1 2 Chapter 9: Ocean, cryosphere, and sea level change - Supplementary Material 3 4 5 6 7 **Coordinating Lead Authors:** 8 Baylor Fox-Kemper (USA), Helene Hewitt (UK), Cunde Xiao (China) 9 10 Lead Authors: Guðfinna Aðalgeirsdóttir (Iceland), Sybren Drijfhout (The Netherlands), Tamsin Edwards (UK), Nicholas 11 12 Golledge (New Zealand/UK), Mark Hemer (Australia), Robert Kopp (USA), Gerhard Krinner (France), Alan 13 Mix (USA), Dirk Notz (Germany), Sophie Nowicki (USA), Intan Suci Nurhati (Indonesia), Lucas Ruiz 14 (Argentina), Jean-Baptiste Sallée (France), Aimee Slangen (The Netherlands), Yongqiang Yu (China) 15 16 **Contributing Authors:** 17 Cecile Agosta (France), Kyle Armour (USA), Mathias Aschwanden (Switzerland), Jonathan Bamber (UK), 18 Sophie Berger (France/Belgium), Jason Box (Denmark), Eleanor Burke (UK), Kevin D. Burke (USA), 19 Xavier Capet (France), John Church (Australia), Lee de Mora (UK), Chris Derksen (Canada), Fábio Boeira 20 Dias (Finland/Brazil), Catia Domingues (Australia/Brazil), Jakob Dörr (Germany), Paul Durack 21 (USA/Australia), Thomas Frölicher (Switzerland), Thian Gan (Canada), Gregory Garner (USA), Sebastian 22 Gerland (Norway/Germany), Heiko Goelzer (Netherlands/Germany), Irina Gorodetskaya (Portugal, 23 Belgium/Russian Federation), Stefan Hofer (Norway/Austria), Romain Hugonnet (France), Natalya Gomez 24 (Canada), Jonathan Gregory (UK), Robert Hallberg (USA), Alexander Haumann (USA/Germany), Tim 25 Hermans (The Netherlands), Emma Hill (Singapore), Regine Hock (USA), Philippe Huybrechts (Belgium), 26 Akm Saiful Islam (Bangladesh), Laura Jackson (UK), Nicolas Jourdain (France), Andreas Kääb (Norway), 27 Nicole Khan (Hong Kong), Shfaqat Abbas Khan (Denmark), Matthew Kirwan (USA), James Kossin (USA), 28 Anders Levermann (Germany), Sophie Lewis (Australia), Shiyin Liu (China), Daniel Lowry (New 29 Zealand), Marta Marcos (Spain), Ben Marzeion (Germany), Matthew Menary (France, UK), Sebastian 30 Mernild (Norway/Norway, Denmark), Philip Orton (USA), Matthew Palmer (UK), Frank Pattyn (Belgium), 31 Brodie Pearson (USA/UK), Cécile Pellet (Switzerland), Chris Perry (UK), Mark Pickering (UK), Johannes 32 Quaas (Germany), Roshanka Ranasinghe (The Netherlands/Sri Lanka/Australia), Malcom Roberts (UK), 33 Alessio Rovere (Germany), Roelof Rietbroek (Germany), Mathew Koll Roxy (India), Maria Santolaria Otin 34 (France), Abhishek Savita (India, Australia), Alex Sen Gupta (Australia), Helene Seroussi (USA), Sharon 35 Smith (Canada), Olga Solomina (Russian Federation), Fiametta Straneo (USA/Italy), Esther Stouthamer (the 36 Netherlands), William Sweet (USA), Thomas Wahl (USA), Lisan Yu (USA), Jiacan Yuan (USA), Jan Zika 37 (Australia) 38 39 **Review Editors:** 40 Unnikrishnan Alakkat (India), Benjamin Horton (Singapore/UK), Simon Marsland (Australia) 41 42 **Chapter Scientists:** 43 Lijuan Hua (China), Tamzin Palmer (UK), Brodie Pearson (United States/UK), Gregory Garner (USA), Tim 44 Hermans (Netherlands) 45 46 **Date of Draft:**

- 47 3 May 2021
- 48
- 49 Notes:
- 50 TSU compiled version
- 51

1	Table of (Content
2	9.SM.1	Additional ocean information3
3	9.SM.1	1 Details for Figure 9.10
4	9.SM.2	Additional ice sheet information3
5	9.SM.3	Additional glacier information3
6	9.SM.3	1 Details for Figure 9.21
7	9.SM.3	2 Details for Figure 9.22
8	9.SM.4	Additional sea level information5
9	9.SM.4	1 Framework for Assessing Changes To Sea-level (FACTS)5
10 11	9.SM.4	2 Obtaining Global Mean Thermosteric Sea-Level Rise and Ocean Dynamic Sea-Level Change from CMIP6
12 13	9.SM.4	3 Global Mean Thermosteric Sea-Level and Ocean Dynamic Sea-Level Projections based on the Two-Layer Emulator
14	9.SM.4	4 Parametric fit to ISMIP6 Greenland Ice Sheet projections7
15	9.SM.4	5 Parametric fit to GlacierMIP2 projections8
16	9.SM.4	6 Background rates of relative sea-level change9
17	9.SM.4	7 Warming Level Scenarios9
18	9.SM.4	8 Analysis of future changes in extreme sea level return frequency
19	9.SM.5	Data Table
20		

20

9.SM.1 Additional ocean information

9.SM.1.1 Details for Figure 9.10

Lower right panel: In all experiments an additional surface freshwater flux (hosing) is applied over the subpolar North Atlantic (regions vary between studies) for a limited time. The total amount of fresh water added is then this flux multiplied by the number of years applied (in Gt). While hosing is applied the AMOC weakens. In some models the AMOC recovers quickly, in other the AMOC hasn't recovered after 200 years, and in some the AMOC is starting to recover after 200 years. These are represented by circles, downward and upward triangles respectively which show the percentage AMOC change after 200 years. Sizes of symbols represent the magnitude of the hosing (from 0.1-1Sv) and colours indicate the different studies these results were taken from (de Vries and Weber, 2005; Stouffer et al., 2006; Yin and Stouffer, 2007; Meehl et al., 2009; Jackson, 2013; Liu and Liu, 2013; Timmermans et al., 2014; Hutchings et al., 2015; Jackson and Wood, 2018; Haskins et al., 2019).

9.SM.2 Additional ice sheet information

[START TABLE 9.SM.1 HERE]

Table 9.SM.1:Observed mass loss of Greenland (The IMBIE Team, 2020, 2021) and Antarctic (The IMBIE Team et
al., 2018, 2021) ice sheets for three different periods. Values are expressed as the total loss over each
period (Gt) along with the equivalent rate (Gt yr⁻¹) and *very likely* ranges. Periods include both end
years. The cumulative mass loss uncertainty from IMBIE is assumed to be zero at the start of each
period.

Observed mass loss		1992-1999	2000-2009	2010-2019
Greenland (The IMBIE	Δ (Gt)	309 [-24 to 642]	1753 [1308 to 2199]	2433 [1968 to 2897]
Team, 2019)	Gt yr ⁻¹	39 [-3 to 80]	175 [131 to 220]	243 [197 to 290]
Antarctica (The IMBIE	Δ (Gt)	392 [-18 to 802]	703 [220 to 1187]	1482 [942 to 2022]
Team et al., 2018)	Gt yr ⁻¹	49 [-2 to 100]	70 [22 to 119]	148 [94 to 202]

[END TABLE 9.SM.1 HERE]

9.SM.3 Additional glacier information

9.SM.3.1 Details for Figure 9.21

1960-2019 time series annual and decadal values from (Zemp et al., 2019, 2020). Glacier mass change rates
estimated from GRACE 2002-2016 from (Wouters et al., 2019). Glacier mass change rate between 20062016 and its respective uncertainty as it was assessed in SROCC (Hock et al., 2019b). Glacier mass change
rates between 2000-2009 and 2010-2019 and its respective uncertainty obtained by (Hugonnet et al., 9998)

9.SM.3.2 Details for Figure 9.22

9.SM

Glacier mass relative to 2015 between 1902 and 2100. Glacier change in 20th century is from (Marzeion et al., 2015). Observed mass change between 1961-2016 from (Zemp et al., 2019). Median and \pm 1 standard deviation (shaded areas) projected mass change between 2015 and 2100 for RCP2.6, RCP 4.6, and RCP8.5 scenarios obtained from GlacierMIP (Marzeion et al., 2020). Data from (Bamber et al., 2018b) included in some regions

7 [START TABLE 9.SM.2 HERE]

Table 9.SM.2: Regional and global glacier-covered area, glacier mass (presented as potential sea level rise equivalent) in year 2000, glacier mass change rate in period 2000-2019, and projected glacier mass change between 2015 and 2100. The glacier-covered area is derived from the RGI 6.0 (RGI Consortium, 2017) and glacier-covered area uncertainties are extracted from (Pfeffer et al., 2014). Glacier mass and uncertainties are derived from Farinotti et al. (2019), based on RGI 6.0. Recent (2000-2019) mass change rate is based on (Hugonnet et al., 9998), except: ^a mean of Menounos et al. (2019) and (Hugonnet et al., 9998); ^b mean of (Aðalgeirsdóttir et al., 2020) and (Hugonnet et al., 9998); ^c mean of (Schuler et al., 2020) and (Hugonnet et al., 9998); ^d mean of (Davaze et al., 2020), (Sommer et al., 2020) and (Hugonnet et al., 9998); ^e mean of Shean et al. (2020) and (Hugonnet et al., 9998); and ^f mean of (Dussaillant et al., 2019) and (Hugonnet et al., 2020). See Figure 9.22 for the time series of changes in each region.

	Glacier-	Glacier mass in	Glacier mass	Projected glacier mass change between 2015-2100 (mm SLE)			
Region	covered area in 2000 (km ²)	2000 (mm SLE)	change rate 2000-2019 (kg m ⁻² yr ⁻ ¹)	RCP 2.6	RCP 4.5	RCP 8.5	
Alaska (1)	86700 ± 4600	43 ± 11	-770 ± 60	14 ± 11	19 ± 13	25 ± 15	
Western Canada and US (2)	14500 ± 1400	2.6 ± 0.7	-490 ± 170^{a}	1.5 ± 0.9	2.0 ± 0.7	2.2 ± 0.7	
Arctic Canada North (3)	105100 ±3400	65 ± 17	-290 ± 20	10 ± 10	16 ± 15	24 ± 20	
Arctic Canada South (4)	40900 ± 2000	21 ± 5	-650 ± 50	5 ± 5	7 ± 7	11 ± 7	
Greenland Periphery (5)	89700 ± 4500	34 ± 9	-430 ± 40	9 ± 10	12 ± 11	18 ± 11	
Iceland (6)	11000 ± 300	9 ± 2	-860 ± 100^{b}	2 ± 3	3 ± 3	5 ± 3	
Svalbard (7)	34000 ± 1200	17 ± 4	$-270 \pm 180^{\circ}$	7 ± 7	11 ± 9	14 ± 8	
Scandinavia (8)	2900 ± 300	0.7 ± 0.2	-580 ± 60	0.3 ± 0.2	0.4 ± 0.2	0.4 ± 0.2	
	51600 ± 1400	32 ± 8	-200 ± 20	10 ± 8	14 ± 11	20 ± 12	

Do Not Cite, Quote or Distribute

Russian Arctic (9)						
North Asia (10)	2400 ± 200	0.3 ± 0.1	-500 ± 70	0.2 ± 0.2	0.3 ± 0.2	0.3 ± 0.2
Central Europe (11)	2100 ± 200	0.3 ± 0.1	-760 ± 260^d	0.2 ± 0.1	0.3 ± 0.1	0.3 ± 0.1
Caucasus and Middle East (12)	1300 ± 100	0.2 ± 0.1	-430 ± 60	0.1 ± 0.05	0.11 ± 0.04	0.13 ± 0.04
High Mountain Asia (13 to 15)	97600 ± 7800	17 ± 3	-205 ±40°	8 ± 3	11 ± 4	13 ± 5
Low Latitudes (16)	2300 ± 200	0.2 ± 0.1	-450 ±60	0.13 ± 0.12	0.17 ± 0.12	$\begin{array}{c} 0.19 \pm \\ 0.11 \end{array}$
Southern Andes (17)	29400 ± 1700	13 ± 3	-720 ± 230^{f}	3 ± 4	4 ± 3	6 ± 4
New Zealand (18)	1200 ± 100	0.2 ± 0.1	-720 ± 110	0.06 ± 0.06	$\begin{array}{c} 0.09 \pm \\ 0.05 \end{array}$	0.13 ± 0.04
Antarctic and Subantarctic (19)	132900 ± 2500	69 ± 18	-170 ± 20	9 ± 15	16 ± 13	20 ± 24
World	705700 ± 33200	324 ± 84	-460 ± 10	79 ± 56	119 ± 75	159 ± 86

[END TABLE 9.SM.2 HERE]

9.SM.4 Additional sea level information

9.SM.4.1 Framework for Assessing Changes To Sea-level (FACTS)

Projections of the probability distributions of global-mean and relative sea-level change are produced using
the Framework for Assessing Changes to Sea-level (FACTS), a Python-based modularized
framework. Contributors to sea-level change (e.g., ice sheets, ocean dynamics, etc.) are represented as
individual modules which are then organized into user-defined projection workflows. The modularity of the
framework enables efficient application of the different methodologies described in the chapter. The code
for FACTS and its accompanying modules are open source and available through GitHub

6 (https://github.com/radical-collaboration/facts). In the application here, the different drivers are treated as
 7 conditionally independent given GSAT.

Ideally, a FACTS module contains a sample-generation method through some sort of statistical or process-

based model for the particular component. For example, the module for projecting thermal expansion and

dynamic sea-level generates samples from statistical distributions calibrated within the module itself. For

modules that use externally-provided ensembles for this report, which include the Emulated ISMIP6 ice

23 sheets simulations, Emulated GlacierMIP glaciers simulations, the LARMIP-2 Antarctic ice sheet

24 simulations, the Marine Ice Cliff Instability Antarctic ice sheet simulations, and the Structure Expert

25 Judgement ice sheets simulations, a bootstrap sampling approach is used. This provides a consistent number

of samples across all modules within an integrated projection workflow. However, due to this sampling method, the number of samples in the provided ensemble for the module, and the seed value for the randomnumber generator, small differences may exist between the values of the FACTS produced projections and the values published in the paper for a particular method.

4 5

1

2

3

6 7 8

9

9.SM.4.2 Obtaining Global Mean Thermosteric Sea-Level Rise and Ocean Dynamic Sea-Level Change from CMIP6

10 We obtained monthly mean values for the CMIP6 variables 'zos' (sea-surface height above geoid), 'zostoga' 11 (global mean thermosteric sea-level change) and 'psl' (air pressure at sea level; required to apply the inverse 12 barometer effect). The data files were extracted from the Earth System Grid Federation (ESGF) database between 22-30 September 2020. Data were obtained for both the historical experiment (1850-2014) and the 13 14 five core SSPs (2015-2100 and up to 2300 where available) with corresponding variant labels ('ripf' 15 identifier). Additionally, models were required to provide the pre-industrial control output from which the 16 'zos' and 'zostoga' experiments were initialized, so that 'zos' and 'zostoga' simulations could be corrected 17 for model ocean drift (Gupta et al., 2013; Hobbs et al., 2016b). Thus, the total number of available models 18 used for each emissions scenario depends on the availability of these simulations (and of grid information 19 required to carry out the preprocessing steps detailed in the next paragraph, such as ocean grid cell area 20 'areacello'). We obtained all available data with an experiment variant with a realization equal to one ('ripf' 21 having 'r'=1). For each model, we use the first of the remaining experiment variants for which most SSP 22 experiments are available, and the first alternative experiment variant for the SSPs for which that variant is 23 not available. For UKESM1-0-LL, the air pressure sea level field yielded an anomalously large inverse 24 barometer effect, so this was model not included.

25

26 Then, the timeseries of 'zos' and 'zostoga' were corrected for ocean model drift (Gupta et al., 2013; Hobbs 27 et al., 2016b). This was done by fitting a linear trend to the full pre-industrial control run of each model, and 28 subtracting the resulting linear trend from the historical and scenario runs. Since the drift in 'zostoga' is 29 nearly linear for most CMIP6 models, quadratic or linear drift correction yields little difference compared to 30 the magnitude of projected GTE under the emissions scenarios (Hermans et al., 2021). Additionally, the 31 area-weighted mean of the 'zos' field was removed at each timestep for each model, since 'zos' is defined as 32 the sea-surface height above a time-invariant geoid. Next, 'zos' and 'psl' were bilinearly interpolated to a 33 common regular 1° by 1° grid using the ESMValTool regridding routine (Eyring et al., 2020). Finally, the 34 inverse barometer effect was derived from sea-level pressure anomalies with respect to the area-weighted 35 ocean mean sea-level pressure (following Stammer and Hüttemann, 2008) and applied to 'zos' in order to 36 obtain ocean dynamic sea-level fields (Gregory et al., 2019). Note that the inverse barometer effect due to 37 sea-ice (e.g., Lyu et al., 2020a) was not applied here.

- 38
- 39 40 41

42

9.SM.4.3 Global Mean Thermosteric Sea-Level and Ocean Dynamic Sea-Level Projections based on the Two-Layer Emulator

To convert the ocean heat content projections based upon the AR6 assessment of equilibrium climate 43 44 sensitivity and transient climate response (Appendix 7.A.2) to global mean thermosteric sea-level rise 45 projections, the emulated ocean heat content projections were multiplied with expansion coefficients 46 estimated from CMIP6. A distribution of expansion coefficients was derived by fitting drift-corrected global 47 mean thermosteric sea-level rise (9.SM.4.2) from individual CMIP6 GCMs against total ocean heat content 48 output of a two-layer emulator configured with CMIP6 calibration parameters (Smith et al., 2020b). Both 49 thermosteric sea-level rise and ocean heat content were referenced to their mean values in 1995-2014. The 50 two-layer model was forced with scenario-dependent effective radiative forcing from the RCMIP protocol 51 (Nicholls et al., 2020) for the SSPs. Expansion coefficients were derived through linear regression with a 52 fixed 0-intercept for the period 2015-2100 for all SSPs combined.

- 53
- 54 The resulting distribution was clipped based on the root mean square error cumulative across scenarios 55 between the GSAT projections of individual CMIP6 models and the GSAT projection of the two-layer
 - Do Not Cite, Quote or Distribute

and standard deviation of 0.113 ± 0.013 m/YJ.

model calibrated to that model. Only the expansion coefficients of models with an RMSE less than or equal to the 85th percentile of the cumulative distribution function of RMSEs were considered. Thus, the expansion coefficients for CNRM-ESM2-1 and EC-Earth3-Veg were dropped. Expansion coefficients were then randomly drawn from a normal fit to the distribution of remaining expansion coefficients, which has a mean

5 6

7 To produce ocean dynamic sea-level projections consistent with the global mean thermosteric projections described in this section, we follow the approach of (Kopp et al., 2014). We fit a multivariate t-distribution to 8 the ocean dynamic sea-level terms from CMIP6 (9.SM.4.2), and drawing from this distribution, combine the 9 10 ocean dynamic sea-level terms with the emulator-based global mean thermosteric projections, accounting for the underlying correlation between global mean thermosteric sea-level rise and ocean dynamic sea-level 11 12 change in CMIP6. While if the CMIP6 ensemble represented a complete representation of all relevant 13 uncertainties, its 5th-95th percentile range would represent a very likely range, it is not a perfect representation, so following practice in the AR5, we treat its 5th-95th percentile range as a *likely range* (i.e., a 14 15 17th-83rd percentile range). We therefore scale the standard deviation of the t-distribution of ocean dynamic sea-level change by 1.64, so that ± 1 standard deviation of the scaled fitted distribution corresponds to a 16 central 66% likely range. To account for identifiable, model-specific problems in specific grid cells (e.g., in 17 18 inland seas), projections for a grid cell are removed if they have an amplitude in 2099 more than ten times 19 the median local amplitude. In cases where, after removal of extreme outliers, the standard deviation of 20 projections in 2099 is greater than 20 cm, we also remove models that deviate from the mean by more than 21 three standard deviations.

22 23

25

29 30 31

35 36

38

24 9.SM.4.4 Parametric fit to ISMIP6 Greenland Ice Sheet projections

Since the ISMIP6 emulator does not account for temporal correlation, a polynomial fit to the ISMIP6 results
 is employed to calculate rates of change. The parametric fit is a cubic fit to temperature and a quadratic fit
 over time:

$$\frac{\partial s}{\partial t} = \beta_0 + \beta_1 T + \beta_2 T^2 + \beta_3 T^3 + \beta_4 t + \beta_5 t^2$$

32 Where *s* indicates the sea-level equivalent contribution in mm, *T* is GSAT in $^{\circ}$ C, and *t* is time in years. For 33 the purposes of fitting this function, *T* and *t* are anomalies to their respective values in year 2015. Fitting is 34 done using maximum a posteriori estimation.

37 [START TABLE 9.SM.3 HERE]

39 Table 9.SM.3: Parameters for the fit to the ISMIP6 Greenland Ice Sheet models.

GROUP	Model	β0	β1	β2	β3	β4	β5
UCIJPL	ISSM1	0.11	0.68	-0.16	0.03	-0.009	1.5E-04
UAF	PISM1	0.11	2.23	-0.69	0.08	-0.046	4.7E-04
NCAR	CISM	0.31	1.60	-0.44	0.06	-0.030	2.7E-04
MUN	GSM2601	0.26	1.92	-0.64	0.07	-0.048	5.4E-04
AWI	ISSM1	0.15	0.57	-0.06	0.02	-0.002	2.6E-05
JPL	ISSMPALEO	0.08	0.67	-0.13	0.02	-0.016	1.9E-04
BGC	BISICLES	0.15	0.82	-0.24	0.04	-0.017	2.2E-04
GSFC	ISSM	0.17	1.94	-0.62	0.08	-0.035	3.8E-04
UCIJPL	ISSM2	0.22	0.34	0.05	-0.02	-0.004	8.5E-05

IMAU	IMAUICE2	0.20	2.30	-0.71	0.09	-0.044	4.5E-04
VUB		0.39	0.85	-0.19	0.04	-0.002	-1.1E-05
	GISMHOMv1						
IMAU	IMAUICE1	0.28	0.84	-0.13	0.03	-0.002	-7.9E-06
MUN	GSM2611	0.32	0.39	0.15	-0.04	-0.016	2.1E-04
UAF	PISM2	0.22	0.22	-0.03	0.02	0.002	-1.0E-05
VUW	PISM	0.00	1.54	-0.52	0.06	-0.037	4.6E-04
AWI	ISSM2	0.15	0.58	-0.06	0.02	-0.001	1.6E-05
ILTS_PIK	SICOPOLIS2	0.23	0.64	-0.06	0.02	-0.005	6.9E-05
ILTS_PIK	SICOPOLIS1	0.18	1.83	-0.52	0.07	-0.036	3.7E-04
AWI	ISSM3	0.09	2.12	-0.65	0.08	-0.042	4.2E-04
JPL	ISSM	0.20	0.73	-0.13	0.03	-0.004	4.9E-05
LSCE	GRISLI2	0.22	0.39	-0.04	0.02	-0.006	5.7E-05

1

[END TABLE 9.A.3 HERE]

9.SM.4.5 Parametric fit to GlacierMIP2 projections

Since the GlacierMIP2 emulator does not account for temporal correlation and terminates, along with the GlacierMIP2 simulations, in 2100, we employ a power law fit to the GlacierMIP2 simulations (Marzeion et al., 2020), with a functional form similar to that employed by the AR5, to calculate rates of change and extrapolate changes beyond 2100 (up to a maximum potential contribution of 0.32 m). As in the AR5 (Church et al., 2013), the glacier contribution is the integral of $fI(t)^{\rho}$, where I(t) is the time integral of GSAT from 2006 to time t in degrees Celsius year, and the constants f and ρ used for each glacier model are shown in Table 9.SM.4. The spread of the results around this median projection has a coefficient of variation 14 (standard deviation divided by the mean) σ which is determined on a per-model basis. As in the AR5, this 15 variation is incorporated by taking for each Monte Carlo sample a normally distributed random number. This 16 number is multiplied by the time-dependent standard deviation and added to the sample. All models are 17 equally weighted.

18 19

20 [START TABLE 9.SM.4 HERE]

21 22

23

Table 9.SM.4:Parameters for the fit to the global glacier models.

Global Glacier Model	f (mm °C ⁻¹ yr ⁻¹)	ρ	σ
GLIMB	3.7	0.66	0.21
GloGEM	4.08	0.72	0.16
JULES	5.5	0.56	0.19
MAR2012	4.89	0.65	0.14
OGGM	4.26	0.72	0.16
RAD2014	5.18	0.71	0.14
WAL2001	2.66	0.73	0.21

24 25

[END TABLE 9.SM.4 HERE]

26 27

9.SM

9.SM.4.6 Background rates of relative sea-level change

2 3 Background rates of RSL change, including glacial-isostatic adjustment as well as other factors contributing 4 to long-term vertical land motion, are estimated from tide-gauge data following the Gaussian-process 5 regression method of Kopp et al., (Kopp et al., 2014). The method was applied to annual-mean tide-gauge 6 data downloaded from the Permanent Service for Mean Sea Level (Holgate et al., 2013) on 18 October 2020. 7 As in Kopp et al. (Kopp et al., 2014), RSL is represented as the sum of three Gaussian processes: (1) a 8 regionally varying, temporally linear process, (2) a globally-uniform process, and (3) a regionally varying, 9 temporally autocorrelated non-linear process. The posterior estimate of the first (temporally linear) process is 10 used as the estimate of the background rate. The analysis is conducted separately for each of 15 regions: Iceland/Svalbard, Scandinavia, Northern Europe, Russia, Mediterranean/Africa, US Pacific, US Atlantic, 11 12 Gulf of Mexico, Northeastern Canada, Alaska, Latin America, Oceania, Japan, South/East Asia, and 13 Antarctica (see Kopp et al., 2014, for details). Within each region, available tide-gauge data are used 14 together with the GMSL curve of (Dangendorf et al., 2019) (treated as a noisy observation of the second 15 term) to estimate the Gaussian-process model.

16 17

19

1

18 9.SM.4.7 Warming Level Scenarios

20 Because GMSL projections are more strongly related to integrated warming rather than to instantaneous 21 warming, warming-level-based scenarios cannot be defined based on the time-slice method used for 22 atmospheric variables (Cross-Chapter Box 11.1). Instead, consistent with the approaches of (Jackson et al., 23 2018; Rasmussen et al., 2018), all available SSP-based projections are pooled, then assigned to temperature 24 levels based on the 2081-2100 GSAT anomaly projected by the two-layer energy budget emulator, using a 25 $\pm 0.25^{\circ}$ C window around the targeted temperature level. For example, the 2.0°C projections are based on all 26 realizations from all scenarios where 2081-2100 GSAT falls between 1.75°C and 2.25°C. A certain warming 27 level may therefore include a mixture of one or more SSP scenarios.

28 29

31

30 9.SM.4.8 Analysis of future changes in extreme sea level return frequency

32 Frequency amplification factors for the 1% average annual-probability of extreme still-water levels are 33 computed by combining the projected regional sea-level change (Section 9.6.3.3) with historical distributions 34 of observed extreme events derived from the Global Extreme Sea Level Analysis 2 (GESLA2;(Woodworth 35 et al., 2016b)), following the approach of the SROCC and (Frederikse et al., 2020a). GESLA2 stations are 36 included in the analysis when hourly mean data was available for at least 6,000 hours per year (250 days) for 37 at least 20 years. For each station, the annual means were removed before fitting a General Pareto 38 Distribution (GPD) to the hourly mean GESLA2 data using a peak-over-threshold (POT) method with a 39 threshold of 99.7%. The extremes are de-clustered using a minimum of 72 hours between subsequent 40 extremes. The estimated GPD location (the 99.7% threshold), scale and shape parameters are generally in 41 agreement with (Frederikse et al., 2020a). We note that our results are sensitive to the statistical method used 42 (Wahl et al., 2017) and may therefore differ from previous analyses.

43

44 Following the SROCC and (Frederikse et al., 2020a), we computed an ensemble of historical return curves 45 for each station using the location parameter in combination with 50,000 random pairs of the shape and scale 46 parameters drawn from the mean estimated shape and scale parameters and their covariance matrices. To 47 compute the future return curves, we use the same scale and shape parameter samples but increase the 48 location parameter at each station by the local projected mean sea-level change, effectively shifting the 49 return curve up. The uncertainty in the local projected mean sea-level change is estimated by drawing 50,000 50 samples from the projected probability distribution of local mean sea-level change, clipped at its 5th and 95th 51 percentiles. This differs from SROCC, where sea-level change samples were drawn from a normal 52 distribution using the central value and a standard error.

- 53
- 54 Using the resulting 50,000 future return curves for each station, we calculated the frequency amplification 55 factor of a 1% average annual-probability (i.e., once in 100 years) of extreme still-water level by dividing the

frequency of that water level in the future return curves by the historical frequency. This resulted in a
 probability distribution of frequency amplification factors that represents both the uncertainty in projected

3 sea-level change and in the historical distribution of extremes.

4

5 Using the POT method, the frequency of extreme events is only defined for water levels above the POT 6 threshold. If the projected sea-level change for a given location is higher than the exceedance of the 7 historical location parameter by the historical 1% annual probability event, the historical 1% annual-8 probability event would have a return level below the future location parameter. Thus, for the stations where this occurs the frequency amplification factor cannot be fully determined. Therefore, we used the approach 9 10 of (Buchanan et al., 2016) to describe the return frequency of return heights below the POT threshold. We fit a Gumbel distribution between Mean Higher-High Water (MHHW) and the location parameter, assuming the 11 12 frequency of exceedance of the MHHW to be 182.6/year. The MHHW was estimated from the GESLA2 data as the long-term mean of 2-daily maxima for each location. Therefore, by construction, the maximum 13 14 projected frequency amplification factor in our analysis is 18,262.5.

15 16

17

18 19

20

[START TABLE 9.SM.5 HERE]

 Table 9.SM.5:
 Integrated GMSL projections for 2050, relative to 1996-2014, from the post-AR5 literature.

Study	Grouping	RCP 2.6		RCP 4.5		RCP 8.5	
		67%	90%	67%	90%	67%	90%
			0.16		0.18		0.20
Bakker et al., 2017	MED		0.29		0.31		0.34
		0.19	0.16	0.19	0.16	0.22	0.19
Kopp et al., 2014	MED	0.27	0.31	0.29	0.33	0.32	0.36
			0.10		0.11		0.12
Mengel et al., 2016	MED		0.20		0.21		0.25
							0.16
Nicholls et al., 2018	MED						0.29
		0.14	0.10	0.16	0.12	0.20	0.15
Kopp et al., 2017	MICI	0.31	0.39	0.34	0.41	0.38	0.46
			0.18		0.20		0.23
Wong et al., 2017	MICI		0.31		0.33		0.38
						0.19	0.15
Jackson and Jevrejeva, 2016	SEJ					0.34	0.45
						0.25	0.19
Bamber et al., 2019	SEJ					0.45	0.59

21 22

23

24

All projections are adjusted to a 1995-2014 baseline and 2050 end year. For projections baselined to 1986-2005 or to 2000, adjustments are made assuming a 3 mm/yr rate. For projections ending in 2046-2065, adjustments are made assuming a constant acceleration from 1996-2014 to the end year.

2526 [END TABLE 9.SM.5 HERE]

27

- 28
- 29 30

31

- 32
- 33
- 34
- 35
- 36

[START TABLE 9.SM.6 HERE]

1 2 3 4

Table 9.SM.6: Integrated GMSL projections for 2100, relative to 1996-2014, from the post-AR5 literature.

	Groupin						
Study	g	RCP 2.6		RCP 4.5	1	RCP 8.5	
		67%	90%	67%	90%	67%	90%
			0.37		0.51		0.82
Bakker et al., 2017	MED		0.68		0.94		1.56
				0.33	0.19	0.51	0.34
Jackson and Jevrejeva, 2016	MED			0.69	0.82	0.95	1.15
		0.35	0.27	0.43	0.34	0.60	0.50
Kopp et al., 2014	MED	0.63	0.80	0.75	0.91	0.98	1.19
		0.26	0.22	0.37	0.31	0.57	0.50
Kopp et al., 2016	MED	0.49	0.59	0.67	0.83	1.03	1.29
			0.25		0.34		0.54
Mengel et al., 2016	MED		0.53		0.74		1.28
		0.34		0.45		0.65	
Nauels et al., 2017	MED	0.56		0.71		1.06	
				0.36		0.46	
Slangen et al., 2014	MED			0.83	0.01	1.15	0.40
X D D				0.39	0.31	0.59	0.48
Le Bars, 2018	MED	0.00	0.1.1	0.67	0.82	0.98	1.18
L G (1 0010	MED	0.20	0.14	0.32	0.24	0.55	0.45
Le Cozannet et al., 2019	MED	0.42	0.49	0.54	0.60	0.80	0.89
	MED		0.51		0.52		0./3
Goodwin et al., 2017	MED		0.88		0.79		1.00
Nichella et al. 2018	MED						0.51
Nichons et al., 2018	MED	0.25	0.24	0.64	0.49	1.07	0.00
Kopp at al 2017	MICI	0.55	0.24	0.04	0.40	2.07	0.91
	IVIICI	0.70	0.90	1.23	0.54	2.07	1.07
Wong et al. 2017	MICI		0.41		1.28		2.05
	WIICI		0.72		1.20	0 56	0.43
Grinsted et al 2015	SEI					1 18	1.81
	5L5					0.60	0.48
Jackson and Jevreieva, 2016	SEJ					1.18	1.64
	~						0.44
Jevrejeva et al., 2014	SEJ						1.78
						0.77	0.60
Bamber et al., 2019	SEJ					1.72	2.36
		0.28	0.19			0.61	0.43
Horton et al., 2020	Survey	0.63	0.80			1.30	1.63

All projections are adjusted to a 1995-2014 baseline and 2100 end year. For projections baselined to 1986-2005 or to 2000, adjustments are made assuming a 3 mm/yr rate. For projections ending in 2081-2100, adjustments are made assuming a constant acceleration from 1996-2014 to the end year.

9 10

- 11 12

13

14 15

[END TABLE 9.SM.6 HERE]

[START TABLE 9.SM.7 HERE]

1

Table 9.SM.7: Global mean sea-level projections for 5 SSP scenarios, for total change and individual contributions, median values, (*likely*) ranges of the process-based model ensemble, for 1995-2014 to 2050 and 2150 in meters. Average rates for total sea-level change in mm yr⁻¹.

	SSP1-1.9	SSP1-2.6	SSP2-4.5	SSP3-7.0	SSP5-8.5	SSP5-8.5 Low Confidence
2050						
Thermal expansion	0.07 (0.06 0.08)	0.07 (0.06 0.09)	0.08 (0.07 0.10)	0.09 (0.07 0.10)	0.09 (0.08 0.11)	0.07 (0.06 0.09)
Greenland	0.03 (0.02 0.04)	0.03 (0.02 0.04)	0.03 (0.02 0.04)	0.03 (0.02 0.04)	0.03 (0.02 0.04)	0.03 (0.02 0.10)
Antarctica	0.03 (0.01 0.08)	0.03 (0.01 0.08)	0.03 (0.01 0.08)	0.03 (0.01 0.08)	0.03 (0.01 0.08)	0.03 (- 0.000.08)
Glaciers	0.04 (0.03 0.05)	0.05 (0.04 0.06)	0.05 (0.05 0.06)	0.06 (0.05 0.07)	0.07 (0.06 0.08)	0.05 (0.04 0.06)
Land Water Storage	0.01 (0.00 0.02)	0.01 (0.00 0.02)	0.01 (0.00 0.02)	0.01 (0.00 0.02)	0.01 (0.00 0.02)	0.01 (0.00 0.02)
Total (2050)	0.18 (0.15 0.23)	0.19 (0.16 0.25)	0.21 (0.18 0.26)	0.22 (0.19 0.28)	0.23 (0.20 0.30)	0.20 (0.16 0.31)
2150						
Thermal expansion	0.14 (0.11 0.18)	0.18 (0.14 0.23)	0.30 (0.24 0.38)	0.46 (0.38 0.57)	0.55 (0.45 0.68)	0.55 (0.45 0.68)
Greenland	0.10 (0.08 0.13)	0.13 (0.10 0.17)	0.19 (0.15 0.24)	0.24 (0.19 0.28)	0.27 (0.22 0.35)	0.31 (0.18 0.98)
Antarctica	0.17 (-0.01 0.44)	0.18 (-0.03 0.49)	0.18 (-0.05 0.55)	0.17 (-0.07 0.61)	0.17 (- 0.09 0.68)	0.77 (- 0.093.68)
Glaciers	0.10 (0.07 0.14)	0.13 (0.09 0.18)	0.19 (0.13 0.26)	0.27 (0.18 0.32)	0.31 (0.20 0.32)	0.31 (0.20 0.32)
Land Water Storage	0.05 (0.03 0.06)	0.05 (0.03 0.06)	0.05 (0.03 0.07)	0.07 (0.04 0.09)	0.05 (0.03 0.06)	0.05 (0.03 0.06)
Total (2150)	0.57 (0.37 0.85)	0.69 (0.46 1.00)	0.93 (0.67 1.33)	1.21 (0.92 1.67)	1.35 (1.02 1.89)	1.99 (1.02 4.83)

Do Not Cite, Quote or Distribute

[END TABLE 9.SM.7 HERE]

[START TABLE 9.SM.8 HERE]

1 2 3 4

 Table 9.SM.8:
 Global mean sea-level rise projections for 2000-2300 from literature (m), for different RCP scenarios.

Study	Grouping	RCP 2.6		RCP 4 5		RCP 8 5	
Study	Grouping	67%	90%	67%	90%	67%	90%
		0770	5070	0770	0.0	0770	7070
Kopp et al., (2014)	MED	0.32.9	-0.24.7	0.73.5	5.3	1.85.2	1.07.4
Nauels et al., (2017)	MED	0.81.4		1.82.3		3.46.8	
Palmer et al.							
(2020)*	MED	0.62.2		0.92.6		1.74.5	
					2.1		9.1
Kopp et al., (2017)	MICI	0.8-2.3	0.53.0	2.86.0	7.0	9.814.1	15.5
Bamber et al.							1.8
(2019)*	SEJ	1.23.6	0.55.3			2.66.5	11.8
						1.67-	0.88-
Horton et al. (2020)	Survey	0.54-2.15	0.24-3.11			5.61	7.83

*Bamber et al. (2019) 2°C scenario is listed under the RCP 2.6 column, but GSAT does not decline in this

5°C above pre-industrial after 2100 and so becomes cooler than RCP 8.5 over the 22nd and 23rd century.

Palmer et al. (2020) 5th-95th percentile of simulated projections are constructed to be analogous to

2°C scenario as it does in RCP 2.6. Bamber et al. (2019) "RCP 8.5" scenario assumes GSAT stabilization at

13 14 15

16 17

18

5

AR5/SROCC *likely* ranges and so are presented here as 17th-83rd percentile projections.
 [END TABLE 9.SM.8 HERE]

9.SM.5 Data Table

[START TABLE 9.SM.9 HERE]

 Table 9.SM.9:
 Input datasets and code in the chapter.

19 20

Figure number	Dataset / Code name	Туре	Filename / Specificiti es	Licens e type	Dataset / Code citation	Dataset / Code URL	Related publications / Software used	Notes
Figure 9.2, panel b	OSCAR third degree resolutio n ocean surface currents. Ver. 1	Input dataset (observ ations)		open	10.5067/OSCA R-03D01	https://do i.org/10. 5067/OS CAR- 03D01	Bonjean, F., and G. S. E. Lagerloef, 2002.	time averaged over 1993- 2018
	ETOPO2 0	Input dataset (topogr aphy)		open	<u>doi:10.7289/V5</u> <u>C8276M</u> .	http://ww w.ngdc.n oaa.gov/ mgg/glob al/etopo2 .html	Amante, C.; Eakins, B.W. (2009). "ETOPO1 1 Arc-Minute Global Relief Model: Procedures,	

Permafro st gridded map	input dataset	open		https://da ta.tpdc.ac .cn/en/da ta/c66bf4 a7-8f20- 443c- 9412- 53ac675 bd964/	Data Sources and Analysis". NO AA Technical Memorandum NESDIS NGDC-24. Brown, J., O. Ferrians, J. A. Heginbottom, E. Melnikov, Tingjun Zhang Tingjun Zhang Tingjun Zhang Tingjun Zhang Circu m-Arctic map of permafrost and ground ice conditions (v2) (1997). National Tibetan Plateau Data	all permafrost types combined
Snow water equivale nt map	Input dataset	Open	https://doi.org/1 0.5067/KIGGF NVROX9V	https://do i.org/10. 5067/KI GGFNV ROX9V	Center, 2011. Brodzik, M. J., R. Armstrong, and M. Savoie. 2007. Global EASE- Grid 8-day Blended SSM/I and MODIS Snow Cover, Version 1. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/ 10.5067/KIG GFNVROX9 V.	SWE converted to distribution of snowy regions and locations of ice sheets
Northern Hemisph ere sea ice data	Input dataset	Open			Meier, W. N., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve. 2017. NOAA/NSID C Climate	Annual average concentratio n

					Data Record of Passive Microwave Sea Ice Concentration, Version 3. [Indicate subset used]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. doi: https://doi.org/ 10.7265/N59P 2ZTG.	
	Southern	Input	Open		Peng, et al. 2013	Annual
	ere sea	unuser			https://doi.org/	concentratio
	ice data				10.5194/essd-	n
		.			5-311-2013	
	Glacier	Input	Open		RGI	
	inventory	ualasei			(2017).	
					Randolph	
					Glacier	
					Inventory – A	
					Dataset of Global Glacier	
					Outlines:	
					Version 6.0:	
					Technical	
					Report, Global	
					Land Ice	
					from Space	
					Colorado.	
					USA. Digital	
					Media.	
					DOI: <u>https://d</u>	
					<u>01.0rg/10.7265</u> /N5 PCI 60	
					<u>////J-////////////////////////////////</u>	
Figure	Paleo	Input			Foley, et al.	Anomalized
9.3a (left:	MPWP	dataset			(2019) <u>https://</u>	relative to
paleo	observati	(observ			$\frac{\text{doi.org}/10.506}{(\text{poyp2DTV})}$	1950-1980.
panel)Flg	on	ations)			<u>6/P9YP3D1V</u> .	I nese data
(left: paleo					McClymont,	different
panel)					et al.	'modern'
					(2020). <u>https://</u>	period so a
					$\frac{\text{do1.org}/10.519}{4/\text{op}/2010}$	+0.2
					<u>4/cp-2019-101</u>	was applied
						based on
						HadCM3.
	Paleo	Input			Fischer, et al.	Anomalized
	LIG	dataset			(2018). <u>https://</u>	relative to
	ooservati			1	a01.01g/10.10J	1750-1700.

on	ations)			8/s41561-018- 0146-0; Turney, et al. (2020). https://doi.org/ 10.5194/essd- 12-3341-2020; Hoffman et al., 2017	The references used varying 'modern' periods so the following corrections were applied; +0.2 for Fischer et al. (2018) and -0.1 for Turney et al. (2020). These corrections were based on HadCM3.
Paleo LGM observati on	Input dataset (observ ations)			Paul, et al. (2020). https://doi.org/ 10.1038/s4158 6-020-2617-x; MARGO (2009)	Anomalized relative to 1950-1980. The references used varying 'modern' periods so the following corrections were applied; +0.2 for Paul et al. (2021) & MARGO (2009) and +0.1 for Tierney et al., 2020. These corrections were based on HadCM3 and PAGES12K (Kaufman et al., 2020) respectively.
Paleo MPWP Models	Model dataset			Haywood, et al. (2020).	Anomalized relative to 1950-1980. These data used a different 'modern' period so a +0.2 correction was applied based on

						HadCM3.
	Paleo LIG Models	Model dataset			Otto-Bliesner, et al. (2021).	Anomalized relative to 1950-1980. Otto- Bliesner et al. (2021) used a different 'modern' period so a +0.2 correction was applied based on HadCM3
	Paleo LGM Models	Model dataset			Kageyama, et al. (2021). https://doi.org/ 10.5194/cp- 2019-169	Anomalized relative to 1950-1980. Kageyama et al. (2021) used a different 'modern' reference perios so the following was applied; +0.2. This correction was based on HadCM3.
Figure 9.3a (middle and right panels)	Hadley Centre Sea Ice and Sea Surface Temperat ure dataset (HadISS T)	Input dataset (observ ational reanlys es)	Crown Copyri ght	https://w ww.meto ffice.gov. uk/hadob s/hadisst/	Rayner, et al (2003), ESMValTool v2	Reformatted with ESMValToo 1 v2.0 (March 20 th 2020)
	CMIP6 (CMIP, Scenario MIP, HighRes MIP)	Model dataset				
Figure 9.3b	Hadley Centre Sea Ice and Sea Surface Temperat ure dataset (HadISS T)	Input dataset (observ ational reanlys es)	Crown Copyri ght	https://w ww.meto ffice.gov. uk/hadob s/hadisst/	See Figure 9.3a (middle and right panels)	Monthly data averaged between 1995 and 2014. Reformatted with ESMValToo 1 v2.0 (March 20 th

								2020)
Figure	Hadley	Input		Crown		https://w	See Figure	Change rate
9.3c	Centre	dataset		Copyri		ww meto	9.3a (middle	calculated
	Sea Ice	(observ		ght		ffice gov	and right	between the
	and Sea	ational		0		uk/hadoh	panels)	2005-2014
	Surface	reanlys				c/hadicat/	I	mean and
	Temperat	es)				<u>s/IIauissi/</u>		1950-1959
	ure	Í						mean.
	dataset							
	(HadISS							
	T)							
Figure	CMIP6	Model						Change rate
9.3d	(CMIP)	dataset						calculated
								between the
								2091-2100
								mean and
								the 2005-
								2014 mean.
Figure	CMIP6	Model						See F1g. 9.3b
9.50	(CMIP)	dataset						
Figure	CMIP6	Model						See Fig 93c
9.3f	(CMIP)	dataset						500 I Ig. 9.50
<i>,</i>		dutuset						
Figure	CMIP6	Model						Change rate
9.3g	(CMIP)	dataset						calculated
0								between the
								2041-2050
								mean and
								the 2005-
								2014.
Figure	CMIP6	Model						See Fig. 9.3b
9.3h	(HighRes	dataset						
	MIP)							
Figure	CMIP6	Model						See Fig. 9.3c
9.51	(Highkes	dataset						
Figure	CMIP6	Model						Saa Eig. 0.2g
9 3i	(High Pag	dataset						see rig. 9.3g
2.01	MIP)	ualasel						
Figure	CERES	Input				https://ce		Details of
9.4a.b.d.e.	EBAF v4	datasets				res larc n		dataset
g,h	(Heat	(observ				asa gov/d		merging and
	fluxes);	ation-				$\frac{asa.507/0}{ata/\cdot}$		trend
	OAFlux-	based				http://oaf		calculation
	HR	product				lux whoi		to be added
	(heat,	s)				$\frac{10x.w101}{edu/\cdot}$		
	freshwat					https://rd		
	er and					a ucar od		
	momentu					u/datasat		
	m					a/de729.2		
	fluxes);					$\frac{s/us/28.3}{l}$		
	GPCP					<u> </u>		
	(precipita							
Figure	CMIP6	Model			<u> </u>		<u> </u>	Change rate
9.4c.f.i	(CMIP.	datasets						calculated
	Scenario							between

Figure 9.5a,b,e,f	MIP) Argo Mixed Layers	Input datasets (observ ations)		Open	http://mi xedlayer. ucsd.edu	Holte, et al. (2017).	2081-2100 mean and 1995-2014 mean (CHECK THIS). Models include river runoff, observations do not. Climatology of monthly mixed layer depths. Dec 2019 version. MLDs calculated using de Boyer Montégut et al.'s (2004) threshold values. DJF and JJA averages ignore missing gridpoints. Afterward, isolated missing gridpoints infilled as average of four neighbors.
Figure 9.5b,f	CMIP6 (CMIP)	Model datasets					Change rate calculated across 1995- 2014 period.
Figure 9.5c,d,g,h	CMIP6 (Scenario MIP, CMIP)	Model datasets					Change rate calculated between 2081-2100 average and 1995-2014 average.
Figure 9.6a	Observat ions (Ishii)	Input dataset (observ ations)	ishii_ohc_ global_195 5.txt		https://w ww.data. jma.go.jp /gmd/kai you/engli sh/ohc/o hc_data en.html (Downlo aded 12th Jan.	Ishii et al. 2017	Anomalized relative to 2004-2015 mean.

IPCC AR6 WGI

				2021)		
Hybrid (Zanna)	Input dataset (hybrid)	OHC_GF_ 1870_2018 _Zanna.nc		Zanna, Laure, Khatiwal a, Samar, Gregory, Jonathan, Ison, Jonathan, & Heimbac h, Patrick. (2019). Global reconstru ction of historical ocean heat storage and transport (Version v1) [Data set]. Zenodo. http://doi .org/10.5 281/zeno do.46037 00	Zanna, et al. (2019)	Anomalized relative to 2004-2015 mean.
Hybrid (Cheng)	Input dataset (hybrid)	Cheng_20 16_Global _OHC_13 _Jan_2021. txt		http://15 9.226.11 9.60/che ng/image s_files/O HC2000 m_annua 1_timeser ies.txt	Cheng, et al. 2019	Anomalized relative to 2004-2015 mean.
Paleo (LIG)	Input dataset (LIG)	Stored in Excel file for Fig 9.9: 9.2.2_AC M_Fig_9.9 _OHC_Pal eo_Data_u pdate_202 0_12_06.xl s			Shackleton, S. et al. (2020).	Last Inter- Glacial OHC anomaly relative to preindustrial. This mean is between - 129 ka and - 116 ka CE, and the timeseries is shown in Fig. 9.9
Paleo (LGM)	Input dataset (LGM)	Stored in Excel file for Fig 9.9: 9.2.2_AC M Fig 9.9			Baggenstos, D., Häberli, M., Schmitt, J., Shackleton, S. A., Birner.	Last Glacial Maximum OHC anomaly relative to

Do Not Cite, Quote or Distribute

			_OHC_Pal eo_Data_u pdate_202 0_12_06.xl s			B., Severinghaus, J. P., Kellerhals, T & Fischer, H. (2019). Earth's radiative imbalance from the Last Glacial Maximum to the present. Proceedings of the National Academy of Sciences, 116(30), 14881-14886. DOI: 10.1073/pnas. 1905447116	preindustrial. This mean is between -23 ka and -19 ka CE, and the timeseries is shown in Fig. 9.9
	Paleo (MH)	Input dataset (MH)	Stored in Excel file for Fig 9.9: 9.2.2_AC M_Fig_9.9 _OHC_Pal eo_Data_u pdate_202 0_12_06.xl s			Baggenstos, D. et al. (2019).	Mid- holocene OHC anomaly relative to preindustrial. This mean is between -6.5 ka and -5.5 ka CE, and the timeseries is shown in Fig. 9.9
	CMIP6 (CMIP, Scenario MIP)	Model dataset					Timeseries across 1850- 2014 (CMIP) and 2015-2100 (ScenarioMI P). Anomalized relative to 2005-2014 mean
Figure 9.6b-g	Observat	Input dataset (observ ational reanlys es)			https://cli mate.mri _ jma.go.jp /pub/oce an/ts/v7. 3/2021- 02-01/		0-700m calculated between 1971-2014 and 0-2000m calculated between 2005-2014.
	CMIP6 (CMIP)	Model dataset					0-700m Bias calculated across 1971-

							2014 mean. 0-2000m Bias calculated across 2005- 2014 mean
	CMIP6 (Scenario MIP)	Model dataset					Change rate calculated between 2091-2100 mean and 2005-2014
Figure 9.7 1 st and 2 nd columns	Argo (observat ions)	Input dataset (observ ational reanlys es)			https://ar go.ucsd.e du/		mean.
	CMIP6 (CMIP)	Model dataset					
Figure 9.7 3 rd and 4 th columns	CMIP6 (CMIP, Scenario MIP)	Model dataset					Change rate calculated between 2005-2014 mean (CMIP) and 2091-2100 mean (ScenarioMI P).
Figure 9.8 Panels a-f	CMIP5 and observati on based product	Model and observa tion analysi s dataset		https://doi.org/1 0.1038/s41586- 020-2573-5	https://do i.org/10. 1038/s41 586-020- 2573-5	Bronselaer, B. and Zanna, L., 2020.	These data are the same as used in the paper, but projections are redrawn so as to match the chapter standards
Figure 9.8 Panel g	RAPID array	Input dataset (observ ations)				Version v2015.1 Smeed D. et al. (2016).	
	CMIP6 (HighRes MIP)	Model dataset				Roberts, et al. 2020.	This analysis is similar to that in the paper but combines multiple panels from the paper into one.
Figure 9.9a,b,d	Ocean heat content (OHC)	Input dataset			Inset OHC updated values	Shackleton et al, 2019; 2020; Baggenstos et	Rebased to PI: Baggenstos et al. (2019)

	estimates			from Levitus et al., 2012; https://w ww.nodc .noaa.go v/OC5/3 M_HEA T_CONT ENT/basi n_tsl_dat a.html	al., 2019; Levitus et al. 2012 updated NOAA NODC, 2020	MOT-PI= MOT-1.51; Shackleton et al. (2019) MOT-PI = MOT+0.50 (aligned to Baggenstos et al. 2019); Shackleton et al. (2020) MOT-PI = MOT+0.25 (aligned to Baggenstos et al. 2019); assumption, Baggenstos et al. (2019) at 1000 BP =PI.
	Southern Ocean SST estimates from marine cores	Input dataset			Uemera et al., 2018	Restacked 11 records from average of three low- variability intervals, 4-8 ka, 18-22ka, and 25-29 ka, binned and averaged at 1000-year intervals.
	Southern Ocean SST estimates from ice core source	Input dataset			Uemera et al., 2018	As published, moisture source temperature based on deuterium excess
	OHC from HadCM3	Input dataset		https://cr udata.uea .ac.uk/cr u/project s/soap/p w/data/m odel/had cm3/had cm3_seal evel.htm	Gregory et al., 2006	Inset only, Natural + Anthropogen ic forcing
Figure 9.9c	Model OHC projectio ns	Model dataset			Clark et al., 2016	Projected OHC in response to four GHG emissions scenarios
	Model SAT	Model dataset			Clark et al., 2016	Projected SAT in

						response to four GHG emissions scenarios
Figure	CMIP6	Model				
9.10	(PMIP)	dataset				
Top left						
panel						
Figure	CMIP6	Model			Menary, et al.,	
9.10	(DAMIP,	dataset			2020.	
Top right	Scenario					
panei	MIP), CMID5					
Figure	Simulate	Model			Based on	Extracted
9.10	d AMOC	datasets			literature	from
Bottom	changes	Guide Co			search from	timeseries
panels					Jackson and	and
-					Wood, 2018;	descriptions
					Yin and	of models
					Stouffer,	from these
					2007; Liu and	papers.
					Liu, 2013;	
					Haskins et al.	
					2019; De	
					Vries and Wahar 2005.	
					Weber, 2005; Jackson 2013;	
					Stouffer et al	
					2006	
Figure	CMIP6	Model				Change rates
9.11	(CMIP,	dataset				calculated
Maps	Scenario					between
	MIP)					1995-2014
						mean
						(CMIP) and
						2081-2100
						(SconorioMI
						(Scenariown P)
Figure	CMIP6	Model			Hu et al., 2015	- /•
9.11	(CMIP,	dataset				
Right	Scenario					
column	MIP)					
(scatter						
plots) Figure	AVIEO	Input		https://w		Standard
9.12g	Sea	dataset		ww.aviso		deviation
	Surface	(observ		altimetry		across 2005-
	Altimetr	ations)		fr/en/ho		2014.
	у			me html		
Figure	CMIP6	Model		HYCOM		Standard
9.12h,i	(OMIP)	dataset		low-res		deviation
				is from		across last
				ftp://ftp.c		10 years.
				oaps.fsu.		
				edu/pub/		
				abozec/O		
				MIP2-		
				GLBt0.7		

						2/. HYCOM high-res is from ftp://ftp.c oaps.fsu. edu/pub/ abozec/G LBb0.08/		
Figure 9.12a-f	CMIP6 (CMIP, Scenario MIP)	Model dataset						Changes are between 1995-2014 and 2081- 2100 means.
Figure 9.13 Left panel	UHH SIA	Input datasets	SeaIceAre aNorther nHemisphe remonth lyUHH_ _v2019_fv 0.01.nc	<u>Creativ</u> <u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u>	Doerr, Jakob, Notz, Dirk, & Kern, Stefan. (2021). UHH Sea Ice Area Product (Version 2019_fv0.01) [Data set].	http://doi .org/10.2 5592/uhh fdm.8559		
Figure 9.13 Left panel	Plotting code	Code	plot_9_13_ and_9_15. py					
Figure 9.13 Maps (except right column)	OSISAF/ CCI 450	Input datasets			EUMETSAT Ocean and Sea Ice Satellite Application Facility. <i>Global</i> <i>sea ice</i> <i>concentration</i> <i>climate data</i> <i>record 1979-</i> 2015 (v2.0, 2017),	http://doi / <u>10.1577</u> <u>0/EUM_SAF_OS</u> <u>I_0008</u>	Lavergne et al., 2019	
	OSISAF/ CCI 430- b	Input datasets			EUMETSAT Ocean and Sea Ice Satellite Application Facility. <i>Global</i> sea ice concentration interim climate data record 2016 onwards (v2.0, 2019), [Online]. Norwegian and Danish Meteorological Institutes.	http://osi saf.met.n o/p/ice/# conc- reproc- v2 [last accessed: 2020-08- 14] at time of writing available at	Lavergne et al., 2019	

				ftp://osis af.met.no /reproces sed/ice/c onc-cont- reproc/v2 p0/		
NASA I Team a and Bootstra P algorith m data as included in the NOAA/ NSIDC Climate data record	Input data set		Meier, W. N., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve. 2017. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3. [Indicate subset used]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally. 1996, updated yearly. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I- SSMIS Passive Microwave Data, Version 1. Comiso, J. C. 2017. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I- SSMIS Passive Microwave Data, Version 1.	https://do i.org/10. 7265/N5 9P2ZTG	Cavalieri et al., 1996; Comiso et al., 2017	

Figure 9.13 Right column	Plotting code	Code	plot_Fig_9 _13_RIGH T_and_Fig _9_15_RI GHT.py					
Figure 9.13 Right column	CMIP6 (CMIP, Scenario MIP)	Model dataset						
Figure 9.14	Plotting code	Code	plot_Fig_9 14.pv					
Figure 9.14	CMIP6 Sea-Ice Model Interomp arison Project SIMIP	Model dataset					SIMIP Community, 2020	
Figure 9.15 Left panel	UHH SIA	Input datasets	SeaIceAre aNorther nHemisphe remonth lyUHH_ _v2019_fv 0.01.nc	<u>Creativ</u> <u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u>	Doerr, Jakob, Notz, Dirk, & Kern, Stefan. (2021). UHH Sea Ice Area Product (Version 2019_fv0.01) [Data set].	http://doi .org/10.2 5592/uhh fdm.8559		
Figure 9.15 Left panel	Plotting code	Code	plot_9_13_ and_9_15. py					
Figure 9.15 Maps (except right column)	OSISAF/ CCI 450	Input datasets			EUMETSAT Ocean and Sea Ice Satellite Application Facility. <i>Global</i> <i>sea ice</i> <i>concentration</i> <i>climate data</i> <i>record 1979-</i> 2015 (v2.0, 2017),	http://doi / <u>10.1577</u> <u>0/EUM</u> <u>SAF OS</u> <u>1</u> 0008	Lavergne et al., 2019	
	OSISAF/ CCI 430- b	Input datasets			EUMETSAT Ocean and Sea Ice Satellite Application Facility. Global sea ice concentration interim climate data record 2016 onwards (v2.0, 2019), [Online]. Norwegian and Danish Meteorological	http://osi saf.met.n o/p/ice/# conc- reproc- v2 [last accessed: 2020-08- 14] at time of writing	Lavergne et al., 2019	

			Institutes.	available		
				at		
				ftp://osis		
				af.met.no		
				/reproces		
				sed/ice/c		
				onc-cont-		
				reproc/v2		
				p0/		
 NASA	Input	 	Meier, W. N., F.	https://do	Cavalieri et	
Team	data set		Fetterer, M.	i.org/10.	al., 1996;	
and			Savoie, S.	7265/N5	Comiso et al.,	
Bootstra			Mallory, R.	9P2ZTG	2017	
р			Duerr, and J.			
algorith			Stroeve. 2017.			
m data as			NOAA/NSIDC			
included			Climate Data			
in the			Record of			
NOAA/			Passive			
NSIDC			Microwave Sea			
Climate			Ice			
data			Concentration,			
record			Version 3.			
			[Indicate subset			
			used]. Boulder,			
			Colorado USA.			
			Notional Snow			
			and Ice Data			
			Center			
			Center.			
			Cavalieri. D. J.,			
			C. L. Parkinson.			
			P. Gloersen, and			
			H. J. Zwally.			
			1996, updated			
			yearly. Sea Ice			
			Concentrations			
			from Nimbus-7			
			SMMR and			
			DMSP SSM/I-			
			SSMIS Passive			
			Microwave			
			Data, version 1.			
			Comiso I C			
			2017 Bootstran			
			Sea Ice			
			Concentrations			
			from Nimbus-7			
			SMMR and			
			DMSP SSM/I-			
			SSMIS, Version			
			3. Boulder,			
			Colorado USA.			
			NASA National			
			Snow and Ice			
			Data Center			
			Distributed			

				Active Archive Center.		
Figure 9.15 Right	CMIP6 (CMIP, Scenario MIP)	Model dataset				
Figure 9.15 Right column	Plotting code	Code	plot_Fig_9 _13_RIGH T_and_Fig _9_15_RI GHT.py			
Figure 9.16 Top left panel	Regional Mass Change in Greenlan d	Input dataset			Colgan et al., 2019; Mouginot et al., 2019	Referenced to 2015
Figure 9.16 Top right panel	Regional Mass Change in Antarctic	Input dataset			Bamber et al., 2018a; IMBIE Team, 2018	Referenced to 2015
Figure 9.16 Lower panels	Regional Mass Change in Greenlan d	Input dataset			Mankoff et al., 2019; Mouginot et al., 2019; King et al., 2020	
Figure 9.17 Top-left panel	Greenlan d Paleo observati ons (MPWP)	Input dataset			Dolan et al (2011); Koenig et al. (2015); Miller et al. (2012); de Boer et al. (2017); Dolan et al. (2015); Contoux et al. (2015)	The mean of each of these studies means is plotted as a circle. The range shows the maximum and minimum of range values across all these studies.
	Greenlan d Paleo observati ons (LIG)	Input dataset			Robinson et al. (2011); Colville et al. (2011); Fyke et al. (2011); Born & Nisancioglu (2012); Quiqet et al. (2013); Dahl-Jensen et al. (2013); Helsen et al. (2013);	The mean of each of these studies means is plotted as a circle. The range shows the maximum and minimum of range values across all these studies.

	Greenlan d Paleo observati ons (LGM)	Input dataset			Stone et al. (2013); Colleoni et al., (2014); Robinson & Goelzer (2014); Calov et al., (2015); Dutton et al. (2015); Goezler et al (2017); Yau et al., (2016) Bradley et al. (2017); Yau et al., (2016) Bradley et al. (2018); Plach et al. (2019); Clark et al. (2020) Simpson et al. (2020) Simpson et al. (2009); Lecavalier et al. (2014); Peltier et al. (2015); Khan et al. (2015); Khan et al. (2015); Simms et al. (2015); Stuhne et al. (2015); Argus & Peltier (2010).; Bradley et al. (2018); Tabone et al. (2018); Tabone et al. (2018);	The mean of each of these studies means is plotted as a circle. The range shows the maximum and minimum of range values across all these studies.
Figure 9.17 Top- right panel	Greenlan d mass loss historical data Greenlan d mass	Input dataset Model datasets			Box and Colgan 2013; Kjeldsenet al., 2015; Mouginot et al., 2019; Bamber et al., 2018b; The UMBIE Team, 2019 Goelzer et al., 2020; Payne et al., aubmitted	
	n (ISMIP6) Greenlan	Model			Edwards et al.,	

	d mass loss projectio n (ISMIP6 emulatio n)	dataset			submitted	
Figure 9.17 Bottom panels	Paleo reconstru ctions (left 3 panels)	Input dataset			Lecavalier et al., 2014; Koenig et al., 2015; Goelzer et al., 2017	
	CryoSat 2 radar altimetry	Input Dataset			Bamber et al., 2018b	
	ISMIP6 projectio n	Input dataset			Goelzer et al., 2020	
Figure 9.18 Top-left panel	Antarctic a Paleo observati ons (MPWP)	Input dataset			Dolan et al (2011); Miller et al. (2012); Pollard et al (2015); de Boer et al. (2015); de Boer et al. (2017); Deconto & Pollard (2016); Yan et al. (2016); Gasson et al. (2016); Golledge et al. (2017)	The mean of each of these studies means is plotted as a circle. The range shows the maximum and minimum of range values across all these studies.
	Antarctic a Paleo observati ons (LIG)	Input dataset			Bamber et al. (2009); Dutton et al. (2015); Goezler et al (2017); Briggs et al. (2014) Clark et al. (2020) Albrecht et al. (2020)	The mean of each of these studies means is plotted as a circle. The range shows the maximum and minimum of range values across all these studies.
	Antarctic a Paleo observati ons (LGM)	Input dataset			Whitehouse et al. (2012) Golledge et al. (2012) Golledge et al. (2013) Mackintosh et al. (2011)	The mean of each of these studies means is plotted as a circle. The range shows the

			1			
					Golledge et al. (2014) Ivins et al. (2013) Maris et al. (2014) Argus et al. (2014) Simms et al. (2014) Argus et al. (2014) Argus & Peltier (2010)	maximum and minimum of range values across all these studies.
Figure 9.18 Top- right panel	Antarctic mass loss historical data	Input dataset			WCRP Global Sea Level Budget Group, 2018	
	Antarctic mass loss projectio n (ISMIP6)	Model datasets			Seroussi et al., 2019; Payne et al., submitted	
	Antarctic mass loss projectio n (ISMIP6 emulatio n)	Model dataset			Edwards et al., submitted	
Figure 9.18 Bottom panels	Paleo reconstru ctions (left 3 panels)	Input dataset			Anderson et al., 2002; Bentley et al., 2014; De Boer et al., 2015; Goelzer et al., 2016	
	Restored analog radar records	Input Dataset			Schroeder et al., 2019	
	ISMIP6 projectio n	Input dataset			Seroussi et al., 2019	
Figure 9.19 Top-left panel	Present- day melt rates (input- output method)	Input dataset			Rignot et al., 2013	
Figure 9.19 Top- middle panel	Present- day melt rates (non- local PIGL)	Input dataset			Jourdain et al., 2020	
Figure 9.19	Present- day melt	Input dataset			Naughten et al., 2018	

Top-right panel	rates (FESOM						
	n)						
Figure 9.19 Bottom panels	n) ISMIP6 projectio ns	Input dataset					Future anomalies are calculated as 2081-2100 minus present-day using the ISMIP6 non- local- MeanAnt and non- local-PIGL parameteriza tions ((Jourdain et al., 2020) lower left and centre respectively) based on projections from the NorESM1- M CMIP5 model, and the FESOM- MMM projection (lower right).
Figure 9.20	Glacier change rates	Input dataset				Zemp et al., 2019; Zemp et al., 2020; Wouters et al., 2019; Hugonnet et al., submitted	
Figure 9.21	Historica l glacier mass	Input dataset				Marzeion et al., 2015; Zemp et al., 2019; Bamber et al., 2018.	
	CMIP6 (Glacier MIP Phase 2)	Model dataset				Marzeion et al., 2020	
Figure 9.22	Global mean annual ground temperat ure data (GTN-P)	Input dataset			GTN-P, 2018		
Figure	CMIP6	Model	pf15m_am	Creativ			
9.22	(CMIP,	dataset	ip_NH_19	<u>e</u>			

Left panel	AMIP,		79-	Comm				
	land-		1998.txt;	ons				
	hist),		pf15m_C	Attribut				
	CMIPS		ical NH 1	Internat				
			979-	ional				
			1998.txt;	<u></u>				
			pf15m_hist					
			orical_NH					
			_1979-					
			1998.txt;					
			d-					
			hist_NH_1					
			979-					
		-	1998.txt					
	Observed	Input	3 values	No	Obu et al., 2018; Zhang at al	-	Obu et al.,	-
	reanalysi	ualasei	manually	require	1999: Gruber et		et al., 1999:	
	s-based		from the	d	al., 2012		Gruber et al.,	
	permafro		cited				2012	
	st extent		references				D 1	~
Figure	CMIP6	Model	pfvolbin-	Creativ			Python,	Change
9.22 Right	(CMIP, Scenario	dataset	Sm.tgz	Comm			Fortrail	relative to
panel	MIP)			ons				1995-2014
-	,			Attribut				over
				<u>ion 4.0</u>				historical
				Internat				period and
Figure	Observed	Input	Figure	Creativ	Mudrvk et al		Mudrvk et al.	Trends and
I Igui v	000001.00		116610					
9.23	snow	dataset	directly	e	2020		2020	anomalies
9.23	snow trends	dataset	directly from	<u>e</u> <u>Comm</u>	2020		2020	anomalies calculated
9.23	snow trends	dataset	directly from publication	<u>e</u> <u>Comm</u> <u>ons</u>	2020		2020	anomalies calculated over 1981-
9.23	snow trends	dataset	directly from publication	<u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> ion 4.0	2020		2020	anomalies calculated over 1981- 2018.
9.23	snow trends	dataset	directly from publication	e Comm ons Attribut ion 4.0 Internat	2020		2020	anomalies calculated over 1981- 2018.
9.23	snow trends	dataset	directly from publication	e Comm ons Attribut ion 4.0 Internat ional	2020		2020	anomalies calculated over 1981- 2018.
9.23 Figure	snow trends Observed	dataset	directly from publication	<u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u> <u>Creativ</u>	2020 Mudryk et al.,	-	2020 Mudryk et al.,	anomalies calculated over 1981- 2018.
9.23 Figure 9.24 Loft panel	snow trends Observed snow	dataset Input dataset	directly from publication Mudryk_sc f_1981- 2014 twt	<u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u> <u>Creativ</u> <u>e</u> <u>Comm</u>	2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018.
9.23 Figure 9.24 Left panel	snow trends Observed snow cover extent	Input dataset	directly from publication Mudryk_sc f_1981- 2014.txt	<u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u> <u>Creativ</u> <u>e</u> <u>Comm</u> ons	2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018.
9.23 Figure 9.24 Left panel	snow trends Observed snow cover extent	Input dataset	directly from publication Mudryk_sc f_1981- 2014.txt	<u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u> <u>Creativ</u> <u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u>	Mudryk et al., 2020	-	2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018.
9.23 Figure 9.24 Left panel	snow trends Observed snow cover extent	Input dataset	directly from publication Mudryk_sc f_1981- 2014.txt	<u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u> <u>Creativ</u> <u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u>	2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018.
9.23 Figure 9.24 Left panel	snow trends Observed snow cover extent	Input dataset	directly from publication Mudryk_sc f_1981- 2014.txt	<u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u> <u>Creativ</u> <u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u>	2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018.
9.23 Figure 9.24 Left panel	snow trends Observed snow cover extent	Input dataset	directly from publication Mudryk_sc f_1981- 2014.txt	<u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u> <u>Creativ</u> <u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u> <u>Creativ</u>	2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018.
9.23 Figure 9.24 Left panel	snow trends Observed snow cover extent CMIP6 (CMIP)	Input dataset Model dataset	directly from publication Mudryk_sc f_1981- 2014.txt snc_clim_ CMIP6 hi	e Comm ons Attribut ion 4.0 Internat ional Creativ e Comm ons Attribut ion 4.0 Internat ional Creativ e Comm ons Attribut ion 4.0 Internat ional Creativ e Comm ons Attribut ion 4.0 Internat ional Creativ e Comm ons Attribut ion 4.0 Internat ional Creativ e Comm ons Attribut ion 4.0 Internat ional Creativ e Comm ons Attribut e Comm ons Attribut ion 4.0 Internat ional Creativ e e Comm ons Attribut ion 4.0 Internat ional Creativ e e Comm ons Attribut ion 4.0 Internat ional Creativ e e Comm ons Attribut ional Creativ e e Comm ons Attribut ional Creativ e e Comm e e e e e e e e e e e e e e e e e e	2020 Mudryk et al., 2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018.
9.23 Figure 9.24 Left panel	snow trends Observed snow cover extent CMIP6 (CMIP)	Input dataset Model dataset	directly from publication Mudryk_sc f_1981- 2014.txt snc_clim_ CMIP6_hi storical_19	gCommOnsAttribution 4.0InternationalCreativeCommOnsAttribution 4.0InternationalCreativeCommOns	Mudryk et al., 2020 Mudryk et al., 2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018. 1981-2014
9.23 Figure 9.24 Left panel	snow trends	Input dataset Model dataset	directly from publication Mudryk_sc f_1981- 2014.txt snc_clim_ CMIP6_hi storical_19 81- 81-	<u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ion 4.0</u> <u>Internat</u> <u>ional</u> <u>Creativ</u> <u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ional</u> <u>Creativ</u> <u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ional</u> <u>Creativ</u> <u>e</u> <u>Comm</u> <u>ons</u> <u>Attribut</u> <u>ional</u> <u>Creativ</u> <u>e</u> <u>Comm</u> <u>ons</u>	2020 Mudryk et al., 2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018.
9.23 Figure 9.24 Left panel	snow trends Observed snow cover extent CMIP6 (CMIP)	Input dataset Model dataset	directly from publication Mudryk_sc f_1981- 2014.txt snc_clim_ CMIP6_hi storical_19 81- 2014.txt	e Comm Ons Attribut ion 4.0 Internat ional Creativ e Comm Ons Attribut ion 4.0 Internat ion 4.0 Internat ional Creativ e Comm Ons Attribut ional Creativ e Comm Ons Attribut	2020 Mudryk et al., 2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018.
9.23 Figure 9.24 Left panel	snow trends Observed snow cover extent CMIP6 (CMIP)	Input dataset Model dataset	directly from publication Mudryk_sc f_1981- 2014.txt snc_clim_ CMIP6_hi storical_19 81- 2014.txt	gCommOnsAttribution 4.0InternationalCreativeCommOnsAttribution 4.0InternationalCreativeCommOnsAttribution 4.0InternationalCreativeCommOnsAttribution 4.0Internation 4.0Internat	Mudryk et al., 2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018. 1981-2014
9.23 Figure 9.24 Left panel	snow trends Observed snow cover extent CMIP6 (CMIP)	Input dataset Model dataset	directly from publication Mudryk_sc f_1981- 2014.txt snc_clim_ CMIP6_hi storical_19 81- 2014.txt	gCommOnsAttribution 4.0InternationalCreativgCommOnsAttribution 4.0InternationalCreativgCommOnsAttributionalCreativgCommOnsAttribution 4.0Internation 4.0International	Mudryk et al., 2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018. 1981-2014
9.23 Figure 9.24 Left panel Figure	snow trends	And	directly from publication Mudryk_sc f_1981- 2014.txt snc_clim_ CMIP6_hi storical_19 81- 2014.txt sncbin.tgz	gCommOnsAttribution 4.0InternationalCreativeCommOnsAttribution 4.0InternationalCreativeCommOnsAttribution 4.0InternationalCreativeCommOnsAttribution 4.0InternationalCreativeCommOnsAttribution 4.0InternationalCreativ	2020 Mudryk et al., 2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018. 1981-2014 1850-2100,
9.23 Figure 9.24 Left panel Figure 9.24 Biab4	snow trends	dataset Input dataset Model dataset Model dataset	directly from publication Mudryk_sc f_1981- 2014.txt snc_clim_ CMIP6_hi storical_19 81- 2014.txt sncbin.tgz	e Comm ons Attribut ion 4.0 Internat ional Creativ e Comm ons Attribut ion 4.0 Internat ion 4.0 Internat ional Creativ e Comm ons Attribut ional Creativ e Comm ons Attribut ion 4.0 Internat ional Creativ e Comm ons Attribut ion 4.0 Internat ional Creativ e Comm	Mudryk et al., 2020 Mudryk et al., 2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020 Mudryk et al., 2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018. 1981-2014 1981-2014 1850-2100, relative to 1005 2014
9.23 Figure 9.24 Left panel Figure 9.24 Right panel	snow trends Observed snow cover extent CMIP6 (CMIP) CMIP6 (CMIP, Scenario MIP)	Angel dataset Model dataset Model dataset	directly from publication Mudryk_sc f_1981- 2014.txt snc_clim_ CMIP6_hi storical_19 81- 2014.txt sncbin.tgz	e Comm Ons Attribut ion 4.0 Internat ional Creativ e Comm Ons Attribut ion 4.0 Internat ional Creativ e Comm Ons Attribut ional Creativ e Comm Ons Attribut ion 4.0 Internat ional Creativ e Comm Ons	2020 Mudryk et al., 2020 Mudryk et al., 2020 Mudryk et al., 2020		2020 Mudryk et al., 2020 Mudryk et al., 2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018. 1981-2014 1981-2014 1850-2100, relative to 1995-2014
9.23 Figure 9.24 Left panel Figure 9.24 Right panel	snow trends	Input dataset Model dataset Model dataset	directly from publication Mudryk_sc f_1981- 2014.txt snc_clim_ CMIP6_hi storical_19 81- 2014.txt sncbin.tgz	gCommOnsAttribution 4.0InternationalCreativgCommOnsAttribution 4.0InternationalCreativgCommOnsAttribution 4.0InternationalCreativgCommOnsAttribution 4.0InternationalCreativgCommOnsAttributonsAttribut	Mudryk et al., 2020 Mudryk et al., 2020 Mudryk et al., 2020	-	2020 Mudryk et al., 2020 Mudryk et al., 2020 Mudryk et al., 2020	anomalies calculated over 1981- 2018. 1981-2014 1981-2014 1850-2100, relative to 1995-2014

				Internat ional			
Figure 9.25	Literatur e global mean sea leavel projectio ns	Input dataset				Bakker et al. 2017 Jackson and Jevrejeva 2016 Kopp et al. 2014 Kopp et al. 2016 Mengel et al. 2016 Nauels et al. 2016 Nauels et al. 2017 Slangen et al. 2017 Slangen et al. 2014 LeBars et al. 2018 LeCozannet et al. 2019 Goodwin et al. 2017 Nicholls et al. 2017 Nicholls et al. 2017 Wong et al. 2017 Grinsted et al. 2017 Grinsted et al. 2015 Jackson and Jevrejeva 2016 Jevrejeva et al. 2014 Bamber et al. 2019	See Appendix Tables 9.A.5 and 9.A.6
Figure 9.26	Sea level projectio ns						See 9.6.3.2, Table 9.7, and Appedix 9.A.4 for methods
	Figure 9.26 Plotting code	Code	Plot_SL_C ontribution _Maps.m				
	Figure 9.26 Plotting Code	Code	Plot_SL_C ontribution _Timeserie s.m				
Figure 9.27	GMSL projectio ns						See 9.6.3.2, Table 9.7, and Appedix 9.A.4 for methods
	Figure 9.27	Code	Plot_GMS L_Projecte				

	Plotting		d_Scenario				
D ⁴	Code		s.m	 			8.0622
Figure 9.28	Sea level projectio ns						See 9.6.3.2, Table 9.7, and Appedix 9.A.4 for methods
	Figure 9.28 Plotting Code	Code	Plot_RSL_ Scenario_ Maps.m				
Figure 9.29	Sea level timing projectio ns						See 9.6.3.2, Table 9.7, and Appedix 9.A.4 for methods
	Figure 9.29 Plotting Code	Code	plot_excee dance_year .r				
Figure 9.30	GMSL commitm ent (models)	Input dataset				Clark et al., 2016; Van Breedam et al., 2020; Garbe et al., 2020; DeConto and Pollard, 2016; Gregory et al, 2020	
	GMSL Commit ment (paleo records)	Input dataset					Assessed in 2.3.3.3
	Figure 9.30 Plotting Code	Code	plot_SLR_ commitme nts.m				
Figure 9.31A	Observed minor ti dal flood frequenc y trend	Input dataset (observ ations)		Woodworth et al. (2017) ()	Gesla.org	Woodworth et al. (2017) ()	Trends determined over 1950- 2020
Figure 9.31B	Observed minor ti dal flood frequenc y trend	Input dataset (observ ations)		Woodworth et al. (2017) ()	Gesla.org	Woodworth et al. (2017) ()	Trends determined over 1950- 2020
Figure 9.32	Sea level projectio ns	Input dataset				Buchanan et al., 2016; Oppenheimer et al., 2019; Frederikse et al., 2020	See Appendix 9.A.4.8 for methods
	Global Extreme Sea Level Analysis	Input dataset	private_14 032017.zip public_110 92018.zip		https://w ww.gesla .org/	Woodworth et al, 2017	Public and private parts of dataset

2					
(GESLA					
2)					
Figure	Code	Plot_fig9_			
9.32		32_ESL.m			
Plotting					
Code					

1 2

[END TABLE 9.SM.9 HERE]

3