Frequently Asked Questions

FAQ

Frequently Asked Questions

Coordinating Editors:

Sophie Berger (France/Belgium), Sarah L. Connors (France/United Kingdom)

Drafting Authors:

Richard P. Allan (United Kingdom), Paola A. Arias (Colombia), Kyle Armour (United States of America), Terje Berntsen (Norway), Lisa Bock (Germany), Ruth Cerezo-Mota (Mexico), Kim Cobb (United States of America), Alejandro Di Luca (Australia, Canada/Argentina), Paul Edwards (United States of America), Tamsin L. Edwards (United Kingdom), Seita Emori (Japan), François Engelbrecht (South Africa), Veronika Eyring (Germany), Piers Forster (United Kingdom), Baylor Fox- Kemper (United States of America), Sandro Fuzzi (Italy), John C. Fyfe (Canada), Nathan P. Gillett (Canada), Nicholas R. Golledge (New Zealand/United Kingdom), Melissa I. Gomis (France/Switzerland), William J. Gutowski (United States of America), Rafig Hamdi (Belgium), Mathias Hauser (Switzerland), Ed Hawkins (United Kingdom), Nigel Hawtin (United Kingdom), Darrell S. Kaufman (United States of America), Megan Kirchmeier-Young (Canada/ United States of America), Charles Koven (United States of America), June-Yi Lee (Republic of Korea), Sophie Lewis (Australia), Jochem Marotzke (Germany), Valérie Masson-Delmotte (France), Thorsten Mauritsen (Sweden/Denmark), Thomas K. Maycock (United States of America), Shayne McGregor (Australia), Sebastian Milinski (Germany), Olaf Morgenstern (New Zealand/ Germany), Swapna Panickal (India), Joeri Rogelj (United Kingdom/Belgium), Maisa Rojas (Chile), Alex C. Ruane (United States of America), Bjørn H. Samset (Norway), Trude Storelvmo (Norway), Sophie Szopa (France), Jessica Tierney (United States of America), Russell S. Vose (United States of America), Masahiro Watanabe (Japan), Sönke Zaehle (Germany), Xuebin Zhang (Canada), Kirsten Zickfeld (Canada/Germany)

These Frequently Asked Questions have been extracted from the chapters of the underlying report and are compiled here. When referencing specific FAQs, please reference the corresponding chapter in the report from where the FAQ originated (e.g., FAQ 3.1 is part of Chapter 3).

Frequently Asked Questions

FAQ 6.1 | What Are Short-lived Climate Forcers and How Do They Affect the Climate?

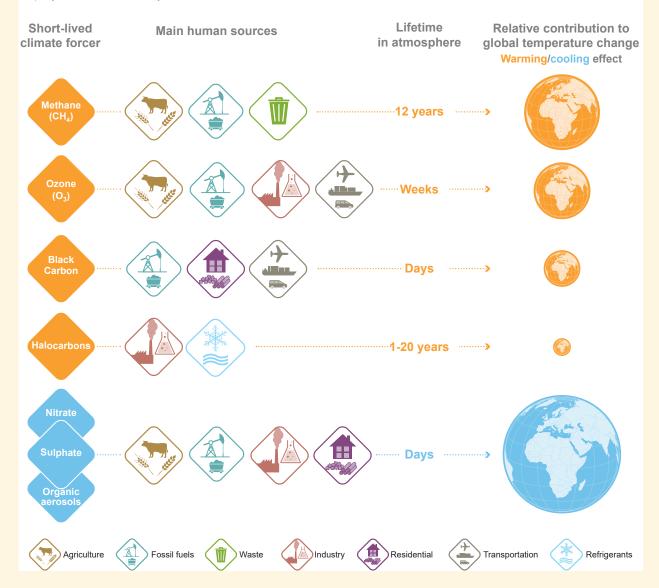
Short-lived climate forcers (SLCFs) are compounds such as methane and sulphate aerosols that warm or cool the Earth's climate over shorter time scales – from days to years – than greenhouse gases like carbon dioxide, whose climatic effect lasts for decades, centuries or more. Because SLCFs do not remain in the atmosphere for very long, their effects on the climate are different from one region to another and can change rapidly in response to changes in SLCF emissions. As some SLCFs also negatively affect air quality, measures to improve air quality have resulted in sharp reductions in emissions and concentrations of those SLCFs in many regions over the few last decades.

The SLCFs include gases as well as tiny particles called *aerosols*, and they can have a warming or cooling effect on the climate (FAQ 6.1, Figure 1). Warming SLCFs are either greenhouse gases (e.g., ozone or methane) or particles like black carbon (also known as soot), which warm the climate by absorbing energy and are sometimes referred to as *short-lived climate pollutants*. Cooling SLCFs, on the other hand, are mostly made of aerosol particles (e.g., sulphate, nitrate and organic aerosols) that cool down the climate by reflecting away more incoming sunlight.

Some SLCFs do not directly affect the climate but produce climate-active compounds and are referred to as precursors. SLCFs are emitted both naturally and as a result of human activities, such as agriculture or extraction of fossil fuels. Many of the human sources, particularly those involving combustion, produce SLCFs at the same time as carbon dioxide and other long-lived greenhouse gases. Emissions have increased since the start of industrialization, and humans are now the dominant source for several SLCFs and SLCF precursors, such as sulphur dioxide (which produces sulphate aerosols) and nitrogen oxides (which produce nitrate aerosols and ozone), despite strong reductions over the last few decades in some regions due to efforts to improve air quality.

The climatic effect of a chemical compound in the atmosphere depends on two things: (i) how effective it is at cooling or warming the climate (its *radiative efficiency*) and (ii) how long it remains in the atmosphere (its *lifetime*). Because they have high radiative efficiencies, SLCFs can have a strong effect on the climate even though they have relatively short lifetimes of up to about two decades after emission. Today, there is a balance between warming and cooling from SLCFs, but this can change in the future.

The short lifetime of SLCFs constrains their effects in both space and time. First, of all the SLCFs, methane and the short-lived halocarbons persist the longest in the atmosphere: up to two decades (FAQ 6.1, Figure 1). This is long enough to mix in the atmosphere and to spread globally. Most other SLCFs only remain in the atmosphere for a few days to weeks, which is generally too short for mixing in the atmosphere, sometimes even regionally. As a result, the SLCFs are unevenly distributed and their effects on the climate are more regional than those of longer-lived gases. Second, rapid (but sustained) changes in emissions of SLCFs can result in rapid climatic effects.


In addition to the direct warming and cooling effects, SLCFs have many other consequences for the climate system and for air quality (see FAQ 6.2). For instance, deposition of black carbon on snow darkens its surface, which subsequently absorbs more solar energy, leading to more melting and more warming. Aerosols also modify the properties of clouds, which has indirect cooling effects on the climate and causes changes in local rainfall (see FAQ 7.2). Climate models indicate that SLCFs have altered atmospheric circulation on local and even hemispheric scales (e.g., monsoons) as well as regional precipitation. For instance, recent observations show that regional weather is influenced by strong regional contrasts in the evolution of aerosol concentrations, particularly over South and East Asia.

Although policies to limit climate change and discussions of the so-called *remaining carbon budgets* primarily focus on carbon dioxide (see FAQ 5.4), SLCFs can significantly affect temperature changes. It is therefore important to understand how SLCFs work and to quantify their effects. Because reducing some of the SLCF emissions, such as methane, can simultaneously reduce warming effects and adverse effects on air quality as well as help attaining Sustainable Development Goals, mitigation of SLCFs is often viewed as a favourable 'win-win' policy option.

FAQ 6.1 (continued)

FAQ 6.1: What are short-lived climate forcers and how do they affect the climate?

Short lived climate forcers do not remain for very long in the atmosphere, thus an increase or decrease in their emissions rapidly affects the climate system.

FAQ 6.1, Figure 1 | Main short-lived climate forcers, their sources, how long they exist in the atmosphere, and their relative contribution to global surface temperature changes between 1750 and 2019 (area of the globe). By definition this contribution depends on the lifetime, the warming/cooling potential (radiative efficiency), and the emissions of each compound in the atmosphere. Blue indicates cooling and orange indicates warming. Note that, between 1750 and 2019, the cooling contribution from aerosols (blue diamonds and globe) was approximately half the warming contribution from carbon dioxide.

Frequently Asked Questions

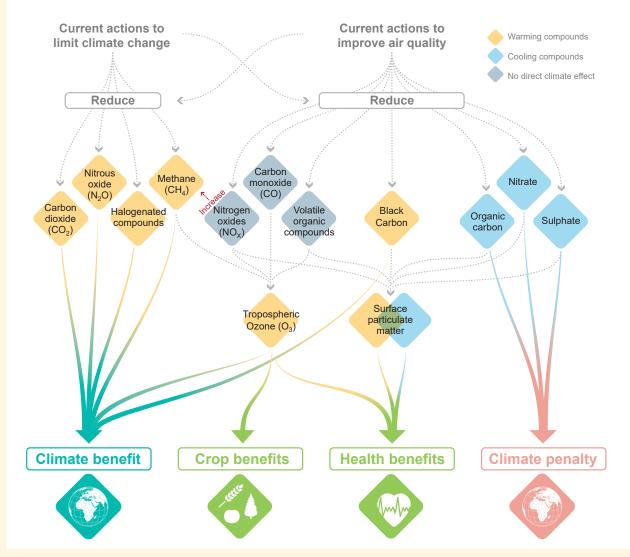
FAQ 6.2 | What Are the Links Between Limiting Climate Change and Improving Air Quality?

Climate change and air quality are intimately linked. Many of the human activities that produce long-lived greenhouse gases also emit air pollutants, and many of these air pollutants are also 'short-lived climate forcers' that affect the climate. Therefore, many options for improving air quality may also serve to limit climate change and vice versa. However, some options for improving air quality cause additional climate warming, and some actions that address climate change can worsen air quality.

Climate change and air pollution are both critical environmental issues that are already affecting humanity. In 2016, the World Health Organization attributed 4.2 million deaths worldwide every year to ambient (outdoor) air pollution. Meanwhile, climate change impacts water resources, food production, human health, extreme events, coastal erosion, wildfires, and many other phenomena.

Most human activities, including energy production, agriculture, transportation, industrial processes, waste management and residential heating and cooling, result in emissions of gaseous and particulate pollutants that modify the composition of the atmosphere, leading to degradation of air quality as well as to climate change. These air pollutants are also *short-lived climate forcers* – substances that affect the climate but remain in the atmosphere for shorter periods (days to decades) than long-lived greenhouse gases like carbon dioxide (see FAQ 6.1). While this means that the issues of air pollution and climate change are intimately connected, air pollutants and greenhouse gases are often defined, investigated and regulated independently of one another in both the scientific and policy arenas.

Many sources simultaneously emit carbon dioxide and air pollutants. When we drive our fossil fuel vehicles or light a fire in the fireplace, it is not just carbon dioxide or air pollutants that are emitted, but always both. It is therefore not possible to separate emissions into two clearly distinct groups. As a result, policies aiming at addressing climate change may have benefits or side effects for air quality, and vice versa.


For example, some short-term 'win-win' policies that simultaneously improve air quality and limit climate change include the implementation of energy efficiency measures, methane capture and recovery from solid-waste management and the oil and gas industry, zero-emissions vehicles, efficient and clean stoves for heating and cooking, filtering of soot (particulate matter) for diesel vehicles, cleaner brick-kiln technology, practices that reduce burning of agricultural waste, and the eradication of burning of kerosene for lighting.

There are, however, also 'win-lose' actions. For example, wood burning is defined as carbon neutral because a tree accumulates the same amount of carbon dioxide throughout its lifetime as is released when wood from that tree is burned. However, burning wood can also result in significant emissions of air pollutants, including carbon monoxide, nitrogen oxides, volatile organic compounds, and particulate matter, that locally or regionally affect the climate, human health and ecosystems (FAQ 6.2, Figure 1). Alternatively, decreasing the amount of sulphate aerosols produced by power and industrial plants, and from maritime transport, improves air quality but results in a warming influence on the climate, because those sulphate aerosols contribute to cooling the atmosphere by blocking incoming sunlight.

Air quality and climate change represent two sides of the same coin, and addressing both issues together could lead to significant synergies and economic benefits while avoiding policy actions that mitigate one of the two issues but worsen the other.

FAQ 6.2: Limiting climate change and improving air quality?

Climate change and air quality are so intimately linked that addressing one issue can affect the other one.

FAQ 6.2, Figure 1 | **Links between actions aiming to limit climate change and actions to improve air quality.** Greenhouse gases (GHGs) and aerosols (orange and blue) can affect climate directly. Air pollutants (bottom) can affect human health, ecosystems and climate. All these compounds have common sources and sometimes interact with each other in the atmosphere which makes it impossible to consider them separately (dotted grey arrows).