Chapter 6: Short-lived Climate Forces Supplementary Material

6 **Coordinating Lead Authors:**

7 Sophie Szopa (France), Vaishali Naik (USA)

9 Lead Authors:

- 10 Bhupesh Adhikary (Nepal), Paulo Artaxo (Brazil), Terje Berntsen (Norway), William D. Collins (USA),
- 11 Sandro Fuzzi (Italy), Laura Gallardo (Chile), Astrid Kiendler-Scharr (Germany/Austria), Zbigniew Klimont
- 12 (Austria/Poland), Hong Liao (China), Nadine Unger (UK), Prodromos Zanis (Greece)
- 13

8

1

14 **Contributing Authors:**

- 15 Wenche Aas (Norway), Dimitris Akritidis (Greece), Robert Allen (USA), Nicolas Bellouin (UK/France),
- 16 Sara Marie Blichner (Norway), Josep G. Canadell (Australia), William Collins (UK), Owen Cooper (USA),
- 17 Frank J. Dentener (EU/The Netherlands), Sarah Doherty (USA), Jean-Louis Dufresne (France), Sergio
- 18 Henrique Faria (Spain/Brazil), Piers Forster (UK), Tzung-May Fu (China), Jan Sigurd Fuglestvedt (Norway),
- 19 John C. Fyfe (Canada), Aristeidis K. Georgoulias (Greece), Matthew Gidden (Austria/USA), Nathan P.
- 20 Gillett (Canada), Paul Ginoux (USA), Paul Griffiths (UK), Jian He (USA/China), Christopher Jones (UK),
- 21 Svitlana Krakovska (Ukraine), Chaincy Kuo (USA), David S. Lee (UK), Maurice Levasseur (Canada),
- 22 Martine Lizotte (Canada), Marianne Tronstad Lund (Norway), Jean-François Müller (Belgium), Helène Muri
- 23 (Norway), Zebedee Nicholls (Australia), Jurgita Ovadnevaite (Ireland/Lithuania), Prabir Patra (Japan/India),
- 24 Fabien Paulot (USA/France), Pallav Purohit (Austria/India), Johannes Quaas (Germany), Joeri Rogelj
- 25 (Austria/Belgium), Bjørn Samset (Norway), Chris Smith (UK), Izuru Takayabu (Japan), Alexandra Tsimpidi
- 26 (Germany/Greece), Steven Turnock (UK), Rita Van Dingenen (Belgium), Hua Zhang (China), Alcide Zhao
 27 (UK/China)
- 27

29 **Review Editors:**

30 Yugo Kanaya (Japan), Michael Prather (USA), Nourredine Yassaa (Algeria)31

32 Chapter Scientist:

- 33 Chaincy Kuo (USA)
- 34

36

- 35 Date of Draft: 3 May 2021
- 37 **Notes:** TSU compiled version
- 38 39

1	Table of	^c Contents
2		
3		
4	6.SM.1	Methodology for Emission based ERF
5	6.SM.2	ERF and GSAT timeseries from emulators for individual compounds over the historical period 3
6 7	6.SM.3	Regression coefficient of annual mean surface ozone and PM _{2.5} against annual surface temperature change
8	6.SM.4	Effect on GSAT of a one year pulse of present-day emissions after 20 and 100 years7
9 10	6.SM.5	Methodology to compute source sector apportionment for surface air pollutants using TM5-FASST
11	6.SM.6	Data Table
12	Reference	zes
13		
14		
15		
16		
17		

18

6.SM.1 Methodology for Emission based ERF

2 Emission-based ERFs are assessed (Figure 6.12) based on multi-model attribution experiments performed 3 under AerChemMIP (Collins et al., 2017) and analyzed by (Thornhill et al., 2021). The attribution 4 experiments are done with the precursors emissions individually perturbed (except CO and NMVOCs that 5 were done together). Due to the non-linear chemistry and microphysics of the atmosphere, the sum of the 6 emission-based contributions to ERF will not be equal to the concentration-based estimates (Figure 7.6)

7

1

8 The simulations in (Thornhill et al., 2021) are for the 1850-2014, and estimates for the emission-based ERFs 9 have been extrapolated to the full 1750-2019 period based on the updated emission estimates from the 11 10 September 2020 version of the Community Emissions Data System (CEDS) is used (Hoesly et al., 2018),

- 11 obtained from https://doi.org/10.5281/zenodo.4025316 (cf 7.SM.1.4)
- 12

For the ozone ERF, in the AerChemMIP experiments the methane concentrations have been kept fixed when 13 14 the individual precursors are perturbed (e.g. NO_x). This means that methane is not governed by its emissions and the atmospheric chemistry. Thus, adjustments have been done to consider the differences between CH₄ 15

16 concentrations that would have been reached in a free to adjust simulation and a CH₄-fixed simulation. As a

17 consequence of this CH₄ adjustment, a correction has to be applied to all the chemical species which are

18 affected by CH₄ modification, either through chemistry itself (e.g. lifetime) or through stratospheric H₂O

19 changes and cloud changes. Despite these corrections, some non-linear effects in the chemistry can not be

- 20 fully captured and result in differences between the emission-based radiative forcing and the concentration-
- 21 based radiative forcing (Figure 7.6 and 7.SM.1.4). So finally, only the proportion of the individual effect is 22 kept from this methodology and applied to the concentration-based ERF which has been determined in a way
- 23 that allow to consider all the non-linearities.
- 24

25 The emission based ERF estimates for aerosols and aerosol precursors are based on the AerChemMIP 26 simulations (Thornhill et al., 2021). The contribution from aerosol radiation interaction (ari) is calculated as 27 the difference between the total ERF and ERFaci. Thus, the non-cloud adjustments are included as aerosol 28 radiation interaction. For NH₃ emissions ERFaci was not available, the ERF is contributed only to aerosol 29 radiation interaction. As for the ozone precursors, only the proportion of the individual effect is kept from 30 this methodology and applied to the concentration-based ERF.

31

32 For CO_2 the fraction of CO_2 in the atmosphere originating from anthropogenic emissions of non- CO_2

33 emissions must be subtracted from the concentration based estimate. The sum of Carbon emissions over the

34 historical period of CH₄, halocarbons, NMVOC + CO is estimated to be 6.6, 0.02, 26 Gt(C) respectively. 35 This includes a rough assumption that 25%, 0%, 50%, 0% (CH₄, halocarbons, NMVOC, CO) of reactive

36 intermediates such as formaldehyde are lost to deposition. Also assumes that 12% of methane C is still in the

37 atmosphere as methane (Stevenson et al., 2013). Using the (Joos et al., 2013) CO₂ response function to

38 convolve the time profile of emissions gives a rise in CO_2 of 110 ppb that is proportionally subtracted from 39 the CO₂ total.

40 For the halogenated species, the ERFs for CFCs and HCFCs are taken from Thornhill et al. (2021), and

41 adjusted to include emissions up to 2019. The ERF from HFCs, taken from the concentration-based

42 estimates (7.SM.1.4) are added, neglecting small effects through changes in OH concentrations affecting

- 43 HFC lifetime.
- 44 45

46 6.SM.2 ERF and GSAT timeseries from emulators for individual compounds over the historical period

47

48 GSAT change in response to ERF from SLCFs has been estimated using an emulator (see cross chapter box

49 7.1 and 7.SM.2) and presented in Figures 6.12, 6.15, 6.22 and 6.24. The emulator used is an impulse

- 50 response function (IRF) based on the two-layer energy balance model.
- 51 When the ERF time series is known, the response in GSAT at time *t* is given by:
- 52
- $GSAT(t) = \int_{t'=0}^{t} ERF(t') \cdot IRF(t-t')dt'$ Where t'=0 denotes the time when the emission perturbation started, e.g. anthropogenic emissions since 53 54 1750.

6.SM

- The IRF used here has been calibrated according to the procedure given in 7.SM.2, and is given by:
- 1 2

3

$$IRF(t) = \sum_{j=1}^{J} \frac{c_j}{d_j} \exp\left(-\frac{t}{d_j}\right)$$

4 where the parameters c_i determine the equilibrium climate response and d_i are timescales of the fast and slow

5 modes of the climate system response, and J=2 here. The parameter values are: $d_1 = 3.4$ years and $d_2 = 285$ years, $c_1 = 0.44 \text{ K/(W m}^{-2})$ and $c_2 = 0.32 \text{ K/(W m}^{-2})$, corresponding to an ECS of 3.0K.

- 6
- Figure 6.12 shows the historical emission based contributions to GSAT (1750-2019). For this analysis the 7
- 8 emission based ERF time series are based on the AerChemMIP simulations (Thornhill et al., 2021), and 9 described in 6.SM.1 and 7.SM.1.4. The emission-based assessment of ERF (6.SM.1) provides ERFs for 2019
- 10 relative to 1750, and to establish the ERF time series over the whole historical period, these were scaled back
- 11 according the historic emissions, i.e. assuming a liner relation between emissions and ERF historically.
- Figure 6.15 shows the GSAT response to step emission reductions of idealized climate forcers with different 12
- lifetimes. All forcers are assumed to give an ERF of -1.0 Wm⁻² when a new equilibrium concentration is 13
- 14 reached. With this assumption the ERF(t) is given by:

15
$$ERF(t) = -1.0 Wm^{-2} \cdot (1 - e^{-\frac{t}{\tau}})$$

- 16 Where τ is the atmospheric lifetime of the climate forcer.
- Figure 6.22 and 6.24 show the contributions to GSAT from individual SLCFs, or groups of SLCFs, with an 17
- 18 abundance-based perspective. The ERF time series are from the assessment of chapter 7 of this report and
- 19 details are given in 7.SM.1.4.
- 20

6.SM.3 Regression coefficient of annual mean surface ozone and PM_{2.5} against annual surface temperature change.

6 [START FIGURE 6.SM.1 HERE]

Figure 6.SM.1: Spatial pattern of the regression coefficient of annual surface ozone change (ssp370SST-ssp370pdSST) over annual surface temperature change (ssp370SST-ssp370pdSST) (ppb °C⁻¹) during the time period from 2015 to 2100, for the CMIP6 ensemble average (GFDL-ESM4, GISS-E2-1-G, MRI-ESM2-0, UKESM1-0-LL). Regions without dots indicate that modelled regression coefficients are statistically significant (at the 95% significance level) and agree on the sign for at least three out of four models.

[END FIGURE 6.SM.1 HERE]

- $\frac{1}{28}$

[START FIGURE 6.SM.2 HERE]

Figure 6.SM.2: Spatial pattern of the regression coefficient of annual surface PM_{2.5} concentrations change (ssp370SST-ssp370pdSST) over annual surface temperature change (ssp370SST-ssp370pdSST) (μg m⁻³ °C⁻¹) during the time period from 2015 to 2100, for the CMIP6 ensemble average (GFDL-ESM4, GISS-E2-1-G, MRI-ESM2-0). Regions without dots indicate that modelled regression coefficients are statistically significant (at the 95% significance level) and agree on the sign for at least two out of three models.

[END FIGURE 6.SM.2 HERE]

6.SM.4 Effect on GSAT of a one year pulse of present-day emissions after 20 and 100 years.

[START FIGURE 6.SM.3 HERE]

1

2

Figure 6.SM.3: Global-mean temperature response 20 and 100 years following one year of present-day (year 2014) emissions.

[END FIGURE 6.SM.3 HERE]

The temperature responses in Figure 6.16 and 6.SM.3 were calculated using the concept of absolute global temperature change potential (AGTP) (Shine et al., 2005), i.e., an emission-metric-based emulator of the climate response to individual emitted species. The approach and further details are documented in Lund et al. (2020). The emissions were taken from the Community Emissions Data System (CEDS) for year 2014 18 (Hoesly et al., 2018), with the exceptions of HFCs, which originate from Purohit et al. (2020) and consider 19 HFCs with a lifetime shorter than 50 years, open biomass burning from van Marle et al. (2017), and aviation 20 water vapour from Lee et al. (2020). The split between fossil fuel and biofuel emissions in the residential 21 sector, and between the fossil fuel production and distribution and combustion in the energy sector, is based 22 on the GAINS model (ECLIPSE version 6b dataset: 23 https://iiasa.ac.at/web/home/research/researchPrograms/air/Global emissions.html). CO₂ emissions are

excluded from open biomass burning and residential biofuel use due to their unavailability in CEDS and uncertainties around non-sustainable emission fraction.

- 25 26
- Aviation specific AGTPs have been calculated for Figure 6.SM.3 using the method described in Lund et al.
- 28 (2020) and the best estimate radiative forcing values from Lee et al. (2020). For the HFCs , the AGTPs were
- derived from Hodnebrog et al. (2020). The AGTPs of BC, SO₂ and OC account for the direct aerosol effect
- 30 due to aerosol-radiation interactions and are scaled to account for the semi-direct of BC due to rapid
- adjustments and indirect radiative forcing through aerosol-cloud interactions of sulfate aerosols, respectively.
 All AGTPs used in the temperature response calculations now include a carbon-climate feedback term based
- 32 An AGTES used in the temperature response calculations now include a carbon-climate reedback term based 33 on the framework by Gasser et al. (2017), except those for HFCs. Avia-contrail refers to the impact from
- linear contrail formation and subsequent spreading to cirrus clouds and Avia-stratH₂O to the direct impact of
- 35 aircraft water vapour emissions.

6.SM

The error bars show the range (5-95% interval) in net temperature impact due to uncertainty in radiative

- 2 forcing only. This uncertainty range is calculated using a Monte Carlo approach and estimates of
- uncertainties in global-mean RF of individual species from the literature see Lund et al. (2020) for details. 3
- 4 The uncertainty in the RF of individual halocarbons was not included due to lack of available data. 5
- The AGTP applies an impulse response function (IRF) to calculate the temperature response as a function of 6 7 time to a given forcing. The IRF is given by:

$$IRF(t) = \sum_{j=1}^{J} \frac{c_j}{d_j} \exp\left(-\frac{t}{d_j}\right)$$

9

17

20

8

1

10 where c_i and d_i are constants and timescales of the fast and slow model of the climate system response, 11 respectively, and j=2 here. The IRF used in Lund et al. (2020) is based on Geoffroy et al. (2013), which yields $d_1 = 4.1$ years and $d_2 = 249$ years, $c_1 = 0.519$ K/(Wm⁻²) and $c_2 = 0.365$ K/(Wm⁻²), corresponding to an 12 ECS of 3.5K. Note that the IRF used for calculations of GSAT for figures 6.12, 6.15, 6.22 and 6.24 use an 13 14 IRF calibrated to the assessment of ECS and TCR as given in Chapter 7 of this report, and thus use slightly 15 different values for the c_i and d_i constants (see 6.SM.2). 16

18 6.SM.5 Methodology to compute source sector apportionment for surface air pollutants using TM5-19 FASST

21 Here we provide description of the methodology used to calculate the source sector apportionment for PM_{2.5} 22 and ozone (Figure 6.17). Furthermore, Figures 6.SM4 and 6.SM.5 show a comparison of TM5-FASST and 23 ESM models responses to changes in emissions of PM_{2.5} precursors and ozone.

24 25 TM5-FASST is a reduced-form source-receptor model, describing the surface level spatial response of a 26 pollutant metric (concentration, exposure, deposition) to changes in precursor emissions. The model is 27 constructed from pre-computed emission-concentration transfer matrices between pollutant source regions 28 and receptor regions. These matrices reflect underlying meteorological and chemical atmospheric processes 29 for a predefined set of meteorological and emission data and have the advantage that concentration responses 30 to emission changes are obtained by a simple matrix multiplication, avoiding expensive numerical 31 computations.

33 TM5-FASST's source-receptor matrices have been derived with the chemistry-transport model TM5, by 34 applying 20% emission perturbations on a reference emission set (RCP year 2000, year 2001 meteorology) 35 for individual precursors and 56 source regions. The total concentration of component (or metric) *j* in 36 receptor region y, resulting from given emissions E of all n_i precursors i at all n_x source regions x, is obtained 37 as a perturbation on the base-simulation concentration, by summing up all the respective source-receptor 38 coefficients A, scaled with the actual emission perturbation: 39

40
$$C_j(y) = C_{j,ref}(y) + \sum_{k=1}^{n_x} \sum_{i=1}^{n_i} A_{ij}[x_k, y] \cdot [E_i(x_k) - E_{i,ref}(x_k)]$$
 (1)

41

32

where $A_{ij}[x_k, y] = \frac{\Delta C_{j,ref}(y)}{0.2E_{i,ref}(x_k)}$, the pre-computed source-receptor coefficient for source region x_k to receptor 42

43 region y, for precursor i contributing to metric/pollutant j. The computational efficiency from the linearized 44 emission-concentration sensitivities comes at some cost of accuracy, in particular because the model 45 bypasses underlying mechanisms describing chemical and meteorological feedback processes that could lead

- 46 to non-linear responses.
- 47
- 48 TM5-FASST computes PM_{2.5} concentrations from precursor emissions of SO₂, NO₃, NH₃, elemental carbon
- 49 and particulate organic matter. Secondary organic matter from anthropogenic emissions is not included.
- 50 Ozone concentrations and long-term exposure metrics are computed from NO_x, non-methane volatile organic
- 51 compounds (NMVOC) and methane precursor emissions. CO as ozone precursor is not included. The 52
- methane-ozone response is assumed to be instantaneous, neglecting the 11 year response time (Fiore et al., **Do Not Cite, Quote or Distribute**

[START FIGURE 6.SM.4 HERE]

2008)

1 2 3

4

5

The computational efficiency of TM5-FASST allows for multiple runs exploring source attribution by region or emission source. We estimate the relative contribution of individual emission sectors shown in Figure 6.17 by subtracting their emissions one by one from the total emissions in Eq. (1) and computing the resulting concentration. Subtracting this result from the total concentration (Eq. 1) yields each sector's contribution (Karagulian et al., 2016).

6 7 8

9 TM5-FASST has been extensively documented and evaluated by (Van Dingenen et al., 2018). The model 10 has been applied in a variety of assessment studies (e.g., Aakre et al., 2018; Brauer et al., 2016; Crippa et al., 11 2019; Harmsen et al., 2020; Kühn et al., 2020; Markandya et al., 2018; Rao et al., 2017; Rauner et al., 2020; 12 Vandyck et al., 2020). Validation studies in Van Dingenen et al. (2018) show that, despite inherent 13 simplifications and caveats, large scale PM_{2.5} and O₃ responses to emission changes in TM5-FASST 14 compare well with the chemical transport model TM5. Figure 6.SM.4 and 6.SM.5 compare TM5-FASST 15 regional $PM_{2.5}$ and O_3 responses to emission changes with the ensemble of ESM models for selected SSP scenarios. In nearly all cases TM5-FASST results fall within ±1 standard deviation of the CMIP6 ESM 16 17 ensemble. Notable differences are observed for the SSP scenarios and regions representing more extreme 18 emission changes (in particular for the low emission scenarios in Southern Asia). As documented by Van 19 Dingenen et al. (2018), both for $PM_{2.5}$ and O_3 the differences with full process models can be attributed to 20 non-linear responses to NO_x emission reductions that are not captured by the linearized source-receptor 21 model.

22

23

23 24

25 26

27

Eastern Asia North America Europe Eurasia Change in surface PM2.5 Change in surface PM_{2.5} 2.3 +/- 0.4 5.1 +/- 0.3 4.1 +/- 0.3 17.2 +/- 5. 10 10 5 5 ш_3) 0 0 Έ -5 6rl) Ē -10 -10 -15-15-20-20Middle East Latin America and Carribean Africa Southern Asia 10 5.7 +/- 1.2 18.5 +/- 4.1 183 + 1 - 8022.5 +/- 6 1 10 5 5 (mg m_3) m_3) 0 0 -5 -5 ET) -10-10 -15 -15 -20 -20 2020 2040 2060 2080 2100 South-East Asia and Developing Pacific Globa Asia-Pacific Developed 6.6 +/- 0.5 6.1 +/- 2.0 9.9 + 1 - 2.410 5 ssp126 ssp245 m_3) 0 ssp370 -5 ssp370-lowSLCF-lowCH4 ji j -10ssp585 TM5-FASST -15 -20 2020 2040 2060 2080 2100 2020 2040 2060 2080 2100 2060 2080 2100 2020 2040

Do Not Cite, Quote or Distribute

Figure 6.SM.4: Future global and regional changes in annual mean surface PM_{2.5}, relative to 2005-2014 mean, for the different SSPs used in CMIP6. Each line represents a multi-model mean across the region with shading representing the ± 1 standard deviation in the mean. Dots represent TM5-FASST results. The multi-model regional mean value (± 1 standard deviation) for the year 2005-2014 is shown in the top left corner of each panel.

[END FIGURE 6.SM.4 HERE]

[START FIGURE 6.SM.5 HERE]

Do Not Cite, Quote or Distribute

[END FIGURE 6.SM.5 HERE]

left corner of each panel.

different SSPs used in CMIP6. Each line represents a multi-model mean across the region with

shading representing the \pm standard deviation in the mean. Dots represent TM5-FASST results. The

multi-model regional mean value (± 1 standard deviation) for the year 2005-2014 is shown in the top

6.SM

6.SM.6 Data Table

[START TABLE 6.SM.1 HERE]

 Table 6.SM.1:
 Input Data Table. Input datasets and code used to create chapter figures.

6 7 8

5

Figure number/Ta ble number/C hapter section (for calcuations)	Dataset name	Type of dataset	Filename	License type	Dataset citation	Dataset DOI/URL	Citation for relevant papers
Figure 6.3	Community Emissions Data System (CEDS)	Input dataset		Public	(Hoesly et al., 2018)	http://www.globalchange.umd.edu/ceds/	
Figure 6.4	CMIP6, ScenarioMIP, Tropospheric Ozone Assessment Report (TOAR), Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)	Input dataset	CMIP6 Models UKESM1-LL-0, CESM2-WACCM, GFDL-ESM4, MRI-ESM2-0,GISS-E2.1-G. Experiments : Historical experiment, ssp370	public	(Eyring et al., 2016; O'Neill et al., 2016)	https://esgf-node.llnl.gov/search/cmip6/	(Young et al., 2013, 2018; DuplicateGriff iths et al., 2020)
	Observational datasets TOST, IASI-FORLI, IASI- OFRID,OMI/MLS, OMI-SAI, OMI- RAL:	Input dataset		public		https://doi.org/10.1525/elementa.291.t1	(Gaudel et al., 2018)

	CMIP6 model data						
	CESM2-WACCM:	Input			(Danabas		
	historical, ssp370	dataset			oglu,		
					2019b.		
					2019c)		
	GFDL-ESM4:	Input			(John et		
	esm-hist, historical.	dataset			al		
	ssp370				2018c		
	1				Krasting		
					Ki asung		
					2019h		
					20180,		
	CIEC E2 1 C.	Incore			2018a		
	GISS-E2-I-G:	Input			(NASA		
	mstorical, ssp570	dataset			Goddard		
					Institute		
					for Space		
					Studies		
					(NASA/G		
					ISS),		
					2018,		
					2020h)		
	MRI-ESM2-0:	Input			(Yukimot		
	historical, ssp370	dataset			o et al.,		
					2019g,		
					2019c)		
	UKESM1-0-LL:	Input			(Good et		
	historical, ssp370	dataset			al.,		
					2019c;		
					Tang et		
					al., 2019)		
Figure 6.5	IAGOS-CORE	Input	decadal	public	(Gaudel et	http://www.iagos-	(Cooper et al.,
-		dataset		÷	al., 2020)	data.fr/portal.html#TimeseriesPlace:	2020)
Figure 6.6	Merged	Input	GOME_SCIAMACHY_GOME2a	public		http://www.temis.nl/airpollution/no2.ht	(Georgoulias
	GOME/SCIAMAC	dataset	b_TroposNO2_v2.3_041996-			ml	et al., 2019)
	HY/GOME-2		092017_temis.nc				
	(TM4NO2A						

	version 2.3)					
Figure 6.7	EPA PM _{2.5} aerosol component	Input dataset	Monthly-average 2000-2018	public	https://aqs.epa.gov/aqsweb/airdata/downloa d_files.html.	(Solomon et al., 2014)
	IMPROVE aerosol	Input dataset	Monthly-average daily 2000-2018	public	http://views.cira.colostate.edu/fed/QueryWi zard/Default.aspx	
	EMEP PM _{2.5} aerosol component	Input dataset	Monthly-average 2000-2018	public	https://www.emep.int/	
	Network Center for EANET, EANET Data on the Acid Deposition in the East Asian Region, PM _{2.5} aerosol	Input dataset	Monthly-average 2001-2017	public	https://www.eanet.asia/document/public/ind ex	
	SPARTAN PM _{2.5} aerosol component	Input dataset	Monthly-average 2013-2019	public	https://www.spartan-network.org/	(Snider et al., 2015)
	observational field campaigns PM _{2.5} aerosol component over Latin America and Caribbean, Africa, Europe, Eastern Asia, and Asia-Pacific Developed	Input dataset		public		(Celis et al., 2004; Feng et al., 2006; Mariani and de Mello, 2007; Molina et al., 2007, 2010; Bourotte et al., 2007; Fuzzi et al., 2007; Mkoma, 2008; Favez et al., 2008; Aggarwal and Kawamura, 2009; Mkoma et al., 2010; Martin et al., 2010; Radhi et al., 2010; Weinstein et

		Intermed				Code to be placed in https://github.com/IPCC-WG1	al., 2010; de Souza et al., 2010; Batmunkh et al., 2011; Pathak et al., 2011; Gioda et al., 2011; Zhang et al., 2012; Zhao et al., 2013; Cho and Park, 2013; Wang et al., 2019; Kuzu et al., 2020)
F ! (0		dataset					
Figure 6.8	CMIP6 Ambient Aerosol Optical Thickness at 550nm	Input dataset Annual average	historical experiment, Models ACCESS-CM2, BCC-ESM1, CESM2-FV2,CESM2- WACCM,CESM2,CNRM-CM6- 1,CNRM-EMS2- 1,CanESM5,E3SM-1-0,GFDL- CM4,GFDL-ESM4,GISS-E2-1- G,HadGEM3-GC31-LL,INM- CM4-8,IPSL-CM6A-LR,KACE- 1-0-G,MIROC-ES2L,MPI-ESM- 1-2,MPI-ESM1-2-HR,MPI- ESM1-2-LR,MRI-ESM2- 0,NorESM2-LM,UKESM1-0-LL		(Eyring et al., 2016; O'Neill et al., 2016)		
Figure 6.9	CMIP6, mole fraction hydroxyl in air	Input dataset Decadal average	Models UKESM1-0LL, GFDL- ESM4, CESM2-WACCM	public	(Eyring et al., 2016)	https://esgf-node.llnl.gov/search/cmip6/	(Montzka et al., 2011; Rigby et al., 2017; Turner et al., 2017;

							Nicely et al., 2018; Naus et al., 2019; Patra et al., 2021)
	CMIP6 model data						
	CESM2-WACCM:	Input			(Danabaso		
	historical	dataset			glu, 2019b)		
	GFDL-ESM4:	Input			(Krasting		
	historical	dataset			et al., 2018b)		
	UKESM1-0-LL:	Input			(Tang et		
	historical	dataset			al., 2019)		
Figure 6.10	CMIP6:	Input	Models, MIROC6, MPI-I-ESM-	public	(Eyring et	https://esgf-node.llnl.gov/search/cmip6/	(Myhre et al.,
	AerChemMIP	dataset	1-2-HAM,GISS-E2-1-G,		al., 2016;		2013)
	experiments	A	NOTESM2-LM, MRI-ESM2-0,		$\frac{1}{2017}$		
	histSST and	d from	GFDL-ESM4, UKESM-0-LL		al., 2017)		
	Output variable	monthly					
	rsut and rlut	output					
		Intermed				Code to be placed in	
		iate				https://github.com/IPCC-WG1	
		dataset				TBD	
	CMIP6 model data						
	GFDL-ESM4:	Input			(Horowitz		
	histSST, histSST-	dataset			et al.,		
	piAer				2018b,		
	CIEC E2 1 C.	Tarant			2018a)		
	GISS-E2-1-G:	Input			(NASA Goddard		
	niAer	ualasei			Institute		
	philor				for Space		
					Studies		
					(NASA/GI		
					SS),		
					2019a,		
					2019b)		

	MIROC6: histSST,	Input			(Takemura		
	histSST-piAer	dataset			, 2019a,		
					2019b)		
	MPI-ESM-1-2-	Input			(Neubauer		
	HAM: histSST,	dataset			et al.,		
	histSST-piAer				2019b,		
					2019a)		
	MRI-ESM2-0:	Input			(Yukimoto		
	histSST, histSST-	dataset			et al.,		
	piAer				2019a,		
	-				2020a)		
	NorESM2-LM:	Input			(Oliviè et		
	histSST, histSST-	dataset			al., 2019b,		
	piAer				2019a)		
	UKESM1-0-LL:	Input			(O'Connor		
	histSST, histSST-	dataset			, 2019b,		
	piAer				2019a)		
Figure 6.11	CMIP6:	Input	Models, MIROC6, MPI-I-ESM-	public	(Eyring et	https://esgf-node.llnl.gov/search/cmip6/	(Myhre et al.,
C	AerChemMIP	dataset	1-2-HAM,GISS-E2-1-G,	•	al., 2016;		2013)
	experiments		NorESM2-LM, MRI-ESM2-0,		Collins et	Code to be placed in	
	histSST and	Average	GFDL-ESM4, UKESM-0-LL		al., 2017)	https://github.com/IPCC-WG1	
	histSST-piAer.	d from			. ,	TBD	
	Output variable	monthly					
	rsut and rlut	output					
		1					
	Dete site there a						
	Data citations	.	1	<u> </u>			
	GFDL-ESM4:	Input			(Horowitz		
	histSST, histSST-	dataset			et al.,		
	piAer				2018b,		
		.			2018a)		
	GISS-E2-1-G:	Input			(NASA		
	histSST, histSST-	dataset			Goddard		
	piAer				Institute		
					for Space		
					Studies		
					(NASA/GI		
					SS),		
					2019a,		

Do Not Cite, Quote or Distribute

6SM-16

				r	20101		
					20196)		
	MIROC6: histSST,	Input			(Takemura		
	histSST-piAer	dataset			, 2019a,		
	-				2019b)		
	MPI-ESM-1-2-	Input			(Neubauer		
	HAM: histSST.	dataset			et al		
	histSST-piAer				2019b.		
	motober printer				2019a		
	MRI_FSM2_0	Input			(Yukimoto		
	histSST histSST	dataset			(Tukinoto		
		ualaset			2010		
	piAei				2019a,		
		Tara			2020a)		
	NorESM2-LM:	Input			(Olivie et		
	histSST, histSST-	dataset			al., 2019b,		
	piAer				2019a)		
	UKESM1-0-LL:	Input			(O'Connor		
	histSST, histSST-	dataset			, 2019b,		
	piAer				2019a)		
Figure 6.12	CMIP6,	Input			(Eyring et	https://esgf-node.llnl.gov/search/cmip6/	(Ghan, 2013;
_		dataset			al., 2016)		DuplicateTh
						Code to be placed in	ornhill et al
						https://github.com/IPCC-WG1	2021
						TBD	2021)
Figure 6.13	CMIP6 [,]	Intermed	Models MIROC6_MRI-ESM2-0		(Evring et	Code to be placed in	
i igui e oire	AerChemMIP	iate	NorFSM2-I M GFDI -FSM4		al 2016	https://github.com/IPCC-WG1	
	experiments	dataset	GISS-F2-1-G UKESM1-0-LI		Collins et	TBD	
	bistorical and hist	ualaset	0155-E2-1-0, 0KE5W1-0-EE.		$a_1 = 2017$	TBD	
					al., 2017)		
	piAer.						
	Output variable tas						
D ' (14		T		1.1*			
Figure 6.14	CIVIIP6 historical	Input	Models GFDL-ESM4, GISS-E2-	public	(Eyring et	nttps://esgf-node.lini.gov/search/cmip6/	
	experiment,	dataset	1-G,MRI-ESM2-0,UKESM1-0-		al., 2016;		
	AerChemMIP		LL		Collins et	Code to be placed in	
	experiments	Monthly			al., 2017)	https://github.com/IPCC-WG1	
	ssp370	mean				TBD	
	ssp370SST,						
	ssp370pdSST						
	experiments						
	experiments.						

6.SM

	Output variables						
	o3 tas						
	Data citations		1			1	I
	GFDL-ESM4:	Input			(Horowitz		
	ssp370SST,	dataset			et al.,		
	ssp370pdSST				2018c,		
		.			2018d)		
	GISS-E2-1-G:	Input			(NASA Coddord		
	ssp3/0SS1, ssp370pdSST	dataset			Goddard		
	ssp570pus51				for Space		
					Studies		
					(NASA/GI		
					SS),		
					2020b,		
					2020a)		
	MRI-ESM2-0:	Input			(Yukimoto		
	ssp3/0SS1,	dataset			et al.,		
	ssp570pu551				20190, 2020b)		
	UKESM1-0-LL:	Input			(O'Connor		
	ssp370pdSST,	dataset			, 2020b,		
	ssp370SST				2020a)		
Figure 6.15	CMIP6,	Input	Models GFDL-ESM4, GISS-E2-	public	(Eyring et	https://esgf-node.llnl.gov/search/cmip6/	
	ScenarioMIP	dataset	1-G, MRI-ESM2-0, UKESM1-0-		al., 2016;		
	experiments	OUTDU	LL		O'Neill et		
	ssp370pdSST				al., 2016)		
	ssporopusor	FREQU					
	Mole fraction of	ENCY					
	ozone						
Figure 6.16	CMIP6,	Input	CMIP6 models GFDL-ESM4,	public	(Eyring et	https://esgf-node.llnl.gov/search/cmip6/	
	ScenarioMIP	dataset	GISS-E2-1-G, MRI-ESM2-0		al., 2016;		
	experiments	OUTDU	and UKESM1-0-LL		O'Neill et		
	ssp3/0881,				al., 2016)		
	sshavahara	FREOU					
		ENCY					

Figure 6.17	CMIP6.	Input	GFDL-ESM4, BCC-ESM1,	public	(Evring et	https://esgf-node.llnl.gov/search/cmip6/	
- gur e ovri	ScenarioMIP	dataset	CESM2-WACCM and UKESM1-	Puelle	al., 2016:		
	Mole fraction of	Guildoot	0-LL for ssp370_GFDL-ESM4		O'Neill et		
	ozone	Intermed	BCC-ESM1 and CESM2-		al 2016)		
	020me	iate data	WACCM for ssp370-lowNTCF.		un, 2010)		
		Tuto uutu	GFDL-ESM4 and UKESM1-0-LL				
			for SSP1-2.6. SSP2-4.5 and SSP5-				
			8.5				
Figure 6.20	GEIA/ACCENT	Input		public		http:// gejacenter.org	(Lamarque et
Figure 6.21	gridded emissions	dataset		I			al., 2010)
5	Community	Input		public	(van Marle	http://www.globalchange.umd.edu/ceds/	, , ,
	Emissions Data	dataset		1	et al.,	http://esgf-node.llnl.gov/search/input4mips/	
	System (CEDS) for				2017;		
	Historical				Hoesly et		
	Emissions				al., 2018)		
	SSP Database	Input		public	(Riahi et	https://tntcat.iiasa.ac.at/SspDb/dsd	
	(Shared	dataset		1	al., 2017;		
	Socioeconomic				Rogelj et		
	Pathways) -				al., 2018;		
	Version 2.0,				Gidden et		
	,				al., 2019)		
	Representative	Input		public	(van	ttps://tntcat.iiasa.ac.at/RcpDb/dsd	
	Concentration	dataset		-	Vuuren et		
	Pathway (RCP)				al., 2011)		
	database						
		Intermed				https://github.com/gidden/ar6-wg1-ch6-	
		iate				emissions	
		dataset					
						Code to be placed in	
						https://github.com/IPCC-WG1	
	CMIP6 model data	in Figure 6	.20		•		
	BCC-ESM1:	Input			(Zhang et		
	ssp370, ssp370-	dataset			al., 2018,		
	lowNTCF,				2019b,		
	historical				2019a)		
	CESM2-WACCM:	Input			(Danabaso		
	ssp370-lowNTCF,	dataset			glu,		
	historical, ssp370				2019a,		
					2019b,		

		2019c)
GFDL-ESM4:	Input	(Horowitz
ssp370-lowNTCF,	dataset	et al.,
historical, ssp126,		2018a;
ssp245, ssp370.		John et al.
ssp585		2018c.
		2018d.
		2018a.
		2018b:
		Krasting et
		al., 2018b)
GISS-E2-1-G:	Input	(NASA
historical, ssp126.	dataset	Goddard
ssp245, ssp370.		Institute
ssp370-lowNTCF,		for Space
ssp585		Studies
1		(NASA/GI
		SS), 2018,
		2020i,
		2020g,
		2020e,
		2020f,
		2020h)
MRI-ESM2-0:	Input	(Yukimoto
historical, ssp126,	dataset	et al.,
ssp245, ssp370,		2019d,
ssp370-lowNTCF,		2019h,
ssp585		2019f,
-		2019e,
		2019g,
		2019c)
UKESM1-0-LL:	Input	(Good et
ssp370-lowNTCF,	dataset	al., 2019a,
historical, ssp126,		2019d,
ssp245, ssp370,		2019c,
ssp585		2019b;
-		Tang et
		al., 2019;
		Byun,

6.SM

			2020)	
CMIP6 model data	in Figure 6.21			
BCC-ESM1:	Input		(Zhang et	
ssp370, ssp370-	dataset		al., 2018,	
lowNTCF,			2019b,	
historical			2019a)	
CESM2-WACCM:	Input		(Danabaso	
ssp370-lowNTCF,	dataset		glu,	
historical, ssp370			2019a,	
· •			2019b,	
			2019c)	
CNRM-ESM2-1:	Input		(Seferian,	
ssp370-lowNTCF,	dataset		2018,	
historical, ssp370			2019;	
/ 1			Voldoire,	
			2019)	
GFDL-ESM4:	Input		(Horowitz	
ssp370-lowNTCF,	dataset		et al.,	
historical, ssp126,			2018a;	
ssp245, ssp370,			John et al.,	
ssp585			2018c,	
Ĩ			2018d,	
			2018a,	
			2018b;	
			Krasting et	
			al., 2018b)	
GISS-E2-1-G:	Input		(NASA	
ssp370-lowNTCF,	dataset		Goddard	
historical, ssp126,			Institute	
ssp245, ssp370,			for Space	
ssp585			Studies	
1			(NASA/GI	
			SS), 2018,	
			2020i,	
			2020g,	
			2020f,	
			2020a,	
			2020h)	
HadGEM3-GC31-	Input		(Good,	
Do Not	Tite Quote or Distribute	6SM-21	Total pages: 27	

	LL: historical,	dataset	2019,		
	ssp126, ssp245,		2020b,		
	ssp585		2020a;		
			Ridley et		
			al., 2019)		
	MIROC-ES2L:	Input	(Hajima et		
	historical, ssp126,	dataset	al., 2019;		
	ssp245, ssp370,		Tachiiri et		
	ssp585		al., 2019a,		
			2019b,		
			2019d,		
			2019c)		
	MPI-ESM-1-2-	Input	(Neubauer		
	HAM: ssp370-	dataset	et al.,		
	lowNTCF,		2019b,		
	historical, ssp370		2019a)		
	MRI-ESM2-0:	Input	(Yukimoto		
	ssp370-lowNTCF,	dataset	et al.,		
	historical, ssp126,		2019h,		
	ssp245, ssp370,		2019f,		
	ssp585		2019e,		
			2019g,		
			2019c,		
			2019a)		
Figure 6.22	NorESM2-LM:	Input	(Oliviè et	https://esgf-node.llnl.gov/search/cmip6/	
	ssp370-lowNTCF,	dataset	al., 2019;		
	historical, ssp126,		Seland et		
	ssp245, ssp370,		al., 2019e,		
	ssp585		2019d,		
			2019c,		
			2019b,		
			2019a)		
Figure 6.23	UKESM1-0-LL:	Input	(Good et	https://esgf-node.llnl.gov/search/cmip6/	
	ssp370-lowNTCF,	dataset	al., 2019a,		
	historical, ssp126,		2019d,		
	ssp245, ssp370,		2019c,		
	ssp585		2019b;		
			Tang et		
			al., 2019:		

6.SM

					Byun, 2020)		
Figure 6.24	CMIP6, AerChemMIP Output variable rsut and rlut, monthly output ssp370SST and ssp370SST- lowNTCF	Input dataset	BCC-ESM1, CNRM-ESM2-1, CESM2-WACCM, and GFDL- ESM4.	public	(Eyring et al., 2016; Collins et al., 2017)	https://esgf-node.llnl.gov/search/cmip6/	
Figure 6.25	ScenarioMIP, RCMIP Emulator output	Input dataset		public	(Eyring et al., 2016; O'Neill et al., 2016; Nicholls et al., 2020)	https://esgf-node.llnl.gov/search/cmip6/	(Geoffroy et al., 2013)
Figure 6.26	ScenarioMIP Emulator output	Input dataset		public	(O'Neill et al., 2016)	https://esgf-node.llnl.gov/search/cmip6/	(DuplicateLun d et al., 2020)
Figure 6.27	ScenarioMIP Emulator output	Input dataset		public	(O'Neill et al., 2016)	https://esgf-node.llnl.gov/search/cmip6/	
Figure 6.25 FGD						https://tntcat.iiasa.ac.at/SspDb/dsd	
Figure	CMIP6 model data	1					

6 SM 1	GEDI -ESM4·	Input	(Horowitz
0.511.1	CIDE-LSM4.	datasat	atal
	ssp570551,	uataset	et al.,
	ssp570pu551		20180,
			2018d)
	GISS-E2-1-G:	Input	(NASA
	ssp370SST,	dataset	Goddard
	ssp370pdSST		Institute
			for Space
			Studies
			(NASA/GI
			SS).
			2020d.
			2020c)
	MRI_FSM2_0	Input	(Yukimoto
	sep370SST	datasat	at al
	ssp370pdSST,	uataset	2010b
	ssp570pubb1		20190,
	UKESMI-0-LL:	Input	(O'Connor
	ssp370pdSST,	dataset	, 2020c,
	ssp370SST		2020b)
Figure	CMIP6 model data		
6.SM.2			
	GFDL-ESM4:	Input	(Horowitz
	ssp370SST,	dataset	et al.,
	ssp370pdSST		2018c,
			2018d)
	GISS-E2-1-G:	Input	(NASA
	ssp370SST,	dataset	Goddard
	ssp370pdSST		Institute
			for Space
			Studies
			(NASA/GI
			SS).
			2020d.
			2020c)
	MRI-ESM2-0	Input	(Yukimoto
	ssn370SST	dataset	et al
	ssp370pdSST,	uuusot	2019b
	ssh210ha221		20170,
1			20200)

	UKESM1-0-LL:	Input	(O'Connor
	ssp370pdSST,	dataset	, 2020c,
	ssp370SST		2020b)
Figure	CMIP6 model data		
6.SM.4			
	GFDL-ESM4:	Input	(Horowitz
	ssp370-	dataset	et al.,
	lowNTCFCH4		2018b)
	GISS-E2-1-G:	Input	(NASA
	ssp370-	dataset	Goddard
	lowNTCFCH4		Institute
			for Space
			Studies
			(NASA/GI
			SS),
			2020b)
	MRI-ESM2-0:	Input	(Yukimoto
	ssp370-	dataset	et al.,
	lowNTCFCH4		2020a)
	UKESM1-0-LL:	Input	(O'Connor
	ssp370-	dataset	, 2020a)
	lowNTCFCH4		

1 2 3 4 5 6 7

[END TABLE 6.SM.6 HERE]

References

1 2 3 4 5 6 7 8 9 10 11

- Aakre, S., Kallbekken, S., Van Dingenen, R., and Victor, D. G. (2018). Incentives for small clubs of Arctic countries to limit black carbon and methane emissions. *Nat. Clim. Chang.* doi:10.1038/s41558-017-0030-8.
- Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V, Dentener, F., et al. (2016). Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. *Environ. Sci. Technol.* 50, 79–88. doi:10.1021/acs.est.5b03709.
- Collins, W. J., Lamarque, J. F., Schulz, M., Boucher, O., Eyring, V., Hegglin, I. M., et al. (2017). AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. *Geosci. Model Dev.* 10, 585–607. doi:10.5194/gmd-10-585-2017.
- Crippa, M., Janssens-Maenhout, G., Guizzardi, D., Van Dingenen, R., and Dentener, F. (2019). Contribution and uncertainty of sectorial and regional emissions to regional and global PM\$_{2.5}\$ health impacts. *Atmos. Chem. Phys.* 19, 5165–5186. doi:10.5194/acp-19-5165-2019.
- Fiore, A. M., West, J. J., Horowitz, L. W., Naik, V., and Schwarzkopf, M. D. (2008). Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. J. Geophys. Res. Atmos. doi:10.1029/2007JD009162.
- Fuglestvedt, J. S., Shine, K. P., Berntsen, T., Cook, J., Lee, D. S., Stenke, A., et al. (2010). Transport impacts on atmosphere and climate: Metrics. *Atmos. Environ.* 44, 4648–4677. doi:10.1016/j.atmosenv.2009.04.044.
- Gasser, T., Peters, G. P., Fuglestvedt, J. S., Collins, W. J., Shindell, D. T., and Ciais, P. (2017). Accounting for the climate–carbon feedback in emission metrics. *Earth Syst. Dyn.* 8, 235–253. doi:10.5194/esd-8-235-2017.
- Geoffroy, O., Saint-Martin, D., Olivié, D. J. L., Voldoire, A., Bellon, G., and Tytéca, S. (2013). Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments. J. Clim. 26, 1841–1857. doi:10.1175/JCLI-D-12-00195.1.
- Harmsen, M. J. H. M., van Dorst, P., van Vuuren, D. P., van den Berg, M., Van Dingenen, R., and Klimont, Z. (2020).
 Co-benefits of black carbon mitigation for climate and air quality. *Clim. Change*. doi:10.1007/s10584-020-02800-8.
- Hodnebrog, Ø., Aamaas, B., Fuglestvedt, J. S., Marston, G., Myhre, G., Nielsen, C. J., et al. (2020). Updated Global Warming Potentials and Radiative Efficiencies of Halocarbons and Other Weak Atmospheric Absorbers. *Rev. Geophys.* 58, e2019RG000691. doi:https://doi.org/10.1029/2019RG000691.
- Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., et al. (2018). Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). *Geosci. Model Dev.* 11, 369–408. doi:10.5194/gmd-11-369-2018.
- Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W., et al. (2013). Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. *Atmos. Chem. Phys.* 13, 2793–2825. doi:10.5194/acp-13-2793-2013.
- Karagulian, F., Van Dingenen, R., Belis, C. A., Janssens-Maenhout, G., Crippa, M., Guizzardi, D., et al. (2016).
 Attribution of anthropogenic PM2. 5 to emission sources: A global analysis of source-receptor model results and measured source-apportionment data (No. EUR 28510 EN), JRC Technical Reports. Ispra.
- Kühn, T., Kupiainen, K., Miinalainen, T., Kokkola, H., Paunu, V.-V., Laakso, A., et al. (2020). Effects of black carbon mitigation on Arctic climate. *Atmos. Chem. Phys.* 20, 5527–5546. doi:10.5194/acp-20-5527-2020.
- Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., et al. (2020). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. *Atmos. Environ.*, 117834. doi:10.1016/j.atmosenv.2020.117834.
- Lund, M. T., Aamaas, B., Stjern, C. W., Klimont, Z., Berntsen, T. K., and Samset, B. H. (2020). A continued role of
 Short-Lived Climate Forcers under the Shared Socioeconomic Pathways. *Earth Syst. Dyn.* 11, 977–993.
 doi:10.5194/esd-11-977-2020.
- Markandya, A., Sampedro, J., Smith, S. J., Van Dingenen, R., Pizarro-Irizar, C., Arto, I., et al. (2018). Health co benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study. *Lancet Planet. Heal*.
 2, e126–e133. doi:10.1016/S2542-5196(18)30029-9.
- Purohit, P., Höglund-Isaksson, L., Dulac, J., Shah, N., Wei, M., Rafaj, P., et al. (2020). Electricity savings and
 greenhouse gas emission reductions from global phase-down of hydrofluorocarbons. *Atmos. Chem. Phys.* 20,
 11305–11327. doi:10.5194/acp-20-11305-2020.
- Rao, S., Klimont, Z., Smith, S. J., Van Dingenen, R., Dentener, F., Bouwman, L., et al. (2017). Future air pollution in
 the Shared Socio-economic Pathways. *Glob. Environ. Chang.* 42, 346–358. doi:10.1016/j.gloenvcha.2016.05.012.
- Rauner, S., Bauer, N., Dirnaichner, A., Dingenen, R. Van, Mutel, C., and Luderer, G. (2020). Coal-exit health and
 environmental damage reductions outweigh economic impacts. *Nat. Clim. Chang.* 10, 308–312.
 doi:10.1038/s41558-020-0728-x.
- Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., and Stuber, N. (2005). Alternatives to the Global Warming Potential
 for Comparing Climate Impacts of Emissions of Greenhouse Gases. *Clim. Change* 68, 281–302.
 doi:10.1007/s10584-005-1146-9.

- Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J.-F., Shindell, D. T., Voulgarakis, A., et al. (2013). Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). *Atmos. Chem. Phys.* 13, 3063–3085. doi:10.5194/acp-13-3063-2013.
- Thornhill, G. D., Collins, W. J., Kramer, R. J., Olivié, D., Skeie, R. B., O'Connor, F. M., et al. (2021). Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. *Atmos. Chem. Phys.* 21, 853–874. doi:10.5194/acp-21-853-2021.
- Van Dingenen, R., Dentener, F., Crippa, M., Leitao, J., Marmer, E., Rao, S., et al. (2018). TM5-FASST: a global
 atmospheric source--receptor model for rapid impact analysis of emission changes on air quality and short-lived
 climate pollutants. *Atmos. Chem. Phys.* 18, 16173–16211. doi:10.5194/acp-18-16173-2018.
- van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., et al. (2017). Historic global
 biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire
 models (1750–2015). *Geosci. Model Dev.* 10, 3329–3357. doi:10.5194/gmd-10-3329-2017.
- Vandyck, T., Keramidas, K., Tchung-Ming, S., Weitzel, M., and Van Dingenen, R. (2020). Quantifying air quality co benefits of climate policy across sectors and regions. *Clim. Change* 163, 1501–1517. doi:10.1007/s10584-020 02685-7.
- 16

1

2

3

4

5

6

17