Secretariat and for financial contributions to the IPCC Trust Fund
- all member governments and the UNFCCC for their contributions to the IPCC Trust Fund
- and all member governments and participating organisations for invaluable in-kind contributions, including through supporting experts involved in the IPCC process and hosting meetings and sessions of the IPCC.

Dr. R.K Pachauri
Chairman of the IPCC

Dr. Renate Christ
Secretary of the IPCC
Climate Change 2007: Synthesis Report

Contents

Foreword iii
Preface v
Summary for Policymakers 1

Synthesis Report 23
 Introduction 25
 Topic 1 29
 Topic 2 35
 Topic 3 43
 Topic 4 55
 Topic 5 63
 Topic 6 71

Annexes
 I. User guide and access to more detailed information 75
 II. Glossary 76
 III. Acronyms, chemical symbols; scientific units; country groupings 90
 IV. List of authors 92
 V. List of Reviewers and Review Editors 94
 VI. Index 100
 VII. List of Publications by the Intergovernmental Panel on Climate Change 102
Sources cited in this Synthesis Report

References for material contained in this report are given in curly brackets { } at the end of each paragraph.

In the Summary for Policymakers, references refer to Sections, Figures, Tables and Boxes in the underlying Introduction and Topics of this Synthesis Report.

In the Introduction and six Topics of this Synthesis Report, references refer to the contributions of Working Groups I, II and III (WGI, WGII and WGIII) to the Fourth Assessment Report and other IPCC Reports on which this Synthesis Report is based, or to other Sections of the Synthesis Report itself (SYR).

The following abbreviations have been used:
- SPM: Summary for Policymakers
- TS: Technical Summary
- ES: Executive Summary of a Chapter

Numbers denote the specific Chapters and Sections of a report.

For example, {WGI TS.3; WGII 4.ES, Figure 4.3; WGIII Table 11.3} would refer to the Technical Summary Section 3 of WGI, the Executive Summary and Figure 4.3 in Chapter 4 of WGII, and Table 11.3 in Chapter 11 of WGIII.

Other reports cited in this Synthesis Report:
- TAR: Third Assessment Report
- SROC: Special Report on Safeguarding the Ozone Layer and the Global Climate System
Climate Change 2007: Synthesis Report

Summary for Policymakers

An Assessment of the Intergovernmental Panel on Climate Change

This summary, approved in detail at IPCC Plenary XXVII (Valencia, Spain, 12-17 November 2007), represents the formally agreed statement of the IPCC concerning key findings and uncertainties contained in the Working Group contributions to the Fourth Assessment Report.

Based on a draft prepared by:

Lenny Bernstein, Peter Bosch, Osvaldo Canziani, Zhenlin Chen, Renate Christ, Ogunlade Davidson, William Hare, Saleemul Huq, David Karoly, Vladimir Kattsov, Zbigniew Kundzewicz, Jian Liu, Ulrike Lohmann, Martin Manning, Taroh Matsuno, Bettina Menne, Bert Metz, Monirul Mirza, Neville Nicholls, Leonard Nurse, Rajendra Pachauri, Jean Palutikof, Martin Parry, Dahe Qin, Nijavalli Ravindranath, Andy Reisinger, Jiawen Ren, Keywan Riahi, Cynthia Rosenzweig, Matilde Rusticucci, Stephen Schneider, Youba Sokona, Susan Solomon, Peter Stott, Ronald Stouffer, Taishi Sugiyama, Rob Swart, Dennis Tirpak, Coleen Vogel, Gary Yohe
Introduction

This Synthesis Report is based on the assessment carried out by the three Working Groups of the Intergovernmental Panel on Climate Change (IPCC). It provides an integrated view of climate change as the final part of the IPCC’s Fourth Assessment Report (AR4).

A complete elaboration of the Topics covered in this summary can be found in this Synthesis Report and in the underlying reports of the three Working Groups.

1. Observed changes in climate and their effects

Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising global average sea level (Figure SPM.1). {1.1}

Eleven of the last twelve years (1995-2006) rank among the twelve warmest years in the instrumental record of global surface temperature (since 1850). The 100-year linear trend (1906-2005) of 0.74 [0.56 to 0.92]°C is larger than the corresponding trend of 0.6 [0.4 to 0.8]°C (1901-2000) given in the Third Assessment Report (TAR) (Figure SPM.1). The temperature increase is widespread over the globe and is greater at higher northern latitudes. Land regions have warmed faster than the oceans (Figures SPM.2, SPM.4). {1.1, 1.2}

Rising sea level is consistent with warming (Figure SPM.1). Global average sea level has risen since 1961 at an average rate of 1.8 [1.3 to 2.3] mm/yr and since 1993 at 3.1 [2.4 to 3.8] mm/yr, with contributions from thermal expansion, melting glaciers and ice caps, and the polar ice sheets. Whether the faster rate for 1993 to 2003 reflects decadal variation or an increase in the longer-term trend is unclear. {1.1}

Observed decreases in snow and ice extent are also consistent with warming (Figure SPM.1). Satellite data since 1978 show that annual average Arctic sea ice extent has shrunk by 2.7 [2.1 to 3.3]% per decade, with larger decreases in summer of 7.4 [5.0 to 9.8]% per decade. Mountain glaciers and snow cover on average have declined in both hemispheres. {1.1}

From 1900 to 2005, precipitation increased significantly in eastern parts of North and South America, northern Europe and northern and central Asia but declined in the Sahel, the Mediterranean, southern Africa and parts of southern Asia. Globally, the area affected by drought has likely increased since the 1970s. {1.1}

It is very likely that over the past 50 years: cold days, cold nights and frosts have become less frequent over most land areas, and hot days and hot nights have become more frequent. It is likely that: heat waves have become more frequent over most land areas, the frequency of heavy precipitation events has increased over most areas, and since 1975 the incidence of extreme high sea level has increased worldwide. {1.1}

There is observational evidence of an increase in intense tropical cyclone activity in the North Atlantic since about 1970, with limited evidence of increases elsewhere. There is no clear trend in the annual numbers of tropical cyclones. It is difficult to ascertain longer-term trends in cyclone activity, particularly prior to 1970. {1.1}

Average Northern Hemisphere temperatures during the second half of the 20th century were very likely higher than during any other 50-year period in the last 500 years and likely the highest in at least the past 1300 years. {1.1}

Observational evidence from all continents and most oceans shows that many natural systems are being affected by regional climate changes, particularly temperature increases. {1.2}

Changes in snow, ice and frozen ground have with high confidence increased the number and size of glacial lakes, increased ground instability in mountain and other permafrost regions and led to changes in some Arctic and Antarctic ecosystems. {1.2}

There is high confidence that some hydrological systems have also been affected through increased runoff and earlier spring peak discharge in many glacier- and snow-fed rivers and through effects on thermal structure and water quality of warming rivers and lakes. {1.2}

In terrestrial ecosystems, earlier timing of spring events and poleward and upward shifts in plant and animal ranges are with very high confidence linked to recent warming. In some marine and freshwater systems, shifts in ranges and changes in algal, plankton and fish abundance are with high confidence associated with rising water temperatures, as well as related changes in ice cover, salinity, oxygen levels and circulation. {1.2}

Of the more than 29,000 observational data series, from 75 studies, that show significant change in many physical and biological systems, more than 89% are consistent with the direction of change expected as a response to warming (Fig-

1 Numbers in square brackets indicate a 90% uncertainty interval around a best estimate, i.e. there is an estimated 5% likelihood that the value could be above the range given in square brackets and 5% likelihood that the value could be below that range. Uncertainty intervals are not necessarily symmetric around the corresponding best estimate.

2 Words in italics represent calibrated expressions of uncertainty and confidence. Relevant terms are explained in the Box ‘Treatment of uncertainty’ in the Introduction of this Synthesis Report.

3 Excluding tsunamis, which are not due to climate change. Extreme high sea level depends on average sea level and on regional weather systems. It is defined here as the highest 1% of hourly values of observed sea level at a station for a given reference period.

4 Based largely on data sets that cover the period since 1970.
Summary for Policymakers

(a) Global average surface temperature

(b) Global average sea level

(c) Northern Hemisphere snow cover

Figure SPM.1. Observed changes in (a) global average surface temperature; (b) global average sea level from tide gauge (blue) and satellite (red) data and (c) Northern Hemisphere snow cover for March-April. All differences are relative to corresponding averages for the period 1961-1990. Smoothed curves represent decadal averaged values while circles show yearly values. The shaded areas are the uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from the time series (c). (Figure 1.1)

Changes in temperature, sea level and Northern Hemisphere snow cover

Figure SPM.2. However, there is a notable lack of geographic balance in data and literature on observed changes, with marked scarcity in developing countries. {1.2, 1.3}

There is medium confidence that other effects of regional climate change on natural and human environments are emerging, although many are difficult to discern due to adaptation and non-climatic drivers. {1.2}

They include effects of temperature increases on: {1.2}

- agricultural and forestry management at Northern Hemisphere higher latitudes, such as earlier spring planting of crops, and alterations in disturbance regimes of forests due to fires and pests
- some aspects of human health, such as heat-related mortality in Europe, changes in infectious disease vectors in some areas, and allergenic pollen in Northern Hemisphere high and mid-latitudes
- some human activities in the Arctic (e.g. hunting and travel over snow and ice) and in lower-elevation alpine areas (such as mountain sports).
Summary for Policymakers

Changes in physical and biological systems and surface temperature 1970-2004

Figure SPM.2. Locations of significant changes in data series of physical systems (snow, ice and frozen ground; hydrology; and coastal processes) and biological systems (terrestrial, marine and freshwater biological systems), are shown together with surface air temperature changes over the period 1970-2004. A subset of about 29,000 data series was selected from about 80,000 data series from 577 studies. These met the following criteria: (1) ending in 1990 or later; (2) spanning a period of at least 20 years; and (3) showing a significant change in either direction, as assessed in individual studies. These data series are from about 75 studies (of which about 70 are new since the TAR) and contain about 29,000 data series, of which about 28,000 are from European studies. White areas do not contain sufficient observational climate data to estimate a temperature trend. The 2 × 2 boxes show the total number of data series with significant changes (top row) and the percentage of those consistent with warming (bottom row) for (i) continental regions: North America (NAM), Latin America (LA), Europe (EUR), Africa (AFR), Asia (AS), Australia and New Zealand (ANZ), and Polar Regions (PR) and (ii) global-scale: Terrestrial (TER), Marine and Freshwater (MFW), and Global (GLO). The numbers of studies from the seven regional boxes (NAM, EUR, AFR, AS, ANZ, PR) do not add up to the global (GLO) totals because numbers from regions except Polar do not include the numbers related to Marine and Freshwater (MFW) systems. Locations of large-area marine changes are not shown on the map. (Figure 1.2)
2. Causes of change

Changes in atmospheric concentrations of greenhouse gases (GHGs) and aerosols, land cover and solar radiation alter the energy balance of the climate system. \(\text{2.2}\)

Global GHG emissions due to human activities have grown since pre-industrial times, with an increase of 70% between 1970 and 2004 (Figure SPM.3).\(\text{5}\) \(\text{2.1}\)

Carbon dioxide (CO\(_2\)) is the most important anthropogenic GHG. Its annual emissions grew by about 80% between 1970 and 2004. The long-term trend of declining CO\(_2\) emissions per unit of energy supplied reversed after 2000. \(\text{2.1}\)

Global atmospheric concentrations of CO\(_2\), methane (CH\(_4\)) and nitrous oxide (N\(_2\)O) have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years. \(\text{2.2}\)

Atmospheric concentrations of CO\(_2\) (379ppm) and CH\(_4\) (1774ppb) in 2005 exceed by far the natural range over the last 650,000 years. Global increases in CO\(_2\) concentrations are due primarily to fossil fuel use, with land-use change providing another significant but smaller contribution. It is very likely that the observed increase in CH\(_4\) concentration is predominantly due to agriculture and fossil fuel use. CH\(_4\) growth rates have declined since the early 1990s, consistent with total emissions (sum of anthropogenic and natural sources) being nearly constant during this period. The increase in N\(_2\)O concentration is primarily due to agriculture. \(\text{2.2}\)

There is very high confidence that the net effect of human activities since 1750 has been one of warming. \(\text{6}\) \(\text{2.2}\)

Most of the observed increase in global average temperatures since the mid-20\(^{\text{th}}\) century is very likely due to the observed increase in anthropogenic GHG concentrations. \(\text{7}\) It is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent (except Antarctica) (Figure SPM.4). \(\text{2.4}\)

During the past 50 years, the sum of solar and volcanic forcings would likely have produced cooling. Observed patterns of warming and their changes are simulated only by models that include anthropogenic forcings. Difficulties remain in simulating and attributing observed temperature changes at smaller than continental scales. \(\text{2.4}\)

Global anthropogenic GHG emissions

<table>
<thead>
<tr>
<th>Year</th>
<th>CO(_2) from fossil fuel use and other sources</th>
<th>CO(_2) from deforestation, decay and peat</th>
<th>CH(_4) from agriculture, waste and energy</th>
<th>CO(_2) from agriculture and others</th>
<th>N(_2)O from agriculture and others</th>
<th>F-gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>28.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>35.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>39.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>44.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>49.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{5}\) Includes only carbon dioxide (CO\(_2\)), methane (CH\(_4\)), nitrous oxide (N\(_2\)O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphurhexafluoride (SF\(_6\)), whose emissions are covered by the United Nations Framework Convention on Climate Change (UNFCCC). These GHGs are weighted by their 100-year Global Warming Potentials, using values consistent with reporting under the UNFCCC.

\(\text{6}\) Increases in GHGs tend to warm the surface while the net effect of increases in aerosols tends to cool it. The net effect due to human activities since the pre-industrial era is one of warming \(+1.6 \pm [0.6 \text{ to } 2.4] \text{ W/m}^2\). In comparison, changes in solar irradiance are estimated to have caused a small warming effect \(+0.12 \pm [0.06 \text{ to } 0.30] \text{ W/m}^2\).

\(\text{7}\) Consideration of remaining uncertainty is based on current methodologies.
Summary for Policymakers

Figure SPM.4. Comparison of observed continental- and global-scale changes in surface temperature with results simulated by climate models using either natural or both natural and anthropogenic forcings. Decadal averages of observations are shown for the period 1906-2005 (black line) plotted against the centre of the decade and relative to the corresponding average for the period 1901-1950. Lines are dashed where spatial coverage is less than 50%. Blue shaded bands show the 5 to 95% range for 19 simulations from five climate models using only the natural forcings due to solar activity and volcanoes. Red shaded bands show the 5 to 95% range for 58 simulations from 14 climate models using both natural and anthropogenic forcings. (Figure 2.5)

Global and continental temperature change

Advances since the TAR show that discernible human influences extend beyond average temperature to other aspects of climate. (2.4)

- very likely contributed to sea level rise during the latter half of the 20th century
- likely contributed to changes in wind patterns, affecting extra-tropical storm tracks and temperature patterns
- likely increased temperatures of extreme hot nights, cold nights and cold days
- more likely than not increased risk of heat waves, area affected by drought since the 1970s and frequency of heavy precipitation events.

Anthropogenic warming over the last three decades has likely had a discernible influence at the global scale on observed changes in many physical and biological systems. (2.4)

Spatial agreement between regions of significant warming across the globe and locations of significant observed changes in many systems consistent with warming is very unlikely to be due solely to natural variability. Several modeling studies have linked some specific responses in physical and biological systems to anthropogenic warming. (2.4)

More complete attribution of observed natural system responses to anthropogenic warming is currently prevented by the short time scales of many impact studies, greater natural climate variability at regional scales, contributions of non-climate factors and limited spatial coverage of studies. (2.4)
3. Projected climate change and its impacts

There is high agreement and much evidence that with current climate change mitigation policies and related sustainable development practices, global GHG emissions will continue to grow over the next few decades. (3.1)

The IPCC Special Report on Emissions Scenarios (SRES, 2000) projects an increase of global GHG emissions by 25 to 90% (CO₂-eq) between 2000 and 2030 (Figure SPM.5), with fossil fuels maintaining their dominant position in the global energy mix to 2030 and beyond. More recent scenarios without additional emissions mitigation are comparable in range.8,9 (3.1)

Continued GHG emissions at or above current rates would cause further warming and induce many changes in the global climate system during the 21st century that would very likely be larger than those observed during the 20th century (Table SPM.1, Figure SPM.5). (3.2.1)

For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emissions scenarios. Even if the concentrations of all GHGs and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected. Afterwards, temperature projections increasingly depend on specific emissions scenarios. (3.2)

The range of projections (Table SPM.1) is broadly consistent with the TAR, but uncertainties and upper ranges for temperature are larger mainly because the broader range of available models suggests stronger climate-carbon cycle feedbacks. Warming reduces terrestrial and ocean uptake of atmospheric CO₂, increasing the fraction of anthropogenic emissions remaining in the atmosphere. The strength of this feedback effect varies markedly among models. (2.3, 3.2.1)

Because understanding of some important effects driving sea level rise is too limited, this report does not assess the likelihood, nor provide a best estimate or an upper bound for sea level rise. Table SPM.1 shows model-based projections for the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emissions scenarios. Even if the concentrations of all GHGs and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected. Afterwards, temperature projections increasingly depend on specific emissions scenarios. (3.2)

The range of projections (Table SPM.1) is broadly consistent with the TAR, but uncertainties and upper ranges for temperature are larger mainly because the broader range of available models suggests stronger climate-carbon cycle feedbacks. Warming reduces terrestrial and ocean uptake of atmospheric CO₂, increasing the fraction of anthropogenic emissions remaining in the atmosphere. The strength of this feedback effect varies markedly among models. (2.3, 3.2.1)

Because understanding of some important effects driving sea level rise is too limited, this report does not assess the likelihood, nor provide a best estimate or an upper bound for sea level rise. Table SPM.1 shows model-based projections for the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emissions scenarios. Even if the concentrations of all GHGs and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected. Afterwards, temperature projections increasingly depend on specific emissions scenarios. (3.2)

The range of projections (Table SPM.1) is broadly consistent with the TAR, but uncertainties and upper ranges for temperature are larger mainly because the broader range of available models suggests stronger climate-carbon cycle feedbacks. Warming reduces terrestrial and ocean uptake of atmospheric CO₂, increasing the fraction of anthropogenic emissions remaining in the atmosphere. The strength of this feedback effect varies markedly among models. (2.3, 3.2.1)

Because understanding of some important effects driving sea level rise is too limited, this report does not assess the likelihood, nor provide a best estimate or an upper bound for sea level rise. Table SPM.1 shows model-based projections for the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emissions scenarios. Even if the concentrations of all GHGs and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected. Afterwards, temperature projections increasingly depend on specific emissions scenarios. (3.2)

The range of projections (Table SPM.1) is broadly consistent with the TAR, but uncertainties and upper ranges for temperature are larger mainly because the broader range of available models suggests stronger climate-carbon cycle feedbacks. Warming reduces terrestrial and ocean uptake of atmospheric CO₂, increasing the fraction of anthropogenic emissions remaining in the atmosphere. The strength of this feedback effect varies markedly among models. (2.3, 3.2.1)

Because understanding of some important effects driving sea level rise is too limited, this report does not assess the likelihood, nor provide a best estimate or an upper bound for sea level rise. Table SPM.1 shows model-based projections for the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emissions scenarios. Even if the concentrations of all GHGs and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected. Afterwards, temperature projections increasingly depend on specific emissions scenarios. (3.2)

The range of projections (Table SPM.1) is broadly consistent with the TAR, but uncertainties and upper ranges for temperature are larger mainly because the broader range of available models suggests stronger climate-carbon cycle feedbacks. Warming reduces terrestrial and ocean uptake of atmospheric CO₂, increasing the fraction of anthropogenic emissions remaining in the atmosphere. The strength of this feedback effect varies markedly among models. (2.3, 3.2.1)

Because understanding of some important effects driving sea level rise is too limited, this report does not assess the likelihood, nor provide a best estimate or an upper bound for sea level rise. Table SPM.1 shows model-based projections for the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emissions scenarios. Even if the concentrations of all GHGs and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected. Afterwards, temperature projections increasingly depend on specific emissions scenarios. (3.2)
TAR projections were made for 2100, whereas the projections for this report are for 2090-2099. The TAR would have had similar ranges to those in Table SPM.1 if it had treated uncertainties in the same way.

For discussion of the longer term, see material below.

Table SPM.1. Projected global average surface warming and sea level rise at the end of the 21st century. (Table 3.1)

<table>
<thead>
<tr>
<th>Case</th>
<th>Temperature change ('C at 2090-2099 relative to 1980-1999)</th>
<th>Sea level rise (m at 2090-2099 relative to 1980-1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best estimate</td>
<td>Likely range</td>
</tr>
<tr>
<td>Constant year 2000 concentrations</td>
<td>0.6</td>
<td>0.3 – 0.9</td>
</tr>
<tr>
<td>B1 scenario</td>
<td>1.8</td>
<td>1.1 – 2.9</td>
</tr>
<tr>
<td>A1T scenario</td>
<td>2.4</td>
<td>1.4 – 3.8</td>
</tr>
<tr>
<td>B2 scenario</td>
<td>2.4</td>
<td>1.4 – 3.8</td>
</tr>
<tr>
<td>A1B scenario</td>
<td>2.8</td>
<td>1.7 – 4.4</td>
</tr>
<tr>
<td>A2 scenario</td>
<td>3.4</td>
<td>2.0 – 5.4</td>
</tr>
<tr>
<td>A1FI scenario</td>
<td>4.0</td>
<td>2.4 – 6.4</td>
</tr>
</tbody>
</table>

Notes:
- Temperatures are assessed best estimates and likely uncertainty ranges from a hierarchy of models of varying complexity as well as observational constraints.
- Year 2000 constant composition is derived from Atmosphere-Ocean General Circulation Models (AOGCMs) only.
- All scenarios above are six SRES marker scenarios. Approximate CO₂-eq concentrations corresponding to the computed radiative forcing due to anthropogenic GHGs and aerosols in 2100 (see p. 823 of the Working Group I TAR) for the SRES B1, A1T, B2, A1B, A2 and A1FI illustrative marker scenarios are about 600, 700, 800, 850, 1250 and 1550ppm, respectively.
- Temperature changes are expressed as the difference from the period 1980-1999. To express the change relative to the period 1850-1899 add 0.5°C.

There is now higher confidence than in the TAR in projected patterns of warming and other regional-scale features, including changes in wind patterns, precipitation and some aspects of extremes and sea ice. (3.2.2)

Regional-scale changes include: (3.2.2)
- Warming greatest over land and at most high northern latitudes and least over Southern Ocean and parts of the North Atlantic Ocean, continuing recent observed trends (Figure SPM.6)
- Contraction of snow cover area, increases in thaw depth over most permafrost regions and decrease in sea ice extent; in some projections using SRES scenarios, Arctic late-summer sea ice disappears almost entirely by the latter part of the 21st century
- Very likely increase in frequency of hot extremes, heat waves and heavy precipitation
- Likely increase in tropical cyclone intensity; less confidence in global decrease of tropical cyclone numbers

- Poleward shift of extra-tropical storm tracks with consequent changes in wind, precipitation and temperature patterns
- Very likely precipitation increases in high latitudes and likely decreases in most subtropical land regions, continuing observed recent trends.

There is high confidence that by mid-century, annual river runoff and water availability are projected to increase at high latitudes (and in some tropical wet areas) and decrease in some dry regions in the mid-latitudes and tropics. There is also high confidence that many semi-arid areas (e.g. Mediterranean Basin, western United States, southern Africa and north-eastern Brazil) will suffer a decrease in water resources due to climate change. (3.3.1, Figure 3.5)

Studies since the TAR have enabled more systematic understanding of the timing and magnitude of impacts related to differing amounts and rates of climate change. (3.3.1, 3.3.2)

Figure SPM.7 presents examples of this new information for systems and sectors. The top panel shows impacts increasing with increasing temperature change. Their estimated magnitude and timing is also affected by development pathway (lower panel). (3.3.1)

Examples of some projected impacts for different regions are given in Table SPM.2.

10 TAR projections were made for 2100, whereas the projections for this report are for 2090-2099. The TAR would have had similar ranges to those in Table SPM.1 if it had treated uncertainties in the same way.

11 For discussion of the longer term, see material below.
Some systems, sectors and regions are likely to be especially affected by climate change.12 (3.3.3)

Systems and sectors: (3.3.3)
- particular ecosystems:
 - terrestrial: tundra, boreal forest and mountain regions because of sensitivity to warming; mediterranean-type ecosystems because of reduction in rainfall; and tropical rainforests where precipitation declines
 - coastal: mangroves and salt marshes, due to multiple stresses
 - marine: coral reefs due to multiple stresses; the sea ice biome because of sensitivity to warming
- water resources in some dry regions at mid-latitudes13 and in the dry tropics, due to changes in rainfall and evapotranspiration, and in areas dependent on snow and ice melt
- agriculture in low latitudes, due to reduced water availability
- low-lying coastal systems, due to threat of sea level rise and increased risk from extreme weather events
- human health in populations with low adaptive capacity.

Regions: (3.3.3)
- the Arctic, because of the impacts of high rates of projected warming on natural systems and human communities
- Africa, because of low adaptive capacity and projected climate change impacts
- small islands, where there is high exposure of population and infrastructure to projected climate change impacts
- Asian and African megadeltas, due to large populations and high exposure to sea level rise, storm surges and river flooding.

Within other areas, even those with high incomes, some people (such as the poor, young children and the elderly) can be particularly at risk, and also some areas and some activities. (3.3.3)

Ocean acidification

The uptake of anthropogenic carbon since 1750 has led to the ocean becoming more acidic with an average decrease in pH of 0.1 units. Increasing atmospheric CO\textsubscript{2} concentrations lead to further acidification. Projections based on SRES scenarios give a reduction in average global surface ocean pH of between 0.14 and 0.35 units over the 21st century. While the effects of observed ocean acidification on the marine biosphere are as yet undocumented, the progressive acidification of oceans is expected to have negative impacts on marine shell-forming organisms (e.g. corals) and their dependent species. (3.3.4)

12 Identified on the basis of expert judgement of the assessed literature and considering the magnitude, timing and projected rate of climate change, sensitivity and adaptive capacity.

13 Including arid and semi-arid regions.
Examples of impacts associated with global average temperature change
(Impacts will vary by extent of adaptation, rate of temperature change and socio-economic pathway)

<table>
<thead>
<tr>
<th>WATER</th>
<th>Global average annual temperature change relative to 1980-1999 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased water availability in moist tropics and high latitudes</td>
<td></td>
</tr>
<tr>
<td>Decreasing water availability and increasing drought in mid-latitudes and semi-arid low latitudes</td>
<td></td>
</tr>
<tr>
<td>Hundreds of millions of people exposed to increased water stress</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECOSYSTEMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased coral bleaching Most corals bleached Widespread coral mortality</td>
<td>Terrestrial biosphere tends toward a net carbon source as: ~15% ~40% of ecosystems affected</td>
</tr>
<tr>
<td>Increasing species range shifts and wildfire risk</td>
<td>Ecosystem changes due to weakening of the meridional overturning circulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOOD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tendencies for cereal productivity to decrease in low latitudes</td>
<td>Productivity of all cereals decreases in low latitudes</td>
</tr>
<tr>
<td>Tendencies for some cereal productivity to increase at mid- to high latitudes</td>
<td>Cereal productivity to decrease in some regions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COASTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased damage from floods and storms</td>
<td>About 30% of global coastal wetlands lost</td>
</tr>
<tr>
<td>Millions more people could experience coastal flooding each year</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEALTH</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing burden from malnutrition, diarrhoeal, cardio-respiratory and infectious diseases</td>
<td>Increased morbidity and mortality from heat waves, floods and droughts</td>
</tr>
<tr>
<td>Changed distribution of some disease vectors</td>
<td>Substantial burden on health services</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Warming by 2090-2099 relative to 1980-1999 for non-mitigation scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W A T E R</td>
</tr>
<tr>
<td></td>
<td>E C O S Y S T E M S</td>
</tr>
<tr>
<td></td>
<td>F O O D</td>
</tr>
<tr>
<td></td>
<td>C O A S T S</td>
</tr>
<tr>
<td></td>
<td>H E A L T H</td>
</tr>
</tbody>
</table>

| | **Figure SPM.7.** Examples of impacts associated with projected global average surface warming. **Upper panel:** Illustrative examples of global impacts projected for climate changes (and sea level and atmospheric CO\(_2\) where relevant) associated with different amounts of increase in global average surface temperature in the 21st century. The black lines link impacts; broken-line arrows indicate impacts continuing with increasing temperature. Entries are placed so that the left-hand side of text indicates the approximate level of warming that is associated with the onset of a given impact. Quantitative entries for water scarcity and flooding represent the additional impacts of climate change relative to the conditions projected across the range of SRES scenarios A1FI, A2, B1 and B2. Adaptation to climate change is not included in these estimations. Confidence levels for all statements are high. **Lower panel:** Dots and bars indicate the best estimate and likely ranges of warming assessed for the six SRES marker scenarios for 2090-2099 relative to 1980-1999. (Figure 3.6) |

† Significant is defined here as more than 40%. ‡ Based on average rate of sea level rise of 4.2mm/year from 2000 to 2080.
Table SPM.2. Examples of some projected regional impacts. (3.3.2)

<table>
<thead>
<tr>
<th>Region</th>
<th>Impacts and Projections</th>
</tr>
</thead>
</table>
| Africa | - By 2020, between 75 and 250 million of people are projected to be exposed to increased water stress due to climate change.
- By 2020, in some countries, yields from rain-fed agriculture could be reduced by up to 50%. Agricultural production, including access to food, in many African countries is projected to be severely compromised. This would further adversely affect food security and exacerbate malnutrition.
- Towards the end of the 21st century, projected sea level rise will affect low-lying coastal areas with large populations. The cost of adaptation could amount to at least 5 to 10% of Gross Domestic Product (GDP).
- By 2080, an increase of 5 to 8% of arid and semi-arid land in Africa is projected under a range of climate scenarios (TS). |
| Asia | - By the 2050s, freshwater availability in Central, South, East and South-East Asia, particularly in large river basins, is projected to decrease.
- Coastal areas, especially heavily populated megadelta regions in South, East and South-East Asia, will be at greatest risk due to increased flooding from the sea and, in some megadeltas, flooding from the rivers.
- Climate change is projected to compound the pressures on natural resources and the environment associated with rapid urbanisation, industrialisation and economic development.
- Endemic morbidity and mortality due to diarrhoeal disease primarily associated with floods and droughts are expected to rise in East, South and South-East Asia due to projected changes in the hydrological cycle. |
| Australia and New Zealand | - By 2020, significant loss of biodiversity is projected to occur in some ecologically rich sites, including the Great Barrier Reef and Queensland Wet Tropics.
- By 2030, water security problems are projected to intensify in southern and eastern Australia and, in New Zealand, in Northland and some eastern regions.
- By 2030, production from agriculture and forestry is projected to decline over much of southern and eastern Australia, and over parts of eastern New Zealand, due to increased drought and fire. However, in New Zealand, initial benefits are projected in some other regions.
- By 2050, ongoing coastal development and population growth in some areas of Australia and New Zealand are projected to exacerbate risks from sea level rise and increases in the severity and frequency of storms and coastal flooding. |
| Europe | - Climate change is expected to magnify regional differences in Europe's natural resources and assets. Negative impacts will include increased risk of inland flash floods and more frequent coastal flooding and increased erosion (due to storminess and sea level rise).
- Mountainous areas will face glacier retreat, reduced snow cover and winter tourism, and extensive species losses (in some areas up to 60% under high emissions scenarios by 2080).
- In southern Europe, climate change is projected to worsen conditions (high temperatures and drought) in a region already vulnerable to climate variability, and to reduce water availability, hydropower potential, summer tourism and, in general, crop productivity.
- Climate change is also projected to increase the health risks due to heat waves and the frequency of wildfires. |
| Latin America | - By mid-century, increases in temperature and associated decreases in soil water are projected to lead to gradual replacement of tropical forest by savanna in eastern Amazonia. Semi-arid vegetation will tend to be replaced by arid-land vegetation.
- There is a risk of significant biodiversity loss through species extinction in many areas of tropical Latin America.
- Productivity of some important crops is projected to decrease and livestock productivity to decline, with adverse consequences for food security. In temperate zones, soybean yields are projected to increase. Overall, the number of people at risk of hunger is projected to increase (TS; medium confidence).
- Changes in precipitation patterns and the disappearance of glaciers are projected to significantly affect water availability for human consumption, agriculture and energy generation. |
| North America | - Warming in western mountains is projected to cause decreased snowpack, more winter flooding and reduced summer flows, exacerbating competition for over-allocated water resources.
- In the early decades of the century, moderate climate change is projected to increase aggregate yields of rain-fed agriculture by 5 to 20%, but with important variability among regions. Major challenges are projected for crops that are near the warm end of their suitable range or which depend on highly utilised water resources.
- Cities that currently experience heat waves are expected to be further challenged by an increased number, intensity and duration of heat waves during the course of the century, with potential for adverse health impacts.
- Coastal communities and habitats will be increasingly stressed by climate change impacts interacting with development and pollution. |

continued...
Altered frequencies and intensities of extreme weather, together with sea level rise, are expected to have mostly adverse effects on natural and human systems. (3.3.5)

Examples for selected extremes and sectors are shown in Table SPM.3.

Anthropogenic warming and sea level rise would continue for centuries due to the time scales associated with climate processes and feedbacks, even if GHG concentrations were to be stabilised. (3.2.3)

Estimated long-term (multi-century) warming corresponding to the six AR4 Working Group III stabilisation categories is shown in Figure SPM.8.

Contraction of the Greenland ice sheet is projected to continue to contribute to sea level rise after 2100. Current models suggest virtually complete elimination of the Greenland ice sheet and a resulting contribution to sea level rise of about 7m if global average warming were sustained for millennia in excess of 1.9 to 4.6°C relative to pre-industrial values. The corresponding future temperatures in Greenland are comparable to those inferred for the last interglacial period 125,000 years ago, when palaeoclimatic information suggests reductions of polar land ice extent and 4 to 6m of sea level rise. (3.2.3)

Current global model studies project that the Antarctic ice sheet will remain too cold for widespread surface melting and gain mass due to increased snowfall. However, net loss of ice mass could occur if dynamical ice discharge dominates the ice sheet mass balance. (3.2.3)
Table SPM.3. Examples of possible impacts of climate change due to changes in extreme weather and climate events, based on projections to the mid- to late 21st century. These do not take into account any changes or developments in adaptive capacity. The likelihood estimates in column two relate to the phenomena listed in column one. (Table 3.2)

<table>
<thead>
<tr>
<th>Phenomenon and direction of trend</th>
<th>Likelihood of future trends based on projections for 21st century using SRES scenarios</th>
<th>Examples of major projected impacts by sector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agriculture, forestry and ecosystems</td>
<td>Water resources</td>
</tr>
<tr>
<td>Over most land areas, warmer and fewer cold days and nights, warmer and more frequent hot days and nights</td>
<td>Virtually certain(^b)</td>
<td>Increased yields in colder environments; decreased yields in warmer environments; increased insect outbreaks</td>
</tr>
<tr>
<td>Warm spells/heat waves. Frequency increases over most land areas</td>
<td>Very likely</td>
<td>Reduced yields in warmer regions due to heat stress; increased danger of wildfire</td>
</tr>
<tr>
<td>Heavy precipitation events. Frequency increases over most areas</td>
<td>Very likely</td>
<td>Damage to crops; soil erosion, inability to cultivate land due to waterlogging of soils</td>
</tr>
<tr>
<td>Area affected by drought increases</td>
<td>Likely</td>
<td>Land degradation; lower yields/crop damage and failure; increased livestock deaths; increased risk of wildfire</td>
</tr>
<tr>
<td>Intense tropical cyclone activity increases</td>
<td>Likely</td>
<td>Damage to crops; windthrow (uprooting) of trees; damage to coral reefs</td>
</tr>
<tr>
<td>Increased incidence of extreme high sea level (excludes tsunamis)(^d)</td>
<td>Likely(^a)</td>
<td>Salinisation of irrigation water, estuaries and fresh-water systems</td>
</tr>
</tbody>
</table>

Notes:
\(a\) See Working Group I Table 3.7 for further details regarding definitions.
\(b\) Warming of the most extreme days and nights each year.
\(c\) Extreme high sea level depends on average sea level and on regional weather systems. It is defined as the highest 1% of hourly values of observed sea level at a station for a given reference period.
\(d\) In all scenarios, the projected global average sea level at 2100 is higher than in the reference period. The effect of changes in regional weather systems on sea level extremes has not been assessed.

Anthropogenic warming could lead to some impacts that are abrupt or irreversible, depending upon the rate and magnitude of the climate change. [3.4]

Partial loss of ice sheets on polar land could imply metres of sea level rise, major changes in coastlines and inundation of low-lying areas, with greatest effects in river deltas and low-lying islands. Such changes are projected to occur over millennial time scales, but more rapid sea level rise on century time scales cannot be excluded. [3.4]

Climate change is *likely* to lead to some irreversible impacts. There is *medium confidence* that approximately 20 to 30% of species assessed so far are *likely* to be at increased risk of extinction if increases in global average warming exceed 1.5 to 2.5°C (relative to 1980-1999). As global average
temperature increase exceeds about 3.5°C, model projections suggest significant extinctions (40 to 70% of species assessed) around the globe. [3.4]

Based on current model simulations, the meridional overturning circulation (MOC) of the Atlantic Ocean will very likely slow down during the 21st century; nevertheless temperatures over the Atlantic and Europe are projected to increase. The MOC is very unlikely to undergo a large abrupt transition during the 21st century. Longer-term MOC changes cannot be assessed with confidence. Impacts of large-scale and persistent changes in the MOC are likely to include changes in marine ecosystem productivity, fisheries, ocean CO₂ uptake, oceanic oxygen concentrations and terrestrial vegetation. Changes in terrestrial and ocean CO₂ uptake may feed back on the climate system. [3.4]

4. Adaptation and mitigation options

A wide array of adaptation options is available, but more extensive adaptation than is currently occurring is required to reduce vulnerability to climate change. There are barriers, limits and costs, which are not fully understood. [4.2]

Societies have a long record of managing the impacts of weather- and climate-related events. Nevertheless, additional adaptation measures will be required to reduce the adverse impacts of projected climate change and variability, regardless of the scale of mitigation undertaken over the next two to three decades. Moreover, vulnerability to climate change can be exacerbated by other stresses. These arise from, for example, current climate hazards, poverty and unequal access to resources, food insecurity, trends in economic globalisation, conflict and incidence of diseases such as HIV/AIDS. [4.2]

Some planned adaptation to climate change is already occurring on a limited basis. Adaptation can reduce vulnerability, especially when it is embedded within broader sectoral initiatives (Table SPM.4). There is high confidence that there are viable adaptation options that can be implemented in some sectors at low cost, and/or with high benefit-cost ratios. However, comprehensive estimates of global costs and benefits of adaptation are limited. [4.2, Table 4.1]

Adaptive capacity is intimately connected to social and economic development but is unevenly distributed across and within societies. [4.2]

A range of barriers limits both the implementation and effectiveness of adaptation measures. The capacity to adapt is dynamic and is influenced by a society’s productive base, including natural and man-made capital assets, social networks and entitlements, human capital and institutions, governance, national income, health and technology. Even societies with high adaptive capacity remain vulnerable to climate change, variability and extremes. [4.2]

Both bottom-up and top-down studies indicate that there is high agreement and much evidence of substantial economic potential for the mitigation of global GHG emissions over the coming decades that could offset the projected growth of global emissions or reduce emissions below current levels (Figures SPM.9, SPM.10). While top-down and bottom-up studies are in line at the global level (Figure SPM.9) there are considerable differences at the sectoral level. [4.3]

No single technology can provide all of the mitigation potential in any sector. The economic mitigation potential, which is generally greater than the market mitigation potential, can only be achieved when adequate policies are in place and barriers removed (Table SPM.5). [4.3]

Bottom-up studies suggest that mitigation opportunities with net negative costs have the potential to reduce emissions by around 6 GtCO₂-eq/yr in 2030, realising which requires dealing with implementation barriers. [4.3]

14 While this Section deals with adaptation and mitigation separately, these responses can be complementary. This theme is discussed in Section 5.

15 The concept of ‘mitigation potential’ has been developed to assess the scale of GHG reductions that could be made, relative to emission baselines, for a given level of carbon price (expressed in cost per unit of carbon dioxide equivalent emissions avoided or reduced). Mitigation potential is further differentiated in terms of ‘market mitigation potential’ and ‘economic mitigation potential’.

Market mitigation potential is the mitigation potential based on private costs and private discount rates (reflecting the perspective of private consumers and companies), which might be expected to occur under forecast market conditions, including policies and measures currently in place, noting that barriers limit actual uptake.

Economic mitigation potential is the mitigation potential that takes into account social costs and benefits and social discount rates (reflecting the perspective of society; social discount rates are lower than those used by private investors), assuming that market efficiency is improved by policies and measures and barriers are removed.

Mitigation potential is estimated using different types of approaches. Bottom-up studies are based on assessment of mitigation options, emphasising specific technologies and regulations. They are typically sectoral studies taking the macro-economy as unchanged. Top-down studies assess the economy-wide potential of mitigation options. They use globally consistent frameworks and aggregated information about mitigation options and capture macro-economic and market feedbacks.
Table SPM.4. Selected examples of planned adaptation by sector. (Table 4.1)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Adaptation option/strategy</th>
<th>Underlying policy framework</th>
<th>Key constraints and opportunities to implementation (Normal font = constraints; italics = opportunities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Expanded rainwater harvesting; water storage and conservation techniques; water re-use; desalination; water-use and irrigation efficiency</td>
<td>National water policies and integrated water resources management; water-related hazards management</td>
<td>Financial, human resources and physical barriers; integrated water resources management; synergies with other sectors</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Adjustment of planting dates and crop variety; crop relocation; improved land management, e.g. erosion control and soil protection through tree planting</td>
<td>R&D policies; institutional reform; land tenure and land reform; training; capacity building; crop insurance; financial incentives, e.g. subsidies and tax credits</td>
<td>Technological and financial constraints; access to new varieties; markets; longer growing season in higher latitudes; revenues from ‘new’ products</td>
</tr>
<tr>
<td>Infrastructure/settlement</td>
<td>Relocation; seawalls and storm surge barriers; dune reinforcement and creation of marshlands/wetlands as buffer against sea level rise and flooding; protection of existing natural barriers</td>
<td>Standards and regulations that integrate climate change considerations into design; land-use policies; building codes; insurance</td>
<td>Financial and technological barriers; availability of relocation space; integrated policies and management; synergies with sustainable development goals</td>
</tr>
<tr>
<td>Human health</td>
<td>Heat-health action plans; emergency medical services; improved climate-sensitive disease surveillance and control; safe water and improved sanitation</td>
<td>Public health policies that recognise climate risk; strengthened health services; regional and international cooperation</td>
<td>Limits to human tolerance (vulnerable groups); knowledge limitations; financial capacity; upgraded health services; improved quality of life</td>
</tr>
<tr>
<td>Tourism</td>
<td>Diversification of tourism attractions and revenues; shifting ski slopes to higher altitudes and glaciers; artificial snow-making</td>
<td>Integrated planning (e.g. carrying capacity; linkages with other sectors); financial incentives, e.g. subsidies and tax credits</td>
<td>Appeal/marketing of new attractions; financial and logistical challenges; potential adverse impact on other sectors (e.g. artificial snow-making may increase energy use); revenues from ‘new’ attractions; involvement of wider group of stakeholders</td>
</tr>
<tr>
<td>Transport</td>
<td>Ralignment/relocation; design standards and planning for roads, rail and other infrastructure to cope with warming and drainage</td>
<td>Integrating climate change considerations into national transport policy; investment in R&D for special situations, e.g. permafrost areas</td>
<td>Financial and technological barriers; availability of less vulnerable routes; improved technologies and integration with key sectors (e.g. energy)</td>
</tr>
<tr>
<td>Energy</td>
<td>Strengthening of overhead transmission and distribution infrastructure; underground cabling for utilities; energy efficiency; use of renewable sources; reduced dependence on single sources of energy</td>
<td>National energy policies, regulations, and fiscal and financial incentives to encourage use of alternative sources; incorporating climate change in design standards</td>
<td>Access to viable alternatives; financial and technological barriers; acceptance of new technologies; stimulation of new technologies; use of local resources</td>
</tr>
</tbody>
</table>

Note: Other examples from many sectors would include early warning systems.

Future energy infrastructure investment decisions, expected to exceed US$20 trillion16 between 2005 and 2030, will have long-term impacts on GHG emissions, because of the long lifetimes of energy plants and other infrastructure capital stock. The widespread diffusion of low-carbon technologies may take many decades, even if early investments in these technologies are made attractive. Initial estimates show that returning global energy-related CO\textsubscript{2} emissions to 2005 levels by 2030 would require a large shift in investment patterns, although the net additional investment required ranges from negligible to 5 to 10%. [4.3]

16 20 trillion = 20,000 billion = 20×1012
Estimated economic mitigation potential by sector in 2030 from bottom-up studies, compared to the respective baselines assumed in the sector assessments. The potentials do not include non-technical options such as lifestyle changes. {Figure 4.2}

Notes:

a) The ranges for global economic potentials as assessed in each sector are shown by vertical lines. The ranges are based on end-use allocations of emissions, meaning that emissions of electricity use are counted towards the end-use sectors and not to the energy supply sector.

b) The estimated potentials have been constrained by the availability of studies particularly at high carbon price levels.

c) Sectors used different baselines. For industry, the SRES B2 baseline was taken, for energy supply and transport, the World Energy Outlook (WEO) 2004 baseline was used; the building sector is based on a baseline in between SRES B2 and A1B; for waste, SRES A1B driving forces were used to construct a waste-specific baseline; agriculture and forestry used baselines that mostly used B2 driving forces.

d) Only global totals for transport are shown because international aviation is included.

e) Categories excluded are: non-CO₂ emissions in buildings and transport, part of material efficiency options, heat production and co-generation in energy supply, heavy duty vehicles, shipping and high-occupancy passenger transport, most high-cost options for buildings, wastewater treatment, emission reduction from coal mines and gas pipelines, and fluorinated gases from energy supply and transport. The underestimation of the total economic potential from these emissions is of the order of 10 to 15%.
Table SPM.5: Selected examples of key sectoral mitigation technologies, policies and measures, constraints and opportunities. (Table 4.2)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Key mitigation technologies and practices currently commercially available, in development or being tested</th>
<th>Policies, measures and instruments shown to be environmentally effective</th>
<th>Key constraints or opportunities (Normal font = constraints; italic = opportunities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Improved supply and distribution efficiency; fuel switching from coal to gas; nuclear power architectures; wind power; solar power; biomass power; and advanced renewable energy technologies, including solar photovoltaics, wind turbines, wave power and tidal energy converters.</td>
<td>Reduction of fossil fuel subsidies, taxes or carbon charges on fossil fuels; feed-in tariffs for renewable energy technologies; renewable energy obligations; producer subsidies; appliance standards and labelling; building codes and certification; demand-side management programmes; public sector leadership programmes; and incentives for energy service companies (ESCOs).</td>
<td>Resistance by vested interests may make them difficult to implement.</td>
</tr>
<tr>
<td>Transport</td>
<td>More fuel-efficient vehicles; hybrid vehicles; biofuels; biodiesel; low-sulfur diesel; road pricing; and improved vehicle design for fuel economy and low-cost alternative refrigeration fluids.</td>
<td>Mandatory fuel economy; biofuel blending and CO2 reduction strategies; and taxes on vehicle purchase, registration, use and motor fuels.</td>
<td>Partial coverage of vehicle fleet may limit effectiveness.</td>
</tr>
<tr>
<td>Buildings</td>
<td>Efficient lighting and daylighting; more efficient electrical appliances and heating and cooling devices; and better quality buildings.</td>
<td>Building codes and certification; appliance standards and labelling; and renewable energy incentives or obligations.</td>
<td>Building codes and certification; appliance standards and labelling; and renewable energy incentives or obligations.</td>
</tr>
<tr>
<td>Industry</td>
<td>Improved crop and grazing land management to increase soil carbon storage; improved nitrogen fertiliser application techniques to reduce N2O emissions; improved energy efficiency; and improved land-use and transport planning.</td>
<td>Financial incentives and regulations for improved land and resource management; maintaining soil carbon content; cost-effective use of fertilisers and irrigation; and improved energy efficiency.</td>
<td>Constraints include lack of investment capital and land tenure issues.</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Improved crop and grazing land management to increase soil carbon storage; improved nitrogen fertiliser application techniques to reduce N2O emissions; improved energy efficiency; and improved land-use and transport planning.</td>
<td>Financial incentives and regulations for improved land and resource management; maintaining soil carbon content; cost-effective use of fertilisers and irrigation; and improved energy efficiency.</td>
<td>Constraints include lack of investment capital and land tenure issues.</td>
</tr>
<tr>
<td>Forestry/Forests</td>
<td>Improved crop and grazing land management to increase soil carbon storage; improved nitrogen fertiliser application techniques to reduce N2O emissions; improved energy efficiency; and improved land-use and transport planning.</td>
<td>Financial incentives and regulations for improved land and resource management; maintaining soil carbon content; cost-effective use of fertilisers and irrigation; and improved energy efficiency.</td>
<td>Constraints include lack of investment capital and land tenure issues.</td>
</tr>
<tr>
<td>Waste</td>
<td>Improved crop and grazing land management to increase soil carbon storage; improved nitrogen fertiliser application techniques to reduce N2O emissions; improved energy efficiency; and improved land-use and transport planning.</td>
<td>Financial incentives and regulations for improved land and resource management; maintaining soil carbon content; cost-effective use of fertilisers and irrigation; and improved energy efficiency.</td>
<td>Constraints include lack of investment capital and land tenure issues.</td>
</tr>
</tbody>
</table>
A wide variety of policies and instruments are available to governments to create the incentives for mitigation action. Their applicability depends on national circumstances and sectoral context (Table SPM.5). (4.3)

They include integrating climate policies in wider development policies, regulations and standards, taxes and charges, tradable permits, financial incentives, voluntary agreements, information instruments, and research, development and demonstration (RD&D). (4.3)

An effective carbon-price signal could realise significant mitigation potential in all sectors. Modelling studies show that global carbon prices rising to US$20-80/tCO\textsubscript{2}-eq by 2030 are consistent with stabilisation at around 550ppm CO\textsubscript{2}-eq by 2100. For the same stabilisation level, induced technological change may lower these price ranges to US$5-65/tCO\textsubscript{2}-eq in 2030.17(4.3)

There is high agreement and much evidence that mitigation actions can result in near-term co-benefits (e.g. improved health due to reduced air pollution) that may offset a substantial fraction of mitigation costs. (4.3)

There is high agreement and medium evidence that Annex I countries’ actions may affect the global economy and global emissions, although the scale of carbon leakage remains uncertain.18(4.3)

Fossil fuel exporting nations (in both Annex I and non-Annex I countries) may expect, as indicated in the TAR, lower demand and prices and lower GDP growth due to mitigation policies. The extent of this spillover depends strongly on assumptions related to policy decisions and oil market conditions. (4.3)

There is also high agreement and medium evidence that changes in lifestyle, behaviour patterns and management practices can contribute to climate change mitigation across all sectors. (4.3)

Many options for reducing global GHG emissions through international cooperation exist. There is high agreement and much evidence that notable achievements of the UNFCCC and its Kyoto Protocol are the establishment of a global response to climate change, stimulation of an array of national policies, and the creation of an international carbon market and new institutional mechanisms that may provide the foundation for future mitigation efforts. Progress has also been made in addressing adaptation within the UNFCCC and additional international initiatives have been suggested. (4.5)

Greater cooperative efforts and expansion of market mechanisms will help to reduce global costs for achieving a given level of mitigation, or will improve environmental effectiveness. Efforts can include diverse elements such as emissions targets; sectoral, local, sub-national and regional actions; RD&D programmes; adopting common policies; implementing development-oriented actions; or expanding financing instruments. (4.5)

In several sectors, climate response options can be implemented to realise synergies and avoid conflicts with other dimensions of sustainable development. Decisions about macroeconomic and other non-climate policies can significantly affect emissions, adaptive capacity and vulnerability. (4.4, 5.8)

Making development more sustainable can enhance mitigative and adaptive capacities, reduce emissions and reduce vulnerability, but there may be barriers to implementation. On the other hand, it is very likely that climate change can slow the pace of progress towards sustainable development. Over the next half-century, climate change could impede achievement of the Millennium Development Goals. (5.8)

5. The long-term perspective

Determining what constitutes “dangerous anthropogenic interference with the climate system” in relation to Article 2 of the UNFCCC involves value judgements. Science can support informed decisions on this issue, including by providing criteria for judging which vulnerabilities might be labelled ‘key’. (Box ‘Key Vulnerabilities and Article 2 of the UNFCCC’, Topic 5)

Key vulnerabilities19 may be associated with many climate-sensitive systems, including food supply, infrastructure, health, water resources, coastal systems, ecosystems, global biogeochemical cycles, ice sheets and modes of oceanic and atmospheric circulation. (Box ‘Key Vulnerabilities and Article 2 of the UNFCCC’, Topic 5)

17 Studies on mitigation portfolios and macro-economic costs assessed in this report are based on top-down modelling. Most models use a global least-cost approach to mitigation portfolios, with universal emissions trading, assuming transparent markets, no transaction cost, and thus perfect implementation of mitigation measures throughout the 21st century. Costs are given for a specific point in time. Global modelled costs will increase if some regions, sectors (e.g. land use), options or gases are excluded. Global modelled costs will decrease with lower baselines, use of revenues from carbon taxes and auctioned permits, and if induced technological learning is included. These models do not consider climate benefits and generally also co-benefits of mitigation measures, or equity issues. Significant progress has been achieved in applying approaches based on induced technological change to stabilisation studies; however, conceptual issues remain. In the models that consider induced technological change, projected costs for a given stabilisation level are reduced; the reductions are greater at lower stabilisation level.

18 Further details may be found in Topic 4 of this Synthesis Report.

19 Key vulnerabilities can be identified based on a number of criteria in the literature, including magnitude, timing, persistence/reversibility, the potential for adaptation, distributional aspects, likelihood and ‘importance’ of the impacts.
The five ‘reasons for concern’ identified in the TAR remain a viable framework to consider key vulnerabilities. These ‘reasons’ are assessed here to be stronger than in the TAR. Many risks are identified with higher confidence. Some risks are projected to be larger or to occur at lower increases in temperature. Understanding about the relationship between impacts (the basis for ‘reasons for concern’ in the TAR) and vulnerability (that includes the ability to adapt to impacts) has improved. (5.2)

This is due to more precise identification of the circumstances that make systems, sectors and regions especially vulnerable and growing evidence of the risks of very large impacts on multiple-century time scales. (5.2)

- **Risks to unique and threatened systems.** There is new and stronger evidence of observed impacts of climate change on unique and vulnerable systems (such as polar and high mountain communities and ecosystems), with increasing levels of adverse impacts as temperatures increase further. An increasing risk of species extinction and coral reef damage is projected with higher confidence than in the TAR as warming proceeds. There is medium confidence that approximately 20 to 30% of plant and animal species assessed so far are likely to be at increased risk of extinction if increases in global average temperature exceed 1.5 to 2.5°C over 1980-1999 levels. Confidence has increased that a 1 to 2°C increase in global mean temperature above 1990 levels (about 1.5 to 2.5°C above pre-industrial) poses significant risks to many unique and threatened systems including many biodiversity hotspots. Corals are vulnerable to thermal stress and have low adaptive capacity. Increases in sea surface temperature of about 1 to 3°C are projected to result in more frequent coral bleaching events and widespread mortality, unless there is thermal adaptation or acclimatisation by corals. Increasing vulnerability of indigenous communities in the Arctic and small island communities warming is projected. (5.2)

- **Risks of extreme weather events.** Responses to some recent extreme events reveal higher levels of vulnerability than the TAR. There is now higher confidence in the projected increases in droughts, heat waves and floods, as well as their adverse impacts. (5.2)

- **Distribution of impacts and vulnerabilities.** There are sharp differences across regions and those in the weakest economic position are often the most vulnerable to climate change. There is increasing evidence of greater vulnerability of specific groups such as the poor and elderly not only in developing but also in developed countries. Moreover, there is increased evidence that low-latitude and less developed areas generally face greater risk, for example in dry areas and megadeltas. (5.2)

- **Aggregate impacts.** Compared to the TAR, initial net market-based benefits from climate change are projected to peak at a lower magnitude of warming, while damages would be higher for larger magnitudes of warming. The net costs of impacts of increased warming are projected to increase over time. (5.2)

- **Risks of large-scale singularities.** There is high confidence that global warming over many centuries would lead to a sea level rise contribution from thermal expansion alone is projected to be much larger than observed over the 20th century, with loss of coastal area and associated impacts. There is better understanding than in the TAR that the risk of additional contributions to sea level rise from both the Greenland and possibly Antarctic ice sheets may be larger than projected by ice sheet models and could occur on century time scales. This is because ice dynamical processes seen in recent observations but not fully included in ice sheet models assessed in the AR4 could increase the rate of ice loss. (5.2)

There is high confidence that neither adaptation nor mitigation alone can avoid all climate change impacts; however, they can complement each other and together can significantly reduce the risks of climate change. (5.3)

Adaptation is necessary in the short and longer term to address impacts resulting from the warming that would occur even for the lowest stabilisation scenarios assessed. There are barriers, limits and costs, but these are not fully understood. Unmitigated climate change would, in the long term, be likely to exceed the capacity of natural, managed and human systems to adapt. The time at which such limits could be reached will vary between sectors and regions. Early mitigation actions would avoid further locking in carbon intensive infrastructure and reduce climate change and associated adaptation needs. (5.2, 5.3)

Many impacts can be reduced, delayed or avoided by mitigation. Mitigation efforts and investments over the next two to three decades will have a large impact on opportunities to achieve lower stabilisation levels. Delayed emission reductions significantly constrain the opportunities to achieve lower stabilisation levels and increase the risk of more severe climate change impacts. (5.3, 5.4, 5.7)

In order to stabilise the concentration of GHGs in the atmosphere, emissions would need to peak and decline thereafter. The lower the stabilisation level, the more quickly this peak and decline would need to occur. (5.4)

Table SPM.6 and Figure SPM.11 summarise the required emission levels for different groups of stabilisation concentrations and the resulting equilibrium global warming and long-

20 For the lowest mitigation scenario category assessed, emissions would need to peak by 2015, and for the highest, by 2090 (see Table SPM.6). Scenarios that use alternative emission pathways show substantial differences in the rate of global climate change.
term sea level rise due to thermal expansion only. The timing and level of mitigation to reach a given temperature stabilisation level is earlier and more stringent if climate sensitivity is high than if it is low. [5.4, 5.7]

Sea level rise under warming is inevitable. Thermal expansion would continue for many centuries after GHG concentrations have stabilised, for any of the stabilisation levels assessed, causing an eventual sea level rise much larger than projected for the 21st century. The eventual contributions from Greenland ice sheet loss could be several metres, and larger than from thermal expansion, should warming in excess of 1.9 to 4.6°C above pre-industrial be sustained over many centuries. The long time scales of thermal expansion and ice sheet response to warming imply that stabilisation of GHG concentrations at or above present levels would not stabilise sea level for many centuries. [5.3, 5.4]

There is high agreement and much evidence that all stabilisation levels assessed can be achieved by deployment of a portfolio of technologies that are either currently available or expected to be commercialised in coming decades, assuming appropriate and effective incentives are in place for their development, acquisition, deployment and diffusion and addressing related barriers. [5.5]

All assessed stabilisation scenarios indicate that 60 to 80% of the reductions would come from energy supply and use and industrial processes, with energy efficiency playing a key role in many scenarios. Including non-CO₂ and CO₂ land-use and forestry mitigation options provides greater flexibility and cost-effectiveness. Low stabilisation levels require early investments and substantially more rapid diffusion and commercialisation of advanced low-emissions technologies. [5.5]

Without substantial investment flows and effective technology transfer, it may be difficult to achieve emission reduction at a significant scale. Mobilising financing of incremental costs of low-carbon technologies is important. [5.5]

Table SPM.6. Characteristics of post-TAR stabilisation scenarios and resulting long-term equilibrium global average temperature and the sea level rise component from thermal expansion only: [Table 5.1]

<table>
<thead>
<tr>
<th>Category</th>
<th>CO₂ concentration at stabilisation (2005 = 379 ppm)</th>
<th>CO₂-equivalent concentration including GHGs and aerosols (2005 = 375 ppm)</th>
<th>Peaking year for CO₂ emissions</th>
<th>Change in global CO₂ emissions in 2050 (percent of 2000 emissions)</th>
<th>Change in global CO₂ emissions in 2050 (percent of 2000 emissions)</th>
<th>Global average temperature increase above pre-industrial, using best estimate climate sensitivity</th>
<th>Global average sea level rise at equilibrium from thermal expansion only</th>
<th>Number of assessed scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>350 – 400</td>
<td>445 – 490</td>
<td>2000 – 2015</td>
<td>-85 to -50</td>
<td>2.0 – 2.4</td>
<td>0.4 – 1.4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>400 – 440</td>
<td>490 – 535</td>
<td>2000 – 2020</td>
<td>-60 to -30</td>
<td>2.4 – 2.8</td>
<td>0.5 – 1.7</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>440 – 485</td>
<td>535 – 590</td>
<td>2010 – 2030</td>
<td>-30 to +5</td>
<td>2.8 – 3.2</td>
<td>0.6 – 1.9</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>485 – 570</td>
<td>590 – 710</td>
<td>2020 – 2060</td>
<td>+10 to +60</td>
<td>3.2 – 4.0</td>
<td>0.6 – 2.4</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>570 – 660</td>
<td>710 – 855</td>
<td>2050 – 2080</td>
<td>+25 to +85</td>
<td>4.0 – 4.9</td>
<td>0.8 – 2.9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>660 – 790</td>
<td>855 – 1130</td>
<td>2060 – 2090</td>
<td>+90 to +140</td>
<td>4.9 – 6.1</td>
<td>1.0 – 3.7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a) The emission reductions to meet a particular stabilisation level reported in the mitigation studies assessed here might be underestimated due to missing carbon cycle feedbacks (see also Topic 2.3).

b) Atmospheric CO₂ concentrations were 379ppm in 2005. The best estimate of total CO₂-eq concentration in 2005 for all long-lived GHGs is about 455ppm, while the corresponding value including the net effect of all anthropogenic forcing agents is 375ppm CO₂-eq.

c) Ranges correspond to the 15th to 85th percentile of the post-TAR scenario distribution. CO₂ emissions are shown so multi-gas scenarios can be compared with CO₂-only scenarios (see Figure SPM.3).

d) The best estimate of climate sensitivity is 3°C.

e) Note that global average temperature at equilibrium is different from expected global average temperature at the time of stabilisation of GHG concentrations due to the inertia of the climate system. For the majority of scenarios assessed, stabilisation of GHG concentrations occurs between 2100 and 2150 (see also Footnote 21).

f) Equilibrium sea level rise is for the contribution from ocean thermal expansion only and does not reach equilibrium for at least many centuries. These values have been estimated using relatively simple climate models (one low-resolution AOGCM and several EMICs based on the best estimate of 3°C climate sensitivity) and do not include contributions from melting ice sheets, glaciers and ice caps. Long-term thermal expansion is projected to result in 0.2 to 0.6m per degree Celsius of global average warming above pre-industrial. (AOGCM refers to Atmosphere-Ocean General Circulation Model and EMICs to Earth System Models of Intermediate Complexity.)

21 Estimates for the evolution of temperature over the course of this century are not available in the AR4 for the stabilisation scenarios. For most stabilisation levels, global average temperature is approaching the equilibrium level over a few centuries. For the much lower stabilisation scenarios (category I and II, Figure SPM.11), the equilibrium temperature may be reached earlier.
The macro-economic costs of mitigation generally rise with the stringency of the stabilisation target (Table SPM.7). For specific countries and sectors, costs vary considerably from the global average.\(^{22}\) \((5.6)\)

Table SPM.7. Estimated global macro-economic costs in 2030 and 2050. Costs are relative to the baseline for least-cost trajectories towards different long-term stabilisation levels. \((Table 5.2)\)

<table>
<thead>
<tr>
<th>Stabilisation levels (ppm CO(_2)-eq)</th>
<th>Median GDP reduction(^a) (%)</th>
<th>Range of GDP reduction(^b) (%)</th>
<th>Reduction of average annual GDP growth rates (percentage points)(^{c,e})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2030</td>
<td>2050</td>
<td>2030</td>
</tr>
<tr>
<td>445 – 535(^d)</td>
<td>0.6</td>
<td>Not available</td>
<td>< 3</td>
</tr>
<tr>
<td>535 – 590</td>
<td>0.2</td>
<td>1.3</td>
<td>0.2 to 2.5</td>
</tr>
<tr>
<td>590 – 710</td>
<td>0.2</td>
<td>0.5</td>
<td>-0.6 to 1.2</td>
</tr>
</tbody>
</table>

Notes:
Values given in this table correspond to the full literature across all baselines and mitigation scenarios that provide GDP numbers.

a) Global GDP based on market exchange rates.

b) The 10\(^{th}\) and 90\(^{th}\) percentile range of the analysed data are given where applicable. Negative values indicate GDP gain. The first row (445-535ppm CO\(_2\)-eq) gives the upper bound estimate of the literature only.

c) The calculation of the reduction of the annual growth rate is based on the average reduction during the assessed period that would result in the indicated GDP decrease by 2030 and 2050 respectively.

d) The number of studies is relatively small and they generally use low baselines. High emissions baselines generally lead to higher costs.

e) The values correspond to the highest estimate for GDP reduction shown in column three.

\(^{22}\) See Footnote 17 for more detail on cost estimates and model assumptions.
Responding to climate change involves an iterative risk management process that includes both adaptation and mitigation and takes into account climate change damages, co-benefits, sustainability, equity and attitudes to risk. (5.1)

Impacts of climate change are very likely to impose net annual costs, which will increase over time as global temperatures increase. Peer-reviewed estimates of the social cost of carbon in 2005 average US$12 per tonne of CO$_2$, but the range from 100 estimates is large (-$3 to $95/tCO$_2$). This is due in large part to differences in assumptions regarding climate sensitivity, response lags, the treatment of risk and equity, economic and non-economic impacts, the inclusion of potentially catastrophic losses and discount rates. Aggregate estimates of costs mask significant differences in impacts across sectors, regions and populations and very likely underestimate damage costs because they cannot include many non-quantifiable impacts. (5.7)

Limited and early analytical results from integrated analyses of the costs and benefits of mitigation indicate that they are broadly comparable in magnitude, but do not as yet permit an unambiguous determination of an emissions pathway or stabilisation level where benefits exceed costs. (5.7)

Climate sensitivity is a key uncertainty for mitigation scenarios for specific temperature levels. (5.4)

Choices about the scale and timing of GHG mitigation involve balancing the economic costs of more rapid emission reductions now against the corresponding medium-term and long-term climate risks of delay. (5.7)

23 Net economic costs of damages from climate change aggregated across the globe and discounted to the specified year.
An Assessment of the Intergovernmental Panel on Climate Change

This underlying report, adopted section by section at IPCC Plenary XXVII (Valencia, Spain, 12-17 November 2007), represents the formally agreed statement of the IPCC concerning key findings and uncertainties contained in the Working Group contributions to the Fourth Assessment Report.

Based on a draft prepared by:

Core Writing Team
Lenny Bernstein, Peter Bosch, Osvaldo Canziani, Zhenlin Chen, Renate Christ, Ogunlade Davidson, William Hare, Saleemul Huq, David Karoly, Vladimir Kattsov, Zbigniew Kundzewicz, Jian Liu, Ulrike Lohmann, Martin Manning, Taroh Matsuno, Bettina Menne, Bert Metz, Monirul Mirza, Neville Nicholls, Leonard Nurse, Rajendra Pachauri, Jean Palutikof, Martin Parry, Dahe Qin, Nijavalli Ravindranath, Andy Reisinger, Jiwen Ren, Keywan Riahi, Cynthia Rosenzweig, Matilde Rusticucci, Stephen Schneider, Youba Sokona, Susan Solomon, Peter Stott, Ronald Stouffer, Taishi Sugiyama, Rob Swart, Dennis Tirpak, Coleen Vogel, Gary Yohe

Extended Writing Team
Terry Barker

Review Editors
Abdelkader Allali, Roxana Bojariu, Sandra Diaz, Ismail Elgizouli, Dave Griggs, David Hawkins, Olav Hohmeyer, Bubu Pateh Jallow, Lučka Kajfež-Bogataj, Neil Leary, Hoesung Lee, David Wratt
Introduction
Introduction

This Synthesis Report is based on the assessment carried out by the three Working Groups (WGs) of the Intergovernmental Panel on Climate Change (IPCC). It provides an integrated view of climate change as the final part of the IPCC’s Fourth Assessment Report (AR4).

Topic 1 summarises observed changes in climate and their effects on natural and human systems, regardless of their causes, while Topic 2 assesses the causes of the observed changes. Topic 3 presents projections of future climate change and related impacts under different scenarios.

Topic 4 discusses adaptation and mitigation options over the next few decades and their interactions with sustainable development. Topic 5 assesses the relationship between adaptation and mitigation on a more conceptual basis and takes a longer-term perspective. Topic 6 summarises the major robust findings and remaining key uncertainties in this assessment.

A schematic framework representing anthropogenic drivers, impacts of and responses to climate change, and their linkages, is shown in Figure I.1. At the time of the Third Assessment Report (TAR) in 2001, information was mainly available to describe the linkages clockwise, i.e. to derive climatic changes and impacts from socio-economic information and emissions. With increased understanding of these linkages, it is now possible to assess the linkages also counterclockwise, i.e. to evaluate possible development pathways and global emissions constraints that would reduce the risk of future impacts that society may wish to avoid.

Figure I.1. Schematic framework representing anthropogenic drivers, impacts of and responses to climate change, and their linkages.
Introduction

Treatment of uncertainty

The IPCC uncertainty guidance note¹ defines a framework for the treatment of uncertainties across all WGs and in this Synthesis Report. This framework is broad because the WGs assess material from different disciplines and cover a diversity of approaches to the treatment of uncertainty drawn from the literature. The nature of data, indicators and analyses used in the natural sciences is generally different from that used in assessing technology development or the social sciences. WG I focuses on the former, WG III on the latter, and WG II covers aspects of both.

Three different approaches are used to describe uncertainties each with a distinct form of language. Choices among and within these three approaches depend on both the nature of the information available and the authors’ expert judgment of the correctness and completeness of current scientific understanding.

Where uncertainty is assessed qualitatively, it is characterised by providing a relative sense of the amount and quality of evidence (that is, information from theory, observations or models indicating whether a belief or proposition is true or valid) and the degree of agreement (that is, the level of concurrence in the literature on a particular finding). This approach is used by WG III through a series of self-explanatory terms such as: high agreement, much evidence; high agreement, medium evidence; medium agreement, medium evidence; etc.

Where uncertainty is assessed more quantitatively using expert judgement of the correctness of underlying data, models or analyses, then the following scale of confidence levels is used to express the assessed chance of a finding being correct: very high confidence at least 9 out of 10; high confidence about 8 out of 10; medium confidence about 5 out of 10; low confidence about 2 out of 10; and very low confidence less than 1 out of 10.

Where uncertainty in specific outcomes is assessed using expert judgment and statistical analysis of a body of evidence (e.g. observations or model results), then the following likelihood ranges are used to express the assessed probability of occurrence: virtually certain >99%; extremely likely >95%; very likely >90%; likely >66%; more likely than not > 50%; about as likely as not 33% to 66%; unlikely <33%; very unlikely <10%; extremely unlikely <5%; exceptionally unlikely <1%.

WG II has used a combination of confidence and likelihood assessments and WG I has predominantly used likelihood assessments.

This Synthesis Report follows the uncertainty assessment of the underlying WGs. Where synthesised findings are based on information from more than one WG, the description of uncertainty used is consistent with that for the components drawn from the respective WG reports.

Unless otherwise stated, numerical ranges given in square brackets in this report indicate 90% uncertainty intervals (i.e. there is an estimated 5% likelihood that the value could be above the range given in square brackets and 5% likelihood that the value could be below that range). Uncertainty intervals are not necessarily symmetric around the best estimate.

¹ See http://www.ipcc.ch/meetings/ar4-workshops-express-meetings/uncertainty-guidance-note.pdf
Observed changes in climate and their effects
1.1 Observations of climate change

Since the TAR, progress in understanding how climate is changing in space and time has been gained through improvements and extensions of numerous datasets and data analyses, broader geographical coverage, better understanding of uncertainties and a wider variety of measurements. [WGI SPM]

Definitions of climate change

Climate change in IPCC usage refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer. It refers to any change in climate over time, whether due to natural variability or as a result of human activity. This usage differs from that in the United Nations Framework Convention on Climate Change (UNFCCC), where climate change refers to a change of climate that is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and that is in addition to natural climate variability observed over comparable time periods.

Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising global average sea level (Figure 1.1). [WGI 3.2, 4.8, 5.2, 5.5, SPM]

Eleven of the last twelve years (1995-2006) rank among the twelve warmest years in the instrumental record of global surface temperature (since 1850). The 100-year linear trend (1906-2005) of 0.74 [0.56 to 0.92]°C is larger than the corresponding trend of 0.6 [0.4 to 0.8]°C (1901-2000) given in the TAR (Figure 1.1). The linear warming trend over the 50 years from 1956 to 2005 (0.13 [0.10 to 0.16]°C per decade) is nearly twice that for the 100 years from 1906 to 2005. [WGI 3.2, SPM]

The temperature increase is widespread over the globe and is greater at higher northern latitudes (Figure 1.2). Average Arctic temperatures have increased at almost twice the global average rate in the past 100 years. Land regions have warmed faster than the oceans (Figures 1.2 and 2.5). Observations since 1961 show that the average temperature of the global ocean has increased to depths of at least 3000m and that the ocean has been taking up over 80% of the heat being added to the climate system. New analyses of balloon- and satellite measurements of lower- and mid-tropospheric temperature show warming rates similar to those observed in surface temperature. [WGI 3.2, 3.4, 5.2, SPM]

Increases in sea level are consistent with warming (Figure 1.1). Global average sea level rose at an average rate of 1.8 [1.3 to 2.3]mm per year over 1961 to 2003 and at an average rate of about 3.1 [2.4 to 3.8]mm per year from 1993 to 2003. Whether this faster rate for 1993 to 2003 reflects decadal variation or an increase in the longer-term trend is unclear. Since 1993 thermal expansion of the oceans has contributed about 57% of the sum of the estimated individual contributions to the sea level rise, with decreases in glaciers and ice caps contributing about 28% and losses from the polar ice sheets contributing the remainder. From 1993 to 2003 the sum of these climate contributions is consistent within uncertainties with the total sea level rise that is directly observed. [WGI 4.6, 4.8, 5.5, SPM, Table SPM.1]

Observed decreases in snow and ice extent are also consistent with warming (Figure 1.1). Satellite data since 1978 show that annual average Arctic sea ice extent has shrunk by 2.7 [2.1 to 3.3]% per decade, with larger decreases in summer of 7.4 [5.0 to 9.8]% per decade. Mountain glaciers and snow cover on average have declined in both hemispheres. The maximum areal extent of seasonally frozen ground has decreased by about 7% in the Northern Hemisphere since 1900, with decreases in spring of up to 15%. Temperatures at the top of the permafrost layer have generally increased since the 1980s in the Arctic by up to 3°C. [WGI 3.2, 4.5, 4.6, 4.7, 4.8, 5.5, SPM]

At continental, regional and ocean basin scales, considerable long-term changes in other aspects of climate have also been observed. Trends from 1900 to 2005 have been observed in precipitation amount in many large regions. Over this period, precipitation increased significantly in eastern parts of North and South America, northern Europe and northern and central Asia whereas precipitation declined significantly in eastern parts of North and South America, northern Europe and northern and central Asia whereas precipitation declined in the Sahel, the Mediterranean, southern Africa and parts of southern Asia. Globally, the area affected by drought has likely2 increased since the 1970s. [WGI 3.3, 3.9, SPM]

Some extreme weather events have changed in frequency and/or intensity over the last 50 years:

- It is very likely that cold days, cold nights and frosts have become less frequent over most land areas, while hot days and hot nights have become more frequent. [WGI 3.8, SPM]
- It is likely that heat waves have become more frequent over most land areas. [WGI 3.8, SPM]
- It is likely that the frequency of heavy precipitation events (or proportion of total rainfall from heavy falls) has increased over most areas. [WGI 3.8, 3.9, SPM]
- It is likely that the incidence of extreme high sea level3 has increased at a broad range of sites worldwide since 1975. [WGI 5.5, SPM]

There is observational evidence of an increase in intense tropical cyclone activity in the North Atlantic since about 1970, and suggestions of increased intense tropical cyclone activity in some other regions where concerns over data quality are greater. Multi-decadal variability and the quality of the tropical cyclone records prior to routine satellite observations in about 1970 complicate the detection of long-term trends in tropical cyclone activity. [WGI 3.8, SPM]

Average Northern Hemisphere temperatures during the second half of the 20th century were very likely higher than during any other 50-year period in the last 500 years and likely the highest in at least the past 1300 years. [WGI 6.6, SPM]

2 Likelihood and confidence statements in italics represent calibrated expressions of uncertainty and confidence. See Box ‘Treatment of uncertainty’ in the Introduction for an explanation of these terms.

3 Excluding tsunamis, which are not due to climate change. Extreme high sea level depends on average sea level and on regional weather systems. It is defined here as the highest 1% of hourly values of observed sea level at a station for a given reference period.
1.2 Observed effects of climate changes

Changes in temperature, sea level and Northern Hemisphere snow cover

Figure 1.1. Observed changes in (a) global average surface temperature; (b) global average sea level from tide gauge (blue) and satellite (red) data; and (c) Northern Hemisphere snow cover for March-April. All differences are relative to corresponding averages for the period 1961-1990. Smoothed curves represent decadal averaged values while circles show yearly values. The shaded areas are the uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from the time series (c). [WGI FAQ 3.1 Figure 1, Figure 4.2, Figure 5.13, Figure SPM.3]

Observational evidence from all continents and most oceans shows that many natural systems are being affected by regional climate changes, particularly temperature increases. [WGI SPM]

There is high confidence that natural systems related to snow, ice and frozen ground (including permafrost) are affected. Examples are:
- enlargement and increased numbers of glacial lakes [WGII 1.3, SPM]
- increasing ground instability in permafrost regions and rock avalanches in mountain regions [WGII 1.3, SPM]
- changes in some Arctic and Antarctic ecosystems, including those in sea-ice biomes, and predators at high levels of the food web. [WGII 1.3, 4.4, 15.4, SPM]

Based on growing evidence, there is high confidence that the following effects on hydrological systems are occurring: increased runoff and earlier spring peak discharge in many glacier- and snow-fed rivers, and warming of lakes and rivers in many regions, with effects on thermal structure and water quality. [WGII 1.3, 15.2, SPM]
Figure 1.2. Locations of significant changes in data series of physical systems (snow, ice and frozen ground; hydrology; and coastal processes) and biological systems (terrestrial, marine, and freshwater biological systems), are shown together with surface air temperature changes over the period 1970-2004. A subset of about 29,000 data series was selected from about 80,000 data series from 577 studies. These met the following criteria: (1) ending in 1990 or later; (2) spanning a period of at least 20 years; and (3) showing a significant change in either direction, as assessed in individual studies. These data series are from about 75 studies (of which about 70 are new since the TAR) and contain about 29,000 data series, of which about 28,000 are from European studies. White areas do not contain sufficient observational climate data to estimate a temperature trend. The 2 x 2 boxes show the total number of data series with significant changes (top row) and the percentage of those consistent with warming (bottom row) for (i) continental regions: North America (NAM), Latin America (LA), Europe (EUR), Africa (AFR), Asia (AS), Australia and New Zealand (ANZ), and Polar Regions (PR) and (ii) global-scale: Terrestrial (TER), Marine and Freshwater (MFW), and Global (GLO). The numbers of studies from the seven regional boxes (NAM, ... PR) do not add up to the global (GLO) totals because numbers from regions except Polar do not include the numbers related to Marine and Freshwater (MFW) systems. Locations of large-area marine changes are not shown on the map. (WGII Figure SPM.1, Figure 1.8, Figure 1.9; WGI Figure 3.9b)
There is very high confidence, based on more evidence from a wider range of species, that recent warming is strongly affecting terrestrial biological systems, including such changes as earlier timing of spring events, such as leaf-unfolding, bird migration and egg-laying; and poleward and upward shifts in ranges in plant and animal species. Based on satellite observations since the early 1980s, there is high confidence that there has been a trend in many regions towards earlier ‘greening’ of vegetation in the spring linked to longer thermal growing seasons due to recent warming. [WGII 1.3, 8.2, 14.2, SPM]

There is high confidence, based on substantial new evidence, that observed changes in marine and freshwater biological systems are associated with rising water temperatures, as well as related changes in ice cover, salinity, oxygen levels and circulation. These include: shifts in ranges and changes in algal, plankton and fish abundance in high-latitude oceans; increases in algal and zooplankton abundance in high-latitude and high-altitude lakes; and range changes and earlier fish migrations in rivers. While there is increasing evidence of climate change impacts on coral reefs, separating the impacts of climate-related stresses from other stresses (e.g. overfishing and pollution) is difficult. [WGII 1.3, SPM]

Other effects of regional climate changes on natural and human environments are emerging, although many are difficult to discern due to adaptation and non-climatic drivers. [WGII SPM]

Effects of temperature increases have been documented with medium confidence in the following managed and human systems:

- agricultural and forestry management at Northern Hemisphere higher latitudes, such as earlier spring planting of crops, and alterations in disturbances of forests due to fires and pests [WGII 1.3, SPM]
- some aspects of human health, such as excess heat-related mortality in Europe, changes in infectious disease vectors in parts of Europe, and earlier onset of and increases in seasonal production of allergenic pollen in Northern Hemisphere high and mid-latitudes [WGII 1.3, 8.2, 8.ES, SPM]
- some human activities in the Arctic (e.g. hunting and shorter travel seasons over snow and ice) and in lower-elevation alpine areas (such as limitations in mountain sports). [WGII 1.3, SPM]

Sea level rise and human development are together contributing to losses of coastal wetlands and mangroves and increasing damage from coastal flooding in many areas. However, based on the published literature, the impacts have not yet become established trends. [WGII 1.3, 1.ES, SPM]

1.3 Consistency of changes in physical and biological systems with warming

Changes in the ocean and on land, including observed decreases in snow cover and Northern Hemisphere sea ice extent, thinner sea ice, shorter freezing seasons of lake and river ice, glacier melt, decreases in permafrost extent, increases in soil temperatures and borehole temperature profiles, and sea level rise, provide additional evidence that the world is warming. [WGI 3.9]

Of the more than 29,000 observational data series, from 75 studies, that show significant change in many physical and biological systems, more than 89% are consistent with the direction of change expected as a response to warming (Figure 1.2). [WGII 1.4, SPM]

1.4 Some aspects of climate have not been observed to change

Some aspects of climate appear not to have changed and, for some, data inadequacies mean that it cannot be determined if they have changed. Antarctic sea ice extent shows inter-annual variability and localised changes but no statistically significant average multi-decadal trend, consistent with the lack of rise in near-surface atmospheric temperatures averaged across the continent. There is insufficient evidence to determine whether trends exist in some other variables, for example the meridional overturning circulation (MOC) of the global ocean or small-scale phenomena such as tornadoes, hail, lightning and dust storms. There is no clear trend in the annual numbers of tropical cyclones. [WGI 3.2, 3.8, 4.4, 5.3, SPM]
Causes of change
This Topic considers both natural and anthropogenic drivers of climate change, including the chain from greenhouse gas (GHG) emissions to atmospheric concentrations to radiative forcing to climate responses and effects.

2.1 Emissions of long-lived GHGs

The radiative forcing of the climate system is dominated by the long-lived GHGs, and this section considers those whose emissions are covered by the UNFCCC.

Global GHG emissions due to human activities have grown since pre-industrial times, with an increase of 70% between 1970 and 2004 (Figure 2.1).\(^5\) \(\text{[WGIII 1.3, SPM]}\)

Carbon dioxide (CO\(_2\)) is the most important anthropogenic GHG. Its annual emissions have grown between 1970 and 2004 by about 80%, from 21 to 38 gigatonnes (Gt), and represented 77% of total anthropogenic GHG emissions in 2004 (Figure 2.1). The rate of growth of CO\(_2\)-eq emissions was much higher during the recent 10-year period of 1995-2004 (0.92 GtCO\(_2\)-eq per year) than during the previous period of 1970-1994 (0.43 GtCO\(_2\)-eq per year). \(\text{[WGIII 1.3, TS.1, SPM]}\)

Radiative forcing is a measure of the influence a factor has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system and is an index of the importance of the factor as a potential climate change mechanism. In this report radiative forcing values are for changes relative to pre-industrial conditions defined at 1750 and are expressed in watts per square metre (W/m\(^2\)).

Carbon dioxide-equivalent (CO\(_2\)-eq) emissions and concentrations

GHGs differ in their warming influence (radiative forcing) on the global climate system due to their different radiative properties and lifetimes in the atmosphere. These warming influences may be expressed through a common metric based on the radiative forcing of CO\(_2\).

- **CO\(_2\)-equivalent emission** is the amount of CO\(_2\) emission that would cause the same time-integrated radiative forcing, over a given time horizon, as an emitted amount of a long-lived GHG or a mixture of GHGs. The equivalent CO\(_2\) emission is obtained by multiplying the emission of a GHG by its Global Warming Potential (GWP) for the given time horizon.\(^6\) For a mix of GHGs it is obtained by summing the equivalent CO\(_2\) emissions of each gas. Equivalent CO\(_2\) emission is a standard and useful metric for comparing emissions of different GHGs but does not imply the same climate change responses (see WGI 2.10).

- **CO\(_2\)-equivalent concentration** is the concentration of CO\(_2\) that would cause the same amount of radiative forcing as a given mixture of CO\(_2\) and other forcing components.\(^7\)

The largest growth in GHG emissions between 1970 and 2004 has come from energy supply, transport and industry, while residential and commercial buildings, forestry (including deforestation) and agriculture sectors have been growing at a lower rate. The

\(^4\) Radiative forcing is a measure of the influence a factor has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system and is an index of the importance of the factor as a potential climate change mechanism. In this report radiative forcing values are for changes relative to pre-industrial conditions defined at 1750 and are expressed in watts per square metre (W/m\(^2\)).

\(^5\) Includes only carbon dioxide (CO\(_2\)), methane (CH\(_4\)), nitrous oxide (N\(_2\)O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphurhexafluoride (SF\(_6\)), whose emissions are covered by the UNFCCC. These GHGs are weighted by their 100-year Global Warming Potentials (GWPs), using values consistent with reporting under the UNFCCC.

\(^6\) This report uses 100-year GWPs and numerical values consistent with reporting under the UNFCCC.

\(^7\) Such values may consider only GHGs, or a combination of GHGs and aerosols.
sectoral sources of GHGs in 2004 are considered in Figure 2.1c. [WGIII 1.3, SPM]

The effect on global emissions of the decrease in global energy intensity (-33%) during 1970 to 2004 has been smaller than the combined effect of global income growth (77%) and global population growth (69%); both drivers of increasing energy-related CO₂ emissions. The long-term trend of declining CO₂ emissions per unit of energy supplied reversed after 2000. [WGIII 1.3, Figure SPM.2, SPM]

Differences in per capita income, per capita emissions and energy intensity among countries remain significant. In 2004, UNFCCC Annex I countries held a 20% share in world population, produced 57% of the world’s Gross Domestic Product based on Purchasing Power Parity (GDPₚₚₚ) and accounted for 46% of global GHG emissions (Figure 2.2). [WGIII 1.3, SPM]

2.2 Drivers of climate change

Changes in the atmospheric concentrations of GHGs and aerosols, land cover and solar radiation alter the energy balance of the climate system and are drivers of climate change. They affect the absorption, scattering and emission of radiation within the atmosphere and at the Earth’s surface. The resulting positive or negative changes in energy balance due to these factors are expressed as radiative forcing⁴, which is used to compare warming or cooling influences on global climate. [WGI TS.2]

Human activities result in emissions of four long-lived GHGs: CO₂, methane (CH₄), nitrous oxide (N₂O) and halocarbons (a group of gases containing fluorine, chlorine or bromine). Atmospheric concentrations of GHGs increase when emissions are larger than removal processes.

Global atmospheric concentrations of CO₂, CH₄ and N₂O have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years (Figure 2.3). The atmospheric concentrations of CO₂ and CH₄ in 2005 exceed by far the natural range over the last 650,000 years. Global increases in CO₂ concentrations are due primarily to fossil fuel use, with land-use change providing another significant but smaller contribution. It is very likely that the observed increase in CH₄ concentration is predominantly due to agriculture and fossil fuel use. The increase in N₂O concentration is primarily due to agriculture. [WGI 2.3, 7.3, SPM]

The global atmospheric concentration of CO₂ increased from a pre-industrial value of about 280ppm to 379ppm in 2005. The annual CO₂ concentration growth rate was larger during the last 10 years (1995-2005 average: 1.9ppm per year) than it has been since the beginning of continuous direct atmospheric measurements (1960-2005 average: 1.4ppm per year), although there is year-to-year variability in growth rates. [WGI 2.3, 7.4, SPM]

The global atmospheric concentration of CH₄ has increased from a pre-industrial value of about 715ppb to 1732ppb in the early 1990s, and was 1774ppb in 2005. Growth rates have declined since the early 1990s, consistent with total emissions (sum of anthropogenic and natural sources) being nearly constant during this period. [WGI 2.3, 7.4, SPM]

Many halocarbons (including hydrofluorocarbons) have increased from a near-zero pre-industrial background concentration, primarily due to human activities. [WGI 2.3, SPM; SROC SPM]

There is very high confidence that the global average net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] W/m² (Figure 2.4). [WGI 2.3, 6.5, 2.9, SPM]

The combined radiative forcing due to increases in CO₂, CH₄ and N₂O is +2.3 [+2.1 to +2.5] W/m², and its rate of increase during...
the industrial era is very likely to have been unprecedented in more than 10,000 years (Figures 2.3 and 2.4). The CO₂ radiative forcing increased by 20% from 1995 to 2005, the largest change for any decade in at least the last 200 years. [WGI 2.3, 6.4, SPM]

Anthropogenic contributions to aerosols (primarily sulphate, organic carbon, black carbon, nitrate and dust) together produce a cooling effect, with a total direct radiative forcing of -0.5 [-0.9 to -0.1] W/m² and an indirect cloud albedo forcing of -0.7 [-1.8 to -0.3] W/m². Aerosols also influence precipitation. [WGI 2.4, 2.9, 7.5, SPM]

In comparison, changes in solar irradiance since 1750 are estimated to have caused a small radiative forcing of +0.12 [+0.06 to +0.30] W/m², which is less than half the estimate given in the TAR. [WGI 2.7, SPM]

2.3 Climate sensitivity and feedbacks

The equilibrium climate sensitivity is a measure of the climate system response to sustained radiative forcing. It is defined as the equilibrium global average surface warming following a doubling of CO₂ concentration. Progress since the TAR enables an assessment that climate sensitivity is likely to be in the range of 2 to 4.5°C with a best estimate of about 3°C, and is very unlikely to be less than 1.5°C. Values substantially higher than 4.5°C cannot be excluded, but agreement of models with observations is not as good for those values. [WGI 8.6, 9.6, Box 10.2, SPM]

Feedbacks can amplify or dampen the response to a given forcing. Direct emission of water vapour (a greenhouse gas) by human activities makes a negligible contribution to radiative forcing. However, as global average temperature increases, tropospheric water vapour concentrations increase and this represents a key positive feedback but not a forcing of climate change. Water vapour changes represent the largest feedback affecting equilibrium climate sensitivity and are now better understood than in the TAR. Cloud feedbacks remain the largest source of uncertainty. Spatial patterns of climate response are largely controlled by climate processes and feedbacks. For example, sea-ice albedo feedbacks tend to enhance the high latitude response. [WGI 2.8, 8.6, 9.2, TS.2.1.3, TS.2.5, SPM]

Warming reduces terrestrial and ocean uptake of atmospheric CO₂, increasing the fraction of anthropogenic emissions remaining in the atmosphere. This positive carbon cycle feedback leads to larger atmospheric CO₂ increases and greater climate change for a given emissions scenario, but the strength of this feedback effect varies markedly among models. [WGI 7.3, TS.5.4, SPM; WGII 4.4]

2.4 Attribution of climate change

Attribution evaluates whether observed changes are quantitatively consistent with the expected response to external forcings (e.g. changes in solar irradiance or anthropogenic GHGs) and inconsistent with alternative physically plausible explanations. [WGI TS.4, SPM]
Radiative forcing components

<table>
<thead>
<tr>
<th>RF Terms</th>
<th>RF values (W/m²)</th>
<th>Spatial scale</th>
<th>LOSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-lived greenhouse gases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>1.66 [1.49 to 1.83]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.48 [0.43 to 0.53]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.16 [0.14 to 0.18]</td>
<td>Global</td>
<td>Medium</td>
</tr>
<tr>
<td>Halocarbons</td>
<td>0.34 [0.31 to 0.37]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>Ozone</td>
<td>-0.05 [-0.15 to 0.05]</td>
<td>Continental to global</td>
<td>Medium</td>
</tr>
<tr>
<td>Stratospheric water vapour from CH₄</td>
<td>0.35 [0.25 to 0.65]</td>
<td>Continental to global</td>
<td>Medium</td>
</tr>
</tbody>
</table>
| Surface albedo | -0.2 [-0.4 to 0.0] | Local to continental | Low
| Black carbon on snow | 0.1 [0.0 to 0.2] | Local to continental | Low
| Linear contrails | -0.5 [-0.9 to -0.1] | Continental to global | Low
| Total Aerosol | -0.7 [-1.8 to -0.3] | Continental to global | Low
| Solar irradiance | 0.01 [0.003 to 0.03] | Continental | Low
| Total net anthropogenic | 0.12 [0.06 to 0.30] | Global | Low

![Figure 2.4. Global average radiative forcing (RF) in 2005 (best estimates and 5 to 95% uncertainty ranges) with respect to 1750 for CO₂, CH₄, N₂O and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of the forcing and the assessed level of scientific understanding (LOSU). Aerosols from explosive volcanic eruptions contribute an additional episodic cooling term for a few years following an eruption. The range for linear contrails does not include other possible effects of aviation on cloudiness.](WGI Figure SPM.2)

Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic GHG concentrations. This is an advance since the TAR’s conclusion that “most of the observed warming over the last 50 years is likely to have been due to the increase in GHG concentrations” (Figure 2.5). (WGI 9.4, SPM)

The observed widespread warming of the atmosphere and ocean, together with ice mass loss, support the conclusion that it is extremely unlikely that global climate change of the past 50 years can be explained without external forcing and very likely that it is not due to known natural causes alone. During this period, the sum of solar and volcanic forcings would likely have produced cooling, not warming. Warming of the climate system has been detected in changes in surface and atmospheric temperatures and in temperatures of the upper several hundred metres of the ocean. The observed pattern of tropospheric warming and stratospheric cooling is very likely due to the combined influences of GHG increases and stratospheric ozone depletion. It is likely that increases in GHG concentrations alone would have caused more warming than observed because volcanic and anthropogenic aerosols have offset some warming that would otherwise have taken place. (WGI 2.9, 3.2, 3.4, 4.8, 5.2, 7.5, 9.4, 9.5, 9.7, TS.4.1, SPM)

It is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent (except Antarctica) (Figure 2.5). (WGI 3.2, 9.4, SPM)

The observed patterns of warming, including greater warming over land than over the ocean, and their changes over time, are simulated only by models that include anthropogenic forcing. No coupled global climate model that has used natural forcing only has reproduced the continental mean warming trends in individual continents (except Antarctica) over the second half of the 20th century. (WGI 3.2, 9.4, TS.4.2, SPM)

* Consideration of remaining uncertainty is based on current methodologies.
Global and continental temperature change

Difficulties remain in simulating and attributing observed temperature changes at smaller scales. On these scales, natural climate variability is relatively larger, making it harder to distinguish changes expected due to external forcings. Uncertainties in local forcings, such as those due to aerosols and land-use change, and feedbacks also make it difficult to estimate the contribution of GHG increases to observed small-scale temperature changes. [WGI 8.3, 9.4, SPM]

Advances since the TAR show that discernible human influences extend beyond average temperature to other aspects of climate, including temperature extremes and wind patterns. [WGI 9.4, 9.5, SPM]

Temperatures of the most extreme hot nights, cold nights and cold days are likely to have increased due to anthropogenic forcing. It is more likely than not that anthropogenic forcing has increased the risk of heat waves. Anthropogenic forcing is likely to have contributed to changes in wind patterns, affecting extra-tropical storm tracks and temperature patterns in both hemispheres. However, the observed changes in the Northern Hemisphere circulation are larger than simulated by models in response to 20th century forcing change. [WGI 3.5, 3.6, 9.4, 9.5, 10.3, SPM]

It is very likely that the response to anthropogenic forcing contributed to sea level rise during the latter half of the 20th century. There is some evidence of the impact of human climatic influence...
on the hydrological cycle, including the observed large-scale patterns of changes in land precipitation over the 20th century. It is more likely than not that human influence has contributed to a global trend towards increases in area affected by drought since the 1970s and the frequency of heavy precipitation events. [WGI 3.3, 5.5, 9.5, TS.4.1, TS.4.3]

Anthropogenic warming over the last three decades has likely had a discernible influence at the global scale on observed changes in many physical and biological systems. [WGII 1.4]

A synthesis of studies strongly demonstrates that the spatial agreement between regions of significant warming across the globe and the locations of significant observed changes in many natural systems consistent with warming is very unlikely to be due solely to natural variability of temperatures or natural variability of the systems. Several modelling studies have linked some specific responses in physical and biological systems to anthropogenic warming, but only a few such studies have been performed. Taken together with evidence of significant anthropogenic warming over the past 50 years averaged over each continent (except Antarctica), it is likely that anthropogenic warming over the last three decades has had a discernible influence on many natural systems. [WGI 3.2, 9.4, SPM; WGII 1.4, SPM]

Limitations and gaps currently prevent more complete attribution of the causes of observed natural system responses to anthropogenic warming. The available analyses are limited in the number of systems, length of records and locations considered. Natural temperature variability is larger at the regional than the global scale, thus affecting identification of changes to external forcing. At the regional scale, other non-climate factors (such as land-use change, pollution and invasive species) are influential. [WGII 1.2, 1.3, 1.4, SPM]
Climate change and its impacts in the near and long term under different scenarios
3.1 Emissions scenarios

There is high agreement and much evidence\(^a\) that with current climate change mitigation policies and related sustainable development practices, global GHG emissions will continue to grow over the next few decades. Baseline emissions scenarios published since the IPCC Special Report on Emissions Scenarios (SRES, 2000) are comparable in range to those presented in SRES (see Box on SRES scenarios and Figure 3.1).\(^{10}\) \(\text{(WGIII 1.3, 3.2, SPM)}\)

The SRES scenarios project an increase of baseline global GHG emissions by a range of 9.7 to 36.7 GtCO\(_2\)-eq (25 to 90%) between 2000 and 2030. In these scenarios, fossil fuels are projected to maintain their dominant position in the global energy mix to 2030 and beyond. Hence CO\(_2\) emissions from energy use between 2000 and 2030 are projected to grow 40 to 110% over that period. \(\text{(WGIII 1.3, SPM)}\)

Studies published since SRES (i.e. post-SRES scenarios) have used lower values for some drivers for emissions, notably population projections. However, for those studies incorporating these new population projections, changes in other drivers, such as economic growth, result in little change in overall emission levels. Economic growth projections for Africa, Latin America and the Middle East to 2030 in post-SRES baseline scenarios are lower than in SRES, but this has only minor effects on global economic growth and overall emissions. \(\text{(WGIII 3.2, TS.3, SPM)}\)

Aerosols have a net cooling effect and the representation of aerosol and aerosol precursor emissions, including sulphur dioxide, black carbon and organic carbon, has improved in the post-SRES scenarios. Generally, these emissions are projected to be lower than reported in SRES. \(\text{(WGIII 3.2, TS.3, SPM)}\)

Available studies indicate that the choice of exchange rate for Gross Domestic Product (GDP) (Market Exchange Rate, MER or Purchasing Power Parity, PPP) does not appreciably affect the projected emissions, when used consistently.\(^{11}\) The differences, if any, are small compared to the uncertainties caused by assumptions on other parameters in the scenarios, e.g. technological change. \(\text{(WGIII 3.2, TS.3, SPM)}\)

SRES scenarios

SRES refers to the scenarios described in the IPCC Special Report on Emissions Scenarios (SRES, 2000). The SRES scenarios are grouped into four scenario families (A1, A2, B1 and B2) that explore alternative development pathways, covering a wide range of demographic, economic and technological driving forces and resulting GHG emissions. The SRES scenarios do not include additional climate policies above current ones. The emissions projections are widely used in the assessments of future climate change, and their underlying assumptions with respect to socio-economic, demographic and technological change serve as inputs to many recent climate change vulnerability and impact assessments. \(\text{(WGI 10.1; WGII 2.4; WGIII TS.1, SPM)}\)

The A1 storyline assumes a world of very rapid economic growth, a global population that peaks in mid-century and rapid introduction of new and more efficient technologies. A1 is divided into three groups that describe alternative directions of technological change: fossil intensive (A1FI), non-fossil energy resources (A1T) and a balance across all sources (A1B). B1 describes a convergent world, with the same global population as A1, but with more rapid changes in economic structures toward a service and information economy. B2 describes a world with intermediate population and economic growth, emphasising local solutions to economic, social, and environmental sustainability. A2 describes a very heterogeneous world with high population growth, slow economic development and slow technological change. No likelihood has been attached to any of the SRES scenarios. \(\text{(WGIII TS.1, SPM)}\)

\(^{a}\) Agreement/evidence statements in italics represent calibrated expressions of uncertainty and confidence. See Box ‘Treatment of uncertainty’ in the Introduction for an explanation of these terms.

\(^{10}\) Baseline scenarios do not include additional climate policies above current ones; more recent studies differ with respect to UNFCCC and Kyoto Protocol inclusion. Emission pathways of mitigation scenarios are discussed in Topic 5.

\(^{11}\) Since the TAR, there has been a debate on the use of different exchange rates in emissions scenarios. Two metrics are used to compare GDP between countries. Use of MER is preferable for analyses involving internationally traded products. Use of PPP is preferable for analyses involving comparisons of income between countries at very different stages of development. Most of the monetary units in this report are expressed in MER. This reflects the large majority of emissions mitigation literature that is calibrated in MER. When monetary units are expressed in PPP, this is denoted by GDP\(_{\text{ppp}}\). \(\text{(WGIII SPM)}\)
3.2 Projections of future changes in climate

For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emissions scenarios. Even if the concentrations of all GHGs and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected. Afterwards, temperature projections increasingly depend on specific emissions scenarios (Figure 3.2). [WGI 10.3, 10.7; WGIII 3.2]

Since the IPCC’s first report in 1990, assessed projections have suggested global averaged temperature increases between about 0.15 and 0.3°C per decade from 1990 to 2005. This can now be compared with observed values of about 0.2°C per decade, strengthening confidence in near-term projections. [WGI 1.2, 3.2]

3.2.1 21st century global changes

Continued GHG emissions at or above current rates would cause further warming and induce many changes in the global climate system during the 21st century that would very likely be larger than those observed during the 20th century. [WGI 10.3]

Advances in climate change modelling now enable best estimates and likely assessed uncertainty ranges to be given for projected warming for different emissions scenarios. Table 3.1 shows best estimates and likely ranges for global average surface air warming for the six SRES marker emissions scenarios (including climate-carbon cycle feedbacks). [WGI 10.5]

Although these projections are broadly consistent with the span quoted in the TAR (1.4 to 5.8°C), they are not directly comparable. Assessed upper ranges for temperature projections are larger than in the TAR mainly because the broader range of models now available suggests stronger climate-carbon cycle feedbacks. For the A2 scenario, for example, the climate-carbon cycle feedback increases the corresponding global average warming at 2100 by more than 1°C. Carbon feedbacks are discussed in Topic 2.3. [WGI 7.3, 10.5, SPM]

Because understanding of some important effects driving sea level rise is too limited, this report does not assess the likelihood, nor provide a best estimate or an upper bound for sea level rise. Model-based projections of global average sea level rise at the end of the 21st century (2090-2099) are shown in Table 3.1. For each scenario, the mid-point of the range in Table 3.1 is within 10% of the TAR model average for 2090-2099. The ranges are narrower than in the TAR mainly because of improved information about some uncertainties in the projected contributions. The sea level projections do not include uncertainties in climate-carbon cycle feedbacks nor do they include the full effects of changes in ice sheet flow, because a basis in published literature is lacking. Therefore the upper values of the ranges given are not to be considered upper bounds for sea level rise. The projections include a contribution due to increased ice flow from Greenland and Antarctica at the rates observed for 1993-2003, but these flow rates could increase or decrease in the future. If this contribution were to grow linearly with global average temperature change, the upper ranges of sea level rise for SRES scenarios shown in Table 3.1 would increase by 0.1 to 0.2m. [WGI 10.6, SPM]

Table 3.1. Projected global average surface warming and sea level rise at the end of the 21st century. [WGI 10.5, 10.6, Table 10.7, Table SPM.3]

<table>
<thead>
<tr>
<th>Case</th>
<th>Temperature change (°C at 2090-2099 relative to 1980-1999) a, d</th>
<th>Sea level rise (m at 2090-2099 relative to 1980-1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best estimate</td>
<td>Likely range</td>
</tr>
<tr>
<td>Constant year 2000 concentrations b</td>
<td>0.6</td>
<td>0.3 – 0.9</td>
</tr>
<tr>
<td>B1 scenario</td>
<td>1.8</td>
<td>1.1 – 2.9</td>
</tr>
<tr>
<td>A1T scenario</td>
<td>2.4</td>
<td>1.4 – 3.8</td>
</tr>
<tr>
<td>B2 scenario</td>
<td>2.4</td>
<td>1.4 – 3.8</td>
</tr>
<tr>
<td>A1B scenario</td>
<td>2.8</td>
<td>1.7 – 4.4</td>
</tr>
<tr>
<td>A2 scenario</td>
<td>3.4</td>
<td>2.0 – 5.4</td>
</tr>
<tr>
<td>A1FI scenario</td>
<td>4.0</td>
<td>2.4 – 6.4</td>
</tr>
</tbody>
</table>

Notes:
- a) These estimates are assessed from a hierarchy of models that encompass a simple climate model, several Earth Models of Intermediate Complexity, and a large number of Atmosphere-Ocean General Circulation Models (AOGCMs) as well as observational constraints.
- b) Year 2000 constant composition is derived from AOGCMs only.
- c) All scenarios above are six SRES marker scenarios. Approximate CO₂-eq concentrations corresponding to the computed radiative forcing due to anthropogenic GHGs and aerosols in 2100 (see p. 823 of the WGI TAR) for the SRES B1, A1T, B2, A1B, A2 and A1FI illustrative marker scenarios are about 600, 700, 800, 850, 1250 and 1550ppm, respectively.
- d) Temperature changes are expressed as the difference from the period 1980-1999. To express the change relative to the period 1850-1899 add 0.5°C.

12 TAR projections were made for 2100, whereas the projections for this report are for 2090-2099. The TAR would have had similar ranges to those in Table 3.1 if it had treated uncertainties in the same way.

13 For discussion of the longer term see Sections 3.2.3 and 5.2.
3.2.2 21st century regional changes

There is now higher confidence than in the TAR in projected patterns of warming and other regional-scale features, including changes in wind patterns, precipitation and some aspects of extremes and sea ice. \{WGI 8.2, 8.3, 8.4, 8.5, 9.4, 9.5, 10.3, 11.1\}

Projected warming in the 21st century shows scenario-independent geographical patterns similar to those observed over the past several decades. Warming is expected to be greatest over land and at most high northern latitudes, and least over the Southern Ocean (near Antarctica) and northern North Atlantic, continuing recent observed trends (Figure 3.2 right panels). \{WGI 10.3, SPM\}

Snow cover area is projected to contract. Widespread increases in thaw depth are projected over most permafrost regions. Sea ice is projected to shrink in both the Arctic and Antarctic under all SRES scenarios. In some projections, Arctic late-summer sea ice disappears almost entirely by the latter part of the 21st century. \{WGI 10.3, 10.6, SPM; WGII 15.3.4\}

It is very likely that hot extremes, heat waves and heavy precipitation events will become more frequent. \{SYR Table 3.2; WGI 10.3, SPM\}

Based on a range of models, it is likely that future tropical cyclones (typhoons and hurricanes) will become more intense, with larger peak wind speeds and more heavy precipitation associated with ongoing increases of tropical sea-surface temperatures. There is less confidence in projections of a global decrease in numbers of tropical cyclones. The apparent increase in the proportion of very intense storms since 1970 in some regions is much larger than simulated by current models for that period. \{WGI 3.8, 9.5, 10.3, SPM\}

Extra-tropical storm tracks are projected to move poleward, with consequent changes in wind, precipitation and temperature patterns, continuing the broad pattern of observed trends over the last half-century. \{WGI 3.6, 10.3, SPM\}

Since the TAR there is an improving understanding of projected patterns of precipitation. Increases in the amount of precipitation are very likely in high-latitudes, while decreases are likely in most subtropical land regions (by as much as about 20% in the A1B scenario in 2100, Figure 3.3), continuing observed patterns in recent trends. \{WGI 3.3, 8.3, 9.5, 10.3, 11.2-11.9, SPM\}

3.2.3 Changes beyond the 21st century

Anthropogenic warming and sea level rise would continue for centuries due to the time scales associated with climate processes and feedbacks, even if GHG concentrations were to be stabilised. \{WGI 10.4, 10.5, 10.7, SPM\}

If radiative forcing were to be stabilised, keeping all the radiative forcing agents constant at B1 or A1B levels in 2100, model experiments show that a further increase in global average temperature of about 0.5°C would still be expected by 2200. In addition, thermal expansion alone would lead to 0.3 to 0.8m of sea level rise by 2300 (relative to 1980-1999). Thermal expansion would continue for many centuries, due to the time required to transport heat into the deep ocean. \{WGI 10.7, SPM\}
Contraction of the Greenland ice sheet is projected to continue to contribute to sea level rise after 2100. Current models suggest ice mass losses increase with temperature more rapidly than gains due to increased precipitation and that the surface mass balance becomes negative (net ice loss) at a global average warming (relative to pre-industrial values) in excess of 1.9 to 4.6°C. If such a negative surface mass balance were sustained for millennia, that would lead to virtually complete elimination of the Greenland ice sheet and a resulting contribution to sea level rise of about 7m. The corresponding future temperatures in Greenland (1.9 to 4.6°C global) are comparable to those inferred for the last interglacial period 125,000 years ago, when palaeoclimatic information suggests reductions of polar land ice extent and 4 to 6m of sea level rise. [WGI 6.4, 10.7, SPM]

Dynamical processes related to ice flow – which are not included in current models but suggested by recent observations – could increase the vulnerability of the ice sheets to warming, increasing future sea level rise. Understanding of these processes is limited and there is no consensus on their magnitude. [WGI 4.6, 10.7, SPM]

Current global model studies project that the Antarctic ice sheet will remain too cold for widespread surface melting and gain mass due to increased snowfall. However, net loss of ice mass could occur if dynamical ice discharge dominates the ice sheet mass balance. [WGI 10.7, SPM]

Both past and future anthropogenic CO₂ emissions will continue to contribute to warming and sea level rise for more than a millennium, due to the time scales required for the removal of this gas from the atmosphere. [WGI 7.3, 10.3, Figure 7.12, Figure 10.35, SPM]

Estimated long-term (multi-century) warming corresponding to the six AR4 WG III stabilisation categories is shown in Figure 3.4.

Figure 3.3. Relative changes in precipitation (in percent) for the period 2090-2099, relative to 1980-1999. Values are multi-model averages based on the SRES A1B scenario for December to February (left) and June to August (right). White areas are where less than 66% of the models agree in the sign of the change and stippled areas are where more than 90% of the models agree in the sign of the change. [WGI Figure 10.9, SPM]

Figure 3.4. Estimated long-term (multi-century) warming corresponding to the six AR4 WG III stabilisation categories (Table 5.1). The temperature scale has been shifted by -0.5°C compared to Table 5.1 to account approximately for the warming between pre-industrial and 1980-1999. For most stabilisation levels global average temperature is approaching the equilibrium level over a few centuries. For GHG emissions scenarios that lead to stabilisation at levels comparable to SRES B1 and A1B by 2100 (600 and 850 ppm CO₂-eq; category IV and V), assessed models project that about 65 to 70% of the estimated global equilibrium temperature increase, assuming a climate sensitivity of 3°C, would be realised at the time of stabilisation. For the much lower stabilisation scenarios (category I and II, Figure 5.1), the equilibrium temperature may be reached earlier. [WGI 10.7.2]
3.3 Impacts of future climate changes

More specific information is now available across a wide range of systems and sectors concerning the nature of future impacts, including some fields not covered in previous assessments. [WGII TS.4, SPM]

The following is a selection of key findings14 regarding the impacts of climate change on systems, sectors and regions, as well as some findings on vulnerability15, for the range of climate changes projected over the 21st century. Unless otherwise stated, the confidence level in the projections is high. Global average temperature increases are given relative to 1980-1999. Additional information on impacts can be found in the WG II report. [WGII SPM]

3.3.1 Impacts on systems and sectors

Ecosystems
- The resilience of many ecosystems is likely to be exceeded this century by an unprecedented combination of climate change, associated disturbances (e.g. flooding, drought, wildfire, insects, ocean acidification) and other global change drivers (e.g. land-use change, pollution, fragmentation of natural systems, over-exploitation of resources). [WGII 4.1-4.6, SPM]
- Over the course of this century, net carbon uptake by terrestrial ecosystems is likely to peak before mid-century and then weaken or even reverse16, thus amplifying climate change. [WGII 4.ES, Figure 4.2, SPM]
- Approximately 20 to 30% of plant and animal species assessed so far are likely to be at increased risk of extinction if increases in global average temperature exceed 1.5 to 2.5°C (medium confidence). [WGII 4.ES, Figure 4.2, SPM]
- For increases in global average temperature exceeding 1.5 to 2.5°C and in concomitant atmospheric CO\textsubscript{2} concentrations, there are projected to be major changes in ecosystem structure and function, species’ ecological interactions and shifts in species’ geographical ranges, with predominantly negative consequences for biodiversity and ecosystem goods and services, e.g. water and food supply. [WGII 4.4, Box TS.6, SPM]

Food
- Crop productivity is projected to increase slightly at mid- to high latitudes for local mean temperature increases of up to 1 to 3°C depending on the crop, and then decrease beyond that in some regions (medium confidence). [WGII 5.4, SPM]
- At lower latitudes, especially in seasonally dry and tropical regions, crop productivity is projected to decrease for even small local temperature increases (1 to 2°C), which would increase the risk of hunger (medium confidence). [WGII 5.4, SPM]
- Globally, the potential for food production is projected to increase with increases in local average temperature over a range of 1 to 3°C, but above this it is projected to decrease (medium confidence). [WGII 5.4, 5.5, SPM]

Coasts
- Coasts are projected to be exposed to increasing risks, including coastal erosion, due to climate change and sea level rise. The effect will be exacerbated by increasing human-induced pressures on coastal areas (very high confidence). [WGII 6.3, 6.4, SPM]
- By the 2080s, many millions more people than today are projected to experience floods every year due to sea level rise. The numbers affected will be largest in the densely populated and low-lying megadeltas of Asia and Africa while small islands are especially vulnerable (very high confidence). [WGII 6.4, 6.5, Table 6.11, SPM]

Industry, settlements and society
- The most vulnerable industries, settlements and societies are generally those in coastal and river flood plains, whose economies are closely linked with climate-sensitive resources and those in areas prone to extreme weather events, especially where rapid urbanisation is occurring. [WGII 7.1, 7.3, 7.4, 7.5, SPM]
- Poor communities can be especially vulnerable, in particular those concentrated in high-risk areas. [WGII 7.2, 7.4, 5.4, SPM]

Health
- The health status of millions of people is projected to be affected through, for example, increases in malnutrition; increased deaths, diseases and injury due to extreme weather events; increased burden of diarrhoeal diseases; increased frequency of cardio-respiratory diseases due to higher concentrations of ground-level ozone in urban areas related to climate change; and the altered spatial distribution of some infectious diseases. [WGII 7.4, Box 7.4; WGII 8.ES, 8.2, 8.4, SPM]
- Climate change is projected to bring some benefits in temperate areas, such as fewer deaths from cold exposure, and some mixed effects such as changes in range and transmission potential of malaria in Africa. Overall it is expected that benefits will be outweighed by the negative health effects of rising temperatures, especially in developing countries. [WGII 8.4, 8.7, 8.ES, SPM]
- Critically important will be factors that directly shape the health of populations such as education, health care, public health initiatives, and infrastructure and economic development. [WGII 8.3, SPM]

Water
- Water impacts are key for all sectors and regions. These are discussed below in the Box ‘Climate change and water’.

14 Criteria of choice: magnitude and timing of impact, confidence in the assessment, representative coverage of the system, sector and region.

15 Vulnerability to climate change is the degree to which systems are susceptible to, and unable to cope with, adverse impacts.

16 Assuming continued GHG emissions at or above current rates and other global changes including land-use changes.
Climate change and water

Climate change is expected to exacerbate current stresses on water resources from population growth and economic and land-use change, including urbanisation. On a regional scale, mountain snow pack, glaciers and small ice caps play a crucial role in freshwater availability. Widespread mass losses from glaciers and reductions in snow cover over recent decades are projected to accelerate throughout the 21st century, reducing water availability, hydropower potential, and changing seasonality of flows in regions supplied by meltwater from major mountain ranges (e.g. Hindu-Kush, Himalaya, Andes), where more than one-sixth of the world population currently lives. ([WGI 4.1, 4.5; WGII 3.3, 3.4, 3.5])

Changes in precipitation (Figure 3.3) and temperature (Figure 3.2) lead to changes in runoff (Figure 3.5) and water availability. Runoff is projected with high confidence to increase by 10 to 40% by mid-century at higher latitudes and in some wet tropical areas, including populous areas in East and South-East Asia, and decrease by 10 to 30% over some dry regions at mid-latitudes and dry tropics, due to decreases in rainfall and higher rates of evapotranspiration. There is also high confidence that many semi-arid areas (e.g. the Mediterranean Basin, western United States, southern Africa and north-eastern Brazil) will suffer a decrease in water resources due to climate change. Drought-affected areas are projected to increase in extent, with the potential for adverse impacts on multiple sectors, e.g. agriculture, water supply, energy production and health. Regionally, large increases in irrigation water demand as a result of climate changes are projected. ([WGI 10.3, 11.2-11.9; WGII 3.4, 3.5, Figure 3.5, TS.4.1, Box TS.5, SPM]

The negative impacts of climate change on freshwater systems outweigh its benefits (high confidence). Areas in which runoff is projected to decline face a reduction in the value of the services provided by water resources (very high confidence). The beneficial impacts of increased annual runoff in some areas are likely to be tempered by negative effects of increased precipitation variability and seasonal runoff shifts on water supply, water quality and flood risk. ([WGII 3.4, 3.5, TS.4.1])

Available research suggests a significant future increase in heavy rainfall events in many regions, including some in which the mean rainfall is projected to decrease. The resulting increased flood risk poses challenges to society, physical infrastructure and water quality. It is likely that up to 20% of the world population will live in areas where river flood potential could increase by the 2080s. Increases in the frequency and severity of floods and droughts are projected to adversely affect sustainable development. Increased temperatures will further affect the physical, chemical and biological properties of freshwater lakes and rivers, with predominantly adverse impacts on many individual freshwater species, community composition and water quality. In coastal areas, sea level rise will exacerbate water resource constraints due to increased salinisation of groundwater supplies. ([WGI 11.2-11.9; WGII 3.2, 3.3, 3.4, 4.4])

![Projections and model consistency of relative changes in runoff by the end of the 21st century](image-url)

Figure 3.5. Large-scale relative changes in annual runoff (water availability, in percent) for the period 2090-2099, relative to 1980-1999. Values represent the median of 12 climate models using the SRES A1B scenario. White areas are where less than 66% of the 12 models agree on the sign of change and hatched areas are where more than 90% of models agree on the sign of change. The quality of the simulation of the observed large-scale 20th century runoff is used as a basis for selecting the 12 models from the multi-model ensemble. The global map of annual runoff illustrates a large scale and is not intended to refer to smaller temporal and spatial scales. In areas where rainfall and runoff is very low (e.g. desert areas), small changes in runoff can lead to large percentage changes. In some regions, the sign of projected changes in runoff differs from recently observed trends. In some areas with projected increases in runoff, different seasonal effects are expected, such as increased wet season runoff and decreased dry season runoff. Studies using results from few climate models can be considerably different from the results presented here. ([WGII Figure 3.4, adjusted to match the assumptions of Figure SYR 3.3; WGII 3.3.1, 3.4.1, 3.5.1])
3.3.2 Impacts on regions

Africa
- By 2020, between 75 and 250 million of people are projected to be exposed to increased water stress due to climate change. [WGII 9.4, SPM]
- By 2020, in some countries, yields from rain-fed agriculture could be reduced by up to 50%. Agricultural production, including access to food, in many African countries is projected to be severely compromised. This would further adversely affect food security and exacerbate malnutrition. [WGII 9.4, SPM]
- Towards the end of the 21st century, projected sea level rise will affect low-lying coastal areas with large populations. The cost of adaptation could amount to at least 5 to 10% of GDP. [WGII 9.4, SPM]
- By 2080, an increase of 5 to 8% of arid and semi-arid land in Africa is projected under a range of climate scenarios (high confidence). [WGII Box TS.6, 9.4.4]

Asia
- By the 2050s, freshwater availability in Central, South, East and South-East Asia, particularly in large river basins, is projected to decrease. [WGII 10.4, SPM]
- Coastal areas, especially heavily populated megadelta regions in South, East and South-East Asia, will be at greatest risk due to increased flooding from the sea and, in some megadeltas, flooding from the rivers. [WGII 10.4, SPM]
- Climate change is projected to compound the pressures on natural resources and the environment associated with rapid urbanisation, industrialisation and economic development. [WGII 10.4, SPM]
- Endemic morbidity and mortality due to diarrhoeal disease primarily associated with floods and droughts are expected to rise in East, South and South-East Asia due to projected changes in the hydrological cycle. [WGII 10.4, SPM]

Australia and New Zealand
- By 2020, significant loss of biodiversity is projected to occur in some ecologically rich sites, including the Great Barrier Reef and Queensland Wet Tropics. [WGII 11.4, SPM]

Europe
- Climate change is expected to magnify regional differences in Europe’s natural resources and assets. Negative impacts will include increased risk of inland flash floods and more frequent coastal flooding and increased erosion (due to storminess and sea level rise). [WGII 12.4, SPM]
- Mountainous areas will face glacier retreat, reduced snow cover and winter tourism, and extensive species losses (in some areas up to 60% under high emissions scenarios by 2080). [WGII 12.4, SPM]
- In southern Europe, climate change is projected to worsen conditions (high temperatures and drought) in a region already vulnerable to climate variability, and to reduce water availability, hydropower potential, summer tourism and, in general, crop productivity. [WGII 12.4, SPM]
- Climate change is also projected to increase the health risks due to heat waves and the frequency of wildfires. [WGII 12.4, SPM]

Latin America
- By mid-century, increases in temperature and associated decreases in soil water are projected to lead to gradual replacement of tropical forest by savanna in eastern Amazonia. Semi-arid vegetation will tend to be replaced by arid-land vegetation. [WGII 13.4, SPM]
- There is a risk of significant biodiversity loss through species extinction in many areas of tropical Latin America. [WGII 13.4, SPM]
- Productivity of some important crops is projected to decrease and livestock productivity to decline, with adverse consequences for food security. In temperate zones, soybean yields are projected to increase. Overall, the number of people at risk of hunger is projected to increase (medium confidence). [WGII 13.4, Box TS.6]
- Changes in precipitation patterns and the disappearance of glaciers are projected to significantly affect water availability for human consumption, agriculture and energy generation. [WGII 13.4, SPM]

17 Unless stated explicitly, all entries are from WG II SPM text, and are either very high confidence or high confidence statements, reflecting different sectors (agriculture, ecosystems, water, coasts, health, industry and settlements). The WG II SPM refers to the source of the statements, timelines and temperatures. The magnitude and timing of impacts that will ultimately be realised will vary with the amount and rate of climate change, emissions scenarios, development pathways and adaptation.
Examples of impacts associated with global average temperature change
(Impacts will vary by extent of adaptation, rate of temperature change and socio-economic pathway)

<table>
<thead>
<tr>
<th>Global average annual temperature change relative to 1980-1999 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>WATER</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*Where ES = Executive Summary, T = Table, B = Box and F = Figure. Thus B4.5 indicates Box 4.5 in Chapter 4 and 3.5.1 indicates Section 3.5.1 in Chapter 3.

* Significant is defined here as more than 40%. † Based on average rate of sea level rise of 4.2mm/year from 2000 to 2080.
3.3.3 Especially affected systems, sectors and regions

Some systems, sectors and regions are likely to be especially affected by climate change.\(^{16}\) \(\text{[WGII TS.4.5]}\)

Systems and sectors: \(\text{[WGII TS.4.5]}\)
- particular ecosystems:
 - terrestrial: tundra, boreal forest and mountain regions because of sensitivity to warming; mediterranean-type ecosystems because of reduction in rainfall; and tropical rainforests where precipitation declines
 - coastal: mangroves and salt marshes, due to multiple stresses
 - marine: coral reefs due to multiple stresses; the sea-ice biome because of sensitivity to warming
- water resources in some dry regions at mid-latitudes\(^{19}\) and in the dry tropics, due to changes in rainfall and evapotranspiration, and in areas dependent on snow and ice melt
- agriculture in low latitudes, due to reduced water availability
- low-lying coastal systems, due to threat of sea level rise and increased risk from extreme weather events
- human health in populations with low adaptive capacity.

Regions: \(\text{[WGII TS.4.5]}\)
- the Arctic, because of the impacts of high rates of projected warming on natural systems and human communities
- Africa, because of low adaptive capacity and projected climate change impacts
- small islands, where there is high exposure of population and infrastructure to projected climate change impacts
- Asian and African megadeltas, due to large populations and high exposure to sea level rise, storm surges and river flooding.

Within other areas, even those with high incomes, some people (such as the poor, young children and the elderly) can be particularly at risk, and also some areas and some activities. \(\text{[WGII 7.1, 7.2, 7.4, 8.2, 8.4, TS.4.5]}\)

3.3.4 Ocean acidification

The uptake of anthropogenic carbon since 1750 has led to the ocean becoming more acidic with an average decrease in pH of 0.1 units. Increasing atmospheric CO\(_2\) concentrations lead to further acidification. Projections based on SRES scenarios give a reduction in average global surface ocean pH of between 0.14 and 0.35 units over the 21st century. While the effects of observed ocean acidification on the marine biosphere are as yet undocumented, the progressive acidification of oceans is expected to have negative impacts on marine shell-forming organisms (e.g. corals) and their dependent species. \(\text{[WGII SPM; WGII SPM]}\)

3.3.5 Extreme events

Altered frequencies and intensities of extreme weather, together with sea level rise, are expected to have mostly adverse effects on natural and human systems (Table 3.2). \(\text{[WGII SPM]}\)

Examples for selected extremes and sectors are shown in Table 3.2.
Table 3.2. Examples of possible impacts of climate change due to changes in extreme weather and climate events, based on projections to the mid- to late 21st century. These do not take into account any changes or developments in adaptive capacity. The likelihood estimates in column two relate to the phenomena listed in column one. {WGII Table SPM.1}

<table>
<thead>
<tr>
<th>Phenomenon and direction of trend</th>
<th>Likelihood of future trends based on projections for 21st century using SRES scenarios</th>
<th>Examples of major projected impacts by sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over most land areas, warmer and fewer cold days and nights, warmer and more frequent hot days and nights</td>
<td>Virtually certain</td>
<td>Agriculture, forestry and ecosystems [WGII 4.4, 5.4] Water resources [WGII 3.4] Human health [WGII 8.2, 8.4] Industry, settlement and society [WGII 7.4]</td>
</tr>
<tr>
<td>Warm spells/heat waves. Frequency increases over most land areas</td>
<td>Very likely</td>
<td>Increased yields in warmer regions due to heat stress; increased danger of wildfire</td>
</tr>
<tr>
<td>Heavy precipitation events. Frequency increases over most areas</td>
<td>Very likely</td>
<td>Damage to crops; soil erosion, inability to cultivate land due to waterlogging of soils</td>
</tr>
<tr>
<td>Area affected by drought increases</td>
<td>Likely</td>
<td>Land degradation; lower yields/crop damage and failure; increased livestock deaths; increased risk of wildfire</td>
</tr>
<tr>
<td>Intense tropical cyclone activity increases</td>
<td>Likely</td>
<td>Damage to crops; windthrow (uprooting) of trees; damage to coral reefs</td>
</tr>
<tr>
<td>Increased incidence of extreme high sea level (excludes tsunamis)</td>
<td>Likely</td>
<td>Salinisation of irrigation water, estuaries and freshwater systems</td>
</tr>
</tbody>
</table>

Notes:

a) See WGI Table 3.7 for further details regarding definitions.
b) Warming of the most extreme days and nights each year.
c) Extreme high sea level depends on average sea level and on regional weather systems. It is defined as the highest 1% of hourly values of observed sea level at a station for a given reference period.
d) In all scenarios, the projected global average sea level at 2100 is higher than in the reference period. The effect of changes in regional weather systems on sea level extremes has not been assessed. (WGII 10.6)

3.4 Risk of abrupt or irreversible changes

Anthropogenic warming could lead to some impacts that are abrupt or irreversible, depending upon the rate and magnitude of the climate change. {WGII 12.6, 19.3, 19.4, SPM}

Abrupt climate change on decadal time scales is normally thought of as involving ocean circulation changes. In addition on longer time scales, ice sheet and ecosystem changes may also play a role. If a large-scale abrupt climate change were to occur, its impact could be quite high (see Topic 5.2). {WGII 8.7, 10.3, 10.7; WGII 4.4, 19.3}

Partial loss of ice sheets on polar land and/or the thermal expansion of seawater over very long time scales could imply metres of sea level rise, major changes in coastlines and inundation of low-lying areas, with greatest effects in river deltas and low-lying...
islands. Current models project that such changes would occur over very long time scales (millennial) if a global temperature increase of 1.9 to 4.6°C (relative to pre-industrial) were to be sustained. Rapid sea level rise on century time scales cannot be excluded. [SYR 3.2.3; WGI 6.4, 10.7; WGII 19.3, SPM]

Climate change is likely to lead to some irreversible impacts. There is medium confidence that approximately 20 to 30% of species assessed so far are likely to be at increased risk of extinction if increases in global average warming exceed 1.5 to 2.5°C (relative to 1980-1999). As global average temperature increase exceeds about 3.5°C, model projections suggest significant extinctions (40 to 70% of species assessed) around the globe. [WGII 4.4, Figure SPM.2]

Based on current model simulations, it is very likely that the meridional overturning circulation (MOC) of the Atlantic Ocean will slow down during the 21st century; nevertheless temperatures in the region are projected to increase. It is very unlikely that the MOC will undergo a large abrupt transition during the 21st century. Longer-term changes in the MOC cannot be assessed with confidence. [WGI 10.3, 10.7; WGII Figure, Table TS.5, SPM.2]

Impacts of large-scale and persistent changes in the MOC are likely to include changes in marine ecosystem productivity, fisheries, ocean CO₂ uptake, oceanic oxygen concentrations and terrestrial vegetation. Changes in terrestrial and ocean CO₂ uptake may feed back on the climate system. [WGII 12.6, 19.3, Figure SPM.2]
Adaptation and mitigation options and responses, and the inter-relationship with sustainable development, at global and regional levels
4.1 Responding to climate change

Societies can respond to climate change by adapting to its impacts and by reducing GHG emissions (mitigation), thereby reducing the rate and magnitude of change. This Topic focuses on adaptation and mitigation options that can be implemented over the next two to three decades, and their inter-relationship with sustainable development. These responses can be complementary. Topic 5 addresses their complementary roles on a more conceptual basis over a longer timeframe.

The capacity to adapt and mitigate is dependent on socio-economic and environmental circumstances and the availability of information and technology. However, much less information is available about the costs and effectiveness of adaptation measures than about mitigation measures. (WGII 17.1, 17.3; WGIII 1.2)

4.2 Adaptation options

Adaptation can reduce vulnerability, both in the short and the long term. (WGII 17.2, 18.1, 18.5, 20.3, 20.8)

Vulnerability to climate change can be exacerbated by other stresses. These arise from, for example, current climate hazards, poverty, unequal access to resources, food insecurity, trends in economic globalisation, conflict and incidence of diseases such as HIV/AIDS. (WGII 7.2, 7.4, 8.3, 17.3, 20.3, 20.4, 20.7, SPM)

Societies across the world have a long record of adapting and reducing their vulnerability to the impacts of weather- and climate-related events such as floods, droughts and storms. Nevertheless, additional adaptation measures will be required at regional and local levels to reduce the adverse impacts of projected climate change and variability, regardless of the scale of mitigation undertaken over the next two to three decades. However, adaptation alone is not expected to cope with all the projected effects of climate change, especially not over the long term as most impacts increase in magnitude. (WGII 17.2, SPM; WGIII 1.2)

A wide array of adaptation options is available, but more extensive adaptation than is currently occurring is required to reduce vulnerability to climate change. There are barriers, limits and costs, which are not fully understood. Some planned adaptation is already occurring on a limited basis. Table 4.1 provides examples of planned adaptation options by sector. Many adaptation actions have multiple drivers, such as economic development and poverty alleviation, and are embedded within broader development, sectoral, regional and local planning initiatives such as water resources planning, coastal defence and disaster risk reduction strategies. Examples of this approach are the Bangladesh National Water Management Plan and the coastal defence plans of The Netherlands and Norway, which incorporate specific climate change scenarios. (WGII 1.3, 5.5.2, 11.6, 17.2)

Comprehensive estimates of the costs and benefits of adaptation at the global level are limited in number. However, the number of adaptation cost and benefit estimates at the regional and project levels for impacts on specific sectors, such as agriculture, energy demand for heating and cooling, water resources management and infrastructure, is growing. Based on these studies there is high confidence that there are viable adaptation options that can be implemented in some of these sectors at low cost and/or with high benefit-cost ratios. Empirical research also suggests that higher benefit-cost ratios can be achieved by implementing some adaptation measures at an early stage compared to retrofitting long-lived infrastructure at a later date. (WGII 17.2)

Adaptive capacity is intimately connected to social and economic development, but it is not evenly distributed across and within societies. (WGII 7.1, 7.2, 7.4, 17.3)

The capacity to adapt is dynamic and is influenced by a society’s productive base, including natural and man-made capital assets, social networks and entitlements, human capital and institutions, governance, national income, health and technology. It is also affected by multiple climate and non-climate stresses, as well as development policy. (WGII 17.3)

Recent studies reaffirm the TAR finding that adaptation will be vital and beneficial. However, financial, technological, cognitive, behavioural, political, social, institutional and cultural constraints limit both the implementation and effectiveness of adaptation measures. Even societies with high adaptive capacity remain vulnerable to climate change, variability and extremes. For example, a heat wave in 2003 caused high levels of mortality in European cities (especially among the elderly), and Hurricane Katrina in 2005 caused large human and financial costs in the United States. (WGII 7.4, 8.2, 17.4)
<table>
<thead>
<tr>
<th>Sector</th>
<th>Adaptation option/strategy</th>
<th>Underlying policy framework</th>
<th>Key constraints and opportunities to implementation (normal font = constraints; italics = opportunities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Expanded rainwater harvesting, water storage and conservation techniques; water reuse; desalination; water-use and irrigation efficiency</td>
<td>National water policies and integrated water resources management; water-related hazards management</td>
<td>Financial, human resources and physical barriers; integrated water resources management synergies with other sectors</td>
</tr>
<tr>
<td></td>
<td>Adjustment of planting dates and crop variety; crop relocation; improved land management, e.g., erosion control and soil protection through tree planting</td>
<td>R&D policies; institutional reform; land tenure and land reform; training; capacity building; crop insurance; financial incentives, e.g., subsidies and tax credits</td>
<td>Technological and financial constraints; access to new varieties; markets; longer growing season in higher altitudes; revenues from new products</td>
</tr>
<tr>
<td></td>
<td>Relocation; seawalls and storm surge barriers; dune reinforcement; land acquisition and creation of mangroves/wetlands as buffer against sea level rise and flooding; protection of existing natural barriers</td>
<td>Standards and regulations that integrate climate change considerations into design; land-use policies; building codes; insurance</td>
<td>Financial and technological barriers; availability of relocation space; integrated policies and management; synergies with sustainable development goals</td>
</tr>
<tr>
<td></td>
<td>Heat-health action plans; emergency health services; climate-sensitive disease surveillance and control; safer water and improved sanitation</td>
<td>Public health policies that recognize climate change risk; strengthen health services; regional and international cooperation</td>
<td>Limits to human tolerance (vulnerable groups); knowledge limitations; financial capacity; upgraded health services; improved quality of life</td>
</tr>
<tr>
<td></td>
<td>Diversification of tourism attractions and revenues; shifting ski slopes to higher altitudes and glaciers; artificial snow-making</td>
<td>Integrated planning (e.g., carrying capacity; linkage with other sectors; financial incentives, e.g., subsidies and tax credits)</td>
<td>Integrated climate change considerations into national transport policy; investment in R&D for special situations, e.g., permafrost areas</td>
</tr>
<tr>
<td></td>
<td>Realignment/relocation; design standards and planning for roads, rail and other infrastructure to cope with warming and drainage</td>
<td>Integrating climate change considerations into national energy policies, regulations, and fiscal and financial incentives to encourage use of alternative sources; reduced dependence on single sources of energy</td>
<td>Integrating climate change considerations into national transport policy; investment in R&D for special situations, e.g., permafrost areas</td>
</tr>
<tr>
<td>Agriculture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure/settlement (including coastal zones)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human health</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1. Selected examples of planned adaptation by sector.

Note: Other examples from many sectors would include early warning systems.
Sectional estimates of economic mitigation potential and marginal costs derived from bottom-up studies corrected for double counting of mitigation potential are shown in Figure 4.2. While top-down and bottom-up studies are line at the global level, there are considerable differences at the sectoral level.[WGIII 4.1, 4.4, 11.6, SPM]

No single technology can provide all of the mitigation potential in any sector. Table 4.2 lists selected examples of key technologies, policies, constraints and opportunities by sector.[WGIII SPM]

Future energy infrastructure investment decisions, expected to total over US$20 trillion23 between 2005 and 2030, will have long-term impacts on GHG emissions, because of the long lifetimes of energy plants and other infrastructure capital stock. The widespread diffusion of low-carbon technologies may take many decades, even if early investments in these technologies are made attractive. Initial estimates show that returning global energy-related CO$_2$ emissions to 2005 levels by 2030 would require a large shift in the pattern of investment, although the net additional investment required ranges from negligible to 5 to 10\%.[WGIII 11.3, SPM]

4.3 Mitigation options

Both bottom-up and top-down studies21 indicate that there is high agreement and much evidence of substantial economic potential23 for the mitigation of global GHG emissions over the coming decades that could offset the projected growth of global emissions or reduce emissions below current levels.[WGIII 11.3, SPM]

Figure 4.1 compares global economic mitigation potential in 2030 with the projected emissions increase from 2000 to 2030. Bottom-up studies suggest that mitigation opportunities with net negative costs22 have the potential to reduce emissions by about 6 GtCO$_2$-eq/yr in 2030. Realising these requires dealing with implementation barriers. The economic mitigation potential, which is generally greater than the market mitigation potential, can only be achieved when adequate policies are in place and barriers removed.21 [WGIII 11.3, SPM]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.1.png}
\caption{Global economic mitigation potential in 2030 estimated from bottom-up (Panel a) and top-down (Panel b) studies, compared with the projected emissions increases from SRES scenarios relative to year 2000 GHG emissions of 40.8 GtCO$_2$-eq (Panel c). Note: GHG emissions in 2000 are exclusive of emissions of decay of above-ground biomass that remains after logging and deforestation and from peat fires and drained peat soils, to ensure consistency with the SRES emissions results. [WGIII Figures SPM.4, SPM.5a, SPM.5b]}
\end{figure}

21 The concept of ‘mitigation potential’ has been developed to assess the scale of GHG reductions that could be made, relative to emission baselines, for a given level of carbon price (expressed in cost per unit of carbon dioxide equivalent emissions avoided or reduced). Mitigation potential is further differentiated in terms of ‘market mitigation potential’ and ‘economic mitigation potential’.

22 Net negative costs (no regrets opportunities) are defined as those options whose benefits such as reduced energy costs and reduced emissions of local/regional pollutants equal or exceed their costs to society, excluding the benefits of avoided climate change.

23 20 trillion = 20,000 billion = 20×10^12
Economic mitigation potentials by sector in 2030 estimated from bottom-up studies

![Graph showing economic mitigation potentials by sector in 2030 estimated from bottom-up studies.](image)

Figure 4.2. Estimated economic mitigation potential by sector and region using technologies and practices expected to be available in 2030. The potentials do not include non-technical options such as lifestyle changes. (WGIII Figure SPM.6)

Notes:

a) The ranges for global economic potentials as assessed in each sector are shown by vertical lines. The ranges are based on end-use allocations of emissions, meaning that emissions of electricity use are counted towards the end-use sectors and not to the energy supply sector.

b) The estimated potentials have been constrained by the availability of studies particularly at high carbon price levels.

c) Sectors used different baselines. For industry the SRES B2 baseline was taken, for energy supply and transport the World Energy Outlook (WEO) 2004 baseline was used; the building sector is based on a baseline in between SRES B2 and A1B; for waste, SRES A1B driving forces were used to construct a waste-specific baseline; agriculture and forestry used baselines that mostly used B2 driving forces.

d) Only global totals for transport are shown because international aviation is included.

e) Categories excluded are non-CO2 emissions in buildings and transport, part of material efficiency options, heat production and cogeneration in energy supply, heavy duty vehicles, shipping and high-occupancy passenger transport, most high-cost options for buildings, wastewater treatment, emission reduction from coal mines and gas pipelines, and fluorinated gases from energy supply and transport. The underestimation of the total economic potential from these emissions is of the order of 10 to 15%.

While studies use different methodologies, there is **high agreement and much evidence** that in all analysed world regions near-term health co-benefits from reduced air pollution, as a result of actions to reduce GHG emissions, can be substantial and may offset a substantial fraction of mitigation costs. *(WGIII 11.8, SPM)*

Energy efficiency and utilisation of renewable energy offer synergies with sustainable development. In least developed countries, energy substitution can lower mortality and morbidity by reducing indoor air pollution, reduce the workload for women and children and decrease the unsustainable use of fuelwood and related deforestation. *(WGIII 11.8, 11.9, 12.4)*

Literature since the TAR confirms with high agreement and medium evidence that there may be effects from Annex I countries’ action on the global economy and global emissions, although the scale of carbon leakage remains uncertain. *(WGIII 11.7, SPM)*

Fossil fuel exporting nations (in both Annex I and non-Annex I countries) may expect, as indicated in the TAR, lower demand and prices and lower GDP growth due to mitigation policies. The extent of this spillover depends strongly on assumptions related to policy decisions and oil market conditions. *(WGIII 11.7, SPM)*

Critical uncertainties remain in the assessment of carbon leakage. Most equilibrium modelling supports the conclusion in the TAR of economy-wide leakage from Kyoto action in the order of 5 to 20%, which would be less if competitive low-emissions technologies were effectively diffused. *(WGIII 11.7, SPM)*

There is also **high agreement and medium evidence** that changes in lifestyle and behaviour patterns can contribute to climate change mitigation across all sectors. Management practices can also have a positive role. *(WGIII SPM)*

Examples that can have positive impacts on mitigation include changes in consumption patterns, education and training, changes in building occupant behaviour, transport demand management and management tools in industry. *(WGIII 4.1, 5.1, 6.7, 7.3, SPM)*

Policies that provide a real or implicit price of carbon could create incentives for producers and consumers to significantly invest in low-GHG products, technologies and processes. *(WGIII SPM)*

An effective carbon-price signal could realise significant mitigation potential in all sectors. Modelling studies show that global carbon prices rising to US$20-80/tCO₂-eq by 2030 are consistent with stabilisation at around 550ppm CO₂-eq by 2100. For the same
Table 4.2 Selected examples of key sectoral mitigation technologies, policies and measures, constraints and opportunities. (WGIII Tables SPM.3, SPM.7)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Key mitigation technologies and practices currently commercially available. Key mitigation technologies and practices projected to be commercialised before 2030 shown in italics.</th>
<th>Policies, measures and instruments shown to be environmentally effective</th>
<th>Key constraints or opportunities (Normal font = constraints; italics = opportunities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Supply
 (WGIII 4.3, 4.4)</td>
<td>Improved supply and distribution efficiency; fuel switching from coal to gas; nuclear power; renewable heat and power (hydro)power, solar, wind, geothermal and bioenergy; combined heat and power; early applications of carbon dioxide capture and storage (CCS) (e.g. storage of removed CO₂ from natural gas); CCS for gas, biomass and coal-fired electricity generating facilities; advanced nuclear power; advanced renewable energy, including tidal and wave energy; concentrating solar, and solar photovoltaics</td>
<td>Reduction of fossil fuel subsidies; taxes on carbon charges on fossil fuels Feed-in tariffs for renewable energy technologies; renewable energy obligations; producer subsidies</td>
<td>Resistance by vested interests may make them difficult to implement May be appropriate to create markets for low-emissions technologies</td>
</tr>
<tr>
<td>Transport
 (WGIII 5.4)</td>
<td>More fuel-efficient vehicles; hybrid vehicles; cleaner diesel vehicles; biofuels; modal shifts from road transport to rail and public transport systems; non-motorised transport (cycling, walking); land-use and transport planning; second generation biofuels; higher efficiency aircraft; advanced electric and hybrid vehicles with more powerful and reliable batteries</td>
<td>Mandatory fuel economy; biofuel blending and CO₂ standards for road transport Taxes on vehicle purchase, registration, use and motor fuels; road and parking pricing</td>
<td>Partial coverage of vehicle feet may limit effectiveness Effectiveness may drop with higher incomes</td>
</tr>
<tr>
<td>Buildings
 (WGIII 6.5)</td>
<td>Efficient lighting and daylighting; more efficient electrical appliances and heating and cooling devices; improved cook stoves, improved insulation; passive and active solar design for heating and cooling; alternative refrigeration fluids, recovery and recycling of fluorinated gases; integrated design of commercial buildings including technologies, such as intelligent meters that provide feedback and control; solar photovoltaics integrated in buildings</td>
<td>Appliance standards and labelling Building codes and certification Demand-side management programmes Public sector leadership programmes, including procurement Incentives for energy service companies (ESCOs)</td>
<td>Periodic revision of standards needed Attractive for new buildings. Enforcement can be difficult Need for regulations so that utilities may profit Government purchasing can expand demand for energy-efficient products Success factor: Access to third party financing</td>
</tr>
<tr>
<td>Industry
 (WGIII 7.5)</td>
<td>More efficient end-use electrical equipment; heat and power recovery; material recycling and substitution; control of non-CO₂ gas emissions; and a wide array of process-specific technologies; advanced energy efficiency; CCS for cement, ammonia, and iron manufacture; efficient design and use of commercial buildings; and control of non-CO₂ gas emissions in iron and steel manufacturing</td>
<td>Provision of benchmark information; performance standards; subsidies; tax credits Tradable permits Voluntary agreements</td>
<td>May be appropriate to stimulate technology uptake. Stability of national policy important in view of international competitiveness Predictable allocation mechanisms and stable price signals important for investments Success factors include: clear targets, a baseline scenario, third-party involvement in design and review and formal provisions of monitoring, close cooperation between government and industry</td>
</tr>
<tr>
<td>Agriculture
 (WGIII 8.4)</td>
<td>Improved crop and grazing land management to increase soil carbon storage; restoration of cultivated peaty soils and degraded lands; improved rice cultivation techniques and livestock and manure management to reduce CH₄ emissions; improved nitrogen fertiliser application techniques to reduce N₂O emissions; dedicated energy crops to replace fossil fuel use; improved energy efficiency; improvements of crop yields</td>
<td>Financial incentives and regulations for improved land management; maintaining soil carbon content; efficient use of fertilisers and irrigation</td>
<td>May encourage synergy with sustainable development and with reducing vulnerability to climate change, thereby overcoming barriers to implementation</td>
</tr>
<tr>
<td>Forestry/forests
 (WGIII 9.4)</td>
<td>Afforestation; reforestation; forest management; reduced deforestation; harvested wood product management; use of forestry products for bioenergy to replace fossil fuel use; tree species improvement to increase biomass productivity and carbon sequestration; improved remote sensing technologies for analysis of vegetation/soil carbon sequestration potential and mapping land-use change</td>
<td>Financial incentives (national and international) to increase forest area, to reduce deforestation and to maintain and manage forests; land-use regulation and enforcement</td>
<td>Constraints include lack of investment capital and land tenure issues. Can help poverty alleviation.</td>
</tr>
<tr>
<td>Waste
 (WGIII 10.4)</td>
<td>Landfill CH₄ recovery; waste incineration with energy recovery; composting of organic waste; controlled wastewater treatment; recycling and waste minimisation; biocovers and biofilters to optimise CH₄ oxidation</td>
<td>Financial incentives for improved waste and wastewater management Renewable energy incentives or obligations</td>
<td>May stimulate technology diffusion Local availability of low-cost fuel</td>
</tr>
</tbody>
</table>
stabilisation level, studies since the TAR that take into account induced technological change may lower these price ranges to US$5-65/tCO₂(eq) in 2030.²⁴ [WGII 3.3, 11.4, 11.5, SPM]

There is high agreement and much evidence that a wide variety of national policies and instruments are available to governments to create the incentives for mitigation action. Their applicability depends on national circumstances and an understanding of their interactions, but experience from implementation in various countries and sectors shows there are advantages and disadvantages for any given instrument. [WGIII 13.2, SPM]

Four main criteria are used to evaluate policies and instruments: environmental effectiveness, cost effectiveness, distributional effects including equity, and institutional feasibility. [WGIII 13.2, SPM]

General findings about the performance of policies are: [WGIII 13.2, SPM]

- **Integrating climate policies in broader development policies** makes implementation and overcoming barriers easier.
- **Regulations and standards** generally provide some certainty about emission levels. They may be preferable to other instruments when information or other barriers prevent producers and consumers from responding to price signals. However, they may not induce innovations and more advanced technologies.
- **Taxes and charges** can set a price for carbon, but cannot guarantee a particular level of emissions. Literature identifies taxes as an efficient way of internalising costs of GHG emissions.
- ** Tradable permits** will establish a carbon price. The volume of allowed emissions determines their environmental effectiveness, while the allocation of permits has distributional consequences. Fluctuation in the price of carbon makes it difficult to estimate the total cost of complying with emission permits.
- **Financial incentives** (subsidies and tax credits) are frequently used by governments to stimulate the development and diffusion of new technologies. While economic costs are generally higher than for the instruments listed above, they are often critical to overcome barriers.
- **Voluntary agreements** between industry and governments are politically attractive, raise awareness among stakeholders and have played a role in the evolution of many national policies. The majority of agreements have not achieved significant emissions reductions beyond business as usual. However, some recent agreements, in a few countries, have accelerated the application of best available technology and led to measurable emission reductions.
- **Information instruments** (e.g., awareness campaigns) may positively affect environmental quality by promoting informed choices and possibly contributing to behavioural change, however, their impact on emissions has not been measured yet.

- **Research, development and demonstration (RD&D)** can stimulate technological advances, reduce costs and enable progress toward stabilisation.

Some corporations, local and regional authorities, NGOs and civil groups are adopting a wide variety of voluntary actions. These voluntary actions may limit GHG emissions, stimulate innovative policies and encourage the deployment of new technologies. On their own, they generally have limited impact on national- or regional-level emissions. [WGIII 13.4, SPM]

4.4 Relationship between adaptation and mitigation options and relationship with sustainable development

There is growing understanding of the possibilities to choose and implement climate response options in several sectors to realise synergies and avoid conflicts with other dimensions of sustainable development. [WGIII SPM]

Climate change policies related to energy efficiency and renewable energy are often economically beneficial, improve energy security and reduce local pollutant emissions. Reducing both loss of natural habitat and deforestation can have significant biodiversity, soil and water conservation benefits, and can be implemented in a socially and economically sustainable manner. Forestation and bioenergy plantations can restore degraded land, manage water runoff, retain soil carbon and benefit rural economies, but could compete with food production and may be negative for biodiversity, if not properly designed. [WGII 20.3, 20.8; WGIII 4.5, 9.7, 12.3, SPM]

There is growing evidence that decisions about macro-economic policy, agricultural policy, multilateral development bank lending, insurance practices, electricity market reform, energy security and forest conservation, for example, which are often treated as being apart from climate policy, can significantly reduce emissions (Table 4.3). Similarly, non-climate policies can affect adaptive capacity and vulnerability. [WGII 20.3; WGIII SPM, 12.3]

Both synergies and trade-offs exist between adaptation and mitigation options. [WGII 18.4.3; WGIII 11.9]

Examples of synergies include properly designed biomass production, formation of protected areas, land management, energy use in buildings, and forestry, but synergies are rather limited in other sectors. Potential trade-offs include increased GHG emissions due to increased consumption of energy related to adaptive responses. [WGII 18.4.3, 18.5, 18.7, TS.5.2; WGIII 4.5, 6.9, 8.5, 9.5, SPM]

²⁴ Studies on mitigation portfolios and macro-economic costs assessed in this report are based on top-down modelling. Most models use a global least-cost approach to mitigation portfolios, with universal emissions trading, assuming transparent markets, no transaction cost, and thus perfect implementation of mitigation measures throughout the 21st century. Costs are given for a specific point in time. Global modelled costs will increase if some regions, sectors (e.g. land use), options or gases are excluded. Global modelled costs will decrease with lower baselines, use of revenues from carbon taxes and auctioned permits, and if induced technological learning is included. These models do not consider climate benefits and generally also co-benefits of mitigation measures, or equity issues. Significant progress has been achieved in applying approaches based on induced technological change to stabilisation studies; however, conceptual issues remain. In the models that consider induced technological change, projected costs for a given stabilisation level are reduced; the reductions are greater at lower stabilisation level.
4.5 International and regional cooperation

There is high agreement and much evidence that notable achievements of the UNFCCC and its Kyoto Protocol are the establishment of a global response to the climate change problem, stimulation of an array of national policies, the creation of an international carbon market and the establishment of new institutional mechanisms that may provide the foundation for future mitigation efforts. Progress has also been made in addressing adaptation within the UNFCCC and additional initiatives have been suggested. \(\text{(WGII 18.7; WGIII 13.3, SPM)} \)

The impact of the Protocol’s first commitment period relative to global emissions is projected to be limited. Its economic impacts on participating Annex-B countries are projected to be smaller than presented in the TAR, which showed 0.2 to 2% lower GDP in 2012 without emissions trading and 0.1 to 1.1% lower GDP with emissions trading among Annex-B countries. To be more environmentally effective, future mitigation efforts would need to achieve deeper reductions covering a higher share of global emissions (see Topic 5). \(\text{(WGIII 1.4, 11.4, 13.3, SPM)} \)

The literature provides high agreement and much evidence of many options for achieving reductions of global GHG emissions at the international level through cooperation. It also suggests that successful agreements are environmentally effective, cost-effective, incorporate distributional considerations and equity, and are institutionally feasible. \(\text{(WGIII 13.3, SPM)} \)

Greater cooperative efforts to reduce emissions will help to reduce global costs for achieving a given level of mitigation, or will improve environmental effectiveness. Improving and expanding the scope of market mechanisms (such as emission trading, Joint Implementation and Clean Development Mechanism) could reduce overall mitigation costs. \(\text{(WGIII 13.3, SPM)} \)

Efforts to address climate change can include diverse elements such as emissions targets; sectoral, local, sub-national and regional actions; RD&D programmes; adopting common policies; implementing development-oriented actions; or expanding financing instruments. These elements can be implemented in an integrated fashion, but comparing the efforts made by different countries quantitatively would be complex and resource intensive. \(\text{(WGIII 13.3, SPM)} \)

Actions that could be taken by participating countries can be differentiated both in terms of when such action is undertaken, who participates and what the action will be. Actions can be binding or non-binding, include fixed or dynamic targets, and participation can be static or vary over time. \(\text{(WGIII 13.3, SPM)} \)

<table>
<thead>
<tr>
<th>Selected sectors</th>
<th>Non-climate change policy instruments and actions</th>
<th>Potentially affects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro-economy</td>
<td>Implement non-climate taxes/subsidies and/or other fiscal and regulatory policies that promote sustainable development</td>
<td>Total global GHG emissions</td>
</tr>
<tr>
<td>Forestry</td>
<td>Adoption of forest conservation and sustainable management practices</td>
<td>GHG emissions from deforestation</td>
</tr>
<tr>
<td>Electricity</td>
<td>Adoption of cost-effective renewables, demand-side management programmes, and transmission and distribution loss reduction</td>
<td>Electricity sector CO$_2$ emissions</td>
</tr>
<tr>
<td>Petroleum imports</td>
<td>Diversifying imported and domestic fuel mix and reducing economy’s energy intensity to improve energy security</td>
<td>Emissions from crude oil and product imports</td>
</tr>
<tr>
<td>Insurance for building, transport sectors</td>
<td>Differentiated premiums, liability insurance exclusions, improved terms for green products</td>
<td>Transport and building sector GHG emissions</td>
</tr>
<tr>
<td>International finance</td>
<td>Country and sector strategies and project lending that reduces emissions</td>
<td>Emissions from developing countries</td>
</tr>
</tbody>
</table>

\(\text{Table 4.3. Integrating climate change considerations into development policies – selected examples in the area of mitigation. } \text{(WGIII 12.2.4.6)} \)
The long-term perspective: scientific and socio-economic aspects relevant to adaptation and mitigation, consistent with the objectives and provisions of the Convention, and in the context of sustainable development
5.1 Risk management perspective

Responding to climate change involves an iterative risk management process that includes both mitigation and adaptation, taking into account actual and avoided climate change damages, co-benefits, sustainability, equity and attitudes to risk. [WGII 20.9, SPM; WGIII SPM]

Risk management techniques can explicitly accommodate sectoral, regional and temporal diversity, but their application requires information about not only impacts resulting from the most likely climate scenarios, but also impacts arising from lower-probability but higher-consequence events and the consequences of proposed policies and measures. Risk is generally understood to be the product of the likelihood of an event and its consequences. Climate change impacts depend on the characteristics of natural and human systems, their development pathways and their specific locations. [SYR 3.3, Figure 3.6; WGII 20.2, 20.9, SPM; WGIII 3.5, 3.6, SPM]

5.2 Key vulnerabilities, impacts and risks – long-term perspectives

The five ‘reasons for concern’ identified in the TAR are now assessed to be stronger with many risks identified with higher confidence. Some are projected to be larger or to occur at lower increases in temperature. This is due to (1) better understanding of the magnitude of impacts and risks associated with increases in global average temperature and GHG concentrations, including vulnerability to present-day climate variability, (2) more precise identification of the circumstances that make systems, sectors, groups and regions especially vulnerable and (3) growing evidence that the risk of very large impacts on multiple century time scales would continue to increase as long as GHG concentrations and temperature continue to increase. Understanding about the relationship between impacts (the basis for ‘reasons for concern’ in the TAR) and vulnerability (that includes the ability to adapt to impacts) has improved. [WGII 4.4, 5.4, 19.3.7, TS.4.6; WGIII 3.5, SPM]

The TAR concluded that vulnerability to climate change is a function of exposure, sensitivity and adaptive capacity. Adaptation can reduce sensitivity to climate change while mitigation can reduce the exposure to climate change, including its rate and extent. Both conclusions are confirmed in this assessment. [WGII 20.2, 20.7.3]

No single metric can adequately describe the diversity of key vulnerabilities or support their ranking. A sample of relevant impacts is provided in Figure 3.6. The estimation of key vulnerabilities in any system, and damage implied, will depend on exposure (the rate and magnitude of climate change), sensitivity, which is determined in part and where relevant by development status, and adaptive capacity. Some key vulnerabilities may be linked to thresholds; in some cases these may cause a system to shift from one state to another, whereas others have thresholds that are defined subjectively and thus depend on societal values. [WGII 19.ES, 19.1]

The five ‘reasons for concern’ that were identified in the TAR were intended to synthesise information on climate risks and key vulnerabilities and to “aid readers in making their own determination” about risk. These remain a viable framework to consider key vulnerabilities, and they have been updated in the AR4. [TAR WGII Chapter 19; WGII SPM]

- Risks to unique and threatened systems. There is new and stronger evidence of observed impacts of climate change on unique and vulnerable systems (such as polar and high mountain communities and ecosystems), with increasing levels of adverse impacts as temperatures increase further. An increasing risk of species extinction and coral reef damage is projected with higher confidence than in the TAR as warming proceeds. There is medium confidence that approximately 20 to 30% of plant and animal species assessed so far are likely to be at increased risk of extinction if increases in global average temperature exceed 1.5 to 2.5°C over 1980-1999 levels. Confidence has increased that a 1 to 2°C increase in global mean temperature above 1990 levels (about 1.5 to 2.5°C above pre-indus-

Key Vulnerabilities and Article 2 of the UNFCCC

Article 2 of the UNFCCC states:

“The ultimate objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilisation of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.”

Determining what constitutes “dangerous anthropogenic interference with the climate system” in relation to Article 2 of the UNFCCC involves value judgements. Science can support informed decisions on this issue, including by providing criteria for judging which vulnerabilities might be labelled ‘key’. [SYR 3.3, WGII 19.ES]

Key vulnerabilities\(^5\) may be associated with many climate-sensitive systems, including food supply, infrastructure, health, water resources, coastal systems, ecosystems, global biogeochemical cycles, ice sheets and modes of oceanic and atmospheric circulation. [WGII 19.ES]

More specific information is now available across the regions of the world concerning the nature of future impacts, including for some places not covered in previous assessments. [WGII SPM]

\(^5\) Key Vulnerabilities can be identified based on a number of criteria in the literature, including magnitude, timing, persistence/reversibility, the potential for adaptation, distributional aspects, likelihood and ‘importance’ of the impacts.
Adaptation and mitigation

There is high confidence that neither adaptation nor mitigation alone can avoid all climate change impacts. Adaptation is necessary both in the short term and longer term to address impacts resulting from the warming that would occur even for the lowest stabilization scenarios assessed. There are barriers, limits and costs that are not fully understood. Adaptation and mitigation can complement each other and together can significantly reduce the risks of climate change.

Adaptation will be ineffective for some cases such as natural ecosystems (e.g. loss of Arctic sea ice and marine ecosystem viability), the disappearance of mountain glaciers that play vital roles in water storage and supply, or adaptation to sea level rise of several metres. It will be less feasible or very costly in many cases for the projected climate change beyond the next several decades (such as deltaic regions and estuaries). There is high confidence that the ability of many ecosystems to adapt naturally will be exceeded this century. In addition, multiple barriers and constraints to effective adaptation exist in human systems (see Topic 4.2).
Efforts to mitigate GHG emissions to reduce the rate and magnitude of climate change need to account for inertia in the climate and socio-economic systems. (SYR 3.2; WGI 10.3, 10.4, 10.7, SPM; WGIII 2.3.4)

After GHG concentrations are stabilised, the rate at which the global average temperature increases is expected to slow within a few decades. Small increases in global average temperature could still be expected for several centuries. Sea level rise from thermal expansion would continue for many centuries at a rate that eventually decreases from that reached before stabilisation, due to ongoing heat uptake by oceans. (SYR 3.2, WGI 10.3, 10.4, 10.7, SPM)

Delayed emission reductions significantly constrain the opportunities to achieve lower stabilisation levels and increase the risk of more severe climate change impacts. Even though benefits of mitigation measures in terms of avoided climate change would take several decades to materialise, mitigation actions begun in the short term would avoid locking in both long-lived carbon intensive infrastructure and development pathways, reduce the rate of climate change and reduce the adaptation needs associated with higher levels of warming. (WGII 18.4, 20.6, 20.7, SPM; WGIII 2.3.4, 3.4, 3.5, 3.6, SPM)

Table 5.1 summarises the required emission levels for different groups of stabilisation concentrations and the resulting equilibrium

5.4 Emission trajectories for stabilisation

In order to stabilise the concentration of GHGs in the atmosphere, emissions would need to peak and decline thereafter. The lower the stabilisation level, the more quickly this peak and decline would need to occur (Figure 5.1). (WGIII 3.3, 3.5, SPM)

Advances in modelling since the TAR permit the assessment of multi-gas mitigation strategies for exploring the attainability and costs for achieving stabilisation of GHG concentrations. These scenarios explore a wider range of future scenarios, including lower levels of stabilisation, than reported in the TAR. (WGIII 3.3, 3.5, SPM)

Mitigation efforts over the next two to three decades will have a large impact on opportunities to achieve lower stabilisation levels (Table 5.1 and Figure 5.1). (WGIII 3.5, SPM)

Table 5.1 summarises the required emission levels for different groups of stabilisation concentrations and the resulting equilibrium

5.4 Emission trajectories for stabilisation

In order to stabilise the concentration of GHGs in the atmosphere, emissions would need to peak and decline thereafter. The lower the stabilisation level, the more quickly this peak and decline would need to occur (Figure 5.1). (WGIII 3.3, 3.5, SPM)

Advances in modelling since the TAR permit the assessment of multi-gas mitigation strategies for exploring the attainability and costs for achieving stabilisation of GHG concentrations. These scenarios explore a wider range of future scenarios, including lower levels of stabilisation, than reported in the TAR. (WGIII 3.3, 3.5, SPM)

Mitigation efforts over the next two to three decades will have a large impact on opportunities to achieve lower stabilisation levels (Table 5.1 and Figure 5.1). (WGIII 3.5, SPM)

Table 5.1 summarises the required emission levels for different groups of stabilisation concentrations and the resulting equilibrium

28 Peaking means that the emissions need to reach a maximum before they decline later.

29 For the lowest mitigation scenario category assessed, emissions would need to peak by 2015 and for the highest by 2090 (see Table 5.1). Scenarios that use alternative emission pathways show substantial differences on the rate of global climate change. (WGII 19.4)
global average temperature increases, using the ‘best estimate’ of climate sensitivity (see Figure 5.1 for the likely range of uncertainty). Stabilisation at lower concentration and related equilibrium temperature levels advances the date when emissions need to peak and requires greater emissions reductions by 2050.30 Climate sensitivity is a key uncertainty for mitigation scenarios that aim to meet specific temperature levels. The timing and level of mitigation to reach a given temperature stabilisation level is earlier and more stringent if climate sensitivity is high than if it is low. [WGIII 3.3, 3.4, 3.5, 3.6, SPM]

Sea level rise under warming is inevitable. Thermal expansion would continue for many centuries after GHG concentrations have stabilised, for any of the stabilisation levels assessed, causing an eventual sea level rise much larger than projected for the 21st century (Table 5.1). If GHG and aerosol concentrations had been stabilised at year 2000 levels, thermal expansion alone would be expected to lead to further sea level rise of 0.3 to 0.8m. The eventual contributions from Greenland ice sheet melt could be several metres, and larger than from thermal expansion, should warming in excess of 1.9 to 4.6°C above pre-industrial be sustained over many centuries. These long-term consequences would have major implications for world coastlines. The long time scale of thermal expansion and ice sheet response to warming imply that mitigation strategies that seek to stabilise GHG concentrations (or radiative forcing) at or above present levels do not stabilise sea level for many centuries. [WG1 10.7]

Feedbacks between the carbon cycle and climate change affect the required mitigation and adaptation response to climate change. Climate-carbon cycle coupling is expected to increase the fraction of anthropogenic emissions that remains in the atmosphere as the climate system warms (see Topics 2.3 and 3.2.1), but mitigation studies have not yet incorporated the full range of these feedbacks. As a consequence, the emission reductions to meet a particular stabilisation level reported in the mitigation studies assessed in Table 5.1 might be underestimated. Based on current understanding of climate-carbon cycle feedbacks, model studies suggest that stabilising CO\(_2\) concentrations at, for example, 450ppm32 could require cumulative emissions over the 21st century to be less than 1800 [1370 to 2200] GtCO\(_2\), which is about 27% less than the 2460 [2310 to 2600] GtCO\(_2\) determined without consideration of carbon cycle feedbacks. [SYR 2.3, 3.2.1; WGI 7.3, 10.4, SPM]

30 Estimates for the evolution of temperature over the course of this century are not available in the AR4 for the stabilisation scenarios. For most stabilisation levels global average temperature is approaching the equilibrium level over a few centuries. For the much lower stabilisation scenarios (category I and II, Figure 5.1), the equilibrium temperature may be reached earlier.

32 To stabilise at 1000ppm CO\(_2\), this feedback could require that cumulative emissions be reduced from a model average of approximately 5190 [4910 to 5460] GtCO\(_2\) to approximately 4030 [3690 to 4580] GtCO\(_2\). [WGI 7.3, 10.4, SPM]
5.5 Technology flows and development

There is high agreement and much evidence that all stabilisation levels assessed can be achieved by deployment of a portfolio of technologies that are either currently available or expected to be commercialised in coming decades, assuming appropriate and effective incentives are in place for development, acquisition, deployment and diffusion of technologies and addressing related barriers. [WGIII SPM]

Worldwide deployment of low-GHG emission technologies as well as technology improvements through public and private RD&D would be required for achieving stabilisation targets as well as cost reduction. Figure 5.2 gives illustrative examples of the contribution of different technologies varies over time and region and depends on the baseline development path, available technologies and relative costs, and the analysed stabilisation levels. Stabilisation at the lower of the assessed levels (490 to 540ppm CO₂-eq) requires early investments and substantially more rapid diffusion and commercialisation of advanced low-emissions technologies over the next decades (2000-2030) and higher contributions across abatement options in the long term (2000-2100). This requires that barriers to development, acquisition, deployment and diffusion of technologies are effectively addressed with appropriate incentives. [WGIII 2.7, 3.3, 3.4, 3.6, 4.3, 4.4, 4.6, SPM]

Without sustained investment flows and effective technology transfer, it may be difficult to achieve emission reduction at a significant scale. Mobilising financing of incremental costs of low-carbon technologies is important. [WGIII 13.3, SPM]

There are large uncertainties concerning the future contribution of different technologies. However, all assessed stabilisation scenarios concur that 60 to 80% of the reductions over the course of the century would come from energy supply and use and industrial processes. Including non-CO₂ and CO₂ land-use and forestry mitigation options provides greater flexibility and cost-effectiveness. Energy efficiency plays a key role across many scenarios for most regions and time scales. For lower stabilisation levels, scenarios put more emphasis on the use of low-carbon energy sources, such as renewable energy, nuclear power and the use of CO₂ capture and storage (CCS). In these scenarios, improvements of carbon intensity of energy supply and the whole economy needs to be much faster than in the past (Figure 5.2). [WGIII 3.3, 3.4, TS.3, SPM]

32 By comparison, government funding in real absolute terms for most energy research programmes has been flat or declining for nearly two decades (even after the UNFCCC came into force) and is now about half of the 1980 level. [WGIII 2.7, 3.4, 4.5, 11.5, 13.2]
5.6 Costs of mitigation and long-term stabilisation targets

The macro-economic costs of mitigation generally rise with the stringency of the stabilisation target and are relatively higher when derived from baseline scenarios characterised by high emission levels. [WGII SPM]

There is high agreement and medium evidence that in 2050 global average macro-economic costs for multi-gas mitigation towards stabilisation between 710 and 445ppm CO$_2$-eq are between a 1% gain to a 5.5% decrease of global GDP (Table 5.2). This corresponds to slowing average annual global GDP growth by less than 0.12 percentage points. Estimated GDP losses by 2030 are on average lower and show a smaller spread compared to 2050 (Table 5.2). For specific countries and sectors, costs vary considerably from the global average. [WGIII 3.3, 13.3, SPM]

33 See Footnote 24 for further details on cost estimates and model assumptions.

5.7 Costs, benefits and avoided climate impacts at global and regional levels

Table 5.2. Estimated global macro-economic costs in 2030 and 2050. Costs are relative to the baseline for least-cost trajectories towards different long-term stabilisation levels. [WGIII 3.3, 13.3, Tables SPM.4 and SPM.6]

<table>
<thead>
<tr>
<th>Stabilisation levels (ppm CO$_2$-eq)</th>
<th>Median GDP reductiona (%)</th>
<th>Range of GDP reductionb (%)</th>
<th>Reduction of average annual GDP growth rates (percentage points)c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2030</td>
<td>2050</td>
<td>2030</td>
</tr>
<tr>
<td>445 – 535d</td>
<td></td>
<td></td>
<td><3</td>
</tr>
<tr>
<td>535 – 590</td>
<td>0.6</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>590 – 710</td>
<td>0.2</td>
<td>0.5</td>
<td><0.6</td>
</tr>
</tbody>
</table>

Notes:

Values given in this table correspond to the full literature across all baselines and mitigation scenarios that provide GDP numbers.

a) Global GDP based on market exchange rates.

b) The 10th and 90th percentile range of the analysed data are given where applicable. Negative values indicate GDP gain. The first row (445-535ppm CO$_2$-eq) gives the upper bound estimate of the literature only.

c) The calculation of the reduction of the annual growth rate is based on the average reduction during the assessed period that would result in the indicated GDP decrease by 2030 and 2050 respectively.

d) The number of studies is relatively small and they generally use low baselines. High emissions baselines generally lead to higher costs.

e) The values correspond to the highest estimate for GDP reduction shown in column three.

Limited and early analytical results from integrated analyses of the global costs and benefits of mitigation indicate that these are broadly comparable in magnitude, but do not as yet permit an unambiguous determination of an emissions pathway or stabilisation level where benefits exceed costs. [WGIII SPM]

Comparing the costs of mitigation with avoided damages would require the reconciliation of welfare impacts on people living in different places and at different points in time into a global aggregate measure of well-being. [WGII 18.ES]

Choices about the scale and timing of GHG mitigation involve balancing the economic costs of more rapid emission reductions now against the corresponding medium-term and long-term climate risks of delay. [WGIII SPM]

Many impacts can be avoided, reduced or delayed by mitigation. [WGII SPM]

Although the small number of impact assessments that evaluate stabilisation scenarios do not take full account of uncertainties in projected climate under stabilisation, they nevertheless provide indications of damages avoided and risks reduced for different
amounts of emissions reduction. The rate and magnitude of future human-induced climate change and its associated impacts are determined by human choices defining alternative socio-economic futures and mitigation actions that influence emission pathways. Figure 3.2 demonstrates that alternative SRES emission pathways could lead to substantial differences in climate change throughout the 21st century. Some of the impacts at the high temperature end of Figure 3.6 could be avoided by socio-economic development pathways that limit emissions and associated climate change towards the lower end of the ranges illustrated in Figure 3.6. [SYR 3.2, 3.3; WGIII 3.5, 3.6, SPM]

Figure 3.6 illustrates how reduced warming could reduce the risk of, for example, affecting a significant number of ecosystems, the risk of extinctions, and the likelihood that cereal productivity in some regions would tend to fall. [SYR 3.3, Figure 3.6; WGII 4.4, 5.4, Table 20.6]

5.8 Broader environmental and sustainability issues

Sustainable development can reduce vulnerability to climate change, and climate change could impede nations’ abilities to achieve sustainable development pathways. [WGII SPM]

It is very likely that climate change can slow the pace of progress toward sustainable development either directly through increased exposure to adverse impacts or indirectly through erosion of the capacity to adapt. Over the next half-century, climate change could impede achievement of the Millennium Development Goals. [WGII SPM]

Climate change will interact at all scales with other trends in global environmental and natural resource concerns, including water, soil and air pollution, health hazards, disaster risk, and deforestation. Their combined impacts may be compounded in future in the absence of integrated mitigation and adaptation measures. [WGII 20.3, 20.7, 20.8, SPM]

Making development more sustainable can enhance mitigative and adaptive capacities, reduce emissions, and reduce vulnerability, but there may be barriers to implementation. [WGII 20.8; WGIII 12.2, SPM]

Both adaptive and mitigative capacities can be enhanced through sustainable development. Sustainable development can, thereby, reduce vulnerability to climate change by reducing sensitivities (through adaptation) and/or exposure (through mitigation). At present, however, few plans for promoting sustainability have explicitly included either adapting to climate change impacts, or promoting adaptive capacity. Similarly, changing development paths can make a major contribution to mitigation but may require resources to overcome multiple barriers. [WGII 20.3, 20.5, SPM; WGIII 2.1, 2.5, 12.1, SPM]
Robust findings, key uncertainties
Robust findings, key uncertainties

As in the TAR, a robust finding for climate change is defined as one that holds under a variety of approaches, methods, models and assumptions, and is expected to be relatively unaffected by uncertainties. Key uncertainties are those that, if reduced, could lead to new robust findings. [TAR SYR Q.9]

Robust findings do not encompass all key findings of the AR4. Some key findings may be policy-relevant even though they are associated with large uncertainties. [WGI 20.9]

The robust findings and key uncertainties listed below do not represent an exhaustive list.

6.1 Observed changes in climate and their effects, and their causes

Robust findings

Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising global average sea level. [WGI 3.9, SPM]

Many natural systems, on all continents and in some oceans, are being affected by regional climate changes. Observed changes in many physical and biological systems are consistent with warming. As a result of the uptake of anthropogenic CO₂ since 1750, the acidity of the surface ocean has increased. [WGI 5.4, WGI 1.3]

Global total annual anthropogenic GHG emissions, weighted by their 100-year GWPs, have grown by 70% between 1970 and 2004. As a result of anthropogenic emissions, atmospheric concentrations of N₂O now far exceed pre-industrial values spanning many thousands of years, and those of CH₄ and CO₂ now far exceed the natural range over the last 650,000 years. [WGI SPM; WGIII 1.3]

Most of the global average warming over the past 50 years is very likely due to anthropogenic GHG increases and it is likely that there is a discernible human-induced warming averaged over each continent (except Antarctica). [WGI 9.4, SPM]

Anthropogenic warming over the last three decades has likely had a discernible influence at the global scale on observed changes in many physical and biological systems. [WGII 1.4, SPM]

Key uncertainties

Climate data coverage remains limited in some regions and there is a notable lack of geographic balance in data and literature on observed changes in natural and managed systems, with marked scarcity in developing countries. [WGI SPM; WGII 1.3, SPM]

Analysing and monitoring changes in extreme events, including drought, tropical cyclones, extreme temperatures and the frequency and intensity of precipitation, is more difficult than for climatic averages as longer data time-series of higher spatial and temporal resolutions are required. [WGI 3.8, SPM]

Effects of climate changes on human and some natural systems are difficult to detect due to adaptation and non-climatic drivers. [WGII 1.3]

Difficulties remain in reliably simulating and attributing observed temperature changes to natural or human causes at smaller than continental scales. At these smaller scales, factors such as land-use change and pollution also complicate the detection of anthropogenic warming influence on physical and biological systems. [WGI 8.3, 9.4, SPM; WGII 1.4, SPM]

The magnitude of CO₂ emissions from land-use change and CH₄ emissions from individual sources remain as key uncertainties. [WGI 2.3, 7.3, 7.4; WGIII 1.3, TS.14]

6.2 Drivers and projections of future climate changes and their impacts

Robust findings

With current climate change mitigation policies and related sustainable development practices, global GHG emissions will continue to grow over the next few decades. [WGII 3.2, SPM]

For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emissions scenarios. [WGI 10.3, 10.7, SPM]

Continued GHG emissions at or above current rates would cause further warming and induce many changes in the global climate system during the 21st century that would very likely be larger than those observed during the 20th century. [WGII 10.3, 11.1, SPM]

The pattern of future warming where land warms more than the adjacent oceans and more in northern high latitudes is seen in all scenarios. [WGI 10.3, 11.1, SPM]

Warming tends to reduce terrestrial ecosystem and ocean uptake of atmospheric CO₂, increasing the fraction of anthropogenic emissions that remains in the atmosphere. [WGI 7.3, 10.4, 10.5, SPM]

Anthropogenic warming and sea level rise would continue for centuries even if GHG emissions were to be reduced sufficiently for GHG concentrations to stabilise, due to the time scales associated with climate processes and feedbacks. [WGI 10.7, SPM]

Equilibrium climate sensitivity is very unlikely to be less than 1.5°C. [WGI 8.6, 9.6, Box 10.2, SPM]

Some systems, sectors and regions are likely to be especially affected by climate change. The systems and sectors are some ecosystems (tundra, boreal forest, mountain, mediterranean-type, mangroves, salt marshes, coral reefs and the sea-ice biome), low-lying coasts, water resources in some dry regions at mid-latitudes and in the dry topics and in areas dependent on snow and ice melt, agriculture in low-latitude regions, and human health in areas with low adaptive capacity. The regions are the Arctic, Africa, small islands and Asian and African megadeltas. Within other regions, even those with high incomes, some people, areas and activities can be particularly at risk. [WGII TS.4.5]

Impacts are very likely to increase due to increased frequencies and intensities of some extreme weather events. Recent events have demonstrated the vulnerability of some sectors and regions, including in developed countries, to heat waves, tropical cyclones, floods and drought, providing stronger reasons for concern as compared to the findings of the TAR. [WGII Table SPM.2, 19.3]
Key uncertainties

Uncertainty in the equilibrium climate sensitivity creates uncertainty in the expected warming for a given CO₂-eq stabilisation scenario. Uncertainty in the carbon cycle feedback creates uncertainty in the emissions trajectory required to achieve a particular stabilisation level. [WGI 7.3, 10.4, 10.5, SPM]

Models differ considerably in their estimates of the strength of different feedbacks in the climate system, particularly cloud feedbacks, oceanic heat uptake and carbon cycle feedbacks, although progress has been made in these areas. Also, the confidence in projections is higher for some variables (e.g. temperature) than for others (e.g. precipitation), and it is higher for larger spatial scales and longer time averaging periods. [WGI 7.3, 8.1-8.7, 9.6, 10.2, 10.7, SPM; WGI 4.4]

Aerosol impacts on the magnitude of the temperature response, on clouds and on precipitation remain uncertain. [WGI 2.9, 7.5, 9.2, 9.4, 9.5]

Future changes in the Greenland and Antarctic ice sheet mass, particularly due to changes in ice flow, are a major source of uncertainty that could increase sea level rise projections. The uncertainty in the penetration of the heat into the oceans also contributes to the future sea level rise uncertainty. [WGI 4.6, 6.4, 10.3, 10.7, SPM]

Large-scale ocean circulation changes beyond the 21st century cannot be reliably assessed because of uncertainties in the meltwater supply from the Greenland ice sheet and model response to the warming. [WGI 6.4, 8.7, 10.3]

Projections of climate change and its impacts beyond about 2050 are strongly scenario- and model-dependent, and improved projections would require improved understanding of sources of uncertainty and enhancements in systematic observation networks. [WGI TS.6]

Impacts research is hampered by uncertainties surrounding regional projections of climate change, particularly precipitation. [WGI TS.6]

Understanding of low-probability/high-impact events and the cumulative impacts of sequences of smaller events, which is required for risk-based approaches to decision-making, is generally limited. [WGII 19.4, 20.2, 20.4, 20.9, TS.6]

A wide range of mitigation options is currently available or projected to be available by 2030 in all sectors. The economic mitigation potential, at costs that range from net negative up to US$100/ tCO₂-equivalent, is sufficient to offset the projected growth of global emissions or to reduce emissions to below current levels in 2030. [WGI 11.3, SPM]

Many impacts can be reduced, delayed or avoided by mitigation. Mitigation efforts and investments over the next two to three decades will have a large impact on opportunities to achieve lower stabilisation levels. Delayed emissions reductions significantly constrain the opportunities to achieve lower stabilisation levels and increase the risk of more severe climate change impacts. [WGII SPM, WGIII SPM]

The range of stabilisation levels for GHG concentrations that have been assessed can be achieved by deployment of a portfolio of technologies that are currently available and those that are expected to be commercialised in coming decades, provided that appropriate and effective incentives are in place and barriers are removed. In addition, further RD&D would be required to improve the technical performance, reduce the costs and achieve social acceptability of new technologies. The lower the stabilisation levels, the greater the need for investment in new technologies during the next few decades. [WGIII 3.3, 3.4]

Making development more sustainable by changing development paths can make a major contribution to climate change mitigation and adaptation and to reducing vulnerability. [WGII 18.7, 20.3, SPM; WGIII 13.2, SPM]

Decisions about macro-economic and other policies that seem unrelated to climate change can significantly affect emissions. [WGIII 12.2]

Key uncertainties

Understanding of how development planners incorporate information about climate variability and change into their decisions is limited. This limits the integrated assessment of vulnerability. [WGII 18.8, 20.9]

The evolution and utilisation of adaptive and mitigative capacity depend on underlying socio-economic development pathways. [WGII 17.3, 17.4, 18.6, 19.4, 20.9]

Barriers, limits and costs of adaptation are not fully understood, partly because effective adaptation measures are highly dependent on specific geographical and climate risk factors as well as institutional, political and financial constraints. [WGII SPM]

Estimates of mitigation costs and potentials depend on assumptions about future socio-economic growth, technological change and consumption patterns. Uncertainty arises in particular from assumptions regarding the drivers of technology diffusion and the potential of long-term technology performance and cost improvements. Also little is known about the effects of changes in behaviour and lifestyles. [WGIII 3.3, 3.4, 11.3]

The effects of non-climate policies on emissions are poorly quantified. [WGIII 12.2]
Annex I

User guide and access to more detailed information

As defined in the IPCC Procedures, the Synthesis Report (SYR) synthesises and integrates material contained within IPCC Assessment Reports and Special Reports. The scope of the SYR of the Fourth Assessment Report includes material contained in the three Working Group contributions to the AR4, and it draws on information contained in other IPCC Reports as required. The SYR is based exclusively on assessments by the IPCC Working Groups, it does not refer to or assess the primary scientific literature itself.

The SYR is largely self-contained but provides only a very condensed summary of the much richer information contained in the underlying Working Group reports. Users may wish to access relevant material at the required level of detail in the following manner:

- The Summary for Policymakers (SPM) of the SYR provides the most condensed summary of our current understanding of scientific, technical and socio-economic aspects of climate change. All references in curly brackets in this Summary for Policymakers refer to numbered sections of this SYR.

- The Introduction and six Topics of this SYR provide more detailed and more comprehensive information than the SYR SPM. References in curly brackets in the Introduction and six Topics of this SYR point to chapter sections, Summaries for Policymakers and Technical Summaries of the three underlying Working Group reports of the AR4, and in some instances to other topic sections of the SYR itself. References to the IPCC Third Assessment Report in 2001 (TAR) are identified by adding “TAR” in front of the cited report.

- Users who wish to gain a better understanding of scientific details or access the primary scientific literature on which the SYR is based, should refer to chapter sections of the underlying Working Group reports that are cited in the longer report of the SYR. The individual chapters of the Working Group reports provide comprehensive references to the primary scientific literature on which IPCC assessments are based, and also offer the most detailed region- and sector-specific information.

A comprehensive glossary, list of acronyms, abbreviations and scientific units, and an index are provided below to facilitate use of this report by as wide an audience as possible.
Annex II

Glossary

Editor: Alfons P. M. Baede (Netherlands)
Co-editors: Paul van der Linden (United Kingdom), Aviel Verbruggen (Belgium)

This Glossary is based on the glossaries published in the contributions of Working Groups of I, II and III to the IPCC Fourth Assessment Report. Additional work has been undertaken on additions, consistency and shortening of definitions to make this glossary more suitable to a wider audience.

The italics used have the following meaning: Glossary word reference; Glossary secondary reference (i.e. terms which are either contained in a glossary of the IPCC Working Group contributions to the AR4, or defined within the text of an entry of this glossary).

A.

Abrupt climate change
The nonlinearity of the climate system may lead to abrupt climate change, sometimes called rapid climate change, abrupt events or even surprises. The term abrupt often refers to time scales faster than the typical time scale of the responsible forcing. However, not all abrupt climate changes need be externally forced. Some possible abrupt events that have been proposed include a dramatic reorganisation of the thermohaline circulation, rapid deglaciation and massive melting of permafrost or increases in soil respiration leading to fast changes in the carbon cycle. Others may be truly unexpected, resulting from a strong, rapidly changing, forcing of a non-linear system.

Absorption, scattering and emission of radiation
Electromagnetic radiation may interact with matter, be it in the form of the atoms and molecules of a gas (e.g. the gases in the atmosphere) or in the form of particulate, solid or liquid, matter (e.g. aerosols), in various ways. Matter itself emits radiation in accordance with its composition and temperature. Radiation may be absorbed by matter, whereby the absorbed energy may be transferred or re-emitted. Finally, radiation may also be deflected from its original path (scattered) as a result of interaction with matter.

Activities Implemented Jointly (AIJ)
The pilot phase for Joint Implementation, as defined in Article 4.2(a) of the United Nations Framework Convention on Climate Change (UNFCCC) that allows for project activity among developed countries (and their companies) and between developed and developing countries (and their companies). AIJ is intended to allow parties to the UNFCCC to gain experience in jointly implemented projects. There is no credit for AIJ during the pilot phase. A decision remains on the future of AIJ projects and how they may relate to the Kyoto Mechanisms. As a simple form of tradable permits, AIJ and other market-based schemes represent potential mechanisms for stimulating additional resource flows for reducing emissions. See also Clean Development Mechanism, and Emissions Trading.

Adaptation
Initiatives and measures to reduce the vulnerability of natural and human systems against actual or expected climate change effects. Various types of adaptation exist, e.g. anticipatory and reactive, private and public, and autonomous and planned. Examples are raising river or coastal dikes, the substitution of more temperature-shock resistant plants for sensitive ones, etc.

Adaptation benefits
The avoided damage costs or the accrued benefits following the adoption and implementation of adaptation measures.

Adaptation costs
Costs of planning, preparing for, facilitating, and implementing adaptation measures, including transition costs.

Adaptive capacity
The whole of capabilities, resources and institutions of a country or region to implement effective adaptation measures.

Aerosols
A collection of airborne solid or liquid particles, with a typical size between 0.01 and 10 micrometer (a millionth of a meter) that reside in the atmosphere for at least several hours. Aerosols may be of either natural or anthropogenic origin. Aerosols may influence climate in several ways: directly through scattering and absorbing radiation, and indirectly through acting as cloud condensation nuclei or modifying the optical properties and lifetime of clouds.

Afforestation
Planting of new forests on lands that historically have not contained forests (for at least 50 years). For a discussion of the term forest and related terms such as afforestation, reforestation, and deforestation see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the Report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).

Aggregate impacts
Total impacts integrated across sectors and/or regions. The aggregation of impacts requires knowledge of (or assumptions about) the relative importance of impacts in different sectors and regions. Measures of aggregate impacts include, for example, the total number of people affected, or the total economic costs.

Albedo
The fraction of solar radiation reflected by a surface or object, often expressed as a percentage. Snow-covered surfaces have a high albedo, the surface albedo of soils ranges from high to low, and vegetation-covered surfaces and oceans have a low albedo. The Earth’s planetary albedo varies mainly through varying cloudiness, snow, ice, leaf area and land cover changes.

Albedo feedback
A climate feedback involving changes in the Earth’s albedo. It usually refers to changes in the cryosphere which has an albedo much larger (~0.8) than the average planetary albedo (~0.3). In a warming climate, it is anticipated that the cryosphere would shrink, the Earth’s overall albedo would decrease and more solar energy would be absorbed to warm the Earth still further.

Algal bloom
A reproductive explosion of algae in a lake, river, or ocean.

Alpine
The biogeographic zone made up of slopes above the tree line, characterised by the presence of rosette-forming herbaceous plants and low shrubby slow-growing woody plants.
Annex I countries
The group of countries included in Annex I (as amended in 1998) to the United Nations Framework Convention on Climate Change (UNFCCC), including all the OECD countries in the year 1990 and countries with economies in transition. Under Articles 4.2 (a) and 4.2 (b) of the Convention, Annex I countries committed themselves specifically to the aim of returning individually or jointly to their 1990 levels of greenhouse gas emissions by the year 2000. By default, the other countries are referred to as Non-Annex I countries. For a list of Annex I countries, see http://unfccc.int.

Annex II countries
The group of countries included in Annex II to the United Nations Framework Convention on Climate Change (UNFCCC), including all OECD countries in the year 1990. Under Article 4.2 (g) of the Convention, these countries are expected to provide financial resources to assist developing countries to comply with their obligations, such as preparing national reports. Annex II countries are also expected to promote the transfer of environmentally sound technologies to developing countries. For a list of Annex II countries, see http://unfccc.int.

Annex B countries
The countries included in Annex B to the Kyoto Protocol that have agreed to a target for their greenhouse-gas emissions, including all the Annex I countries (as amended in 1998) except for Turkey and Belarus. For a list of Annex I countries, see http://unfccc.int. See Kyoto Protocol

Anthropogenic
Resulting from or produced by human beings.

Anthropogenic emissions
Emissions of greenhouse gases, greenhouse gas precursors, and aerosols associated with human activities, including the burning of fossil fuels, deforestation, land-use changes, livestock, fertilisation, etc.

Arid region
A land region of low rainfall, where low is widely accepted to be <250 mm precipitation per year.

Atmosphere
The gaseous envelope surrounding the Earth. The dry atmosphere consists almost entirely of nitrogen (78.1% volume mixing ratio) and oxygen (20.9% volume mixing ratio), together with a number of trace gases, such as argon (0.93% volume mixing ratio), helium and radiatively active greenhouse gases such as carbon dioxide (0.035% volume mixing ratio) and ozone. In addition, the atmosphere contains the greenhouse gas water vapour, whose amounts are highly variable but typically around 1% volume mixing ratio. The atmosphere also contains clouds and aerosols.

Attribution
See Detection and attribution.

B.

Barrier
Any obstacle to reaching a goal, adaptation or mitigation potential that can be overcome or attenuated by a policy, programme, or measure. Barrier removal includes correcting market failures directly or reducing the transactions costs in the public and private sectors by e.g. improving institutional capacity, reducing risk and uncertainty, facilitating market transactions, and enforcing regulatory policies.

Baseline
Reference for measurable quantities from which an alternative outcome can be measured, e.g. a non-intervention scenario used as a reference in the analysis of intervention scenarios.

Basin
The drainage area of a stream, river, or lake.

Biodiversity
The total diversity of all organisms and ecosystems at various spatial scales (from genes to entire biomes).

Biofuel
A fuel produced from organic matter or combustible oils produced by plants. Examples of biofuel include alcohol, black liquor from the paper-manufacturing process, wood, and soybean oil.

Biomass
The total mass of living organisms in a given area or volume; recently dead plant material is often included as dead biomass. The quantity of biomass is expressed as a dry weight or as the energy, carbon, or nitrogen content.

Biome
A major and distinct regional element of the biosphere, typically consisting of several ecosystems (e.g. forests, rivers, ponds, swamps within a region of similar climate). Biomes are characterised by typical communities of plants and animals.

Biosphere (terrestrial and marine)
The part of the Earth system comprising all ecosystems and living organisms, in the atmosphere, on land (terrestrial biosphere) or in the oceans (marine biosphere), including derived dead organic matter, such as litter, soil organic matter and oceanic detritus.

Boreal forest
Forests of pine, spruce, fir, and larch stretching from the east coast of Canada westward to Alaska and continuing from Siberia westward across the entire extent of Russia to the European Plain.

Borehole temperature
Borehole temperatures are measured in boreholes of tens to hundreds of meters depth into the subsurface of the Earth. Borehole temperature depth profiles are commonly used to infer time variations in the ground surface temperature on centennial time scales.

Bottom-up models
Bottom-up models represent reality by aggregating characteristics of specific activities and processes, considering technological, engineering and cost details. See also Top-down models.

C.

Carbon Dioxide Capture and Storage (CCS)
A process consisting of separation of carbon dioxide from industrial and energy-related sources, transport to a storage location, and long-term isolation from the atmosphere.

Carbon cycle
The term used to describe the flow of carbon (in various forms, e.g. as carbon dioxide) through the atmosphere, ocean, terrestrial biosphere and lithosphere.

Carbon dioxide (CO2)
A naturally occurring gas, also a by-product of burning fossil fuels from fossil carbon deposits, such as oil, gas and coal, of burning biomass and of land use changes and other industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth’s radiative balance. It is the reference gas against which other greenhouse gases are measured and therefore has a Global Warming Potential of 1.

Carbon dioxide (CO2) fertilisation
The enhancement of the growth of plants as a result of increased atmospheric carbon dioxide (CO2) concentration. Depending on their mechanism of photosynthesis, certain types of plants are more sensitive to changes in atmospheric CO2 concentration.
Carbon intensity
The amount of emission of carbon dioxide per unit of Gross Domestic Product.

Carbon leakage
The part of emissions reductions in Annex B countries that may be offset by an increase of the emissions in the non-constrained countries above their baseline levels. This can occur through (1) relocation of energy-intensive production in non-constrained regions; (2) increased consumption of fossil fuels in these regions through decline in the international price of oil and gas triggered by lower demand for these energies; and (3) changes in incomes (thus in energy demand) because of better terms of trade.

Carbon sequestration
See Uptake

Catchment
An area that collects and drains rainwater.

Chlorofluorocarbons (CFCs)
See Halocarbons

Clean Development Mechanism (CDM)
Defined in Article 12 of the Kyoto Protocol, the CDM is intended to meet two objectives: (1) to assist parties not included in Annex I in achieving sustainable development and in contributing to the ultimate objective of the convention; and (2) to assist parties included in Annex I in achieving compliance with their quantified emission limitation and reduction commitments. Certified Emission Reduction Units from CDM projects undertaken in non-Annex I countries that limit or reduce greenhouse gas emissions, when certified by operational entities designated by Conference of the Parties/Meeting of the Parties, can be accrued to the investor (government or industry) from parties in Annex B. A share of the proceeds from the certified project activities is used to cover administrative expenses as well as to assist developing country parties that are particularly vulnerable to the adverse effects of climate change to meet the costs of adaptation.

Climate
Climate in a narrow sense is usually defined as the average weather, or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands or millions of years. The classical period for averaging these variables is 30 years, as defined by the World Meteorological Organization. The relevant quantities are most often surface variables such as temperature, precipitation and wind. Climate in a wider sense is the state, including a statistical description, of the climate system. In various parts of this report different averaging periods, such as a period of 20 years, are also used.

Climate-carbon cycle coupling
Future climate change induced by atmospheric emissions of greenhouse gases will impact on the global carbon cycle. Changes in the global carbon cycle in turn will influence the fraction of anthropogenic greenhouse gases that remains in the atmosphere, and hence the atmospheric concentrations of greenhouse gases, resulting in further climate change. This feedback is called climate-carbon cycle coupling. The first generation coupled climate-carbon cycle models indicates that global warming will increase the fraction of anthropogenic CO₂ that remains in the atmosphere.

Climate change
Climate change refers to a change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcings, or to persistent anthropogenic changes in the composition of the atmosphere or in land use. Note that the United Nations Framework Convention on Climate Change (UNFCCC), in its Article 1, defines climate change as: ‘a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods’. The UNFCCC thus makes a distinction between climate change attributable to human activities altering the atmospheric composition, and climate variability attributable to natural causes. See also Climate variability; Detection and Attribution.

Climate feedback
An interaction mechanism between processes in the climate system is called a climate feedback when the result of an initial process triggers changes in a second process that in turn influences the initial one. A positive feedback intensifies the original process, and a negative feedback reduces it.

Climate model
A numerical representation of the climate system based on the physical, chemical and biological properties of its components, their interactions and feedback processes, and accounting for all or some of its known properties. The climate system can be represented by models of varying complexity, that is, for any one component or combination of components a spectrum or hierarchy of models can be identified, differing in such aspects as the number of spatial dimensions, the extent to which physical, chemical or biological processes are explicitly represented, or the level at which empirical parametrisations are involved. Coupled Atmosphere-Ocean General Circulation Models (AOGCMs) provide a representation of the climate system that is near the most comprehensive end of the spectrum currently available. There is an evolution towards more complex models with interactive chemistry and biology (see WGI Chapter 8). Climate models are applied as a research tool to study and simulate the climate, and for operational purposes, including monthly, seasonal and interannual climate predictions.

Climate prediction
A climate prediction or climate forecast is the result of an attempt to produce an estimate of the actual evolution of the climate in the future, for example, at seasonal, interannual or long-term time scales. Since the future evolution of the climate system may be highly sensitive to initial conditions, such predictions are usually probabilistic in nature. See also Climate projection, climate scenario.

Climate projection
A projection of the response of the climate system to emission or concentration scenarios of greenhouse gases and aerosols, or radiative forcing scenarios, often based upon simulations by climate models. Climate projections are distinguished from climate predictions in order to emphasise that climate projections depend upon the emission/concentration/radiative forcing scenario used, which are based on assumptions concerning, for example, future socioeconomic and technological developments that may or may not be realised and are therefore subject to substantial uncertainty.

Climate response
See Climate sensitivity

Climate scenario
A plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change, often serving as input to impact models. Climate projections often serve as the raw material for constructing climate scenarios, but climate scenarios usually require additional information such as about the observed current climate. A climate change scenario is the difference between a climate scenario and the current climate.

Climate sensitivity
In IPCC reports, equilibrium climate sensitivity refers to the equilibrium change in the annual mean global surface temperature following a doubling of the atmospheric equivalent carbon dioxide concentration. Due to computational constraints, the equilibrium climate sensitivity in a climate model is usually estimated by running an atmospheric general circulation model coupled to a mixed-layer ocean model, because equilibrium climate sensitivity is largely determined by atmospheric processes. Efficient models can be run to equilibrium with a dynamic ocean.
The transient climate response is the change in the global surface temperature, averaged over a 20-year period, centred at the time of atmospheric carbon dioxide doubling, that is, at year 70 in a 1%/yr compound carbon dioxide increase experiment with a global coupled climate model. It is a measure of the strength and rapidity of the surface temperature response to greenhouse gas forcing.

Climate shift
An abrupt shift or jump in mean values signalling a change in climate regime (see Patterns of climate variability). Most widely used in conjunction with the 1976/1977 climate shift that seems to correspond to a change in El Niño-Southern Oscillation behaviour.

Climate system
The climate system is the highly complex system consisting of five major components: the atmosphere, the hydrosphere, the cryosphere, the land surface and the biosphere, and the interactions between them. The climate system evolves in time under the influence of its own internal dynamics and because of external forcings such as volcanic eruptions, solar variations and anthropogenic forcings such as the changing composition of the atmosphere and land-use change.

Climate variability
Climate variability refers to variations in the mean state and other statistics (such as standard deviations, the occurrence of extremes, etc.) of the climate on all spatial and temporal scales beyond that of individual weather events. Variability may be due to natural internal processes within the climate system (internal variability), or to variations in natural or anthropogenic external forcing (external variability). See also Climate change.

Cloud feedback
A cloud feedback involving changes in any of the properties of clouds as a response to other atmospheric changes. Understanding cloud feedbacks and determining their magnitude and sign require an understanding of how a change in climate may affect the spectrum of cloud types, the cloud fraction and height, and the radiative properties of clouds, and an estimate of the impact of these changes on the Earth’s radiation budget. At present, cloud feedbacks remain the largest source of uncertainty in climate sensitivity estimates. See also Radiative forcing.

CO₂-equivalent
See Box “Carbon dioxide-equivalent (CO₂-eq) emissions and concentrations” in Topic 2 of the Synthesis Report and Working Group I Chapter 2.10.

CO₂-fertilization
See Carbon dioxide fertilization.

Co-benefits
The benefits of policies implemented for various reasons at the same time, acknowledging that most policies designed to address greenhouse gas mitigation have other, often at least equally important, rationales (e.g., related to objectives of development, sustainability, and equity).

Combined Heat and Power (CHP)
The use of waste heat from thermal electricity generation plants. The heat is e.g. condensing heat from steam turbines or hot flue gases exhausted from gas turbines, for industrial use, buildings or district heating. Also called co-generation.

Compliance
Compliance is whether and to what extent countries do adhere to the provisions of an accord. Compliance depends on implementing policies ordered, and on whether measures follow up the policies. Compliance is the degree to which the actors whose behaviour is targeted by the agreement, local government units, corporations, organisations, or individuals, conform to the implementing obligations. See also Implementation.

Confidence
The level of confidence in the correctness of a result is expressed in this report, using a standard terminology defined as follows:

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Degree of confidence in being correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high confidence</td>
<td>At least 9 out of 10 chance of being correct</td>
</tr>
<tr>
<td>High confidence</td>
<td>About 8 out of 10 chance</td>
</tr>
<tr>
<td>Medium confidence</td>
<td>About 5 out of 10 chance</td>
</tr>
<tr>
<td>Low confidence</td>
<td>About 2 out of 10 chance</td>
</tr>
<tr>
<td>Very low confidence</td>
<td>Less than 1 out of 10 chance</td>
</tr>
</tbody>
</table>

See also Likelihood: Uncertainty

Coral
The term coral has several meanings, but is usually the common name for the Order Scleractinia, all members of which have hard limestone skeletons, and which are divided into reef-building and non-reef-building, or cold- and warm-water corals. See Coral bleaching; Coral reefs

Coral bleaching
The paling in colour which results if a coral loses its symbiotic, energy-providing, organisms.

Coral reefs
Rock-like limestone structures built by corals along ocean coasts (fringing reefs) or on top of shallow, submerged banks or shelves (barrier reefs, atolls), most conspicuous in tropical and subtropical oceans.

Cost
The consumption of resources such as labour time, capital, materials, fuels, etc. as a consequence of an action. In economics all resources are valued at their opportunity cost, being the value of the most valuable alternative use of the resources. Costs are defined in a variety of ways and under a variety of assumptions that affect their value. Cost types include: administrative costs, damage costs (to ecosystems, people and economies due to negative effects from climate change), and implementation costs of changing existing rules and regulation, capacity building efforts, information, training and education, etc. Private costs are carried by individuals, companies or other private entities that undertake the action, whereas social costs include also the external costs on the environment and on society as a whole. The negative of costs are benefits (also sometimes called negative costs). Costs minus benefits are net costs.

Cryosphere
The component of the climate system consisting of all snow, ice and frozen ground (including permafrost) on and beneath the surface of the Earth and ocean. See also Glacier; Ice sheet.

D.
Deforestation
Conversion of forest to non-forest. For a discussion of the term forest and related terms such as afforestation, reforestation, and deforestation see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the Report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).

Demand-side management (DSM)
Policies and programmes for influencing the demand for goods and/or services. In the energy sector, DSM aims at reducing the demand for electricity and energy sources. DSM helps to reduce greenhouse gas emissions.

Detection and attribution
Climate varies continually on all time scales. Detection of climate change is the process of demonstrating that climate has changed in some defined statistical sense, without providing a reason for that change. Attribution of causes of climate change is the process of establishing the most likely causes for the detected change with some defined level of confidence.
Development path or pathway
An evolution based on an array of technological, economic, social, institutional, cultural, and biophysical characteristics that determine the interactions between natural and human systems, including production and consumption patterns in all countries, over time at a particular scale. Alternative development paths refer to different possible trajectories of development, the continuation of current trends being just one of the many paths.

Discounting
A mathematical operation making monetary (or other) amounts received or expended at different points in time (years) comparable across time. The operator uses a fixed or possibly time-varying discount rate (\(d\)) from year to year that makes future value worth less today. In a descriptive discounting approach one accepts the discount rates people (savers and investors) actually apply in their day-to-day decisions (private discount rate). In a prescriptive (ethical or normative) discounting approach the discount rate is fixed from a social perspective, e.g. based on an ethical judgement about the interests of future generations (social discount rate).

Discount rate
See Discounting

Drought
In general terms, drought is a ‘prolonged absence or marked deficiency of precipitation’, a ‘deficiency that results in water shortage for some activity or for some group’, or a ‘period of abnormally dry weather sufficiently prolonged for the lack of precipitation to cause a serious hydrological imbalance’ (Heim, 2002). Drought has been defined in a number of ways. Agricultural drought relates to moisture deficits in the topmost 1 metre or so of soil (the root zone) that affect crops. Meteorological drought is mainly a prolonged deficit of precipitation, and hydrological drought is related to below-normal streamflow, lake and groundwater levels. A megadrought is a longdrawn out and pervasive drought, lasting much longer than normal, usually a decade or more.

Dynamical ice discharge
Discharge of ice from ice sheets or ice caps caused by the dynamics of the ice sheet or ice cap (e.g. in the form of glacier flow, ice streams and calving icebergs) rather than by melt or runoff.

E.
Economic (mitigation) potential
See Mitigation potential.

Economies in Transition (EITs)
Countries with their economies changing from a planned economic system to a market economy.

Ecosystem
A system of living organisms interacting with each other and their physical environment. The boundaries of what could be called an ecosystem are somewhat arbitrary, depending on the focus of interest or study. Thus, the extent of an ecosystem may range from very small spatial scales to, ultimately, the entire Earth.

El Niño-Southern Oscillation (ENSO)
The term El Niño was initially used to describe a warm-water current that periodically flows along the coast of Ecuador and Peru, disrupting the local fishery. It has since become identified with a basinwide warming of the tropical Pacific east of the dateline. This oceanic event is associated with a fluctuation of a global-scale tropical and subtropical surface pressure pattern called the Southern Oscillation. This coupled atmosphere-ocean phenomenon, with preferred time scales of two to about seven years, is collectively known as El Niño-Southern Oscillation, or ENSO. It is often measured by the surface pressure anomaly difference between Darwin and Tahiti and the sea surface temperatures in the central and eastern equatorial Pacific. During an ENSO event, the prevailing trade winds weaken, reducing upwelling and altering ocean currents such that the sea surface temperatures warm, further weakening the trade winds. This event has a great impact on the wind, sea surface temperature and precipitation patterns in the tropical Pacific. It has climatic effects throughout the Pacific region and in many other parts of the world, through global teleconnections. The cold phase of ENSO is called La Niña.

Emission scenario
A plausible representation of the future development of emissions of substances that are potentially radiatively active (e.g., greenhouse gases, aerosols), based on a coherent and internally consistent set of assumptions about driving forces (such as demographic and socioeconomic development, technological change) and their key relationships. Concentration scenarios, derived from emission scenarios, are used as input to a climate model to compute climate projections. In IPCC (1992) a set of emission scenarios was presented which were used as a basis for the climate projections in IPCC (1996). These emission scenarios are referred to as the IS92 scenarios. In the IPCC Special Report on Emission Scenarios (Nakićenović and Swart, 2000) new emission scenarios, the so-called SRES scenarios, were published. For the meaning of some terms related to these scenarios, see SRES scenarios.

Emission(s) trading
A market-based approach to achieving environmental objectives. It allows those reducing greenhouse gas emissions below their emission cap to use or trade the excess reductions to offset emissions at another source inside or outside the country. In general, trading can occur at the intra-company, domestic, and international levels. The Second Assessment Report by the IPCC adopted the convention of using permits for domestic trading systems and quotas for international trading systems. Emissions trading under Article 17 of the Kyoto Protocol is a tradable quota system based on the assigned amounts calculated from the emission reduction and limitation commitments listed in Annex B of the Protocol.

Emission trajectory
A projected development in time of the emission of a greenhouse gas or group of greenhouse gases, aerosols and greenhouse gas precursors.

Energy
The amount of work or heat delivered. Energy is classified in a variety of types and becomes useful to human ends when it flows from one place to another or is converted from one type into another. Primary energy (also referred to as energy sources) is the energy embodied in natural resources (e.g., coal, crude oil, natural gas, uranium) that has not undergone any anthropogenic conversion. This primary energy needs to be converted and transported to become usable energy (e.g. light). Renewable energy is obtained from the continuing or repetitive currents of energy occurring in the natural environment, and includes non-carbon technologies such as solar energy, hydropower, wind, tide and waves, and geothermal heat, as well as carbon neutral technologies such as biomass. Embodied energy is the energy used to produce a material substance (such as processed metals, or building materials), taking into account energy used at the manufacturing facility (zero order), energy used in producing the materials that are used in the manufacturing facility (first order), and so on.

Energy balance
The difference between the total incoming and total outgoing energy in the climate system. If this balance is positive, warming occurs; if it is negative, cooling occurs. Averaged over the globe and over long time periods, this balance must be zero. Because the climate system derives virtually all its energy from the Sun, zero balance implies that, globally, the amount of incoming solar radiation on average must be equal to the sum of the outgoing reflected solar radiation and the outgoing thermal infrared radiation emitted by the climate system. A perturbation of this global radiation balance, be it anthropogenic or natural, is called radiative forcing.

Energy efficiency
Ratio of useful energy output of a system, conversion process or activity, to its energy input.
Energy intensity
Energy intensity is the ratio of energy use to economic or physical output. At the national level, energy intensity is the ratio of total primary energy use or final energy use to Gross Domestic Product. At the activity level, one can also use physical quantities in the denominator, e.g. litre fuel/vehicle km.

Equivalent carbon dioxide concentration
See Box “Carbon dioxide-equivalent (CO₂-eq) emissions and concentrations” in Topic 2 of the Synthesis Report.

Equivalent carbon dioxide emission
See Box “Carbon dioxide-equivalent (CO₂-eq) emissions and concentrations” in Topic 2 of the Synthesis Report and Working Group I Chapter 2.10.

Erosion
The process of removal and transport of soil and rock by weathering, mass wasting, and the action of streams, glaciers, waves, winds, and underground water.

Evapotranspiration
The combined process of water evaporation from the Earth’s surface and transpiration from vegetation.

External forcing
External forcing refers to a forcing agent outside the climate system causing a change in the climate system. Volcanic eruptions, solar variations and anthropogenic changes in the composition of the atmosphere and land-use change are external forcings.

Extinction
The complete disappearance of an entire biological species.

Extreme weather event
An event that is rare at a particular place and time of year. Definitions of “rare” vary, but an extreme weather event would normally be as rare as or rarer than the 10th or 90th percentile of the observed probability density function. By definition, the characteristics of what is called extreme weather may vary from place to place in an absolute sense. Single extreme events cannot be simply and directly attributed to anthropogenic climate change, as there is always a finite chance the event in question might have occurred naturally. When a pattern of extreme weather persists for some time, such as a season, it may be classed as an extreme climate event, especially if it yields an average or total that is itself extreme (e.g., drought or heavy rainfall over a season).

F.

F-gases
This term refers to the groups of gases hydrofluorocarbons, perfluorocarbons, and sulphurhexafluoride, which are covered under the Kyoto Protocol.

Feedback
See Climate feedback.

Food security
A situation that exists when people have secure access to sufficient amounts of safe and nutritious food for normal growth, development and an active and healthy life. Food insecurity may be caused by the unavailability of food, insufficient purchasing power, inappropriate distribution, or inadequate use of food at the household level.

Forcing
See External forcing

Forecast
See Climate forecast; Climate projection; Projection.

Forest
A vegetation type dominated by trees. Many definitions of the term forest are in use throughout the world, reflecting wide differences in biogeophysical conditions, social structure, and economics. Particular criteria apply under the Kyoto Protocol. For a discussion of the term forest and related terms such as afforestation, reforestation, and deforestation see the IPCC Special Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000). See also the Report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).

Fossil fuels
Carbon-based fuels from fossil hydrocarbon deposits, including coal, peat, oil, and natural gas.

Framework Convention on Climate Change
See United Nations Framework Convention on Climate Change (UNFCCC).

Frozen ground
Soil or rock in which part or all of the pore water is frozen (Van Everdingen, 1998). Frozen ground includes permafrost. Ground that freezes and thaws annually is called seasonally frozen ground.

Fuel cell
A fuel cell generates electricity in a direct and continuous way from the controlled electrochemical reaction of hydrogen or another fuel and oxygen. With hydrogen as fuel it emits only water and heat (no carbon dioxide) and the heat can be utilised. See Combined Heat and Power.

Fuel switching
In general this is substituting fuel A for fuel B. In the climate change discussion it is implicit that fuel A has a lower carbon content than fuel B, e.g. natural gas for coal.

G.

Glacial lake
A lake formed by glacier meltwater, located either at the front of a glacier (known as a proglacial lake), on the surface of a glacier (supraglacial lake), within the glacier (englacial lake) or at the glacier bed (subglacial lake).

Glacier
A mass of land ice which flows downhill under gravity (through internal deformation and/or sliding at the base) and is constrained by internal stress and friction at the base and sides. A glacier is maintained by accumulation of snow at high altitudes, balanced by melting at low altitudes or discharge into the sea. See Mass balance.

Global surface temperature
The global surface temperature is an estimate of the global mean surface air temperature. However, for changes over time, only anomalies, as departures from a climatology, are used, most commonly based on the area-weighted global average of the sea surface temperature anomaly and land surface air temperature anomaly.

Global Warming Potential (GWP)
An index, based upon radiative properties of well mixed greenhouse gases, measuring the radiative forcing of a unit mass of a given well mixed greenhouse gas in today’s atmosphere integrated over a chosen time horizon, relative to that of carbon dioxide. The GWP represents the combined effect of the differing times these gases remain in the atmosphere and their relative effectiveness in absorbing outgoing thermal infrared radiation. The Kyoto Protocol is based on GWPs from pulse emissions over a 100-year time frame.

Greenhouse effect
Greenhouse gases effectively absorb thermal infrared radiation, emitted by the Earth’s surface, by the atmosphere itself due to the same gases, and
by clouds. Atmospheric radiation is emitted to all sides, including downward to the Earth’s surface. Thus greenhouse gases trap heat within the surface-troposphere system. This is called the greenhouse effect. Thermal infrared radiation in the troposphere is strongly coupled to the temperature of the atmosphere at the altitude at which it is emitted. In the troposphere, the temperature generally decreases with height. Effectively, infrared radiation emitted to space originates from an altitude with a temperature of, on average, -19°C, in balance with the net incoming solar radiation, whereas the Earth’s surface is kept at a much higher temperature of, on average, +14°C. An increase in the concentration of greenhouse gases leads to an increased infrared opacity of the atmosphere, and therefore to an effective radiation into space from a higher altitude at a lower temperature. This causes a radiative forcing that leads to an enhancement of the greenhouse effect, the so-called enhanced greenhouse effect.

Greenhouse gas (GHG)
Greenhouse gases are those gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of thermal infrared radiation emitted by the Earth’s surface, the atmosphere itself, and by clouds. This property causes the greenhouse effect. Water vapour (H₂O), carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄) and ozone (O₃) are the primary greenhouse gases in the Earth’s atmosphere. Moreover, there are a number of entirely human-made greenhouse gases in the atmosphere, such as the halocarbons and other chlorine and bromine containing substances, dealt with under the Montreal Protocol. Besides CO₂, N₂O and CH₄, the Kyoto Protocol deals with the greenhouse gases sulphur hexafluoride (SF₆), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).

Gross Domestic Product (GDP)
Gross Domestic Product (GDP) is the monetary value of all goods and services produced within a nation.

H.

Halocarbons
A collective term for the group of partially halogenated organic species, including the chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), halons, methyl chloride, methyl bromide, etc. Many of the halocarbons have large Global Warming Potentials. The chlorine and bromine containing halocarbons are also involved in the depletion of the ozone layer.

Human system
Any system in which human organisations play a major role. Often, but not always, the term is synonymous with society or social system e.g., agricultural system, political system, technological system, economic system; all are human systems in the sense applied in the Fourth Assessment Report.

Hydrochlorofluorocarbons (HCFCs)
See Halocarbons

Hydrofluorocarbons (HFCs)
One of the six greenhouse gases or groups of greenhouse gases to be curbed under the Kyoto Protocol. They are produced commercially as a substitute for chlorofluorocarbons. HFCs largely are used in refrigeration and semiconductor manufacturing. See Halocarbons

Hydrosphere
The component of the climate system comprising liquid surface and subterranean water, such as oceans, seas, rivers, fresh water lakes, underground water, etc.

Hydrological cycle
The cycle in which water evaporates from the oceans and the land surface, is carried over the Earth in atmospheric circulation as water vapour, condensates to form clouds, precipitates again as rain or snow, is intercepted by trees and vegetation, provides runoff on the land surface, infiltrates into soils, recharges groundwater, discharges into streams, and ultimately, flows out into the oceans, from which it will eventually evaporate again (AMS, 2000). The various systems involved in the hydrological cycle are usually referred to as hydrological systems.

Hydrological systems
See Hydrological cycle

Ice cap
A dome shaped ice mass, usually covering a highland area, which is considerably smaller in extent than an ice sheet.

Ice core
A cylinder of ice drilled out of a glacier or ice sheet.

Ice sheet
A mass of land ice that is sufficiently deep to cover most of the underlying bedrock topography, so that its shape is mainly determined by its dynamics (the flow of the ice as it deforms internally and/or slides at its base). An ice sheet flows outwards from a high central ice plateau with a small average surface slope. The margins usually slope more steeply, and most ice is discharged through fast-flowing ice streams or outlets glaciers, in some cases into the sea or into ice shelves floating on the sea. There are only three large ice sheets in the modern world, one on Greenland and two on Antarctica, the East and West Antarctic Ice Sheet, divided by the Transantarctic Mountains. During glacial periods there were others.

(Climatic change) Impact assessment
The practice of identifying and evaluating, in monetary and/or non-monetary terms, the effects of climate change on natural and human systems.

(Climatic change) Impacts
The effects of climate change on natural and human systems. Depending on the consideration of adaptation, one can distinguish between potential impacts and residual impacts:

- Potential impacts: all impacts that may occur given a projected change in climate, without considering adaptation.
- Residual impacts: the impacts of climate change that would occur after adaptation.

See also aggregate impacts, market impacts, and non-market impacts.

Implementation
Implementation describes the actions taken to meet commitments under a treaty and encompasses legal and effective phases.

Legal implementation refers to legislation, regulations, judicial decrees, including other actions such as efforts to administer progress which governments take to translate international accords into domestic law and policy. Effective implementation needs policies and programmes that induce changes in the behaviour and decisions of target groups. Target groups then take effective measures of mitigation and adaptation. See also Compliance.

Indigenous peoples
No internationally accepted definition of indigenous peoples exists. Common characteristics often applied under international law, and by United Nations agencies to distinguish indigenous peoples include: residence within or attachment to geographically distinct traditional habitats, ancestral territories, and their natural resources; maintenance of cultural and social identities, and social, economic, cultural and political institutions separate from mainstream or dominant societies and cultures; descent from population groups present in a given area, most frequently before modern states or territories were created and current borders defined; and self-identification as being part of a distinct indigenous cultural group, and the desire to preserve that cultural identity.

Induced technological change
See technological change.
Industrial revolution
A period of rapid industrial growth with far-reaching social and economic consequences, beginning in Britain during the second half of the eighteenth century and spreading to Europe and later to other countries including the United States. The invention of the steam engine was an important trigger of this development. The industrial revolution marks the beginning of a strong increase in the use of fossil fuels and emission of, in particular, fossil carbon dioxide. In this Report the terms pre-industrial and industrial refer, somewhat arbitrarily, to the periods before and after 1750, respectively.

Inertia
In the context of climate change mitigation, inertia relates to the difficulty of change resulting from pre-existing conditions within society such as physical man-made capital, natural capital, and social non-physical capital, including institutions, regulations, and norms. Existing structures lock in societies making change more difficult.

In the context of the climate system, inertia relates to the delay in climate change after an external forcing has been applied, and to the continuation of climate change even after the external forcing has been stabilised.

K.
Kyoto Mechanisms (also called Flexibility Mechanisms)
Economic mechanisms based on market principles that parties to the Kyoto Protocol can use in an attempt to lessen the potential economic impacts of greenhouse gas emission-reduction requirements. They include Joint Implementation (Article 6), Clean Development Mechanism (Article 12), and Emissions Trading (Article 17).

Kyoto Protocol
The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) was adopted in 1997 in Kyoto, Japan, at the Third Session of the Conference of the Parties (COP) to the UNFCCC. It contains legally binding commitments, in addition to those included in the UNFCCC. Countries included in Annex B of the Protocol (most Organization for Economic Cooperation and Development countries and countries with economies in transition) agreed to reduce their anthropogenic greenhouse gas emissions (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulphur hexafluoride) by at least 5% below 1990 levels in the commitment period 2008 to 2012. The Kyoto Protocol entered into force on 16 February 2005.

L.
Land use and Land-use change
Land use refers to the total of arrangements, activities and inputs undertaken in a certain land cover type (a set of human actions). The term land use is also used in the sense of the social and economic purposes for which land is managed (e.g., grazing, timber extraction, and conservation).

Land-use change refers to a change in the use or management of land by humans, which may lead to a change in land cover. Land cover and land-use change may have an impact on the surface albedo, evapotranspiration, sources and sinks of greenhouse gases, or other properties of the climate system and may thus have a radiative forcing and/or other impacts on climate, locally or globally. See also: the IPCC Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000).

Last Interglacial (LIG)
See Interglacial

Learning by Doing
As researchers and firms gain familiarity with a new technological process, or acquire experience through expanded production they can discover ways to improve processes and reduce cost. Learning by Doing is a type of experience-based technological change.

Level of Scientific Understanding (LOSU)
This is an index on a 5-step scale (high, medium, medium-low, low and very low) designed to characterise the degree of scientific understanding of the radiative forcing agents that affect climate change. For each agent, the index represents a subjective judgement about the evidence for the physical/chemical mechanisms determining the forcing and the consensus surrounding the quantitative estimate and its uncertainty.

Likelihood
The likelihood of an occurrence, an outcome or a result, where this can be estimated probabilistically, is expressed in IPCC reports using a standard terminology defined as follows:

<table>
<thead>
<tr>
<th>Term</th>
<th>Likelihood of the occurrence / outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtually certain</td>
<td>>99% probability of occurrence</td>
</tr>
<tr>
<td>Very likely</td>
<td>>90% probability</td>
</tr>
<tr>
<td>Likely</td>
<td>>66% probability</td>
</tr>
<tr>
<td>More likely than not</td>
<td>>50% probability</td>
</tr>
<tr>
<td>About as likely as not</td>
<td>33 to 66% probability</td>
</tr>
<tr>
<td>Unlikely</td>
<td><33% probability</td>
</tr>
<tr>
<td>Very unlikely</td>
<td><10% probability</td>
</tr>
<tr>
<td>Exceptionally unlikely</td>
<td><1% probability</td>
</tr>
</tbody>
</table>

See also Confidence; Uncertainty
M.

Macroeconomic costs

These costs are usually measured as changes in *Gross Domestic Product* or changes in the growth of Gross Domestic Product, or as loss of welfare or of consumption.

Malaria

Endemic or epidemic parasitic disease caused by species of the genus *Plasmodium* (*Protozoa*) and transmitted to humans by mosquitoes of the genus *Anopheles*; produces bouts of high fever and systemic disorders, affects about 300 million and kills approximately 2 million people worldwide every year.

Market Exchange Rate (MER)

This is the rate at which foreign currencies are exchanged. Most economies post such rates daily and they vary little across all the exchanges. For some developing economies official rates and black-market rates may differ significantly and the MER is difficult to pin down.

Market impacts

Impacts that can be quantified in monetary terms, and directly affect *Gross Domestic Product* – e.g. changes in the price of agricultural inputs and/or goods. See also *Non-market impacts*.

Market potential

See *Mitigation potential*.

Mass balance (of glaciers, ice caps or ice sheets)

The balance between the mass input to an ice body (accumulation) and the mass loss (ablation, iceberg calving). Mass balance terms include the following:

- **Specific mass balance**: net mass loss or gain over a hydrological cycle at a point on the surface of a glacier.
- **Total mass balance** (of the glacier): The specific mass balance spatially integrated over the entire glacier area; the total mass a glacier gains or loses over a hydrological cycle.
- **Mean specific mass balance**: The total mass balance per unit area of the glacier. If surface is specified (*specific surface mass balance*, etc.) then ice-flow contributions are not considered; otherwise, mass balance includes contributions from ice flow and iceberg calving. The specific surface mass balance is positive in the accumulation area and negative in the ablation area.

Mean Sea Level

Mean sea level is normally defined as the average relative sea level over a period, such as a month or a year, long enough to average out transients such as waves and tides. *Relative sea level* is sea level measured by a tide gauge with respect to the land upon which it is situated. See *Sea level change/*sea level rise.

Measures

Measures are technologies, processes, and practices that reduce *greenhouse gas* emissions or effects below anticipated future levels. Examples of measures are *renewable energy technologies*, *waste minimisation processes*, and *public transport commuting practices*, etc. See also *Policies*.

Meridional Overturning Circulation (MOC)

A zonally averaged, large scale meridional (north-south) overturning circulation in the oceans. In the Atlantic such a circulation transports relatively warm upper-ocean waters northward, and relatively cold deep waters southward. The *Gulf Stream* forms part of this Atlantic circulation.

Methane (CH\(_4\))

Methane is one of the six *greenhouse gases* to be mitigated under the *Kyoto Protocol* and is the major component of natural gas and associated with all hydrocarbon fuels, animal husbandry and agriculture. *Coal-bed methane* is the gas found in coal seams.

Mitigation

Technological change and substitution that reduce resource inputs and emissions per unit of output. Although several social, economic and technological policies would produce an emission reduction, with respect to *Climate Change*, mitigation means implementing policies to reduce *greenhouse gas* emissions and enhance *sinks*.

Mitigative capacity

This is a country’s ability to reduce anthropogenic *greenhouse gas* emissions or to enhance natural *sinks*, where ability refers to skills, competencies, fitness and proficiencies that a country has attained and depends on technology, institutions, wealth, equity, *infrastructure* and information. Mitigative capacity is rooted in a country’s sustainable development path.

Mitigation Potential

In the context of *climate change mitigation*, the mitigation potential is the amount of *mitigation* that could be – but is not yet – realised over time.

- **Market potential** is the mitigation potential based on private *costs* and private *discount rates*, which might be expected to occur under forecast market conditions, including policies and measures currently in place, noting that *barriers* limit actual uptake. Private costs and discount rates reflect the perspective of private consumers and companies.

- **Economic potential** is the mitigation potential that takes into account social costs and benefits and social discount rates, assuming that market efficiency is improved by policies and measures and barriers are removed. Social costs and discount rates reflect the perspective of society. Social discount rates are lower than those used by private investors.

Studies of market potential can be used to inform policy makers about mitigation potential with existing policies and barriers, while studies of economic potential show what might be achieved if appropriate new and additional policies were put into place to remove barriers and include social costs and benefits. The economic potential is therefore generally greater than the market potential.

Technical potential is the amount by which it is possible to reduce *greenhouse gas* emissions or improve energy efficiency by implementing a technology or practice that has already been demonstrated. No explicit reference to costs is made but adopting ‘practical constraints’ may take implicit economic considerations into account.

Model

See *Climate model*; *Bottom-up model*; *Top-down model*

Model hierarchy

See *Climate model*.

Monsoon

A monsoon is a tropical and subtropical seasonal reversal in both the surface winds and associated precipitation, caused by differential heating between a continental-scale land mass and the adjacent ocean. Monsoon rains occur mainly over land in summer.
Morbidity
Rate of occurrence of disease or other health disorder within a population, taking account of the age-specific morbidity rates. Morbidity indicators include chronic disease incidence/ prevalence, rates of hospitalisation, primary care consultations, disability-days (i.e., days of absence from work), and prevalence of symptoms.

Mortality
Rate of occurrence of death within a population; calculation of mortality takes account of age-specific death rates, and can thus yield measures of life expectancy and the extent of premature death.

N.
Net market benefits
Climate change, especially moderate climate change, is expected to bring positive and negative impacts to market-based sectors, but with significant differences across different sectors and regions and depending on both the rate and magnitude of climate change. The sum of the positive and negative market-based benefits and costs summed across all sectors and all regions for a given period is called net market benefits. Net market benefits exclude any non-market impacts.

Nitrous oxide (N₂O)
One of the six types of greenhouse gases to be curbed under the Kyoto Protocol. The main anthropogenic source of nitrous oxide is agriculture (soil and animal manure management), but important contributions also come from sewage treatment, combustion of fossil fuel, and chemical industrial processes. Nitrous oxide is also produced naturally from a wide variety of biological sources in soil and water, particularly microbial action in wet tropical forests.

Non-governmental Organisation (NGO)
A non-profit group or association organised outside of institutionalised political structures to realise particular social and/or environmental objectives or serve particular constituencies. Source: http://www.edu.gov.nf.ca/campus/teched/resources/glos-biodiversity.html

Non-market impacts
Impacts that affect ecosystems or human welfare, but that are not easily expressed in monetary terms, e.g., an increased risk of premature death, or increases in the number of people at risk of hunger. See also market impacts.

O.
Ocean acidification
A decrease in the pH of sea water due to the uptake of anthropogenic carbon dioxide.

Opportunities
Circumstances to decrease the gap between the market potential of any technology or practice and the economic potential, or technical potential.

Ozone (Ο₃)
Ozone, the tri-atomic form of oxygen, is a gaseous atmospheric constituent. In the troposphere, ozone is created both naturally and by photochemical reactions involving gases resulting from human activities (smog). Troposphere ozone acts as a greenhouse gas. In the stratosphere, ozone is created by the interaction between solar ultraviolet radiation and molecular oxygen (Ο₂). Stratospheric ozone plays a dominant role in the stratospheric radiative balance. Its concentration is highest in the ozone layer.

P.
Paleoclimate
Climate during periods prior to the development of measuring instruments, including historic and geologic time, for which only proxy climate records are available.

Patterns of climate variability
Natural variability of the climate system, in particular on seasonal and longer time scales, predominantly occurs with preferred spatial patterns and time scales, through the dynamical characteristics of the atmospheric circulation and through interactions with the land and ocean surfaces. Such patterns are often called regimes, modes or teleconnections. Examples are the North Atlantic Oscillation (NAO), the Pacific-North American pattern (PNA), the El Niño–Southern Oscillation (ENSO), the Northern Annular Mode (NAM; previously called Arctic Oscillation, AO) and the Southern Annular Mode (SAM; previously called the Antarctic Oscillation, AAO). Many of the prominent modes of climate variability are discussed in section 3.6 of the Working Group I Report.

Percentile
A percentile is a value on a scale of zero to one hundred that indicates the percentage of the data set values that is equal to or below it. The percentile is often used to estimate the extremes of a distribution. For example, the 90th (10th) percentile may be used to refer to the threshold for the upper (lower) extremes.

Perfluorocarbons (PFCs)
Among the six greenhouse gases to be abated under the Kyoto Protocol. These are by-products of aluminium smelting and uranium enrichment. They also replace chlorofluorocarbons in manufacturing semiconductors.

Permafrost
Ground (soil or rock and included ice and organic material) that remains at or below 0°C for at least two consecutive years (Van Everdingen, 1998). See also Frozen ground.

pH
pH is a dimensionless measure of the acidity of water (or any solution). Pure water has a pH=7. Acid solutions have a pH smaller than 7 and basic solutions have a pH larger than 7. pH is measured on a logarithmic scale. Thus, a pH decrease of 1 unit corresponds to a 10-fold increase in the acidity.

Phenology
The study of natural phenomena in biological systems that recur periodically (e.g., development stages, migration) and their relation to climate and seasonal changes.

Photosynthesis
The process by which green plants, algae and some bacteria take carbon dioxide from the air (or bicarbonate in water) to build carbohydrates. There are several pathways of photosynthesis with different responses to atmospheric carbon dioxide concentrations. See Carbon dioxide fertilisation.

Plankton
Micro-organisms living in the upper layers of aquatic systems. A distinction is made between phytoplankton, which depend on photosynthesis for their energy supply, and zooplankton, which feed on phytoplankton.

Policies
In United Nations Framework Convention on Climate Change (UNFCCC) parlance, policies are taken and/or mandated by a government – often in conjunction with business and industry within its own country, or with other countries – to accelerate mitigation and adaptation measures. Examples of policies are carbon or other energy taxes, fuel efficiency standards for automobiles, etc. Common and co-ordinated or harmonised policies refer to those adopted jointly by parties. See also Measures.

Portfolio
A coherent set of a variety of measures and/or technologies that policy makers can use to achieve a postulated policy target. By widening the scope in measures and technologies more diverse events and uncertainties can be addressed.
Post-SRES (scenarios)
Baseline and mitigation emission scenarios published after completion of the IPCC Special Report on Emission Scenarios (SRES) (Nakicenovic and Swart, 2000), i.e. after the year 2000.

Pre-industrial
See Industrial revolution.

Projection
A potential future evolution of a quantity or set of quantities, often computed with the aid of a model. Projections are distinguished from predictions in order to emphasise that projections involve assumptions concerning, for example, future socio-economic and technological developments that may or may not be realised, and are therefore subject to substantial uncertainty. See also Climate projection; Climate prediction.

Purchasing Power Parity (PPP)
The purchasing power of a currency is expressed using a basket of goods and services that can be bought with a given amount in the home country. International comparison of e.g. Gross Domestic Products (GDP) of countries can be based on the purchasing power of currencies rather than on current exchange rates. PPP estimates tend to lower per capita GDPs in industrialised countries and raise per capita GDPs in developing countries.

Radiative forcing
Radiative forcing is the change in the net, downward minus upward, irradiance (expressed in Watts per square metre, W/m²) at the tropopause due to a change in an external driver of climate change, such as, for example, a change in the concentration of carbon dioxide or the output of the Sun. Radiative forcing is computed with all tropospheric properties held fixed at their unperturbed values, and after allowing for stratospheric temperatures, if perturbed, to readjust to radiative-dynamical equilibrium. Radiative forcing is called instantaneous if no change in stratospheric temperature is accounted for. For the purposes of this report, radiative forcing is further defined as the change relative to the year 1750 and, unless otherwise noted, refers to a global and annual average value.

Reforestation
Planting of forests on lands that have previously contained forests but that have been converted to some other use. For a discussion of the term forest and related terms such as afforestation, reforestation and deforestation, see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the Report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003)

Region
A region is a territory characterised by specific geographical and climatological features. The climate of a region is affected by regional and local scale forcings like topography, land-use characteristics, lakes etc., as well as remote influences from other regions.

Resilience
The ability of a social or ecological system to absorb disturbances while retaining the same basic structure and ways of functioning, the capacity for self-organisation, and the capacity to adapt to stress and change.

Retrofitting
Retrofitting means to install new or modified parts or equipment, or undertake structural modifications, to existing infrastructure that were either not available or not considered necessary at the time of construction. The purpose of retrofitting in the context of climate change is generally to ensure that existing infrastructure meets new design specifications that may be required under altered climate conditions.

Runoff
That part of precipitation that does not evaporate and is not transpired, but flows over the ground surface and returns to bodies of water. See Hydrological cycle

S.
Salinisation
The accumulation of salts in soils.

Saltwater intrusion
Displacement of fresh surface water or groundwater by the advance of saltwater due to its greater density. This usually occurs in coastal and estuarine areas due to reducing land-based influence (e.g., either from reduced runoff and associated groundwater recharge, or from excessive water withdrawals from aquifers) or increasing marine influence (e.g., relative sea-level rise).

Scenario
A plausible and often simplified description of how the future may develop, based on a coherent and internally consistent set of assumptions about driving forces and key relationships. Scenarios may be derived from projections, but are often based on additional information from other sources, sometimes combined with a narrative storyline. See also SRES scenarios; Climate scenario; Emission scenarios.

Sea-ice biome
The biome formed by all marine organisms living within or on the floating sea ice (frozen seawater) of the polar oceans.

Sea ice
Any form of ice found at sea that has originated from the freezing of sea water. Sea ice may be discontinuous pieces (ice floes) moved on the ocean surface by wind and currents (pack ice), or a motionless sheet attached to the coast (land-fast ice). Sea ice less than one year old is called first-year ice. Multi-year ice is sea ice that has survived at least one summer melt season.

Sea level change/sea level rise
Sea level can change, both globally and locally, due to (i) changes in the shape of the ocean basins, (ii) changes in the total mass of water and (iii) changes in water density. Factors leading to sea level rise under global warming include both increases in the total mass of water from the melting of land-based snow and ice, and changes in water density from an increase in ocean water temperatures and salinity changes. Relative sea level rise occurs where there is a local increase in the level of the ocean relative to the land, which might be due to ocean rise and/or land level subsidence. See also Mean Sea Level, Thermal expansion.

Seasonally frozen ground
See Frozen ground

Sensitivity
Sensitivity is the degree to which a system is affected, either adversely or beneficially, by climate variability or climate change. The effect may be direct (e.g., a change in crop yield in response to a change in the mean, range, or variability of temperature) or indirect (e.g., damages caused by an increase in the frequency of coastal flooding due to sea level rise). This concept of sensitivity is not to be confused with climate sensitivity, which is defined separately above.

Singularity
A trait marking one phenomenon or aspect as distinct from others; something singular, distinct, peculiar, uncommon or unusual.

Sink
Any process, activity or mechanism which removes a greenhouse gas, an aerosol or a precursor of a greenhouse gas or aerosol from the atmosphere.
Snow pack
A seasonal accumulation of slow-melting snow.

Soil temperature
The temperature of the ground near the surface (often within the first 10 cm).

Solar activity
The Sun exhibits periods of high activity observed in numbers of sunspots, as well as radiative output, magnetic activity, and emission of high energy particles. These variations take place on a range of time-scales from millions of years to minutes.

Solar radiation
Electromagnetic radiation emitted by the Sun. It is also referred to as short-wave radiation. Solar radiation has a distinctive range of wavelengths (spectrum) determined by the temperature of the Sun, peaking in visible wavelengths. See also Thermal infrared radiation, Total Solar Irradiance.

Source
Source mostly refers to any process, activity or mechanism that releases a greenhouse gas, an aerosol, or a precursor of a greenhouse gas or aerosol into the atmosphere. Source can also refer to e.g. an energy source.

Spatial and temporal scales
Climate may vary on a large range of spatial and temporal scales. Spatial scales may range from local (less than 100,000 km²), through regional (100,000 to 10 million km²) to continental (10 to 100 million km²). Temporal scales may range from seasonal to geological (up to hundreds of millions of years).

SRES scenarios
SRES scenarios are emission scenarios developed by Nakicenovic and Swart (2000) and used, among others, as a basis for some of the climate projections used in the Fourth Assessment Report. The following terms are relevant for a better understanding of the structure and use of the set of SRES scenarios:

Scenario Family: Scenarios that have a similar demographic, societal, economic and technical-change storyline. Four scenario families comprise the SRES scenario set: A1, A2, B1 and B2.

Illustrative Scenario: A scenario that is illustrative for each of the six scenario groups reflected in the Summary for Policymakers of Nakicenovic et al. (2000). They include four revised ‘scenario markers’ for the scenario groups A1B, A2, B1, and B2, and two additional scenarios for the A1FI and A1T groups. All scenario groups are equally sound.

Marker Scenario: A scenario that was originally posted in draft form on the SRES website to represent a given scenario family. The choice of markers was based on which of the initial quantifications best reflected the storyline, and the features of specific models. Markers are no more likely than other scenarios, but are considered by the SRES writing team as illustrative of a particular storyline. They are included in revised form in Nakicenovic and Swart (2000). These scenarios received the closest scrutiny of the entire writing team and via the SRES open process. Scenarios were also selected to illustrate the other two scenario groups.

Storyline: A narrative description of a scenario (or family of scenarios), highlighting the main scenario characteristics, relationships between key driving forces and the dynamics of their evolution.

Stabilisation
Keeping constant the atmospheric concentrations of one or more greenhouse gases (e.g. carbon dioxide) or of a CO2-equivalent basket of greenhouse gases. Stabilisation analyses or scenarios address the stabilisation of the concentration of greenhouse gases in the atmosphere.

Stakeholder
A person or an organisation that has a legitimate interest in a project or entity, or would be affected by a particular action or policy.

Standards
Set of rules or codes mandating or defining product performance (e.g., grades, dimensions, characteristics, test methods, and rules for use). Product, technology or performance standards establish minimum requirements for affected products or technologies. Standards impose reductions in greenhouse gas emissions associated with the manufacture or use of the products and/or application of the technology.

Storm surge
The temporary increase, at a particular locality, in the height of the sea due to extreme meteorological conditions (low atmospheric pressure and/or strong winds). The storm surge is defined as being the excess above the level expected from the tidal variation alone at that time and place.

Storm tracks
Originally, a term referring to the tracks of individual cyclonic weather systems, but now often generalised to refer to the regions where the main tracks of extratropical disturbances occur as sequences of low (cycloonic) and high (anticyclonic) pressure systems.

Stratosphere
The highly stratified region of the atmosphere above the troposphere extending from about 10 km (ranging from 9 km in high latitudes to 16 km in the tropics on average) to about 50 km altitude.

Streamflow
Water flow within a river channel, for example expressed in m³/s. A synonym for river discharge.

Structural change
Changes, for example, in the relative share of Gross Domestic Product produced by the industrial, agricultural, or services sectors of an economy; or more generally, systems transformations whereby some components are either replaced or potentially substituted by other ones.

Sulphurhexafluoride (SF₆)
One of the six greenhouse gases to be curbed under the Kyoto Protocol. It is largely used in heavy industry to insulate high-voltage equipment and to assist in the manufacturing of cable-cooling systems and semi-conductors.

Surface temperature
See Global surface temperature.

Sustainable Development (SD)
The concept of sustainable development was introduced in the World Conservation Strategy (IUCN 1980) and had its roots in the concept of a sustainable society and in the management of renewable resources. Adopted by the WCED in 1987 and by the Rio Conference in 1992 as a process of change in which the exploitation of resources, the direction of investments, the orientation of technological development, and institutional change are all in harmony and enhance both current and future potential to meet human needs and aspirations. SD integrates the political, social, economic and environmental dimensions.

T.

Tax
A carbon tax is a levy on the carbon content of fossil fuels. Because virtually all of the carbon in fossil fuels is ultimately emitted as carbon dioxide, a carbon tax is equivalent to an emission tax on each unit of CO₂-equivalent emissions. An energy tax - a levy on the energy content of fuels - reduces demand for energy and so reduces carbon dioxide emissions from fossil fuel use. An eco-tax is designed to influence human behaviour (specifically economic behaviour) to follow an ecologically benign path. An international carbon/emission/energy tax is a tax imposed on specified sources in participating countries by an international agreement. A harmonised tax commits participating countries to impose a tax at a common rate on the same sources. A tax credit is a reduction of tax in order to stimulate purchasing of or investment in a certain product, like GHG emissions reducing technologies. A carbon charge is the same as a carbon tax.
Technological change
Mostly considered as technological improvement, i.e. more or better goods and services can be provided from a given amount of resources (production factors). Economic models distinguish autonomous (exogenous), endogenous and induced technological change. Autonomous (exogenous) technological change is imposed from outside the model, i.e. the choice of technologies is included within the model and affects energy demand and/or economic growth. Induced technological change implies endogenous technological change but adds further changes induced by policies and measures, such as carbon taxes triggering R&D efforts.

Technology
The practical application of knowledge to achieve particular tasks that employs both technical artefacts (hardware, equipment) and (social) information (‘software’, know-how for production and use of artefacts).

Technology transfer
The exchange of knowledge, hardware and associated software, money and goods among stakeholders that leads to the spreading of technology for adaptation or mitigation. The term encompasses both diffusion of technologies and technological cooperation across and within countries.

Thermal expansion
In connection with sea-level rise, this refers to the increase in volume (and decrease in density) that results from warming water. A warming of the ocean leads to an expansion of the ocean volume and hence an increase in sea level. See Sea level change.

Thermal infrared radiation
Radiation emitted by the Earth’s surface, the atmosphere and the clouds. It is also known as terrestrial or longwave radiation, and is to be distinguished from the near-infrared radiation that is part of the solar spectrum. Infrared radiation, in general, has a distinctive range of wavelengths (spectrum) longer than the wavelength of the red colour in the visible part of the spectrum. The spectrum of thermal infrared radiation is practically distinct from that of shortwave or solar radiation because of the difference in temperature between the Sun and the Earth-atmosphere system.

Tide gauge
A device at a coastal location (and some deep sea locations) that continuously measures the level of the sea with respect to the adjacent land. Time averaging of the sea level so recorded gives the observed secular changes of the relative sea level. See Sea level change/sea level rise.

Top-down models
Top-down model apply macroeconomic theory, econometric and optimization techniques to aggregate economic variables. Using historical data on consumption, prices, incomes, and factor costs, top-down models assess final demand for goods and services, and supply from main sectors, like the energy sector, transportation, agriculture, and industry. Some top-down models incorporate technology data, narrowing the gap to bottom-up models.

Total Solar Irradiance (TSI)
The amount of solar radiation received outside the Earth’s atmosphere on a surface normal to the incident radiation, and at the Earth’s mean distance from the sun. Reliable measurements of solar radiation can only be made from space and the precise record extends back only to 1978. The generally accepted value is 1.368 Watts per square meter (W m⁻²) with an accuracy of about 0.2%. Variations of a few tenths of a percent are common, usually associated with the passage of sunspots across the solar disk. The solar cycle variation of TSI is on the order of 0.1%. Source: AMS, 2000.

 Tradable permit
A tradable permit is an economic policy instrument under which rights to discharge pollution – in this case an amount of greenhouse gas emissions – can be exchanged through either a free or a controlled permit-market. An emission permit is a non-transferable or tradable entitlement allocated by a government to a legal entity (company or other emitter) to emit a specified amount of a substance.

Tropopause
The boundary between the troposphere and the stratosphere.

Troposphere
The lowest part of the atmosphere from the surface to about 10 km in altitude in mid-latitudes (ranging from 9 km in high latitudes to 16 km in the tropics on average), where clouds and weather phenomena occur. In the troposphere, temperatures generally decrease with height.

U.

Uncertainty
An expression of the degree to which a value (e.g., the future state of the climate system) is unknown. Uncertainty can result from lack of information or from disagreement about what is known or even knowable. It may have many types of sources, from quantifiable errors in the data to ambiguously defined concepts or terminology, or uncertain projections of human behaviour. Uncertainty can therefore be represented by quantitative measures, for example, a range of values calculated by various models, or by qualitative statements, for example, reflecting the judgement of a team of experts (see Moss and Schneider, 2000; Manning et al., 2004). See also Likelihood; Confidence.

United Nations Framework Convention on Climate Change (UNFCCC)
The Convention was adopted on 9 May 1992 in New York and signed at the 1992 Earth Summit in Rio de Janeiro by more than 150 countries and the European Community. Its ultimate objective is the “stabilisation of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system”. It contains commitments for all Parties. Under the Convention, Parties included in Annex I (all OECD member countries in the year 1990 and countries with economies in transition) aim to return greenhouse gas emissions not controlled by the Montreal Protocol to 1990 levels by the year 2000. The Convention entered into force in March 1994. See Kyoto Protocol.

Uptake
The addition of a substance of concern to a reservoir. The uptake of carbon containing substances, in particular carbon dioxide, is often called (carbon) sequestration.

Urbanisation
The conversion of land from a natural state or managed natural state (such as agriculture) to cities; a process driven by net rural-to-urban migration through which an increasing percentage of the population in any nation or region come to live in settlements that are defined as urban centres.

V.

Vector
An organism, such as an insect, that transmits a pathogen from one host to another.

Voluntary action
Informal programmes, self-commitments and declarations, where the parties (individual companies or groups of companies) entering into the action set their own targets and often do their own monitoring and reporting.

Voluntary agreement
An agreement between a government authority and one or more private parties to achieve environmental objectives or to improve environmental performance beyond compliance to regulated obligations. Not all voluntary agreements are truly voluntary; some include rewards and/or penalties associated with joining or achieving commitments.
Vulnerability
Vulnerability is the degree to which a system is susceptible to, and unable to cope with, adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude, and rate of climate change and variation to which a system is exposed, its sensitivity, and its adaptive capacity.

W.
Water consumption
Amount of extracted water irretrievably lost during its use (by evaporation and goods production). Water consumption is equal to water withdrawal minus return flow.

Water stress
A country is water stressed if the available freshwater supply relative to water withdrawals acts as an important constraint on development. In global-scale assessments, basins with water stress are often defined as having a per capita water availability below 1,000 m³/yr (based on long-term average runoff). Withdrawals exceeding 20% of renewable water supply have also been used as an indicator of water stress. A crop is water stressed if soil available water, and thus actual evapotranspiration, is less than potential evapotranspiration demands.

Z.
Zooplankton
See Plankton

References
Glossaries of the contributions of Working Groups I, II and III to the IPCC Fourth Assessment Report.
IPCC, 2003: Definitions and Methodological Options to Inventory Emissions from Direct Human-Induced Degradation of Forests and Dev egetation of Other Vegetation Types [Penman, J., et al. (eds.)]. The Institute for Global Environmental Strategies (IGES), Japan , 32 pp.
Annex III

Acronyms, chemical symbols; scientific units; country groupings

III.1 Acronyms and chemical symbols

A1 A family of scenarios in the IPCC Special Report on Emission Scenarios; see glossary under SRES scenarios
A1T One of the six SRES marker scenarios; see glossary under SRES scenarios
A1B One of the six SRES marker scenarios; see glossary under SRES scenarios
A1FI One of the six SRES marker scenarios; see glossary under SRES scenarios
A2 A family of scenarios in the IPCC Special Report on Emission Scenarios; also one of the six SRES marker scenarios; see glossary under SRES scenarios
AOGCM Atmosphere-Ocean General Circulation Model; see glossary under climate model
B1 A family of scenarios in the IPCC Special Report on Emission Scenarios; also denotes one of the six SRES marker scenarios; see glossary under SRES scenarios
B2 A family of scenarios in the IPCC Special Report on Emission Scenarios; also denotes one of the six SRES marker scenarios; see glossary under SRES scenarios
CH4 Methane; see glossary
CF4 Chlorofluorocarbon; see glossary
CO2 Carbon dioxide; see glossary
EIT Economies in transition; see glossary
EMIC Earth Model of Intermediate Complexity
ENSO El Niño-Southern Oscillation; see glossary
F-Gases Fluorinated gases covered under the Kyoto Protocol; see glossary under F-Gases
GDP Gross Domestic Product; see glossary
HCFC Hydrochlorofluorocarbon; see glossary
HFC Hydrofluorocarbon; see glossary
LOSU Level of scientific understanding; see glossary
MOC Meridional overturning circulation; see glossary
N2O Nitrous oxide; see glossary
OECD Organisation for Economic Cooperation and Development; see www.oecd.org
PFC Perfluorocarbon; see glossary
pH See glossary under pH
PPP Purchasing Power Parity; see glossary
RD&D Research, development and demonstration
SCM Simple Climate Model
SE Sulfur hexafluoride; see glossary
SRES Special Report on Emission Scenarios; see glossary under SRES scenarios
UNFCCC United Nations Framework Convention on Climate Change; see www.unfccc.int

III.2 Scientific units

<table>
<thead>
<tr>
<th>SI (Système Internationale) units</th>
<th>Name of Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>metre</td>
<td>m</td>
</tr>
<tr>
<td>mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>time</td>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>thermodynamic temperature</td>
<td>kelvin</td>
<td>K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fractions and multiples</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Multiple</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-1</td>
<td>deci</td>
<td>d</td>
<td>10</td>
<td>deca</td>
<td>da</td>
</tr>
<tr>
<td>10^-2</td>
<td>centi</td>
<td>c</td>
<td>10^2</td>
<td>hecto</td>
<td>h</td>
</tr>
<tr>
<td>10^-3</td>
<td>milli</td>
<td>m</td>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^-6</td>
<td>micro</td>
<td>µ</td>
<td>10^6</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10^-9</td>
<td>nano</td>
<td>n</td>
<td>10^9</td>
<td>giga</td>
<td>G</td>
</tr>
<tr>
<td>10^-12</td>
<td>pico</td>
<td>p</td>
<td>10^12</td>
<td>tera</td>
<td>T</td>
</tr>
<tr>
<td>10^-15</td>
<td>femto</td>
<td>f</td>
<td>10^15</td>
<td>peta</td>
<td>P</td>
</tr>
</tbody>
</table>

Non-SI units, quantities and related abbreviations

°C degree Celsius (0°C = 273 K approximately); temperature differences are also given in °C (=K) rather than the more correct form of “Celsius degrees”

ppm mixing ratio (as concentration measure of GHGs): parts per million (10^6) by volume

ppb mixing ratio (as concentration measure of GHGs): parts per billion (10^9) by volume

ppt mixing ratio (as concentration measure of GHGs): parts per trillion (10^12) by volume

watt power or radiant flux; 1 watt = 1 Joule / second = 1 kg m^2 / s^3

yr year

ky thousands of years

bp before present

GtC gigatonnes (metric) of carbon

GtCO2 gigatonnes (metric) of carbon dioxide (1 GtC = 3.7 GtCO2)

CO2-eq carbon dioxide-equivalent, used as measure for the emission (generally in GtCO2-eq) or concentration (generally in ppm CO2-eq) of GHGs; see Box “Carbon dioxide-equivalent emissions and concentrations” in Topic 2 for details
Appendix III
Acronyms, chemical symbols, scientific units, country groupings

III.3 Country groupings

For the full set of countries belonging to UNFCCC Annex I, non-Annex I, and OECD, see http://www.unfccc.int and http://www.oecd.org. Where relevant in this report, countries have been grouped into regions according to the classification of the UNFCCC and its Kyoto Protocol. Countries that have joined the European Union since 1997 are therefore still listed under EIT Annex I. The countries in each of the regional groupings employed in this report include:

- **EIT Annex I**: Belarus, Bulgaria, Croatia, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Russian Federation, Slovakia, Slovenia, Ukraine

- **Europe Annex II & M&T**: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Liechtenstein, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom; Monaco and Turkey

- **JANZ**: Japan, Australia, New Zealand.

- **Middle East**: Bahrain, Islamic Republic of Iran, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, United Arab Emirates, Yemen

- **Latin America & the Caribbean**: Antigua & Barbuda, Argentina, Bahamas, Barbados, Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominica, Dominican Republic, Ecuador, El Salvador, Grenada, Guatemala, Guyana, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Saint Lucia, St. Kitts-Nevis-Anguilla, St. Vincent-Grenadines, Suriname, Trinidad and Tobago, Uruguay, Venezuela

- **Non-Annex I East Asia**: Cambodia, China, Korea (DPR), Laos (PDR), Mongolia, Republic of Korea, Viet Nam.

- **South Asia**: Afghanistan, Bangladesh, Bhutan, Comoros, Cook Islands, Fiji, India, Indonesia, Kiribati, Malaysia, Maldives, Marshall Islands, Micronesia (Federated States of), Myanmar, Nauru, Niue, Nepal, Pakistan, Palau, Papua New Guinea, Philippine, Samoa, Singapore, Solomon Islands, Sri Lanka, Thailand, Timor-L’Este, Tonga, Tuvalu, Vanuatu

- **North America**: Canada, United States of America.

- **Other non-Annex I**: Albania, Armenia, Azerbaijan, Bosnia Herzegovina, Cyprus, Georgia, Kazakhstan, Kyrgyzstan, Malta, Moldova, San Marino, Serbia, Tajikistan, Turkmenistan, Uzbekistan, Republic of Macedonia

- **Africa**: Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Democratic Republic of Congo, Côte d’Ivoire, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, South Africa, Sudan, Swaziland, Togo, Tunisia, Uganda, United Republic of Tanzania, Zambia, Zimbabwe

A full set of data for all countries for 2004 for all regions was not available.
Annex IV

List of authors

If country/countries of residence is/are different from nationality, nationality is mentioned last.

IV.1 Core Writing Team members

<table>
<thead>
<tr>
<th>Author</th>
<th>Institution/Position</th>
<th>Country/Country of Residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERNSTEIN, Lenny</td>
<td>L.S. Bernstein & Associates, L.L.C.</td>
<td>USA</td>
</tr>
<tr>
<td>BOSCH, Peter</td>
<td>IPCC WGIII TSU, Ecofys Netherlands, and Netherlands Environmental Assessment Agency</td>
<td>THE NETHERLANDS</td>
</tr>
<tr>
<td>CANZIANI, Osvaldo</td>
<td>IPCC WGII Co-chair, Buenos Aires</td>
<td>ARGENTINA</td>
</tr>
<tr>
<td>CHEN, Zhenlin</td>
<td>Dept. of International Cooperation, China Meteorological Administration</td>
<td>CHINA</td>
</tr>
<tr>
<td>CHRIST, Renate</td>
<td>Secretariat, Intergovernmental Panel on Climate Change (IPCC)</td>
<td>SWITZERLAND/AUSTRIA</td>
</tr>
<tr>
<td>DAVIDSON, Ogunlade</td>
<td>IPCC WGIII Co-chair, Faculty of Engineering, University of Sierra Leone</td>
<td>SIERRA LEONE</td>
</tr>
<tr>
<td>HARE, William</td>
<td>Potsdam Institute for Climate Impact Research</td>
<td>GERMANY/AUSTRALIA</td>
</tr>
<tr>
<td>HUQ, Saleemul</td>
<td>International Institute for Environment and Development (IIED)</td>
<td>UK/BANGLADESH</td>
</tr>
<tr>
<td>KAROLY, David</td>
<td>School of Meteorology, University of Oklahoma, USA, and University of Melbourne, Australia</td>
<td>USA/AUSTRALIA</td>
</tr>
<tr>
<td>KATTSOV, Vladimir</td>
<td>Voeikov Main Geophysical Observatory</td>
<td>RUSSIA</td>
</tr>
<tr>
<td>KUNDZEWICZ, Zbyszek</td>
<td>Research Centre for Agricultural & Forest Environment, Polish Academy of Sciences</td>
<td>POLAND</td>
</tr>
<tr>
<td>LIU, Jian</td>
<td>Secretariat, Intergovernmental Panel on Climate Change (IPCC)</td>
<td>SWITZERLAND/CHINA</td>
</tr>
<tr>
<td>LOHMANN, Ulrike</td>
<td>ETH Zurich, Institute for Atmospheric and Climate Science</td>
<td>SWITZERLAND</td>
</tr>
<tr>
<td>MANNING, Martin</td>
<td>IPCC WGI TSU, University Corporation for Atmospheric Research</td>
<td>USA/NEW ZEALAND</td>
</tr>
<tr>
<td>MATSUNO, Taroh</td>
<td>Frontier Research Center for Global Change</td>
<td>JAPAN</td>
</tr>
<tr>
<td>MENNE, Bettina</td>
<td>World Health Organization (WHO), Regional Office for Europe</td>
<td>ITALY/GERMANY</td>
</tr>
<tr>
<td>METZ, Bert</td>
<td>IPCC WGIII Co-chair, Global Environmental Assessment Division, Netherlands Environmental Assessment Agency</td>
<td>THE NETHERLANDS</td>
</tr>
<tr>
<td>MIRZA, Monirul</td>
<td>Adaptation & Impacts Research Division (AIRD), Environment Canada, and Department of Physical and Environmental Sciences, University of Toronto</td>
<td>CANADA/BANGLADESH</td>
</tr>
<tr>
<td>NICHOLLS, Neville</td>
<td>School of Geography & Environmental Science, Monash University</td>
<td>AUSTRALIA</td>
</tr>
<tr>
<td>NURSE, Leonard</td>
<td>Barbados Centre for Resource Management and Environmental Studies, University of West Indies</td>
<td>BARBADOS</td>
</tr>
<tr>
<td>PACHAURI, Rajendra</td>
<td>Chairman, Intergovernmental Panel on Climate Change (IPCC) and Director-General, The Energy and Resources Institute (TERI)</td>
<td>INDIA</td>
</tr>
</tbody>
</table>
PALUTIKOF, Jean
IPCC WGII TSU, Met Office Hadley Centre
UK

PARRY, Martin
IPCC WGII Co-chair, Met Office Hadley Centre, and Centre for Environmental Policy, Imperial College, University of London
UK

QIN, Dahe
IPCC WGI Co-chair, China Meteorological Administration
CHINA

RAVINDRANATH, Nijavalli
Centre for Ecological Sciences, Indian Institute of Science
INDIA

REISINGER, Andy
IPCC SYR TSU, Met Office Hadley Centre, UK, and The Energy and Resources Institute (TERI), India
UK/INDIA/GERMANY

REN, Jiawen
Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences
CHINA

RIAHI, Keywan
International Institute for Applied Systems Analysis (IIASA), and Graz University of Technology
AUSTRIA

ROSENZWEIG, Cynthia
Goddard Institute for Space Studies, National Aeronautics and Space Administration (NASA)
USA

RUSTICUCCI, Matilde
Departamento de Ciencias de la Atmósfera y los Oceanos, Universidad de Buenos Aires
ARGENTINA

SCHNEIDER, Stephen
Department of Biological Sciences, Stanford University
USA

SOKONA, Youba
Sahara and Sahel Observatory (OSS)
TUNISIA/MALI

SOLOMON, Susan
IPCC WGI Co-chair, NOAA Earth System Research Laboratory
USA

STOTT, Peter
Met Office Hadley Centre
UK

STOUFFER, Ronald
NOAA Geophysical Fluid Dynamics Laboratory
USA

SUGIYAMA, Taishi
Climate Policy Project, Central Research Institute of Electric Power Industry (CRIEPI)
JAPAN

SWART, Rob
Netherlands Environmental Assessment Agency
THE NETHERLANDS

TIRPAK, Dennis
International Institute for Sustainable Development (IISD)
USA

VOGEL, Coleen
Department of Geography, University of Witwatersrand
SOUTH AFRICA

YOHE, Gary
Department of Economics, Wesleyan University
USA

IV.2 Extended Writing Team member

BARKER, Terry
Cambridge Centre for Climate Change Mitigation Research, University of Cambridge
UK
Annex V

List of Reviewers and Review Editors

V.1 Reviewers

Consistent with IPCC Rules and Procedures, the draft SYR was sent for formal review to over 2,400 individual experts as well as to the 193 member governments of the IPCC. This appendix lists the individual experts (with affiliations at the time of submission of comments) and international organisations who submitted review comments on the draft SYR, and whose comments were considered by the Core Writing Team in its revision of the draft report.

Note: International organisations are listed at the end.

Argentina
- DEVIA, Leila
 National Industrial Technology
- TRAVASSO, María Isabel
 Instituto Nacional de Tecnología Agropecuaria
- WEHBE, Monica Beatriz
 National University Rio Cuarto

Australia
- BARNETT, Jon
 University of Melbourne
- BINDOFF, Nathaniel
 CSIRO MAR and University of Tasmania
- BRUNSKILL, Gregg
 Australian Institute of Marine Science
- CHAMBERS, Lynda
 Bureau of Meteorology Research Centre
- CHURCH, John
 CSIRO
- JONES, Roger
 CSIRO
- KAY, Robert
 Coastal Zone Management Pty Ltd
- LOUGH, Janice
 Australian Institute of Marine Science
- MANTON, Michael
 Monash University
- SHEARMAN, David
 University of Adelaide
- WALKER, George
 Aon Re Asia Pacific
- WATKINS, Andrew
 National Climate Centre, Australian Bureau of Meteorology
- WHITE, David
 ASIT Consulting
- YOUNUS, Aboul Fazal
 Bangladesh Unnaya Parishad and The University of Adelaide

Austria
- CLEMENS, Torsten
 OMV Exploration and Production
- KASER, Georg
 Institut fuer Geographie University of Innsbruck
- KIRCHENGAST, Gottfried
 Wegener Center for Climate and Global Change, University of Graz

Benin
- YABI, Ibouraïma Fidele
 Universite d Abomey-Calavi

Bolivia
- HALLOY, Stephan
 Conservation International

Brazil
- AMBRIZZI, Tercio
 University of São Paulo
- BUSTAMANTE, Mercedes
 University of Brasilia
- GOMES, Marcos
 Pontifical Catholic University of Rio de Janeiro
- MOREIRA, José
 Institute of Eletrotechnica and Energy
- SANT’ANA, Silvio
 Fundação Grupo Esquel Brasil

Bulgaria
- YOTOV A, Antoaneta
 National Institute of Meteorology and Hydrology

Canada
- AMIRO, Brian
 University of Manitoba
- BARBER, David
 University of Manitoba
- BELTRAMI, Hugo
 St. Francis Xavier University
- VERHASSELT, Yola
 Vrije Universiteit Brussel

Belgium
- KJAER, Christian
 European Wind Energy Association
- SAWYER, Steve
 Global Wind Energy Council
Appendix V

List of Reviewers and Review Editors

BERRY, Peter
Health Canada

BRADY, Michael
Natural Resources Canada - Canadian Forest Service

CHURCH, Ian
Yukon Government

CLARKE, R. Allyn
Fisheries and Oceans, Bedford Institute of Oceanography

FISHER, David A
National Resources Canada

GRANDIA, Kevin
DeSmogBlog Society of British Colombia

HUPE, Jane
ICAO

JACKSON, David
McMaster Institute for Energy Studies

JANZEN, Henry
Agriculture and Agri-Food Canada

JEFFERIES, Robert
University of Toronto

LEMMEN, Donald
Natural Resources Canada

MICHAUD, Yves
Geological Survey of Canada

NYBOER, John
Simon Fraser University

SMITH, Sharon
Geological Survey of Canada

China
FANG, Xiuqi
Beijing Normal University

GUO, Xueliang
Institute of Atmospheric Physics, Chinese Academy of Sciences

LAM, Chiu-Ying
Hong Kong Observatory

REN, Guoyu
National Climate Center

SU, Jilan
Second Institute of Oceanography, State Oceanic Administration

WANG, Bangzhong
China Meteorological Administration

YINGJIE, Liu
Institute of Environment and Sustainable Development in Agriculture

ZHOU, Guangsheng
Institute of Botany, The Chinese Academy of Sciences

Colombia
POVEDA, Germán
Universidad Nacional de Colombia

Cuba
DIAZ MOREJON, Cristobal Felix
Ministry of Science, Technology and the Environment

SUAREZ RODRIGUEZ, Avelino G.
Institute of Ecology and Systematic, Agencia de Medio Ambiente

Czech Republic
HALENKA, Tomas
Faculty of Mathematics and Physics, Charles University, Prague

Denmark
ERHARD, Markus
European Environment Agency

MELTOFTE, Hans
National Environmental Research Institute, University of Aarhus

PORTER, John R.
University of Copenhagen

El Salvador
MUNGUÍA DE AGUILAR, Martha
Yvette
Ministry of Environment and Natural Resources

France
CAMPBELL, Nick
ARKEMA SA

CANEILL, Jean-Yves
Electricité de France

DE T’SERCLAES, Philippine
International Energy Agency

DOUGUÉDROIT, Annick
Université de Provence

HEQUETTE, Arnaud
Université du Littoral Côte d’Opale

LENOTRE, Nicole
Bureau de recherches géologiques et minières

MUURHEID, Ben
International Fertilizer Trade Association

PHILIBERT, Cédric
International Energy Agency

PLANTON, Serge
Météo-France

RILLING, Jacques
Center Scientifique et Technique du Bâtiment

Germany
BRUCKNER, Thomas
Technical University of Berlin

GERTEN, Dieter
Potsdam Institute for Climate Impact Research

GRASSL, Hartmut
Max Planck Institute for Meteorology

KUCKSHINRICHS, Wilhelm
Research Centre Juelich

LAWRENCE, Mark
Max Planck Institute for Chemistry

MATZARAKIS, Andreas
Meteorological Institute, University of Freiburg

MUELLER, Rolf
Research Centre Juelich

SCHWARZER, Klaus
Institute of Geosciences, University of Kiel
Appendix V

List of Reviewers and Review Editors

TREBER, Manfred
Germanwatch

WALThER, Gian-Reto
University of Bayreuth

WELP, Martin
University of Applied Sciences, Eberswalde

WILLERBrAND, Jürgen
Leibniz Institut für Meereswissenschaften

WINDHORST, Wilhelm
Ecology Centre, Kiel University

WURZLER, Sabine

Hungary
BÉLA, Nováky
Szent István University

SOMOGYI, Zoltán
Hungarian Forest Research Institute

India
ROY, Joyashree
Jadavpur University

SHARMA, Upasna
Indian Institute of Technology, Bombay

SRIKANTHAN, Ramachandran
Physical Research Laboratory

Ireland
FINNEGAN, Pat
Greenhouse Ireland Action Network

TOL, Richard
Economic and Social Research Institute

Italy
CASERINI, Stefano
Politecnico di Milano

MARIOTTI, Annarita

RIXEN, Michel
NATO Undersea Research Center

Jamaica
CLAYTON, Anthony
University of the West Indies

Japan
AKIMOTO, Keigo
Research Institute of Innovative Technology for the Earth

ALEXANDROV, Georgii
National Institute for Environmental Studies

ANDO, Mitsuru
Toyama University of International Studies

IKEDA, Motoyoshi
Hokkaido University

INOUE, Takashi
Tokyo University of Science

KOBAYASHI, Noriyuki
Nihon University (Law School)

KOBAYASHI, Shigeki
Toyota Research and Development Laboratories, Inc.

KOIDE, Hitoshi
Waseda University

KOMIYAMA, Ryoichi
The Institute of Energy Economics, Japan

MARUYAMA, Koki
Central Research Institute of Electric Power Industry

MASUI, Toshihiko
National Institute for Environmental Studies

MATSUI, Tetsuya
Hokkaido Research Centre, Forestry and Forest Products Research Institute

MIKIKO, Kainuma
National Institute for Environmental Studies

MORI, Shunsuke
Tokyo University of Science

MORISUGI, Hisayoshi
Japan Research Institute

NAKAKUKI, Shinichi
Tokyo Electric Power Company

NAKAMARU, Susumu
Sun Management Institute

ONO, Tsuneo
Hokkaido National Fisheries Research Institute, Fisheries Research Agency

YAMAGUCHI, Mitsutsune
The University of Tokyo

YOSHINO, Masatoshi

Kenya
DEMKINE, Volodymyr
UNEP

Mexico
OSORNIO VARGAS, Alvaro
Universidad Nacional Autónoma de México

Moldova
COROBOV, Roman
Modern Institute for Humanities

The Netherlands
BREGMAN, Bram
Netherlands Organisation of Applied Research

BRINKMAN, Robert
MARCHAND, Marcel
Delft Hydraulics

MISDORP, Robbert
International CZM-Centre, Ministry of Transport, Public Works and Water Management

SCHYNS, Vianney
Climate Change and Energy Efficiency, Utility Support Group

STORM VAN LEEUWEN, Jan Willem
Ceedata Consultancy

VAN NOJUE, Twan
Royal Netherlands Meteorological Institute
Appendix V

List of Reviewers and Review Editors

WORRELL, Ernst
Ecofys

New Zealand
CRAMPTON, James
GNS Science
GRAY, Vincent
SCHALLENBERG, Marc
University of Otago

Nigeria
ANTIA, Effiom
University of Calabar

Norway
ERIKSEN, Siri
University of Oslo
HOFGAARD, Annika
Norwegian Institute for Nature Research
KRISTJANSSON, Jon Egill
University of Oslo

Peru
GAMBOA FUENTES, Nadia Rosa
Pontificia Universidad Catolica Del Peru

Philippines
OGAWA, Hisashi
World Health Organization Regional Office for the Western Pacific
TIBIG, Lourdes
Philippine Atmospheric, Geophysical and Astronomical Services Administration

Portugal
DAS NEVES, Luciana
University of Porto
PAIVA , Maria Rosa
New University of Lisbon
RAMOS-PEREIRA, Ana
University of Lisbon

Republic of Korea
KIM, Suam
Pukyong National University

Romania
BORONEANT, Constanta
National Meteorological Administration

Russian Federation
GYTARSKY, Michael
Institute of Global Climate and Ecology

Saudi Arabia
ALFEHAID, Mohammed
Ministry of Petroleum
BABIKER, Mustafa
Saudi Aramco

South Africa
TANSER, Frank
Africa Centre for Health and Population Studies

Spain
ALONSO, Sergio
Universitat de les Illes Balears
ANADÓN, Ricardo
University of Oviedo
HERNÁNDEZ, Félix
IEG-CSIC

Sweden
LECK, Caroline
Department of Meteorology
MOLAU, Ulf
Göteborg University
MÖLLERSTEN, Kenneth
Swedish Energy Agency
RUMMUKAINEN, Markku
Swedish Meteorological and Hydrological Institute

Switzerland
APPENZELLER, Christof
Federal Office of Meteorology and Climatology, MeteoSwiss
CHERUBINI, Paolo
WSL Swiss Federal Research Institute
FISCHLIN, Andreas
Terrestrial Systems Ecology, ETH Zurich
JERGER, Fuhrer
Agroscope Research Station ART
MAZZOTTI, Marco
ETH Zurich
ROSSI, Michel J.
Ecole Polytechnique Fédérale de Lausanne

Thailand
HENOCQUE, Yves
Department of Fisheries
SCHIPPER, Lisa
Southeast Asia START Regional Centre, Chulalongkorn University

Turkey
SENSOY, Serhat
Turkish State Meteorological Service

UK
ALLAN, Richard
University of Reading
BARKER, Terry
Cambridge Centre for Climate Change Mitigation Research
CLAY, Edward
Overseas Development Institute
CONVEY, Peter
British Antarctic Survey
CRABBE, M. James C.
University of Bedfordshire
GILLET, Nathan
University of East Anglia
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAIGH, Joanna</td>
<td>Imperial College</td>
</tr>
<tr>
<td>HARRISON, Paula</td>
<td>Oxford University Centre for the Environment</td>
</tr>
<tr>
<td>HAWKINS, Stephen</td>
<td>Marine Biological Association of the UK</td>
</tr>
<tr>
<td>JEFFERSON, Michael</td>
<td>World Renewable Energy Network and Congress</td>
</tr>
<tr>
<td>JONES, Chris</td>
<td>Met Office Hadley Centre</td>
</tr>
<tr>
<td>McCULLOCH, Archie</td>
<td>University of Bristol</td>
</tr>
<tr>
<td>MORSE, Andy</td>
<td>University of Liverpool</td>
</tr>
<tr>
<td>MUIR, Magdalena</td>
<td>Environmental and Legal Services Ltd.</td>
</tr>
<tr>
<td>PAAVOLA, Jouni</td>
<td>University of Leeds</td>
</tr>
<tr>
<td>RAVETZ, Joe</td>
<td>University of Manchester</td>
</tr>
<tr>
<td>SHINE, Keith</td>
<td>University of Reading</td>
</tr>
<tr>
<td>SIMMONS, Adrian</td>
<td>European Centre for Medium-Range Weather Forecasts</td>
</tr>
<tr>
<td>SIVETER, Robert</td>
<td>International Petroleum Industry Environmental Conservation Association</td>
</tr>
<tr>
<td>SMITH, Leonard Allen</td>
<td>London School of Economics</td>
</tr>
<tr>
<td>SPENCER, Thomas</td>
<td>University of Cambridge</td>
</tr>
<tr>
<td>SROKOSZ, Meric</td>
<td>National Oceanography Centre</td>
</tr>
<tr>
<td>STONE, Dáithi</td>
<td>University of Oxford</td>
</tr>
<tr>
<td>STREET, Roger</td>
<td>UK Climate Impacts Programmes, Oxford University Centre for the Environment</td>
</tr>
<tr>
<td>USHER, Michael</td>
<td>University of Stirling</td>
</tr>
<tr>
<td>WOODWORTH, Philip</td>
<td>Proudman Oceanographic Laboratory</td>
</tr>
<tr>
<td>ANYAH, Richard</td>
<td>Rutgers University</td>
</tr>
<tr>
<td>ATKINSON, David</td>
<td>International Arctic Research Center, University of Alaska, Fairbanks</td>
</tr>
<tr>
<td>BRIENO RANKIN, Veronica</td>
<td>GeoSeq International LLC</td>
</tr>
<tr>
<td>CHAPIN, III, F. Stuart</td>
<td>University of Alaska, Fairbanks</td>
</tr>
<tr>
<td>CLEMENS, Steven</td>
<td>Brown University</td>
</tr>
<tr>
<td>CROWLEY, Tom</td>
<td>Duke University</td>
</tr>
<tr>
<td>DELHOTAL, Katherine</td>
<td>RTI International</td>
</tr>
<tr>
<td>EPSTEIN, Paul</td>
<td>Harvard Medical School</td>
</tr>
<tr>
<td>EVERETT, John</td>
<td>Ocean Associates, Inc.</td>
</tr>
<tr>
<td>FAHEY, David</td>
<td>NOAA Earth Science Research Laboratory</td>
</tr>
<tr>
<td>GURWICK, Noel</td>
<td>Carnegie Institution</td>
</tr>
<tr>
<td>HAAS, Peter</td>
<td>University of Massachusetts</td>
</tr>
<tr>
<td>HEGERL, Gabriele</td>
<td>Duke University</td>
</tr>
<tr>
<td>KIMBALL, Bruce</td>
<td>USDA, Agricultural Research Service</td>
</tr>
<tr>
<td>KNOWLTON, Kim</td>
<td>Columbia University</td>
</tr>
<tr>
<td>LEE, Arthur</td>
<td>Chevron Corporation</td>
</tr>
<tr>
<td>LIOTTA, Peter</td>
<td>Pell Center for International Relations and Public Policy</td>
</tr>
<tr>
<td>MACCRACKEN, Michael</td>
<td>Climate Institute</td>
</tr>
<tr>
<td>MALONE, Elizabeth L</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>MATSUMOTO, Katsumi</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>MATSUOKA, Kenichi</td>
<td>University of Washington</td>
</tr>
<tr>
<td>McCARL, Bruce</td>
<td>Texas A & M University</td>
</tr>
<tr>
<td>MILLER, Alan</td>
<td>International Finance Corporation - CESEF</td>
</tr>
<tr>
<td>MOLINARI, Robert</td>
<td>University of Miami</td>
</tr>
<tr>
<td>MORGAN, Jack</td>
<td>Crops Research Lab</td>
</tr>
<tr>
<td>MURPHY, Daniel</td>
<td>NOAA Earth System Research Laboratory</td>
</tr>
<tr>
<td>NADELHOFFER, Knute</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>NEELIN, J. David</td>
<td>UCLA</td>
</tr>
<tr>
<td>OPPENHEIMER, Michael</td>
<td>Princeton University</td>
</tr>
<tr>
<td>PARK, Jacob</td>
<td>Green Mountain College</td>
</tr>
<tr>
<td>PARKINSON, Claire</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
</tbody>
</table>
Appendix V

V.2 Review Editors

The role of Review Editors is to ensure that all substantive expert and government review comments are afforded appropriate consideration by the Core Writing Team. Two Review Editors were appointed for each Topic of this Synthesis Report. They confirm that all comments were considered in accordance with IPCC procedures.

Topic 1

JALLOW, Bubu Pateh
Department of Water Resources
THE GAMBIA

KAJFEZ-BOGATAJ, Luc
University of Ljubljana
SLOVENIA

Topic 2

BOJARIU, Roxana
National Institute of Meteorology and Hydrology
ROMANIA

HAWKINS, David
Natural Resources Defence Council
Climate Center
USA

Topic 3

DIAZ, Sandra
CONICET-Universidad Nacional de Córdoba
ARGENTINA

LEE, Hoesung
SOUTH KOREA

Topic 4

ALLALI, Abdelkader
Ministry of Agriculture, Rural Development and Fishing
MOROCCO

ELGIZOULI, Ismail
Higher Council for Environment and Natural Resources
SUDAN

Topic 5

WRATT, David
National Institute of Water and Atmospheric Research
NEW ZEALAND

HOHMEYER, Olav
University of Flensburg
GERMANY

Topic 6

GRIGGS, Dave
Monash University
AUSTRALIA/UK

LEARY, Neil
International START Secretariat
USA
Annex VI

Index

A.
acidification (see ocean acidification)
adaptation 56, 57, 61, 65, 70, 73
adaptive capacity 52, 56, 61, 64, 65, 70, 73
aerosols 38, 39, 44, 45, 73
Africa 30, 44, 50, 72, 73
agriculture/crops 33, 36, 37, 48-53, 56, 57
anthropogenic
 emissions 36, 38, 44, 72
 warming 39, 41, 46, 72
Antarctica 39, 47, 73
Arctic 33, 52, 65, 72
Article 2 (of UNFCCC) 64
Asia 30, 32, 50
Australia and New Zealand 32, 50

B.
barriers
to adaptation 56, 57, 65, 70, 73
to mitigation 58, 59, 65, 68, 70, 73
behaviour pattern (see lifestyle)

C.
carbon capture and storage (CCS) 60, 68
carbon dioxide (CO₂)
 concentrations 37-39, 52, 67, 72
emissions 36, 44, 47, 58, 66, 67, 72
carbon leakage 59
carbon price 58, 59
Clean Development Mechanism (CDM) 62
climate
 -carbon cycle coupling 38, 45, 67, 73
 change (see climate change)
 variability 30, 33, 40, 41, 56
climate change
 abrupt 53, 54, 65
 after stabilisation of GHGs 46, 47, 66, 67, 72, 73
 and air pollution 59, 70
 and water 49, 57
 attribution 38, 39, 41, 72
 beyond 21st century 46, 47, 66, 67
 definitions 30
 drivers 36-38
 impacts (see impact)
 irreversible 53, 54
 observed 30, 31, 33
 projections 45-47
 regional 30, 46, 47, 49
climate sensitivity 38, 66, 67, 72, 73
climate system 30, 36, 37, 39, 45
co-benefits 59, 64
coastal/of coasts
defence 56, 57
flooding 33, 48, 50-53, 57, 65
concentration
 atmospheric 37, 38, 72
 CO₂-equivalent 36, 37, 59, 66, 67
 constant 45, 46
confidence interval 27
cooperation (international) 62
cost
 of adaptation 56
 (see mitigation)
 (see social cost of carbon)
cyclones (tropical) 30, 46
D.
damages 33, 51, 53, 64, 65, 69
days
 cold 30, 40
 hot 30, 46
deforestation 36, 61
developing countries 31, 37, 59
development pathway 44, 50, 66, 70, 73
drought 30, 41, 48-51, 53, 56, 65, 72
dust 38
 dust storm 33
E.
economic development 44, 50, 56, 61, 64
ecosystems 31, 48, 51-54
emissions 36
 CO₂-equivalent 44, 58
 pathway/trajectory 66, 67
 reduction (see mitigation)
 scenario 44
energy
 demand 53, 56, 60, 61
 efficiency 57, 59, 60, 68
 intensity 37, 61
 low-carbon sources of 58, 68
 nuclear 68
 renewable 57, 60, 68
 supply/generation 36, 44, 50, 59, 60, 68
equilibrium
 sea level (thermal expansion) 66, 67
 temperature 47, 66, 67
equity 61, 62, 64
Europe 30, 32, 50
extinction 52, 48, 50, 54, 64
extremes 30, 40, 46, 52, 53, 56, 65, 72
F.
feedback 38, 40, 46, 73
 climate-carbon cycle 38, 45, 54, 67, 73
 fire 33, 48, 50, 51, 53
floods 72
 coastal 33, 48, 50-53, 57, 65
 river 48-50, 52, 53, 57
food production/crops 48, 51, 64
forestation 61
fossil fuels 36, 37, 44, 59, 60
G.
glaciers 30, 49, 50, 52, 57, 65
Global Warming Potential (GWP) 36, 72
greenhouse gases (GHGs) 36, 37, 40, 69
 concentrations 39, 46, 66, 67
 emissions 36, 37, 44, 45, 56, 58, 66, 67, 72
greening (of vegetation) 33
Greenland 47, 65, 67, 73
Gross Domestic Product (GDP) 37, 44, 50, 59, 62, 69
H.
hail storms 33
halocarbons 37
health 33, 48, 49, 50, 51, 52, 53, 56, 57, 59, 64, 65, 70, 72
heat wave 30, 40, 46, 50, 52, 53, 72
hydrological cycle/systems 31, 41, 50
hydropower 50, 53, 59, 60
I.
ice
 (on land/ice sheet/ice cap) 30, 47, 53, 65, 73
 sea ice 30, 31, 33, 38, 46, 52, 65, 72
impact (of climate change)
 avoided/reduced/delayed 69, 70
 beneficial 48-50, 52
 irreversible 53, 54
 observed 31-33, 41
 projected 48-53
 regional 50-52
 sectoral 48, 49, 51
industry 48, 53, 59, 60, 61
infrastructure 48, 49, 52, 53, 56-58, 64-66
K.
Kyoto Protocol 59, 62
L.
Latin America 44, 50
land use 37, 40, 41, 49, 57, 60, 68, 72
lifestyle 59, 73
lightning 33
low-emissions/low-carbon technology 58-60, 68
M.
Mediterranean sea/basin 30, 49
megadelta 48, 50, 52, 65, 72
meridional overturning circulation (MOC) 33, 51, 54, 65
methane (CH₄) 36-38, 60, 72
Middle East 44
migration
 bird 33, 52
 fish 33
 population 53
Millennium Development Goals (MDGs) 70
mitigation 56, 58-61
 benefits 66, 69, 70
 costs 69
 options 58-60, 73
 policies 44, 60, 61
 portfolio 61, 68, 73
 potential 58, 59
mortality 33, 50, 51, 53, 59
multi-century warming 47, 64

N.
nights
 cold nights 30, 40, 53
 hot nights 30, 40, 53
nitrate 39
nitrous oxide (N₂O) 36-38, 60, 72
non-CO₂ gases/options 60, 68
North America 32, 52
Northern Hemisphere 30, 31, 33, 40, 46, 72

O.
ocean
 acidification 52
 temperature/heat content 30
organic carbon 38, 44

P.
per capita
 emissions 37
 income 37
pests (disturbances) 33, 48
polar
 ice sheets 30, 47, 53, 65, 73
 regions 32, 52, 64
population growth 44
precipitation
 heavy precipitation 30, 41, 46, 49, 53
 pattern 30, 41, 46, 47, 50, 73
R.
radiative forcing 36-39, 45, 46, 67
rainfall (see precipitation)
reasons for concern 64, 65, 72
research
 funding 68
 RD&D 61, 62, 68, 73
risk management 64, 69
runoff 31, 49, 61
S.
Sahel 30
sea ice (see ice)
sea level rise/change 30, 33, 40, 45-49, 53, 65, 67, 72, 73
settlements 48, 50, 52, 53, 57
small islands 48, 52, 65, 72
snow (cover/pack) 30, 31, 33, 46, 49, 50, 52, 53, 57, 72
social cost of carbon 69
society 26, 48, 49, 53, 56, 58
spillover effects 59
SRES
 emissions 44, 45, 46, 58, 70, 72
 storylines/pathways 44, 70
stabilisation 46, 61
 levels 47, 59, 66, 67, 68, 69, 73
 pathway 66, 67, 69
storms 40, 46, 50, 51, 56
stress (multiple) 52, 56, 65
sulphur dioxide/sulphate 38, 44
sustainable development 44, 49, 61, 70, 72, 73

T.
technological change 44, 61, 73
technology 56, 58, 60, 61, 68, 73
 investment 58-60, 68, 73
temperature changes 30-32, 39, 40, 45, 46, 51, 64, 66, 67, 69
 variability 30, 40, 41
Third Assessment Report (TAR) 26, 30-32, 38-40, 44-46, 50, 56, 59, 61, 62, 64-66, 72
tornadoes 33
tourism 50, 53, 57
transport 36, 53, 57, 59, 60, 62

U.
UNFCCC 30, 36, 37, 62, 64
uncertainty
 key uncertainty 72, 73
 terminology 27

V.
vulnerability 48, 56, 60, 61, 64, 65, 70, 72, 73
 key vulnerability 50, 64

W.
water
 adaptation options 57
 National Water Management Plan of Bangladesh 56
 stress 49-51, 53, 65
 resources 49, 52, 53, 56, 57, 64, 72
wind patterns 40, 46
Annex VII

Publications by the Intergovernmental Panel on Climate Change

Assessment Reports

Fourth Assessment Report

Climate Change 2007: The Physical Science Basis
Contribution of Working Group I to the Fourth Assessment Report

Climate Change 2007: Impacts, Adaptation and Vulnerability
Contribution of Working Group II to the Fourth Assessment Report

Climate Change 2007: Mitigation of Climate Change
Contribution of Working Group III to the Fourth Assessment Report

Climate Change 2007: Synthesis Report
Contribution of Working Groups I, II and III to the Fourth Assessment Report

Third Assessment Report

Climate Change 2001: The Scientific Basis
Contribution of Working Group I to the Third Assessment Report

Climate Change 2001: Impacts, Adaptation and Vulnerability
Contribution of Working Group II to the Third Assessment Report

Climate Change 2001: Mitigation
Contribution of Working Group III to the Third Assessment Report

Climate Change 2001: Synthesis Report
Contribution of Working Groups I, II and III to the Third Assessment Report

Second Assessment Report

Climate Change 1995: The Science of Climate Change
Contribution of Working Group I to the Second Assessment Report

Climate Change 1995: Scientific-Technical Analyses of Impacts, Adaptations and Mitigation of Climate Change
Contribution of Working Group II to the Second Assessment Report

Climate Change 1995: The Economic and Social Dimensions of Climate Change
Contribution of Working Group III to the Second Assessment Report

Climate Change 1995: Synthesis of Scientific-Technical Information Relevant to Interpreting Article 2 of the UN Framework Convention on Climate Change
Contribution of Working Groups I, II and III to the Second Assessment Report

Supplementary Report to the First Assessment Report

Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment
Supplementary report of the IPCC Scientific Assessment Working Group I

Climate Change 1992: The Supplementary Report to the IPCC Impacts Assessment
Supplementary report of the IPCC Impacts Assessment Working Group II

Climate Change: The IPCC 1990 and 1992 Assessments
IPCC First Assessment Report Overview and Policymaker Summaries and 1992 IPCC Supplementary Report

First Assessment Report

Climate Change: The Scientific Assessment

Climate Change: The IPCC Impacts Assessment
Report of the IPCC Impacts Assessment Working Group II, 1990

Climate Change: The IPCC Response Strategies

Special Reports

Carbon Dioxide Capture and Storage 2005

Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons (IPCC/TEAP joint report) 2005

Land Use, Land-Use Change and Forestry 2000

Emissions Scenarios 2000

Methodological and Technological Issues in Technology Transfer 2000

Aviation and the Global Atmosphere 1999

The Regional Impacts of Climate Change: An Assessment of Vulnerability 1997

Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emissions Scenarios 1994

Methodology Reports and technical guidelines

2006 IPCC Guidelines for National Greenhouse Gas Inventories (5 Volumes) 2006

Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Dev egetation of Other Vegetation Types 2003

Good Practice Guidance for Land Use, Land-use Change and Forestry IPCC National Greenhouse Gas Inventories Programme, 2003

Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (3 volumes), 1996
IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations 1995

IPCC Guidelines for National Greenhouse Gas Inventories (3 volumes) 1994

Preliminary Guidelines for Assessing Impacts of Climate Change 1992

Assessment of the Vulnerability of Coastal Areas to Sea Level Rise – A Common Methodology 1991

Technical Papers

Climate Change and Biodiversity
IPCC Technical Paper 5, 2002

Implications of Proposed CO₂ Emissions Limitations
IPCC Technical Paper 4, 1997

Stabilisation of Atmospheric Greenhouse Gases: Physical, Biological and Socio-Economic Implications
IPCC Technical Paper 3, 1997

An Introduction to Simple Climate Models Used in the IPCC Second Assessment Report
IPCC Technical Paper 2, 1997

Technologies, Policies and Measures for Mitigating Climate Change
IPCC Technical Paper 1, 1996

Supplementary material

Global Climate Change and the Rising Challenge of the Sea
Coastal Zone Management Subgroup of the IPCC Response Strategies Working Group, 1992

Emissions Scenarios
Prepared by the IPCC Response Strategies Working Group, 1990

For a more comprehensive list of supplementary material published by the IPCC (workshop and meeting reports), please see www.ipcc.ch or contact the IPCC Secretariat.
The Intergovernmental Panel on Climate Change (IPCC) was set up jointly by the World Meteorological Organization and the United Nations Environment Programme to provide an authoritative international statement of scientific understanding of climate change. The IPCC’s periodic assessments of the causes, impacts and possible response strategies to climate change are the most comprehensive and up-to-date reports available on the subject, and form the standard reference for all concerned with climate change in academia, government and industry worldwide. This Synthesis Report is the fourth element of the IPCC Fourth Assessment Report “Climate Change 2007”. Through three working groups, many hundreds of international experts assess climate change in this Report. The three working group contributions are available from Cambridge University Press:

Climate Change 2007 – The Physical Science Basis
Contribution of Working Group I to the Fourth Assessment Report of the IPCC
(ISBN 978 0521 88009-1 Hardback; 978 0521 70596-7 Paperback)

Climate Change 2007 – Impacts, Adaptation and Vulnerability
Contribution of Working Group II to the Fourth Assessment Report of the IPCC
(978 0521 88010-7 Hardback; 978 0521 70597-4 Paperback)

Climate Change 2007 – Mitigation of Climate Change
Contribution of Working Group III to the Fourth Assessment Report of the IPCC
(978 0521 88011-4 Hardback; 978 0521 70598-1 Paperback)

Climate Change 2007 – Synthesis Report is based on the assessment carried out by the three Working Groups of the IPCC. It provides an integrated view of climate change and addresses the following topics:

- Observed changes in climate and their effects
- Causes of change
- Climate change and its impacts in the near and long term under different scenarios
- Adaptation and mitigation options and responses, and the interrelationship with sustainable development, at global and regional levels
- The long-term perspective: scientific and socio-economic aspects relevant to adaptation and mitigation, consistent with the objectives and provisions of the Convention, and in the context of sustainable development
- Robust findings, key uncertainties