
SPM

Page:Line

Chapter/Su

pp. 

Material

Chapter

Page:Line
Summary of edit to be made

P54/WGI-14 - Changes to the underlying scientific-technical assessment to ensure consistency with the approved SPM

These trickle backs will be implemented in the Chapter during copy-editing

Figure SPM9 Annex VI 6:14 Please replace "oceanic" with "open ocean"

 6 August 2021 Page 1



Final Government Distribution Annex VI IPCC AR6 WGI 

AVI-1 Total pages: 15 

1 

AVI. Annex VI: Climatic Impact-Driver and Extreme Indices 2 

3 

Coordinating Lead Authors: 4 

José M. Gutiérrez (Spain), Roshanka Ranasinghe (The Netherlands/Sri Lanka, Australia), Alex C. Ruane 5 

(United States of America), Robert Vautard (France) 6 

7 

Lead Authors: 8 

Nigel Arnell (United Kingdom), Erika Coppola (Italy), Izidine Pinto (South Africa/Mozambique), Daniel 9 

Ruiz Carrascal (United States of America/Colombia), Jana Sillmann (Norway/Germany), Claudia Tebaldi 10 

(United States of America) 11 

12 

Contributing Authors: 13 

Clemens Schwingshakl (Norway/Italy) 14 

15 

Chapter Scientists: 16 

Mathias Hauser (Switzerland), Carley E. Iles (Norway, France/United Kingdom), Maialen Iturbide (Spain), 17 

18 

This Annex should be cited as: 19 

IPCC, 2021: Annex VI: Climatic Impact-Driver and Extreme Indices [Gutiérrez J. M., R. Ranasinghe, A. C. 20 

Ruane, R. Vautard (eds.)].  In: Climate Change 2021: The Physical Science Basis. Contribution of Working 21 

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-22 

Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. 23 

Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. 24 

Yu and B. Zhou (eds.)]. Cambridge University Press. In Press. 25 

26 

Date: August 2021 27 

28 

This document is subject to copy-editing, corrigenda and trickle backs. 29 

30 

ACCEPTED VERSIO
N 

SUBJE
CT TO FIN

AL E
DITS



Final Government Distribution Annex VI IPCC AR6 WGI 

Do Not Cite, Quote or Distribute AVI-2 Total pages: 15 

 1 

AVI.1 Introduction ................................................................................................................................... 3 2 

AVI.2 Extreme indices selection .............................................................................................................. 4 3 

AVI.3 Climatic Impact-Drivers indices selection ..................................................................................... 6 4 

AVI.3.1 Regional CID indices used in Chapter 12 and the Atlas............................................................ 6 5 

References ................................................................................................................................................... 12 6 

  7 

ACCEPTED VERSIO
N 

SUBJE
CT TO FIN

AL E
DITS



Final Government Distribution Annex VI IPCC AR6 WGI 

Do Not Cite, Quote or Distribute AVI-3 Total pages: 15 

AVI.1 Introduction 1 

 2 

This Annex provides background information on indices used within Chapter 11, Chapter 12, and the Atlas, 3 

including technical details of calculation and related references.  4 

 5 

In the climate science literature, a number of indices are used to characterize and quantify one or several 6 

aspects of climate phenomena occurring due to natural variability or due to long-term changes in the system. 7 

There is an extremely large number of examples. One can cite mean global climate indices, such as global 8 

mean sea level rise or global surface temperature, which characterize the state of the climate system and act 9 

as a shifting baseline for regional changes. One can also examine mean regional trends, for example in mean 10 

springtime precipitation, which reflect large-scale patterns and alter the background conditions within which 11 

episodic hazards may occur. One can also calculate indices of extremes characterizing episodic events within 12 

the tail of the distributions of specific variables within their variability range, for instance the annual 13 

maximal temperature at a given location or the 100-year return value of river discharge characterizing 14 

extreme floods. Such extreme indices have been the subject of a number of studies and have been used to 15 

characterize how climate change modifies extreme values of climate variables and subsequent impacts in the 16 

IPCC Special Report on “Managing the risks of Extreme Events and Disasters to Advance Climate Change 17 

Adaptation” (IPCC, 2012), as well other recent IPCC reports. 18 

 19 

Indices can also characterize aspects of climatic impact-drivers (CIDs) (see Chapter 1 for the definition) that 20 

are key to impacts and risks to society and ecosystems. Chapter 12 proposes a definition of “climatic impact-21 

driver indices” as “numerically computable indices using one or a combination of climate variables designed 22 

to measure the intensity of the climatic impact-driver, or the probability of exceedance of a threshold. For 23 

instance, an index of heat inducing human health stress is the Heat Index (HI) that combines temperature and 24 

relative humidity (e.g., (Burkart et al., 2011; Lin et al., 2012; Kent et al., 2014)) and is used among others by 25 

the US National Oceanic and Atmospheric Administration (NOAA) for issuing heat warnings”.  26 

 27 

Climatic impact-drivers may not be related only to extremes, and therefore require a much broader set of 28 

indices. For instance, the rate of coastline recession, due to sea level rise, assessed in Chapter 12, is involved 29 

in the risk of damage and losses in coastal settlements and infrastructures. Mean trends and changes 30 

themselves are considered throughout the report as CIDs. For instance, beyond the warming trend which has 31 

a large number of consequences, changes in other indices such ‘snow season length’ is often used to study 32 

economic impacts on winter tourism (Damm et al., 2017). Furthermore, (Mora et al., 2018) used a set of 11 33 

very different key CID indices among which about half are related to extremes to characterize broader 34 

threats to society. Section 12.3 in Chapter 12 reviews the CIDs described in the literature to characterize 35 

impacts and risks, and reveal the wide variety of indices used to characterize them. 36 

 37 

Indices are, in principle, computable from observations, reanalyses or model simulations, although it is 38 

important to consider scale in comparing across datasets. For example, an extreme precipitation event has a 39 

lower magnitude across a large grid cell than it would at a single station within that grid cell. In many cases, 40 

CIDs are simply characterized by the exceedance of a threshold for an Essential Climate Variable (ECV). 41 

For instance, the probability of crop failure dramatically increases as temperature rises above certain 42 

thresholds, which may differ from one species to another (Hatfield and Prueger, 2015; Grotjahn, 2021).  To 43 

assess the effect of climate change on threshold-based indices (e.g., the change in the number of days with 44 

maximum temperature above 35°C), a bias adjustment of model outputs should be considered where sensible 45 

as model simulations can have biases compared to observations and reanalyses (Section 10.3.1.3, Cross 46 

Chapter Box 10.2, 12.2). 47 

 48 

Indices are used in many chapters of this Report: in Chapter 4 for assessing changes in the global climate, in 49 

Chapter 8 for water cycle changes assessment, in Chapter 9 for oceans and the cryosphere, in Chapter 11 for 50 

assessing changes in extreme conditions, and in Chapter 12 for assessing CIDs and their changing 51 

characteristics due to climate change. The Atlas assesses changes in mean variables/indices (temperature, 52 

precipitation and snow). The Interactive Atlas includes indices of mean changes (for temperatures, 53 

precipitation, snowfall and wind) and a number of extreme indices and CIDs, allowing for flexible spatial 54 

and temporal analysis of the results.  55 
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AVI.2 Extreme indices selection 1 

 2 

In Chapter 11, extreme weather and climate events (collectively referred to as extremes) are assessed and the 3 

main focus is on extreme events over land. Since the analysis of extremes often involves the examination of 4 

the tails of the statistical distributions, a parametric or non-parametric approach can be used to define extremes. 5 

The non-parametric approach is largely adopted in most of the literature to characterize moderate temperature 6 

and precipitation extremes with shorter return periods. The Expert Team on Climate Change Detection and 7 

Indices (ETCCDI -https://www.wcrp-climate.org/etccdi) defined 27 indices to characterize different aspects 8 

of moderate temperature and precipitation extremes, which are described by (Frich et al., 2002; Alexander et 9 

al., 2006; Zhang et al., 2011; Donat et al., 2013; Sillmann et al., 2013), and were also extensively used in 10 

previous IPCC reports. In Chapter 11, a subset of these indices is assessed in detail (Section 11.3 and Section 11 

11.4). For events with longer return periods (e.g., events that occur once in 20 years or even rarer), the 12 

parametric approach based on Extreme Value Theory (EVT) (Coles, 2001) is used and adopted in the literature 13 

(e.g., (Kharin and Zwiers 2000; Brown et al. 2008; Kharin et al. 2013)). These events are also assessed 14 

throughout the chapter. Aside from temperature and precipitation, the chapter also assesses indices used to 15 

characterize droughts. Table AVI.1 list the indices used.  16 

 17 

 18 

[START TABLE AVI.1 HERE] 19 

 20 
Table AVI.1: Table listing extreme indices used in Chapter 11 21 

 22 

 23 

Extreme Label  Index name Units Variable 

Tempera

ture  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

TXx  Monthly maximum value of daily maximum 

temperature  

°C Maximum 

temperature 

TXn  Monthly minimum value of daily maximum 

temperature  

°C Maximum 

temperature 

TNn    Monthly minimum value of daily minimum 

temperature  

°C Minimum 

temperature 

TNx   Monthly maximum value of daily minimum 

temperature  

°C Minimum 

temperature 

TX90p Percentage of days when daily maximum 

temperature is greater than the 90th percentile  

% Maximum 

temperature 

TX10p Percentage of days when daily maximum 

temperature is less than the 10th percentile  

% Maximum 

temperature 

TN90p Percentage of days when daily minimum 

temperature is greater than the 90th percentile 

% Minimum 

temperature 

TN10p Percentage of days when daily minimum 

temperature is less than the 10th percentile  

% Minimum 

temperature 

ID Number of icing days: Annual count of days when 

TX (daily maximum temperature) < 0°C 

days Maximum 

temperature 

FD  Number of frost days: Annual count of days when 

TN (daily minimum temperature) < 0°C 

days Minimum 

temperature 

WSDI Warm spell duration index: Annual count of days 

with at least 6 consecutive days when TX >90th 

percentile  

days Maximum 

temperature 

CSDI Cold spell duration index: Annual count of days 

with at least 6 consecutive days when TN <10th 

percentile 

days Minimum 

temperature 

SU Number of summer days: Annual count of days 

when TX (daily maximum temperature) > 25°C 

days Maximum 

temperature 

TR Number of tropical nights: Annual count of days 

when TN (daily minimum temperature) > 20°C 

days Minimum 

temperature 
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DTR Daily temperature range: Monthly mean difference 

between TX and TN 

°C Maximum and 

minimum 

temperature 

GSL Growing season length: Annual (1st Jan to 31st Dec 

in Northern Hemisphere (NH), 1st July to 30th June 

in Southern Hemisphere (SH)) count between first 

span of at least 6 days with daily mean temperature 

TG>5°C and first span after July 1st (Jan 1st in SH) 

of 6 days with TG<5°C 

days Mean 

temperature 

20TXx One-in-20 year return value of monthly maximum 

value of daily maximum temperature  

°C Maximum 

temperature 

20TXn One-in-20 year return value of monthly minimum 

value of daily maximum temperature  

°C Maximum 

temperature 

20TNn One-in-20 year return value of monthly minimum 

value of daily minimum temperature  

°C Minimum 

temperature 

20TNx One-in-20 year return value of monthly maximum 

value of daily minimum temperature  

°C Minimum 

temperature 

Precipita

tion  

  

  

  

  

  

  

  

  

  

  

  

  

Rx1day Maximum 1-day precipitation mm Precipitation  

Rx5day Maximum 5-day precipitation mm Precipitation  

R5mm Annual count of days when precipitation is greater 

than or equal to 5mm 

days Precipitation  

R10mm Annual count of days when precipitation is greater 

than or equal to 10mm 

days Precipitation  

R20mm Annual count of days when precipitation is greater 

than or equal to 20mm 

days Precipitation  

R50mm Annual count of days when precipitation is greater 

than or equal to 50mm 

days Precipitation  

CDD Maximum number of consecutive days with less 

than 1 mm of precipitation per day 

days Precipitation  

CWD Maximum number of consecutive days with more 

than or equal to 1 mm of precipitation per day 

days Precipitation  

R95p Annual total precipitation when the daily 

precipitation exceeds the 95th percentile of the wet-

day (>1mm) precipitation 

mm Precipitation  

R99p annual precipitation amount when the daily 

precipitation exceeds the 99th percentile of the wet-

day precipitation 

mm Precipitation  

SDII Simple precipitation intensity index mm day-1 Precipitation  

20Rx1d

ay 

One-in-20 year return value of maximum 1-day 

precipitation  

mm day-1 Precipitation 

20Rx5d

ay 

One-in-20 year return value of maximum 5-day 

precipitation  

mm day-1 Precipitation 

Drought 

  

  

  

  

  

  

  

SPI Standardized Precipitation Index months Precipitation  

EDDI Potential evaporation, Evaporative Demand Drought 

Index  

months Evaporation  

SMA Soil moisture anomalies months Soil moisture 

SSMI Standardized Soil Moisture Index months Soil moisture 

SRI Standardized Runoff Index months Stream flow 

SSI Standardized Streamflow Index months Stream flow 

PDSI Palmer drought severity index months Precipitation, 

Evaporation 

SPEI Standardized precipitation evapotranspiration index months Precipitation, 

Evaporation, 
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Temperature 

  1 

[END TABLE AVI.1 HERE] 2 

 3 

 4 

Some of these indices are included in the Interactive Atlas allowing further analysis (seasons, regions, 5 

baselines and future periods – using both time-slices/scenarios and global warming levels): TXx, TNn, 6 

Rx1day, Rx5day, FD, CDD, and SPI. 7 

 8 

 9 

AVI.3 Climatic Impact-Drivers indices selection 10 

 11 

In Chapter 12, 33 CID types are identified on the basis of relevance for risks and impacts and available 12 

literature. They are classified into 7 categories: heat and cold, wet and dry, wind, snow and ice, coastal, 13 

oceanic, and other (see Tables 12.1 and 12.2). It would be impossible to cover all indices that have been 14 

developed in the literature. However, in order to illustrate how indices can inform on future regional climate, 15 

Chapter 12 and the Atlas use a limited number of indices to illustrate the main CIDs and their evolution with 16 

climate change. 17 

 18 

The selection of indices, as displayed in Chapter 12 and the Atlas, is based on expert judgement using the 19 

following guiding principles. The set of indices should: 20 

(i) describe the evolution of a manageable and illustrative number of indices, 21 

(ii) cover these categories, while giving more weight to those with a higher number of potential impacts 22 

as described in the literature,  23 

(iii) be used broadly in the literature, 24 

(iv) allow easy computation from publicly available model outputs and observations, or be accessible 25 

from published material through contact with the authors, 26 

(v) be well-evaluated in model simulations, or based on ECVs that are well-evaluated in model 27 

simulations, and 28 

(vi) represent CIDs of interest to regional impacts and risk assessments. 29 

 30 

The selection results in 16 regional indices that are reported in Table AVI.2. The description of the formulae 31 

used for processing is described below. 32 

 33 

 34 

AVI.3.1 Regional CID indices used in Chapter 12 and the Atlas 35 

 36 

Climatic impact-drivers indices 37 

 38 

Length of frost-free period (LFFP): Many ecosystems and crops are sensitive to frost conditions, and can 39 

only develop over a frost-free period (e.g., Wolfe et al., 2018); the length of frost-free period is calculated in 40 

the Atlas as in McCabe et al., (2015) by counting the number of days between the last spring frost and first 41 

fall frost using 0°C as a threshold for the daily minimum temperature and adjusting for season between 42 

hemispheres (from January to December in the Northern Hemisphere and from July to June in the Southern 43 

Hemisphere). 44 

 45 

Growing degree-days (GDD): Ecosystems and crop growth is often linked to a widely used index of 46 

thermal conditions, the cumulative number of degrees above a threshold (often between 0 and 10 °C, 47 

depending on species and farming system) during a given growing period.  In Chapter 12 and the Atlas we 48 

use 5°C as an indicative threshold, which was also used in Ruosteenoja et al., (2016), and the calculation is 49 

taken from this reference. GDD calculations sometimes include a high temperature threshold above which 50 

plant development does not occur (e.g., Mu et al., 2017), but no cap was employed for our calculations. The 51 

GDD index used here is therefore the accumulated sum of the difference between daily mean temperature 52 

and the threshold (when higher than the threshold) over the April-September months that forms the primary 53 

growing season for mid-latitude agricultural areas in the northern Hemisphere; and October-March for the 54 
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Southern hemisphere. 1 

 2 

Cooling Degree-days (CD): Energy consumption in hot environments typically depends on the excess of 3 

temperature above a given threshold, where cooling is required. In Chapter 12 and the Atlas we used the 4 

formulation of Spinoni et al., (2015), which uses the mean (TM), max (TX) and min daily (TN) temperature 5 

with the formula taken from this reference: 6 


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 7 

 8 

With Tb=22°C, then 9 

 10 


=

=
365

1i

iCDDCDD  11 

 12 

The difference between Chapter 12, Atlas, and the previous reference is that in this report the sum is 13 

cumulated over the entire year instead of 6 months, so it applies to all hemispheres. 14 

 15 

Number of days with maximum daily temperature above threshold (TXnn): The number of days with 16 

maximum temperature above a threshold can be critical for human health, infrastructure, ecosystems, and 17 

agriculture. Different thresholds are used for different crops, generally varying between 30 degrees and 40 18 

degrees (Hatfield and Prueger, 2015; Grotjahn, 2021)..  Chapter 12 uses the 35°C threshold globally (Figure 19 

12.4), which was identified as a critical temperature for maize pollination and production (Wolfe et al., 2008; 20 

Schlenker and Roberts, 2009; Hatfield et al., 2011, 2014; Lobell and Gourdji, 2012; Gourdji et al., 2013; 21 

Lobell et al., 2013; Deryng et al., 2014; Hatfield and Prueger, 2015; Tripathi et al., 2016; Schauberger et al., 22 

2017; Tesfaye et al., 2017) as well as a notable threshold for human health hazards (Kingsley, Eliot, Gold, 23 

Vanderslice, & Wellenius, 2016; Petitti et al., 2016). The Interactive Atlas includes both TX35 and TX40 24 

(both raw and bias adjusted; see Atlas 1.4.5).  25 

NOAA Heat Index (HI): HI is used by the US National Oceanic and Atmospheric Administration (NOAA) 26 

for issuing heat warnings and was applied in several studies that investigated adverse health impacts due to 27 

heat stress (e.g., Burkart et al., 2011; Lin et al., 2012; Kent et al., 2014). HI is calculated as multiple linear 28 

regression with temperature (TF in °F) and relative humidity (RH) as input variables (Steadman, 1979; 29 

Rothfusz, 1990): 30 

HI = {

HI1 + HIA1, if RH < 13 %   and   80 ∘F < 𝑇𝐹 < 112 ∘F
HI1 + HIA2, if RH > 85 %   and   80 ∘F < 𝑇𝐹 < 87 ∘F
HI1,      otherwise

 31 

with: 32 

HI1 = 𝑐0 + 𝑐1 ⋅ 𝑇𝐹 + 𝑐2 ⋅ RH + 𝑐3 ⋅ 𝑇𝐹 ⋅ RH + 𝑐4 ⋅ 𝑇𝐹
2 + 𝑐5 ⋅ RH2 + 𝑐6 ⋅ 𝑇𝐹

2 ⋅ RH + 𝑐7 ⋅ 𝑇𝐹 ⋅ RH2 33 

+𝑐8 ⋅ 𝑇𝐹
2 ⋅ RH2 34 

HIA1 = (13 − RH)/4 ⋅ √(17 − |𝑇𝐹 − 95 ∘F|)/17 35 

HIA2 = (RH − 85)/10 ⋅ (87 ∘F − 𝑇𝐹)/5 36 

𝑐0 = -42.379 ∘F, 𝑐1 = 2.04901523, 𝑐2 = 10.14333127 ∘F, 𝑐3 = -0.22475541, 37 

𝑐4 = -0.00683783 ∘F−1, 𝑐5 = -0.05481717 ∘F, 𝑐6 = 0.00122874 ∘F−1, 𝑐7 = 0.00085282 38 
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𝑐8 = -0.00000199 ∘F−1 1 

If HI < 80 ∘F, the following equation is used: 2 

HI = 0.5 ⋅ (𝑇𝐹 + 61 ∘F + 1.2 ⋅ (𝑇𝐹 − 68 ∘F) + 0.094 ∘F ⋅ RH) 3 

The calculated HI is converted into °C. 4 

HI is calculated for CMIP5, CMIP6 and CORDEX using daily mean near-surface specific humidity, daily 5 

mean surface pressure, and daily maximum near-surface air temperature. For CMIP5 and CMIP6, daily 6 

mean surface pressure is calculated from daily mean sea level pressure by applying a height adjustment (see 7 

Schwingshackl et al., (2021) for details) Additionally, HI is calculated for WFDE5, which is a bias adjusted 8 

version of the ERA5 reanalysis (Cucchi et al., 2020). Daily maximum temperature is calculated as 9 

maximum, daily mean pressure and humidity as average of the hourly WFDE5 variables near-surface air 10 

temperature, near-surface specific humidity, and surface air pressure. 11 

To quantify heat stress, yearly sums of daily HI threshold exceedances are calculated using a threshold of 12 

41°C, which corresponds to conditions that the US National Weather Service classifies into the category of 13 

“Danger” (Blazejczyk et al., 2012). Bias adjusted model simulations are used for calculating threshold 14 

exceedances of HI, employing the quantile delta mapping (QDM) approach as described by (Cannon et al., 15 

2015). The QDM approach adjusts the model data in the application period to fit the reference data in the 16 

reference period (using quantile mapping). Subsequently, the climate change signal is added for each 17 

quantile by considering the change between the model’s reference and application periods. QDM is directly 18 

applied to the HI data using WFDE5 as reference dataset and 1981-2010 as reference period. WFDE5 HI 19 

data are conservatively remapped to each model’s grid before bias adjustment is performed. QDM is applied 20 

on each grid point individually and for each month separately. The application periods are the IPCC periods 21 

1995-2014, 2041-2060, and 2081-2100 and 20-year periods for specific warming levels (1.5°C, 2°C, 3°C, 22 

and 4°C).  23 

Heating Degree-days (HD): symmetrical to the Cooling Degree Day index, the HD index is used for 24 

illustrating energy demand for heating. It has been used in several studies of impacts of climate change on 25 

the energy sector. The Atlas follow the formulation proposed by (Spinoni et al., 2015). The calculation 26 

follows: 27 

 28 


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0

4

42
 29 

 30 

With Tb=15.5°C, then 31 

 32 


=

=
365

1i

iHDDHDD  33 

 34 

Where TM, TX and TN correspond to daily mean, maximum and minimum temperature respectively. 35 

 36 

To account for various geographic zones, however, the HD index is cumulated over the entire year, instead 37 

of 6 months, as in the previous reference. This index is included in the Interactive Atlas. 38 

 39 

Number of frost days (FD): Frost affects crops (Barlow et al., 2015; Crimp et al., 2016; Cradock-Henry, 40 

2017; Mäkinen et al., 2018), and there has been a number of studies investigating changes in the number of 41 

ACCEPTED VERSIO
N 

SUBJE
CT TO FIN

AL E
DITS



Final Government Distribution Annex VI IPCC AR6 WGI 

Do Not Cite, Quote or Distribute AVI-9 Total pages: 15 

frost days, with various thresholds, mostly between -10°C and 2°C. In Chapter 12 and the Atlas, we use the 1 

simple threshold of 0°C for the daily minimum temperature to define frost days as in Table AVI.1. This 2 

index is included in the Interactive Atlas. 3 

 4 

River flood index using runoff (FI): As a flood indicator, the 100-year return value of discharge value (Q) 5 

has been used. The computation of the index follows Alfieri et al., (2015): 6 

 7 

1. Annual maximum river discharges are selected and an Extreme Value Type I (Gumbel) distribution 8 

is fitted on time slices of 30 years and an analytical function is obtained. 9 

2. The analytical function is used to estimate extreme discharge peaks with chosen return period 10 

Q(RP), by inverting the formulation of the Gumbel distribution:  11 

 12 
where α and ξ are the scale and location parameters of the analytical Gumbel distribution.  13 

 14 

3. The peak discharge corresponding to the 100-year return period, Q(RP=100), is then calculated. 15 

 16 

For CORDEX regional models the total runoff of each of the models has been used as an input of the 17 

hydrological model CHyM (Coppola et al., 2007, 2018) to produce the river discharge for all the European 18 

network. The Q(RP=100) value has been computed for each of the river segment and for each of the 29 19 

CHyM simulations. The results are shown in the regional Figures of 12.4.  20 

 21 

Standardized Precipitation Index (SPI): The SPI is a statistical index that compares cumulated 22 

precipitation for n months (n=6 or n=12) with the long-term precipitation distribution for the same location 23 

and cumulation period. The SPI months have been selected so SPI represent medium-term cumulated value 24 

and can be used to measure the medium term impact on river flow and reservoir storage (Mckee et al., 1993). 25 

 26 

The index is computed in this way: 27 

1. A monthly precipitation time series is selected (at least 30 years). 28 

2. The running average for the n-months window is computed.  29 

3. The Gamma distribution is used to fit the data. The fitting can be achieved through the maximum 30 

likelihood estimation of the Gamma distribution parameters.  31 

4. The values from this probability distribution are then transformed into a normal distribution, so that 32 

the mean SPI for the location and desired period is zero and the standard deviation is 1 (Edwards and 33 

McKee, 1997). 34 

 35 

Once SPI has been computed, the calculation of the Drought Frequency (DF) follows the method in (Spinoni 36 

et al., 2014): a drought event starts in the month when SPI falls below −1 and it ends when SPI returns to 37 

positive values, for at least two consecutive months.  38 

 39 

It has to be noted that the SPI index has been recognized to be difficult to interpret in high latitudes and in 40 

arid areas due to statistical issues linked to inaccuracies in the estimation of the Gamma function (Spinoni et 41 

al., 2014). The duration of 6 months is considered in Figure 12.4. 42 

 43 

This index is included in the Interactive Atlas, both SPI-6 and SPI-12 versions. 44 

 45 

Soil moisture (SM): 46 

 47 

The soil moisture index is used in Chapter 12 figures. It is simply using the total soil moisture content 48 

integrated over the soil depth, normalized by the recent past climatological values at each grid point. 49 

 50 

Snow season length (SWE100): Several studies use the Snow Water Equivalent (SWE) variable (variable 51 

snw in model outputs) in order to define a “snow season length” as the number of days with enough snow on 52 

the ground. This index is particularly important for the winter tourism sector (Damm et al., 2017; Jacob et 53 

al., 2018). Several thresholds are used to define a day with “enough snow on the ground”, with (Wobus et 54 
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al., 2017) marking 100mm as a key threshold for skiing. However, this index is important not only for winter 1 

tourism but also in other sectors such as water management. In several figures of Chapter 12 and the Atlas, 2 

the snow season length is calculated then as the number of days with SWE > 100mm, following the 3 

definition of (Damm et al., 2017; Wobus et al., 2017). Seasonal limits are given (November through March) 4 

for studies in the Northern hemisphere, and the index for the Southern Hemisphere is taken over the opposite 5 

season (May through September). SWE was assessed in several studies and its simulation depends on the 6 

representation of surface processes dealing with snow. Despite limitations, SWE was found to be useful in 7 

giving insight on the sign of changes (McCrary et al., 2017). When interpreting the figures shown in Chapter 8 

12 and the Atlas, one should also keep in mind that ‘altitudes’ are model altitudes and may not correspond to 9 

real ones due to the coarse resolution, and the changes can be quite sensitive to such effects. 10 

 11 

Extreme Total Water Level (ETWL): Factors contributing to extreme sea levels (ETWL) are sea level rise, 12 

storm surge (e.g. associated with tropical cyclones and extra-tropical cyclones), tide, and extreme waves 13 

(resulting in high wave setup at the shoreline). The ETWL used here is the summation of the aforementioned 14 

factors (Vitousek et al., 2017; Vousdoukas et al., 2018) and the commonly used 1 :100yr ETWL (the 100-15 

year ETWL return value) is adopted here as the index relevant to episodic coastal flooding. Here, the median 16 

ETWL, together with the associated 5% -95 % confidence interval, resulting from a fully probabilistic model 17 

that incorporates storm surge and waves derived from models forced by an ensemble of 6 GCMs, is used as 18 

the index relevant for long-term coastal erosion. 19 

 20 

Coastal Erosion (CE): Coastal erosion is generally accompanied by shoreline retreat, which can occur as a 21 

gradual process (e.g., due to sea level rise) or as an episodic event due to storm surge and/or extreme waves, 22 

especially when combined with high tide (Ranasinghe, 2016). The most commonly used shoreline retreat 23 

index is the magnitude of shoreline retreat by a pre-determined planning horizon such as 50 or 100 years into 24 

the future. Here, the median shoreline retreat, together with the associated 5% -95 % confidence interval, 25 

resulting from a fully probabilistic model that incorporates storm surge and waves derived from models 26 

forced by an ensemble of 6 GCMs, is used as the index relevant for long-term coastal erosion. 27 

 28 

Some of these indices are included in the Interactive Atlas allowing flexible analysis (seasons, regions, 29 

baselines and future periods – using both time-slices/scenarios and global warming levels): TX35 and TX40 30 

(both raw and bias adjusted; see Atlas 1.4.5), FD, CD, HD, SPI-6 and SPI-12. 31 

 32 

 33 

[START TABLE AVI.2 HERE] 34 

 35 
Table AVI.2: Regional CID indices table and relevant references. 36 

 37 

 38 
CID 

category 

Climatic impact-

driver (from 

Table 12.1) and 

potential affected 

sectors  

Index Required 

ECVs 

Way to 

calculate 

Bias 

adjustment 

References 

 
Heat 

Warming indicator 
for crops, 

ecosystems and 

hydrosystems 

Length of Frost-
Free period (LFFP) 

Tasmin from 
projections 

yes (Kunkel, 2004; McCabe et 
al., 2015; Wolfe et al., 

2018) 

Heat Warming indicator 
for agriculture and 

ecosystems 

yearly cumulated 
GDD over 5°C  

Tas from 
projections 

yes (Bonhomme, 2000; Cayton 
et al., 2015; Ruosteenoja et 

al., 2016) 

Heat Change in cooling 

demand for energy 
demand and 

building 

consumption 

CD above 22°C tas, tasmin, 

tasmax 

from 

projections 

yes (Spinoni et al., 2015, 2018) 

Heat Heat, with 

thresholds 

important for 

agriculture 

#days Tmax>35°C 

or 40°C (TX35, 

TX40) 

Tasmax from 

projections 

yes (Hatfield and Prueger, 

2015; Hatfield et al., 2015; 

Grotjahn, 2021) 

Heat Heat stress index 
combining 

NOAH Heat Index 
(HI) : Number of 

tasmax huss ps from 
projections 

yes (Burkart et al., 2011; Lin et 
al., 2012; Kent et al., 2014) 
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humidity used in 

occupational and 

industrial health  

days above 41°C 

threshold 

Cold Heating Degree 
Day for Energy 

consumption 

HD below 15.5°C tas, tasmin, 
tasmax 

from 
projections 

yes (Spinoni et al., 2015, 2018) 

Cold Frost #Frost days below 

0°C (FD) 

Tasmin from 

projections 

yes (Barlow et al., 2015; 

Rawlins et al., 2016) 

Wet River flooding Flood index (FI) srroff/ mrro from 
projections 

and simplified 

routing model 

no (Forzieri et al., 2016; 
Alfieri et al., 2017) 

Drought Aridity Soil Moisture (SM) mrso from 
projections 

no (Cook et al., 2020) 

Drought droughts SPI accumulated  

over 6 months and 

12 months (SPI-6 
and SPI-12) 

Pr from 

projections 

no  (Naumann et al., 2018) 

Wind & 

storm 

Mean wind speed Annual mean wind 

speed 

sfcWind from 

projections 

no (Karnauskas et al., 2018; 

Li et al., 2018) 

Snow/ice Snow season length Number of days 

with Snow Water 
Equivalent > 100 

mm. (SWE100) 

over the snow 
season (NOV-MAR 

for NH) 

Snw from 

projections 

no  (Damm et al., 2017; 

Wobus et al., 2017) 

Coastal Extreme Sea level 

(ETWL) inducing 
storm surges 

100-year return 

period level 
(ETWL) 

  data from 

authors 

 no (Vousdoukas et al., 2018) 

Coastal Coastal Erosion Shoreline retreat by 

mid, end century 

  data from 

authors 

 no (Vousdoukas et al., 2020) 

 1 

[END TABLE AVI.2 HERE] 2 

  3 
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