IPCC Fourth Assessment Report: Climate Change 2007
Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability

9.5.2 Adaptation costs, constraints and opportunities

Many of the options outlined above come with a range of costs and constraints, including large transaction costs. However, deriving quantitative estimates of the potential costs of the impacts of climate change (or those associated with climate variability, such as droughts and floods) and costs without adaptation (Yohe and Schlesinger, 2002) is difficult. Limited availability of data and a variety of uncertainties relating to future changes in climate, social and economic conditions, and the responses that will be made to address those changes, frustrate precise cost and economic loss inventories. Despite these problems, some economic loss inventories and estimations have been undertaken (e.g., Mirza, 2003). In some cases (e.g., Egypt and Senegal), assessments have attempted to measure costs that may arise with and without adaptation to climate-change impacts. Large populations are estimated to be at risk of impacts linked to possible climate change. Assessments of the impacts of sea-level rise in coastal countries show that costs of adaptation could amount to at least 5-10% of GDP (Niang-Diop, 2005). However, if no adaptation is undertaken, then the losses due to climate change could be up to 14% GDP (Van Drunen et al., 2005). In South Africa, initial assessments of the costs of adaptation in the Berg River Basin also show that the costs of not adapting to climate change can be much greater than the costs of including flexible and efficient approaches to adapting to climate change into management options (see Stern, 2007).

Despite some successes (see examples in Table 9.2), there is also evidence of an erosion of coping and adaptive strategies as a result of varying land-use changes and socio-political and cultural stresses. Continuous cultivation, for example, at the expense of soil replenishment, can result in real ‘agrarian dramas’ (e.g., Rockström, 2003). The interaction of both social (e.g., access to food) and biophysical (e.g., drought) stresses thus combine to aggravate critical stress periods (e.g., during and after ENSO events). Traditional coping strategies (see Section 9.6.2) may not be sufficient in this context, either currently or in the future, and may lead to unsustainable responses in the longer term. Erosion of traditional coping responses not only reduces resilience to the next climatic shock but also to the full range of shocks and stresses to which the poor are exposed (DFID, 2004). Limited scientific capacity and other scientific resources are also factors that frustrate adaptation (see, e.g., Washington et al., 2004, 2006).

As shown in several sections in this chapter, the low adaptive capacity of Africa is due in large part to the extreme poverty of many Africans, frequent natural disasters such as droughts and floods, agriculture that is heavily dependent on rainfall, as well as a range of macro- and micro-structural problems (see Section 9.2.2). The full implications of climate change for development are, however, currently not clearly understood. For example, factors heightening vulnerability to climate change and affecting national-level adaptation have been shown to include issues of local and national governance, civil and political rights and literacy (e.g., Brooks et al., 2005). The most vulnerable nations in the assessment undertaken by Brooks et al. (2005) (using mortality from climate-related disasters as an indication of climate outcomes) were those situated in sub-Saharan Africa and those that have recently experienced conflict. At the more local level, the poor often cannot adopt diversification as an adaptive strategy and often have very limited diversification options available to them (e.g., Block and Webb, 2001; Ellis and Mdoe, 2003). Micro-financing and other social safety nets and social welfare grants, as a means to enhance adaptation to current and future shocks and stresses, may be successful in overcoming such constraints if supported by local institutional arrangements on a long-term sustainable basis (Ellis, 2003; Chigwada, 2005).

Africa needs to focus on increasing adaptive capacity to climate variability and climate change over the long term. Ad hoc responses (e.g., short-term responses, unco-ordinated processes, isolated projects) are only one type of solution (Sachs, 2005). Other solutions that could be considered include mainstreaming adaptation into national development processes (Huq and Reid, 2004; Dougherty and Osman, 2005). There may be several opportunities to link disaster risk reduction, poverty and development (see, for example, several calls and plans for such action such as the Hyogo Declaration - http://www.unisdr.org/?wcdr?/intergover/official-doc/L-docs/Hyo-go?-declaration-english?.pdf). Where communities live with various risks, coupling risk reduction and development activities can provide additional adaptation benefits (e.g., Yamin et al., 2005). Unprecedented efforts by governments, humanitarian and development agencies to collaborate in order to find ways to move away from reliance on short-term emergency responses to food insecurity to longer-term development-oriented strategies that involve closer partnerships with governments, are also increasing (see food insecurity case study below and SARPN - http://www.sarpn.org/ - for several case studies and examples; see also Table 9.2 for other possible adaptation options).

Notwithstanding these efforts and suggestions, the context and the realities of the causes of vulnerability to a range of stresses, not least climate change and variability, must be kept at the forefront, including a deeper and further examination of the causes of poverty (both structural and other) at international, national and local levels (Bryceson, 2004). The causes, impacts and legacies of various strategies - including liberalisation policies, decades of structural adjustment programmes (SAP) and market conditions - cannot be ignored in discussions on poverty alleviation and adaptation to stresses, including climate change. Some of the complex interactions of such drivers and climate are further illustrated in the two case studies below.