
First Order Draft Annex VII IPCC AR6 WGI 

Do Not Cite, Quote or Distribute AVII-1 Total pages: 20 

AVII. Annex VII: Hazard and Extreme Indices 1 

 2 

 3 

Contributors: Nigel Arnell (UK), Erika Coppola (Italy), José M. Gutiérrez (Spain), Carley Iles 4 

(France/UK), Roshanka Ranasinghe (Netherlands/Sri Lanka/Australia), Alex Ruane (USA), Daniel Ruiz 5 

Carrascal (Colombia), Claudia Tebaldi (USA), Robert Vautard (France) 6 

 7 

Date of Draft: 29 April 2019 8 

 9 

Note: TSU Compiled Version 10 

 11 

 12 

  13 



First Order Draft Annex VII IPCC AR6 WGI 

Do Not Cite, Quote or Distribute AVII-2 Total pages: 20 

Table of Contents 1 

 2 

AVII.1 Introduction ....................................................................................................................................... 3 3 

AVII.2 Extreme indices selection .................................................................................................................. 4 4 

AVII.3 Hazard indices selection .................................................................................................................... 4 5 

AVII.3.1 Regional hazard indices used in Section 12.4 ........................................................................... 5 6 

AVII.3.2 Hazard indices used in Section 12.5.1 ..................................................................................... 10 7 

AVII.3.3 Global indices .......................................................................................................................... 12 8 

AVII.4 Models, Scenarios and reference periods used ................................................................................ 12 9 

AVII.4.1 Models used to calculate extreme indices ............................................................................... 12 10 

AVII.4.2 Models used to calculate hazard indices .................................................................................. 12 11 

AVII.5 Observations used ............................................................................................................................ 14 12 

References ....................................................................................................................................................... 16 13 

  14 



First Order Draft Annex VII IPCC AR6 WGI 

Do Not Cite, Quote or Distribute AVII-3 Total pages: 20 

 1 

AVII.1 Introduction 2 

 3 

In the climate science literature, a number of indices have been used in order to characterize and quantify 4 

one or several aspects of climate phenomena occurring due to natural variability or due to long-term changes 5 

in the system. There is an extremely large number of examples. One can cite mean global climate indices, 6 

such as global mean sea level rise or global mean temperature, which characterize the state of the climate 7 

system and act as a shifting baseline for regional changes. One can also examine mean regional trends, for 8 

example in mean springtime precipitation, which reflect large-scale patterns and alter the background 9 

conditions within which episodic hazards may occur. One can also calculate indices of extremes 10 

characterizing episodic events within the tail of the distributions of specific variables within their variability 11 

range, for instance the annual maximal temperature at a given location or the 100-year return value of river 12 

discharge characterizing extreme floods. Such extreme indices have been the subject of a number of studies 13 

and have been used to characterize how climate change modifies extreme values of climate variables and 14 

subsequent impacts in the Special IPCC Report on “Managing the risks of Extreme Events and Disasters to 15 

Advance Climate Change Adaptation” (IPCC, 2012), as well other recent IPCC reports. 16 

 17 

[Placeholder paragraph on extreme indices] 18 

 19 

Indices can also characterize aspects of hazards (see Chapter 1 and Chapter 12 for definitions) that are key to 20 

impacts and risks to society and ecosystems. Chapter 12 proposes a definition of “hazard indices”: 21 

“numerically computable indices using one or a combination of essential climate variables (ECVs) designed 22 

to measure the severity of the climate hazard, or the probability of exceedance of a threshold. The change in 23 

hazard can be measured via these indices in terms of magnitude (or intensity), duration, frequency, timing, 24 

and spatial extent”.  25 

 26 

Hazards, as defined in Chapter 1, may not be related only to extremes, and therefore require a different set of 27 

indices. For instance, the rate of coastline recession, due to sea level rise, used in Chapter 12, is involved in 28 

the risk of damage and losses in coastal settlements and infrastructures. Trends and changes themselves are 29 

considered throughout the report as potential hazards. For instance, beyond the warming trend which has a 30 

large number of consequences, changes in other indices such ‘snow season length’ is often used to study 31 

economic impacts on winter tourism (Damm et al., 2017). To characterize broad threats to societies (Mora et 32 

al., 2018) used a set of 11 very different key hazard indices among which about half are related to extremes. 33 

This highlights the need of having a set of indices larger than only extremes for regional climate information 34 

for climate change risks and impacts reduction. Section 12.3 in Chapter 12 reviews the hazards described in 35 

the literature to characterize impacts and risks, and reveal the wide variety of indices used to characterize 36 

such hazards 37 

 38 

Indices are, in principle, computable from observations, re-analyses or model simulations, although it is 39 

important to consider scale in comparing across datasets. For example, an extreme precipitation event has a 40 

lower magnitude across a large grid cell than it would at a single station within that grid cell. In many cases, 41 

hazards are simply characterized by the exceedance of a threshold for an ECV. For instance, the probability 42 

of crop failure dramatically increases as temperature rises above certain thresholds, which may differ from 43 

one species to another (Hatfield and Prueger, 2015)(Grotjahn, submitted); heat stress on outdoor workers is 44 

often express as a combination of humidity and temperature, such as found for instance in the classical wet 45 

bulb temperature with typical thresholds characterizing the stress on work in different categories of activities 46 

and human adaptability (Im et al., 2017; Pal and Eltahir, 2015). Because model climatologies bear 47 

unavoidable biases, to assess the effect of climate change on threshold-type of indices (e.g., the change in the 48 

number of days with maximum temperature above 35°C), a bias adjustment of model outputs is often 49 

desirable (see Chapter 10 for assessment of bias adjustment). In some of the indices used in Chapter 12, bias 50 

adjustment is used and methods are described here. 51 

 52 

Both regional indices (with time-varying values depending on location) and global indices (single integrated 53 

value at each time) are considered. Some of the latter are identified in Chapter 4 as iconic measures of global 54 

climate change, like global mean surface temperature (GMST), global land monsoon precipitation, the global 55 
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monsoon circulation index, the Arctic sea ice area, the Atlantic Meridional Overturning Circulation 1 

(AMOC), global mean sea level (GMSL), and modes of internal climate variability such as the Southern 2 

Annual Mode (SAM), the North Atlantic Oscillation (NAO), and the El Niño–Southern Oscillation (ENSO). 3 

Some of these global quantities have been connected by literature and past assessment to risks relevant for 4 

the characterization of Reasons for Concern (O’Neill et al., 2017). In that context, the relation of these 5 

indices' evolution to global drivers, especially GMST at increasing warming levels, is of interest. 6 

 7 

Indices are used in many chapters of the IPCC AR6 report: in Chapter 4 for assessing changes in the global 8 

climate, in Chapter 8 for water cycle changes assessment, in Chapter 9 for oceans and the cryosphere, in 9 

Chapter 11 for assessing changes in extreme conditions and in Chapter 12 for assessing hazards and their 10 

changing characteristics due to climate change. In the online Atlas, a number of such indices are displayed 11 

with possibility of changing several aspects of the extreme or hazard characteristics (threshold, duration, 12 

magnitude, etc…). 13 

 14 

This Annex provides background information on hazard indices used within Chapter 11, Chapter 12, and the 15 

Atlas, including technical details of calculation, underlying data and models, bias adjustment procedures, and 16 

related references. It helps understanding the information processing behind some of the numbers and figures 17 

provided in these chapters. In particular, Figures 12.5-7 and 12.10-13 are based on the analysis described 18 

here, although many additional indices are assessed throughout the WGI report.   19 

 20 

 21 

AVII.2 Extreme indices selection 22 

 23 

[Placeholder: This section will include the description of indices used in Chapter 11] 24 

 25 

 26 

[START TABLE AVII.1 HERE] 27 

 28 
Table AVII.1: Table listing extreme indices used in Chapter 11, models used and observations 29 

 30 

[END TABLE AVII.1 HERE] 31 

 32 

 33 

AVII.3 Hazard indices selection 34 

 35 

In Chapter 12, 28 main hazard types are identified on the basis of relevance for risks and available literature. 36 

Hazards were classified into 8 categories: heat, cold, wet, dry, wind and storms, snow and ice, coastal, and 37 

other (see Tables 12.1 and 12.2). It would be impossible to cover all indices that have been developed in the 38 

literature. However, in order to illustrate how indices can inform on future regional climate, Chapter 12 and 39 

the Atlas use a limited number of indices to illustrate the main hazards and their evolution with climate 40 

change. 41 

 42 

The selection of hazard indices, as displayed in Chapter 12 and the Atlas, is based on expert judgement using 43 

the following guiding principles. The set of indices should: 44 

(i) describe the evolution of a manageable and illustrative number of indices, 45 

(ii) cover these categories, while giving more weight to those with a higher number of potential impacts 46 

as described in the literature,  47 

(iii) be used broadly in the literature 48 

(iv) allow easy computation from publicly available model outputs and observations, or be accessible 49 

from published material through contact with the authors 50 

(v) be well-evaluated in model simulations, or based on ECVs that are well-evaluated in model 51 

simulations  52 

(vi) represent hazards of interest to regional impact and risk assessment. 53 

 54 

The selection resulted in 24 regional indices which are reported in Table AVII.2. The description of the 55 
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formula used or processing is described below. In addition, 12 global hazard indices were used in Chapter 12 1 

in relation to reasons for concerns as indices that were calculated for different warming levels. 2 

 3 

[Placeholder: in the FOD only a limited subset of these indices were processed, the list of intended other 4 

indices for final draft is indicated in Table AVII.2] 5 

 6 

 7 

AVII.3.1 Regional hazard indices used in Section 12.4 8 

 9 

Hazard indices 10 

 11 

Mean temperature (MT): The most commonly used index of warming across all IPCC reports is simply the 12 

mean temperature, which is calculated from the daily mean surface air temperature (variable named tas from 13 

climate models), and averaged over a given time period.  Regional mean temperature change is often the 14 

basis of attribution of observed impacts (Hansen et al., 2016). In Chapter 12, mean annual temperature 15 

change is shown in all hazard indices figures (12.5-7 and 12.10-13).  16 

 17 

Sea Surface Temperature (SST): Within the Reasons for Concern framework global annual average SSTs 18 

were identified as a driver for impacts on marine ecosystems. [Placeholder: SST will be developed in the 19 

Atlas in the SOD] 20 

 21 

Length of frost-free period (LFFP): Many ecosystems and crops are sensitive to frost conditions, and can 22 

only develop over a frost-free period (e.g., (Wolfe et al., 2018)); the length of frost-free period is calculated 23 

in Chapter 12 and the Atlas as in (McCabe et al., 2015) by counting the number of days between the last 24 

spring frost and first fall frost using 0°C as a threshold for the daily minimum temperature and adjusting for 25 

season between hemispheres (from January to December in the Northern Hemisphere and from July to June 26 

in the Southern Hemisphere). 27 

 28 

Growing degree-days (GDD): Ecosystems and crop growth is often linked to a widely used index of 29 

thermal conditions, the cumulative number of degrees above a threshold (often between 0 and 10 °C, 30 

depending on species and farming system) during a given growing period.  In Chapter 12 and the Atlas we 31 

use 5 °C as an indicative threshold, which was also used in (Ruosteenoja et al., 2016), and the calculation is 32 

taken from this reference.  GDD calculations sometimes include a high temperature threshold above which  33 

plant development does not occur (e.g., (Mu et al., 2017)), but no cap was employed for our calculations.  34 

The GDD index used here is therefore the accumulated sum of the difference between daily mean 35 

temperature and the threshold (when higher than the threshold) over the April-September months that forms 36 

the primary growing season for mid-latitude agricultural areas in the northern Hemisphere. 37 

 38 

Cooling degree-days (CDD): Energy consumption in hot environments typically depends on the excess of 39 

temperature above a given threshold, where cooling is required. In Chapter 12 and the Atlas we used the 40 

formulation of (Spinoni et al., 2015), which uses the mean, max and min daily temperature with the formula 41 

taken from this reference : 42 
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 2 

The difference between Chapter 12, Atlas, and the previous reference is that in this report the sum is 3 

cumulated over the year instead of 6 months so it applies to all hemispheres. 4 

 5 

Number of days with mean daily temperature above threshold (Tnn): Climate change is driving changes 6 

in the incidence and spatial distribution of climate-sensitive vector-borne diseases. Malaria, dengue fever, 7 

leishmaniasis, yellow fever, chikungunya, and zika are among those diseases considered most likely to 8 

increase as global temperatures head upward. Changes in climatic conditions could influence de behavior of 9 

vectors (proliferation and frequency of blood meal feedings), their geographical distribution (expansion into 10 

formerly vector-free territories), and the development rate at which pathogens (viruses and parasites) inside 11 

the mosquitoes mature. Air temperature is an important determinant of the transmission of vector-borne 12 

diseases. Several research efforts suggest that the optimal malaria transmission takes place at around 25°C, 13 

and that the transmission of Zika, dengue and chikungunya can occur between 18 and 34°C and peak at 26–14 

29°C. The basic reproduction rate of these diseases declines to zero for temperatures below 16-18°C, 15 

thresholds at which the pathogen development ceases, and above 31.6-35°C, which are the thresholds at 16 

which death of mosquitoes occurs. The sudden increase from a zero basic reproduction rate to non-zero 17 

levels commonly takes place at air temperatures around 21.5°C. See details in (Blanford et al., 2013; 18 

Lambrechts et al., 2011; Mordecai et al., 2013, 2017; Ruiz et al., 2014). 19 

 20 

Number of days with maximum daily temperature above threshold (TXnn): The number of days with 21 

maximum temperature above a threshold can be critical for human health, infrastructure, ecosystems, and 22 

agriculture.  Different thresholds are used for different crops, generally varying between 30 degrees and 40 23 

degrees (Hatfield and Prueger, 2015) (Grotjahn, submitted). Three thresholds are used in the Atlas (30°C, 24 

35°C and 40°C).  Chapter 12 uses the 35°C threshold for most regions, which was identified as a critical 25 

temperature for maize pollination and production (Deryng et al., 2014; Gourdji et al., 2013; Hatfield et al., 26 

2011, 2014; Hatfield and Prueger, 2015; Lobell et al., 2013; Lobell and Gourdji, 2012; Schauberger et al., 27 

2017; Schlenker and Roberts, 2009; Tesfaye et al., 2017; Tripathi et al., 2016; Wolfe et al., 2008) as well as 28 

a notable threshold for human health hazards (Kingsley, Eliot, Gold, Vanderslice, & Wellenius, 2016; Petitti 29 

et al., 2016). However, a 30°C threshold was used for Asia as most studies used this threshold in this 30 

continent. 31 

 32 

The heat wave magnitude index (HWMId): [Placeholder: the heat wave magnitude index will be 33 

developed in the SOD]  34 

 35 

Wet Bulb Globe Temperature (WBGT): This index, together with the Wet Bulb Temperature and other 36 

indices, have widely been used to characterize the effect of temperature on health and outdoor work 37 

conditions (Lemke and Kjellstrom, 2012; Zhao et al., 2015). Thresholds have been defined as 38 

recommendations for workers (Kjellstrom et al., 2009). It is calculated in the Atlas and Chapter 12 using the 39 

simplified formula of the Australian Bureau of Meteorology (http://www.bom.gov.au/info/thermal_stress/) 40 

assuming constant radiation as taken from (Lemke and Kjellstrom, 2012): 41 

 42 

WBGT(°C) = 0.567 Ta + 0.393 r + 3.94 43 

 44 

Where Ta is the atmospheric temperature and r (hPa) is the partial water vapor pressure, calculated either 45 

from relative humidity or from absolute humidity, depending on availability of variables for each model. 46 

 47 

Heating Degree Day (HDD): symmetrical to the Cooling Degree Day index, the HDD index is used for 48 

illustrating energy demand for heating. It has been used in several studies of impacts of climate change on 49 

the energy sector. Chapter 12 and the Atlas follow the formulation proposed by (Spinoni et al., 2015). The 50 

calculation follows: 51 

 52 

http://www.bom.gov.au/info/thermal_stress/
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 6 

 7 

To account for various geographic zones, however, the HDD index is cumulated over the year instead of 6 8 

months as in the previous reference. 9 

 10 

Number of frost days: Frost affects crops (Barlow et al., 2015; Cradock-Henry, 2017; Crimp et al., 2016; 11 

Mäkinen et al., 2018), and there has been a number of studies investigating changes in the number of frost 12 

days, with various thresholds, mostly between -10°C and 2°C. In Chapter 12 and the Atlas, we use the 13 

simple threshold of 0°C for the daily minimum temperature to define frost days as in Rawlins et al. (2016). 14 

 15 

Cold wave magnitude index (CWMId): [Placeholder: the cold wave magnitude index will be developed in 16 

the SOD] 17 

 18 

Mean precipitation (MP): changes in mean precipitation affects a number of sectors (see Chapter 12 19 

Section 12.3). In Chapter 12, mean regional precipitation changes are shown in all regional figures (Figures 20 

12.5-7 and 12.10-13). Mean precipitation is calculated from the daily amounts (variable named pr from 21 

climate models), and averaged over a given time period. 22 

 23 

99th percentile of daily precipitation (R99): this index is an extreme index used to measure extreme 24 

precipitations which can cause pluvial flooding. This index is used in several Figures of Chapter 12 and in 25 

the Atlas. It is calculated as the 99th percentile of the daily amounts at each grid point. 26 

 27 

River flood index using runoff (FI): As a flood indicator, the 100-year return value of discharge value (Q) 28 

has been used. The computation of the index follows Alfieri et al., (2015): 29 

 30 

1. Annual maximum river discharges are selected and a Gumbel distribution is fitted on time slices of 31 

30 years and an analytical function is obtained. 32 

2. The analytical function is used to estimate extreme discharge peaks with chosen return period 33 

Q(RP), by inverting the formulation of the Gumbel distribution:  34 

 35 
where α and ξ are the scale and location parameters of the analytical Gumbel distributions.  36 

 37 

3. The peak discharge corresponding to the 100-year return period, Q(RP=100), is then calculated. 38 

 39 

For the Euro-CORDEX regional model the total runoff of each of the models has been used as an input of 40 

the hydrological model CHyM (Coppola et al., 2007, 2018) to produce the river discharge for all the 41 

European network. The Q(RP=100) value has been computed for each of the river segment and for each of 42 

the 29 CHyM simulations. 43 

 44 

[Placeholder: this will be replaced by flood modeling in the SOD: For CMIP5-based figures in Chapter 12, 45 
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for the sake of simplicity, we use instead the mean 100-year return value of the runoff variable for some 1 

continents.  The interpretation between the two indices should be different, and they are not directly 2 

comparable] 3 

 4 

Standardized Precipitation Index (SPI-6): The SPI is a statistical index that compares cumulated 5 

precipitation for n months with the long term precipitation distribution for the same location and cumulation 6 

period. The SPI-6 months has been computed that is considered to be a medium-term cumulated value and 7 

can be used to measure the medium term impact on river flow and reservoir storage (Mckee et al., 1993). 8 

 9 

The index is computed in this way: 10 

1. A monthly precipitation time series is selected (at least 30 years). 11 

2. The running average for the 6-months window is computed.  12 

3. The Gamma distribution is used to fit the data. The fitting can be achieved through the maximum 13 

likelihood estimation of the gamma distribution parameters.  14 

4. The values from this probability distribution are then transformed into a normal distribution, so that 15 

the mean SPI for the location and desired period is zero and the standard deviation is 1 (Edwards and 16 

McKee, 1997). 17 

 18 

Once SPI-6 has been computed, the calculation of the Drought Frequency (DF) follows the method in 19 

(Naumann et al., 2013): a drought event starts in the month when SPI falls below −1 and it ends when SPI 20 

returns to positive values, for at least two consecutive months.  21 

 22 

It has to be noted that the SPI index has been recognized to be difficult to interpret in high latitudes and in 23 

arid areas due to statistical issues linked to inaccuracies in the estimation of the Gamma function (Spinoni et 24 

al., 2014). This has to be taken into account when interpreting figures of the SPI index in Chapter 12 and its 25 

Supplementary online material. 26 

 27 

Mean Precipitation-Evapotranspiration: This index is used for the analysis of changes in the water cycle 28 

(Byrne and O’Gorman, 2015) and as an index for freshwater resource. This index is shown in one figure of 29 

Chapter 12 and the Atlas. It is calculated as the mean difference between precipitation and 30 

evapotranspiration. 31 

 32 

SPEI accumulated over 6 months (SPEI-6): [Placeholder: this index will be developed in the SOD] 33 

 34 

Normalized Soil Moisture (NSM): [Placeholder: this index will be developed in the SOD] 35 

 36 

98th percentile of daily maximum wind speed: This high-percentile index is used in several studies to 37 

characterize extreme winds (Klawa and Ulbrich, 2003; Martius et al., 2016), but other studies use other high 38 

percentiles in the same range from the 95th to 99th. In Chapter 12 and the Atlas this index is used. It is 39 

calculated using the maximum daily wind speed and its 98th percentile over reference and future periods. 40 

Importantly, wind speed modelled distribution can depend on resolution since highest wind speeds can be 41 

found in small spatial structures.  42 

 43 

Snow season length (SSL): Several studies use the Snow Water Equivalent (SWE) variable (variable snw in 44 

model outputs) in order to define a “snow season length” as the number of days with enough snow on the 45 

ground. This index is particularly important for the winter tourism sector (Damm et al., 2017; Jacob et al., 46 

2018). Several thresholds are used to define a day with “enough snow on the ground”, with (Wobus et al., 47 

2017) marking 100mm as a key threshold for skiing. In several figures of Chapter 12 and the Atlas, the snow 48 

season length is calculated then as the number of days with SWE > 100mm, following the definition of 49 

(Damm et al., 2017) (Wobus et al., 2017). Seasonal limits are given (November through March) for studies 50 

in the Northern hemisphere, and the index for the Southern Hemisphere is taken over the opposite season 51 

(May through September). SWE was assessed in several studies and its simulation depends on the 52 

representation of surface processes dealing with snow. Despite limitations, SWE was found to be useful in 53 

giving insight on the sign of changes (McCrary et al., 2017). When interpreting the figures shown in Chapter 54 

12 and the Atlas, one should also keep in mind that altitudes are model altitudes and may not correspond to 55 
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real ones due to the coarse resolution, and the changes can be quite sensitive to such effects. 1 

 2 

Freezing level height (FLH): Freezing level, the height above ground level where the 0°C isotherm lies, is 3 

used as an index for melting of snow and glaciers in mountainous areas (Vuille et al., 2018). [Placeholder: 4 

this index will be developed in SOD] 5 

 6 

Extreme Sea Level (ESL): Factors contributing to extreme sea levels (ESL), are Sea level rise, storm surge 7 

(e.g. associated with TCs and ETCs), tide, and extreme waves (resulting in high wave setup at the shoreline). 8 

The ESL used here is the summation of the aforementioned factors (Vitousek et al., 2017; Vousdoukas et al., 9 

2018) and the commonly used 1 :100yr ESL is adopted here as the index relevant to episodic coastal 10 

flooding. 11 

 12 

Coastline Recession (CR): Coastline recession is the slow and continuous landward movement of the 13 

coastline in response to Sea level rise (Bruun, 1962). Historically, the most commonly used coastline 14 

recession index is the (deterministic) recession amount due to a mid-high SLR by a pre-determined planning 15 

horizon, commonly 50 years or 100 years into the future (Ranasinghe, 2016). However, probabilistic 16 

coastline recession estimates are becoming more and more sought after and available (Jongejan et al., 2016; 17 

Toimil et al., 2017; Dastgheib et al., 2018). Here the median coastline recession (0.5 exceedance probability) 18 

resulting from a fully probabilistic model that incorporating SLR from 7 GCMs and structural function 19 

uncertainty is used as the index relevant for coastline recession. 20 

 21 

 22 

[START TABLE AVII.2 HERE] 23 

 24 
Table AVII.2: Regional Hazard indices table. Boldfaced are indices considered for FOD and italicized indices are 25 

not considered in the Atlas or Chapter 12 for FOD, but will be in SOD. 26 

 27 
Hazard 

category 

Manifested 

hazard (from 

Table 12.1) and 

potential affected 

sectors  

Hazard Index Required 

ECVs 

Way to 

calculate 

Bias 

adjustment 

References 

Heat  Warming, key to 

many sectors 

Mean 

Temperature 

(MT) 

tas from 

projections 

yes IPCC AR6 Chapter 4 

Heat Warming SST change (SST) tos from 

projections 

no IPCC AR6 Chapter 4 

Heat Warming 

indicator for 

crops, ecosystems 

and hydrosystems 

Length of Frost-

Free period 

(LFFP) 

tasmin from 

projections 

yes (Kunkel et al., 2004; 

McCabe et al., 2015; 

Wolfe et al., 2018) 

Heat Warming 

indicator for 

agriculture and 

ecosystems 

yearly cumulated 

GDD over 5°C  

tas from 

projections 

yes (Bonhomme, 2000; 

Cayton et al., 2015; 

Ruosteenoja et al., 2016) 

Heat Change in cooling 

demand for 

energy demand 

and building 

consumption 

CDD above 22°C tas, tasmin, 

tasmax 

from 

projections 

yes (Spinoni et al., 2015, 

2018) 

Heat Warming Tmean>21.5°C 

(T21.5) 

tas from 

projections 

yes (Ruiz et al., 2014) 

Heat Heat, with 

thresholds 

important for 

agriculture 

#days Tx>30, 35, 

40 

(TX35) 

tasmax from 

projections 

yes (Hatfield and Prueger, 

2015) (Grotjahn, 

submitted) 

Heat Heat Wave index 
accounting for 

duration, link to 

health 

Mean annual area 
fraction with 

HWMId>= 6, 10, 

15 HWMId 

tasmax from 
projections 

no (Forzieri et al., 2016; 

Russo et al., 2015) 

Heat Heat stress index 

combining 

humidity used in 

occupational and 

industrial health  

#days WBGT>28, 

31, 35 

tas hurs ps from 

projections 

yes (Lemke and Kjellstrom, 

2012; Zhao et al., 2015) 
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Heat Marine heat wave 

index for coral 

bleaching 

#days SST>28.7  tos from 

projections 

yes [Placeholder: to be 

developed] 

Cold Heating Degree 

Day for Energy 

consumption 

HDD below 15.5°C tas, tasmin, 

tasmax 

from 

projections 

yes (Spinoni et al., 2015, 

2018) 

Cold Frost #Frost days below 

0°C (FD) 

tasmin from 

projections 

yes (Barlow et al., 2015; 

Rawlins et al., 2016) 

Cold Cold snap CWMId tasmin from 

projections 

no  (Forzieri et al., 2016; 

Russo et al., 2015) 

Wet Wet or dry trend 

in precipitation 

Mean 

Precipitation (MP) 

pr from 

proejctions 

No IPCC AR6, Chapter 4 

Wet Pluvial flooding 99th percentile of 

daily amounts 

(R99) 

pr from 

projections 

No (Houston et al., 2011) 

Wet River flooding Flood index (FI) srroff/ mrro from 

projections 

and 

simplified 

routing 

model 

No (Alfieri et al., 2017; 

Forzieri et al., 2016) 

Drought drought SPI accumulated  

over 6 month (SPI-

6) 

pr from 

projections 

yes  (Naumann et al., 2018) 

Drought drought P-E pr, evspsbl from 

projections 

no (Byrne and O’Gorman, 

2015) 

Drought drought SPEI acc over 6 

months 

  from 

projections 

  (Arnell et al., 2018) 

Drought drought Normalized Soil 

Moisture 

mrso/ mrsos from 

projections 

no  [Placeholder : to be 

developed] 

Wind & 

storm 

Extreme wind, 

affecting key 

infrastructure 

P98 of the daily 

max wind (W98) 

sfcWindmax from 

projections 

yes (Klawa and Ulbrich, 

2003; Martius et al., 

2016) 

Snow/ice Snow season 

length 

Number of days 

with Snow water 

equivalent > 100 

mm. (SSL) 

snw from 

projections 

no  (Damm et al., 2017; 

Wobus et al., 2017) 

Snow/Ice Glacier melt Freezing Level 

Height (FLH) 

3D data (Z,T) from 

projections 

no  (Vuille et al., 2018) 

Coastal Extreme Sea level 

(ESL) inducing 

storm surges 

100-year Return 

level (ESL) 

  data from 

authors 

 no (Vousdoukas et al., 2018) 

Coastal Coastal Recession 

inducing threats 

to infrastructures 

coastal recession   data from 

authors 

 no [Placeholder : to be 
developed] 

 1 

[END TABLE AVII.2 HERE] 2 

 3 

 4 

AVII.3.2 Hazard indices used in Section 12.5.1 5 

 6 

[Placeholder: Section 12.5.1 uses in FOD different indices than Sections 12.4 ; these indices are described 7 

below ; they will also be replaced by indices calculated from CMIP6] 8 

 9 

Heat extremes: days with Tmax > 35oC 10 

Global average annual number of days with Tmax greater than 35oC, averaged over grid cells with more than 11 

1000 people in 2010.  12 

 13 

Heat stress: days with WBGT>32oC 14 

Global average annual number of days with WBGT greater than 32oC, averaged over grid cells with more 15 

than 1000 people in 2010. [Placeholder: the thresholds for WBGT will be harmonized in the SOD] 16 

 17 

Average annual number of frost-days 18 

Global average annual number of days with Tmin less than 0oC, averaged over grid cells with more than 19 

1000 people in 2010.  20 

 21 

Average annual number of heating degree-days 22 
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Global average annual number of degree-days above 15.5oC, averaged over grid cells with more than 1000 1 

people in 2010.  2 

 3 

Frequency of 1981-2010 50-year return period river flood 4 

River flood frequency is estimated at each 0.5x0.5oC grid cell using global hydrological model, and the 5 

frequency of the reference period (1981-2010) 50-year flood with climate change is calculated. Global 6 

average frequency is averaged over grid cells with more than 1000 people in 2010. 7 

 8 

Proportion of time in drought: SPI 9 

Drought is characterised by the Standardised Precipitation Index (SPI), calculated from 6-month 10 

accumulated precipitation and calibrated over 1981-2010. A drought has a SPI of less than -1.5 11 

(approximately 6.5% of the time in the 1981-2010 reference period). The global average proportion is 12 

weighted by cropland area. 13 

 14 

Proportion of time in drought: SPEI 15 

Drought is characterised by the Standardised Precipitation Evaporation Index (SPEI), calculated from the 6-16 

month accumulated difference between precipitation and potential evaporation, calibrated over 1981-2010. A 17 

drought has a SPEI of less than -1.5 (approximately 6.5% of the time in the 1981-2010 reference period). 18 

The global average proportion is weighted by cropland area. 19 

 20 

All these indicators are calculated at the 0.5x0.5oC scale and aggregated to the global scale. In the plots, the 21 

dashed line shows the reference period (1981-2010) indicator, and the solid line shows the median estimate 22 

under each climate forcing. The shaded area shows the 10th to 90th percentile range, representing uncertainty 23 

in the spatial pattern of climate change as represented by 23 CMIP5 models, and uncertainty in the projected 24 

increase in temperature for each RCP. The bars on the right of each plot show the impact in 2100 under four 25 

RCPs. See (Arnell et al., 2019) for method. 26 

 27 

Area below 100-year coastal flood level 28 

The area below the 100-year coastal flood level is estimated using the DIVA model, which combines 29 

projections of sea-level rise with estimated local depth-frequency relationships and a coastal-zone digital 30 

elevation model. A globally-uniform sea level rise is assumed, but DIVA incorporates local changes in the 31 

relative elevation of land and sea due to tectonic activity and local subsidence. The depth-frequency 32 

relationships assume no change in the frequency and characteristics of storms. See Arnell et al. (2019) for 33 

method. 34 

 35 

  36 
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AVII.3.3 Global indices 1 

 2 

[START TABLE AVII.3 HERE] 3 

 4 
Table AVII.3: List and characteristics of global indices used in Chapter 12 5 

 6 
Manifested hazard (from 

Table 12.1) and potential 

affected sectors  

Hazard Index Required ECVs Way to calculate References 

Warming Global average 

SSTs 

tas From projections (Bell et al., 2013; Donner et 

al., 2005, 2007; Frieler et al., 

2013; Gattuso et al., 2015) 

Ocean acidification Global average 

pH 

Ocean pH From 

projections/Assessment 

by Chapter 5 

(Bell et al., 2013; Donner et 

al., 2005, 2007; Frieler et al., 

2013; Gattuso et al., 2015) 

Deoxygenation Global average 

Oxygen 

content of the 

ocean 

Ocean Oxygen 

content 

From 

Projections/Assessment 

by Chapter 5 

(Bell et al., 2013; Donner et 

al., 2005, 2007; Frieler et al., 

2013; Gattuso et al., 2015) 

Permanent inundation Global Mean 

Sea Level Rise 

Sea Level Rise From 

Projections/Assessment 

by Chapter 9 

(Kopp et al., 2014) 

Warming Arctic sea ice 

extent in 

September 

Arctic sea ice area 

in September 

From 

Projections/Assessment 

by Chapter 4 

(Jahn et al., 2016) 

Warming Equilibrium 

Mass Balance 

of Glaciers 

Equilibrium Mass 

Balance of Glaciers 

From 

projections/Assessment 

by Chapter 9 

(Marzeion et al., 2014) 

Warming Land area with 

permafrost 

melting 

Land area with 

permafrost 

From 

projections/Assessment 

by Chapter 9 

(Slater and Lawrence, 2013) 

Warming Snow extent in 

Northern 

Hemisphere 

Snow cover From 

projections/Assessment 

by Chapter 9 

Chapter 9 and references 

therein 

Air Pollution/Allergens Atmospheric 

CO2 

concentrations 

Atmospheric CO2 

concentrations 

From Scenarios forcings 

input 

(Singer et al., 2005) 

Variability changes El-Nino3.4 

standard 

deviation 

SSTs From 

Projections/Assessment 

of Chapter 4 

(Drijfhout et al., 2015) 

Sea Level Rise WAIS/GIS ice 

volume 

changes 

Ice volume From 

Projections/Assessment 

by Chapter 9 

(DeConto and Pollard, 2016) 

Variability/Circulation 

Changes 

AMOC 

strength 

Maximum 

meridional 

streamfunction 

below 400m. depth 

From 

Projections/Assessment 

by Chapter 4 

(Collins et al., 2013) 

 

 

 7 

[END TABLE AVII.3 HERE] 8 

 9 

 10 

AVII.4 Models, Scenarios and reference periods used  11 

 12 

AVII.4.1 Models used to calculate extreme indices 13 

[Placeholder: to be developed in SOD] 14 

 15 

AVII.4.2 Models used to calculate hazard indices   16 

[Placeholder: In SOD, this section will change as model ensembles will likely be different, using a mix of 17 

CORDEX, CORDEX-CORE, CMIP5 and CMIP6 data; this section describes the approach and model lists 18 

taken in the FOD; the “flat averaging” strategy used for statistics way also be revised] 19 

 20 

The models used in Chapter 12 and the Atlas are subsets of the full CMIP5 ensemble, selected based on 21 

availability in the Atlas database, and from a few other sources. In one region, Europe, Chapter 12 used a 22 

large ensemble of 34 regional simulations with high resolution (Jacob et al., 2014). Associated regional 23 

figures (Figs 12.11 and 12.12, see also the Supplementary Material) for Europe were designed to be 24 
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compared. However, different GCMs were used in both cases (see below). No model weighting is applied. 1 

 2 

In Chapter 12, only results for Scenario RCP8.5 are shown as maps. Figures 12.5-6, and 12.9-13 show the 3 

differences between results obtained for each index between statistics calculated over two reference periods: 4 

mid-century (2041-2060) and a reference period (1995-2014). 5 

 6 

 7 

[START TABLE AVII.4 HERE] 8 

 9 
Table AVII.4: List of CMIP5 models used for each index. The indices are grouped when the same subset of models 10 

is used 11 
CMIP5 Simulation MT, LFFP, GDD, CDD, 

T21.5, TX35, HDD, FD, 

MP, R99WD, P-E 

WBGT SPI 
 

FI P98WIND SWE100 ESL 

CanESM2 X X X X X X  

CNRM-CM5  X X X X X X  

EC-EARTH X (r12 for MT Tx35/30,, 
T21.5, r8 for MP, R99, P-

E;; r1 for SPI) 

 X (r1)    x 

GFDL-ESM2M X X X X X X x 

HadGEM2-ES X X X  X X  

IPSL-CM5A-MR X X X  X   

MIROC-ESM X X  X X X  

MPI-ESM-LR X  X X X X  

NorESM1-M X X X X    

MIROC5   X X   x 

MPI-ESM-MR    X    

GFDL-ESM2G       x 

ACCESS 1       x 

ACCESS 3       x 

CSIRO Mk3       x 

 12 

[END TABLE AVII.4 HERE] 13 

 14 

 15 

[START TABLE AVII.5 HERE] 16 

 17 
Table AVII.5: List of EURO-CORDEX models used for each index, for the Figure 12.4.11. The indices are grouped 18 

when the same subset of models is used. GCM and RCMs used are specified. For GCMs a simplified 19 
simulation name was taken (GCMrN, where N is the member). [Placeholder: The simulation list and 20 
data analysis is taken from the synthesis work of the Copernicus Climate Change Service on regional 21 
simulations for Europe, Contract #D34b_Lot2.4.3.1.] 22 

 23 
GCM RCM MT, TX35 WBGT PR, SPI, FI 

 

P98WIND SWE100 

CANESMr1 CCLM X X X  X 

 REMO2015 X  X   

CNRMr1 ALADIN63 X X X X X 

 RACMO X X X X X 

ECEARTHr12 CCLM X  X X X 

 HIRHAM X X X X X 

 RACMO X X X X X 

 REMO2015 X  X  X 

 RCA X X X X  

ECEARTHr1 HIRHAM X X X X X 

 RACMO X X X X X 

ECEARTHr3 HIRHAM X X X X X 

 RACMO X X X X X 

 RCA X X yes for PR and SPI   

HADGEMr1 CCLM X  X X X 

 HIRHAM X X X X X 

 RACMO X X X X X 

 RCA X X X X  

 REGCM X X X X  
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 REMO2015 X  X  X 

 WRF361H X  yes for PR and SPI   

 WRF381P X X yes for PR and SPI X  

IPSLr1 RCA X X X X  

 WRF381P X X  X  

MIROCr1 CCLM X X X  X 

 REMO2015 X  X  X 

MPIr1 CCLM X  X X X 

 RCA X X X X  

 REMO X  X X X 

 WRF361H X  yes for PR and SPI   

MPIr2 REMO X  X X X 

NORESMr1 HIRHAM X X X X X 

 RRCA X X X X X 

 REMO2015 X X X X X 

 1 

[END TABLE AVII.5 HERE] 2 

 3 

 4 

AVII.5 Observations used 5 

 6 

Observations are used in two manners: for display for climatologies in the Supplementary Material of 7 

Chapter 12 and for bias adjustment. [Placeholder: for Chapter 11 to input observations used] 8 

 9 

The observations used to compute the mean climatology in Chapter 12 are summarized in Table AVII.6 10 

They are all daily observations for mean, maximum and minimum temperature and mean precipitation. 11 

 12 

[START TABLE AVII.6 HERE] 13 

 14 
Table AVII.6: Observations used to compute mean climatology of hazard indices of Chapter 12. 15 

 16 
Observed 

Datasets 

Domain P

R

E

C

I

P 

TEMP 

 
Data 

type 
Spatial 

Resol. 
Time 

Resol. 
Period Reference 

CPC_Global Global 

Land 
✔

X 

✔ 

(tmax/tmin) 

Station 

based 

0.50° DD 1979-2017 https://www.esrl.noaa.gov/psd/data/grid

ded/ 
data.cpc.globalprecip.html 

data.cpc.globalgtemp.html 

E_OBS (v19) Europe 
Land 

✔

X 

✔ 

(tmax/tmin) 

Grid 0.25° DD 1950-2015 (Cornes et al., 2018) 

GCOSGHCN North 

America 
✔

X 

✔ 

(tmax/tmin) 

Stations 2551 

stations 

DD 1961-2000 

(1979-2005) 

http://www.ncdc.noaa.gov/oa/climate/g

hcn-daily 

IMD India ✔

X 

✔ Gridded 1.0° DD 1951-2015 (Rajeevan,  et al., 2006) 

LIVNEH Central 

America 
✔

X 

✔ 

(tmax/tmin) 

Station 

based 

6 km DD 1950-2013 (Livneh et al., 2015) 

CN05.1 China X ✔ Station 
based 

0.25° DD 1961-present (Wu and Gao, 2013) 

EWEMBI Global ✔ ✔ Reanalysi

s (ERA-

Interim) 
calibrated 

with 

observati
ons 

0.5º DD 1979-2016 Lange, S. (2019). EartH2Observe, 

WFDEI and ERA-Interim data Merged 

and Bias-corrected for ISIMIP 
(EWEMBI) [Data set]. GFZ Data 

Services. 

https://doi.org/10.5880/pik.2019.004 

Coastal 

Recession 

Global   Satellite 

data 

N/A N/A 1984-2017 (Luijendijk et al., 2018) 

 17 

[END TABLE AVII.6 HERE] 18 

 19 

 20 

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily


First Order Draft Annex VII IPCC AR6 WGI 

Do Not Cite, Quote or Distribute AVII-15 Total pages: 20 

AVII.6 Bias adjustment 1 

[Placeholder: In SOD, bias adjustment approach will likely be different building on different approaches (to 2 

estimate the uncertainty) and on the recommendations from Chapter 10; this section describes the approach 3 

taken in the FOD]  4 

 5 

Some indices in Table A VII.2 are sensitive to model biases and, therefore, have been computed from bias-6 

adjusted data. In particular, minimum, mean and maximum temperatures from CMIP5 models have been 7 

bias adjusted using EWEMBI (Table AVII.5; the reference dataset for the ISI-MIP initiative) as 8 

observational reference. EWEMBI was interpolated (bi-linearly) to a 2º resolution grid (the same used to 9 

interpolate the CMIP5 models in the Interactive Atlas) instead of using the 0.5º original resolution. The main 10 

reason was to have a similar resolution for the raw and bias corrected data, thus avoiding “downscaling” 11 

artefacts (this is recommended e.g. in IPCC, 2015). Two standard bias adjustment methods representatives of 12 

simple and sophisticated bias adjustment methods have been tested:  13 

• PQM: Parametric scaling (correcting the mean and variance). 14 

• EQM: Empirical Quantile Mapping, adjusting percentiles 1 to 99 and linearly interpolating between 15 

them (with “constant” extrapolation; i.e. using the P1-P2 and P98-P99 adjustment value for values 16 

out of sample; see DEQUE, 2007). 17 

In both cases, adjustments are performed month by month. The two methods have been assessed in the 18 

VALUE inter-comparison initiative (codes: RaiRat-M7 and EQM in Gutiérrez et al., (2018), Table 4), 19 

obtaining better adjustment for the tails of the distribution with the empirical method [Placeholder: the EQM 20 

method was selected for the FOD]. However, both approaches have advantages and shortcomings and an 21 

ensemble approach (comparing the results from different methods) would be preferable. In the Atlas chapter 22 

some comparison results of these two methods for some illustrative index are shown. EQM is implemented 23 

in the downscaleR package (biasCorrection function) with the options method = “eqm”, extrapolation = 24 

“constant” (code for reproducibility of results is provided in the Atlas). Further details are given on Iturbide 25 

et al. (2019).  26 

 27 

  28 
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