IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group I: The Physical Science Basis

11.4 Asia

Assessment of projected climate change for Asia:

All of Asia is very likely to warm during this century; the warming is likely to be well above the global mean in central Asia, the Tibetan Plateau and northern Asia, above the global mean in East and South Asia, and similar to the global mean in Southeast Asia. It is very likely that summer heat waves/hot spells in East Asia will be of longer duration, more intense, and more frequent. It is very likely that there will be fewer very cold days in East Asia and South Asia.

Boreal winter precipitation is very likely to increase in northern Asia and the Tibetan Plateau, and likely to increase in eastern Asia and the southern parts of Southeast Asia. Summer precipitation is likely to increase in northern Asia, East and South Asia and most of Southeast Asia, but it is likely to decrease in central Asia. An increase in the frequency of intense precipitation events in parts of South Asia, and in East Asia, is very likely.

Extreme rainfall and winds associated with tropical cyclones are likely to increase in East, Southeast and South Asia. Monsoonal flows and the tropical large-scale circulation are likely to be weakened.

While broad aspects of Asian climate change show consistency among AOGCM simulations, a number of sources of uncertainty remain. A lack of observational data in some areas limits model assessment. There has been little assessment of the projected changes in regional climatic means and extremes. There are substantial inter-model differences in representing monsoon processes, and a lack of clarity over changes in ENSO further contributes to uncertainty about future regional monsoon and tropical cyclone behaviour. Consequently, quantitative estimates of projected precipitation change are difficult to obtain. It is likely that some local climate changes will vary significantly from regional trends due to the region’s very complex topography and marine influences.