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Executive Summary 1 

 2 

This chapter assesses simulations of indicators of future global climate change, spanning time horizons from 3 

the near-term (2021–2040) out to year 2300. Change is assessed relative to both the recent past (1995–4 

2014) and the approximation to the pre-industrial period (1850–1900). The chapter provides the global 5 

reference for the later chapters covering processes and regional change.  6 

 7 

[Note: Major quantitative results in this chapter are preliminary, because they are based on the subset of five 8 

CMIP6 models (BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0) that are 9 

available for this first order draft (FOD).]  10 

 11 

The projections results assessed here are mainly based on a new range of scenarios, Shared Socio-economic 12 

Pathways (SSPs), as used in the Coupled Model Intercomparison Project Phase 6 (CMIP6). Among the 13 

SSPs, we focus on the four priority scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Where 14 

appropriate, this chapter will also assess results from CMIP5, which used scenarios based on Representative 15 

Concentration Pathways (RCPs). {4.2.2}  16 

 17 

Globally averaged surface air temperature  18 

 19 

Based on results from the five models that have thus far contributed to the CMIP6 exercise, we conclude that 20 

global surface air temperature (GSAT) for 2081–2100, relative to 1995–2014, shows a 5–95% range of 21 

0.7°C–1.7°C under SSP1-2.6 where CO2 concentrations peak between 2040–2060 (medium confidence 22 

because of the limited number of models available). The corresponding range under the highest overall 23 

emissions scenario (SSP5-8.5) is 2.9°C–6.1°C (medium confidence). The ranges for the intermediate 24 

emissions scenarios (SSP2-4.5 and SSP3-7.0), where CO2 concentrations increase to 2100 but less rapidly 25 

than SSP5-8.5, are 1.6°C–3.1°C and 2.4°C–4.8°C, respectively (medium confidence). {4.3.1}  26 

 27 

Based on results from the five CMIP6 models, we note that there is unanimity across all of the available 28 

model simulations that GSAT change relative to pre-industrial (1850–1900) will rise above: 1) 1.5°C 29 

following any of the priority SSPs (on average around 2025); 2) 2.0°C following either SSP2-4.5, SSP3-7.0, 30 

or SSP5-8.5 (on average around 2040), and 3) 3.0°C following either SSP3-7.0 or SSP5-8.5 (on average 31 

around 2061). In summary, it is very likely that within the near-term (2021–2040) or mid-term (2041–2060), 32 

GSAT rise will exceed 1.5°C relative to pre-industrial under all of the priority SSPs, above 2.0°C under most 33 

of the priority SSPs, and above 3.0°C under the highest forcing scenarios (medium confidence because of the 34 

limited number of models available). {4.3.1}  35 

 36 

Referenced against 1850–1900, the available CMIP6 simulations project future globally averaged warming 37 

that until around 2060 largely falls within the warming range inferred from the very likely range in 38 

equilibrium climate sensitivity (ECS, 2°C–5°C) that is assessed in Chapter 7.  After 2060, some models stay 39 

within this range and some other models lie above. The stronger-warming models are expected to have an 40 

ECS above the Chapter 7-assessed very likely range (expert judgement, medium confidence). {Box 4.1, 41 

Chapter7}  42 

 43 

The uncertainty in projecting GSAT that arises from the ECS very likely range is substantially larger than the 44 

irreducible uncertainty arising from internal variability, from the mid-term period (2041–2060) onward (high 45 

confidence). By contrast, the GSAT uncertainty arising from the ECS likely range is similar to the irreducible 46 

uncertainty arising from internal variability (medium confidence). Predictions initialized from recent 47 

observations simulate GSAT for the period 2019–2028 that lie toward the lower end of both the CMIP6 48 

range and the warming range inferred from the ECS very likely range (expert judgement, low confidence 49 

owing to limited data availability). {Box 4.1, Chapter7} 50 

 51 

For the latter portion of the 21st century, the range of regional climatic states that might be expected in the 52 

RCP8.5 scenario is significantly and detectably further removed from today’s climate state than the 53 

RCP4.5 scenario even in the presence of internal variability (high confidence). {4.6.3} 54 

 55 
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Initial results from targeted numerical experiments are inconclusive whether the Zero Emissions 1 

Commitment (ZEC, the GSAT rise after all emissions cease) on decadal timescales is either positive or 2 

negative, with values spanning from approximately -0.4°C to 0.2°C. There is therefore low confidence in the 3 

sign and magnitude of ZEC and its potential impact on the assessed remaining carbon budgets for 1.5°C or 4 

2°C. {4.7.2} 5 

 6 

Precipitation 7 

 8 

Based on results from the five CMIP6 models available, it is very likely that global land precipitation will be 9 

higher during the period 2081–2100 than during the period 1995–2014, under all scenarios considered here 10 

(medium confidence due to limited data availability). {4.3.1}  11 

 12 

Based on results from the five CMIP6 models available, it is virtually certain that, in the long term, global 13 

mean precipitation will increase with GSAT rise. It will likely increase by 1–3% °C–1 for the SSP5-8.5 14 

scenario. Precipitation will likely increase in monsoon regions and high latitudes (medium confidence). 15 

{4.5.1, Chapter 8}.  16 

 17 

Based on the three CMIP6 models (BCC-CSM2-MR, IPSL-CM6A-LR, and MRI-ESM2-0), it is very likely 18 

that global precipitation will increase as the level of global warming increases.  Precipitation increase on 19 

land will be higher at 3°C and 4°C warming level compared with 1.5°C warming level.  It is very likely that 20 

extreme precipitation events will increase with GSAT rise (medium confidence). {4.6.1, Chapter 11}  21 

 22 

Global monsoon precipitation and circulation 23 

 24 

In the near-term period, the global monsoon precipitation tends to increase in all four SSP scenarios, based 25 

on the five models available in the CMIP6. However, there is no consensus on the near-term projected 26 

change of global monsoon circulation against multi-decadal natural variability (medium confidence). {4.4.1}  27 

 28 

In the long-term period (2081–2100), the global monsoon precipitation index is projected to increase by 0.9–29 

1.7% per 1°C GSAT rise (5–95% range of available projections), and the global monsoon circulation index 30 

is projected to decrease by 10.4–19.4% per 1°C GSAT rise based on all of the priority SSPs from five 31 

available CMIP6 simulation (medium confidence). {4.5.1} 32 

 33 

Sea level pressure and large-scale atmospheric circulation 34 

 35 

Mean sea level pressure is projected to decrease in high latitudes and increase in the mid-latitudes for SSP5-36 

8.5, except over some land areas. On average, models project a poleward shift in the mid-latitude jets in 37 

both hemispheres by the end of the 21st century under SSP5-8.5 (low confidence owing to the current small 38 

number of CMIP6 models), but there is large spread amongst projections from individual models. In austral 39 

summer, it is very likely that the influence of stratospheric ozone recovery will oppose the poleward 40 

expansion of the mid-latitude circulation in the Southern Hemisphere (SH) due to GHGs, though internal 41 

variability could overwhelm forced trends in the Southern Annular Mode (SAM) on decadal timescales. It 42 

is likely that wind speeds associated with extratropical cyclones will intensify in the SH storm track for high 43 

emission scenarios (high confidence).  Substantial uncertainty and thus low confidence remain in projecting 44 

changes in Northern Hemisphere (NH) storm tracks and blocking, especially for the North Atlantic basin in 45 

winter. {4.5.1} 46 

 47 

Cryosphere, ocean, and biosphere 48 

 49 

From the three available CMIP6 models, we conclude that it is very likely that following any one of the 50 

priority SSPs, the Arctic will become effectively permanently ice-free (coverage below 1 million km2) in 51 

September by the end of the 21st century (low confidence because of the very limited number of models 52 

available). {4.3.2} 53 

 54 

In the three available CMIP6 models, thermosteric global sea level rises from present to the end of the 21st 55 
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century by about 0.15 m under SSP1-2.6 (taken as the minimum rise across the three models) to a maximum 1 

of about 0.45 m under SSP5-8.5 (taken as the maximum rise between the three models). We conclude that it 2 

is very likely that under any one of the priority SSPs, there will be monotonic rise in global sea level through 3 

the end of the 21st century (low confidence because of the very limited number of models available). {4.3.2} 4 

 5 

In the two available CMIP6 models, cumulative ocean carbon uptake rises from 1850 to the end of the 21st 6 

century by about 250 PgC under SSP1-2.6 (taken as the minimum rise across the two models) to a maximum 7 

of about 600 PgC m under SSP5-8.5 (take as the maximum rise between the two models). In the one model 8 

that has so far contributed surface pH as part of the CMIP6 exercise, increasing in ocean carbon uptake 9 

translates into increasing surface acidity. We conclude that it is very likely that under any one of the priority 10 

SSPs, there will be a monotonic rise in ocean carbon uptake and ocean acidification through the end of the 11 

21st century (low confidence because of the very limited number of models available). {4.3.2}  12 

 13 

Modes of variability 14 

 15 

Based on results from the five available CMIP6 models, we conclude that future boreal wintertime Northern 16 

Annular Mode (NAM) is very likely to become slightly more positive in the future under SSP5-8.5, and that 17 

the SAM is likely to weaken under all of the priority SSPs as stratospheric ozone recovers through the mid-18 

21st century (medium confidence because of the limited number of models available). {4.3.3} 19 

 20 

Results from the five available CMIP6 models suggest that El Niño-Southern Oscillation (ENSO) variability 21 

is likely to weaken under the SSP1-2.6 and SSP2-4.5 beginning in the near-term (2021–2040) while there is 22 

no consensus on the ENSO variability change in the SSP3-7.0 and SSP5-8.5 (low confidence because of the 23 

limited number of models available). {4.3.3} 24 

 25 

It is very likely that ENSO-related rainfall variability over the Niño3.4 region will increase significantly 26 

regardless of ENSO amplitude changes by the latter half of the 21st century (medium confidence). {4.5.3} 27 

 28 

Climate response to mitigation, carbon dioxide removal, and solar radiation modification 29 

 30 

There is high confidence that mitigation through reduced greenhouse gas (GHG) emissions would slow and 31 

limit the degree of climate change relative to high emissions reference scenarios by the middle and late 21st 32 

century. There would be a lag between emission peak, CO2 concentration peak, and peak in surface 33 

temperature. There is medium confidence that the delay in detectability of the climate benefits of mitigation 34 

is mainly due to the inertia and internal variability of the physical climate system rather than the global 35 

carbon cycle. Recent modelling results and our improved understanding suggest that over the near term, it is 36 

possible that global mean surface temperature (GSAT) might rise at a faster rate than during the most recent 37 

past despite emissions reductions (medium confidence). {4.6.3} 38 

 39 

Even when applied continuously and at scales as large as currently represented in the RCP8.5 scenario as 40 

reference, all carbon dioxide removal (CDR) methods are individually either relatively ineffective with 41 

limited (8%) warming reductions, or they have potential severe side effects (medium confidence). 42 

Termination of CDR schemes is expected to cause increasing warming trends, associated with outgassing of 43 

CO2 upon termination of CDR (medium confidence). {4.6.3} 44 

 45 

Modelling studies have consistently suggested that Solar Radiation Modification (SRM) can markedly 46 

diminish global and regional climate change from increasing CO2 concentrations. There is high confidence 47 

that all SRM schemes would reduce global precipitation if they were implemented to offset global mean 48 

temperature change. However, a combination of stratospheric aerosol injection and cirrus cloud thinning is 49 

expected to offset global temperature and precipitation changes simultaneously. Model simulations suggest 50 

that by injecting aerosols into the stratosphere at multiple latitudes and by adjusting the annual rate of 51 

injections, multiple temperature targets such as GSAT, equator-to-pole temperature gradient and inter-52 

hemispheric temperature gradient can be met simultaneously (low confidence owing to the large uncertainty 53 

in simulating aerosol forcing). {4.6.3} 54 

 55 
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There is high confidence that sudden termination of SRM would cause a rapid increase in temperature, but a 1 

gradual phase-out of SRM combined with mitigation and CDR could avoid the risk from sudden SRM 2 

termination. {4.6.3}  3 

 4 

 5 

4.1 Scope and Overview of this Chapter  6 

 7 

This chapter is the first in the WGI contribution to the IPCC Sixth Assessment Report (AR6) to assess 8 

simulations of future climate change, covering both near-term and long-term global changes. The chapter 9 

will assess simulations of scientific indicators of global climate change, such as global surface air 10 

temperature (GSAT), global land precipitation, Arctic sea ice area (SIA), and global mean sea level (GMSL). 11 

Furthermore, the chapter will cover indices and patterns of properties and circulation that have global 12 

significance. The choice of quantities to be assessed is summarized in Box 2.1 and comprises a subset of the 13 

quantities covered in Chapters 2 and 3. This chapter provides consistent coverage from near-term to long-14 

term global changes and provides the global reference for the later chapters covering important processes 15 

and regional change.  16 

 17 

Essential input to the simulations assessed here is provided by future scenarios of concentrations or 18 

anthropogenic emissions of relevant substances; the scenarios represent plausible sets of decisions by 19 

humanity, without any implication that one set of decisions is more probable to occur than any other set. As 20 

in previous assessment reports, these scenarios are used for projections of future climate using global 21 

atmosphere-ocean general circulation models (AOGCMs) and Earth system models (ESMs) (e.g., Flato, 22 

2011). This chapter thus provides a comprehensive assessment of the future global climate response to 23 

plausible future anthropogenic perturbations to the climate system.   24 

 25 

A crucial element of this chapter is a comprehensive assessment of the sources of uncertainty of future 26 

projections. Uncertainty can be broken down into scenario uncertainty, model uncertainty involving both 27 

model biases and model spread, and the uncertainty arising from internal variability (Cox and Stephenson, 28 

2007; Hawkins and Sutton, 2009). Assessment of uncertainty relies on multi-model ensembles such as the 29 

Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016a), large initial-condition 30 

ensembles (Kay et al., 2015), and ensembles initialized from the observed climate state (Marotzke et al., 31 

2016; Meehl et al., 2014). Ensemble evaluation methods include assessment of model performance and 32 

independence (Abramowitz et al., 2019; Boe, 2018; Knutti et al., 2017); emergent and other observational 33 

constraints (Allen and Ingram, 2002; Cox et al., 2018; Hall and Qu, 2006); and the uncertainty assessment of 34 

equilibrium climate sensitivity in Chapter 7. The ensemble evaluation assessed throughout the WGI 35 

contribution to the AR6, including the implications for potential model weighting in the projection 36 

ensembles, is synthesized in BOX 4.1:.  37 

 38 

The uncertainty assessment in this chapter builds on one particularly noteworthy advance since the IPCC 39 

fifth Assessment Report (AR5). Internal variability, which constitutes irreducible uncertainty over much of 40 

the time horizon considered here (Hawkins et al., 2016; Marotzke, 2019), can be diagnosed precisely even in 41 

a changing climate through the use of large initial-condition ensembles (Kay et al., 2015). Compared to the 42 

forced climate change signal, internal variability is dominant in any individual realization – including the one 43 

that will unfold in reality – in the near term (Kirtman et al., 2013; Marotzke and Forster, 2015), is substantial 44 

in the mid-term, and is still recognizable in the long term in many quantities (Deser et al., 2012a; Marotzke 45 

and Forster, 2015). This chapter will use the enhanced information on internal variability throughout. 46 

 47 

The expanded treatment of uncertainty allows this chapter a more comprehensive assessment than in the 48 

AR5 of the benefits from mitigation as well as the climate response to Carbon Dioxide Removal (CRD) and 49 

Solar Radiation Modification (SRM) and how to detect them against the backdrop of internal variability. 50 

Important advances since the AR5 have been made in the detection and attribution of mitigation, CDR, and 51 

SRM (Bürger and Cubasch, 2015; Lo et al., 2016); exploring the “time of emergence” (ToE) of responses to 52 

assumed mitigation (Hawkins et al., 2014; Lehner et al., 2017; Tebaldi and Friedlingstein, 2013); and the 53 

attribution of decadal events to forcing changes reflecting mitigation (Marotzke, 2019).  54 

 55 
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Intimately related to the benefits of mitigation is the question of the potential threshold crossing relative to 1 

climate targets (Geden and Loeschel, 2017); a prerequisite is an assessment of how robustly magnitudes of 2 

warming can be defined (Millar et al., 2017). This chapter provides an update to the IPCC Special Report on 3 

1.5°C warming (SR1.5, Masson-Delmotte et al., 2018) and constitutes a reference point for later chapters on 4 

the benefits of mitigation, including a robust uncertainty assessment.  5 

 6 

The chapter is organized as follows. After Section 4.2 on the methodologies used in the assessment, Section 7 

4.3 assesses projected changes in key global climate indices throughout the 21st century, relative to the 8 

period 1995–2014, which comprises the last twenty years of the historical simulations of CMIP6 (Eyring et 9 

al., 2016a) and hence the most recent past simulated with the observed atmospheric composition. The global 10 

climate indices assessed include GSAT, global land precipitation, Arctic SIA, GMSL, the Atlantic 11 

Meridional Overturning Circulation (AMOC), global mean ocean surface pH, the Northern and Southern 12 

Annular Modes (NAM and SAM), and the El Niño–Southern Oscillation (ENSO).  13 

 14 

Section 4.4 covers near-term climate change, defined here as the period 2021–2040 and taken relative to the 15 

period 1995–2014. Section 4.4 focuses on global and large-scale climate indices, including rainfall and 16 

circulation indices and important modes of variability, as well as on the spatial distribution of warming. 17 

Potential role of short-lived climate forcers (SLCFs) and volcanic eruptions on near-term climate change is 18 

also discussed. Section 4.4 synthesizes information from initialized predictions and non-initialized 19 

projections for the near-term change.  20 

 21 

Section 4.5 then covers mid-term and long-term climate change, defined here as the periods 2041–2060 and 22 

2081–2100, respectively, and again relative to the period 1995–2014. The mid-term period is thus chosen as 23 

the twenty-year period following the short-term period and straddling the mid-century point, year 2050; it is 24 

during the mid-term that differences between different scenarios are expected to emerge against internal 25 

variability. The long-term period is defined, as in the AR5, as the twenty-year period at the end of the 26 

century. Section 4.5 assesses the same set of indices as Section 4.4 but additionally changes in internal 27 

variability and in large-scale patterns, both of which are expected to emerge in the mid- to long-term. The 28 

chapter sub-division according to time slices (near term, mid-term, and long-term) is thus to a large extent 29 

motivated by the different roles that internal variability plays in each period, compared to the expected 30 

forced climate-change signal.  31 

 32 

Section 4.6 assesses the implications of climate policies, as simulated with climate models. First, Section 4.6 33 

assesses patterns of climate change expected for various levels of GSAT rise including 1.5°C, 2°C, 3°C, and 34 

4°C, compared to the proxy for the pre-industrial period 1850–1900 to facilitate immediate connection to the 35 

SR1.5 and the temperature targets specified in the Paris agreement  (COP21, 2015). Section 4.6 continues 36 

with climate targets, path-dependence, and overshoot, as well as the climate response to mitigation, CDR, 37 

and SRM.  38 

 39 

Section 4.7 assesses changes in selected global climate indices including GSAT, GMSL, and AMOC beyond 40 

2100, emphasizing the period out to 2300. Section 4.7 continues with climate-change commitment and the 41 

potential for irreversibility and abrupt climate change. 42 

 43 

This chapter concludes with Section 4.8 on the potential for low-probability–high-impact changes, followed 44 

by a discussion of key knowledge gaps. Answers to three frequently asked questions (FAQs) are assembled 45 

at the end of the chapter.  46 

 47 

The assessment of concrete projection results is severely limited in this first order draft (FOD), because they 48 

are available for only a few CMIP6 models at this time. Most of the figures, tables, and quantitative 49 

assessments are thus placeholders indicating the planned approach and structure, to be updated in the Second 50 

Order Draft (SOD).   51 

 52 

 53 

  54 
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4.2 Methodology  1 

 2 

4.2.1 Models, Model Intercomparison Projects, and Ensemble Methodologies  3 

 4 

Similar to the AR5 (Flato et al., 2013), this chapter primarily relies on comprehensive climate models, 5 

AOGCMs and ESMs; the latter differ from AOGCMs by including representations of various 6 

biogeochemical cycles. We will here also exploit inputs from Earth system models of intermediate 7 

complexity (EMICs, Claussen et al., 2002; Eby et al., 2013) and other types of model where appropriate. To 8 

establish robustness of results or lack thereof, it is vital to assess the performance of these models in mean 9 

state, variability, and response to external forcings. This evaluation, using the ‘Diagnostic, Evaluation and 10 

Characterization of Klima’ (DECK) and historical simulations, is performed extensively in AR6 Chapter 3. 11 

 12 

This chapter focuses on a particular set of coordinated multi-model experiments known as model 13 

intercomparison projects (MIPs). These recommend and document standards for experimental design for 14 

running AOGCMs and ESMs to minimise the chance of differences in results being misinterpreted. The 15 

CMIP is an activity of the World Climate Research Programme (WCRP), and the latest generation is CMIP6 16 

(Eyring et al., 2016a). This chapter draws mainly on future projections referenced both against the period 17 

1850–1900 and the recent past, 1995–2014, performed primarily under ScenarioMIP (O’Neill et al., 2016). 18 

Other MIPs also target future scenarios with a focus on specific processes or feedbacks (see Table 4.1:). 19 

 20 

Other MIPs that are used throughout this chapter are summarised in Table 4.1:. The coupling between 21 

climate and the carbon cycle is represented in C4MIP, the implications of land use and cover change for 22 

climate and carbon is explored in LUMIP, the detection and attribution of chemistry processes and climate 23 

response is explored in AerChemMIP, SRM and CDR solutions to climate warming are explored in GeoMIP 24 

and CDRMIP, respectively.  25 

 26 

 27 

[START TABLE 4.1 HERE] 28 

 29 

Table 4.1: MIPs utilized in Chapter 4. Details of models and sub-sections to be completed once CMIP archive is 30 
more populated and results shown in this chapter are more fully developed. [Placeholder for FOD, entries 31 
to be confirmed and expanded] 32 

MIP / experiment Why? Where used? Number of 

models 

Number of 

simulations 

Reference 

DECK, 1%, 4×CO2 TCR, ECS Ch7, Ch4 TBD TBD (Eyring et al., 2016a) 

CMIP6 Historical Evaluation, baseline Ch3, Ch4 TBD TBD (Eyring et al., 2016a) 

ScenarioMIP Future projections Ch.4, WGI AR6 TBD TBD (O’Neill et al., 2016) 

C4MIP Carbon cycle/budgets Ch5, Ch4 TBD TBD (Jones et al., 2016a) 

LUMIP Land use/change Ch5, Ch4 TBD TBD (Lawrence et al., 2016) 

AerChemMIP Aerosols and trace gases Ch6, Ch4 TBD TBD (Collins et al., 2017) 

 

GeoMIP Solar Radiation 

Modification 

Ch6, Ch4 TBD TBD (Kravitz et al., 2015) 

CDRMIP Carbon Dioxide Removal Ch5, Ch4 TBD TBD (Keller et al., 2018) 

VolMIP Response to volcanic 

eruptions 

Ch4 TBD TBD (Zanchettin et al., 2016) 

 33 

[END TABLE 4.1 HERE] 34 

 35 

 36 

Such multi-model ensembles provide the central focus of projection assessment. While single-model 37 

experiments are of great value especially for exploring new results and theories, multi-model ensembles 38 

allow an assessment of the robustness and reproducibility of results and to quantify the uncertainty that 39 
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comes from models’ internal structure and representation of processes variability (Hawkins and Sutton, 1 

2009) (see subsection 4.2.5). However, these multi-model ‘ensembles of opportunity’ with their mixture of 2 

related and dissimilar models and uneven number of simulations per model are suboptimal in terms of 3 

quantifying the individual sources of uncertainty in model projections of future climate change. Progress has 4 

been made since the AR5 in understanding the interdependence of the growing number of models 5 

contributing to CMIP (Boe, 2018). Techniques to weight model output based on performance and 6 

dependence have been made (Abramowitz et al., 2019; Knutti et al., 2017; Olson et al., 2018) but there is no 7 

consensus on how to do this optimally. Techniques underlying the combination of evaluation and weighting 8 

that are applied in this chapter are synthesised in BOX 4.1:, drawing on assessments across the WGI AR6.  9 

 10 

Perturbed-physics ensembles (Murphy et al., 2004) can account for parameter uncertainty in a given model. 11 

Two types of perturbed-physics ensembles have been used: (a) where model parameters are perturbed, and 12 

(b) where stochastic physics are incorporated. In the perturbed-parameter approach, uncertain model 13 

parameters are changed between ensemble members to systematically sample the impact of parameter 14 

uncertainty on climate (Johnson et al., 2018; Regayre et al., 2018). Different ensemble members in a 15 

perturbed-parameter ensemble have different climate biases and climate sensitivities. It is possible to weight 16 

ensemble members according to some performance metric or emergent constraint (Fasullo et al., 2015; 17 

Murphy et al., 2004) to improve the ensemble distribution. In the stochastic-physics approach, a stochastic 18 

term is included into the model formulation to account for unresolved small-scale processes (Berner et al., 19 

2017). The inclusion of stochastic physics can influence the climate sensitivity of a model (Seiffert and von 20 

Storch, 2008; Strømmen et al., 2019). However, members in a stochastic physics ensemble are statistically 21 

indistinguishable from each other, so a stochastic ensemble in itself cannot indicate a range in long-term 22 

climate sensitivity. Stochastic physics can correct long-standing mean-state biases in climate models 23 

(Sanchez et al., 2016).  Stochastic physics can also improve the representation of internal variability, 24 

including the Madden-Julian Oscillation (Wang et al., 2016), ENSO (Christensen et al., 2017; Yang et al., 25 

2019), the Indian Summer Monsoon (Strømmen et al., 2018), precipitation variability (Davini et al., 2017; 26 

Watson et al., 2017) and variability in the mid-latitudes (Dawson and Palmer, 2015),with impacts for near-27 

term projections. While only the UK Met Office CMIP6 contribution includes stochastic physics (Walters et 28 

al., 2017), the approach is expected to become more widely used in future intercomparisons.   29 

 30 

Large initial-condition ensembles, where the same model is run repeatedly under identical forcing but with 31 

initial conditions varied through small perturbations or by sampling different times of a pre-industrial control 32 

run, have substantially grown in their use since the AR5 (Deser et al., 2012a; Hedemann et al., 2017; Kay et 33 

al., 2015; Maher et al., 2019; Rodgers et al., 2015; Selten et al., 2004; Stolpe et al., 2018). Internal variability 34 

makes it hard to identify forced climate signals, especially when considering regional climate signals over 35 

short timescales (up to a few decades), such as local trends over the satellite era (Deser et al., 2012a; 36 

Hawkins and Sutton, 2009; Lovenduski et al., 2016; Suárez-Gutiérrez et al., 2017; Xie et al., 2015). Such 37 

large ensembles can therefore be used to quantify uncertainty due to internal variability (Hawkins et al., 38 

2016; Lehner et al., 2017; Marotzke, 2019; McCusker et al., 2016; McKinnon et al., 2017; Sigmond and 39 

Fyfe, 2016) and thereby unpick the forced signal from the internal noise; moreover, they allow the 40 

investigation of forced changes in internal variability (e.g., Maher et al., 2018). 41 

 42 

 43 

4.2.2 Scenarios  44 

 45 

The IPCC AR5 (across all WGs) drew heavily on four main scenarios, known as Representative 46 

Concentration Pathways (RCPs, Meinshausen et al., 2011; van Vuuren et al., 2011), and simulation results 47 

from CMIP5 (Taylor et al., 2012, see Subsection 4.2.1). The RCPs were labelled by the approximate 48 

radiative forcing reached at the year 2100, going from 2.6, 4.5, 6.0 to 8.5 W m-2. 49 

 50 

This chapter will draw on model simulations from CMIP6 (Eyring et al., 2016a) using a new range of 51 

scenarios based on Shared Socio-economic Pathways (SSPs, O’Neill et al., 2016) and RCPs. The set of SSPs 52 

is described in detail in Chapter 1 and recognizes that global radiative forcing levels can be achieved by 53 

different pathways of CO2, non-CO2 greenhouse gases (GHGs), aerosols, and land use; the set of SSPs 54 

therefore establishes a matrix of global forcing levels and socio-economic storylines. ScenarioMIP (O’Neill 55 
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et al., 2016) identifies four priority (tier-1) scenarios that participating modelling groups are required to 1 

perform, SSP1-2.6 for sustainable pathways, SSP2-4.5 for middle-of-the-road, SSP3-7.0 for regional rivalry, 2 

and SSP5-8.5 for fossil-fuel-rich development. This chapter will focus its assessment on these, plus also the 3 

SSP1-1.9 scenario, which is directly relevant to assessment of the 1.5°C climate target. 4 

 5 

Complete backward comparability between CMIP5 and CMIP6 scenarios cannot be established for detailed 6 

regional assessments, because the SSP scenarios include regional forcings especially from land use and 7 

aerosols that are different from the CMIP5 RCPs. At a global level, however, a quantitative comparison is 8 

possible between corresponding SSP and RCP radiative forcing levels. The RCP scenarios assessed in the 9 

AR5 all showed similar, rapid reductions in SLCFs and emissions of SLCF precursor species over the 21st 10 

century; the CMIP5 projections hence did not sample a wide range of possible trajectories for future SLCFs. 11 

The SSP scenarios assessed in the AR6 offer more scope to explore SLCF pathways as they sample a 12 

broader range of air quality policy options (Gidden et al., 2018). Other MIPs (see Subsection 4.2.1) have 13 

been designed to explicitly explore some of the implications of the different socio-economic storylines for a 14 

given radiative forcing level. While here we focus on scenarios out to 2040 as the near term and 2100 as the 15 

long term, we also include extensions out to 2300 as described in ScenarioMIP (O’Neill et al., 2016) for CO2 16 

concentrations and C4MIP (Jones et al., 2016a) for CO2 emissions. 17 

 18 

 19 

4.2.3 Sources of Near-Term Information  20 

 21 

This subsection describes the three main sources of near-term information used in Chapter 4. These are 1) 22 

the projections from the CMIP6 multi-model ensemble introduced in Section 4.2.1 (Eyring et al., 2016a; 23 

O’Neill et al., 2016), 2) observationally constrained projections (Gillett et al., 2013; Stott et al., 2013) , and 24 

3) the initialized predictions contributed to CMIP6 from the Decadal Climate Prediction Project (DCPP, 25 

Boer et al., 2016)). The projections under 1) and the observational constraints under 2) are used for all time 26 

horizons considered here, whereas the initialization information under 3) is applied only in the near term.  27 

 28 

Observationally constrained projections (Gillett et al., 2013; Stott et al., 2013) use detection and attribution 29 

(D&A) methods to correct for systematic model bias and thus provide improved projections of near-term 30 

change. Notable advances have been made since the AR5, illustrated through the example of observationally 31 

constrained estimates of Arctic sea-ice loss when global average surface temperature is stabilized at 1.5°C, 32 

2.0°C and 3.0°C warming above pre-industrial (Jahn, 2018; Screen, 2018; Screen and Williamson, 2017; 33 

Sigmond et al., 2018). There is high confidence that these approaches can reduce the uncertainties involved 34 

in such estimates. 35 

 36 

The AR5 was the first IPCC report to assess decadal climate predictions initialized from the observed 37 

climate state (Kirtman et al., 2013), and assessed with high confidence that they contribute positively to near-38 

term averaged surface temperature information, globally and over large regions, for up to ten years. 39 

Substantially more experience has been gained since the AR5; the remainder of this subsection assesses the 40 

advances made. 41 

 42 

Because the “memory” that potentially enables prediction of multi-year to decadal internal variability resides 43 

mainly in the oceans, some systems initialize the ocean state only (e.g., Yeager et al., 2018), whereas others 44 

incorporate observed information in the initial atmospheric states (e.g., Knight et al., 2014; Pohlmann et al., 45 

2013) or other non-oceanic drivers providing further sources of predictability (Bellucci et al., 2015a). 46 

Ocean initialization techniques generally use one of two strategies. Under full-field initialization, estimates 47 

of observed climate states are represented directly on the model grid. A potential drawback is that because 48 

models are imperfect, their climates differ from that of the real world, so predictions initialized using the 49 

full-field approach tend to drift toward the climate preferred by the model (Bellucci et al., 2015b; Kröger et 50 

al., 2018; Smith et al., 2013a). Such drifts can be as large as or larger than the climate anomaly being 51 

predicted and may obscure predicted climate anomalies unless corrected through post-processing. By 52 

contrast, anomaly initialization adds observed anomalies (deviations from mean climate) to the mean climate 53 

of the model in order to reduce drifts (Cassou et al., 2018; Pohlmann et al., 2013; Smith et al., 2013a; Thoma 54 

et al., 2015b). For either approach, unrealistic features in the data used for initialization may further induce 55 
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unrealistic transient behavior (Pohlmann et al., 2017; Teng et al., 2017). As yet, none of these strategies has 1 

been shown clearly to be superior to the others (Hazeleger et al., 2013; Magnusson et al., 2013; Marotzke et 2 

al., 2016; Smith et al., 2013a), although such comparisons may be sensitive to the model, region, and details 3 

of the initialization and forecast assessment procedures considered (Bellucci et al., 2015b; Polkova et al., 4 

2014). 5 

 6 

There is also a wide range of techniques employed to assimilate observed information into  7 

models. These range in complexity from simple relaxation towards observed time series of sea surface 8 

temperature (SST) (Mignot et al., 2016) or wind stress anomalies (Thoma et al., 2015a, 2015b), to relaxation 9 

toward three-dimensional values from ocean and sometimes atmospheric state estimates from various 10 

sources (e.g., Knight et al., 2014; Pohlmann et al., 2013), to sophisticated data assimilation methods such as 11 

the ensemble Kalman filter (Karspeck et al., 2015; Msadek et al., 2014) and the initialization of sea ice 12 

(Guemas et al., 2016; Kimmritz et al., 2018). In addition, decadal predictions necessarily consist of 13 

ensembles of forecasts in order to quantify uncertainty as discussed in Section 4.4. A common way to 14 

generate such an ensemble is through sets of initial conditions whose differences lead to different subsequent 15 

climate trajectories. A variety of methods has been employed to generate initial-condition ensembles for 16 

decadal prediction (e.g., Cassou et al., 2018; Marini et al., 2016). As yet there is no clear consensus as to 17 

which initialization and ensemble generation techniques are most effective, and evaluations of their 18 

comparative performance within a single modelling framework are needed (Cassou et al., 2018). 19 

 20 

A consequence of model imperfections and resulting model systematic errors or biases is that estimates of 21 

these errors must be removed from the prediction in order to isolate the predicted climate anomaly. Because 22 

of the tendency for systematic drifts to occur following initialization, bias corrections generally depend on 23 

time since the start of the forecast, often referred to as lead time. In practice, the lead-time-dependent biases 24 

are calculated using ensemble retrospective predictions, also known as hindcasts, and recommended basic 25 

procedures for such corrections are provided in previous studies (Boer et al., 2016; Goddard et al., 2013). 26 

Besides mean climate as a function of lead time, further aspects of decadal predictions may be biased, and 27 

additional correction procedures have thus been proposed to remove biases in representing long-term trends 28 

(Balaji et al., 2018; Kharin et al., 2012; Kruschke et al., 2016), as well as more general dependences of drift 29 

on initial conditions (Fučkar et al., 2014). 30 

 31 

Many skill measures exist that describe different aspects of the correspondence between predicted and 32 

observed conditions, and no single one should be considered exclusively. Important aspects of forecast 33 

performance captured by different skill measures include ability to predict the sign and phase of future 34 

climate variability, the typical magnitude of differences between predicted and observed values, forecast 35 

reliability and resolution (Corti et al., 2012) and whether the forecast ensemble appropriately represents 36 

uncertainty in the predictions. A framework for skill assessment (also called verification) that encompasses 37 

each of these aspects of forecast quality has been proposed by Goddard et al. (2013). 38 

 39 

Considerable skill, especially for temperature, can be attributed to external forcings such as changes in GHG 40 

and aerosol concentrations. This contribution to skill has been found to exceed that from the prediction of 41 

internal variability except in early stages of the forecast (Corti et al., 2015), though idealized potential skill 42 

measures suggest that improving the prediction of internal variability could extend this crossover to longer 43 

lead times (Boer et al., 2013). And although the skill added by initialization tends to be modest particularly 44 

over land and at longer lead times, an alternative approach of assessing how well initialized predictions 45 

forecast observed variability that is not captured by uninitialized simulations suggests the value added by 46 

initialization may be greater than previously thought (Scaife and Smith, 2018). 47 

 48 

One additional aspect of forecast quality assessment is that skill can be degraded by errors in observational 49 

datasets used for verification, in addition to errors in the predictions (Massonnet et al., 2016). This suggests 50 

that skill may tend to be underestimated, particularly for climate variables whose observational uncertainties 51 

are relatively large, and that predictions are in turn useful for assessing the quality of observational datasets.  52 

 53 

Skill assessments have shown that initialized predictions generally out-perform their uninitialized 54 

counterparts, although such comparisons are sensitive to the region and variable considered, and that multi-55 
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model predictions are generally more skilful than individual models (Doblas-Reyes et al., 2013; Smith et al., 1 

2013b). Initialized predictions of near-surface temperature are particularly skilful over the North Atlantic, a 2 

region of high potential and realised predictability (Boer et al., 2013; Pohlmann et al., 2009; Yeager and 3 

Robson, 2017) (high confidence). Much of this predictability is associated with the North Atlantic subpolar 4 

gyre (Wouters et al., 2013), where skill in predicting ocean conditions is typically high (Hazeleger et al., 5 

2013) and shifts in ocean temperature and salinity potentially affecting surface climate can be predicted up to 6 

several years in advance (Hermanson et al., 2014; Robson et al., 2012) although such assessments remain 7 

challenging due to incomplete knowledge of the state of the ocean during the hindcast evaluation periods 8 

(Menary and Hermanson, 2018).  9 

 10 

In contrast to the North Atlantic, near-surface temperature forecast skill is low or even negative throughout 11 

much of the central and northeastern Pacific (Doblas-Reyes et al., 2013), although some evidence for multi-12 

year skill in forecasting shifts in the Interdecadal Pacific Oscillation and its impacts on global temperature 13 

has been found (Guemas et al., 2013b; Meehl et al., 2016). Skill for multi-year to decadal precipitation 14 

forecasts is generally much lower than for temperature, although one exception is Sahel rainfall (Sheen et al., 15 

2017) due to its dependence on predictable variations in North Atlantic SST (Martin and Thorncroft, 2014a). 16 

In addition, decadal predictions having large ensemble sizes appear able to predict multi-annual precipitation 17 

anomalies over certain land regions (Yeager and Robson, 2017) although with ensemble-mean magnitudes 18 

that are much weaker than observed. This discrepancy may be symptomatic of an apparent deficiency in 19 

climate models that causes predictable signals to be much weaker than in nature (Eade et al., 2014; Scaife 20 

and Smith, 2018). 21 

 22 

Evidence is accumulating that additional properties of the Earth system that relate to ocean variability may 23 

be skilfully predicted on multi-annual time scales. These include levels of Atlantic hurricane activity (Caron 24 

et al., 2017), drought and wildfire (Chikamoto et al., 2017), and variations in the ocean carbon cycle 25 

including CO2 uptake (Li et al., 2016b, 2019).  26 

 27 

In summary, there is high confidence that information from initialized predictions reduces the uncertainty of 28 

projections of future temperature on the global and large scales; for a recent application of a multi-model 29 

prediction ensemble to the question of whether global warming of 1.5°C above pre-industrial levels will be 30 

exceeded in the near future, see (Smith et al., 2018). By contrast, there is medium or low confidence for 31 

similar uncertainty reductions for other climate quantities. 32 

 33 

 34 

4.2.4 Pattern Scaling  35 

 36 

The CMIP6 projections of future climate change under different SSPs are representative of a range of 37 

transient and stabilization scenarios (O’Neill et al., 2016). Projected climate change futures are typically 38 

represented for specific periods in the future, for example in this chapter projections are presented for near-39 

term (2021–2040), mid-term (2041–2060) and long-term (2081–2100) periods. One important source of 40 

uncertainty in projections presented for fixed future time-slabs is the underlying mitigation scenario used to 41 

force the GCMs. Presenting projections and associated measures of uncertainty for specific future time-slabs 42 

(see Sections 4.4 and 4.5) remains the most widely applied methodology towards informing climate change 43 

impact studies. It is becoming increasingly important, however, from the perspective of climate change and 44 

mitigation policy, to present projections of future climate change not only as a function of different periods 45 

in the future but also as a function of the increase in GSAT. In particular, the IPCC SR1.5 report assessed the 46 

regional patterns of warming for increase in GSAT of 1.5°C and 2°C above pre-industrial levels. The report 47 

compared impacts of global warming at 1.5°C of global warming to impacts at 2°C of global warming. For 48 

such an analysis, it is important to develop an understanding of the spatial variations of temperature and 49 

other climate variables for a particular increase in the GSAT. The techniques used to represent the spatial 50 

variations in climate at a given increase in the GSAT are referred to as pattern scaling. 51 

 52 

In the original (or traditional) methodology, also applied in the AR5 (Collins et al., 2013), patterns of climate 53 

change in space are calculated as the product of the change in GSAT at a given point in time and a spatial 54 

pattern of change that is constant over time and mitigation scenario, and which may or may not depend on a 55 
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particular climate model (Allen and Ingram, 2002; Andrews and Forster, 2010; Bony et al., 2013; Lambert 1 

and Allen, 2009; Lopez et al., 2014; Mitchell, 2003). This approach thus assumes that external forcing does 2 

not affect the internal variability of the climate system, which may be regarded a stringent assumption when 3 

taking into account decadal and multi-decadal variability (Lopez et al., 2014) and the potential nonlinearity 4 

of the climate change signal. Moreover, pattern scaling is expected to have lower skill for variables with 5 

large spatial variability (Tebaldi and Arblaster, 2014) and is less accurate for strong mitigation scenarios 6 

such as RCP2.6 (May, 2012). Scaling fails to capture changes in sea ice extent and snow cover (Collins et 7 

al., 2013), which behave more like a boundary that moves poleward than a pattern that scales. Pattern scaling 8 

also fails for certain quantities such as frost days that decrease under warming but are bounded at zero. 9 

Spatial patterns are expected to be different between transient and equilibrium simulations because of the 10 

long adjustment time scale of the deep ocean. 11 

 12 

Modifications of the AR5 approach have since explored the role of aerosols in modifying regional climate 13 

responses at a specific degree of global warming and also the effect of different GCMs and mitigation 14 

scenarios on the scaled spatial patterns (Frieler et al., 2012; Levy et al., 2013). Furthermore, the modified 15 

forcing-response framework (Kamae and Watanabe, 2012, 2013; Sherwood et al., 2015), which decomposes 16 

the total climate change into fast adjustments and slow response, identifies the fast adjustment as forcing-17 

dependent and the slow response as forcing-independent, scaling with the change in GSAT.  18 

 19 

For precipitation change, there is suppression during the fast-adjustment phase for CO2 and black-carbon 20 

radiative forcing (Andrews et al., 2009; Bala et al., 2010; Cao et al., 2015), but there is near-zero fast 21 

adjustment  for solar forcing. By contrast, the slow response in precipitation change is independent of the 22 

forcing. This indicates that pattern scaling is not expected to work well for climate variables that have a large 23 

fast-adjustment component. Even in such cases, pattern scaling still works for the slow response component, 24 

but a correction for the forcing-dependent fast adjustment would be necessary to apply pattern scaling to the 25 

total climate change signal. In a multi-model setting, it has been shown that temperature change patterns 26 

conform better to pattern scaling approximation than precipitation patterns (Tebaldi and Arblaster, 2014). 27 

 28 

Most recently, Herger et al. (2015) have explored the use of multiple predictors for the spatial pattern of 29 

change at a given degree of global warming, following the approach of Joshi et al. (2013) that explored the 30 

role of the land-sea warming ratio as a second predictor. They found that the land-sea warming contrast 31 

changes in a non-linear way with GSAT, and that it approximates the role of the rate of global warming in 32 

determining regional patterns of climate change. The inclusion of the land-sea warming contrast as the 33 

second predictor provides the largest improvement over the traditional technique. However, as pointed out 34 

by Herger et al. (2015), multiple-predictor approaches still cannot detect nonlinearities (or internal 35 

variability), such as the apparent dependence of spatial temperature variability in the mid to high latitudes on 36 

GSAT (e.g. Screen, 2014; Fischer and Knutti, 2014).  37 

 38 

An alternative to the traditional pattern scaling approach is the time-shift method described by (Herger et al., 39 

2015), and this methodology (also called the epoch approach, see Section 4.6.1) is the one applied in this 40 

chapter. When applied to a transient scenario such as SSP5-8.5, a future time-slab is identified for which the 41 

average temperature equals a particular increase in the GSAT (e.g., 1.5°C or 2°C of global warming above 42 

pre-industrial levels). The spatial patterns that result represent a direct scaling of the spatial variations of 43 

climate change at the particular level of global warming, irrespective of the scenario. An important 44 

advantage of this approach is that it ensures physical consistency between the different variables for which 45 

changes are presented  (Herger et al., 2015). The internal variability does not have to be scaled and is 46 

consistent with the GSAT change. The time-shift method furthermore allows for a partial comparison of how 47 

the rate of increase in GSAT influences the regional spatial patterns of climate change. For example, spatial 48 

patterns of change for global warming of 2°C can be compared across the SSP2-4.5 and SSP5-8.5 scenarios. 49 

Direct comparisons can also be obtained between variations in the regional impacts of climate change for the 50 

case where global warming stabilizes at, say, 1.5°C or 2°C of global warming, as opposed to the case where 51 

the GSAT reaches and then exceeds the 1.5°C or 2°C thresholds. An important potential caveat is that 52 

forcing mechanisms such as aerosol radiative forcing are represented differently in different models, even for 53 

the same SSP. This may imply different regional aerosol direct and indirect effects, implying different 54 

regional climate change patterns. Hence it is important to consider the variations in the forcing mechanisms 55 
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responsible for a specific increase in the GSAT, towards understanding the uncertainty range associated with 1 

the variations in regional climate change. A minor practical limitation of this approach is that stabilization 2 

scenarios at 1.5°C or 2°C of global warming, such as SSP1-2.6, do not allow for spatial patterns of change to 3 

be calculated from these scenarios at higher levels of global warming in scenarios such as SSP5-8.5 (Herger 4 

et al., 2015).  5 

 6 

In this chapter the spatial patterns of change as a function of increase in the GSAT are thus constructed using 7 

the time-shift approach to consider various nonlinearities and internal variability that influence the projected 8 

climate change signal. This implies a reliance on large ensemble sizes to quantify the role of uncertainties in 9 

regional responses to different degrees of global warming. The assessment in Section 4.6.1 also explores 10 

how the rate of global warming (as represented by different SSPs), aerosol effects, and transient as opposed 11 

to stabilization scenarios influence the spatial variations in climate change at specific levels of global 12 

warming. 13 

 14 

 15 

4.2.5 Quantifying Various Sources of Uncertainty  16 

 17 

The spread across individual runs within a multi-model ensemble represents a combination of different 18 

sources of uncertainties, specifically scenario uncertainties, parametric and structural model uncertainty and 19 

internal variability (e.g., Hawkins and Sutton, 2009; Kirtman et al., 2013). This sub-section assesses methods 20 

to disentangle different sources of uncertainties and quantifies their contributions to the overall ensemble 21 

spread. 22 

 23 

The AR5 uncertainty characterisation (Kirtman et al., 2013) followed Hawkins and Sutton (2009) and 24 

diagnosed internal variability through a high-pass temporal filter. But it has since become clear that internal 25 

variability manifests itself substantially also on the multi-decadal timescale (Deser et al., 2012a; Marotzke 26 

and Forster, 2015). Large initial-condition ensembles have revealed that the AR5 approach underestimates 27 

the role of internal variability and overestimates the role of model uncertainty (Maher et al., 2018; Stolpe et 28 

al., 2018). The availability of large initial-condition ensembles thus represents a crucial step towards a 29 

cleaner separation of model uncertainty and internal variability (Deser et al., 2014, 2016; Saffioti et al., 30 

2017). For time horizons beyond the limit of decadal predictability (Branstator and Teng, 2010; Marotzke et 31 

al., 2016; Meehl et al., 2014), internal variability constitutes an uncertainty that is irreducible and that at best 32 

can be accurately quantified.   33 

 34 

Scenario uncertainty cannot be quantified within the remit of WGI, because the scenarios have no probability 35 

attached to them, owing to the current impossibility of attaching probabilities to societal decisions 36 

(Schneider, 2001). More comprehensive representation of SSPs induces additional uncertainties such as the 37 

response to land use changes and others (Ciais et al., 2013; O’Neill et al., 2016). 38 

 39 

An additional uncertainty is highlighted by the contrast between emission-driven and concentration-driven 40 

simulations, which introduces carbon-cycle feedbacks as a source of uncertainty (Friedlingstein et al., 2014; 41 

Hewitt et al., 2016) that strongly influences the transient climate response to emission (TCRE). This 42 

uncertainty is crucial for the assessment of remaining carbon budgets consistent with temperature targets 43 

(Masson-Delmotte et al., 2018; Millar et al., 2017) and is be covered in Chapter 5 of this report. 44 

 45 

The relative magnitudes of model uncertainty and internal variability depend on the time horizon of the 46 

projection, location, spatial and temporal aggregation, variable, and signal strength (Deser et al., 2014; 47 

Fischer et al., 2013; Saffioti et al., 2017). New literature published after the AR5 systematically discusses the 48 

role of different sources of uncertainty and shows that the relative contribution of internal variability is larger 49 

for short than long projection horizons (Marotzke and Forster, 2015), larger for high latitudes than low 50 

latitudes, larger for land than ocean variables, larger at station level than continental than global means, 51 

larger for annual maxima/minima than for multi-decadal means, larger for dynamic quantities (and, by 52 

implication, precipitation) than for temperature (Fischer et al., 2014), and larger for weak than for strong 53 

signals.  54 

 55 
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Some uncertainties are not or only partially accounted for in the CMIP6 experiments, such as long-term 1 

Earth system feedbacks including missing land-ice feedbacks or some long-term carbon-cycle feedbacks 2 

(Fischer et al., 2018). Where appropriate, this chapter will use results from non-CMIP ESMs or EMICs to 3 

assess the role of these feedbacks.  4 

 5 

As discussed extensively already in the AR5 (Collins et al., 2013), differences between projections 6 

performed with different climate models account for only part of the entire model uncertainty, even when 7 

considering only the uncertainty in the radiative forcing in projections (Vial et al., 2013) or in the forced 8 

response. The true uncertainty is larger than the model spread, because the entire CMIP ensembles are 9 

known to share certain biases in simulations of the past (Flato et al., 2013) and because climate models are 10 

expected to share errors in simulating future climates. Assessing these shared errors in projections remains 11 

fundamentally very difficult, because observational tests are elusive. Emergent constraints (e.g., Cox et al., 12 

2018; Hall and Qu, 2006) introduce observable quantities as proxies of projected quantities, but in each case 13 

the validity of the proxy rests on untested connections established by the climate model. Obtaining a full 14 

assessment of the uncertainty in an ensemble of projections thus continues to pose a fundamental 15 

epistemological challenge (Baumberger et al., 2017; Frisch, 2015; Parker, 2009).  16 

 17 

 18 

4.2.6 Display of Model Agreement and Spread  19 

 20 

Maps of multi-model mean changes provide an average estimate for the forced model response to a certain 21 

forcing. However, they do not include any information on the robustness of the response across models nor 22 

on the significance of the change with respect to unforced internal variability (Tebaldi et al., 2011). Models 23 

can consistently show absence of significant change, in which case they should not be expected to agree on 24 

the sign of a change (e.g., Fischer et al., 2014; Tebaldi et al., 2011). In a multi-model mean map of 25 

precipitation where the median shows no change it is unclear whether the models consistently project both 26 

small and insignificant increases and decreases or whether projections span both substantial increases and 27 

substantial decreases (McSweeney and Jones, 2013; Tebaldi et al., 2011). Therefore, a set of different 28 

methods have been introduced in the literature to display model robustness and to put a climate change 29 

signal into the context of internal variability. The AR5 Box 12.1 provides a detailed assessment of different 30 

methods of mapping model robustness.  31 

 32 

The combination of several large initial-condition (e.g., Kay et al., 2015) and multi-model ensembles (Eyring 33 

et al., 2016a; Taylor et al., 2012) provides new opportunities to separate internal variability from model 34 

uncertainty and to better understand whether individual model realizations disagree due to internal variability 35 

or model differences. Most methods of quantifying robustness assume, however, that only one realization 36 

from each model is applied. There are new challenges that arise from having inhomogeneous multi-model 37 

ensembles with many members for some models and single members for others (Olonscheck and Notz, 38 

2017). Furthermore, the methods that map model robustness usually ignore that sharing parametrizations or 39 

entire components across coupled models can lead to substantial model interdependence (Abramowitz et al., 40 

2019; Annan and Hargreaves, 2017; Boe, 2018; Fischer et al., 2011; Kharin et al., 2012; Knutti et al., 2013a, 41 

2017; Leduc et al., 2015; Sanderson et al., 2015, 2017a) This may lead to an overestimation of model 42 

agreement if a substantial fraction of models are interdependent. However, quantifying and accounting for 43 

model dependence in a robust way remains challenging (Abramowitz et al., 2019).  44 

 45 

Furthermore, absence of significant mean change in a certain climate variable does not imply absence of 46 

substantial impact, because there may be substantial change in variability, which is typically not mapped 47 

(McSweeney and Jones, 2013). 48 

 49 

The following chapter will be using the same methodology as the AR5 to map model robustness and 50 

significance of the signal. This approach represents a compromise between transparency and 51 

comprehensiveness of the diverse mapping methodologies and has the advantage that a broad community is 52 

used to interpret this mapping methodology. That maps of mean changes ignore potential changes in 53 

variability addressed by a more comprehensive assessment of changes in temperature variability and modes 54 

of internal variability. 55 
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 1 

The degree to which climate change drivers and processes are known and formulated in the various models 2 

is very important in the display of projections. This display makes it straightforward to extract long-term 3 

policy-relevant information (magnitudes, robustness, significance, and certainty levels). Recent 4 

developments in climate change modelling including more physically consistent schemes used in CMIP6 5 

runs and new analysis methods applied to both CMIP5 and CMIP6 have brought out information with 6 

smaller spread and increased convergence of change evidence at specific warming levels (Knutti et al., 2017; 7 

Notz and Stroeve, 2016). These are substantial advancements of the AR6 above AR5 in the display and 8 

assessment of model agreement. 9 

 10 

 11 

[START BOX 4.1 HERE] 12 

 13 

BOX 4.1: Ensemble Evaluation and Weighting  14 

 15 

Box 4.1 provides the synthesis required for a robust assessment of projection ensembles, in part using 16 

material from other WGI AR6 Chapters. 17 

 18 

The IPCC AR5 used a pragmatic approach to quantifying the uncertainty in CMIP5 climate projections 19 

(Collins et al., 2013). One realization per model per scenario was picked and defined the ensemble. For most 20 

quantities, the 5–95% ensemble spread was used to characterize the uncertainty, but the 5–95% spread was 21 

interpreted as the 16–83% (likely) range. The uncertainty was thus explicitly assumed to contain sources not 22 

represented by the model spread. While straightforward and clearly communicated, this approach had several 23 

drawbacks, and there has been substantial progress since the AR5 on how to assess the uncertainty of 24 

projections.  25 

 26 

i) The uncertainty breakdown into scenario uncertainty, model uncertainty, and internal variability (Cox 27 

 and Stephenson, 2007; Hawkins and Sutton, 2009) in the AR5 followed (Hawkins and Sutton, 2009)  28 

 and diagnosed internal variability through a high-pass temporal filter (Kirtman et al., 2013). But it has 29 

 since become clear that interval variability manifests itself substantially also on the multi-decadal 30 

 timescale (e.g., (Deser et al., 2012a; Marotzke and Forster, 2015)); hence a more comprehensive 31 

 approach is needed.  32 

ii) The uncertainty characterization ignores observation-based information about internal climate 33 

 variability during the recent past. This may matter less for the long-term projections (Collins et al., 34 

 2013) but becomes very important for the near-term future (Kirtman et al., 2013). It was necessary to 35 

 include additional uncertainty quantification for the near-term projections in the AR5 but this 36 

 characterization of uncertainty was inconsistent with that of the long-term projections.  37 

iii) The ensemble-spread-based uncertainty characterization for equilibrium climate sensitivity (ECS) was 38 

 distinct from the likely range assessed for ECS in the AR5 (Collins et al., 2013), and while the CMIP5 39 

 spread in ECS and the AR5 ECS likely range did not differ much, this did create an inconsistency. 40 

 Furthermore, WGIII in the AR5 used the assessed likely range for ECS in their calculations of carbon 41 

 budgets (IPCC, 2014), and as the recent discussion has shown (e.g., Millar et al., 2017, 2018a, 2018b; 42 

 Schurer et al., 2018), small uncertainties matter a great deal when assessing remaining carbon budgets 43 

 consistent with a given climate target.  44 

 45 

Another important consideration concerns the potential weighting of model contributions to an ensemble, 46 

based on model independence, model performance during the historical period, or both. Such model 47 

weighting (in fact, model selection) was performed in the AR5 for the projections of Arctic sea ice (Collins 48 

et al., 2013), but the method applied has, for this case, been shown by Notz (2015) to be contaminated by 49 

internal variability, making the resulting weighting questionable (see also Stroeve and Notz, 2015). For a 50 

general cautionary note see Weigel et al. (2010). More robust approaches, taking into account internal 51 

variability and model independence, have been proposed since the AR5 (Abramowitz et al., 2019; Boe, 52 

2018; Knutti et al., 2017). 53 

 54 

Chapter 4 will apply all available information, stemming from (i) the CMIP6 multi-model ensemble (Eyring 55 
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et al., 2016a), augmented if appropriate by the CMIP5 ensemble (Taylor et al., 2012); (ii) single-model large 1 

initial-condition ensembles (e.g., Kay et al., 2015; Maher et al., 2019; Sigmond and Fyfe, 2016) and 2 

combinations of control runs with CMIP transient simulations (e.g., Olonscheck and Notz, 2017; Thompson 3 

et al., 2015) to characterize internal variability; (iii) climate predictions initialized from recent observations 4 

(e.g., Kirtman et al., 2013) and the Decadal Climate Prediction Project (DCPP) contribution to CMIP6 (Boer 5 

et al., 2016); (iv) assessed ranges of climate sensitivity based on multiple lines of evidence (e.g., Chapter 7, 6 

Collins et al., 2013); (v) diagnosed model independence (e.g., Boe, 2018) and performance in simulating the 7 

past (e.g., Abramowitz et al., 2019; Knutti et al., 2017); (vi) emergent constraints (e.g., Cox et al., 2018; Hall 8 

and Qu, 2006); and (vii) information from perturbed-physics ensembles (e.g., Murphy et al., 2004), to 9 

produce a robust method for quantifying the uncertainty in climate projections, including a breakdown into 10 

sources of uncertainty. Not all proposed methods are already available for the FOD; furthermore, the FOD 11 

comprises a mix of CMIP5 and CMIP6 models and a mix of RCP and SSP radiative forcings, because 12 

CMIP6 projections and SSP radiative forcings are not yet sufficiently available.  13 

 14 

0 shows GSAT simulated by CMIP6 models for both the historical period and forced by scenario SSP2-4.5 15 

until 2100, combined with various characterizations of uncertainty. First, internal variability is estimated 16 

with the 100-member Max Planck Institute Grand Ensemble (MPI-GE, Maher et al., 2019), forced by 17 

scenario RCP4.5 (0, left); note that no large ensemble is currently available that is driven by an SSP 18 

scenario. Second, GSAT implied by the Chapter 7 likely and very likely ECS ranges are simulated with an 19 

energy balance model (EBM) as an emulator, using the RCP4.5 radiative forcing information (0). Third, the 20 

initialized-prediction ensemble from the CMIP6 model MPI-ESM-HR (Müller et al., 2018) is shown for the 21 

years 2019–2028 (purple, 0, right); the predictions have been produced through the MiKlip project 22 

(Marotzke et al., 2016) and contribute to DCPP (Boer et al., 2016). 23 

 24 

Referenced against 1850–1900, the available CMIP6 simulations project future warming that until around 25 

2060 largely falls within the emulated GSAT range that is based on the Chapter 7-assessed ECS very likely 26 

range of 2°C–5°C.  After 2060, some models stay within this range and some other models lie above. The 27 

stronger-warming models are expected to have an ECS above the Chapter 7-assessed very likely range 28 

(expert judgement, medium confidence).  29 

 30 

The GSAT uncertainty arising from the ECS very likely range is substantially larger than the irreducible 31 

uncertainty arising from internal variability, from the mid-term period (2041–2060) onward (high 32 

confidence). By contrast, the ECS likely range is similar to the irreducible uncertainty (medium confidence). 33 

The initialized predictions simulate GSAT toward the lower end of both the CMIP6 range and the emulator 34 

ECS very likely range (expert judgement, low confidence owing to limited data availability). 35 

 36 

[START BOX 4.1, FIGURE 1 HERE] 37 

 38 
Box 4.1, Figure 1: CMIP6 GSAT simulations and various contributions to uncertainty in the projections ensemble. The 39 

top row shows the period 1850–2100, referenced to 1850–1900; the bottom row shows a cut-out for 40 
the period 1995–2040, which encompasses the most recent past in CMIP6 (1995–2014) and the 41 
near-term future (2021–2040). All panels show for 1850–2100 one CMIP6-forced simulation each 42 
with BCC-CSM2-MR (cyan), CanESM5 (light green), IPSL-CM6A-LR (yellow), MRI-ESM2-0 43 
(light purple), and UKESM1 (ochre); and GSAT simulated with an emulator driven by the AR5 44 
radiative forcing, using RCP4.5 from the WGI AR5 Annex II after 2005 (black). The emulator is a 45 
two-layer time-dependent energy-balance model (EBM) following (Held et al., 2010), with ocean 46 
heat uptake efficiency  = 0.8 W m-2 °C-1 and efficacy 1.0. Results are shown for ECS = 2.5°C and 47 
3.5°C, the lower and upper limits, respectively, of the Chapter 7 ECS likely range (solid black), as 48 
well as for 2°C and 5°C, the lower and upper limits, respectively, of the Chapter 7 ECS very likely 49 
range (dashed black). For the historical period, all panels show the observations (HadCRUT4, 50 
(Morice et al., 2012), red) and  the CMIP5-forced simulations from the 100-member Max Planck 51 
Institute Grand Ensemble (MPI-GE, (Maher et al., 2019), dark blue for ensemble mean, light blue 52 
for individual realizations), Left: The MPI-GE simulations are extended from 2006–2100 following 53 
the RCP4.5 scenario. Right: For the years 2019–2028, the initialized-prediction ensemble from the 54 
CMIP6 model MPI-ESM-HR (Müller et al., 2018) is shown (dark purple), produced through the 55 
MiKlip project (Marotzke et al., 2016) and contributing to DCPP (Boer et al., 2016). The MiKlip 56 
results are drift-removed and referenced to the time-averaged hindcasts for 1995–2014 lead-year by 57 
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lead-year; then the HadCRUT4 difference between the means over 1995–2014 and 1850–1900 is 1 
added. [Placeholder figure, to be updated with the full CMIP6 ensemble and CMIP6/AR6/SSP 2 
forcing for the EBM.] 3 

 4 
[END BOX 4.1, FIGURE 1 HERE] 5 
 6 
 7 

[END BOX 4.1 HERE] 8 

 9 

 10 

4.3 Projected Changes in Global Climate Indices in the 21st Century 11 

 12 

Here we assess the latest simulations of representative indicators of global climate change at the surface 13 

considered as simple time series and tabulated values over the 21st century and across the main realms of the 14 

global climate system. In the atmospheric realm (see Section 4.3.1), we assess simulations of GSAT (see 15 

Figure 4.1:) and global land precipitation (see Figure 4.1:). Across the cryospheric, oceanic, and biospheric 16 

realms (see Section 4.3.2), we assess simulations of Arctic SIA (see Figure 4.1:), GMSL (see Figure 4.1:), 17 

the AMOC, cumulative ocean carbon uptake, and pH. Finally, in Section 4.3.3 we assess simulations of a 18 

several indices of climate variability, namely, the indices of the NAM, SAM, and ENSO. 19 

 20 

The quantities assessed here comprise a subset of the variables assessed in Chapters 2 and 3; selected so as to 21 

illustrate the range of connected changes simulated over the entirety of the 21st century and spanning much 22 

of the global climate system (see Figure 4.1:). From the CMIP6 multi-model ensemble we consider historical 23 

simulations with observed external forcings to 2014 and extensions to 2100 based on the four priority SSPs; 24 

namely, SSP1-2.6 (sustainable), SSP2-4.5 (middle-of-the-road), SSP3-7.0 (regional rivalry), and SSP5-8.5 25 

(fossil-fuel-rich development). In tabular form, we show ensemble-mean changes and uncertainties for the 26 

near-term (2020–2041), mid-term (2041–2061) and the long-term (2081–2100), relative to present-day 27 

(1995–2014) and/or pre-industrial (1850–1900). Changes of selected variables near 1.5°C, 2.0°C, and 3.0°C 28 

of global warming relative to pre-industrial are also assessed. 29 

 30 

 31 

[START FIGURE 4.1 HERE] 32 

 33 
Figure 4.1: Selected indicators of global climate change from historical and scenario simulations. (a) Global surface 34 

air temperature changes relative to averages from 1995–2014 (left axis) and relative to averages from 1850–1900 35 
(right axis). (b) Arctic sea-ice area. (c) Global land precipitation changes relative to averages from 1995–2014. (d) 36 
Global sea level change (due to thermal expansion alone) relative to averages from 1995–2014. (a), (b) and (d) are 37 
annual averages, (c) are September averages. The curves plotted here are based on results from the models that 38 
have thus far contributed to the CMIP6 exercise. In (a) and (b), the models are BCC-CSM2-MR, CanESM5, 39 
CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0. In (c) and (d), the models are CanESM5, CNRM-CM6-1, 40 
and IPSL-CM6A-LR. The number inside panel indicates the total number of models used. Eventually this figure 41 
will be updated using single simulations from the full CMIP6 ensemble plotted as ensemble means with shaded 42 
uncertainties. 43 

 44 

[END FIGURE 4.1 HERE] 45 

 46 

 47 

Assessments of the regional manifestations of the changes discussed in this section are undertaken in Section 48 

4.4 (for the near-term) and Section 4.5 (for the mid- to long-term). Detailed physical understanding of the 49 

changes documented here are undertaken in Chapters 5 to 11. 50 

 51 

4.3.1 Atmosphere 52 

 53 

4.3.1.1 Surface Air Temperature 54 

 55 

The AR5 assessed from CMIP5 simulations that GSAT will continue to rise over the 21st century if GHGs 56 
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continue increasing (Collins et al., 2013). The GHG trajectories, or RCPs, considered in the AR5 ranged 1 

from RCP2.6 which assumes that GHG emissions peak between 2010 and 2020, with emissions declining 2 

substantially thereafter, to RCP8.5 where emissions continue to rise throughout the 21st century. The AR5 3 

concluded that GSAT for 2081–2100, relative to 1986–2005 will likely be in the 5–95% range of 0.3°C–4 

1.7°C under RCP2.6 and 2.6°C–4.8°C under RCP8.5. The corresponding ranges for the intermediate 5 

emissions scenarios with emissions peaking around 2040 (RCP4.5) and 2060 (RCP6.0) are 1.1°C–2.6°C and 6 

1.4°C–3.1°C, respectively. The AR5 further assessed that GSAT averaged over the period 2081–2100 are 7 

projected to likely exceed 1.5°C above 1850–1900 for RCP4.5, RCP6.0 and RCP8.5 (high confidence), and 8 

are likely to exceed 2°C above 1850–1900 for RCP6.0 and RCP8.5 (high confidence). Global surface 9 

temperature changes above 2°C under RCP2.6 were deemed unlikely (medium confidence). 10 

 11 

Here, for continuity’s sake, we assess the CMIP6 simulations of GSAT in a fashion similar to the AR5 12 

assessment of the CMIP5 simulations. For each CMIP6 model, we show one historical realization of GSAT 13 

from 1950–2014 and one scenario realization from 2015–2100 for each priority SSP (see Figure 4.1:). These 14 

are displayed as anomalies relative to 1995–2014 and 1850–1900. We tabulate the 5–95% range of 15 

anomalies from 1995–2014 averaged over 2021–2040 (near-term), 2041–2060 (mid-term) and 2081–2100 16 

(long-term) for each priority SSP (Table 4.1:).  Based on results from the five models that have thus far 17 

contributed to the CMIP6 exercise, we conclude that GSAT for 2081–2100, relative to 1995–2014, shows a 18 

5–95% range of 0.7°C–1.7°C under SSP1-2.6 where CO2 concentrations peak between 2040–2060 (see 19 

Table 4.2:; medium confidence because of the limited number of models available). The corresponding range 20 

under the highest overall emissions scenario (SSP5-8.5) is 2.9°C–6.1°C (medium confidence). The ranges for 21 

the intermediate emissions scenarios (SSP2-4.5 and SSP3-7.0), where CO2 concentrations increase to 2100 22 

but less rapidly than SSP5-8.5, are 1.6°C–3.1°C and 2.4°C–4.8°C, respectively (medium confidence). 23 

 24 

We will compare and contrast the changes in GSAT across the three reference periods and the four SSPs in 25 

terms of differences in the underlying time-evolving emissions. The changes we find will be related to the 26 

estimated radiative forcing for the scenarios and models, with reference to the assessment in Chapter 7. 27 

Changes in area-weighted land, ocean, tropical (30°S–30°N), Arctic (67.7°N–90°N), and Antarctic (90°S–28 

55°S) surface air temperature will be evaluated (see Table 4.2:). 29 

 30 

 31 

[START TABLE 4.2 HERE] 32 

 33 
Table 4.2: CMIP6 annual mean surface air temperature anomalies (°C) from the 1995–2014 reference period for 34 

selected time periods, regions and SSPs. The multi-model mean ±1 standard deviation ranges across the 35 
individual models are listed and the 5–95% ranges from the models’ distribution (based on a Gaussian 36 
assumption and obtained by multiplying the CMIP6 ensemble standard deviation by 1.64) are given in 37 
brackets. The values tabulated here are for single simulations from the five models that have thus far 38 
contributed to the CMIP6 exercise. The models are BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-39 
CM6A-LR, and MRI-ESM2-0. Eventually this table will be updated using single simulations from the 40 
full CMIP6 ensemble. 41 

 42 

 SSP1-2.6 (°C) SSP2-4.5 (°C) SSP3-7.0 (°C) SSP5-8.5 (°C) 

Global :     2021–2040 0.8 ± 0.1 (0.6, 1.0) 0.8 ± 0.2 (0.5, 1.1) 0.8 ± 0.2 (0.5, 1.2) 0.9 ± 0.2 (0.6, 1.2) 

2041–2060 1.2 ± 0.2 (0.8, 1.5) 1.4 ± 0.3 (1.0, 1.9) 1.7 ± 0.3 (1.1, 2.2) 1.9 ± 0.4 (1.3, 2.5) 

2081–2100 1.2 ± 0.3 (0.7, 1.7) 2.3 ± 0.5 (1.6, 3.1) 3.6 ± 0.7 (2.4, 4.8) 4.5 ± 1.0 (2.9, 6.1) 

Land :     2081–2100 1.6 ± 0.4 (0.9, 2.3) 3.0 ± 0.6 (2.0, 4.1) 4.8 ± 1.0 (3.1, 6.4) 6.0 ± 1.4 (3.8, 8.3) 

Ocean :     2081–2100 1.1 ± 0.2 (0.7, 1.5) 2.0 ± 0.4 (1.4, 2.7) 3.1 ± 0.6 (2.1, 4.1) 3.9 ± 0.9 (2.5, 5.3) 

Tropics :     2081–2100 1.0 ± 0.3 (0.6, 1.4) 2.0 ± 0.4 (1.4, 2.6) 3.1 ± 0.6 (2.1, 4.1) 3.9 ± 0.8 (2.6, 5.3) 

Arctic :     2081–2100 3.4 ± 1.8 (0.5, 6.4) 5.9 ± 2.2 (2.3, 9.5) 8.8 ± 2.5 (4.7, 12.8) 10.6 ± 2.8 (6.0, 15.2) 
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Antarctic:    2081-2100 1.4 ± 0.4 (0.8, 2.0) 2.4 ± 0.4 (1.7, 3.0) 3.6 ± 0.5 (2.8, 4.4) 4.4 ± 1.0 (2.8, 6.0 

 1 

[END TABLE 4.2 HERE] 2 

 3 

 4 

Based on results from the five CMIP6 models, we note that there is unanimity across all of the available 5 

model simulations that GSAT change relative to pre-industrial (1850–1900) will rise above: 1) 1.5°C 6 

following any of the priority SSPs (on average around 2025); 2) 2.0°C following either SSP2-4.5, SSP3-7.0, 7 

or SSP5-8.5 (on average around 2040), and 3) 3.0°C following either SSP3-7.0 or SSP5-8.5 (on average 8 

around 2061). In summary, we conclude that it is very likely that within the near-term (2021–2040) or mid-9 

term (2041–2060), global temperature rise will exceed 1.5°C relative to pre-industrial under all of the 10 

priority SSPs, above 2.0°C under most of the priority SSPs, and above 3.0°C under the highest forcing 11 

scenarios (medium confidence because of the limited number of models available). 12 

 13 

Here, we will also assess the main sources of uncertainty in 21st century GSAT projections, including the 14 

relative importance of internal variability, model response uncertainty, and scenario uncertainty (as 15 

introduced in Subsection 4.2.5). Context will be provided by the assessment of equilibrium climate 16 

sensitivity (ECS) and transient climate response (TCR) in Chapter 7. In our concluding paragraph, we will 17 

compare and contrast the AR5/CMIP5 and AR6/CMIP6 assessments of simulations of projected GSAT 18 

change. 19 

 20 

 21 

4.3.1.2 Precipitation 22 

 23 

The AR5 assessed from the CMIP5 simulations that it would be virtually certain that global mean 24 

precipitation will increase by more than 0.05 mm day–1 (about 2% of global precipitation) and 0.15 mm day–1 25 

(about 5% of global precipitation) by the end of the 21st century under the RCP2.6 and RCP8.5 scenarios, 26 

respectively (Collins et al., 2013). The AR5 also assessed that global mean precipitation will likely increase 27 

at a rate per degree Celsius in the range of 1–3% °C–1 for scenarios other than RCP2.6. For RCP2.6 in the 28 

CMIP5 models the range was 0.5– 4% °C–1 at the end of the 21st century.  29 

 30 

Unlike the AR5, our focus here is on land rather than global precipitation because land precipitation has 31 

greater societal relevance. As with GSAT we show from each CMIP6 model one historical realization from 32 

1950 to 2014 and one scenario realization from 2015 to 2100 for each priority SSP. These are displayed as 33 

anomalies relative to 1995–2014 (see Figure 4.1:).  In tabular form we show the 5–95% range of global 34 

precipitation anomalies relative to 1995–2014 averaged over 2021–2040 (near-term), 2041–2060 (mid-term) 35 

and 2081–2100 (long-term) for each priority SSP. Based on results from the five models that have thus far 36 

contributed precipitation information to the CMIP6 exercise, we conclude it is very likely that global land 37 

precipitation will be larger during the period 2081–2100  than during the period 1995–2014, under all 38 

scenarios considered here (see Table 4.3:). We show global land precipitation anomalies when GSAT rise 39 

exceeds 1.5°C, 2.0°C, and 3.0°C relative to pre-industrial, indicating the percentage of simulations for which 40 

each exceedance is true (Table 4.3:). We will also contrast the AR5/CMIP5 and AR6/CMIP6 assessments of 41 

simulations of projected global precipitation change in absolute terms, and in relation to the rate of increase 42 

in GSAT. 43 

 44 

 45 

[START TABLE 4.3 HERE] 46 

 47 
Table 4.3: CMIP6 annual land precipitation anomalies (mm day-1) relative to averages over 1995–2014 for selected 48 

future periods, regions and SSPs. The multi-model mean ±1 standard deviation ranges across the 49 
individual models are listed and the 5 to 95% ranges from the models’ distribution (based on a Gaussian 50 
assumption and obtained by multiplying the CMIP6 ensemble standard deviation by 1.64) are given in 51 
brackets. Also shown are land precipitation anomalies at the time when global temperature rise exceeds 52 
1.5°C, 2.0°C, and 3.0°C, and the percentage of simulations for which such exceedances are true. The 53 
values tabulated here are for single simulations from the five models that have thus far contributed to the 54 
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CMIP6 exercise. The models are BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and 1 
MRI-ESM2-0. Eventually this table will be updated using single simulations from the full CMIP6 2 
ensemble. 3 

 4 

 SSP1-2.6 (mm day-1) SSP2-4.5 (mm day-1) SSP3-7.0 (mm day-1) SSP5-8.5 (mm day-1) 

Land :    2021–2040 0.05 ± 0.04 (-0.02, 0.12) 0.04 ± 0.04 (-0.03, 0.10) 0.03 ± 0.04 (-0.04, 0.09) 0.05 ± 0.05 (-0.03, 0.13) 

2041–2060 0.07 ± 0.05 (-0.02, 0.16) 0.07 ± 0.05 (-0.01, 0.14) 0.07 ± 0.05 ( -0.02, 0.15) 0.09 ± 0.06 ( 0.00, 0.18) 

2081–2100 0.08 ± 0.05 ( -0.01, 0.17) 0.12 ± 0.07 ( 0.00, 0.23) 0.15 ± 0.07 ( 0.03, 0.26) 0.19 ± 0.09 ( 0.05, 0.34) 

Land :   ∆T > 1.5°C 0.03 ± 0.02 (100%) 0.03 ± 0.01 (100%) 0.02 ± 0.01 (100%) 0.02 ± 0.02 (100%) 

∆T > 2.0°C 0.05 ± 0.01 (60%) 0.04 ± 0.02 (100%) 0.04 ± 0.02 (100%) 0.06 ± 0.02 (100%) 

∆T > 3.0°C ------ (0%) 0.09 ± 0.03 (60%) 0.08 ± 0.02 (100%) 0.09 ± 0.03 (100%) 

Global :   2081–2100 0.09 ± 0.03 ( 0.04, 0.14) 0.13 ± 0.04 ( 0.06, 0.20) 0.16 ± 0.04 ( 0.09, 0.23) 0.21 ± 0.07 ( 0.10, 0.32) 

Ocean :   2081–2100 0.09 ± 0.03 ( 0.04, 0.14) 0.14 ± 0.04 ( 0.07, 0.20) 0.17 ± 0.05 ( 0.09, 0.25) 0.22 ± 0.07 ( 0.11, 0.33) 

 5 

[END TABLE 4.3 HERE] 6 

 7 

 8 

We also compare and contrast the time-evolving anomalies of precipitation for the Northern Hemisphere 9 

(NH) extratropics (30°N–90°N) and the tropics (30°S–30°N) from 1950–2100 (see Figure 4.2:). We will 10 

highlight the different precipitation regimes projected for these two regions, which will underpin the detailed 11 

pattern analyses in subsequent sections of this chapter.  12 

 13 

 14 

[START FIGURE 4.2 HERE] 15 

 16 
Figure 4.2: Annual mean precipitation changes from historical and scenario simulations. (a) Northern Hemisphere 17 

(NH) extratropics (30°N–90°N). (b) North Atlantic (NAT) subtropics (5°N–30°N, 80°W–0°). Changes are relative 18 
to averages from 1995–2014. The number inside panel indicates the total number of models used. The curves here 19 
are for single simulations from the five CMIP 6 models including BCC-CSM2-MR, CanESM5, CNRM-CM6-1, 20 
IPSL-CM6A-LR, and MRI-ESM2-0. Eventually this figure will be updated using single simulations from the full 21 
CMIP6 ensemble plotted as ensemble means with shaded uncertainties. 22 

 23 

[END FIGURE 4.2 HERE] 24 

 25 

 26 

4.3.2 Cryosphere, Ocean, and Biosphere 27 

 28 

4.3.2.1 Arctic Sea Ice 29 

 30 

The AR5 assessed from the CMIP5 simulations that there will be year-round reductions of Arctic sea ice 31 

coverage by the end of this century (Collins et al., 2013). These range from between 43% for RCP2.6 and 32 

94% for RCP8.5 in September, and from between 8% for RCP2.6 and 34% for RCP8.5 in March (medium 33 

confidence). Based on a five-member selection of CMIP5 models, the AR5 further assessed that for RCP8.5, 34 

Arctic sea-ice coverage in September will drop below 1 million km2 at some point between 2040 and 2060.   35 

 36 

With regards to the model selection in the AR5, model evaluation studies have since identified shortcomings 37 

of the CMIP5 models to match the observed distribution of sea-ice thickness in the Arctic (Shu et al., 2015; 38 

Stroeve et al., 2014) and the observed evolution of albedo on seasonal scales (Koenigk et al., 2014). It was 39 

also found that many models’ deviation from observed sea ice cover climatology cannot be explained by 40 

internal variability, whereas the models’ deviation from observed sea ice cover trend (over the satellite 41 
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period) can often be explained by internal variability (Olonscheck and Notz, 2017). This hinders a selection 1 

of models according to their simulated trends, which additionally has been shown to only have a weak 2 

impact on the quality of simulated future trends (Stroeve and Notz, 2015). In our assessment of the CMIP6 3 

models, we will consider one realization from each available model, possibly without subsetting or 4 

weighting. 5 

 6 

Here, we show from each CMIP6 model, one historical realization of September Arctic SIA from 1950–2014 7 

and one scenario realization from 2015–2100 for each priority SSP (see Figure 4.1:). In tabular form we will 8 

show the 5–95% range of September and March Arctic SIA averaged over 2021–2040 (near-term), 2041–9 

2060 (mid-term) and 2081–2100 (long-term) for each priority SSP (see Table 4.4:). The Arctic is considered 10 

ice-free with coverage below 1 million km2.  For the three models that have so far contributed sea-ice 11 

variables as part of the CMIP6 exercise (CanESM5, CNRM-CM6, and IPSL-CM6A-LR), we conclude that it 12 

is very likely that following any one of the priority SSPs, the Arctic will become effectively permanently ice-13 

free in September by the end of the 21st century (low confidence because of the very limited number of 14 

CMIP6 simulations currently available). 15 

 16 

 17 

[START TABLE 4.4 HERE] 18 

 19 
Table 4.4: CMIP6 Arctic sea ice area for selected months, time periods, and across the four priority SSPs. The 20 

multi-model mean ±1 standard deviation range across the individual models are listed and the 5 to 95% 21 
ranges from the models’ distribution (based on a Gaussian assumption and obtained by multiplying the 22 
CMIP6 ensemble standard deviation by 1.64) are given in parentheses. One ensemble member is used 23 
from each model and the number of models differs for each SSP. Presently, this table is empty because 24 
only three models have so far contributed sea-ice variables to the CMIP6 exercise. Eventually, this table 25 
will be filled using the full CMIP6 ensemble. 26 

 27 

 SSP1-2.6 (106 km2) SSP2-4.5 (106 km2) SSP3-7.0 (106 km2) SSP5-8.5 (106 km2) 

September : 2021–2040     

    2041–2060     

2081–2100     

March : 2021–2040     

2041–2060     

2081–2100     

 28 

[END TABLE 4.4 HERE] 29 

 30 

 31 

Studies focusing on the relationship of sea ice cover and changes in the external drivers have consistently 32 

found a much-reduced likelihood of a near ice-free Arctic Ocean during summer for a global warming 33 

compared to pre-industrial levels of 1.5C compared to 2.0C (Jahn, 2018; Niederdrenk and Notz, 2018; 34 

Notz and Stroeve, 2018; Screen and Williamson, 2017; Sigmond et al., 2018). This is shown here in a large 35 

initial-condition ensemble of observationally-constrained model simulations where global mean surface 36 

temperatures are stabilized at 1.5°C, 2.0°C and 3.0°C warming relative to pre-industrial in the RCP8.5 37 

scenario (see Figure 4.3:). In these simulations, Arctic sea ice coverage in September is simulated, on 38 

average, to drop below 1 million km2 around 2040, consistent with the AR5 models as a group (Sigmond et 39 

al., 2018). The individual model simulations, for which there are twenty for each stabilized temperature 40 

level, show that the probability of the Arctic becoming ice free (i.e. with area less than 1 million km2) at the 41 

end of the 21st century is significantly higher for 2°C warming than for 1.5°C warming above pre-industrial 42 

levels. Estimates, such as these are possibly conservative, as they neglect the possible future reduction in 43 

atmospheric aerosol load, which models suggest will contribute to additional future sea-ice loss (Gagné et 44 
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al., 2015; Wang et al., 2018b).   1 

 2 

 3 

[START FIGURE 4.3 HERE] 4 

 5 
Figure 4.3: Arctic sea ice extent in September in a large initial-condition ensemble of observationally-constrained 6 

simulations of an Earth System Model (CanESM2). The black curve is the average over twenty simulations 7 
following historical forcings to 2015 and RCP8.5 extensions to 2100. The coloured curves are averages over 8 
twenty simulations after GSAT has been stabilized at the indicated degrees of warming relative to preindustrial. 9 
The coloured circles on the right are individual values at 2100. On an individual simulation basis, the probability of 10 
the Arctic becoming ice free (i.e. with less than 1 million km2 coverage) is significantly higher for 2°C warming 11 
than for 1.5°C warming (Sigmond et al., 2018). 12 

 13 

[END FIGURE 4.3 HERE] 14 

 15 

 16 

4.3.2.2 Sea Level 17 

 18 

The AR5 assessed from CMIP5 process-based simulations that it is very likely that the rate of global mean 19 

sea level (GMSL) rise during the 21st century will exceed the rate observed during 1971–2010 for all RCP 20 

scenarios due to increases in ocean warming and loss of mass from glaciers and ice sheets (Church et al., 21 

2013). Further, the AR5 concluded that for the period 2081–2100, compared to 1986–2005, GMSL rise is 22 

likely (medium confidence) to be in the 5–95% range of projections from process-based models, which give 23 

0.26–0.55 m for RCP2.6, 0.32–0.63 m for RCP4.5, 0.33–0.63 m for RCP6.0, and 0.45–0.82 m for RCP8.5. 24 

For RCP8.5, the rise by 2100 is 0.52–0.98 m with a rate during 2081–2100 of 8–16 mm yr-1. 25 

 26 

There have been significant modelling advances since the AR5, including the development of semi-empirical 27 

models (SEMs) into a broader emulation-based approach (Kopp et al., 2014; Mengel et al., 2016; Nauels et 28 

al., 2017) that is partially based on the results from more detailed process-based modelling. A low confidence 29 

was assigned to SEMs because these models assume that the relation between climate forcing and GMSL is 30 

the same in the past and future (Church et al., 2013). Probable future changes in the relative contributions of 31 

thermal expansion, glaciers and ice sheets (in particular) invalidate this assumption. However, more recent 32 

emulation-based studies have overcome this shortcoming by considering GMSL contributors separately, and 33 

they will therefore be employed in this assessment. 34 

 35 

Here, we show from each CMIP6 model, one historical realization of annual-mean GMSL from 1950–2014 36 

and one scenario realization from 2015–2100 for each priority SSP (see Figure 4.1:). These are displayed as 37 

anomalies relative to 1995–2014, and based on contributions to GMSL rise from thermal expansion alone. 38 

For the three models that have so far contributed global sea level as part of the CMIP6 exercise (CanESM5, 39 

CNRM-CM6-1, and IPSL-CM6A-LR), thermosteric global sea level rises from present to the end of the 21st 40 

century by about 0.15 m under SSP1-2.6 (taken as the minimum rise across the three models) to a maximum 41 

of about 0.45 m under SSP5-8.5 (taken as the maximum rise between the three models) (see Figure 4.1:). We 42 

conclude that it is very likely that under any one of the priority SSPs, there will be monotonic rise in global 43 

sea level through the end of the 21st century (low confidence because of the very limited number of models 44 

available). 45 

 46 

We will tabulate the different contributions to future GMSL change (coordinated with Chapter 9), such as 47 

thermal expansion and melt from glaciers and ice sheets (see Table 4.5:). We will also summarize and update 48 

the key findings on projected GMSL rise from the SR1.5 and the Special Report on Ocean and Cryosphere in 49 

a Changing Climate (SROCC). 50 

 51 

[START TABLE 4.5 HERE] 52 

 53 
Table 4.5: CMIP6 annual mean global sea level anomalies (m) from the 1995–2014 reference period for selected 54 

time periods, regions and SSPs. The multi-model mean ±1 standard deviation ranges across the individual 55 
models are listed and the 5–95% ranges from the models’ distribution (based on a Gaussian assumption 56 
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and obtained by multiplying the CMIP6 ensemble standard deviation by 1.64) are given in brackets. Only 1 
one ensemble member is used from each model and the number of models differs for each SSP. Presently, 2 
this table is empty as only three models have so far contributed sea-level variables to the CMIP6 exercise. 3 
Eventually, this table will be filled using the full CMIP6 ensemble. 4 

 5 

 SSP1-2.6 (m) SSP2-4.5 (m) SSP3-7.0 (m) SSP5-8.5 (m) 

Total :   2021–2040     

2041–2060     

2081–2100     

Steric :   2081–2100     

Glaciers :   2081–2100     

Ice sheets :  2081–2100     

Storage :  2081–2100     

 6 

[END TABLE 4.5 HERE] 7 

 8 

 9 

4.3.2.3 Atlantic Meridional Overturning Circulation 10 

 11 

The AR5 assessed from the CMIP5 simulations that it is very likely that the AMOC will weaken over the 12 

21st century (Collins et al., 2013). Best estimates and ranges for the reduction from CMIP5 are 11% (1–13 

24%) in RCP2.6 and 34% (12–54%) in RCP8.5. As assessed in the AR5, the projected weakening of the 14 

AMOC is consistent with CMIP5 projections of an increase of high-latitude temperature and high-latitude 15 

precipitation, with both effects causing the surface waters at high latitudes to become lighter and more stable.  16 

 17 

Time series of CMIP6 projections of the AMOC strength at 30°N from 1850 through to the end of the 18 

priority SSP extensions will be shown in Chapter 9 of the AR6. Chapter 9 will also detail the physical 19 

understanding of the changes in the strength of the AMOC over this time period, including the projected 20 

weakening through the 21st century in most models and priority SSPs.   21 

 22 

Here, we will assess the 5–95% of CMIP6 projections of the AMOC strength at 30°N averaged over 2081–23 

2100 (long-term) for each priority SSP. We will also describe potential future evolutions of the AMOC in a 24 

large 50-member initial-condition ensembles of ESM (CanESM2) simulation where GMST is stabilized at 25 

1.5°C, 2.0°C and 3.0°C warming relative to pre-industrial after following the RCP8.5 scenario (see Figure 26 

4.4:). In this model, following the RCP8.5 scenario, the AMOC average over 2081–2100 is about 10% 27 

weaker than the average over 1995–2014 (i.e., 13.5 Sv down from 15.0 Sv). After temperature stabilization 28 

at 1.5°C and 2.0°C global warming above pre-industrial levels there is continued weakening for one to two 29 

decades, followed by strengthening. After temperature stabilization at 3.0°C warming, the AMOC strength 30 

plateaus for about two decades and then the AMOC begins to strengthen. Five-member extensions to 2600 31 

indicate that under stabilization at either 1.5°C, 2.0°C and 3.0°C global warming, the strength of the AMOC 32 

recovers to less than its pre-industrial value (see Section 4.7). 33 

 34 

 35 

[START FIGURE 4.4 HERE] 36 

 37 
Figure 4.4: AMOC in large initial-condition ensembles of simulations of an Earth System Model (CanESM2). The 38 

black curve is the average over fifty simulations following historical forcings to 2005 and RCP8.5 extensions to 39 
2100. The coloured curves are averages over fifty simulations (each) after GSAT has been stabilized at the 40 
indicated degree of warming relative to pre-industrial (Sigmond et al., 2018). The dashed lines indicate the AMOC 41 
strength at the point of emissions cessation. 42 

 43 
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[END FIGURE 4.4 HERE] 1 

 2 

 3 

4.3.2.4 Cumulative ocean carbon uptake and pH 4 

 5 

The AR5 assessed from the CMIP5 simulations that it is virtually certain that increasing storage of carbon 6 

by the ocean under all four RCPs through to 2100 will increase ocean acidification in the future (Ciais et al., 7 

2013). Specifically, the AR5 reported that the CMIP5 models project increased ocean acidification globally 8 

to 2100 under all RCPs, and that the corresponding model-mean and model-spread in the decrease in surface 9 

ocean pH by the end of 21st century would be 0.065 (0.06–0.07) for RCP2.6, 0.145 (0.14–0.15) for RCP4.5, 10 

0.203 (0.20–0.21) for RCP6.0 and 0.31 (0.30–0.32) for RCP8.5. 11 

 12 

Here, we will show from each CMIP6 model one historical realization of cumulative ocean carbon uptake 13 

and pH from 1950 to 2014 and one scenario realization from 2015 to 2100 for each priority SSP (see Figure 14 

4.5:). We will also assess the 5–95% ranges of cumulative ocean carbon uptake and pH averaged over 2081–15 

2100 (long-term) for each priority SSP. For the two models that have so far contributed surface ocean carbon 16 

fluxes as part of the CMIP6 exercise (IPSL-CM6A-LR and CanESM5), cumulative ocean carbon uptake 17 

rises from 1850 to the end of the 21st century by about 250 PgC under SSP1-2.6 (taken as the minimum rise 18 

across the two models) to a maximum of about 600 PgC under SSP5-8.5 (taken as the maximum rise 19 

between the two models; Figure 4.5:). In the one model that has so far contributed surface pH as part of the 20 

CMIP6 exercise (IPSL-CM6A-LR), ocean carbon uptake translates into increasing surface acidity. We 21 

conclude that it is very likely that under any one of the priority SSPs, there will be a monotonic rise in 22 

cumulative ocean carbon uptake and ocean acidification through the end of the 21st century (medium 23 

confidence because of the very limited number of models available). 24 

 25 

 26 

[START FIGURE 4.5 HERE] 27 

 28 
Figure 4.5: Cumulative ocean carbon uptake and surface pH from historical and scenario simulations. (a) Cumulative 29 

ocean carbon uptake since 1850. (b) Surface pH. The curves plotted here are for single simulations from (a) two 30 
CMIP6 models (IPSL-CM6A-LR and CanESM5) and (b) one model (IPSL-CM6A-LR). Eventually the figure will 31 
be updated using single simulations from the full CMIP6 ensemble, plotted as ensemble means with shading. 32 

 33 

[END FIGURE 4.5 HERE] 34 

 35 

 36 

4.3.3 Modes of Variability 37 

 38 

4.3.3.1 Northern and Southern Annular Modes 39 

 40 

The NAM and SAM are the leading modes of climate variability in the NH and SH extratropics, 41 

respectively. They involve opposing fluctuations in sea level pressure (SLP) between about 40°N and 65°N 42 

(Li and Wang, 2003) and between 40°S and 65°S (Gong and Wang, 1999), respectively. These fluctuations 43 

reflect changes in the latitudinal position and strength of the mid-latitude westerly jets in both hemispheres. 44 

The AR5 assessed from CMIP5 simulations that the future boreal wintertime NAM is very likely to exhibit 45 

large natural variations and trend of similar magnitude to that observed in the past and is likely to become 46 

slightly more positive in the future (Collins et al., 2013). On the other hand, the positive trend in the austral 47 

summer SAM observed in the past is likely to weaken as stratospheric ozone recovers through the mid-21st 48 

century. 49 

 50 

Here, we show from each CMIP6 model, one historical realization of boreal wintertime NAM and austral 51 

summertime SAM from 1950 to 2014 and one scenario realization from 2015 to 2100 for each priority SSP 52 

(see Figure 4.6:). We will also compare and assess the salient features of the 5–95% ranges of the NAM and 53 

SAM anomalies averaged over 2021–2040 (near-term), 2041–2060 (mid-term) and 2081–2100 (long-term) 54 

for each priority SSP. Based on results from the five CMIP6 models, we conclude that future boreal 55 
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wintertime NAM is very likely to become slightly more positive in the future under SSP5-8.5, and that the 1 

SAM is likely to weaken under all of the priority SSPs as stratospheric ozone recovers through the mid-21st 2 

century (see Figure 4.6:; medium confidence because of the limited number of models available). 3 

 4 

 5 

[START FIGURE 4.6 HERE] 6 

 7 
Figure 4.6: Simulations of boreal wintertime Annular Mode indices: (a) NAM and (b) SAM. The NAM is defined as 8 

the difference in zonal mean SLP at 35°N and 65°N (Li and Wang, 2003) and the SAM as the difference in zonal 9 
mean SLP at 40°S and 65°S (Gong and Wang, 1999). All anomalies are relative to averages from 1850 to 1900. 10 
The curves here are for single simulations from the five CMIP6 models that are BCC-CSM2-MR, CanESM5, 11 
CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0. Eventually this figure will be updated using single 12 
simulations from the full CMIP6 ensemble, and ensemble means and shaded uncertainties will be displayed. 13 

 14 

[END FIGURE 4.6 HERE] 15 

 16 

 17 

4.3.3.2 El Niño-Southern Oscillation  18 

 19 

The El Niño-Southern Oscillation (ENSO) reflects quasi-periodic fluctuations in the wind and SST over the 20 

tropical central to eastern Pacific, affecting much of the tropics, subtropics, and beyond. El Niño and La 21 

Niña refer to periods of anomalously warm and cold SST in the equatorial central to eastern Pacific, 22 

respectively. The AR5 assessed from CMIP5 simulations that ENSO variability will continue in the future 23 

and that associated precipitation variability on regional scales is likely to intensify (Collins et al., 2013). 24 

However, confidence in CMIP5 projected changes in ENSO variability itself in the 21st century is low due to 25 

a strong component of natural internal variability. 26 

 27 

Here, we consider the evolution of the amplitude of ENSO variability projected by the five CMIP6 models 28 

over the 21st century. The Niño 3.4 index represents the average equatorial SST across the Pacific from 29 

about the dateline to the South American coast (5°S–5°N, 170°W–120°W). The amplitude of ENSO is 30 

defined by the standard deviation of the monthly Niño 3.4 index after removing the climatological monthly 31 

mean and long-term trend. Here, we display the amplitude of the simulated ENSO variability for maximally 32 

overlapping 50-year periods from 1950 to 2100. Results from the five models that have thus far contributed 33 

to the CMIP6 exercise suggest increasing and then decreasing ENSO variability over the period from 1950 to 34 

2100 in the SSP1-2.6 (Figure 4.7:) and SSP2-4.5 (not shown). This is consistent with findings from a subset 35 

of CMIP5 model simulations following the RCP2.6 and 8.5 scenarios (Kim et al., 2014b). However, there is 36 

no robust change in the ENSO amplitude during the latter half of the 21st century in the SSP3-7.0 (not 37 

shown) and SSP5-8.5 scenarios (Figure 4.7:) obtained from five CMIP6 models. Based on results from the 38 

five models, we conclude that ENSO variability is likely to weaken under the SSP1-2.6 and SSP2-4.5 39 

beginning in the near-term (2021–2040) while there is no consensus on the ENSO variability change in the 40 

SSP3-7.0 and SSP5-8.5 scenarios (see Figure 4.7:; low confidence because of the limited number of models 41 

available). 42 

 43 

 44 

[START FIGURE 4.7 HERE] 45 

 46 
Figure 4.7: Historical simulation and future projection of the amplitude of the ENSO under (a) SSP1-2.6 and (b) 47 

SSP5-8.5. The amplitude is defined as the standard deviation of the monthly Niño 3.4 index after removing 48 
climatological monthly mean and long-term trend. The amplitude is shown for maximally-overlapping fifty-year 49 
periods with the end-year shown on the horizontal axis. The thick curves are the mean of individual model’s ENSO 50 
amplitude. The curves here are for single simulations from the five CMIP6 models that are BCC-CSM2-MR, 51 
CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0. Eventually this figure will be updated using 52 
single simulations from the full CMIP6 ensemble, and ensemble means and shaded uncertainties will be displayed. 53 

 54 

[END FIGURE 4.7 HERE] 55 

 56 
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 1 

4.4 Near-term Global Climate Changes  2 

 3 

In this section we present the raw CMIP6 range of near-term projections along with a range of observational 4 

estimates of the most recent past (Figure 4.8:). The sensitivity of that range to the choice of reference period 5 

(Hawkins and Sutton, 2016) will be assessed, together with the influence of internal variability on the 6 

estimated range and in comparison with observational estimates (Marotzke and Forster, 2015). The section 7 

will further assess the recent literature on producing calibrated projection ranges for the near future based on 8 

initialized predictions (Marotzke et al., 2016; Meehl et al., 2014), D&A results (Stott et al., 2013; Stott and 9 

Jones, 2012), and potential model weighting (BOX 4.1:, Abramowitz et al., 2019).  10 

 11 

 12 

4.4.1 Atmosphere  13 

 14 

4.4.1.1  Global Surface Air Temperature 15 

 16 

We will assess how the GSAT is projected to evolve over the near-term period under different SSPs. The 17 

AR5 showed that the near-term GSAT is relatively insensitive to the particular RCP emissions scenario. 18 

Here we will assess whether this result is robust under different SSP scenarios, and we will quantify the 19 

relative roles of different scenarios – reflecting various levels of mitigation – and internal variability in 20 

influencing near-term GMST change. As a result, we will be able to assess the likelihood of exceeding 1.5°C 21 

and 2°C global warming above pre-industrial levels, respectively, during the near term and under a given 22 

scenario (e.g., Smith et al., 2018). This assessment will be influenced by the uncertainty in the different 23 

observational datasets over the historical period that form the baselines for the near-term changes. 24 

 25 

Then we will assess the relative contributions of different external forcings on GSAT change.  Changes in 26 

GSAT can be attributed to variations in external climatic forcing, such as volcanic eruptions or aerosol and 27 

GHG emissions.  28 

 29 

 30 

[START FIGURE 4.8 HERE] 31 

 32 
Figure 4.8: Projections and predictions of global-mean annual-mean surface air temperature, referenced to 1850–33 

1900. The figure shows for 1995–2040 one CMIP6-forced simulation each with BCC-CSM2-MR (cyan), 34 
CanESM5 (light green), IPSL-CM6A-LR (yellow), MRI-ESM2-0 (light purple), and UKESM1 (ochre); and GSAT 35 
simulated with an emulator driven by the AR5 radiative forcing, using RCP4.5 from the WGI AR5 Annex II after 36 
2005 (black). The emulator is a two-layer time-dependent energy-balance model (EBM) following (Held et al., 37 
2010), with ocean heat uptake efficiency  = 0.8 W m-2 °C-1 and efficacy 1.0. Results are shown for ECS = 2.5°C 38 
and 3.5°C, the lower and upper limits, respectively, of the Chapter 7 ECS likely range (solid black), as well as for 39 
2°C and 5°C, the lower and upper limits, respectively, of the Chapter 7 ECS very likely range (dashed black). For 40 
the historical period, all panels show the observations (HadCRUT4, (Morice et al., 2012), red) and  the CMIP5-41 
forced simulations from the 100-member Max Planck Institute Grand Ensemble (MPI-GE, (Maher et al., 2019), 42 
dark blue for ensemble mean, light blue for individual realizations), For the years 2019–2028, the initialized-43 
prediction ensemble from the CMIP6 model MPI-ESM-HR (Müller et al., 2018) is shown (dark purple), produced 44 
through the MiKlip project (Marotzke et al., 2016) and contributing to DCPP (Boer et al., 2016). The MiKlip 45 
results are drift-removed and referenced to the time-averaged hindcasts for 1995–2014 lead-year by lead-year; then 46 
the HadCRUT4 difference between the means over 1995–2014 and 1850–1900 is added. [Placeholder figure, 47 
copied from Box 4.1, Figure 1, bottom right; to be updated with the full CMIP6 ensemble and CMIP6/AR6/SSP 48 
forcing for the EBM.] 49 

 50 

[END FIGURE 4.8 HERE] 51 

 52 

 53 

We will further assess different published methods of estimating the probability of a zero trend (hiatus, see 54 

also Cross-Chapter Box 3.1) depending on the time horizon and scenario (Fyfe et al., 2013; Marotzke and 55 

Forster, 2015), as well as the probability of experiencing accelerated GSAT increase despite falling 56 
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emissions (Marotzke, 2019). Finally, this section will assess the literature to what extent differences in SSPs 1 

can be detected in near-term projections of GSAT. 2 

 3 

 4 

4.4.1.2  Spatial Patterns of Surface Warming 5 

 6 

Figure 4.9: shows maps of seasonal mean surface air temperature changes in the near-term (2021–2040) in 7 

the SSP1-2.6 and SSP5-8.5 scenarios. Consistent with the findings of the AR5 and earlier assessments, these 8 

show the largest warming occurs at high latitudes, particularly in winter in the Arctic (see Section 4.5.1.1), 9 

and larger warming over land than over the oceans in both winter and summer seasons (see also Section 10 

4.5.1.1). In both scenarios, the increase in seasonal mean surface temperatures over many NH land regions 11 

exceeds 1°C relative to 1995–2014. In the near-term, the two scenarios show surface temperature changes 12 

that are similar in magnitude. The projected trajectories for well-mixed GHGs, and as a consequence the 13 

effective radiative forcing, in the scenarios has not yet diverged that much (O’Neill et al., 2016; Riahi et al., 14 

2017). Based on the currently available CMIP6 models, regions that do not show significant warming in the 15 

near-term include the northern North Atlantic, India, parts of North America and Eurasia in winter, and the 16 

subtropical eastern Pacific. These regional aspects will be evaluated and assessed in detail as results from 17 

more CMIP6 models become available. 18 

 19 

The pattern of effective radiative forcing (ERF) from aerosols is distinct from that for well-mixed GHGs 20 

(Chapter 7). When comparing scenarios, one question therefore concerns the dependence of patterns of near-21 

surface warming on the precise mix of forcing agents in the scenarios. The spatial efficacies – the change in 22 

surface temperature per unit ERF – for CO2, sulphate and black carbon aerosols and solar forcing have been 23 

recently evaluated in a set of climate models (Richardson et al., 2019). It has been found that, on average, the 24 

spatial patterns of near-surface warming are largely similar for different external drivers (Samset et al., 25 

2018b; Xie et al., 2013), despite the patterns of forcing being different, but there is large spread across 26 

different models (Richardson et al., 2019) . 27 

 28 

Internal variability in near-surface temperature change is large in many regions, particularly in mid-latitudes 29 

and polar regions (Hawkins and Sutton, 2012). Projections from individual realizations can therefore show 30 

divergent regional responses in the near-term in areas where the amplitude of a forced signal is relatively 31 

small compared to internal variability (Deser et al., 2012b, 2014, 2016). 32 

 33 

 34 

[START FIGURE 4.9 HERE] 35 

 36 
Figure 4.9: CMIP6 multi-model mean change (°C) in (top) DJF and (bottom) JJA near-surface air temperature in 37 

2021–2040 from SSP1-2.6 and SSP5-8.5 relative to 1995–2014 [Figure produced with ESMValTool (Eyring et al., 38 
2016b) based on the five CMIP6 models: BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and 39 
MRI-ESM2-0. Figure will be updated with more CMIP6 models] 40 

 41 

[END FIGURE 4.9 HERE] 42 

 43 

 44 

4.4.1.3 Precipitation 45 

 46 

The AR5 projections of the spatial patterns of precipitation change in the near-term showed consistency 47 

between models on the largest scales with zonal mean precipitation will very likely increase in high and some 48 

of the mid latitudes, and will more likely than not decrease in the subtropics. Similar to the AR5 pattern, 49 

projected changes in the near-term from five CMIP6 models (based on available CMIP6 model projections) 50 

showed very likely increase at high latitudes and in wet regions and decrease in dry regions (including large 51 

parts of the subtropics), as presented in Figure 4.10:. Precipitation changes are robust mainly at high 52 

latitudes; larger uncertainty is seen especially in regions located on the borders between regions of increases 53 

and regions of decreases. Much of the non-robustness is attributable to natural internal variability (Deser et 54 

al., 2012b; Hawkins and Sutton, 2011, 2016; Hoerling et al., 2011; Power et al., 2012). The AR5 assessment 55 
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indicated that the magnitude of projected changes in mean precipitation in the near-term is considerably 1 

small compared to the magnitude of natural internal variability. Considering the uncertainty in near-term 2 

projections, internal variability contributes to more than 80% of total uncertainty in precipitation in the first 3 

decades and remained more than 50% at the end of the  century (Hingray and Saïd, 2014). Based on large 4 

ensembles of climate change experiments, it was shown that on regional scales, anthropogenic changes in 5 

decadal precipitation mean state are distinguishable, outside the range expected from natural variability 6 

(Zhang and Delworth, 2018). The other sources of uncertainty, model uncertainty and scenario uncertainty, 7 

are generally small compared to internal variability. 8 

 9 

 10 

[START FIGURE 4.10 HERE] 11 

 12 
Figure 4.10: CMIP6 multi-model mean change (%) in (top) DJF and (bottom) JJA precipitation in 2021–2040 from 13 

SSP1-2.6 and SSP5-8.5 relative to 1995–2014 [Figure produced with ESMValTool (Eyring et al., 2016b) based on 14 
the five CMIP6 models: BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0. Figure 15 
will be updated with more CMIP6 models. Figure will be updated with more CMIP6 models] 16 

 17 

[END FIGURE 4.10 HERE] 18 

 19 

 20 

There has been considerable progress in understanding the factors contributing to changes in patterns of 21 

precipitation. Precipitation changes were interpreted as a wet-get-wetter and dry-get-drier pattern with a 22 

moistening trend in high latitudes and tropics and a drying trend in subtropics to middle latitudes (Held and 23 

Soden, 2006). Recent studies suggest that the dry-get-drier argument might not hold, because reduced 24 

precipitation appears along the outer flanks of the subtropics due to the poleward expansion of the 25 

subtropical dry zones (Scheff and Frierson, 2012). Large-scale circulation changes associated with expansion 26 

of the Hadley cell extend subtropical dry zones poleward, and a poleward displacement in storm tracks 27 

contributes to subtropical drying and moistening poleward regions (Scheff and Frierson, 2012). Studies have 28 

also indicated that precipitation response in the subtropics is also driven by the fast adjustment to CO2 29 

forcing, including land-sea warming contrast and direct CO2 radiative forcing (He and Soden, 2017). In the 30 

tropics, a weakening of the circulation leads to a wet-gets-drier and dry-gets-wetter pattern (Chadwick et al., 31 

2013). Factors governing changes in large-scale precipitation patterns are discussed in detail in Chapter 8. 32 

 33 

Precipitation changes are determined by the increased moisture flux along with changes in atmospheric 34 

circulation. The sensitivity of global precipitation change is smaller (2% °C-1) as compared to the sensitivity 35 

of water vapour concentration change (7% °C-1). Reduced convective mass flux as part of weakening 36 

atmospheric circulation strength is one way in which the atmosphere adjusts in reconciling the water vapour 37 

and precipitation changes (Bony et al., 2013; Vecchi and Soden, 2007).  38 

 39 

In the tropics, climate model agreement for precipitation change is lower than for other regions, with large 40 

areas of little model consensus on the sign and magnitude of change (Knutti et al., 2013b; McSweeney and 41 

Jones, 2013). Sources of inter-model uncertainty in regional tropical rainfall projections arise from 42 

circulation changes (Chadwick, 2016; Kent et al., 2015), SST pattern uncertainty over the tropical oceans 43 

and over land, and the response to uniform SST warming, with a secondary contribution from the response to 44 

direct CO2 forcing (Chadwick, 2016).  45 

 46 

In addition to the response to GHG forcing, forcing from natural and anthropogenic aerosols exert impacts 47 

on regional patterns of precipitation change (Bollasina et al., 2011; Krishnan et al., 2016; Liu et al., 2018a; 48 

Polson et al., 2014; Ramanathan et al., 2005). In contrast to the GHG changes, aerosol changes induce a 49 

drying in the SH tropical band compensated by wetter conditions in the NH counterpart (Acosta Navarro et 50 

al., 2017). The spatially uneven distribution of the aerosol forcing may also induce changes in tropical 51 

precipitation caused by shifts in the mean location of the intertropical convergence zone (ITCZ) (Hwang et 52 

al., 2013; Ridley et al., 2015; Voigt et al., 2017). Because of the large uncertainty in the aerosol forcing, 53 

there is low to medium confidence in the impacts of aerosols on projected changes in precipitation. 54 

 55 
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 1 

4.4.1.4 Global Monsoon Precipitation and Circulation  2 

 3 

The global monsoon (GM) as a system comprises a hierarchy of regional and local monsoons, including the 4 

Asian-Australian monsoon, the African monsoon, and the American monsoon. The GM concept helps to 5 

dissect the mechanisms and controlling factors of monsoon variability at various temporal-spatial scales 6 

(Wang et al., 2017c; Wang and Ding, 2008). In the AR5, there was no specific assessment on global 7 

monsoon changes in the near term, but information can be derived from the AR5 projections of the spatial 8 

patterns of precipitation change. While the basic pattern of wet regions including global monsoon regions 9 

tending to get wetter and dry regions tending to get dryer is apparent, large response uncertainty is evident in 10 

the substantial spread in the magnitude of projected change simulated by different climate models, 11 

highlighting the large amplitude of the natural internal variability of mean precipitation. Over the global land 12 

monsoon regions, mean projected precipitation changes are almost everywhere smaller than the estimated 13 

standard deviation of natural internal variability. 14 

 15 

Since the AR5 there has been considerable progress in understanding the factors that affect the decadal 16 

changes of GM. Decadal variability of the GM precipitation from 1901 to 2014, in particular over the 17 

Northern Hemisphere (NH), is rooted primarily in the north-south hemispheric thermal contrast modulated 18 

by the phase of AMV and an east-west thermal contrast in the Pacific modulated by the Interdecadal Pacific 19 

Oscillation (IPO) (Wang et al., 2018a). The GM precipitation has shown an enhanced trend during the 20 

satellite era (Lin et al., 2014), and can be explained by the phase change of AMV (Deng et al., 2018; Wang 21 

et al., 2013). It is suggested that both IPO and AMV should contribute to noise (irreducible uncertainty) in 22 

climate projections. Since the forcing uncertainty is generally negligible for near-term projections, internal 23 

variability including the contributions of IPO and AMV is the most important source of uncertainty for 24 

global monsoon projection. [Note: This part will assess the contribution of forcing uncertainty, model 25 

uncertainty, and internal variability to GM land precipitation and circulation changes, to be updated with 26 

CMIP6 data]. 27 

 28 

The boreal summer monsoon precipitation is projected in the near-term and in the multi-model mean to 29 

increase in the South Asian monsoon area, East Asian monsoon area, and part of the West African monsoon 30 

area (Figure 4.10:). A decrease of precipitation is projected in the multi-model mean in the Australian 31 

monsoon area (Figure 4.10:). The projected changes of precipitation in North and South American monsoon 32 

regions, and South African monsoon area are not significant. The global land monsoon precipitation index, 33 

defined as the accumulated precipitation falling in the global land monsoon domain, tends to increase in all 34 

priority SSPs (Figure 4.11:). The tropical monsoon circulation index, defined as the vertical shear of zonal 35 

winds between 850 and 200 hPa averaged in a zone stretching from Mexico eastward to the Philippines (0°–36 

20°N, 120°W–120°E), tends to decrease associated with the weak increase of monsoon precipitation under 37 

four scenarios (Figure 4.12:). The projected changes of both monsoon precipitation and circulation are weak 38 

relative to natural variability and statistically insignificant. [To be updated based on the availability of new 39 

CMIP6 data]. 40 

 41 

 42 

[START FIGURE 4.11 HERE] 43 

 44 
Figure 4.11: Changes of global land monsoon precipitation index (defined as the accumulated precipitation falling in 45 

the global land monsoon domain as defined by (Wang et al., 2013) in the historical climate simulation and four 46 
SSPs projections of five CMIP6 (BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, MRI-ESM2-0) 47 
models. Each line in each SSP represents one model realization. Anomalies are relative to the 1995–2014 mean. 48 
Time series are normalized by climate mean values and smoothed with a 20-yr running-mean filter (Unit: %). 49 
Eventually this figure will be updated using single simulations from the full CMIP6 models, plotted as multi-model 50 
ensemble with shading of model spread. 51 

 52 

[END FIGURE 4.11 HERE] 53 

 54 

 55 

[START FIGURE 4.12 HERE] 56 
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 1 
Figure 4.12: Changes of tropical monsoon circulation index (defined as the vertical shear of zonal winds between 850 2 

and 200 hPa averaged in a zone stretching from Mexico eastward to the Philippines (0°–20°N, 120°W–120°E) 3 
(Wang et al., 2013)in the historical climate simulation and two SSPs projection of five CMIP6 (BCC-CSM2-MR, 4 
CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, MRI-ESM2-0). Each line in each SSP represents one model 5 
realization. Anomalies are relative to the 1995–2014 mean. Anomalies are relative to the 1995–2014 mean. Time 6 
series are smoothed with a 20-yr running-mean filter (Unit: m/s). Eventually this figure will be updated using 7 
single simulations from the full CMIP6 models, plotted as multi-model ensemble with shading of model spread. 8 

 9 

[END FIGURE 4.12 HERE] 10 

 11 

 12 

4.4.2 Cryosphere, Ocean, and Biosphere 13 

 14 

4.4.2.1 Arctic Sea Ice 15 

 16 

Since the AR5, there has been substantial progress in understanding the response of Arctic sea ice to changes 17 

in external forcing. In particular, it is very likely that different trajectories of the near-term evolution of 18 

anthropogenic forcing cause distinctly different likelihood ranges for very low sea-ice coverage to occur over 19 

the next two decades. This is most directly described in terms of the range of cumulative anthropogenic CO2 20 

emissions over the period 2020–2040, which ranges from around 500 Gt CO2 in RCP2.6 to more than 1000 21 

Gt CO2 in RCP 8.5. This results in an unlikely drop of September Arctic sea-ice coverage to below 1 million 22 

km2 before 2040 for RCP 2.6, and a likely drop of September Arctic sea-ice coverage to below 1 million km2 23 

before 2040 for RCP 8.5 (medium confidence), based on a single study (Notz and Stroeve, 2018) but 24 

consistent with estimates from temperature-based studies cited below. These estimates are derived from an 25 

observed loss of about 3 m2 of September sea-ice area per tonne of CO2 emissions (Notz and Stroeve, 2016) 26 

and an estimated internal variability of  standard deviation < 0.5 million km2 of September sea-ice coverage 27 

as given by CMIP5 simulations and the observational record (Notz and Marotzke, 2012; Olonscheck and 28 

Notz, 2017). 29 

 30 

The much higher likelihood of a virtually sea-ice free Arctic Ocean during summer before 2040 in RCP8.5 31 

compared to RCP2.6 is consistent with related studies that find a substantially increased likelihood of an ice-32 

free Arctic Ocean for 2.0°C mean global warming relative to pre-industrial levels compared to 1.5°C mean 33 

global warming relative to pre-industrial levels  (Jahn, 2018; Niederdrenk and Notz, 2018; Screen and 34 

Williamson, 2017; Sigmond et al., 2018). 35 

 36 

Here, we will consider the range of September Arctic sea ice cover trends for all 10-year and 20-year periods 37 

ending in the near-term (2021–2040). Despite the substantial importance of anthropogenic forcing on the 38 

evolution of Arctic sea-ice cover, internal variability may mask its impact over the near-term. Here, an 39 

ensemble of simulations from one CMIP6 model, CanESM5, suggests that under all four SSP scenarios there 40 

is a significant chance of positive 10-year trends ending in the near-term (see Figure 4.13:). In this CMIP6 41 

model, known for its high climate sensitivity, all 20-years trends are negative (see Figure 4.13:). For either 42 

10- or 20-year periods ending in the near-term, the median trend is negative across all priority SSPs. 43 

 44 

 45 

[START FIGURE 4.13 HERE] 46 

 47 
Figure 4.13: September Arctic sea ice area trends for periods ending in the near-term period from 2021–2040 48 

following the various priority SSPs. (a) 10-year periods. (b) 20-year periods. Plotted are the minimum and 49 
maximum trends, the lower and higher trend quartiles and the median trend. The percentage of positive trend 50 
values is indicated to the right of the maximum value. [The values plotted here are for 10 simulations from one 51 
CMIP6 model, CanESM5. Eventually the figure will be updated using single simulations from the full CMIP6 52 
ensemble.] 53 

 54 

[END FIGURE 4.13 HERE] 55 

 56 
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 1 

4.4.2.2 Ocean Carbon Uptake 2 

 3 

Here we will follow a similar presentation as in the previous section, in that we will summarize the AR5 4 

assessment of the CMIP5 simulations followed by an assessment of the CMIP6 simulations. Until the full 5 

CMIP6 ensemble is available we utilize a 10-member ensemble of simulations from one CMIP6 model, 6 

CanESM5. This CMIP6 model shows a much larger response in ocean carbon uptake over the near-term in 7 

the SSP5-8.5 forcing scenario than in the SSP1-2.6 forcing scenario (see Figure 4.14:). For 10-year trends 8 

ending in the near-term (2021–2040) following SSP1-2.6, equal numbers of trends in ocean carbon uptake 9 

are positive and negative.  10 

 11 

 12 

[START FIGURE 4.14 HERE] 13 

 14 
Figure 4.14: Annual-mean ocean carbon uptake trends for all periods ending in the near-term (2021–2040). (a) 10-year 15 

periods. (b) 20-year periods. Plotted are the minimum and maximum trends, the lower and higher trend quartiles 16 
and the median trend. The percentage of negative trend values is indicated to the left of the minimum value. [The 17 
values plotted here are for 10 simulations from on CMIP6 model, CanESM5. Eventually the figure will be updated 18 
using single simulations from the full CMIP6 ensemble.] 19 

 20 

[END FIGURE 4.14 HERE] 21 

 22 

 23 

4.4.3 Modes of Variability  24 

 25 

In this sub-section the near-term evolution of the large-scale climate modes of variability and their associated 26 

teleconnections is assessed. Discussions of the physical mechanisms and the individual feedbacks involved 27 

in the future change of each mode are provided in Chapters 8–10. 28 

 29 

 30 

4.4.3.1  Northern and Southern Annular Modes  31 

 32 

The NAM and NAO 33 

 34 

The NAM is the leading mode of climate variability in the NH extratropics. The NAM involves opposing 35 

fluctuations in sea level pressure (SLP) between about 40°N and 65°N (Li and Wang, 2003). A NAM index 36 

computed from the latitudinal gradient in SLP is strongly correlated with variations in the latitudinal position 37 

and strength of the mid-latitude westerly jets, and with the spatial distribution of Arctic sea ice (Caian et al., 38 

2018). 39 

 40 

The AR5 report elected to refer to the NAM, and its synonym the Arctic Oscillation (AO), through its 41 

regional counterpart the North Atlantic Oscillation (NAO). Here, we use the term NAM to refer also to the 42 

AO and NAO. Climate models were found to simulate the gross features of the NAM with reasonable 43 

fidelity. However, models underestimated the magnitude of the large positive trend in winter NAM 44 

observations over 1960–2000, and this was attributed more to natural variability than to anthropogenic 45 

influences. The AR5 reported that the underestimated trends in the NAM could be related to missing or 46 

poorly represented processes in climate models, including the representation of the stratosphere (Scaife et al., 47 

2012).  48 

 49 

The AR5 assessed from CMIP5 simulations that there is only medium confidence in near-term projections of 50 

a northward shift of NH storm track and westerlies, and an increase of the NAM because of the large 51 

response uncertainty and the potentially large influence of internal variability.  52 

 53 

Significant progress has been made since the AR5 in understanding the physical mechanisms responsible for 54 

changes in the NAM, although large uncertainties remain. It is now clear from the literature that the NAM 55 
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response, and the closely-related response of the mid-latitude storm tracks, to anthropogenic forcing in 1 

CMIP5-era climate models is determined by a “tug-of-war” between two opposite processes (Screen et al., 2 

2018a). First, Arctic amplification (see Section 4.5.1.1) is associated with warming concentrated in the lower 3 

troposphere that initiates a chain of responses. The warming decreases the meridional temperature gradient, 4 

and reduces baroclinicity on the poleward flank of the eddy-driven jet, shifting the storm tracks equatorward 5 

and leading to a negative NAM (Hoskins and Woollings, 2015; Screen et al., 2018a). Second, warming in the 6 

tropical upper-troposphere, due to GHG increases and associated water vapour feedback, is expected to 7 

increase the meridional temperature gradient aloft, which tends to cause a poleward shift of baroclinicity in 8 

the northern extratropics, an associated poleward shift of the storm tracks and a positive NAM (Vallis et al., 9 

2015). That the CMIP5 multi-model ensemble exhibits such large diversity, even in the sign (Gillett and 10 

Fyfe, 2013), of NAM projections appears to be explained by the relative importance of the two mechanisms 11 

in any particular model (McCusker et al., 2017; Oudar et al., 2017; Vallis et al., 2015). For instance, the 12 

degree of projected Arctic amplification in a model is related to a complex interplay of atmospheric 13 

circulation, sea ice dynamics, hydrologic change in all three phases, clouds, and surface/atmospheric 14 

radiation (Harvey et al., 2015). A paradigm appears to be emerging in the literature whereby models 15 

producing larger Arctic amplification also tend to produce larger equatorward shifts of the mid-latitude jets 16 

and storm tracks, and associated negative NAM responses (Barnes and Polvani, 2015; Harvey et al., 2015; 17 

Screen et al., 2018a). 18 

 19 

Another line of research concentrates on the impact on the NH jet streams from quasi-stationary Rossby 20 

waves, and the subsequent impact on regional circulation patterns in the extratropics. Established theory 21 

predicts that Arctic amplification is associated with a decrease in Rossby wavelength, and an increase in 22 

wave amplitude (Hoskins and Woollings, 2015). These arguments have been used to link Arctic 23 

amplification due to sea ice loss and a change in the likelihood of extreme climate events at mid-latitudes, 24 

which would include large-amplitude NAM events (Francis and Vavrus, 2012), although that link remains 25 

controversial (Barnes and Screen, 2015). While changes to Rossby wavelength and amplitude may be 26 

expected from simple theoretical arguments (Mbengue and Schneider, 2017), the picture in observations and 27 

modelling results is much less clear (Simpson et al., 2014; Vallis et al., 2015). An important complicating 28 

factor is that changes to the characteristics and propagation of Rossby waves are driven much more readily 29 

by lower latitude perturbations than higher latitude ones (Hoskins and Karoly, 1981). A considerable body of 30 

literature has shown that changes to the NAM on seasonal and climate change timescales can be driven by 31 

variations in the wavelength and amplitude of Rossby waves, mainly of tropical origin (Cattiaux and Cassou, 32 

2013; Ding et al., 2014; Fletcher and Kushner, 2011; Goss et al., 2016). Other studies report a robust 33 

negative NAM response driven by Arctic sea ice loss (Kim et al., 2014a; Screen et al., 2018b) that may be 34 

modified significantly by dynamical coupling with the stratospheric circulation (McKenna et al., 2018; Sun 35 

et al., 2015). 36 

 37 

Near-term projections of anthropogenically-forced changes to the NAM and associated mid-latitude storm 38 

tracks indicate that, while there may be a positive trend present, it is weak in magnitude compared to the 39 

multi-model and/or multi-realization variability within the ensemble (Figure 4.15:, and Barnes and Polvani, 40 

2015). On such short timescales, it is apparent that any forced signal of change in the NAM, which will be 41 

subject to considerable model uncertainty arising from imperfect representation of the physical processes 42 

described above, is expected to be of comparable magnitude to interannual or decadal variability in the NAM 43 

that is unrelated to anthropogenic forcing (Li et al., 2018a). A tendency to a near-term change towards a 44 

more positive NAM during the boreal winter is apparent in Figure 4.15:, where the near-term (2021–2040) 45 

changes in NAM from the 10-member ensemble CanESM5 under the SSP5-8.5 scenario is shown. [Note: 46 

This is a one-scenario single-model result. We will assess other scenarios and multi-model ensemble when 47 

CMIP6 data will become available.] 48 

 49 

 50 

[START FIGURE 4.15 HERE] 51 

 52 
Figure 4.15: Simulated Annular Mode index change (hPa) from present-day to the near-term: (a) NAM and (b) SAM. 53 

The NAM is defined as the difference in zonal mean sea-level pressure (SLP) at 35°N and 65°N (Li and Wang, 54 
2003) and the SAM as the difference in zonal mean SLP at 40°S and 65°S (Gong and Wang, 1999). Present-day 55 
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values are averages over the period from 1995–2014. Near-term values are averages over the period from 2021–1 
2040. The vertical lines are ensemble-means and the shaded bars are 5–95% confidence intervals on the ensemble 2 
means. [These calculations are based on a ten-member ensemble of simulations from one CMIP6 model, 3 
CanESM5. Eventually, the figure will be updated using single simulations from the full CMIP6 ensemble.] 4 

 5 

[END FIGURE 4.15 HERE] 6 

 7 

 8 

The SAM 9 

 10 

The SAM describes the leading mode of variability in the Southern Hemisphere (SH) extratropical 11 

circulation, which influences climate across many regions including South America, southern African 12 

countries, Australia, New Zealand and Antarctica. In its positive phase, the SAM characterizes anomalously 13 

low pressure over the polar cap and high pressure in southern mid-latitudes (Marshall, 2003). While there are 14 

some zonal asymmetries to the structure of the SAM, most notably a canonical wavenumber-3 pattern 15 

(Raphael, 2004), it is more symmetric than its Northern Hemisphere (NH) counterpart (Fyfe et al., 1999). 16 

The SAM is closely tied to the behaviour of the mid-latitude eddy-driven jet and captures variations in both 17 

jet strength and jet latitude (Barnes and Polvani, 2013; Solomon and Polvani, 2016), as well as variations in 18 

the southern extent of the Hadley circulation (Ceppi et al., 2013). The changes in the SH circulation 19 

associated with the SAM impact on surface wind stress (Wang et al., 2014) and hence affect the Southern 20 

ocean. 21 

 22 

The impact of ozone depletion and recovery on SH circulation exhibits a strong seasonality, with the largest 23 

influence in austral summer (Barnes et al., 2014; Gillett and Fyfe, 2013) following the peak of the Antarctic 24 

ozone hole in September-October. The AR5 concluded that in the future it is likely that increases in GHGs 25 

and the projected recovery of the Antarctic ozone hole will be the principal drivers of SAM trends and these 26 

will have competing effects on the SAM in austral summer and autumn. They further concluded that the 27 

positive trend in austral summer/autumn SAM observed over the past several decades is likely to weaken 28 

considerably as ozone depletion recovers through to the mid-21st century. Based on current scenarios for the 29 

future decline of ozone depleting substances in the atmosphere, the Antarctic ozone hole in October is 30 

projected by chemistry-climate models to recover by around 2060 (Dhomse et al., 2018), so this is the period 31 

over which the effect of ozone recovery on the SH circulation is expected to be greatest (Barnes et al., 2014). 32 

GHGs, on the other hand, influence the SH circulation year round (Gillett and Fyfe, 2013; Grise and Polvani, 33 

2014) and are therefore likely to be the dominant driver of projected circulation changes in austral winter 34 

(Barnes et al., 2014; Gillett and Fyfe, 2013; Solomon and Polvani, 2016). An influence of other forcing 35 

agents, such as anthropogenic aerosols, on the SAM has been reported in some climate models (Rotstayn, 36 

2013), but the response across a larger set of CMIP5 models is not robust (Steptoe et al., 2016) and depends 37 

on the details of the tropospheric temperature response to aerosols (Choi et al., 2019); this gives low 38 

confidence in the potential influence of anthropogenic aerosols on the SAM in the future. 39 

 40 

Owing to the competing effects of changing GHG concentrations and ozone recovery on the SH circulation 41 

over the next several decades, SAM projections vary across different forcing scenarios. The CMIP5 models 42 

simulate a weak negative SAM trend in austral summer for the RCP4.5 scenario by the end of the century 43 

(Zheng et al., 2013a), while for a higher GHG forcing scenario (RCP8.5) they simulate a weak positive SAM 44 

trend (Zheng et al., 2013a). For a low GHG emissions scenario (RCP2.6) the effect of ozone recovery on the 45 

SAM may dominate over that of GHGs in austral summer (Eyring et al., 2013).  46 

 47 

Since the AR5, there have been advances in understanding the role of internal climate variability for SH 48 

circulation trends over the recent past (Garfinkel et al., 2015) and over the 21st century (Solomon and 49 

Polvani, 2016). A large initial condition ensemble following the RCP4.5 scenario showed a monotonic 50 

positive SAM trend in JJA over the 21st century. In DJF, the SAM trend over the first half of the 21st 51 

century is weaker compared to the strongly positive trend observed and simulated over the late 20th century. 52 

In that model, the number of realizations required to identify a significant change in decadal mean SAM 53 

from its year 2000 state decreases to below 5 by around 2025 (Solomon and Polvani, 2016). In DJF, the 54 

same criterion was not met until around 2070 owing to the opposing effects of ozone recovery and GHGs on 55 
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the summer SAM in the near-term. Figure 4.15: shows near-term (2021–2040) changes in the SAM in DJF 1 

from a 10-member ensemble from a single climate model (CanESM5) under the SSP5-8.5 scenario. This 2 

result shows a tendency toward a more positive SAM in the next two decades, with similar changes apparent 3 

in all seasons. [Note: We will also assess this for SSP1-2.6 when more CMIP6 simulations become 4 

available.] 5 

 6 

In models that do not explicitly represent stratospheric ozone chemistry, which includes the majority of the 7 

CMIP6 model ensemble, an ozone dataset must be prescribed that properly captures the characteristics of 8 

ozone depletion and recovery in order to capture the effects of ozone on the tropospheric circulation (Neely 9 

et al., 2014; Young et al., 2014). 10 

 11 

 12 

4.4.3.2 El Niño-Southern Oscillation and its Teleconnections  13 

 14 

The AR5 assessed that it is very likely that the El Niño-Southern Oscillation (ENSO) will remain the 15 

dominant mode of interannual variability in the future. Moreover, due to increased moisture availability the 16 

associated precipitation variability on regional scales was assessed to likely intensify. An eastward shift in 17 

the patterns of temperature and precipitation variations in the North Pacific and North America related to El 18 

Niño and La Niña teleconnections was projected for the future with medium confidence. The stability of 19 

teleconnections to other regional implications including those in Central and South America, the Caribbean, 20 

Africa, most of Asia, Australia and most Pacific Islands were assessed to be uncertain. 21 

 22 

A detection of robust near-term changes of ENSO SST variability in response to anthropogenic forcing is 23 

difficult to achieve due to pronounced unforced low-frequency modulations of ENSO (Maher et al., 2018; 24 

Wittenberg, 2009). However, a subset of CMIP5 models that simulate the ENSO Bjerknes index most 25 

realistically show an increase of ENSO SST amplitude in the near-term future and decline thereafter (Kim et 26 

al., 2014b) as shown as Figure 4.16:. The ENSO Bjerknes index is the most commonly used linear metric 27 

that captures the essential ocean-atmosphere coupled processes leading to either positive feedback 28 

(enhancement by zonal advective, thermocline, and Ekman feedbacks) or negative feedback (damping by 29 

mean advection and damping by thermodynamics) in the genesis of ENSO (Kim et al., 2014b).  30 

 31 

 32 

[START FIGURE 4.16 HERE] 33 

 34 
Figure 4.16: Time variation of simulated ENSO amplitude and ENSO stability [Placeholder figure from (Kim et al., 35 

2014b), to be replaced in later drafts]. 36 
 37 

Simulating different ENSO flavours (characterized by varying zonal location of maximum SST anomalies) 38 

realistically was a significant challenge for the CMIP5 models (Timmermann et al., 2018); and thus, 39 

potential changes in ENSO flavours in response to anthropogenic forcing in the near-term future cannot be 40 

established with confidence based on the CMIP5 ensemble. Recently, the SST variance associated with 41 

Eastern Pacific (EP) ENSO events have been shown to increase in the CMIP5 ensemble, if taking into 42 

account that models simulate the centroid of this variability in different locations (Cai et al., 2018a). At the 43 

time of composing the FOD of Chapter 4, the ability of CMIP6 models in simulating different ENSO 44 

flavours as well as projected changes in SST variability in the near-term remain to be explored. 45 

 46 

[END FIGURE 4.16 HERE] 47 

 48 

4.4.3.3 Pacific Decadal Variability  49 

 50 

Climate variability of the Pacific Ocean on decadal and interdecadal timescales is described in terms of a 51 

number of quasi-oscillatory SST patterns such as the Pacific Decadal Oscillation (PDO) (Mantua et al., 52 

1997) and the Interdecadal Pacific Oscillation (IPO) (Folland, 2002), which are referred to as the Pacific 53 

Decadal Variability (PDV) (Newman et al., 2016). PDV comprises an inter-hemispheric pattern that varies at 54 

decadal-to-interdecadal timescales. One important feature of PDV is indeed the strong covariance between 55 
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the tropics and extratropics (Liu, 2012), which has proved difficult to simulate accurately by climate models 1 

(see Newman et al. (2016) for a review). Yet, the IPO and the PDO are not identical. While the North Pacific 2 

and South Pacific centres of action in the IPO pattern have similar amplitude, the North Pacific centre in the 3 

PDO pattern is clearly enhanced. However, although the spatial domains to derive the IPO and PDO indices 4 

differ, and uncertainty applies to trend removal and time-filtering (Newman et al., 2016; Tung et al., 2019), 5 

the IPO and PDO are highly correlated in time and are often used interchangeably.  6 

 7 

The AR5 assessed that near-term predictions of PDV (then referred to as PDO or IPO) were largely model 8 

dependent (Mochizuki et al., 2012; van Oldenborgh et al., 2012), not robust to sampling of initialization 9 

start-dates, overall not statistically significant, and worse than persistence (Doblas-Reyes et al., 2013), 10 

although some studies showed positive skill for PDV (Chikamoto et al., 2013; Mochizuki et al., 2010). 11 

Consistently, the CMIP5 decadal-prediction ensemble yielded no prediction skill of SST over the key PDV 12 

centres of action in the Pacific Ocean, both at 2–5 year and 6–9 year forecast averages (Doblas-Reyes et al., 13 

2013; Guemas et al., 2013a). 14 

  15 

Since the AR5, the processes causing the multi-decadal variability in the Pacific Ocean have become better 16 

understood. It now seems accepted that the IPO represents the low-frequency component of ENSO, driven 17 

by both interannual and decadal ENSO variability that is coherent between the North and South Pacific (Di 18 

Lorenzo et al., 2013, 2015), which may include both atmospheric and oceanic teleconnection mechanisms. 19 

Whether the IPO is a distinct mode of climate variability (Henley et al., 2017) or not (Tung et al., 2019) 20 

remains to be further assessed and clarified. A better-defined variability appears to be associated with the 21 

PDO. It is thought to be driven by atmospheric forcing linked to changes in the Aleutian Low and integrated 22 

by mixed layer dynamics and related re-emergence processes (interannual-to-decadal), as well as subpolar-23 

subtropical gyre dynamics and related westward-propagating oceanic waves (decadal-to-interdecadal) (see 24 

Newman et al. (2016) for a review). The relative importance of tropical and extratropical processes 25 

underlying PDV remains unclear; although it seems to be stochastically driven rather than self-excited (Liu, 26 

2012; Liu and Di Lorenzo, 2018). 27 

 28 

Because PDV represents not one but many dynamical processes, it represents a challenge as a target for near-29 

term climate predictions and projections. The new generation of decadal forecast systems keeps showing no 30 

multi-year prediction skill for PDV (Shaffrey et al., 2017), although there is the potential for forecasting 31 

capabilities in case studies (Meehl et al., 2014; Meehl and Teng, 2012). For the near-term, it is predicted a 32 

transition of PDV from the current negative phase towards a positive phase in the coming years (Meehl et al., 33 

2016). 34 

 35 

The PDV has been shown to influence the pace of global warming (Cai et al., 2015; Dai et al., 2015; 36 

Douville et al., 2015; England et al., 2014; Kosaka and Xie, 2013; Meehl et al., 2011, 2016; Watanabe et al., 37 

2014); but the extent to which PDV is externally forced or internally generated and how it will evolve in a 38 

future climate remain open questions (Deser and Phillips, 2017). 39 

 40 

 41 

4.4.3.4 Indian Ocean Basin and Dipole Modes and their Teleconnections  42 

 43 

Important modes of interannual climate variability with pronounced climate impacts in the Africa-Indo-44 

Pacific areas of the globe are the Indian Ocean Dipole (IOD), which is closely related to- and often coincides 45 

with ENSO phases (Stuecker et al., 2017), and the Indian Ocean Basin (IOB) mode, which is often described 46 

as a capacitor effect in response to ENSO (Du et al., 2013; Xie et al., 2009). 47 

 48 

The projected climate mean state changes in the tropical Indian Ocean resemble a positive IOD state, with 49 

faster warming in the west compared to the east. This mean state change will potentially lead to a reduction 50 

in the amplitude difference between positive and negative IOD events, however with no robust change in 51 

IOD frequency (Cai et al., 2013). Currently, no new studies and evidence exist that would suggest a 52 

cessation of IOD variability and robust change in the IOB mode in the near-term to long-term future. This 53 

means that we can also expect that the ENSO-IOD and connection with phenomena of important climate 54 

implications like the Afro-Asian monsoons alongside other Indian Ocean Basin relationships observed in the 55 
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current climate will persist in the near-term future.  1 

 2 

 3 

4.4.3.5 Atlantic Multidecadal Variability 4 

 5 

The Atlantic Multi-decadal Variability (AMV) is a large-scale climate mode accounting for the main 6 

fluctuations in North Atlantic SST on multi-decadal time scales. The AMV influences air temperatures and 7 

precipitation over adjacent and remote continents, and its undulations can partially explain the observed 8 

variations in the NH mean temperatures (Steinman et al., 2015). The origin of this variability is still 9 

uncertain. Ocean dynamics (e.g., changes in the AMOC), external forcing, and local atmospheric forcing all 10 

seem to play a role (Brown et al., 2016; Cassou et al., 2018; Menary et al., 2015; Ruprich-Robert and 11 

Cassou, 2015).  12 

 13 

The AR5 assessed with high confidence that initialized predictions can improve the skill for temperature 14 

over the North Atlantic, in particular in the sub-polar branch of AMV, compared to the projections, for the 15 

first five years (see WG1 AR5 Figures 11.3 and 11.4). However, non-initialized predictions showed positive 16 

correlation over the same time-range as well, consistent with the notion that part of this variability is caused 17 

by external forcing. 18 

 19 

Since the AR5, near-term initialized predictions, both multi-model (Bellucci et al., 2015a) and single-model 20 

ensembles (Marotzke et al., 2016; Yeager et al., 2018), confirm substantial skill in hindcasting North-21 

Atlantic SSTs anomalies on a time range of 8–10 years. Yet, skill in predicting the AMV is not always 22 

translated into equally successful predictions of temperature and precipitations over the nearby land. This 23 

might be related to systematic model errors in the simulation of the spatial and temporal structure of the 24 

AMV and too weak associated teleconnections (see Section 3.7.7). However, preliminary analyses from 25 

large-ensemble decadal prediction systems such as the Community Earth System Model decadal prediction 26 

large ensemble (CESM-DPLE) (Yeager et al., 2018) show an improvement with respect to the CMIP5 27 

decadal hindcasts (Martin and Thorncroft, 2014b) in forecasting Sahel precipitation over three to seven 28 

years, which is consistent with the current understanding of AMV impact over Africa (Mohino et al., 2016). 29 

CESM-DPLE predicts drought conditions over the Sahel through 2020, which is compatible with a shift 30 

towards a negative phase of AMV as a result of a weakening of the AMOC, advocated by a number of 31 

studies (Hermanson et al., 2014; Robson et al., 2014; Yeager et al., 2015). 32 

 33 

However, since the AMOC-AMV relationship varies considerably from model to model in terms of 34 

amplitudes, spatial properties, preferred time scales and associated teleconnections (Ba et al., 2014; Peings et 35 

al., 2016; Ruiz-Barradas et al., 2013), and recent studies have even argued about the active role of the ocean 36 

dynamics in generating the AMV, that could be consequently attributed to random atmospheric forcing 37 

(Cane et al., 2017; Clement et al., 2015; O’Reilly et al., 2016; Zhang et al., 2016), the confidence in the 38 

predictions of AMV impacts is low. On the other hand, there is high confidence that the AMV skill over 5–39 

8-year lead time is improved by using initialized predictions (compared to non-initialized ones).  40 

 41 

 42 

4.4.3.6  Tropical Atlantic Modes and their Teleconnections  43 

 44 

Interannual variability of the tropical Atlantic can be described in terms of two main climate modes: the 45 

Atlantic Equatorial Mode and the Atlantic Meridional Mode (AMM). The Atlantic Equatorial Mode, also 46 

commonly referred to as the Atlantic Niño or Atlantic Zonal Mode, is associated with SST anomalies near 47 

the equator, peaking in the eastern basin, while the AMM is characterized by an inter-hemispheric gradient 48 

of SST and wind anomalies. Both modes are associated with changes in the ITCZ and related winds and 49 

exert a strong influence on the climate in adjacent and remote regions. 50 

 51 

Despite considerable improvements made in CMIP5 with respect to CMIP3, most of the climate models are 52 

not able to correctly simulate the main aspects of Tropical Atlantic Variability (TAV) and associated 53 

impacts. This is presumably the main reason why there is a lack of specific studies dealing with near-term 54 

changes in tropical Atlantic modes. Nevertheless, the AR5 reported that the ocean is more predictable than 55 
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continental areas at the decadal timescale. In particular, the predictability in tropical oceans is mainly 1 

associated with decadal variations of the external forcing component. Since the AMV affects the tropical 2 

Atlantic, near-term variations of the AMV can modulate the Equatorial Mode and the AMM as well as 3 

associated impacts. The AR5 reported with high confidence that the skill of predicting the AMV index 4 

increases with initialization for the early forecast ranges.  5 

 6 

There are no specific studies focusing on near-term changes in tropical Atlantic modes; nevertheless, decadal 7 

predictions show that although the North Atlantic stands out in most CMIP5 models as the primary region 8 

where skill might be improved because of initialization, encouraging results have also been found in the 9 

tropical Atlantic (Meehl et al., 2014). The impact of the initialization in the tropical Atlantic is not only 10 

visible in surface temperature but also in the subsurface ocean (Corti et al., 2015). In particular, initialization 11 

improves the skill via remote ocean conditions in the North Atlantic subpolar gyre and tropical Pacific, 12 

which influence the tropical Atlantic through atmospheric teleconnections (Dunstone et al., 2011; García-13 

Serrano et al., 2015; Vecchi et al., 2014). Improvements of some aspects of climate prediction systems 14 

(initialization techniques, large ensembles, increasing model resolution) have also led to skill improvements 15 

over the tropical Atlantic (Monerie et al., 2017; Pohlmann et al., 2013; Yeager and Robson, 2017). 16 

 17 

Recent studies have shown that the AMV can modulate not only the characteristics of the Atlantic Niños, but 18 

also their inter-basin teleconnections (Indian and Pacific). In particular, the Atlantic Niño–ENSO 19 

relationship is strongest during negative AMV phases (Losada and Rodríguez-Fonseca, 2016; Martín-Rey et 20 

al., 2014) when equatorial Atlantic SST variability is enhanced (Lübbecke et al., 2018; Martín-Rey et al., 21 

2017).  22 

 23 

Based on CMIP5 and CMIP6 [to be confirmed when more data is available] results, we conclude that there is 24 

a clear lack of studies on the near-term evolution of TAV and associated teleconnections. However, some 25 

studies show that despite severe model biases there are skilful predictions in the mean state of tropical 26 

Atlantic surface temperature several years ahead (medium confidence), though skill in simulated variability 27 

has not been assessed yet. 28 

 29 

Decadal changes in the Atlantic Niño spatial configuration and associated teleconnections might be 30 

modulated by the AMV, but there is low confidence in these results.  31 

 32 

 33 

4.4.4 Response to Short-Lived Climate Forcers and Volcanic Eruptions 34 

 35 

The influence of SLCFs (methane, aerosols, ozone) on near-term climate (see also Sections 6.6.3 and 6.6.4) 36 

has been discussed extensively in the context of the climate targets set out by the Paris Agreement in 2015 37 

(COP21, 2015). Comparisons have been made between current air quality legislation targets and the 38 

maximum feasible phase-out of SLCFs based on current technological options. The rate of reduction of 39 

SLCFs may influence near-term surface warming rates (Chalmers et al., 2012; Shindell et al., 2017) and have 40 

a modest influence on warming levels by mid-century up to a few tenths of a degree Celsius (Hienola et al., 41 

2018; Smith and Mizrahi, 2013; Stohl et al., 2015), but there are only small differences in long-term GSAT 42 

trends by the end of century as a consequence of varying the SLCF pathway (Hienola et al., 2018).  The 43 

estimated additional warming for scenarios of anthropogenic methane and black carbon emissions by mid-44 

century, compared to a scenario for maximum technical reduction, is several times lower than an earlier 45 

estimate (UNEP, 2011). 46 

 47 

Distinguishing the role of SLCFs for climate from that of long-lived GHGs is complicated by the fact that 48 

many short-lived species are co-emitted with CO2 through combustion; hence policies aimed at reducing 49 

carbon emissions implicitly capture some SLCF reductions. For example, considering SLCFs separately 50 

from long-lived GHG emissions artificially inflates the potential control that SLCFs can exert on climate 51 

under ambitious mitigation and stabilization strategies (Rogelj et al., 2014). In scenarios consistent with 52 

meeting the 2°C target, additional measures to reduce anthropogenic black carbon emissions have little 53 

effect, because the key emissions are already ruled out through the implicit CO2 controls. Nevertheless, other 54 

approaches may aim to tackle poor air quality through legislation, which would influence the abundance of 55 
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SLCFs (Shindell et al., 2017).  1 

 2 

A complete phase-out of anthropogenic SO2, black carbon, and organic carbon are expected to lead to 3 

additional surface warming for a climate stabilization scenario (0.5°C–1.1°C; low confidence) (Samset et al., 4 

2018b). There may be a larger sensitivity of surface temperatures to aerosol in northern mid-latitudes and 5 

over land (low confidence). The additional warming at high northern latitudes associated with projected 6 

reductions in aerosol emissions over the 21st century are expected to have knock-on effects on other parts of 7 

the climate system, including a more rapid reduction in Arctic sea ice extent (Gagné et al., 2015). 8 

Furthermore, a removal of anthropogenic aerosols could increase global mean precipitation (2–4.6%; low 9 

confidence; (Richardson et al., 2018; Samset et al., 2018b)). Climate change and projected reductions in 10 

ozone-depleting substances interact in a complex way to determine future ozone radiative forcing by the end 11 

of the century (Banerjee et al., 2018; Young et al., 2018). 12 

 13 

The major uncertainties around the climate impacts of SLCFs in the future come from: (i) the uncertainty in 14 

anthropogenic aerosol ERF (Chapter 7) and the representation of aerosols in the models used to make 15 

projections; (ii) uncertainty in co-emissions of long- and short-lived species; (iii) uncertainty in the relative 16 

changes to different SLCFs that have warming and cooling effects in the current climate (Chapter 7); and 17 

(iv) physical uncertainty. For example, the shortwave radiative forcing from methane was substantially 18 

underestimated in previous calculations (Etminan et al., 2016), which affects understanding of future 19 

methane effective radiative forcing (ERF). Methane levels have continued to rise since the AR5, and the 20 

current trajectory for methane lies between the RCP4.5 and RCP8.5 scenarios (Nisbet et al., 2019). Should 21 

the growth in methane emissions continue at its current rate until the end of century, it would contribute an 22 

estimated additional 0.5 W m-2 to the Paris targets (Nisbet et al., 2019). 23 

 24 

[Note: Once available, we will use output from AerChemMIP future simulations in which SSP3-7.0 25 

“Regional Rivalry” without climate policy is compared to SSP3-7-lowNTCF having “Strong” levels of air 26 

quality policy to 2055.  Thus we will be able to assess in CMIP6 models the influence of alternative SLCF 27 

pathways on near-to-mid-term climate (Collins et al., 2017). See also Sections 6.6.3 and 6.6.4 for an 28 

assessment of the contribution from individual species to GSAT projections.] 29 

 30 

Another factor that could substantially alter projections in the near term would be the occurrence of a large 31 

explosive volcanic eruption, or even a decadal to multi-decadal sequence of small-to-moderate volcanic 32 

eruptions as witnessed over the early 21st century (Santer et al., 2014). An eruption similar to the last large 33 

tropical eruption, Mount Pinatubo in the Philippines in June 1991, is expected to cause substantial Northern 34 

Hemisphere (NH) cooling, peaking between 0.09°C and 0.38°C and lasting for three to five years, as 35 

indicated by climate model simulations over the past millennium (e.g., Jungclaus et al., 2010). The response 36 

to changes in multi-decadal volcanic forcing shows similar cooling in both simulations and reconstructions 37 

of NH temperature. Volcanic eruptions generally result in decreased global precipitation (Iles and Hegerl, 38 

2014, 2015; Man et al., 2014), with climatologically wet regions drying and climatologically dry regions 39 

wetting, which is opposite to the response under global warming (Held and Soden, 2006; Iles et al., 2013). In 40 

the AR5, uncertainty due to future volcanic activity was generally not considered in the assessment of the 41 

CMIP5 21st-century climate projections (O’Neill et al., 2016; Taylor et al., 2012). 42 

 43 

Since the AR5, there has been considerable progress in quantifying the impacts of volcanic eruptions on 44 

decadal climate prediction and longer-term climate projections (Bethke et al., 2017; Meehl et al., 2015; 45 

Timmreck et al., 2016). By exploring 60 possible volcanic futures under RCP4.5, it has been demonstrated 46 

that the inclusion of volcanic forcing may enhance climate variability on annual-to-decadal timescales 47 

(Bethke et al., 2017). The interannual uncertainty range in annual-mean GSAT is about 50% higher (from 48 

0.3°C to 0.5°C) in simulations with volcanoes relative to simulations without volcanoes (Figure 4.17:). 49 

Consistent with a tropospheric cooling response, the change in ensemble spread in the volcanic cases is 50 

skewed towards lower GSAT relative to the non-volcanic cases (see Figure 4.17:).  In these simulations with 51 

multiple volcanic forcing futures there is: 1) an increase in the frequency of extremely cold years; 2) an 52 

increased likelihood of decades with negative GSAT trend; and 3) later anthropogenic signal emergence.  53 

 54 

 55 
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[START FIGURE 4.17 HERE] 1 

 2 
Figure 4.17: Annual-mean GSAT. a, Ensemble mean (solid) of VOLC (blue), VOLC-CONST (magenta) and NO-3 

VOLC (red/orange) with 5–95% range (shading) and ensemble minima/maxima (dots) for VOLC and NO-VOLC; 4 
evolution of the most extreme member (black). b, Probability density function (PDF) of the 2016–2035 mean 5 
relative to pre-industrial (PI), with 5–95% bootstrap confidence bounds. c, PDF of the time when GSAT change 6 
relative to PI (20-year running average) exceeds 1.5°C. d, PDF of annual anomalies with anthropogenic trend 7 
removed. The spread of VOLC-CONST is linearly shifted relative to NO-VOLC, and therefore not shown in a–c.  8 
These calculations are based on three 21st-century simulation ensembles with the Norwegian Earth System Model 9 
(NorESM), which use the same mid-range anthropogenic forcing scenario RCP4.5 but differ in their volcanic 10 
forcing: a 60-member ensemble using plausible stochastic volcanic forcing (VOLC); a 60-member reference 11 
ensemble using zero volcanic forcing (NO-VOLC); and a 20-member ensemble using 1850–2000 averaged 12 
volcanic forcing (VOLC-CONST). [This figure is adopted from (Bethke et al., 2017).] 13 

 14 

[END FIGURE 4.17 HERE] 15 

 16 

 17 

Volcanic forcing can also influence modes of interannual variability such as ENSO (see Figure 4.18:). The 18 

impact of northern, tropical, and southern volcanic eruptions on Pacific sea surface temperature (SST), and 19 

the different response mechanisms arising due to differences in the volcanic forcing structure, have been 20 

investigated using the Community Earth System Model Last Millennium Ensemble (CESM-LME) (Zuo et 21 

al., 2018). The Pacific features a significant El Niño-like SST anomaly five to ten months after northern and 22 

tropical eruptions, with a weaker tendency after southern eruptions. The Niño3 index peaks with a lag of 1.5 23 

years after northern and tropical eruptions. Two years after all three types of volcanic eruptions, a La Niña–24 

like SST anomaly pattern over the equatorial Pacific is simulated, forming an ENSO-like cycle (Zuo et al., 25 

2018). Large tropical eruptions are associated with co-occurring El Niño and positive Indian Ocean Dipole 26 

(IOD) events in the ensemble mean that peak 6–12 months after the volcanic forcing maximum, marking a 27 

significant increase in the likelihood of each event occurring in the SH spring/summer following the eruption 28 

(Maher et al., 2015). Such responses in tropical variability are expected to follow future volcanic eruptions, 29 

too. 30 

 31 

 32 

[START FIGURE 4.18 HERE] 33 

 34 
Figure 4.18: (a) Evolution of the composite Niño-3 index with zonal mean removed (units: 8°C) after northern 35 

eruptions (blue line), tropical eruptions (red line), and southern eruptions (green line). The spreads of the individual 36 
volcanic eruptions are denoted by the blue, red, and green shading, respectively. (b) The lead–lag correlation 37 
between the Niño-3 index (5°S–5°N, 150°–90°W) and the 850-hPa zonal wind in the western-to-central equatorial 38 
Pacific (5°S–5°N, 110°E–150°W) following northern (blue line), tropical (red line), and southern eruptions (green 39 
line). The positive value of the horizontal axis indicates that the Niño-3 index lags the 850-hPa zonal wind. [This 40 
figure is adopted from (Zuo et al., 2018).] 41 

 42 

[END FIGURE 4.18 HERE] 43 

 44 

 45 

Volcanic forcing is a source of uncertainty in the CMIP6 projections assessed in this chapter. We will 46 

quantify this uncertainty in the near-term by utilizing existing large ensembles of natural-forcing-only 47 

simulations, as well as targeted simulations under CMIP6 VolMIP (Zanchettin et al., 2016).  48 

 49 

 50 

 51 

 52 

4.5 Mid- to Long-term Global Climate Change  53 

 54 

4.5.1 Atmosphere  55 

 56 

In the following we assess how the global indicators discussed in Section 4.3 manifest themselves in large-57 
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scale spatial atmospheric patterns of mid- to long-term climate change. The patterns of change in any given 1 

future period represent a combination of unforced internal variability and a forced response. The role of 2 

internal variability is much larger at the local to regional scale than in the global mean projections. We here 3 

assess multi-model mean patterns, which represent an estimate of the forced response. It is important to note 4 

that this estimate of the forced response is a more homogeneous pattern than the 20-yr mean change patterns 5 

in any individual model realization (Knutti et al., 2010). The forced response is put into the context of 6 

internal variability by hatching the areas where the signal is smaller than 2 standard deviations of 20-year 7 

means in local variability (see Section 4.2.5 for details). 8 

 9 

 10 

4.5.1.1 Near-Surface Air Temperature  11 

 12 

Patterns of near-surface air temperature changes show wide-spread warming by 2041–2060 and 2081–2100 13 

for all SSPs with respect to 1995–2014. The area fraction experiencing warming increases with the level of 14 

global mean warming. As GSAT continues to increase, it is very likely that by the middle and the end of the 15 

21st century most of the global land and ocean areas will be warmer than in 1995–2014 (high confidence) 16 

(see also Section 4.3.1.1).  17 

 18 

The temperature change pattern can be interpreted as a combination of unforced internal variability of the 19 

coupled climate system acting at synoptic to multi-decadal time scales and forced response pattern to 20 

forcings such as changes in atmospheric GHG and aerosol concentrations or in land use or land management 21 

(Deser et al., 2012b, 2016). The higher the level of global warming and the longer the period averaged 22 

across, the more the sign of the regional temperature change is dominated by the forced response. Figure 23 

4.19: illustrates the CMIP6 multi-model mean estimate of this forced response for two different SSPs. The 24 

multi-model mean pattern shows some robust key characteristics such as a land-ocean warming contrast or 25 

amplified warming over the Arctic region assessed below. Changes in aerosol concentrations and land use 26 

and land management can furthermore have a direct imprint on the regional warming pattern.  27 

 28 

 29 

[START FIGURE 4.19 HERE] 30 

 31 
Figure 4.19: Multi-model mean change in annual mean near-surface air temperature (°C) in 2041–2060 and 2081–2100 32 

in (top) SSP1-2.6 and (bottom) SSP5-8.5 relative to 1995–2014. [Figure produced with ESMValTool (Eyring et al., 33 
2016b) based on the five CMIP6 models, BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and 34 
MRI-ESM2-0 will be updated with more CMIP6 models.] 35 

 36 

[END FIGURE 4.19 HERE] 37 

 38 

 39 

Land-Ocean Warming Contrast 40 

 41 

It is virtually certain that average warming will be higher over land than over the ocean. This so-called land-42 

ocean warming contrast is a striking feature of observed trends (Byrne and Schneider, 2018; Lambert and 43 

Chiang, 2007) and projected changes in surface-air temperature (Bayr and Dommenget, 2013; Byrne and 44 

O’Gorman, 2013b; Dong et al., 2009; Drost et al., 2012; Izumi et al., 2013; Joshi et al., 2013; Joshi and 45 

Gregory, 2008; Lambert et al., 2011; Sutton et al., 2007). Between 1979 and 2016, average temperature over 46 

continents increased by 42% more than over oceans (Byrne and Schneider, 2018); a similar warming contrast 47 

is found in CMIP5 projections though with large differences across models and latitudes (Byrne and 48 

O’Gorman, 2013b; Drost et al., 2012; Joshi et al., 2013; Sutton et al., 2007). The land-ocean warming 49 

contrast is typically quantified as an amplification factor defined as the ratio of land-to-ocean warming: A = 50 

δTLand / δTOcean (Byrne and O’Gorman, 2013a). The amplification factor is greater than one for almost all 51 

regions and is larger for dry subtropical continents (about 1.5) than for moist regions in the tropics and mid-52 

latitudes (about 1.2) (Byrne and O’Gorman, 2013a), suggesting a link between the land-ocean warming 53 

contrast and surface dryness.  54 

 55 
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It has long been recognized that the warming contrast is not caused by the differences in effective heat 1 

capacity between land and ocean (e.g., Sutton et al., 2007). However, only since the AR5 has a robust 2 

physical understanding of the warming contrast been developed. A simple theory based on atmospheric 3 

dynamics and moisture transport shows that surface-air temperature and relative humidity over land are 4 

strongly coupled, and demonstrates that the warming contrast occurs because air over land is drier than over 5 

oceans (Byrne and O’Gorman, 2013a, 2013b, 2018; Joshi et al., 2008). The warming contrast causes land 6 

relative humidity to decrease (Byrne and O’Gorman, 2016, 2018; Chadwick et al., 2016) and this feeds back 7 

on and strengthens the warming contrast. Decomposing the mechanisms controlling the tropical land-ocean 8 

warming contrast (Byrne and O’Gorman, 2013b), it is found that for the median CMIP5 model 9 

approximately 40% of the warming contrast is due to continents being drier, the feedback due to decreases in 10 

land relative humidity under global warming accounts for another 40%, and the remaining contribution 11 

comes from modest increases in near-surface ocean relative humidity (Schneider et al., 2010). Differences in 12 

land relative humidity responses across models are the primary cause of uncertainty in the land-ocean 13 

warming contrast (Byrne and O’Gorman, 2013b). These land relative humidity changes are ultimately 14 

controlled by moisture transport between the land and ocean boundary layers (Byrne and O’Gorman, 2016; 15 

Chadwick et al., 2016) and are also sensitive to characteristics of land surfaces that are challenging to model, 16 

including stomatal conductance and soil moisture (Berg et al., 2016). 17 

 18 

Polar Amplification 19 

It is very likely that under global warming the Arctic is warming stronger than the global average (high 20 

confidence). Since the AR5 the understanding of the physical mechanisms driving the Arctic Amplification 21 

has improved. 22 

 23 

The Arctic surface is projected to warm by more than the global average over the 21st century, with annual-24 

average Arctic warming of about 3°C (SSP1-2.6) to 12°C (SSP5-8.5) by 2081–2100 (Figure 4.19:). This 25 

phenomenon, known as polar or Arctic amplification, is a ubiquitous feature of the response to GHG forcing 26 

simulated by climate models (Hansen et al., 1984; Holland and Bitz, 2003; Manabe et al., 1991; Manabe and 27 

Stouffer, 1980; Manabe and Wetherald, 1975, 1980; Pithan and Mauritsen, 2014; Robock, 1983; Winton, 28 

2006) and has been observed over recent decades concurrent with Arctic sea-ice loss (Serreze and Barry, 29 

2011) (Chapter 2). Based on robust scientific understanding and agreement across multiple lines of evidence 30 

(Section 7.6), there is high confidence that warming will continue to be Arctic amplified over the 21st 31 

century on timescales longer than several decades. 32 

 33 

A variety of mechanisms contribute to Arctic amplification (see Section 7.6.2). While surface-albedo 34 

feedbacks associated with the loss of sea ice and snow have long been known play important roles 35 

(Arrhenius, 1896; Hall, 2004; Manabe and Stouffer, 1980; Robock, 1983), it is now recognized that 36 

temperature (lapse-rate and Planck) feedbacks also contribute substantially to Arctic amplification with 37 

longwave radiative damping to space with warming being less efficient at high latitudes (Goosse et al., 2018; 38 

Pithan and Mauritsen, 2014; Winton, 2006). Changes in poleward atmospheric and oceanic heat transports 39 

are thought to contribute to Arctic warming (Bitz et al., 2006; Holland and Bitz, 2003; Lee et al., 2011, 2017, 40 

Marshall et al., 2014, 2015; Nummelin et al., 2017; Oldenburg et al., 2018; Singh et al., 2017; Woods and 41 

Caballero, 2016), but the primary drivers of polar amplification within models appear to be polar feedback 42 

processes rather than heat transport changes (Pithan and Mauritsen, 2014; Stuecker et al., 2018). However, 43 

quantifying the role of individual factors in the coupled climate system is complicated by interactions 44 

between polar climate feedbacks and heat transports and between the different climate feedbacks (Section 45 

7.6.2). Projected reduction in the strength of the AMOC over the 21st century is expected to reduce Arctic 46 

warming, but even a strong AMOC reduction would not eliminate Arctic amplification entirely (Liu et al., 47 

2017, 2018c; Wen et al., 2018) (medium confidence). 48 

 49 

There remains substantial uncertainty in the magnitude of projected Arctic amplification with the Arctic 50 

warming by a factor of two to four times the global average in models (Holland and Bitz, 2003; Nummelin et 51 

al., 2017). This uncertainty primarily stems from different representations of polar surface-albedo, lapse-rate, 52 

and cloud feedbacks, and from different projected poleward energy transport changes (Bonan et al., 2018; 53 

Crook et al., 2011; Holland and Bitz, 2003; Mahlstein and Knutti, 2011; Pithan and Mauritsen, 2014). The 54 

magnitude of Arctic amplification may also depend on the mix of radiative forcing agents (Najafi et al., 55 
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2015; Sand et al., 2016), with tropospheric aerosol emissions reducing simulated Arctic warming over the 1 

middle of the 20th century (Gagné et al., 2017) and with aerosol emission reductions enhancing simulated 2 

Arctic warming over recent and future decades (Acosta Navarro et al., 2016; Gagné et al., 2015; Wang et al., 3 

2018b; Wobus et al., 2016).  4 

 5 

Climate models project weakly polar amplified warming in the Southern Hemisphere (SH) under transient 6 

warming (Figure 4.19:) with a similar pattern to that observed over the 20th century (Armour et al., 2016; 7 

Jones et al., 2016c; Manabe et al., 1991; Marshall et al., 2014). Model simulations (Danabasoglu and Gent, 8 

2009; Hall, 2004; Li et al., 2013) and paleoclimate proxies indicate polar amplification in both hemispheres 9 

near equilibrium, but generally with less warming in the Antarctic than the Arctic (Section 7.6). The primary 10 

driver of delayed warming of the southern high latitudes is the upwelling of unmodified water from depth in 11 

the Southern Ocean and associated ocean heat uptake that is then transported away from Antarctica by 12 

northward flowing surface waters (Armour et al., 2016; Frölicher et al., 2015; Liu et al., 2018b; Marshall et 13 

al., 2015) (Section 7.2; Section 7.6.2; Section 9.2). Changes in westerly surface winds over the Southern 14 

Ocean have the potential to affect the rate of sea-surface warming, but there is currently low confidence in 15 

even the sign of the effect based on a diverse range of climate model responses to wind changes (Ferreira et 16 

al., 2015; Kostov et al., 2017; Marshall et al., 2014). A substantial increase in freshwater input to the ocean 17 

from the Antarctic ice sheet could further slow the emergence of SH polar amplification by cooling the 18 

Southern Ocean surface (Bronselaer et al., 2018), but this process is not represented in current climate 19 

models which lack dynamic ice sheets. Thus, while there is high confidence that the SH high latitudes will 20 

warm by more than the tropics on centennial timescales, there is low confidence that such a feature will 21 

emerge this century (Section 7.6). 22 

 23 

Seasonal Warming Patterns  24 

 25 

The warming pattern also shows distinct seasonal characteristics. The majority of models show a stronger 26 

warming poleward of about 60° in hemispheric winter than summer conditions and thereby a reduced 27 

amplitude of the temperature cycle (Donohoe and Battisti, 2013; Dwyer et al., 2012). Over the subtropics 28 

and mid-latitudinal land and ocean regions most of the models project stronger warming in hemispheric 29 

summer than winter (Donohoe and Battisti, 2013; Sanchez and Simon, 2018; Santer et al., 2018), leading to 30 

an amplification of the seasonal cycle, a phenomenon that has been studied particularly in the case of the 31 

Mediterranean region (Brogli et al., 2019; Kröner et al., 2017; Seager et al., 2014).  32 

 33 

Changes in Temperature Variability 34 

 35 

It has long been recognized that along with mean temperatures also variance and skewness of the 36 

temperature distribution may be changing (Gregory and Mitchell, 1995; Mearns et al., 1997). By amplifying 37 

or dampening changes in the tail of temperature distribution such changes are potentially highly relevant 38 

extremes and pose a serious challenge to adaptation measures. Changes in temperature variability can occur 39 

from diurnal to multi-decadal time scales and from the local to the global scale.  40 

 41 

Changes in GSAT variability are poorly understood. Based on model experiments it has been suggested that 42 

unforced variability of global mean temperatures tend to decrease in warmer world as a result of reduced 43 

albedo variability in high latitudes resulting from melting snow and sea ice (Brown et al., 2017; Huntingford 44 

et al., 2013), but confidence remains low. An assessment of changes in global temperature variability is 45 

inherently challenging due to the interplay of unforced internal variability and forced changes.  46 

 47 

Changes in tropical temperature variability may arise from changes in the amplitude of the El Niño Southern 48 

Oscillation (ENSO) (Section 4.3.3.2). However, even the sign of the changes in ENSO amplitude remains 49 

inconsistent across models (Zheng et al., 2016). Large single-model initial-condition ensembles cover most 50 

of the range of changes in ENSO variance found in CMIP5 (Maher et al., 2018; Zheng et al., 2018), 51 

suggesting that internal variability accounts for most of the uncertainty. However, even if the forced 52 

response in ENSO amplitude is derived as the average of these large ensembles, the sign of the changes 53 

remain inconsistent (Maher et al., 2018).  54 

 55 
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Over the extratropics, several studies have identified robust large-scale patterns of changes in variability of 1 

annual and particularly seasonal mean temperature, including (a) a reduction in high latitudinal winter 2 

temperature variability and (b) an increase in summer temperature variability over land in tropics and 3 

subtropics (Holmes et al., 2016; Huntingford et al., 2013) as shown in Figure 4.20:. There is growing 4 

evidence that year-to-year and daily temperature variability decreases in winter over mid- to high-latitudes 5 

(Borodina et al., 2017; De Vries et al., 2012; Fischer et al., 2011; Holmes et al., 2016; Screen, 2014), which 6 

implies that the lowest temperatures rise more than the respective seasonal mean temperatures. Reduced 7 

high-latitude temperature variability may result from disproportionally large warming in source region of 8 

cold-air advection due to Arctic amplification and land-sea contrast (De Vries et al., 2012; Holmes et al., 9 

2016; Screen, 2014). It has further been argued that a reduction in snow and sea-ice coverage from partly to 10 

completely snow- and ice-free ocean and land surface would substantially reduce cold-season temperature 11 

variability (Borodina et al., 2017; Fischer et al., 2011; Gregory and Mitchell, 1995).  12 

 13 

On the other hand, enhanced summer temperature variability is projected over some land regions in the mid-14 

latitudes and subtropics. In particular an increase in daily to interannual summer temperature variability has 15 

been projected over central Europe as a result of larger year-to-year variability in soil moisture conditions 16 

varying between a wet and dry regime and leading to enhanced land-atmosphere interaction (Fischer et al., 17 

2012b; Holmes et al., 2016; Seneviratne et al., 2006). Furthermore, the amplified warming in the source 18 

region of warm-air advection due to land-ocean warming contrast and amplified Mediterranean warming 19 

(Brogli et al., 2019; Seager et al., 2014), may lead to disproportionally strong warming of the hottest days 20 

and summers and thereby increased variability.  21 

 22 

 23 

[START FIGURE 4.20 HERE] 24 

 25 
Figure 4.20: Relative change in variability of (left) JJA and (right) DFJ mean temperature in three large initial 26 

condition ensembles. Changes are shown as percentage changes of standard deviation across local seasonal mean 27 
temperatures. Changes are shown MPI 100-member grand ensemble by 2081–2100 (Maher et al., 2019), CanESM2 28 
50-member ensemble (Kirchmeier-Young et al., 2017) and NCAR-CESM 30-member ensemble (Kay et al., 2015) 29 
for RCP8.5. [Figure may later be updated based on large initial-condition ensembles or large multi-model 30 
ensembles such as CMIP6 showing changes in standard deviation of seasonal mean temperatures in 2081–2100 31 
(SSP5-8.5) relative to 1995–2014]. 32 

 33 

[END FIGURE 4.20 HERE] 34 

 35 

 36 

4.5.1.2  Annual Mean Atmospheric Temperature 37 

 38 

This subsection will assess the vertical and zonal structure of the temperature change (Figure 4.21:). Changes 39 

in lapse rate and zonal temperature gradients will be assessed in relation to changes in atmospheric dynamics 40 

discussed below (e.g., Perlwitz et al., 2015; Santer et al., 2017). 41 

 42 

             43 

[START FIGURE 4.21 HERE] 44 

 45 
Figure 4.21: Change in annual atmospheric temperature (°C) in 2081–2100 in (left) SSP1-2.6 and (right) SSP5-8.5 46 

relative to 1995–2014 for the IPSL-CM6A-LR model from CMIP6. [To be updated with more CMIP6 models as 47 
they become available]. 48 

 49 

[END FIGURE 4.21 HERE] 50 

 51 

 52 

 53 

 54 

4.5.1.3  Near-Surface Humidity  55 

 56 
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The relative humidity (RH) is expected to remain approximately constant on climatological time scales and 1 

planetary space scales, as indicated from modelling studies prior to the AR5. The AR5 noted the regional 2 

differences in long-term changes in RH, particularly on the contrast between land and ocean. Based on 3 

assessments from CMIP5 models, the AR5 concluded with medium confidence that ‘reductions in near-4 

surface RH over many land areas are likely’. The decrease in RH over most land areas is primarily 5 

contributed by the larger warming rates over land than over the ocean, and is termed the last-saturation-6 

temperature constraint, as explained in the AR5. 7 

 8 

Since the AR5, significant effort has been devoted to understanding the mechanisms for the decrease in land 9 

RH under global warming, and the relevance of the RH changes for land-sea warming contrast and water 10 

cycle. For the land RH decrease, both the moisture transport from the ocean and land-atmosphere feedback 11 

processes contribute. For specific humidity and its changes over land, the oceanic contribution is dominant 12 

while the role of evapotranspiration is secondary. However, the changes in land RH are also strongly 13 

influenced by evapotranspiration, which is suppressed by the drying soils under climate change (Berg et al., 14 

2016; Byrne and O’Gorman, 2015; Chadwick et al., 2016). The combination of both oceanic and continental 15 

influences can explain the spatially diverse trends in RH over land in the observations for the recent decades, 16 

with a generally dominant negative trend at the global scale (Vicente-Serrano et al., 2018). The changes of 17 

land RH and temperature are not independent. There is a strong feedback between the land RH decrease and 18 

land-ocean warming contrast under future warming projections (see Section 4.5.1.1).  19 

 20 

Changes in land RH can modulate the response of the water cycle to global warming  (Byrne and O’Gorman, 21 

2015; Chadwick et al., 2013). Most CMIP5 models project high precipitation associated with high near-22 

surface RH and temperature under climate change (Lambert et al., 2017). Over land, the spatial gradients of 23 

fractional changes in RH contribute to a drying tendency in precipitation minus evapotranspiration with 24 

warming, which partly explains why the ‘wet-gets-wetter, dry-gets-drier’ principle does not hold over land 25 

(Byrne and O’Gorman, 2015). Terrestrial aridity is projected to increase over land, as manifested by a 26 

decrease in the ratio of precipitation to potential evapotranspiration, in which the decrease in land RH has a 27 

contribution of about 35% according to CMIP5 models under doubling CO2 forcings (Fu and Feng, 2014). 28 

The aridity can be further amplified by the feedbacks of projected drier soils on land surface temperature, 29 

RH and precipitation (Berg et al., 2016). 30 

  31 

The CMIP6 multi-model ensemble projects general decreases in near-surface relative humidity over most 32 

land areas, but moderate increases over the oceans (Figure 4.22:). The absolute change is weak and only on 33 

the order of a few percent. A seasonal-dependence of the response is projected. During boreal winter, 34 

significant decreases relative to natural variability are projected in the high latitudes of the NH, subtropical 35 

Eurasian continent, Amazonia, southern Africa and Europe. During boreal summer, significant decreases 36 

relative to natural variability are projected in the tropical and subtropical Eurasian continent, North America, 37 

South America, South Africa and Australia. Significant decrease is projected in the mid-latitude SH. 38 

 39 

 40 

[START FIGURE 4.22 HERE] 41 

 42 
Figure 4.22: Multi-model mean change (%) in seasonal (left) DJF and (right) JJA mean near-surface relative humidity 43 

in 2041–2060 and 2081–2100 in SSP5-8.5 relative to 1995–2014 based on two CMIP6 models, IPSL-CM6A-LR 44 
and MRI-ESM2-0. [Figure to be updated.] 45 

 46 

[END FIGURE 4.22 HERE] 47 

 48 

 49 

The AR5 assessed an increase in projected heat stress, dominated by increasing temperatures in spite of local 50 

decreases in RH. The AR5 identified hotspots of future heat stress increases in areas with abundant 51 

atmospheric moisture availability and high present-day temperatures, such as Mediterranean coastal regions. 52 

 53 

Since the AR5, more comprehensive assessments on the future changes in heat stress have been conducted, 54 

concerning spatial variability (Kang and Eltahir, 2018; Pal and Eltahir, 2016), diurnal cycle (Buzan et al., 55 
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2015; Li et al., 2018b), extreme events (Pal and Eltahir, 2016), and different global warming targets (Russo 1 

et al., 2017). The detection of historical changes provides a sound physical basis for future projections. 2 

Already in the observed records, there is a detectable increase in wet-bulb globe temperature globally and 3 

over land regions since the 1970s that is attributable to human induced GHG emissions (Knutson and 4 

Ploshay, 2016; Li et al., 2017). 5 

 6 

Continued increases in heat stress are expected over all land regions along with rising temperatures, as 7 

consistently projected by global (including CMIP5) and regional climate models based on different heat 8 

stress metrics (Fischer and Knutti, 2013; Li et al., 2017; Russo et al., 2017). The projections of heat stress 9 

indices are relatively robust across models, with smaller uncertainty than would be expected from 10 

temperature and humidity individually, because the projected greater warming is usually accompanied by 11 

larger decreases in RH in models (Fischer and Knutti, 2013). While multiple heat stress indicators are used 12 

in future projections, the uncertainty in projected changes in heat stress is to a larger extent induced by 13 

different climate models compared to that from different choices of indices (Zhao et al., 2015). 14 

 15 

There is spatial variability of the heat stress responses. On the regional scale, extreme wet-bulb globe 16 

temperatures are expected to approach and even exceed the physiologic threshold for human adaptability 17 

(35°C) in hotspots such as southwest Asia and North China Plain in the late 21st century under RCP8.5, with 18 

possible interactions between humid coastal air masses and hot interior ones (Kang and Eltahir, 2018; Pal 19 

and Eltahir, 2016). These severe heat-related conditions located in low-elevation areas close to water bodies 20 

are consistent with those projected for southern Europe and Mediterranean coasts (Fischer and Schär, 2010).  21 

The exposure to humid heat waves is also expected to be high in some of the most densely populated 22 

regions, such as the Eastern United State and China (Russo et al., 2017). There is an urban amplification in 23 

heat stress changes compared to neighbouring rural areas directly related to the urban heat island effect, 24 

although weakly offset by the urban humidity deficit (Fischer et al., 2012a). 25 

 26 

Due to the co-occurrence of temperature, humidity and wind speed conditions, the heat index will increase at 27 

a faster rate than atmospheric temperature alone (Horton et al., 2016; Li et al., 2018b). The increase in 28 

apparent temperature (referred to as heat index) is 0.17°C (0.12°C–0.25°C) per decade faster than that in air 29 

temperature under RCP8.5 projections from CMIP5 models throughout the 21st century, and is more 30 

remarkable in summer daytime than winter night-time (Li et al., 2018b). The elevated heat stress 31 

consequently results in future increases in heat-related morbidity and mortality (Li et al., 2018b) and 32 

reductions in labour capacity especially in peak months of heat stress (Dunne et al., 2013). 33 

 34 

The CMIP6 multi-model ensemble projects robust increases in the mean wet-bulb globe temperature over 35 

land areas with distinct regional and seasonal characteristics (Figure 4.23:). Spatially, the increases in wet-36 

bulb globe temperature are largest in the northern high latitudes, related to the polar amplification in 37 

atmospheric warming. This amplified increase in wet-bulb globe temperature is more pronounced in the 38 

boreal winter than summer. The forced climate change signal is significantly different from the internal 39 

variability over nearly all land regions under SSP5-8.5 in the mid- and long-term. 40 

 41 

 42 

[START FIGURE 4.23 HERE] 43 

 44 
Figure 4.23: Multi-model mean change (°C) in seasonal (left) DJF and (right) JJA mean wet-bulb globe temperature in 45 

2041–2060 and 2081–2100 in SSP5-8.5 relative to 1995–2014 based on two CMIP6 models, IPSL-CM6A-LR and 46 
MRI-ESM2-0. [Figure to be updated.] 47 

 48 

[END FIGURE 4.23 HERE] 49 

 50 

 51 

 52 

 53 

4.5.1.4 Precipitation  54 

 55 
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The AR5 assessed that it is virtually certain that, in the long term, global precipitation will increase with 1 

GSAT rise. A gradual increase in global precipitation is projected over the 21st century with change exceeds 2 

0.05 mm day–1 (about 2% of global precipitation) and 0.15 mm day–1 (about 5% of global precipitation) by 3 

2100 in RCP2.6 and RCP8.5, respectively in CMIP5 models. Global maps of the percentage change in 4 

precipitation based on the five available CMIP6 models in the mid-term and long-term from SSP1-2.6 and 5 

SSP5-8.5 are presented in Figure 4.24:. Precipitation will likely increase by 1–3% °C–1 for the SSP5-8.5 6 

scenario. Precipitation is projected to increase in the CMIP6 models especially in monsoon regions and high 7 

latitudes. Changes in precipitation exhibit strong seasonal characteristics and, in many regions, the sign of 8 

the precipitation changes varies with season. Seasonal precipitation anomalies can provide a robust signal 9 

than annual mean (Huang et al., 2013; Lee et al., 2013). [Note: An assessment based on seasonal projections 10 

(JJA and DJF) will be presented with the availability of more CMIP6 projections.] 11 

 12 

 13 

[START FIGURE 4.24 HERE] 14 

 15 
Figure 4.24: Multi-model mean change (%) in annual mean precipitation in 2041–2060 (left) and 2081–2100 (right) 16 

relative to 1995–2014 from (top) SSP1-2.6 and (bottom) SSP5-8.5. [Figure produced with ESMValTool (Eyring et 17 
al., 2016b) based on the five CMIP6 models BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and 18 
MRI-ESM2-0. Figure to be updated with more CMIP6 models for JJA and DJF season.] 19 

 20 

[END FIGURE 4.24 HERE] 21 

 22 

 23 

The projected precipitation changes can be decomposed into a part that is related to atmospheric circulation 24 

referred to as dynamical component and a part related to water vapour changes, the thermodynamic 25 

component. There is high confidence, based on understanding and modelling (Fläschner et al., 2016; Samset 26 

et al., 2016), that global mean precipitation increases approximately 1–3% per °C of warming. However, 27 

regional precipitation changes also depend strongly on the atmospheric circulation. Model projections of 28 

circulation-related fields show a wide range of possible outcomes, which are primarily controlled by 29 

dynamics and exert a strong control on regional climate (Shepherd, 2014). The tropical circulation slows 30 

down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a 31 

shift of the ITCZ (Foltz et al., 2018). Circulation and precipitation changes are associated with weaker net 32 

radiative cooling of the atmosphere with higher atmospheric carbon dioxide levels (Bony et al., 2013). 33 

 34 

Since the AR5, significant progress has been achieved in understanding changes in patterns and rates of 35 

precipitation with GSAT rise. Climate models disagree in their hydrological sensitivity, changes per degree 36 

Celsius of surface warming (Fläschner et al., 2016; Knutti et al., 2013b; Liu et al., 2014). The dependence of 37 

precipitation uncertainty on GSAT change indicates that dynamical uncertainty unrelated to climate 38 

sensitivity dominates precipitation change uncertainty across the globe (Kent et al., 2015). Most of the 39 

projected changes exhibit a sharp contrast between land and ocean, with surface temperature-driven (slow) 40 

sensitivity reaching 3–5% °C-1 over the ocean and only 0–2% °C-1 over land (Samset et al., 2018a). Based on 41 

Precipitation Driver Response Model Intercomparison Project (PDRMIP), temperature-driven intensification 42 

of land-mean precipitation during the twentieth century has been masked by fast precipitation responses to 43 

anthropogenic sulphate and volcanic forcing. As projected sulphate forcing decreases and warming 44 

continues, land-mean precipitation is expected to increase more rapidly and may become clearly observable 45 

by the mid-21st century (Richardson et al., 2018).  46 

 47 

Precipitation exhibits a significant rapid adjustment in response to forcing. Rapid adjustments account for 48 

large regional differences in hydrological sensitivity across multiple drivers (Myhre et al., 2017; Samset et 49 

al., 2016). The rapid regional precipitation response to increased CO2 is robust among models, implying that 50 

the uncertainty in long-term changes is mainly associated with the response to SST-mediated feedbacks 51 

(Richardson et al., 2016). The processes that govern large-scale changes in precipitation are discussed in 52 

Chapter 8.  53 

 54 

Based on results from the 5 CMIP6 models available, we conclude that it is virtually certain that, in the long 55 
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term, global precipitation will increase with GSAT rise. It will likely increase by 1–3% °C–1 for the SSP5-8.5 1 

scenario. Precipitation will likely increase in monsoon regions and high latitudes. 2 

 3 

 4 

4.5.1.5 Global Monsoon Precipitation and Circulation  5 

 6 

In the AR5, the changes of the global monsoons were assessed in the context of long-term trends across the 7 

21st century and the change by the end (2081–2100) of the 21st century. The AR5 showed that there is 8 

growing evidence of improved skill of climate models in reproducing the climatological features of the 9 

global monsoon. Taken together with identified model agreement on future changes, the global monsoon, 10 

aggregated over all monsoon systems, is likely to strengthen in the 21st century with increases in its area and 11 

intensity, while the monsoon circulation weakens. Monsoon onset dates are likely to become earlier or not to 12 

change much and monsoon retreat dates are likely to be delayed, resulting in lengthening of the monsoon 13 

seasons in many monsoon regions. In the CMIP5 models the global monsoon area (GMA), the global 14 

monsoon total precipitation (GMP), and the global monsoon precipitation intensity (GMI) are projected to 15 

increase by the end of the 21st century (2081–2100). In all RCP scenarios, GMA is very likely to increase, 16 

and GMI is likely to increase, resulting in a very likely increase in GMP, by the end of the 21st century 17 

(2081–2100) (Kitoh et al., 2013). 18 

 19 

Since the AR5, there has been considerable progress in understanding the physical reasons governing the 20 

projected changes. The multi-model ensemble of the four best CMIP5 models for simulating GM properties 21 

projects that under the RCP4.5 scenario the NH monsoon precipitation is projected to increase much larger 22 

than the SH counterpart due to increase in temperature difference between the NH and SH, significant 23 

enhancement of the Hadley circulation, and atmospheric moistening, against stabilization of troposphere 24 

(Lee and Wang, 2014). It has been suggested that the dynamic effect plays more important role on regional 25 

differences in projected precipitation change among different monsoon regions than the thermodynamic 26 

effect. In the Asian monsoon regions, the monsoon circulation slows down at a much lower rate than in the 27 

other monsoon regions (Endo and Kitoh, 2014). Under the RCP4.5 scenario, the CMIP5 models project 28 

enhanced global monsoon activity, with the increases of GMA, GMP, and GMI by 1.9%, 3.2%, and 1.3%, 29 

respectively, per degree Celsius of surface warming. The increase in GMP is primarily attributed to the 30 

increase of moisture convergence, which comes mainly from the increase of water vapour concentration but 31 

is partly offset by the convergence effect (Hsu et al., 2013). Under RCP4.5, the interannual variability of 32 

monsoon rainfall is projected to intensify mainly over land, and the relationship between monsoon and El 33 

Niño is projected to strengthen (Hsu et al., 2013). 34 

 35 

Based on the projections of changes in precipitation from CMIP6 under the four priority SSPs, the global 36 

monsoon precipitation, aggregated over all monsoon systems, is likely to strengthen in the 21st century with 37 

increases in its intensity (Figure 4.11:), while the monsoon circulation weakens (Figure 4.12:). Over the 38 

period of 2021–2040, the increase of precipitation for SSP1-2.6 is generally stronger than that of SSP5-8.5, 39 

while over the long-term period (2081–2100), the increase of monsoon precipitation under SSP5-8.5 is far 40 

stronger than that of SSP1-2.6. In the long-term period (2081–2100), the global monsoon precipitation index 41 

projected to increase by 0.9–1.7 % per 1°C GSAT rise (5–95% range of the available projections), but the 42 

global monsoon circulation index is projected to decrease by 10.4– 19.4 % per 1°C GSAT rise, based on all 43 

of the priority SSPs from five available CMIP6 simulation (medium confidence owing to limited data 44 

availability). 45 

 46 

[We will further assess changes in GMA, GMI, and GMP for the four priority SSPs of CMIP6 once data 47 

becomes available.] 48 

 49 

 50 

4.5.1.6  Sea Level Pressure, Large-scale Atmospheric Circulation, Storm Tracks and Blocking  51 

 52 

In this subsection, we will assess projected long-term changes in aspects of the large-scale atmospheric 53 

circulation including sea level pressure patterns (Figure 4.25:), zonal wind changes (Figure 4.26:), storm 54 

track density and blocking. Here we will specifically address the robustness of projected changes and key 55 
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uncertainties (Shepherd, 2014). We will also assess new understanding on key characteristics and 1 

mechanisms in atmospheric circulation (Ceppi et al., 2018; Zappa and Shepherd, 2017) including Hadley cell 2 

expansion (Nguyen et al., 2015) and poleward shift in storm tracks (Li et al., 2018a; Mbengue and 3 

Schneider, 2017; Shaw et al., 2016; Tamarin-Brodsky and Kaspi, 2017), changes induced by stratospheric 4 

ozone and water vapour (Maycock et al., 2013; Chiodo and Polvani, 2017) . 5 

 6 

The AR5 assessed that mean sea level pressure is projected to decrease in high latitudes and increase in the 7 

mid-latitudes as GSAT rise. Such a pattern is associated with a poleward shift in the storm track and an 8 

increase in the annular mode index. Figure 4.25: shows seasonal mean sea level pressure changes for 2081–9 

2100 in a low greenhouse emission scenario (SSP1-2.6) and a high GHG emissions scenario (SSP5-8.5). The 10 

broad pattern of increasing sea level pressure in mid-latitudes and decreasing pressure over polar regions is 11 

most pronounced for the high GHG forcing scenario. In SSP1-2.6, an opposite response is found at southern 12 

high latitudes, which in austral summer can be attributed to the relatively more important role of ozone 13 

recovery for the circulation in the absence of a larger global warming signal.  14 

 15 

 16 

[START FIGURE 4.25 HERE] 17 

 18 
Figure 4.25: Multi-model mean change (hPa) in JJA and DJF mean sea level pressure in 2081–2100 in SSP1-2.6 and 19 

SSP5-8.5 relative to 1995–2014 [Figure produced with ESMValTool (Eyring et al., 2016b) based on the five 20 
CMIP6 models BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0. More CMIP6 21 
models will be added as they become available.] 22 

 23 

[END FIGURE 4.25 HERE] 24 

 25 

 26 

Storm tracks and mid-latitude westerly jets are dynamically related aspects of mid-latitude circulation. The 27 

AR5 assessed that a poleward shift of the Southern Hemisphere (SH) westerlies and storm track is likely by 28 

the end of the 21st century in the RCP8.5 scenario. In contrast, low confidence was assessed for the storm-29 

track response in the Northern Hemisphere (NH). 30 

 31 

Figure 4.26: shows changes in annual and zonal mean zonal wind at the end of the century (2081–2100) for 32 

the SSP1-2.6 and SSP5-8.5 scenarios. In both scenarios there is a strengthening and lifting of the subtropical 33 

jets in both hemispheres, consistent with the response to large-scale tropospheric warming found in earlier 34 

generations of climate models (Collins et al., 2013). In the SH, there is on average a weak equatorward shift 35 

of the mid-latitude jet in SSP1-2.6. This annual mean perspective masks the fact that changes in the SH mid-36 

latitude jet are expected to show a seasonal variation owing to the relative importance of ozone recovery and 37 

GHGs as a driver of circulation changes in different seasons. This relative balance is further evident when 38 

examining the SSP5-8.5 scenario in Figure 4.27:, which shows a stronger poleward shift in the SH mid-39 

latitude jet compared to the weak equatorward shift in SSP1-2.6 (Barnes and Polvani, 2013). In the NH, the 40 

changes in lower tropospheric zonal mean zonal winds by the end of the century are smaller than found in 41 

the SH and reflect an average over potentially divergent regional wind changes particularly over the major 42 

NH ocean basins (Simpson et al., 2014).  43 

 44 

 45 

[START FIGURE 4.26 HERE] 46 

 47 
Figure 4.26: Multi-model mean annual mean zonal wind change (m s-1) in 2081–2100 in (left) SSP1-2.6 and (right) 48 

SSP5-8.5 relative to 1995–2014. Results are based on the IPSL-CM6A-LR and BCC-CSM models. The 1995–2014 49 
climatology is shown in contours with spacing 10 m s-1. [More CMIP6 models to be added as they become 50 
available.] 51 

 52 

[END FIGURE 4.26 HERE] 53 

 54 

 55 

[START FIGURE 4.27 HERE] 56 
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 1 
Figure 4.27: Multi-model mean change in winter (NH DJF, SH JJA) zonal wind at 850 hPa (u850) in 2081–2100 in 2 

(left) SSP1-2.6 and (right) SSP5-8.5 relative to 1995–2014. The 1995–2014 climatology is shown in contours with 3 
spacing 10 m s-1. [More CMIP6 models to be added as they become available]. 4 

 5 

[END FIGURE 4.27 HERE] 6 

 7 

 8 

CMIP5 models show a strong seasonal and regional dependence in the response to climate change of NH 9 

westerlies (Barnes and Polvani, 2013; Grise and Polvani, 2014; Simpson et al., 2014; Zappa et al., 2015). 10 

CMIP5 projections indicate a poleward shift of the westerlies in the North Atlantic in summer, and in both 11 

the North Pacific and North Atlantic in Autumn (Simpson et al., 2014). The shift of the westerlies is more 12 

uncertain in the other seasons, particularly in the North Atlantic in winter (Zappa and Shepherd, 2017). A 13 

poleward shift of the jets and storm tracks is expected in response to an increase in the atmospheric 14 

stratification and in the equator-to-pole meridional temperature gradient (Harvey et al., 2014; Shaw et al., 15 

2016). Progress since the AR5 has better highlighted how different climate change aspects can drive 16 

different, and potentially opposite, responses in the mid-latitude jets and storm tracks. Potential drivers 17 

include the patterns in sea surface warming (Ceppi et al., 2018; Langenbrunner et al., 2015; Mizuta et al., 18 

2014), land-sea contrast (Shaw and Voigt, 2015), the loss of sea ice (Deser et al., 2015; Harvey et al., 2015; 19 

Screen et al., 2018b), and the strength of the stratospheric vortex (Grise and Polvani, 2017; Manzini et al., 20 

2014; Simpson et al., 2018). From an energetics perspective, the uncertainty in the response of the jet 21 

streams depends on the response of clouds, their non-spatially uniform radiative feedbacks shaping the 22 

meridional profile of warming (Ceppi and Hartmann, 2016; Ceppi and Shepherd, 2017; Voigt and Shaw, 23 

2016). The influence from competing dynamical drivers and the absence of observational evidence suggests 24 

there is at most medium confidence on a poleward shift of the NH low-level westerlies in autumn and 25 

summer and low confidence in the other seasons.  26 

 27 

As stated in the AR5, the number of extratropical cyclones (ETC) composing the storm tracks is projected to 28 

decline in the future projections, but by no more than a few percent. The reduction is mostly located on the 29 

southward flank of the storm tracks, which is associated with the Hadley cell expansion and a poleward shift 30 

in the mean genesis latitude of ETCs (Tamarin-Brodsky and Kaspi, 2017). Furthermore, the poleward 31 

propagation of individual ETCs is expected to increase with warming (Graff and LaCasce, 2014; Tamarin-32 

Brodsky and Kaspi, 2017), thus contributing to a poleward shift in the mid-latitude transient-eddy kinetic 33 

energy. The increased poleward propagation results from the strengthening of the upper tropospheric jet and 34 

increased cyclone-associated precipitation (Tamarin-Brodsky and Kaspi, 2017), which are robust aspects of 35 

climate change.  36 

 37 

The number of ETCs associated with intense surface wind speeds and undergoing explosive pressure 38 

deepening are projected to strongly decrease in the NH winter (Kar-Man Chang, 2018; Seiler and Zwiers, 39 

2016). Some previous studies had found an increase in the frequency of extreme NH ETCs, but these 40 

conflicting results have been reconciled in the light of changes in the background pressure field rather than in 41 

dynamical aspects of ETCs (Chang, 2014). There are, however, regional exceptions such as in the northern 42 

North Pacific, where explosive and intense ETCs are projected to increase in association with the poleward 43 

shift of the jet and increased upper-level baroclinicity (Seiler and Zwiers, 2016). The weakening of surface 44 

winds of ETCs in the NH is attributed to the reduced low-level baroclinicity from SST and sea ice changes 45 

(Harvey et al., 2014; Seiler and Zwiers, 2016; Wang et al., 2017b). Eddy kinetic energy and intense cyclone 46 

activity is also projected to decrease in the NH summer in association with a weakening of the jet (Chang et 47 

al., 2016; Lehmann et al., 2014). However, it remains unclear how important a future increase in mesoscale 48 

latent heating could be for the dynamical intensity of ETCs (Li et al., 2014; Michaelis et al., 2017; Pfahl et 49 

al., 2015; Willison et al., 2015). Because mesoscale heating is presumably not properly represented at the 50 

spatial resolution of CMIP5 climate models, there is only medium confidence in the projected decrease in the 51 

frequency of intense NH ETCs. 52 

 53 

In contrast to the NH, CMIP5 models indicate that the frequency of intense ETCs will increase in the SH 54 

(Chang, 2017). This response follows from both an increase in the meridional SST gradient, linked to the 55 



First Order Draft Chapter 4 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 4-53 Total pages: 163 

slower warming of the Southern Ocean, and from the poleward shift in the upper level jet (Grieger et al., 1 

2014). The wind speeds associated with ETCs are therefore expected to intensify in the SH storm track for 2 

high emission scenarios (high confidence). The ozone hole and GHG increases have a similar impact on ETC 3 

tracks (Grise et al., 2014), so that the ozone hole recovery could largely compensate the GHG signal in low 4 

emission scenarios.  5 

 6 

Regardless of dynamical intensity changes, the number of ETC associated with extreme precipitation is 7 

projected to greatly increase with warming (high confidence), due to the increase moisture-loading capacity 8 

of the atmosphere (Hawcroft et al., 2018; Yettella and Kay, 2017).  9 

 10 

[We will further assess changes in characteristics of ETC in four SSPs from the CMIP6 models (Figure 11 

4.28:) as more data becomes available.] 12 

 13 

 14 

[START FIGURE 4.28 HERE] 15 

 16 
Figure 4.28: Multi-model mean change in winter, extratropical storm track density (NH DJF, SH JJA in 2081–2100 in 17 

SSP5-8.5 relative to 1995–2014. [AR5 Figure 12.20, to be updated when high frequency output becomes available 18 
from CMIP6]. 19 

 20 

[END FIGURE 4.28 HERE] 21 

 22 

 23 

Blocking is associated with a class of quasi-stationary high-pressure weather systems in the middle and high 24 

latitudes that disrupt the prevailing westerly flow. These events can persist for extended periods such as a 25 

week or longer, and can cause long-lived extreme weather conditions, from heat waves in summer to cold 26 

spells in winter. The AR5 assessed with medium confidence that the frequency of blocking would not 27 

increase under enhanced GHG concentrations, while changes in blocking intensity and persistence remained 28 

uncertain. 29 

 30 

CMIP5 projections suggest that the response of blocking frequency to climate change might be quite 31 

complex (Dunn-Sigouin et al., 2013; Masato et al., 2013). An eastward shift of winter blocking activity in 32 

the NH is indicated (Kitano and Yamada, 2016; Lee and Ahn, 2017; Masato et al., 2013; Matsueda and 33 

Endo, 2017) while during boreal summer blocking frequency tends to decrease in mid-latitudes (Matsueda 34 

and Endo, 2017) and to increase in high latitudes (Masato et al., 2013). However, as shown in (Woollings et 35 

al., 2018), the spatial distribution and the magnitude of the suggested changes are sensitive to the blocking 36 

detection methods (Barriopedro et al., 2010; Davini et al., 2012; Schwierz et al., 2004). In the SH, blocking 37 

frequency is projected to decrease in the Pacific sector during austral spring and summer. However, seasonal 38 

and regional changes are not totally consistent across the models (Parsons et al., 2016).  39 

 40 

To better understand the uncertainty in future blocking activity, a process-oriented approach has been 41 

proposed that aims to link blocking responses to different features of the global warming pattern. The upper-42 

level tropical warming might be the key factor leading to a reduced blocking because of the strengthening of 43 

zonal winds (Kennedy et al., 2016). The more controversial influence of near-surface Arctic warming might 44 

lead to an increase blocking frequency (Francis and Vavrus, 2015; Mori et al., 2014).  45 

 46 

The large differences among models and the large sensitivity to the blocking detection methods suggest that 47 

there is at most medium confidence in a shift of the major centres of blocking activities, with a decrease of 48 

blocking frequency in those regions with the largest frequencies during the historical period.  49 

 50 

[We will further assess changes in atmospheric blocking frequencies in four SSPs from the CMIP6 models 51 

(Figure 4.29:) as more data becomes available.] 52 

 53 

 54 

[START FIGURE 4.29 HERE] 55 
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 1 
Figure 4.29: Box plot showing wintertime (December to March) present-day (1986–2005) and future climate (2081–2 

2100) atmospheric blocking frequencies over (a) the Greenland region (65°W–20°W, 62.5°N–72.5°N), (b) the 3 
Central European region (20°W–20°E, 45°N–65°N), (c) the North Pacific region (130°E–150°W, 60°N–75°N). 4 
Values show the percentage of blocked days per season following the (Davini et al., 2012) index. Median values 5 
are the black horizontal bar. The numbers below each bar report the number of models included. Observations are 6 
obtained as the average of the ERA-Interim Reanalysis, the JRA-55 Reanalysis and the NCEP/NCAR Reanalysis.   7 

 8 

[END FIGURE 4.29 HERE] 9 

 10 

 11 

4.5.2 Cryosphere, Ocean, and Biosphere  12 

 13 

4.5.2.1 Ocean Temperature 14 

 15 

This subsection assesses the vertical cross-sections of zonal and annual mean ocean temperature change 16 

(Figure 4.30:). We assess the robustness and uncertainties of the patterns as well as the key characteristics 17 

and underlying mechanisms (Exarchou et al., 2015), including an assessment of forced changes in the 18 

Southern Ocean (Frölicher et al., 2015; Swart et al., 2018). 19 

 20 

Since the AR5, significant improvement has been made in the observation-based ocean heat content estimate 21 

by improving methods used to account for spatial and temporal gaps in ocean temperature measurements 22 

(Cheng et al., 2017, 2019). The newly estimated observation-based change in ocean heat content is larger 23 

than reported by the AR5 and consistent with the reconstruction of the radiative imbalance at the top of 24 

atmosphere starting in 1985 (Cheng et al., 2017). Also, the new ocean heat content estimate is in line with 25 

the mean of CMIP5 results, providing greater confidence in model-projected ocean temperature change in 26 

the future.  For the mean of 2081–2100 relative to 1991–2005, CMIP5 models project an ocean heat content 27 

change (0–2000m) of 1037 ZJ (around 0.40°C) and 2020 ZJ (around 0.78°C) for RCP 2.6 and RCP 8.5, 28 

respectively (Cheng et al., 2019).  29 

 30 

The redistribution of heat to the ocean interior is governed by a collection of complicated processes. Changes 31 

in different processes can either warm or cool the ocean. In the 70-year idealized 4×CO2 experiments 32 

performed by three climate models, it is found that convective and mixed-layer processes, as well as eddy-33 

related processes, tend to cool the subsurface ocean, whereas advective and diapycnically diffusive processes 34 

tend to warm the ocean interior  (Exarchou et al., 2015). The Southern Ocean plays a dominant role in the 35 

global ocean heat uptake. CMIP5 model simulation shows that during the period 1861–2005, about 75% 36 

ocean heat uptake occurs in the Ocean south of 30°S (Frölicher et al., 2015). The observed warming of the 37 

Southern Ocean since 1950s is primarily attributed to increase in GHGs, and the effect of stratospheric ozone 38 

depletion  is much smaller (Swart et al., 2018). It is very likely that the Southern Ocean will continue playing 39 

a major role in the ocean heat uptake.  40 

 41 

The multi-model mean projection of zonally averaged ocean temperature change in 2081–2100 relative to 42 

1995–2014 (Figure 4.30:) shows that excess heat has penetrated to the ocean interior as deep as about 2000 43 

m. In the deep ocean, the warming is much more pronounced in the Southern Ocean. A slight cooling is 44 

observed in the deep ocean of the mid-to-high latitude Northern Hemisphere (NH), which might be 45 

associated with projected reduction in the strength of AMOC. [These aspects will be further assessed in the 46 

four priority SSPs from more CMIP6 models as more data becomes available.] 47 

 48 

 49 

[START FIGURE 4.30 HERE] 50 

 51 
Figure 4.30: Multi-model mean change (°C) in annual mean ocean temperature in 2081–2100 in (left) SSP1-2.6 and 52 

(right) SSP5-8.5 relative to 1995–2014. [AR5 Figure 12.12 lower panels, to be updated for FOD]. 53 
 54 

[END FIGURE 4.30 HERE] 55 

 56 
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 1 

4.5.2.2 Ocean acidification 2 

 3 

It is virtually certain that continued penetration of anthropogenic CO2 from the surface to the deep ocean will 4 

acidify the ocean interior. The continued acidification of the deep ocean can be demonstrated by the shoaling 5 

of the saturation horizon of calcium carbonate, which represents the interface below which seawater is 6 

undersaturated with calcium carbonate. At present, the calcium carbonate saturation horizon is much 7 

shallower in the subarctic Pacific and the Southern Ocean, compared to that of the North Atlantic (Feely et 8 

al., 2004). With continued CO2 emission, the saturation horizon of both aragonite and calcite will move 9 

towards the surface (Figure 4.31:). More comprehensive assessment will be done on the future ocean 10 

acidification under the four priority SSPs from more CMIP6 models. 11 

 12 

 13 

[START FIGURE 4.31 HERE] 14 

 15 
Figure 4.31: Latitude-depth distribution of aragonite saturation state under RCP 8.5 in year 2100 for the Atlantic 16 

(upper panel) and Pacific Ocean (lower panel). Overplotted is the aragonite saturation horizon at year 2010 (dotted 17 
lines) and 2100 (solid lines). Results are shown for the median projection of CMIP5 model results (taken from 18 
Figure 6.29 of the AR5, to be updated with CMIP6 SSP1-2.6 and SSP5-8.5 results relative to 1995–2014).  19 

 20 

[END FIGURE 4.31 HERE] 21 

 22 

 23 

4.5.3 Modes of Variability  24 

 25 

In this subsection the mid- to long-term evolution of the large-scale climate modes of variability and their 26 

associated teleconnections is assessed. Assessments of the physical mechanisms and the individual 27 

feedbacks involved in the future change of each mode are provided in Chapters 8–10. 28 

 29 

4.5.3.1  Northern and Southern Annular Modes 30 

 31 

The NAM and NAO  32 

The AR5 assessed from CMIP5 simulations that the future boreal wintertime northern annular mode (NAM) 33 

is very likely to exhibit natural variability and forced trends of similar magnitude to that observed in the past 34 

and is likely to become slightly more positive in the future. Considerable uncertainty existed related to 35 

physical mechanisms to explain the observed and projected changes in the NAM, but it was clear that NAM 36 

trends are closely connected to projected shifts in the mid-latitude jets and storm tracks. It was reported that 37 

some debate existed in the literature as to whether the NAM is part of the forced response to anthropogenic 38 

influence, or an additional source of natural variability (e.g., Zhang et al., 2006). 39 

 40 

NAM projections from climate models analysed since the AR5 reveal broadly similar results to the AR5 for 41 

the late 21st century, showing a positive trend with comparable magnitude to the multi-model or multi-42 

realization variability. While CMIP5 models simulate interannual variability of the NAM that closely 43 

matches observations, the clear impression from literature is that decadal and multidecadal variability of the 44 

NAM are uniformly underestimated (Wang et al., 2017d).  45 

 46 

In long-term projections under the SSP5-8.5 scenario for an ensemble of CanESM6 simulations the signature 47 

of NAM change becomes somewhat clearer above the variability (Figure 4.32:). The NAM becomes much 48 

more positive in all season excluding the boreal summer, where on the contrary it decreases. In boreal winter 49 

the central estimate for the NAM is more than four times higher than the current one. This estimate from 50 

CanESM6 is in partial contrast with the wintertime change in the CMIP5 multi-model ensemble, where it has 51 

been shown a considerable uncertainty even by 2100 (Gillett and Fyfe, 2013). This uncertainty provides 52 

further evidence that our inability to make more precise projections of changes to the NAM is primarily by a 53 

lack of physical understanding (Shepherd, 2014) and imperfect models (Lee et al., 2019; Zappa et al., 2014), 54 

rather than by internal climate variability. 55 
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 1 

The SAM  2 

Figure 4.32: shows the long-term southern annular mode (SAM) changes under the SSP5-8.5 scenario for an 3 

ensemble of CanESM6 simulations. Under this forcing scenario, the SAM becomes substantially more 4 

positive by the end of the century relative to 1995–2014 than was found for the near-term, 2021–2040 (see 5 

Section 4.4.3.1). In austral winter and spring, the central estimate for the increase in SAM is more than four 6 

times larger than over 2021–2040. In austral autumn and winter, the increase in SAM is larger by around a 7 

factor of three to four compared to the projected near-term changes (see Section 4.4.3.1). The amplitude of 8 

the changes in SAM at the end of the century will depend strongly on the GHG forcing scenario being 9 

considered, with larger trends for a higher forcing scenario (Barnes et al., 2014; Barnes and Polvani, 2013). 10 

 11 

 12 

[START FIGURE 4.32 HERE] 13 

 14 
Figure 4.32: Simulated Annular Mode index change from present-day to the long-term: (a) NAM and (b) SAM. The 15 

NAM is defined as the difference in zonal mean SLP at 35°N and 65°N (Li and Wang, 2003) and the SAM as the 16 
difference in zonal mean SLP at 40°S and 65°S (Gong and Wang, 1999). Present-day values are averages over the 17 
period from 1995–2014. Near-term values are averages over the period from 2081–2100. The vertical lines are 18 
ensemble-means and the shaded bars are 5–95% confidence intervals on the ensemble means. [These calculations 19 
are based on a ten-member ensemble of simulations from one CMIP6 model, CanESM5. Eventually, the figure will 20 
be updated using single simulations from the full CMIP6 ensemble.] 21 

 22 

[END FIGURE 4.32 HERE] 23 

 24 

 25 

4.5.3.2 El Niño-Southern Oscillation and its Teleconnections  26 

 27 

The El Niño Sourthern Oscillation (ENSO) influences global climate and is the dominant source of seasonal 28 

climate predictability (Timmermann et al., 2018), and will very likely remain so in the future (Cai et al., 29 

2015). While pronounced low-frequency modulations of ENSO exist in unforced control simulations 30 

(Wittenberg, 2009), there is potential for anthropogenically forced changes in both ENSO SST variability 31 

and climate impacts in the mid-term to long-term future (Cai et al., 2015). While a subset of CMIP5 models 32 

that simulate linear ENSO stability realistically exhibit a decrease in ENSO amplitude by the latter half of 33 

the 21st century (Figure 4.16:), there is no strong consensus among models on long-term Niño 3.4 SST 34 

changes when considering all models (Cai et al., 2015) as shown in Figure 4.33:. However, an increase of 35 

Eastern Pacific (EP)-ENSO SST variance has been shown when taking into account the biases in the ENSO 36 

pattern simulation by different models (Cai et al., 2018a). 37 

 38 

The ENSO characteristics depend on the climate mean state of the tropical Pacific; however, ENSO can also 39 

change the mean state through nonlinear processes (Cai et al., 2015; Timmermann et al., 2018). The response 40 

of the tropical Pacific mean state to anthropogenic forcing is characterized by a faster warming on the 41 

equator compared to the off-equatorial region, a faster warming of the eastern equatorial Pacific compared to 42 

the central tropical Pacific, and a weakening of the Walker circulation in most models. These changes are 43 

associated with enhanced precipitation on the equator, especially in the eastern part of the basin (Cai et al., 44 

2015; Watanabe et al., 2012).  45 

 46 

While there is no strong model consensus on how these mean state changes affect ENSO SST variability, 47 

consensus exist that these changes are conducive to an increase in extreme ENSO-associated rainfall even if 48 

ENSO SST variability itself remains unchanged (Cai et al., 2015; Power et al., 2013). Moreover, there is an 49 

indication that tropical cyclones will become more frequent during future El Niño events (and less frequent 50 

during future La Niña events) by the end of the 21st century (Chand et al., 2017), thus contributing to the 51 

projected increase in ENSO-associated hydroclimate impacts. These projected changes of ENSO impacts 52 

depend, however, critically on the projected climate mean state changes. For instance, one CMIP5 model 53 

that warms less in the eastern than in the western Pacific exhibits a pronounced decrease in extreme ENSO 54 

events (Kohyama and Hartmann, 2017). This example highlights the importance of constraining tropical 55 

Pacific mean state changes in order to enhance confidence in the projected response of Pacific climate 56 
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variability, such as ENSO. 1 

 2 

 3 

[START FIGURE 4.33 HERE] 4 

 5 
Figure 4.33: Comparison between past and future probability distributions of ENSO SST anomalies computed using 6 

two different ENSO indices (Cai et al., 2015), namely Niño3 and Niño4 Indices. [A similar analysis based on the 7 
CMIP6 multi-model ensemble potentially will be shown in this subsection. Additionally, a figure for ENSO-8 
associated hydroclimate changes will be shown.] 9 

 10 

[END FIGURE 4.33 HERE] 11 

 12 

 13 

4.5.3.3  Pacific Decadal Variability  14 

 15 

The AR5 assessed that there is low confidence in projections of future changes in Pacific decadal variability 16 

(PDV) due to the inability of CMIP5 models to satisfactory represent the connection between PDV and Indo-17 

Pacific SST variations. Because the PDV appears to encompass the combined effects of different dynamical 18 

processes operating at different timescales, its correct representation in CMIP5 climate models is still 19 

discussed and its long-term evolution under climate change is still uncertain. 20 

 21 

On top of the challenge to narrow uncertainty in the future evolution of all potential mechanisms at play in 22 

PDV, it also remains unclear how the background state in the Pacific Ocean will change due to time-varying 23 

radiative forcing, and how this change will interact with variability at interannual and low-frequency 24 

timescales (Fedorov et al., 2019). Recent research suggests that PDV would have weaker amplitude and 25 

higher frequency with global warming (Geng et al., 2019; Xu and Hu, 2017; Zhang and Delworth, 2016). 26 

The former appears to be associated with a decrease in SST variability and the meridional gradient over the 27 

Kuroshio-Oyashio region, and with a reduction in North Pacific wind stress and the meandering of the 28 

subpolar/subtropical gyre interplay (Zhang and Delworth, 2016). The latter is hypothesized to rely on the 29 

enhanced ocean stratification and shallower mixed layer of a warmer climate, which would increase the 30 

phase speed of the westward-propagating oceanic waves, hence shortening the decadal-interdecadal 31 

component (Goodman and Marshall, 1999; Xu and Hu, 2017; Zhang and Delworth, 2016). The weakening of 32 

the PDV in a warmer climate may reduce the internal variability of global mean surface temperature, to 33 

which PDV seems associated (Kosaka and Xie, 2016; Zhang et al., 1997). Thus, a weaker and more frequent 34 

PDV could reduce the disturbance of the internal variability to the global warming trend and eventually lead 35 

to a reduced probability of global warming hiatus events.  36 

 37 

Concerning secular variations, a multi-model projection suggests the PDV shift into a negative phase, 38 

particularly towards the end of the century for which the trend becomes statistically significant, although not 39 

absent of model diversity and uncertainty (Lapp et al., 2012). The influence of the anthropogenic climate 40 

change on PDV, however, is still unclear (Liu and Di Lorenzo, 2018) 41 

 42 

On the basis of recent studies conducted using CMIP5 models, there is still low confidence on how PDV 43 

would change under global warming. [This statement should be confirmed (or not) when the new results 44 

from CMIP6 models will be available.] 45 

 46 

 47 

4.5.3.4 Indian Ocean Basin and Dipole Modes and their Teleconnections  48 

 49 

In the mid- to long-term period, the projected climate mean state changes in the tropical Indian Ocean 50 

resemble a positive Indian Ocean dipole (IOD) state, with faster warming in the west compared to the east 51 

(Cai et al., 2013; Zheng et al., 2013b). However, it was argued that this projected mean state change could be 52 

due to the large mean state biases in the simulated current climate and potentially not a realistic expectation 53 

(Li et al., 2016a). If the mean state change will indeed resemble a positive IOD state however, this would 54 

lead to a reduction in the amplitude difference between positive and negative IOD events, but with no robust 55 
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change in IOD frequency (Cai et al., 2013). For a small subset of CMIP5 models that simulate IOD events 1 

best, a slight increase in IOD frequency was found under the CMIP5 RCP4.5 scenario (Chu et al., 2014) .  2 

 3 

However, it was also found that the frequency of extreme positive IOD events, which exhibit the largest 4 

climate impacts, might increase by a factor of about three under the CMIP5 RCP8.5 scenario (Cai et al., 5 

2014). An approximate doubling of these extreme positive IOD events was still found for global warming of 6 

1.5 °C warming above pre-industrial levels, without a projected decline thereafter (Cai et al., 2018b). These 7 

results depend however on how realistic the projected mean state change is in the Indian Ocean and could 8 

thus potentially turn out to be spurious (Li et al., 2016a). 9 

 10 

For a small subset of CMIP5 models that simulate IOB events best, a considerable decrease in IOB 11 

frequency was found under the CMIP5 RCP4.5 scenario (Chu et al., 2014). For a different subset of models 12 

however, it was found that ENSO-related IOB warming increases under the same CMIP5 RCP4.5 scenario 13 

(Tao et al., 2015). 14 

 15 

Given the results that ENSO events in general (Cai et al., 2018a) and extreme El Niño events (Cai et al., 16 

2014) are projected to increase in response to greenhouse warming, and given the close relationship between 17 

ENSO-IOD (Stuecker et al., 2017) and ENSO-IOB (Du et al., 2013; Xie et al., 2009), ENSO-related IOD 18 

and IOB variability might increase. Currently, no new studies and evidence exist that would suggest a 19 

disappearance of either IOD or IOB variability in the mid-term to long-term future. This means that we also 20 

expect that the ENSO-IOD and ENSO-IOB relationships observed in the current climate will persist in the 21 

future (high confidence).  22 

 23 

 24 

4.5.3.5  Atlantic Multidecadal Variability  25 

 26 

Based on paleoclimate reconstructions and model simulations, the AR5 assessed that AMV is unlikely to 27 

change its behaviour in the future. However, AMV fluctuations over the coming decades are likely to 28 

influence regional climates, enhancing or offsetting some of the effects of global warming. No new results 29 

on AMV projections have become available since the AR5. There is clearly a knowledge gap on long-term 30 

changes of the AMV under global warming.  31 

 32 

 33 

4.5.3.6 Tropical Atlantic Modes and their Teleconnections  34 

 35 

In spite of remarkable progresses made in CMIP5 with respect to CMIP3, climate models are generally not 36 

able to correctly simulate the main aspects of Tropical Atlantic variability (TAV) and associated impacts. 37 

This is likely the main reason why in the AR5 there are very few studies dealing with long-term changes in 38 

TAV. The models that best represent the Atlantic meridional mode (AMM) show a weakening for future 39 

climate conditions. However, model biases in the Atlantic Niños are too strong to properly assess changes. 40 

Nevertheless, there is robust evidence over multiple generations of models of a warming in the mean state of 41 

the Tropical Atlantic basin, though the impact of climatological changes on the variability is quite uncertain. 42 

 43 

Long-term changes in TAV modes and associated teleconnections are expected as a result of global 44 

warming, but large uncertainties exist (Cai et al., 2019; Lübbecke et al., 2018). Observational analyses show 45 

large discrepancies in SST and trade winds strength (Mohino and Losada, 2015; Servain et al., 2014). Single-46 

model sensitivity experiments show that Atlantic Niño characteristics at the end of twenty firsts century 47 

remain equal to those of the twentieth century, though changes in the climatological SSTs can lead to 48 

changes in the associated teleconnections (Mohino and Losada, 2015). 49 

 50 

The weakening of the Atlantic Meridional Overturning Circulation (AMOC) expected from global warming 51 

(e.g., Jackson et al., 2016a; Robson et al., 2014) has been suggested to have an influence on the mean 52 

background state of tropical-Atlantic surface conditions, thereby enhancing equatorial Atlantic variability 53 

and  resulting in a stronger tropical Atlantic–ENSO teleconnection (Svendsen et al., 2014). But again, based 54 

on CMIP5 and CMIP6 results [to be confirmed as more data becomes available], we conclude that there is a 55 
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clear lack of model studies investigating the long-term evolution of TAV and associated teleconnections. 1 

Most of studies rely on a single model, and hence a large uncertainty exists. The strong model biases 2 

together with limitations in the observational record might explain this lack of progress. 3 

 4 

 5 

4.6 Implications of Climate Policy  6 

 7 

4.6.1 Patterns of Climate Change for Specific Levels of Global Warming  8 

 9 

This section provides an assessment of changes in climate at 1.5°C, 2°C, 3°C, and 4°C of global warming 10 

above pre-industrial levels, including a discussion of the regional patterns of change in temperature (Section 11 

4.6.1.1), precipitation (Section 4.6.1.2), aspects of atmospheric circulation (Section 4.6.1.3) and global 12 

modes of variability (Section 4.6.1.4). An assessment of changes in extreme weather events as a function of 13 

different levels of global warming is provided in Chapter 11, whilst corresponding analyses of regional 14 

changes in climate are provided in Chapter 12 and in the Atlas. This section builds upon assessments from 15 

the AR5 WGI report (Bindoff et al., 2013; Christensen et al., 2013; Collins et al., 2013; Hartmann et al., 16 

2013) and Chapter 3 of the IPCC Special Report on Global Warming of 1.5°C (SR1.5; (Hoegh-Guldberg et 17 

al., 2018)), as well as a substantial body of new literature related to projections of climate at 1.5°C, 2°C and 18 

higher levels of global warming above pre-industrial levels. 19 

 20 

Several methodologies have been applied to estimate the spatial patterns of climate change associated with a 21 

given level of global warming. These include performing model simulations under stabilisation scenarios 22 

designed to achieve a specific level of global warming (e.g. Dosio et al., 2018; Kjellström et al., 2018; 23 

Mitchell et al., 2017),  the analysis of epochs identified within transient simulations that systematically 24 

exceed different thresholds of global warming (e.g. Hoegh-Guldberg et al., 2018), and analysis based on 25 

statistical methodologies that include empirical scaling relationships (ESR) (e.g., Dosio and Fischer, 2018; 26 

Schleussner et al., 2017; Seneviratne et al., 2018b) and statistical pattern scaling (e.g., Kharin et al., 2018). 27 

These different methodologies are discussed in some detail in Subsection 4.2.5 (see also James et al., 2017) 28 

and generally provide qualitatively consistent results regarding changes in the spatial patterns of temperature 29 

and rainfall means and extremes at different levels of global warming. 30 

 31 

In this subsection we present the projected patterns of climate change obtained following the epoch approach 32 

(also called the time-shift method, see Section 4.2.4) under the transient SSP5-8.5 scenario. For each 33 

simulation considered, 11-year moving averages of the global average atmospheric surface temperature are 34 

first constructed, and this time series is used to detect the first year during which global warming exceeds the 35 

1.5°C, 2°C, 3°C and 4°C threshold with respect to the pre-industrial (1850–1900) GSAT. A 21-year global 36 

climatology is subsequently constructed to represent each of the levels of global warming, centred on the 37 

year for which a particular threshold was first exceeded. Some of the complexities of scaling patterns of 38 

climate change with different levels of global warming are also discussed in the following sections, with 39 

supporting analysis that is provided in the Atlas. These include overshoot vs. stabilization scenarios and 40 

limitations of pattern scaling for strong mitigation and stabilization scenarios (Tebaldi and Arblaster, 2014).  41 

 42 

Pattern scaling performance based on scenario experiments is generally better for near-surface temperature 43 

than for precipitation (Ishizaki et al., 2013). For precipitation, rapid adjustments due to different forcing 44 

agents must be accounted for (Richardson et al., 2016). Also important are possible non-linear responses to 45 

different forcing levels (Good et al., 2015, 2016). Pattern scaling does not work as well at high forcing levels 46 

(Osborn et al., 2018). It is also important to distinguish the forced response from internal variability when 47 

comparing similar warming levels (Suarez-Gutierrez et al., 2018). The purpose of this section is not to repeat 48 

the analysis for all the variables considered in Sections 4.4 and 4.5, but rather to show a selected number of 49 

key variables that are important from the perspective of understanding the response of the physical climate 50 

system to different levels of warming.  51 

 52 

 53 

4.6.1.1 Temperature 54 

 55 
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A global warming of 1.5°C implies higher mean temperatures compared to the preindustrial levels across the 1 

globe, with generally higher warming over land compared to ocean areas (virtually certain) (Figure 4.34:). In 2 

addition, a global warming of 2°C versus 1.5°C results in robust increased in the mean temperatures in 3 

almost all locations, both on land and in the ocean (virtually certain), with subsequent further warming at 4 

almost all locations at higher levels of global warming (virtually certain). For each particular level of global 5 

warming, relatively larger mean warming is projected for land regions (virtually certain, see Figure 4.34:, 6 

also see (Christensen et al., 2013; Collins et al., 2013; Seneviratne et al., 2016)). The largest increase in 7 

mean temperature is found in the high latitudes of the Northern Hemisphere (NH) (high confidence; Figure 8 

4.34:). This is due to substantial ice-snow-albedo-temperature feedbacks that constitute ‘polar amplification’ 9 

(Masson-Delmotte et al., 2013). In the Southern Hemisphere (SH) the relatively strong warming in 10 

subtropical southern Africa may be attributed to strong soil-moisture–temperature coupling and projected 11 

increased dryness under enhanced subsidence (Engelbrecht et al., 2015; Vogel et al., 2017). These projected 12 

changes at 1.5°C and 2°C global warming are consistent with the attribution of observed historical global 13 

trends in temperature (see Chapter 3), as well as with some observed changes under the recent global 14 

warming of 0.5°C  (SR1.5; (Hoegh-Guldberg et al., 2018; Schleussner et al., 2017)). 15 

 16 

 17 

[START FIGURE 4.34 HERE] 18 

 19 
Figure 4.34: Projected spatial patterns of changes in annual mean temperature (°C) at 1.5°C, 2°C, 3°C, and 4°C of 20 

global warming compared to the pre-industrial period (1850–1900) (top), and the spatial differences of temperature 21 
change between 2°C, 3°C, and 4°C of global warming relative to 1.5°C of global warming (bottom). Cross-22 
hatching highlights areas where at least two-thirds of the models (two out of three models at the time of the FOD; 23 
the models are BCC-CSM2-MR, IPSL-CM6A-LR, and MRI-ESM2-0) agree on the sign of change, as a measure of 24 
robustness. Values were assessed from the transient response over a 21-year period at a given warming level, based 25 
on SSP5-8.5 in CMIP6. Note that the responses for stabilization scenarios at 1.5°C and 2°C of global warming are 26 
similar (see Atlas, Section X.1). Maps depicting the effects of differential aerosol forcing on spatial patterns of 27 
temperature change at different levels of global warming are shown in Section X.2 of the Atlas. 28 

 29 

[END FIGURE 4.34 HERE] 30 

 31 

 32 

4.6.1.2 Precipitation 33 

 34 

It is virtually certain that global precipitation will increase with increased global mean surface temperature. 35 

The AR5 assessment based on CMIP5 simulations showed that global-mean precipitation will increases with 36 

global temperature change across a range from 1% to 3% °C−1. Percentage precipitation change at different 37 

levels of global warming based on three CMIP6 models from SSP5-8.5 are shown in Figure 4.35:.  38 

Precipitation increase with increase in global mean temperature, however, patterns of precipitation change 39 

does not scale linearly with surface air temperature increase. A number of recent studies have demonstrated 40 

that global hydrological sensitivity, the relative change of global-mean precipitation per degree of global 41 

warming, shows large diversity among models (Myhre et al., 2017; Samset et al., 2016, 2018a). The 42 

response of global mean precipitation to warming is constrained by global energy balance (O’Gorman et al., 43 

2012; Pendergrass and Hartmann, 2014; Richardson et al., 2018). Precipitation response can be considered as 44 

a fast response due to atmospheric instability and correlates with radiative forcing associated with 45 

atmospheric absorption, whereas the slower response caused by changes in surface temperature correlates 46 

with radiative forcing at the top of the atmosphere (Samset et al., 2016). Differences in how the fast 47 

adjustment processes are represented within models are expected to explain a large fraction of the present 48 

model spread in the precipitation projections (Myhre et al., 2017).  49 

 50 

 51 

 52 

[START FIGURE 4.35 HERE] 53 

 54 
Figure 4.35: Projected spatial patterns of changes in annual precipitation (expressed as a % change) at 1.5°C, 2°C, 3°C 55 

and 4°C of global warming compared to the pre-industrial period (1850–1900).  Stippling highlights areas where at 56 
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least two-thirds of the models (two out of three models at the time of the FOD; the models are BCC-CSM2-MR, 1 
IPSL-CM6A-LR, and MRI-ESM2-0) agree on the sign of change, as a measure of robustness. Values were 2 
assessed from the transient response over a 21-year period at a given warming level, based on SSP5-8.5 in CMIP6. 3 
Note that the responses for stabilization scenarios at 1.5°C and 2°C of global warming are similar (see Atlas, 4 
Section X.1). Maps depicting the effects of differential aerosol forcing on spatial patterns of temperature change at 5 
different levels of global warming are shown in Section X.2 of the Atlas. 6 

 7 

[END FIGURE 4.35 HERE] 8 

 9 

 10 

It is very likely that extreme precipitation events will increase with increased GSAT (Fischer and Knutti, 2016). 11 

Global warming of 1.5°C–2°C will result in increase in heavy precipitation events over several high-latitude 12 

regions, as well as in the tropics. The risks of increases in heavy precipitation events at 1.5°C global warming 13 

will be less as compared to 2°C global warming on global as well as on regional scale (medium confidence) 14 

(SR1.5; (Hoegh-Guldberg et al., 2018)). Statistically significant differences in heavy precipitation at 2°C 15 

versus 1.5°C global warming is found in several regions, aggregated over the global land area. However, there 16 

is medium confidence regarding global-scale differences in precipitation means and extremes at 2°C versus 17 

1.5°C global warming. Similar assessment based on CMIP6 projections will be performed for precipitation 18 

response to 3°C and 4°C of global warming. 19 

 20 

The AR5 assessed that with the increase in temperature, there is high confidence that contrast of annual mean 21 

precipitation between dry and wet regions and that the contrast between wet and dry seasons will increase over 22 

most of the globe. Recent studies have also shown that 1.5 °C and 2.0 °C global warming have regional 23 

implications; summer rainfall over the Asian monsoon regions will increase in both means and the extremes. 24 

Based on CMIP5 projections, area and population exposures to dangerous extreme precipitation events was 25 

shown to increase with warming over the global land monsoon regions (Zhang et al., 2018). The SR1.5 stated 26 

low confidence regarding changes in global monsoons at 1.5°C versus 2°C of global warming, as well as 27 

differences in monsoon responses at 1.5°C versus 2°C. Recent studies (Jacob et al., 2018; Kjellström et al., 28 

2018; Vautard et al., 2014) have shown that 2°C of global warming was associated with a robust increase in 29 

mean precipitation over central and northern Europe in winter but only over northern Europe in summer, and 30 

with decreases in mean precipitation in central/southern Europe in summer. For change in regional annual 31 

average precipitation, 2.5°C–3°C is required for a statistically significant change (Tebaldi et al., 2015). 32 

 33 

It is virtually certain that average warming will be higher over land than over the ocean. Precipitation 34 

variability in most climate models increases over a majority of global land area in response to warming. The 35 

global average sensitivity of the 20-year return value of the annual maximum daily precipitation increases with 36 

temperature increase, with large regional variations (Kitoh and Endo, 2016; Westra et al., 2013). 37 

 38 

In summary, based on the available CMIP6 models it is virtually certain that global precipitation will 39 

increase with increased global mean surface temperature. Precipitation increase on land will be higher at 3°C 40 

and 4°C compared with 1.5°C warming (high confidence). It is very likely that extreme precipitation events 41 

will increase with increased global mean surface temperature. 42 

 43 

 44 

4.6.1.3 Atmospheric Circulation 45 

 46 

The AR5 assessed that under high levels of global warming (3°C or 4°C of global warming) there is high 47 

confidence of a poleward shift of the Southern Hemisphere (SH) storm tracks, even in the presence of ozone 48 

recovery (Stocker et al., 2013). A general southward shift of the low-level annually-averaged SH westerly 49 

winds are projected by the CMIP6 ensemble under 1.5°C and 2°C of global warming in the transient SSP5-50 

8.5 scenario (Figure 4.36:) (strong agreement across the CMIP5 and available CMIP6 projections, high 51 

confidence). This pattern of change strengthens from 1.5°C to 2°C of global warming (high confidence), with 52 

further amplification of the pattern from 3°C to 4°C of warming (Figure 4.36:) (high confidence). This 53 

poleward displacement of the westerlies is projected to occur in association with a decrease in the strength of 54 

the westerlies over the southern parts of South America, southern Africa and Australia (Figure 4.36:). 55 

Moreover, the circumpolar westerlies are projected to strengthen increasingly across increasing levels of 56 
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global warming under SSP5-8.5, with an associated poleward shift in the mid-latitude jets and an 1 

intensification of extratropical cyclones under 3 and 4 ºC of global warming (high confidence). Across all 2 

levels of global warming, the poleward expansion of the SH westerlies in summer is projected to be opposed 3 

by ozone recovery. 4 

 5 

The AR5 assessed that under 3°C and 4°C of global warming there is low confidence in projections of 6 

poleward shifts of the Northern Hemisphere storm tracks (Stocker et al., 2013), and the available CMIP6 7 

projections (Figure 4.36:) constitute a similar conclusion. A weakening of the Mediterranean storm track is 8 

expected already under low 1.5 and 2°C of global warming (Li et al., 2018a), with this signal strengthening 9 

under higher levels of global warming (medium confidence).  10 

 11 

 12 

[START FIGURE 4.36 HERE] 13 

 14 
Figure 4.36: Projected spatial patterns of change in near-surface winter zonal winds (m/s, 1000 hPa) at 1.5°C, 2°C, 3°C 15 

and 4°C of global warming compared to the pre-industrial period (1850–1900) for the SH (Panels a to d), and NH 16 
(Panels e to h). Cross-hatching highlights areas where at least two-thirds of the models (2 out of 3 models at the 17 
time of the FOD) agree on the sign of change, as a measure of robustness. Values were assessed from the transient 18 
response over a 21-year period at a given warming level, based on SSP5-8.5 in CMIP6 model simulations. Note 19 
that the responses for stabilization scenarios at 1.5°C and 2°C of global warming are similar (see Atlas, Section 20 
X.1). Maps depicting the effects of differential aerosol forcing on spatial patterns of temperature change at different 21 
levels of global warming are shown in Section X.2 of the Atlas. 22 

 23 

[END FIGURE 4.36 HERE] 24 

 25 

 26 

4.6.1.4  Global Modes of Variability 27 

 28 

The AR5 assessed from CMIP5 simulations that there is medium confidence in near-term projections of an 29 

increase of the northern annular mode (NAM) and northward shift of the Northern Hemisphere (NH) storm 30 

tracks and westerlies, because of the large response uncertainty and the potentially large influence of internal 31 

variability (Collins et al., 2013). In particular, the AR5 assessed that the future boreal wintertime NAM is 32 

very likely to exhibit large natural variations and is likely to become slightly more positive in the future. 33 

NAM projections from climate models assessed since AR5 similarly indicate a positive trend through the 21st 34 

century (Wang et al., 2017d). Although there are currently not studies available that directly analyse changes 35 

in NAM as a function of the level of global warming, such an assessment can be obtained by translating 36 

projected changes in NAM in the near-term to the corresponding levels of global warming, and similarly so 37 

for long-term projections in NAM under transient low-mitigation scenarios. Based on results from one 38 

CMIP5 model, CanESM, it may be concluded that there is medium confidence for the boreal wintertime 39 

NAM to become more positive under 1.5 to 2 ºC of global warming. The same assessment can be made with 40 

high confidence under 3 or 4 ºC of global warming (Figure 4.37:). 41 

 42 

The AR5 assessed that the positive trend observed in the southern annular mode (SAM) in recent decades is 43 

likely to weaken in the presence of stratospheric ozone recovery during the 21st century. Despite the current 44 

lack of studies that explicitly examine changes in SAM as a function of the level of global warming, such 45 

changes can still be deduced by comparing projections for the near-term and the medium- to long term, 46 

which, under transient low-mitigation scenarios such as SSP5-8.5, simulate relatively low levels of global 47 

warming in the near term and higher levels later on (Barnes et al., 2014; Barnes and Polvani, 2013). The 48 

competing effects of changing greenhouse gas concentrations and ozone recovery on the Southern 49 

Hemisphere circulation over the next several decades are likely to determine the response of SAM under 50 

different levels of global warming. Under stabilization scenarios, where global warming is 1.5 or 2 ºC by the 51 

end of the 21st century, it is likely for SAM to assume a week negative trend in the austral summer (but still 52 

with a positive trend for the remaining seasons). Under 3 and 4 ºC of global warming, however, the positive 53 

trend in the SAM is projected to persist even in the presence of stratospheric ozone recovery (Figure 4.37:) 54 

(medium confidence).  55 

 56 
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 1 

[START FIGURE 4.37 HERE] 2 

 3 
Figure 4.37: Simulated Annular Mode index change under 1.5°C, 2°C, 3°C and 4°C of global warming. (a) 4 

Northern Annular Mode (NAM). (b) Southern Annular Mode (SAM). The NAM is defined as the difference in 5 
zonal mean sea-level pressure (SLP) at 35°N and 65°N (Li and Wang, 2003) and the SAM as the difference in 6 
zonal mean SLP at 40°S and 65°S (Gong and Wang, 1999). Values were assessed from the transient response over 7 
a 21-year period at a given warming level, based on SSP5-8.5 in CMIP6. The vertical lines are ensemble-means 8 
and the shaded bars are 5–95% confidence intervals on the ensemble means. [These calculations are based on a ten-9 
member ensemble of simulations from one CMIP6 model, CanESM5. Eventually, the figure will be updated using 10 
single simulations from the full CMIP6 ensemble.] 11 

 12 

[END FIGURE 4.37 HERE] 13 

 14 

 15 

Recent studies suggest potential for continuous increase in the number of strong El Niño as the level of 16 

surface warming increases (Wang et al., 2017a). We will further assess ENSO mean and variability changes 17 

under different degree of warming (Figure 4.38:).  18 

 19 

 20 

[START FIGURE 4.38 HERE] 21 

 22 
Figure 4.38: Simulations of sea surface temperature (SST) averaged over the ENSO Nino 3.4 region under 1.5°C, 2°C, 23 

3°C, and 4°C of global warming relative to the pre-industrial period (1850–1900). Values are assessed from 24 
transient simulations by averaging over a 21-year period centred at the given warming level, based on SSP1-2.6 25 
and SSP5-8.5 from one CMIP6 model. The vertical lines are ensemble means, and the shaded bars are 5–95% 26 
confidence intervals on the ensemble means. [These calculations are based on a ten-member ensemble of 27 
simulations from one CMIP6 model, CanESM5. Eventually, the figure will be updated using single simulations 28 
from the full CMIP6 ensemble.]  29 

 30 

[END FIGURE 4.38 HERE] 31 

 32 

 33 

4.6.2 Climate Targets, Path-Dependence, and Overshoot  34 

 35 

This subsection does not assess climate warming levels in the context of climate policy (assessed by WGIII) 36 

but will be informed by this literature (cf., SR1.5). The subsection will include assessment of when certain 37 

levels of warming such as 1.5°C and 2°C might be reached and assess levels of atmospheric CO2 38 

concentration consistent with given climate targets (e.g., (Betts and McNeall, 2018); see Section 4.3.1). We 39 

will assess how different scenarios alter these timings and also time of emergence (ToE) and benefits of 40 

mitigation (Hawkins et al., 2014; Mora et al., 2013; Tebaldi and Friedlingstein, 2013). [Note: A full 41 

assessment is not possible in this FOD owing to limited data availability from CMIP6]. 42 

 43 

There is strong evidence that climate response to increased CO2 forcing is not linear (high confidence). It has 44 

been shown that the first 2°C of warming does not have the same characteristics as the second 2°C under 45 

idealized CO2 simulations (Good et al., 2016). Simulations undertaken as part of the cloud feedback model 46 

intercomparison project (CFMIP, (Webb et al., 2017)(Webb et al., 2017)) will assess to what extent regional 47 

climate change for doubling of CO2 is linear (state dependent). Climate sensitivity has been found to be state 48 

dependent (nonlinear) under different levels of forcing (Andrews et al., 2012; Knutti and Rugenstein, 2015). 49 

Hence it is very likely that patterns of climate change at 2°C will differ depending on the rate and timing of 50 

reaching this level and the combination of forcing within the scenario (Figure 4.39:). 51 

 52 

[START FIGURE 4.39 HERE] 53 

 54 
Figure 4.39: Projected changes in the global pattern of near-surface temperature and precipitation associated with a 55 

2°C increase in global temperature achieved by different pathways. Example above shows the doubling difference 56 
and ratio from experiments to 2 and 4 CO2 taken from (Good et al., 2016). 57 



First Order Draft Chapter 4 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 4-64 Total pages: 163 

 1 

[END FIGURE 4.39 HERE] 2 

 3 

 4 

There is low confidence in knowledge of the extent of reversibility of climate patterns following overshoot of 5 

a global temperature target. While global mean temperature is expected to decline approximately reversibly 6 

with reducing CO2 (Section 4.7.2), regional patterns may not be the same as at the same level prior to 7 

overshoot. [We will draw on results from SSP5-3.4-overshoot scenarios.] 8 

 9 

 10 

4.6.3 Climate Response to Mitigation, Carbon Dioxide Removal, and Solar Radiation Modification  11 

 12 

Anthropogenic climate change can be limited by mitigation through reduced emissions of GHGs but also by 13 

intentional large-scale interventions in the climate system, sometimes referred to as geoengineering, climate 14 

engineering, or climate intervention (e.g., (National Research Council, 2015a, 2015b)). Two categories of 15 

climate intervention have been proposed, carbon dioxide removal (CDR) and solar radiation modification 16 

(SRM). SRM, also referred to as solar radiation management in the literature, refers to a range of radiation 17 

modification measures not related to greenhouse gas (GHG) mitigation that seek to limit global warming. 18 

There is some overlap between mitigation and CDR, but they are treated separately here, because mitigation 19 

refers to reducing emissions while CDR refers to methods that remove carbon already in the atmosphere. 20 

Most strong-mitigation scenarios assume the use of CDR in addition to emissions reductions; for example, 21 

RCP2.6 explicitly includes direct CDR from around 2025 onward and achieves net negative emissions by 22 

2070 through a combination of bioenergy and carbon capture and storage (van Vuuren et al., 2011). 23 

Similarly, the emission profile of SSP1-1.9 is characterized by a rapid decline to zero and a long period of 24 

negative emissions for CO2 (O’Neill et al., 2016).  25 

 26 

Here we assess only the climate system response to mitigation and suggested methods of climate 27 

intervention; the technical, economic, and political feasibility will be assessed as part of the Working Group 28 

III Sixth Assessment Report (AR6).  29 

 30 

 31 

4.6.3.1 Climate Response to Mitigation 32 

 33 

Mitigation through reduced GHG emissions would slow and limit the degree of climate change relative to 34 

high emissions scenarios such as SSP5-8.5 (very high confidence). Because the peak warming depends on 35 

the cumulative carbon emissions (Allen et al., 2009; Frame et al., 2014; Matthews et al., 2018; Meinshausen 36 

et al., 2009), mitigation in the 21st century will help to avoid specific peak temperatures by 2100. 37 

Conversely, late mitigation could lead to overshoot of specific temperature levels.  38 

 39 

Mitigation of GHGs is also associated with mitigation of short-lived climate forcing agents such as black 40 

carbon aerosols (Rogelj et al., 2014). Eliminating short-lived negative forcings from sulphate aerosols at the 41 

same time (e.g., by air pollution reduction measures) is likely to cause a temporary warming of a few tenths 42 

of a degree (Lelieveld et al., 2019; Matthews, 2011; Samset et al., 2018b). Regional patterns and rates of 43 

change are expected to vary with the type of emissions reduction; for example, black carbon aerosols and 44 

CH4 emission reductions causing larger regional changes and acting faster than CO2 reductions, because the 45 

forcing is more heterogeneous, and the lifetimes of these agents are substantially shorter than CO2 (Chapter 46 

6). 47 

 48 

Mitigation would reduce CO2 emissions but atmospheric CO2 concentrations would continue to increase as 49 

long as emissions are larger than a few PgC per year (Matthews, 2010; Miyama and Kawamiya, 2009; 50 

Zickfeld et al., 2013). This implies a continued increase in surface temperature even when emissions are 51 

decreasing (Millar et al., 2017) and until emission rates fall below the threshold level of a few PgC per year 52 

(high confidence). The threshold depends on the specific levels of CO2 stabilization. Even if anthropogenic 53 

greenhouses-gas emissions were halted now, the radiative forcing due to long-lived GHGs concentrations, 54 

and consequently surface temperatures, would decrease only slowly in the future, at a rate determined by the 55 



First Order Draft Chapter 4 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 4-65 Total pages: 163 

lifetime of the gas (Collins et al., 2013). 1 

 2 

Because inertia and internal variability affect the physical climate system and the global carbon cycle, there 3 

would be a lag between emission peak, CO2 concentration peak, and peak in GSAT (high confidence) (Ricke 4 

and Caldeira, 2014; Zickfeld and Herrington, 2015). This lag has implications for the timescale of detection 5 

of mitigation benefits. The inherent irreducible uncertainty due to internal variability has recently been 6 

quantified using a very large ensemble (100-member) from a single climate model (Marotzke, 2019). The 7 

trends in global surface air temperature (GSAT) were higher over the period 2021–2035 than over 2006–8 

2020 in one-third of all realizations in the mitigation scenario RCP2.6, suggesting that the GSAT would rise 9 

at a faster rate with a probability of as much as one third. The probability was around one-half in the no-10 

mitigation scenario RCP4.5. The climate response to RCP2.6 and RCP4.5 was nearly indistinguishable in the 11 

near term, 2005–2035 (Figure 4.40:). Further, mitigation was sufficient to cause a GSAT trend reduction 12 

with a low probability of only 0.40 and necessary with a further reduced probability of 0.33 (Marotzke, 13 

2019). These recent results and our improved understanding suggest that in the near term, GSAT might rise 14 

at a faster rate than before despite emissions reductions (medium confidence).  15 

 16 

 17 

[START FIGURE 4.40 HERE] 18 

 19 
Figure 4.40: Near-term GSAT anomalies relative to the pre-industrial period (here, 1861–1880) in the 100-member 20 

Max Planck Institute Grand Ensemble (MPI-GE). (a) GSAT time series for each realization, scenario RCP2.6. (b) 21 
As (a) but for scenario RCP4.5. The thick blue, red, and green lines show, respectively, the RCP2.6 and RCP4.5 22 
ensemble means and the observations. The climate response to RCP2.6 and RCP4.5 is nearly indistinguishable in 23 
the near term, here 2005–2035, indicating the irreducible uncertainty due to internal variability. [Placeholder figure 24 
from (Marotzke, 2019); will be updated using CMIP6.]  25 

 26 

[END FIGURE 4.40 HERE] 27 

 28 

 29 

The SR1.5 (Masson-Delmotte et al., 2018) assessed that climate models project robust differences in 30 

regional climate characteristics between present-day and global warming of 1.5°C, and between 1.5°C and 31 

2°C above pre-industrial levels. These differences include increases in mean temperature in most land and 32 

ocean regions (high confidence), hot extremes in most inhabited regions (high confidence), heavy 33 

precipitation in several regions (medium confidence), and the probability of drought and precipitation deficits 34 

in some regions (medium confidence). This question was also recently addressed using an ensemble 35 

simulations from NCAR CESM, and it was found that the exceedance of historical record temperature occurs 36 

with 60% greater frequency in the 2°C climate than in a 1.5°C climate aggregated globally, and with twice 37 

the frequency in equatorial and arid regions, and extreme precipitation intensity is statistically significantly 38 

higher in a 2.0°C climate than a 1.5°C climate in some specific regions (Sanderson et al., 2017b). Further, 39 

the Benefits of Reduced Anthropogenic Climate changE (BRACE) project assessed the differences in 40 

impacts between the RCP4.5 and RCP8.5 scenarios using large ensembles simulated with the NCAR CESM. 41 

Clear benefits of mitigation have been found in the case of extremes in temperatures and precipitation (Fix et 42 

al., 2018; Lehner et al., 2018; O’Neill et al., 2016; Oleson et al., 2018; Sanderson et al., 2018). Reduction in 43 

the frequency of extreme precipitation events associated with tropical cyclones is also possible through 44 

mitigation from RCP8.5 to RCP4.5 (Bacmeister et al., 2018).  45 

 46 

How many years it takes to detect the benefits of mitigation at global and regional scales was first 47 

investigated by Tebaldi and Friedlingstein (2013), analysing five CMIP5 models and a three-member initial-48 

condition ensemble for each model. The emissions in scenarios RCP4.5 and RCP8.5 depart from the 49 

mitigation scenario RCP2.6 in 2020 and 2010, respectively, but the median time of detection for departure of 50 

CO2 concentration in the RCP4.5 and RCP8.5 scenarios from the RCP2.6 scenario is about 10 years. For 51 

GMST the median detection time of mitigation was about 25-30 years (Tebaldi and Friedlingstein, 2013), 52 

which translates into detection of a mitigation signal by 2035 (RCP8.5) or 2045 (RCP4.5). The difference in 53 

detection time between CO2 concentration and GSAT is related to the difference in signal-to-noise ratio 54 

between CO2 and GSAT (high confidence).  55 

 56 
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The time of detection of mitigation depends on the seasons and the regions (Tebaldi and Friedlingstein, 1 

2013). Generally, winter temperatures are more challenging for detection, adding a decade to the detection 2 

time (high confidence), whereas detection times for summer averages are similar to the annual temperature 3 

averages. This is mainly due to larger variability in winter temperatures. Detection happens later at regional 4 

CORDEX and Giorgi domains with a median detection time of 30–45 years after emission paths separate 5 

(Tebaldi and Friedlingstein, 2013). A stricter requirement of 95% confidence level induces a delay of several 6 

decades, bringing detection time toward the end of the 21st century at regional scales. There are also large 7 

uncertainties in detection times; the range for regional domains is up to 60 years (2020–2080) for RCP4.5 vs. 8 

RCP2.6 (Tebaldi and Friedlingstein, 2013). Such large uncertainties result from uncertainty in climate 9 

sensitivity and internal variability (high confidence).  10 

 11 

Because the detection time for CO2 concentration is only about 10 years, much shorter than that for physical 12 

climate quantities, the absence of early detectability of the climate benefits of mitigation is due to the inertia 13 

and internal variability of the physical climate system rather than the global carbon cycle (medium 14 

confidence). Moreover, based on results from traditional detection and attribution studies, the time to 15 

detection is expected to be further delayed for precipitation and sea level rise (Tebaldi and Friedlingstein, 16 

2013) (high confidence). Using large ensembles, (Tebaldi and Wehner, 2018) recently found that statistically 17 

significant differences between RCP4.5 and RCP8.5 in extreme temperatures over all land areas become 18 

pervasive over the globe by 2050. A multi-model ensemble analysis of warm-season temperatures in the 19 

RCP2.6 and RCP8.5 scenarios (Ciavarella et al., 2017) also found that it takes less than 20 years of 20 

emissions reductions in many regions for the likelihood of extreme seasonal warmth to reduce by more than 21 

half following initiation of mitigation.  22 

 23 

More recent studies (Sanderson et al., 2018) reach similar conclusions using single-model ensembles: while 24 

internal variability is likely a significant component of uncertainty for periods before 2050, there are 25 

significantly reduced extreme warm events in some regions as early as 2030 in RCP4.5 relative to RCP8.5. 26 

The period 2061–2080 is likely to see largely separate joint distributions of annual mean temperature and 27 

precipitation in most regions for the two scenarios. Hence, for the latter portion of the 21st century, the 28 

range of regional climatic states that might be expected in the RCP8.5 scenario is significantly and 29 

detectably further removed from today’s climate state than the RCP4.5 scenario even in the presence of 30 

internal variability (high confidence). 31 

 32 

 33 

4.6.3.2 Climate Response to Carbon Dioxide Removal 34 

 35 

Chapter 5 discusses different CDR schemes and their implications for global biogeochemical cycles. In this 36 

sub-section, only the climate system response to CDR is assessed. CDR is also referred to as ‘negative 37 

emissions’; the term ‘net emissions’ refers to the difference between anthropogenic carbon emissions and 38 

removal by CDR methods, and negative net emissions imply a scenario where CO2 removal exceeds 39 

emissions. All CDR schemes would lead to a reduction in atmospheric CO2 concentration relative to a 40 

scenario without CDR and hence lower global surface air temperature (GSAT); however, their maximum 41 

potential varies (high confidence; see Chapter 5). Furthermore, a delay would be expected between CDR 42 

deployment and net negative emissions (van Vuuren et al., 2011); mere deployment of CDR would not cause 43 

reduction in atmospheric CO2 levels, and CO2 removed by CDR should exceed emissions for CO2 levels in 44 

the atmosphere to decrease. Hence, deployment of CDR is expected to precede net negative emissions and 45 

the consequent reduction in rate of warming by decades.  46 

 47 

According to integrated assessment modelling studies, limiting global mean surface warming to 2°C above 48 

pre-industrial levels by 2100 is difficult without the use of CDR schemes (Rickels et al., 2018). As discussed 49 

in Chapter 5, when removal by CDR exceeds emissions, the net decrease in atmospheric CO2 would be less 50 

than the net emissions because oceans and land are expected to outgas CO2 when atmospheric CO2 51 

concentrations decrease (Cao and Caldeira, 2010; Jones et al., 2016b). This outgassing of CO2 from the 52 

natural reservoirs is often referred to as the ‘rebound effect’. Therefore, if temperatures were to be returned 53 

to pre-industrial levels, all anthropogenic carbon that is stored in the ocean, land, and atmosphere would 54 

have to be removed, not just the atmospheric anthropogenic carbon load. Even when applied continuously 55 



First Order Draft Chapter 4 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 4-67 Total pages: 163 

and at scales as large as currently represented in the RCP8.5 scenario as reference, all CDR methods are 1 

individually either relatively ineffective with limited (8%) warming reductions, or they have potential severe 2 

side effects (Keller et al., 2014) (medium confidence).  3 

 4 

Because of the inertia, the climate system response is expected to lag behind the deployment of CDR (high 5 

confidence).  Since the AR5, a growing number of studies have simulated the climate response to CDR, 6 

including the Carbon Dioxide Removal Model Intercomparison Project (CDRMIP). Key climate variables, 7 

including temperature, precipitation, the sea-ice area, the Atlantic Meriodional Overturning Circulation 8 

(AMOC), and sea level lag the deployment of CDR, as illustrated in multi-model simulations of CDR 9 

(Figure 4.41:).  In particular, notwithstanding a decline in atmospheric CO2, global mean thermosteric sea 10 

level would continue to rise for several decades and would not return to pre-industrial levels for over 1000 11 

years after atmospheric CO2 is restored to the pre-industrial concentration (Ehlert and Zickfeld, 2018).  12 

 13 

 14 

[START FIGURE 4.41 HERE] 15 

 16 
Figure 4.41: Simulated lag and irreversibility in global and annual mean climate variables against atmospheric CO2. a) 17 

Normalized anomaly for key climate variables, b) surface air temperature, c) precipitation, d) Arctic sea ice area, e) 18 
Atlantic meridional overturning circulation, and f) thermosteric sea level rise as a function of atmospheric CO2.  19 
Atmospheric CO2 concentration increases at 1% per year to 4×CO2 and then decreases at 1% per year again to 20 
return to pre-industrial levels. Multi-model mean (solid lines) and individual model results (thin lines) that 21 
participated in CDRMIP are shown. For surface air temperature, results are shown for 7 models (ACCESS1, BNU-22 
ESM, CNRM1-ESM, Mk3L-COAL, NorESM, UVic, and OSCAR). For precipitation, results are shown for 4 23 
models (ACCESS1, BNU-ESM, CNRM1-ESM, and NorESM). For sea-ice area, AMOC, and sea level rise, only 24 
UVic model results are shown.  25 

 26 

[END FIGURE 4.41 HERE] 27 

 28 

 29 

Global mean precipitation would increase initially in response to an abrupt CO2 reduction (Cao et al., 2015). 30 

This is related to the fast adjustments (directly forcing-related changes) in the climate system, before global 31 

mean surface temperature increases. Several studies (Bala et al., 2010; Cao et al., 2012; Myhre et al., 2018; 32 

Richardson et al., 2016) have shown that when CO2 in the atmosphere is abruptly increased, global mean 33 

precipitation is reduced before global mean surface temperature increases. An opposite initial change in 34 

precipitation was found in these studies for a CDR-related decline in CO2.  35 

 36 

The relationship between cumulative carbon emissions and surface temperature change becomes nonlinear 37 

during periods of negative emissions owing to the lagged response of the deep ocean to previously increasing 38 

CO2 (Zickfeld et al., 2016). When corrected for this lagged response, or if the CO2 decline is applied after the 39 

system has equilibrated with the previous CO2 increase, the relationship between temperature change and 40 

cumulative carbon emissions is again close to linear during periods of net negative CO2 emissions.  41 

 42 

Termination of CDR schemes is expected to cause increasing warming trends, associated with outgassing of 43 

CO2 upon termination of CDR (medium confidence). The rate of outgassing is conditional on the method of 44 

storage. For instance, (González et al., 2018) found that termination of alkalinity addition to oceans could 45 

cause regions of the Northern Hemisphere to warm at a rate that is 50% larger than those in RCP8.5, with 46 

rates similar to those caused by termination of SRM over the following three decades after cessation (up to 47 

1.5°C per decade). In case artificially enhanced upwelling would be stopped, atmospheric CO2 48 

concentrations could rise rapidly, and hence warming would occur because carbon removed from the 49 

atmosphere and stored in soils in the cooler climate caused by artificial upwelling could be rapidly released 50 

back (Oschlies et al., 2010). 51 

 52 

 53 

4.6.3.3 Climate Response to Solar Radiation Modification  54 

 55 

By definition, solar radiation modification (SRM) schemes would intentionally use large or planetary scale 56 
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engineering techniques to reduce the amount of sunlight absorbed by the planet by 1–2% (e.g., (Caldeira et 1 

al., 2013)). Several SRM schemes were discussed in detail in the AR5 and in the SR1.5. A short summary 2 

that updates these SRM proposals is listed in Table 4.6:. All schemes, except for cirrus cloud thinning, aim to 3 

cool the Earth by deflecting more solar radiation to space. Cirrus cloud thinning aims to cool the planet 4 

through increasing the longwave radiation to space, which could be achieved by reducing the amount of high 5 

clouds in the climate system (Storelvmo et al., 2014) (Mitchell and Finnegan, 2009). SRM could be 6 

considered as part of the overall strategy to limit global warming below 1.5°C (MacMartin et al., 2018). 7 

 8 

In this sub-section, we assess the physical climate system response to SRM, whereas Chapter 5 assesses the 9 

biogeochemical implications. Since the AR5, substantial improvement has been made in SRM research.  10 

Many more modelling studies have been conducted on climate response to different SRM schemes, 11 

including those that participate in the Geoengineering Model Intercomparison Project (GeoMIP6, (Kravitz et 12 

al., 2015)), which started at the time of the AR5 (Kravitz et al., 2013a).  Also, some studies have attempted 13 

to design novel SRM strategies to meet different climate goals simultaneously (Cao et al., 2017; Tilmes et 14 

al., 2018).  15 

 16 

 17 

[START TABLE 4.6 HERE] 18 

 19 
Table 4.6: A brief summary of the various SRM proposals  20 

 21 

SRM scheme How does the SRM scheme work? Potential for 

countering a 

warming from a 

doubling of CO2 

(RF=3.5 W m-2) 

Key side effects References 

Stratospheric Aerosol 

Injection (SAI)  

Injection of sulphate aerosols into the 

stratosphere which scatter sunlight 

back to space; radiative forcing could 

be uniform 

Achievable with 

10 Mt S per year 

injection 

(equivalent to Mt. 

Pinatubo eruption) 

Changes to 

stratospheric 

chemistry and 

circulation; increase 

in diffuse light at the 

surface; less intense 

global hydrological 

cycle 

(Ferraro and 

Griffiths, 2016; 

Niemeier and 

Timmreck, 2015; 

Pitari et al., 2014) 

Marine cloud 

brightening (MCB) 

Injection of sea salt aerosols to 

increase the albedo of marine low 

clouds; heterogeneous radiative 

forcing 

Achievable if 

nearly 75 % of 

ocean area is 

seeded but there 

are large 

uncertainties.  

Uncertain regional 

changes in 

precipitation patterns; 

sea salt deposition on 

land 

(Ahlm et al., 2017; 

Latham et al., 2012; 

Stjern et al., 2018) 

Whitening the roofs Painting the roof of buildings to 

increase the reflectivity; 

heterogeneous radiative forcing 

Not achievable; 

max potential RF 

about 0.1 W m-2 

Potential changes to 

urban climate 

(Seneviratne et al., 

2018a) 

Lightening the colour 

of the crops 

Genetically modify the colour of 

crops to increase sunlight reflection; 

heterogeneous radiative forcing 

Not achievable; 

max potential RF 

about 0.5 W m-2 

Uncertain changes to 

regional precipitation 

patterns 

(Seneviratne et al., 

2018a) 

Ocean albedo 

increase 

Add reflecting particles on the ocean 

surface or create microbubbles by 

stirring the ocean surface; land-sea 

radiative forcing contrast 

RF of several 

Wm-2 is 

achievable   

Runoff over land is 

likely to increase 

(Gabriel et al., 2017; 

Kravitz et al., 

2013b) 

Cirrus cloud thinning 

(CCT) 

Inject ice nuclei in the upper 

troposphere to reduce the amount of 

cirrus clouds to allow more longwave 

radiation to escape to space; 

heterogeneous radiative forcing 

Uncertain Increase in solar 

radiation at the 

surface; reduction in 

the intensity of the 

global hydrological 

cycle is unlikely 

(Gasparini and 

Lohmann, 2016; 

Storelvmo et al., 

2014) 
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Space sunshades Place mirrors or reflecting particles in 

space between sun and earth to reflect 

sunlight back to space; uniform 

radiative forcing 

Achievable by 

blocking about 2 

% of the incoming 

solar radiation 

Less intense global 

hydrological cycle 

(Kalidindi et al., 

2015; Kravitz et al., 

2013a) 

 1 

[END TABLE 4.6 HERE] 2 

 3 

 4 

Recent SRM research has focused on offsetting large amounts of climate change through aerosol injection, 5 

which is expected to have several side effects and involves risks such as the termination effect. Recent 6 

research has also emphasized more nuanced treatment of SRM in the context of short-term action to 7 

complement emissions reductions and aid staying below short-term targets (Keith and MacMartin, 2015; 8 

Sugiyama et al., 2018) and limit warming to 1.5°C above pre-industrial levels using an ‘adaptive SRM’ 9 

approach (SR1.5) where SRM implementation could span only a few decades to hold warming to 1.5°C 10 

(Keith and MacMartin, 2015; MacMartin et al., 2018). 11 
 12 

Modelling studies have consistently confirmed that SRM has the potential markedly diminish global and 13 

regional climate change from increasing CO2 concentrations  (Irvine et al., 2016) (high confidence). One of 14 

the key features of SRM is that in principle it can cool the planet rapidly; in highly idealised scenarios the 15 

cooling occurs with an e-folding time of only 4–5 years (MacMartin et al., 2017; Matthews and Caldeira, 16 

2007; Tilmes et al., 2017). There is high confidence that the solar radiative forcing required to offset a CO2-17 

induced global surface air temperature (GSAT) change is larger than the CO2-induced radiative forcing 18 

(Russotto and Ackerman, 2018; Schmidt et al., 2012). This is because the efficacy of solar forcing is less 19 

than one (meaning the warming effect is smaller than that of an equivalent CO2 ERF), which has been 20 

explained on the basis of differing vertical profile of radiative forcing (Modak et al., 2016). The efficacy of 21 

stratospheric sulphate aerosol forcing has also been shown to be less than one (Duan et al., 2018) (medium 22 

confidence). 23 

 24 

The spatial pattern of temperature and precipitation change relative to the corresponding baseline for space 25 

sunshading, stratospheric aerosol injection, marine cloud brightening, and cirrus cloud thinning are shown in 26 

Figure 4.42:. Each scheme is able to offset CO2-induced warming, but with disparities in spatial pattern of 27 

temperature and precipitation change (Figure 4.42:). The spatial pattern of responses to marine cloud 28 

brightening and cirrus cloud thinning has large differences with space sunshading and aerosol injection 29 

because the former schemes are associated with large heterogeneous radiative forcing (Table 4.6:). 30 

 31 

 32 

[START FIGURE 4.42 HERE] 33 

 34 
Figure 4.42: The spatial pattern of changes in annual mean temperature (left panels) and precipitation (right panels) 35 

from CO2 reduction, solar constant reduction, stratospheric sulphate aerosols, marine cloud brightening and cirrus 36 
cloud thinning experiments. The results are obtained from CESM slab ocean simulations. All geoengineering 37 
simulations are designed to offset global mean warming from an abrupt doubling of atmospheric CO2. All results 38 
are shown relative to 2×CO2. Correlation coefficient represent the spatial correlation between geoengineering case 39 
and 1×CO2 case, and NRMS is the root-mean-square difference of geoengineering case normalized by that of 40 
1×CO2 case. The departure of the spatial patterns, relative to CO2 change, is larger for marine cloud brightening 41 
and cirrus cloud thinning and less for solar constant reduction and stratospheric sulphate aerosols. 42 

 43 

[END FIGURE 4.42 HERE] 44 

 45 

 46 

There is high confidence that there is a trade-off between temperature and precipitation change in response to 47 

reduced solar radiation (Irvine et al., 2016; Kravitz et al., 2013a) because of different sensitivity of 48 

precipitation change to CO2 and SRM forcings (Andrews et al., 2009; Bala et al., 2010; Duan et al., 2018; 49 

Jackson et al., 2016b). One manifestation of this is that SRM could cause a substantial reduction in global 50 

mean precipitation (Bala et al., 2008) and rainfall in the tropical monsoonal regions (Tilmes et al., 2013) if 51 

changes in global mean surface air temperature (GSAT) are offset. Further, regional SRM schemes such as 52 
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Arctic SRM are expected to have remote influence on the tropical monsoon precipitation by shifting the 1 

mean position of ITCZ (Nalam et al., 2018). CO2-induced increases in extremes in temperature and 2 

precipitation and tropical cyclone intensity are expected to be reduced by SRM (Curry et al., 2014; Irvine et 3 

al., 2019; Muthyala et al., 2018b, 2018a).  4 

 5 

SRM schemes such as marine cloud brightening, which use a highly heterogeneous radiative forcing to cool 6 

the climate system, are expected to cause large changes in regional precipitation patterns (Figure 4.42:). 7 

Compared to SRM schemes, however, cirrus cloud thinning are expected to intensify the global hydrological 8 

cycle (Cao et al., 2017; Kristjánsson et al., 2015; Muri et al., 2018). Therefore, changes in global mean 9 

temperature and precipitation are expected to be simultaneously offset by combining different RMMs such 10 

as stratospheric aerosol injection and cirrus cloud thinning (Cao et al., 2017) (low confidence owing to the 11 

large uncertainty in simulating aerosol forcing).  12 
 13 
Major modelling results after the AR5 suggest that SRM can be designed to meet different temperature 14 

targets. For example, by interactively adjusting the rate of sulphate aerosol injection at different locations, 15 

multiple temperature stabilization targets, including global mean temperature, interhemispheric temperature 16 

gradient, and equator-to-pole temperature gradient, can be maintained simultaneously at the year 2020 level 17 

under the RCP 8.5 scenario (Figure 4.43:) (Kravitz et al., 2017; MacMartin et al., 2017). While these studies 18 

looked at broad-scale temperature features, there is still need for assessing the feasibility of meeting multiple 19 

targets for other key climate variables such as precipitation and regional features.  20 

 21 

Simulations suggest that by offsetting CO2-induced global mean warming, reduced solar irradiance largely 22 

returns Arctic sea ice to pre-industrial levels with modest changes in the seasonal cycle of sea ice extent 23 

(Moore et al., 2014). In a scenario where aerosol injection is used to limit radiative forcing at year 2020 24 

levels, September sea ice extent still decreases from 2020 to 2070, presumably because of the high-latitude 25 

residual warming, but not as quickly as in the simulation without SRM (Berdahl et al., 2014). When aerosol 26 

injection is used to stabilize GSAT at 1.5°C above pre-industrial levels, Arctic sea ice loss is also stabilized 27 

(Jones et al., 2018). It is expected that SRM could stabilize the strength of AMOC under high-CO2 scenarios 28 

over timescales from a few decades to thousands of years (Cao et al., 2016; Hong et al., 2017).  29 

 30 

 31 

[START FIGURE 4.43 HERE] 32 

 33 
Figure 4.43: Demonstration of the ability to meet three simultaneous temperature objectives in the state-of-the-art 34 

model CESM1(WACCM) via SO2 injection at four independent locations (30°N, 15°N, 15°S, and 30°S, all at 35 
180°E and 5 km above the annual mean tropopause), where the injection rate is adjusted every year based on 36 
feedback of the “observed” climate state. The objectives are to maintain, at 2020 levels, global mean temperature 37 
(ΔT0), the interhemispheric temperature gradient (ΔT1), and the equator-to-pole temperature gradient (ΔT2). Top 38 
and middle panels show comparisons between the base state (RCP8.5) and the model with geoengineering 39 
implemented (referred to as “feedback”); 2020 values, which are the objectives, are indicated by dashed gray lines. 40 
Bottom panel shows the injection rate at each location, as well as the sum of all injections. Figure is reproduced 41 
from (Kravitz et al., 2017) 42 

 43 

[END FIGURE 4.43 HERE] 44 

 45 

 46 

Stratospheric aerosol schemes are expected to warm the lower stratosphere because of absorption of near-47 

infrared solar and terrestrial longwave radiation by the aerosols, and alter the stratospheric ozone and water 48 

vapour concentrations thereby altering the stratospheric and tropospheric circulations (Niemeier and 49 

Schmidt, 2017). For instance, model simulations indicate stronger polar jets and weaker storm tracks and 50 

poleward shift of the tropospheric mid-latitude jets in response to  stratospheric sulphate injections (Ferraro 51 

et al., 2015; Richter Jadwiga et al., 2018) as the meridional temperature is increased in the lower stratosphere 52 

by the aerosol-induced heating.   53 

 54 

Because of internal variability, a full test of the climate system response to SRM is  expected to be require a 55 

SRM forcing of the size produced by the 1991 Mount Pinatubo eruption (Robock et al., 2010). The effect of 56 
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SRM on global temperature and precipitation has been found to be detectable after one to two decades 1 

(Bürger and Cubasch, 2015; Lo et al., 2016). Detectability has been examined using the Geoengineering 2 

Large Ensemble Project (GLENS) in which SO2 is injected at different locations starting in 2027 to maintain 3 

a 1.5°C target under RCP 4.5 (MacMartin et al., 2019). The analysis shows that for many regions the 4 

differences in temperature, precipitation change and precipitation minus evaporation at grid-scale between a 5 

climate state with GHG-induced 1.5o C global mean temperature change and another climate state with the 6 

same global mean temperature under RCP4.5 emissions and a limited deployment of SRM are not detectable 7 

by the end of this century. However, for higher emissions scenarios (the RCP8.5 scenario) and 8 

correspondingly larger SRM deployment for maintaining the same global mean temperature change of 9 

1.5°C, the regional differences are detectable readily before the end of the century. 10 

 11 

One of the most discussed risks of SRM is the sudden termination of the deployment of SRM because of 12 

engineering failure or the lack of agreement for the maintenance of SRM. A sudden termination would cause 13 

a rapid increase in global temperature and precipitation, and a reduction in sea ice area (Jones et al., 2013; 14 

McCusker et al., 2014) (high confidence). Sudden termination of SRM would increase both land and ocean 15 

temperature rise to an extent that far exceeds that predicted for future climate change without SRM 16 

(McCusker et al., 2014).  However, a gradual phase-out of SRM combined with mitigation and CDR is likely 17 

to avoid the risk from sudden SRM termination (Keith and MacMartin, 2015; Tilmes et al., 2016).  18 

 19 

 20 

4.7 Very-Long-Term Climate Changes  21 

 22 

4.7.1 Change in Global Climate Indices Beyond 2100 23 

 24 

This subsection will assess changes in global climate indices out to 2300 using Earth system models (ESM) 25 

and Earth system Models of Intermediate Complexity (EMICs) (Eby et al., 2013; Zickfeld et al., 2013). 26 

EMIC simulations under four CMIP5 RCP scenarios have shown consistent and complementary climate 27 

projections to 2300 with results from AOGCMs (Zickfeld et al., 2013). In these simulations the models 28 

followed RCP extensions from 2100–2300 known as Extended Concentration Pathways (ECPs). For 29 

example, ECP4.5 had a smooth transition towards a concentration stabilization level after 2150, while 30 

ECP8.5 had constant emissions after 2100, followed by a smooth transition to stabilized concentrations after 31 

2250. 32 

 33 

Here, a subset of the global climate indices will be assessed including global surface air temperature 34 

(GSAT), the Atlantic Meridional Overturning Circulation (AMOC), and probably global mean sea level 35 

(GMSL) with key figures similar to Figure 4.44:. Results beyond 2300 may also be shown if results are 36 

available. 37 

 38 

 39 

[START FIGURE 4.44 HERE] 40 

 41 
Figure 4.44: (a) Atmospheric CO2 and projected (b) GSAT change and (c) AMOC change as simulated by EMICs for 42 

four RCPs up to 2300 [Placeholder Figure 12.42 from the AR5 – will be updated using more comprehensive EMIC 43 
and, if available, simulations with comprehensive ESMs. Other global climate indices may be included further.]. 44 

 45 

[END FIGURE 4.44 HERE] 46 

 47 

 48 

4.7.1.1 Global Surface Air Temperature  49 

 50 

It is very likely that the GSAT will exceed the 1.5°C–2°C target in all scenarios except for the RCP2.6 51 

scenario at the year of 2300 (high confidence; Figure 4.44:). The multi-model mean ensemble projection 52 

under the RCP2.6 peaks at 1.7°C relative to preindustrial, and returns to 1.3°C by 2300. However, the high-53 

emission scenario RCP8.5 shows continuous increase in GMST, with a multi-model ensemble-mean of 54 

7.5°C temperature rise relative to preindustrial and a range of 4°C–9°C at 2300 (Zickfeld et al., 2013).  55 



First Order Draft Chapter 4 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 4-72 Total pages: 163 

 1 

 2 

4.7.1.2 Global Land Precipitation 3 

 4 

(Caesar et al., 2013) showed that under the CMIP5 extension simulations, HadGEM2-ES projected global 5 

land precipitation to remain roughly the same in RCP2.6, to increase about 4% in RCP4.5 and to increase 6 

about 7% in RCP8.5. 7 

 8 

 9 

4.7.1.3 Arctic Sea Ice 10 

 11 

It was shown that under the CMIP5 extension simulations, most models minimum (September) Arctic ice 12 

extent began to recover under RCP2.6 out to 2300, while RCP4.5 and RCP8.5 extensions became ice free in 13 

September (Hezel et al., 2014).  They also found that under the RCP8.5 extension, the Arctic became ice-free 14 

nearly year-round by 2300. 15 

 16 

 17 

4.7.1.4 Global Mean Sea Level  18 

 19 

The AR5 and the SROCC assessed long-term GMSL. By using CMIP5 models out to 2100 and a model 20 

emulator out to 2300 to estimate the steric GMSL due to warming, it was found that even under the RCP2.6 21 

extension, GMSL continued to rise out to 2300 (Palmer et al., 2018). Under the RCP4.5 extension, the steric 22 

component of GMSL rose from approximately 0.2 m at 2100 to 0.3–0.7 m by 2300.  Under the RCP8.5 23 

extension, the steric component of GMSL rose from approximately 0.3 m at 2100 to 0.8–1.6 m by 2300.   24 

 25 

 26 

4.7.1.5 Atlantic Meridional Overturning Circulation 27 

 28 

The AR5 assessed a small number of CMIP5 model simulations of the AMOC beyond 2100 and assessed 29 

that once radiative forcing is stabilized, the AMOC begins to recover, but in some models towards less than 30 

its pre-industrial level. This assessment was supported in simulations of EMICs following the same ECPs 31 

(Zickfeld et al., 2013). 32 

 33 

Here, we will briefly assess the AMOC in the CMIP6 model simulations following the SSP extensions past 34 

2100. A more detailed assessment will be undertaken in Chapter 9. We also present long-term simulations of 35 

the AMOC in an Earth system model (ESM) (CanESM2) after instantaneous cessation of anthropogenic 36 

emissions when global mean surface temperature reaches either 1.5°C, 2.0°C, or 3.0°C global warming 37 

relative to pre-industrial after following the RCP8.5 scenario (see Figure 4.45:). In these simulations, the 38 

AMOC generally overshoots when emissions are terminated (see Section 4.3), followed by recovery to less 39 

than its pre-industrial level. Averaged over the period from 2400–2600, the strength of AMOC is 40 

indistinguishable between individual realizations following the 1.5°C and 2.0°C global warming 41 

stabilization. On the other hand, following 3.0°C global warming stabilization, each individual simulation 42 

settles to a level less than any of the 1.5°C and 2.0°C stabilization simulations. These results raise the issue 43 

of the detectability of the long-term impact of different emissions scenarios (Marotzke, 2019). 44 

 45 

 46 

[START FIGURE 4.45 HERE] 47 

 48 
Figure 4.45: Atlantic Meridional Overturning Circulation (AMOC) in ensembles of simulations of an Earth system 49 

model (CanESM2). The black curve is the average over 50 simulations following historical forcings to 2005 and 50 
RCP8.5 extensions to 2100. The coloured curves are averages over five simulations (each) after global mean 51 
surface temperature (GMST) has been stabilized at the indicated degree of warming relative to pre-industrial. The 52 
vertical solid lines are the year at which all anthropogenic emissions were terminated and surface temperatures 53 
approximately stabilized. The dashed lines are ensemble-means averaged over 2400–2600. The open circles are 54 
individual averages over 2400–2600. Data based on (Sigmond et al., 2018).  55 

 56 
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[END FIGURE 4.45 HERE] 1 

 2 

 3 

4.7.2 Climate-change Commitment and Irreversibility  4 

 5 

While significant GHG emissions are taking place, the Transient Climate Response to cumulative carbon 6 

Emissions (TCRE) quantifies the warming up to the point of emission of a given cumulative amount of CO2 7 

emissions. Once the emissions or the warming stop, continued changes in the climate system occur, termed 8 

committed changes. We differentiate between:  9 

 10 

(i) Zero Emissions Commitment (ZEC), the committed changes in global climate if we stop emitting GHGs. 11 

If emissions of CO2 cease, the long-term continued uptake of carbon and heat into the ocean tend to offset 12 

each other, leading to an approximately constant climate. Deviations from this are the ZEC. Assessment of 13 

remaining carbon budgets requires an assessment of ZEC as well as of TCRE. Quantities that continue to 14 

evolve on long timescales after emissions cease include sea-level rise, the sea-ice area, the AMOC, some 15 

aspects of ocean biogeochemistry, and elements of the monsoon circulations. 16 

 17 

(ii) Committed changes in components of the climate system under constant global temperature. For 18 

example, sea level would continue to rise for centuries, and ecosystems take many decades to respond to a 19 

stabilized climate. 20 

 21 

Both the TCRE and the ZEC need to be known to relate carbon emissions to the eventual warming and thus 22 

to long-term climate targets. Introducing the TCRE concept was a major advance of the AR5 (Allen et al., 23 

2009; Matthews et al., 2009; Meinshausen et al., 2009). Since the AR5 a considerable literature has 24 

developed on constraining the robustness of TCRE (Goodwin et al., 2015; MacDougall, 2016; Millar and 25 

Friedlingstein, 2018; Tachiiri et al., 2015) and its sensitivity to emissions trajectories (Krasting et al., 2014; 26 

Leduc et al., 2015; Steinacher and Joos, 2016) and ocean mixing (Ehlert et al., 2017).  27 

 28 

By contrast, there has been relatively less literature on ZEC. It has been shown (e.g. Joos et al., 2013; 29 

Matthews and Caldeira, 2008; Solomon et al., 2009) that there is an offset of continued warming following 30 

stopping emissions by continued CO2 removal by natural sinks. Some models continue the warming by up to 31 

0.5°C after emissions cease at 2°C of warming (Frolicher et al., 2014; Frölicher and Paynter, 2015; Williams 32 

et al., 2017), while others simulate little to no additional warming (Nohara et al., 2015). This led the SR1.5 33 

(Rogelj et al., 2018) to make the assumption that on the short-to-near term, ZEC was zero. Here we draw on 34 

new simulations to provide an assessment of ZEC from coordinated simulations using multiple ESMs and 35 

EMICs. Figure 4.46: shows preliminary results from five models. These initial results are inconclusive 36 

whether ZEC on decadal timescales is either positive or negative, with values spanning from approximately 37 

–0.4 to 0.2°C. There is therefore low confidence in the sign and magnitude of ZEC and its potential impact 38 

on the assessed remaining carbon budgets for 1.5°C or 2°C. 39 

 40 

 41 

 42 

[START FIGURE 4.46 HERE] 43 

 44 
Figure 4.46: Global CO2 (top left) and temperature response (lower left) following a sudden cessation of emissions at 45 

three points on the 1% per year trajectory. Right hand panel shows collated temperature response from the point of 46 
departure after 1000 PgC cumulative emissions (hence the year varies for each model). Figure compiled from 47 
preliminary data from UKESM1, MPI-ESM, GFDL-ESM2M, CLIMBER and UVic simulations. Results to be 48 
updated from further ESMs and EMICs under the new ZEC-MIP activity quantifying the ZEC consistent with 49 
TCRE estimates. This will be a key input to Ch.5 assessment of carbon budgets.  50 

 51 

[END FIGURE 4.46 HERE] 52 

 53 

 54 

Understanding of reversibility of climate system components has advanced since the AR5. Some aspects of 55 
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the physical climate changes induced by GHG warming have been demonstrated to be reversible (Boucher et 1 

al., 2012; Tokarska and Zickfeld, 2015). Others such as sea-level rise or terrestrial ecosystems continue to 2 

respond on long timescales (Clark et al., 2016; Pugh et al., 2018; Zickfeld et al., 2017). Reversibility can be 3 

defined in terms of the response to CO2 or the response to global surface air temperature (GSAT). The latter 4 

itself is generally believed to be reversible with respect to CO2 with a short lag. Reversibility with respect to 5 

other climate forcers is less commonly examined. 6 

 7 

The Carbon Dioxide Removal Model Intercomparison Project (CDR-MIP) (Keller et al., 2018) comprises a 8 

set of 1% ramp-down simulations aimed at establishing a multi-model assessment of reversibility of Earth 9 

system components, although very little data is yet available. We will assess available literature as it emerges 10 

and synthesize a table of elements that do or do not exhibit irreversibility, including the speed of 11 

reversibility. Preliminary results from CDRMIP are presented in section 4.6.3. We will also assess results 12 

from the SSP5-3.4-Overshoot scenario and quantify spatial patterns of climate change at the same global 13 

mean temperature before and after a temperature peak. 14 

 15 

 16 

[START TABLE 4.7 HERE] 17 

 18 
Table 4.7: Synthesis table of components of the climate system which exhibit reversibility with respect to emissions. 19 

 20 

quantity Immediately reversible Reversible with lag Overshoots Irreversible 

Global Mean 

Air 

Temperature 

Most models agree (Andrews 

and Ringer, 2014; Boucher et 

al., 2012; Nakashiki et al., 

2006; Tsutsui et al., 2007; 

Zickfeld et al., 2013, 2016) 

   

Global Ocean 

Surface 

Temperature 

 

Decades delay 

(Boucher et al., 2012; 

Cao et al., 2011) 

  

Global Land 

Surface 

Temperature 

Closely follows air 

temperature except for 

permafrost (Boucher et al., 

2012) 

Permafrost delay 

(Schuur et al., 2008, 

2015) 

  

Global Mean 

Precipitation 
 

Decades delay 

(Boucher et al., 2012; 

Cao et al., 2011; 

Tsutsui et al., 2007; 

Wu et al., 2015) 

  

Global Land 

Precipitation 
 

Inconsistent 

behaviour (Boucher 

et al., 2012) 

Inconsistent 

behaviour (Boucher 

et al., 2012) 

Inconsistent behaviour 

(Boucher et al., 2012) 

Global Ocean 

Precipitation 
 

Most models agree 

(Boucher et al., 2012) 
  

Sea Ice  

Most models agree 

(Armour et al., 2011; 

Boucher et al., 2012) 

  

Ocean heat 

content 
   

Long timescale of response 

(Nakashiki et al., 2006; 

Tsutsui et al., 2007; 

Zickfeld et al., 2013, 

2016)) 

AMOC  

In some models 

(Nakashiki et al., 

2006; Palter et al., 

2018) 

In some models 

(Jackson et al., 

2016a) 

Under extreme Greenland 

ice melt (Rahmstorf and 

Ganopolski, 1999) 

Land carbon  Long lag of 

soil/vegetation carbon 
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store stores (Boucher et al., 

2012) 

Mixed layer 

depth 
  

Increased mixing 

with interior warming 

(John et al., 2015; 

Nakashiki et al., 

2006) 

 

permafrost  

Likely reversible soil 

freezing (Boucher et 

al., 2012) 

 

Irreversible loss of 

decomposed carbon 

(MacDougall, 2013) 

Ocean Carbon 

Store 
   

Long timescale of 

response(Cao and Caldeira, 

2010; Zickfeld et al., 2013, 

2016) 

Ice sheets    

Irreversible melt 

(Ganopolski and 

Rahmstorf, 2001; 

Rahmstorf and Ganopolski, 

1999) 

 1 

[END TABLE 4.7 HERE] 2 

 3 

 4 

In their cataloguing of potentially mutually reinforcing climate feedbacks, (Steffen et al., 2015) provided a 5 

strawman against which to assess the scientific basis for the various vulnerabilities and associated climate 6 

feedbacks, including potential GHG implications of permafrost loss (Schuur et al., 2015). The sea-level rise 7 

implications are expected to be substantial. While (Steffen et al., 2015) were very successful in synthesizing 8 

the various feedback processes, they were unable to explain how the feedback strengths they provided might 9 

quantitatively translate to a very strong warming. As such, their assertion of risk is largely qualitative and 10 

speculative. 11 

 12 

 13 

4.7.3 Potential for Abrupt Climate Change  14 

 15 

The AR6 adopts a different definition of abrupt climate change from that used in the AR5. Here we take 16 

abrupt change to mean that the nonlinearity of the climate system may lead to abrupt climate changes, 17 

sometimes called rapid climate changes, abrupt events, or even surprises. The term abrupt refers to changes 18 

that occur faster than the rate of change of forcing (Alley et al., 2003). This definition includes shifts from 19 

one equilibrium state to another (tipping points), but also other non-linear responses of the climate system to 20 

external forcing (see Section 1.2.4.2 in Chapter 1). Abrupt climate changes typically involve a nonlinear 21 

process and its associated threshold. 22 

 23 

Abrupt changes in the climate system will be assessed across multiple chapters. This section provides a 24 

synthesis, in an update to the AR5 Table 12.4. Classic examples of potential abrupt climate changes include 25 

AMOC, Greenland and Antarctic ice sheets, permafrost carbon, methane clathrates, tropical and boreal 26 

forests, sea ice, and hydrological cycles/monsoon circulations. AR5 Table 12.4 will be updated based on 27 

literature since the AR5 (Table 4.8:) (e.g., (Drijfhout et al., 2015)).   28 

 29 

 30 

[START TABLE 4.8 HERE] 31 

 32 
Table 4.8: Summary table of components in the Earth system that have been proposed in the literature as potentially 33 

being susceptible to abrupt or irreversible change. [Based on Table 12.4 from the AR5, to be updated for 34 
AR6. Content coordinated across Chapters 1, 4, 5, 8, 9, and 11. Projected changes not yet fully assessed.] 35 

 36 

Earth System Abrupt? (AR6 definition) Irreversible? (AR6 Projected 21st century See chapter/section 
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Component definition) change 

AMOC Possible collapse  
Unlikely collapse during 

21st century 
9.2.4.1 

Ice Sheets    (Ch.9) 

Glaciers Yes Yes  9.5.2.6 

Permafrost Yes. Via thermokarst Yes  
9.5.3.5 

 

Snow 
 

 

No, for seasonal cover. 

Possible for permanent 

cover due to snow 

albedo feedbacks 

 

9.5.4.5 

 

See also 8.6.2.3 

 

Methane Clathrates 
Possible CH4 release from 

clathrates 
Yes 

Extremely unlikely on 

large scale during 21st  

century 

5.4.8.2, 5.4.8.3 

Forest Dieback 
Possible if climate threshold 

crossed 

Postulated via feedbacks 

on rainfall 

Partial loss of Amazon 

forest 
5.4.8.1 

Ocean Carbon Sink 
Wind-induced reduction in 

Southern ocean carbon sink 
No Not yet assessed 5.4.8.4 

Arctic Sea Ice  No  9.3.1.2 

Drought 
May be triggered by changes 

in land cover 
  

Anthropogenic: 8.6.2.1 

Land-surface feedbacks: 

8.6.2.4 

Extremes 

Extreme events may be 

triggered by abrupt changes in 

ocean or atmosphere 

circulation 

  11.10.2 

 1 

[END TABLE 4.8 HERE] 2 

 3 

 4 

It has been postulated that ESMs may be prone to being too stable (Valdes, 2011), given palaeo evidence of 5 

abrupt events (Dakos et al., 2008; Klus et al., 2018; Sime et al., 2019). However, the CMIP5 archive did 6 

contain evidence of abrupt changes simulated by these models (Drijfhout et al., 2015). 7 

 8 

 9 

 10 

4.8 Potential for Low-Probability–High-Impact Changes  11 

 12 

4.8.1 Low-Probability High-Warming Storylines  13 

 14 

Previous IPCC assessments have primarily assessed the projected likely or very likely range of changes (e.g., 15 

(Collins et al., 2013), see also Box 1.1). The focus on the likely range partly results from the design of model 16 

intercomparison projects that are not targeted to systematically assess the upper and lower bounds of 17 

projections, which in principle would require a systematic sampling of structural and parametric model 18 

uncertainties. The upper and lower bounds of model projections may further be sensitive to the missing 19 

representation of processes.  20 

 21 

However, since risk is typically defined as likelihood  impact (Sutton, 2018), an integrated risk assessment 22 

requires taking into account high levels of warming. The climate-related risks have been argued to increase 23 

with increasing levels of global warming (O’Neill et al., 2017) even if their probability decreases. Thus, it 24 

has recently been argued that an assessment that is too narrowly focused on the likely range potentially 25 

ignores the changes in the physical climate system that are associated with the highest risks (Sutton, 2018).  26 
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 1 

Given that the CMIP experiments can be considered ensembles of opportunity that are not designed for 2 

probabilistic assessments of the tails of the distribution, alternative approaches such as physically plausible 3 

high-impact scenario (PPHIS) (Sutton, 2018) or storylines have been suggested (Kjellström et al., 2018; 4 

Lenderink et al., 2014; Shepherd et al., 2018; Zappa and Shepherd, 2017). Such storylines of very high 5 

warming are less probable to occur than the multi-model mean but are potentially associated with very high 6 

levels of impact. Such storylines of high warming can be used to test how well adaptation plans would cope 7 

if the impacts of climate change turned out to be more severe than suggested by the likely model range. 8 

 9 

We here adapt an approach suggested in Sutton, 2018. Since changes increase with the level of warming 10 

(Section 4.6.1), a low-probability high-warming storyline is here illustrated based on the model that has a 11 

transient climate response to cumulative carbon emissions (TCRE) nearest to the upper bound of the 12 

assessed very likely range (90% quantile) in Chapter 7 [for the FOD we here select CanESM5 as an 13 

illustrative example]. Under SSP5-8.5, global surface air temperature (GSAT) is projected to increase by 14 

6.3°C in 2081–2100 relative 1995–2014. Figure 4.47: illustrates the changes in annual mean temperature and 15 

precipitation consistent with this low-probability high-warming storyline. Annual mean temperatures by 16 

2081–2100 are projected to increase by more than 8°C over large land fractions of North America, South 17 

America and most of Asia. Over large parts of the Arctic annual mean temperatures increase by more than 18 

12°C. Annual mean precipitation is projected to increase by more than 50% across parts of Asia and Africa. 19 

Thereby the projected changes are much larger than the corresponding global mean changes and exceed 20 

them by a factor of up to two over large regions. This low-probability high-warming storyline does not 21 

correspond to a storyline of high changes in all variables and all regions. The model simulation illustrated in 22 

Figure 4.47: illustrates a high level of warming but not necessarily particularly large seasonal mean 23 

precipitation or changes in extremes over all regions. On the other hand, the representation of different 24 

variables represents a coherent physical climate state that is consistent with the assessed upper bound of 25 

TCRE. The changes projected here have not been specifically assessed at the regional scale.  26 

 27 

[Note: For the SOD we will evaluate model performance during the historical period and the mean biases of 28 

annual mean temperature and precipitation, to assess whether the projection illustrated here can be 29 

considered plausible. Furthermore, we will assess the combination of a high TCRE and a strong-mitigation 30 

scenario, which has implications for the climate targets and the potential for abrupt changes even under 31 

strong mitigation.] 32 

 33 

 34 

[START FIGURE 4.47 HERE] 35 

 36 
Figure 4.47: Changes in annual mean temperature and precipitation in 2081–2100 relative to 1995–2014) in SSP5-8.5 37 

and SSP1-2.6 for a storyline representing a physically plausible high-global-warming future. 38 
 39 

[END FIGURE 4.47 HERE] 40 

 41 

 42 

Knowledge Gaps 43 

 44 

 45 

1) Lack of probabilities that can be assigned to scenarios (Schneider, 2001). 46 

 47 

2) Translation of past performance into assessment of the quality of long-term projections (adequacy-48 

for-purpose, (Parker, 2009)). 49 

 50 

3) Potential for abrupt change – this is the perpetual ‘unknown unknowns’ question wherein a hitherto 51 

unquantified positive climate feedback mechanism may come to play (Steffen et al., 2018). 52 

 53 

4) With respect to evaluating the robustness of projected future warming based on the historical 54 

climate response, uncertainty persists of aerosol and other radiatively active emissions and 55 
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concentrations (Lee et al., 2016), both in terms of preindustrial variability (Carslaw et al., 2017) 1 

and the early industrial era before strong observational constraints are available (Johnson et al., 2 

2018). 3 

 4 

5) Model projections continue to exhibit considerable structural uncertainty, and there is strong 5 

suggestion on multiple fronts that even though metrics of variability suggest that climate models 6 

are missing important observed modes (Guilyardi et al., 2016), models are overly uncertain in 7 

initialized predictions. Potential predictability determined by the ability of a model to predict itself 8 

on seasonal to interannual timescales (so called ‘perfect model studies’) is often lower than actual 9 

prediction skill of models in comparison to observations (Scaife and Smith, 2018). On multidecadal 10 

timescales, this question was raised in (Durack et al., 2012), because only the model ensemble 11 

mean demonstrates a strong spatial correlation with trends in sea surface salinity as reflecting large 12 

scale changes in precipitation minus evaporation over the oceans. 13 

 14 

6) Lack of future scenario robustness with respect to land carbon projection and budgeting in the 15 

context of competing agricultural, biomass, reforestation, afforestation, CO2 fertilization, nutrient 16 

down regulation, air quality, etc. Houghton et al. (2018) demonstrated a strong limitation in the 17 

ability to empirically constraining these budgets, much less turn them into a mechanistically robust, 18 

predictable modelling framework. Inability of current monitoring systems of carbon cycle to detect 19 

and attribute changes on less than multi-decadal timescales to inform historical and future scenario 20 

evaluation concentrations (Li et al., 2016c). 21 

 22 

7) Detection and attribution of multidecadal variability versus forced change for a broader range of 23 

quantities and over scales smaller than continental. The advent of large initial-condition ensembles 24 

has recently brought considerable investigation into this field (e.g., Kay et al., 2015), but more 25 

work needs to be done. 26 

 27 

8) There is a lack of studies investigating variability in the tropical Atlantic and Atlantic multidecadal 28 

variability in projections, possibly owing to the persistent climate-model biases especially in the 29 

tropical Atlantic.  30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

  38 
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 1 

 2 

Frequently Asked Questions 3 

 4 

FAQ 4.1: What Can We Say about Climate Change in the Next Twenty Years?  5 

 6 

For most climate quantities that have shown a clear trend over the most recent decades, we expect this trend 7 

to continue in the next twenty years. Our confidence derives from the increase in radiative forcing due to the 8 

expected continued emissions of greenhouse gases and from our scientific understanding and confidence in 9 

model simulations of the global-scale changes caused by this increased radiative forcing. However, the 10 

magnitude of the changes is much more uncertain, mainly because over a period of twenty years, natural 11 

internal variability can mask and for some quantities overwhelm the climate response to the increased 12 

radiative forcing. While it is virtually certain that global sea level will continue to rise in the next twenty 13 

years, we cannot say much about the change in precipitation averaged over all land areas. We expect that 14 

globally averaged surface temperature will continue to rise over the next twenty years, although another 15 

slowdown caused by natural internal variability cannot be excluded. 16 

 17 

There is a clearly recognized societal need for information about climate change in the next twenty years, 18 

defined here as the near term. But this information is difficult to provide robustly. The difficulty arises 19 

chiefly because over twenty years, natural internal variability plays a major role relative to the changes 20 

expected from the increased radiative forcing. Natural internal variability is caused by chaotic processes in 21 

the atmosphere and the ocean, such as the changing weather systems, and even after averaging in time over 22 

twenty years, the time averages or calculated trends contain a substantial chaotic element.  23 

 24 

In analogy to weather forecasting, natural internal variability can be predicted to some extent, provided that 25 

the prediction simulations are started from the observed climate state. These ‘decadal predictions’ do not 26 

attempt to forecast individual weather events, but instead they provide information such as how much 27 

warmer or colder future years will be on average, compared to the year just passed. Forecast quality or ‘skill’ 28 

is achieved because some elements of the climate system, primarily the oceans, vary on long timescales. 29 

Current models have some skill in predicting these slow variations, such that useful statements about the 30 

future state of natural internal variability can be made. 31 

 32 

The AR5 was the first IPCC Assessment Report to include information from decadal predictions, and 33 

substantial experience has been gained since. But it has also been confirmed that for most climate quantities 34 

of interest, natural internal variability cannot presently be skilfully predicted beyond at most ten years into 35 

the future. Looking ahead for twenty years, there are indications that natural internal variability will never be 36 

predictable over this time horizon, implying that natural internal variability causes some uncertainty that is 37 

irreducible. 38 

 39 

However, climate simulation results for the next twenty years are less sensitive to which of the emissions 40 

scenarios they are based on – in stark contrast to simulation results for the end of the 21st century. The 41 

reason for this is well understood; all scenarios show further greenhouse-gas emissions over the next twenty 42 

years, leading to increased greenhouse-gas concentrations and hence increased radiative forcing. Hence the 43 

globally averaged surface temperature is expected to continue to rise over the next twenty (high confidence). 44 

If the current rate continues, a warming of 1.5°C above the pre-industrial level is expected to be reached by 45 

around 2040, as already stated by the SR1.5.  46 

 47 

The area of the Arctic sea ice will continue to reduce in the next twenty years (high confidence), and globally 48 

averaged sea level is virtually certain to rise further. By contrast, we cannot say much about how 49 

precipitation averaged globally over all land areas will change over the next twenty years, and there are 50 

indications that such a statement cannot ever be made with confidence.  51 

 52 

[START FIGURE FAQ 4.1, FIGURE 1 HERE] 53 

 54 
FAQ 4.1, Figure 1: Simulations over the period 1995–2040, encompassing the recent past and the near-term future, of 55 
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four icons of global climate change, (a) globally averaged near-surface air temperature, (b) 1 
precipitation averaged globally over land, (c) the area of Arctic sea ice in September, and (d) 2 
globally averaged steric sea-level change, which arises purely from ocean warming.  All quantities 3 
except the Arctic sea-ice area are shown as deviations from the average over the period 1995–4 
2014. The black curves are for the historical period ending in 2014; the colours refer to various 5 
SSP scenarios as shown in the inlet. In (c), the dashed horizontal line is at 1 million km2, the 6 
threshold conventionally used for designating an ice-free Arctic. [Placeholder figure, based on the 7 
CMIP6 model CanESM5. To be updated with other CMIP6 models and shading for indicating 8 
uncertainty. Sea-level change to be augmented by contributions from land-ice melt, something that 9 
is not included in the CMIP6 models.] 10 

 11 
 12 

[END FIGURE FAQ 4.1, FIGURE 1 HERE] 13 
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FAQ 4.2: When Greenhouse-Gas Emissions Reduce, What Changes Will We See?  1 

 2 

In the long run, reductions in greenhouse-gas (GHG) emissions will limit the surface warming and changes 3 

in many climate indicators. In the first few decades after emissions reductions begin, however, their effects 4 

on the climate system will be difficult to diagnose, because the combination of climate inertia and natural 5 

internal variability will mask the climate system response to the reductions. Emissions reductions are 6 

expected to leave a discernible fingerprint on atmospheric CO2 concentrations after around 10 years, on 7 

global surface temperature after around 30 years, and on regional temperatures after around 40 years. An 8 

effect of mitigation on regional precipitation trends is expected only later in the 21st century.  9 

 10 

Emissions reductions in long-lived GHG, especially in CO2, will slow down the increase in atmospheric CO2 11 

concentrations but will over the first few decades not yet lead to a decrease in concentrations. This is a 12 

manifestation of one fundamental element of inertia in the climate system. As a consequence, the radiative 13 

forcing will also continue to increase, although after around 10 years at a detectably smaller rate. This 14 

smaller rate of increase in radiative forcing is expected to lead to a smaller rate of global surface warming. 15 

But this reduction in the rate of warming will be overlain by natural internal variability, which is caused by 16 

chaotic processes in the atmosphere and the ocean, such as the changing weather systems. Natural internal 17 

variability will thus make it difficult to detect in the next two decades whether surface warming has indeed 18 

slowed down as a response to the emissions reductions.   19 

 20 

There has been some recent research on this difficult detection problem, but not enough for a broad 21 

quantitative consensus to have emerged. The difficulties arise at multiple levels. First, we are asking a 22 

question about something that will arise at some point in an assumed future, namely whether putative 23 

emissions reductions have shown an effect on the climate system. At present we thus have no direct 24 

observations to guide us in this juxtaposition of emissions reduction and climate response. Second, there is 25 

no unambiguous definition of a no-mitigation emissions pathway against which emissions reductions can be 26 

defined. Third, any quantitative answer must rely on climate models simulating the correct ratio of response 27 

to emissions reductions on the one hand and the magnitude of natural internal variability on the other hand. 28 

Fourth, this detection problem – in analogy to detecting anthropogenic climate change in the observed record 29 

of the past – becomes more difficult on the regional scale and for many quantities other than temperature. 30 

And fifth, even if a response has been detected through some advanced statistical method, there remains the 31 

communications challenge if detection has not yet been possible for one of the icons of global climate 32 

change. But despite the difficulty of detecting climate responses in the decades immediately after emissions 33 

reductions begin, there his high confidence that such a response will emerge clearly in the second half of this 34 

century in many quantities of interest.  35 

 36 

 37 

[START FIGURE FAQ 4.2, FIGURE 1 HERE] 38 

 39 
FAQ 4.2, Figure 1: Illustrating the difficulty of discerning mitigation benefit in the near term: Shown are results from 40 

100 simulations with the same climate model that all assume the same reduction in greenhouse-gas 41 
emissions from 2020 onward. The difference between individual simulations arises solely through 42 
different manifestations of natural internal variability and represents an irreducible uncertainty. 43 
We want to assess quantitatively to what extent emissions reductions lead to a reduction in 44 
warming trend. Thus we compare, in each simulation separately, how the warming trend differs 45 
between the periods 2021–2035 and 2005–2020 (left), and between the periods 2036–2050 and 46 
2005–2020 (right). The length of each bar indicates how often a trend difference of a certain size 47 
occurs among the 100 simulations. In the near term (left), we already see a preponderance of a 48 
slowdown in surface warming, occurring in two-thirds of the simulations. But as many as one-49 
third of the simulations show faster warming in the near term, despite emissions reductions. By the 50 
mid-term (right), almost 90% of the simulations show a slowdown in warming compared to 2005–51 
2020. [Placeholder figure, based on (Marotzke, 2019). Suggest replacing by 20-year trends and 52 
using the AR6 WGI definitions of near term and mid-term, as well as by CMIP6 results.] 53 

 54 

[END FIGURE FAQ 4.2, FIGURE 1 HERE] 55 
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FAQ 4.3: At a Given Level of Warming, What Can We Say about Climate Change in the World’s 1 

Regions?  2 

 3 

Climate change does not unfold uniformly across the globe, and yet there are patterns of change that are 4 

robust. For example, the Arctic warms more than other regions, land areas warm more than the oceans, and 5 

the Northern Hemisphere warms more than the Southern Hemisphere. When such a robust pattern exists, we 6 

can infer the expected change in a region for each assumed level of global mean warming. Confidence in 7 

pattern robustness is highest for temperature-change patterns and for moderate levels of warming. By 8 

contrast, precipitation changes tend to show less robust patterns, because precipitation changes are more 9 

strongly influenced by regional forcing agents such as aerosol emissions and by natural internal climate 10 

variability; these influences are more pronounced under low levels of warming. Robust patterns cannot be 11 

established for changes in snow or sea-ice cover, because both snow and ice vanish completely if certain 12 

temperature thresholds are crossed.  13 

 14 

Identifying a robust pattern of change for a given level of global warming offers two main advantages. First, 15 

it enables us to make statements about expected regional change that are largely independent of the forcing 16 

scenario. As long as different scenarios result in the same global warming level, irrespective of the time 17 

when this level is attained in each scenario, we can with high confidence specify the expected regional 18 

change resulting from this warming. And second, we can reliably interpolate and, with due caution, 19 

extrapolate to warming levels that have not been analysed or even simulated explicitly. Ideally a change 20 

pattern can be identified for every °C of global surface warming, and the expected regional change is readily 21 

found for every global warming level by simple multiplication (‘scaling’) of the pattern with this warming 22 

level. This approach can be highly efficient for studies of climate impacts at regional scales. When patterns 23 

of changes are robust, all impact assessments can readily be performed for all levels of global warming, for 24 

all future time periods, and for all scenarios.  25 

 26 

Pattern scaling has some well-known strengths and weaknesses. It has been demonstrated to yield robust 27 

estimates for temperature changes at a given level of global warming. Limitations exist over areas of high 28 

natural internal variability that become particularly evident at low levels of warming and for seasonal 29 

changes, for areas with strong feedbacks due to melting snow or sea ice, and for areas with large differences 30 

between transient and very-long-term changes. Patterns are less robust for precipitation changes, for reasons 31 

that are likewise quite well understood. Global and regional changes in precipitation are not only a response 32 

to globally averaged surface warming, but also depend on the forcing agents such as anthropogenic aerosol 33 

emissions or land-use changes. Furthermore, regional precipitation changes are more strongly influenced by 34 

natural internal variability in the atmosphere, meaning that any given surface warming level can result in 35 

quite different patterns of precipitation change. Nevertheless, pattern scaling can be applied to precipitation 36 

changes, but the uncertainties are larger than for temperature changes. 37 

 38 

Finally, there are climate variables for which pattern scaling is not appropriate. Sea-level change, for 39 

example, is expected to be more closely related to the entire past history of warming, rather than to the 40 

warming level at any given time. And changes in bounded variables such as sea-ice and snow cover are 41 

better described by whether a threshold is crossed or not, the threshold determining whether a region 42 

experiences a complete melt. Once the melt is complete, there can be no further melting, and the simple 43 

proportionality lying behind pattern scaling no longer applies.  44 

 45 

 46 

[START FAQ 4.3 FIGURE 1 HERE] 47 

 48 
FAQ 4.3, Figure 1: Example for a robust warming pattern, which is presented here for the CMIP6 model MRI-ESM2 49 

and calculated from the scenario SSP3-7.0. Surface warming relative to 1850–1900 is shown here 50 
for time periods over which the globally averaged surface warming is 2°C. We recognise the 51 
strong warming over the Arctic, generally stronger warming over land than over the ocean, and a 52 
slight cooling over the central subpolar North Atlantic. [Placeholder figure, to be replaced by the 53 
average over more CMIP6 models.]  54 

 55 
[END FIGURE FAQ 4.3, FIGURE 1 HERE] 56 
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Box 4.1, Figure 1: CMIP6 GSAT simulations and various contributions to uncertainty in the projections ensemble. The 5 

top row shows the period 1850–2100, referenced to 1850–1900; the bottom row shows a cut-out for 6 
the period 1995–2040, which encompasses the most recent past in CMIP6 (1995–2014) and the 7 
near-term future (2021–2040). All panels show for 1850–2100 one CMIP6-forced simulation each 8 
with BCC-CSM2-MR (cyan), CanESM5 (light green), IPSL-CM6A-LR (yellow), MRI-ESM2-0 9 
(light purple), and UKESM1 (ochre); and GSAT simulated with an emulator driven by the AR5 10 
radiative forcing, using RCP4.5 from the WGI AR5 Annex II after 2005 (black). The emulator is a 11 
two-layer time-dependent energy-balance model (EBM) following (Held et al., 2010), with ocean 12 
heat uptake efficiency  = 0.8 W m-2 °C-1 and efficacy 1.0. Results are shown for ECS = 2.5°C and 13 
3.5°C, the lower and upper limits, respectively, of the Chapter 7 ECS likely range (solid black), as 14 
well as for 2°C and 5°C, the lower and upper limits, respectively, of the Chapter 7 ECS very likely 15 
range (dashed black). For the historical period, all panels show the observations (HadCRUT4, 16 
(Morice et al., 2012), red) and  the CMIP5-forced simulations from the 100-member Max Planck 17 
Institute Grand Ensemble (MPI-GE, (Maher et al., 2019), dark blue for ensemble mean, light blue 18 
for individual realizations), Left: The MPI-GE simulations are extended from 2006–2100 following 19 
the RCP4.5 scenario. Right: For the years 2019–2028, the initialized-prediction ensemble from the 20 
CMIP6 model MPI-ESM-HR (Müller et al., 2018) is shown (dark purple), produced through the 21 
MiKlip project (Marotzke et al., 2016) and contributing to DCPP (Boer et al., 2016). The MiKlip 22 
results are drift-removed and referenced to the time-averaged hindcasts for 1995–2014 lead-year by 23 
lead-year; then the HadCRUT4 difference between the means over 1995–2014 and 1850–1900 is 24 
added. [Placeholder figure, to be updated with the full CMIP6 ensemble and CMIP6/AR6/SSP 25 
forcing for the EBM.] 26 
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Figure 4.1: Selected indicators of global climate change from historical and scenario simulations. (a) Global surface 4 

air temperature changes relative to averages from 1995–2014 (left axis) and relative to averages from 5 
1850–1900 (right axis). (b) Arctic sea-ice area. (c) Global land precipitation changes relative to averages 6 
from 1995–2014. (d) Global sea level change (due to thermal expansion alone) relative to averages from 7 
1995-2014. (a), (b) and (d) are annual averages, (c) are September averages. The curves plotted here are 8 
based on results from the models that have thus far contributed to the CMIP6 exercise. In (a) and (b), the 9 
models are BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0. In (c) and 10 
(d), the models are CanESM5, CNRM-CM6-1, and IPSL-CM6A-LR. The number inside panel indicates 11 
the total number of models used. Eventually this figure will be updated using single simulations from the 12 
full CMIP6 ensemble plotted as ensemble means with shaded uncertainties. 13 
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Figure 4.2: Annual mean precipitation changes from historical and scenario simulations. (a) Northern Hemisphere 3 

(NH) extratropics (30°N–90°N). (b) North Atlantic (NAT) subtropics (5°N–30°N, 80°W–0°). Changes 4 
are relative to averages from 1995–2014. The number inside panel indicates the total number of models 5 
used. The curves here are for single simulations from the five CMIP 6 models including BCC-CSM2-6 
MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0. Eventually this figure will be 7 
updated using single simulations from the full CMIP6 ensemble plotted as ensemble means with shaded 8 
uncertainties. 9 
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Figure 4.3: Arctic sea ice extent in September in a large initial-condition ensemble of observationally-constrained 5 

simulations of an Earth System Model (CanESM2). The black curve is the average over twenty 6 
simulations following historical forcings to 2015 and RCP8.5 extensions to 2100. The coloured curves 7 
are averages over twenty simulations after GSAT has been stabilized at the indicated degrees of warming 8 
relative to preindustrial. The coloured circles on the right are individual values at 2100. On an individual 9 
simulation basis, the probability of the Arctic becoming ice free (i.e. with less than 1 million km2 10 
coverage) is significantly higher for 2°C warming than for 1.5°C warming (Sigmond et al., 2018). 11 
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 5 
Figure 4.4: AMOC in large initial-condition ensembles of simulations of an Earth System Model (CanESM2). The 6 

black curve is the average over fifty simulations following historical forcings to 2005 and RCP8.5 7 
extensions to 2100. The coloured curves are averages over fifty simulations (each) after GSAT has been 8 
stabilized at the indicated degree of warming relative to pre-industrial (Sigmond et al., 2018). The dashed 9 
lines indicate the AMOC strength at the point of emissions cessation. 10 
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Figure 4.5: Cumulative ocean carbon uptake and surface pH from historical and scenario simulations. (a) Cumulative 5 

ocean carbon uptake since 1850. (b) Surface pH. The curves plotted here are for single simulations from 6 
(a) two CMIP6 models (IPSL-CM6A-LR and CanESM5) and (b) one model (IPSL-CM6A-LR). 7 
Eventually the figure will be updated using single simulations from the full CMIP6 ensemble, plotted as 8 
ensemble means with shading. 9 
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Figure 4.6: Simulations of boreal wintertime Annular Mode indices: (a) NAM and (b) SAM. The NAM is defined as 4 

the difference in zonal mean SLP at 35°N and 65°N (Li and Wang, 2003) and the SAM as the difference 5 
in zonal mean SLP at 40°S and 65°S (Gong and Wang, 1999). All anomalies are relative to averages from 6 
1850 to 1900. The curves here are for single simulations from the five CMIP6 models that are BCC-7 
CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0. Eventually this figure will 8 
be updated using single simulations from the full CMIP6 ensemble, and ensemble means and shaded 9 
uncertainties will be displayed. 10 
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Figure 4.7: Historical simulation and future projection of the amplitude of the ENSO under (a) SSP1-2.6 and (b) 4 

SSP5-8.5. The amplitude is defined as the standard deviation of the monthly Niño 3.4 index after 5 
removing climatological monthly mean and long-term trend. The amplitude is shown for maximally-6 
overlapping fifty-year periods with the end-year shown on the horizontal axis. The thick curves are the 7 
mean of individual model’s ENSO amplitude. The curves here are for single simulations from the five 8 
CMIP6 models that are BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-9 
0. Eventually this figure will be updated using single simulations from the full CMIP6 ensemble, and 10 
ensemble means and shaded uncertainties will be displayed. 11 
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Figure 4.8: Projections and predictions of global-mean annual-mean surface air temperature, referenced to 1850–5 
1900. The figure shows for 1995–2040 one CMIP6-forced simulation each with BCC-CSM2-MR (cyan), 6 
CanESM5 (light green), IPSL-CM6A-LR (yellow), MRI-ESM2-0 (light purple), and UKESM1 (ochre); 7 
and GSAT simulated with an emulator driven by the AR5 radiative forcing, using RCP4.5 from the WGI 8 
AR5 Annex II after 2005 (black). The emulator is a two-layer time-dependent energy-balance model 9 
(EBM) following (Held et al., 2010), with ocean heat uptake efficiency  = 0.8 W m-2 °C-1 and efficacy 10 
1.0. Results are shown for ECS = 2.5°C and 3.5°C, the lower and upper limits, respectively, of the 11 
Chapter 7 ECS likely range (solid black), as well as for 2°C and 5°C, the lower and upper limits, 12 
respectively, of the Chapter 7 ECS very likely range (dashed black). For the historical period, all panels 13 
show the observations (HadCRUT4, (Morice et al., 2012), red) and  the CMIP5-forced simulations from 14 
the 100-member Max Planck Institute Grand Ensemble (MPI-GE, (Maher et al., 2019), dark blue for 15 
ensemble mean, light blue for individual realizations), For the years 2019–2028, the initialized-prediction 16 
ensemble from the CMIP6 model MPI-ESM-HR (Müller et al., 2018) is shown (dark purple), produced 17 
through the MiKlip project (Marotzke et al., 2016) and contributing to DCPP (Boer et al., 2016). The 18 
MiKlip results are drift-removed and referenced to the time-averaged hindcasts for 1995–2014 lead-year 19 
by lead-year; then the HadCRUT4 difference between the means over 1995–2014 and 1850–1900 is 20 
added. [Placeholder figure, copied from Box 4.1, Figure 1, bottom right; to be updated with the full 21 
CMIP6 ensemble and CMIP6/AR6/SSP forcing for the EBM.] 22 
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Figure 4.9: CMIP6 multi-model mean change (°C) in (top) DJF and (bottom) JJA near-surface air temperature in 5 

2021–2040 from SSP1-2.6 and SSP5-8.5 relative to 1995–2014 [Figure produced with ESMValTool 6 
(Eyring et al., 2016b) based on the five CMIP6 models: BCC-CSM2-MR, CanESM5, CNRM-CM6-1, 7 
IPSL-CM6A-LR, and MRI-ESM2-0. Figure will be updated with more CMIP6 models] 8 
 9 

 10 

 11 

  12 



First Order Draft Chapter 4 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 4-123 Total pages: 163 

 1 

 2 

 3 

 4 
 5 

Figure 4.10: CMIP6 multi-model mean change (%) in (top) DJF and (bottom) JJA precipitation in 2021-2040 from 6 
SSP1-2.6 and SSP5-8.5 relative to 1995-2014 [Figure produced with ESMValTool (Eyring et al., 2016b) 7 
based on the five CMIP6 models: BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and 8 
MRI-ESM2-0. Figure will be updated with more CMIP6 models. Figure will be updated with more 9 
CMIP6 models] 10 
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Figure 4.11: Changes of global land monsoon precipitation index (defined as the accumulated precipitation falling in 4 

the global land monsoon domain as defined by (Wang et al., 2013) in the historical climate simulation 5 
and four SSPs projections of five CMIP6 (BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-6 
LR, MRI-ESM2-0) models. Each line in each SSP represents one model realization. Anomalies are 7 
relative to the 1995–2014 mean. Time series are normalized by climate mean values and smoothed with a 8 
20-yr running-mean filter (Unit: %). Eventually this figure will be updated using single simulations from 9 
the full CMIP6 models, plotted as multi-model ensemble with shading of model spread. 10 
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Figure 4.12: Changes of tropical monsoon circulation index (defined as the vertical shear of zonal winds between 850 4 

and 200 hPa averaged in a zone stretching from Mexico eastward to the Philippines (0°–20°N, 120°W–5 
120°E) (Wang et al., 2013)in the historical climate simulation and two SSPs projection of five CMIP6 6 
(BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, MRI-ESM2-0). Each line in each SSP 7 
represents one model realization. Anomalies are relative to the 1995–2014 mean. Anomalies are relative 8 
to the 1995–2014 mean. Time series are smoothed with a 20-yr running-mean filter (Unit: m/s). 9 
Eventually this figure will be updated using single simulations from the full CMIP6 models, plotted as 10 
multi-model ensemble with shading of model spread. 11 
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Figure 4.13: September Arctic sea ice area trends for periods ending in the near-term period from 2021-2040 4 

following the various priority SSPs. (a) 10-year periods. (b) 20-year periods. Plotted are the minimum 5 
and maximum trends, the lower and higher trend quartiles and the median trend. The percentage of 6 
positive trend values are indicated to the right of the maximum value. [The values plotted here are for 10 7 
simulations from one CMIP6 model, CanESM5. Eventually the figure will be updated using single 8 
simulations from the full CMIP6 ensemble.] 9 
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Figure 4.14: Annual-mean ocean carbon uptake trends for all periods ending in the near-term (2021-2040). (a) 10-year 5 

periods. (b) 20-year periods. Plotted are the minimum and maximum trends, the lower and higher trend 6 
quartiles and the median trend. The percentage of positive trend values are indicated to the right of the 7 
maximum value. [The values plotted here are for 10 simulations from on CMIP6 model, CanESM5. 8 
Eventually the figure will be updated using single simulations from the full CMIP6 ensemble.] 9 
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Figure 4.15: Simulated Annular Mode index change (hPa) from present-day to the near-term: (a) NAM and (b) SAM. 5 

The NAM is defined as the difference in zonal mean sea-level pressure (SLP) at 35°N and 65°N (Li and 6 
Wang, 2003) and the SAM as the difference in zonal mean SLP at 40°S and 65°S (Gong and Wang, 7 
1999). Present-day values are averages over the period from 1995-2014. Near-term values are averages 8 
over the period from 2021-2040. The vertical lines are ensemble-means and the shaded bars are 5-95% 9 
confidence intervals on the ensemble means. [These calculations are based on a ten-member ensemble of 10 
simulations from one CMIP6 model, CanESM5. Eventually, the figure will be updated using single 11 
simulations from the full CMIP6 ensemble.] 12 
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 5 
Figure 4.16: Time variation of simulated ENSO amplitude and ENSO stability [Placeholder figure from (Kim et al., 6 

2014b), to be replaced in later drafts]. 7 
 8 
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Figure 4.17: Annual-mean GSAT. a, Ensemble mean (solid) of VOLC (blue), VOLC-CONST (magenta) and NO-5 
VOLC (red/orange) with 5–95% range (shading) and ensemble minima/maxima (dots) for VOLC and 6 
NO-VOLC; evolution of the most extreme member (black). b, Probability density function (PDF) of the 7 
2016–2035 mean relative to pre-industrial (PI), with 5–95% bootstrap confidence bounds. c, PDF of the 8 
time when GSAT change relative to PI (20-year running average) exceeds 1.5°C. d, PDF of annual 9 
anomalies with anthropogenic trend removed. The spread of VOLC-CONST is linearly shifted relative to 10 
NO-VOLC, and therefore not shown in a–c.  These calculations are based on three 21st-century 11 
simulation ensembles with the Norwegian Earth System Model (NorESM), which use the same mid-12 
range anthropogenic forcing scenario RCP4.5 but differ in their volcanic forcing: a 60-member ensemble 13 
using plausible stochastic volcanic forcing (VOLC); a 60-member reference ensemble using zero volcanic 14 
forcing (NO-VOLC); and a 20-member ensemble using 1850–2000 averaged volcanic forcing (VOLC-15 
CONST). [This figure is adopted from (Bethke et al., 2017).] 16 
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Figure 4.18: (a) Evolution of the composite Niño-3 index with zonal mean removed (units: 8°C) after northern 4 

eruptions (blue line), tropical eruptions (red line), and southern eruptions (green line). The spreads of the 5 
individual volcanic eruptions are denoted by the blue, red, and green shading, respectively. (b) The lead–6 
lag correlation between the Niño-3 index (5°S–5°N, 150°–90°W) and the 850-hPa zonal wind in the 7 
western-to-central equatorial Pacific (5°S–5°N, 110°E–150°W) following northern (blue line), tropical 8 
(red line), and southern eruptions (green line). The positive value of the horizontal axis indicates that the 9 
Niño-3 index lags the 850-hPa zonal wind. [This figure is adopted from (Zuo et al., 2018).]  10 
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Figure 4.19: Multi-model mean change in annual mean near-surface air temperature (°C) in 2041–2060 and 2081–5 

2100 in (top) SSP1-2.6 and (bottom) SSP5-8.5 relative to 1995–2014. [Figure produced with 6 
ESMValTool (Eyring et al., 2016b) based on the five CMIP6 models, BCC-CSM2-MR, CanESM5, 7 
CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0 will be updated with more CMIP6 models.] 8 
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Figure 4.20: Relative change in variability of (left) JJA and (right) DFJ mean temperature in three large initial 6 

condition ensembles. Changes are shown as percentage changes of standard deviation across local 7 
seasonal mean temperatures. Changes are shown MPI 100-member grand ensemble by 2081–2100 8 
(Maher et al., 2019), CanESM2 50-member ensemble (Kirchmeier-Young et al., 2017) and NCAR-9 
CESM 30-member ensemble (Kay et al., 2015) for RCP8.5. [Figure may later be updated based on large 10 
initial-condition ensembles or large multi-model ensembles such as CMIP6 showing changes in standard 11 
deviation of seasonal mean temperatures in 2081–2100 (SSP5-8.5) relative to 1995–2014]. 12 
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Figure 4.21: Change in annual atmospheric temperature (°C) in 2081–2100 in (left) SSP1-2.6 and (right) SSP5-8.5 5 

relative to 1995–2014 for the IPSL-CM6A-LR model from CMIP6. [To be updated with more CMIP6 6 
models as they become available]. 7 
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Figure 4.22: Multi-model mean change (%) in seasonal (left) DJF and (right) JJA mean near-surface relative humidity 4 

in 2041–2060 and 2081–2100 in SSP5-8.5 relative to 1995–2014 based on two CMIP6 models, IPSL-5 
CM6A-LR and MRI-ESM2-0. [Figure to be updated.] 6 

 7 

 8 

  9 



First Order Draft Chapter 4 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 4-136 Total pages: 163 

 1 

 2 
 3 

 4 
Figure 4.23: Multi-model mean change (°C) in seasonal (left) DJF and (right) JJA mean wet-bulb globe temperature in 5 

2041-2060 and 2081-2100 in SSP5-8.5 relative to 1995-2014 based on two CMIP6 models:IPSL-CM6A-6 
LR and MRI-ESM2-0. [Figure to be updated.] 7 

 8 
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Figure 4.24: Multi-model mean change (%) in annual mean precipitation in 2041-2060 (left) and 2081-2100 (right) 5 

relative to 1995-2014 from (top) SSP1-2.6 and (bottom) SSP5-8.5. [Figure produced with ESMValTool 6 
(Eyring et al., 2016b) based on the five CMIP6 models BCC-CSM2-MR, CanESM5, CNRM-CM6-1, 7 
IPSL-CM6A-LR, and MRI-ESM2-0. Figure to be updated with more CMIP6 models for JJA and DJF 8 
season.] 9 

 10 

 11 

  12 



First Order Draft Chapter 4 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 4-138 Total pages: 163 

 1 

 2 

 3 
 4 

 5 

 6 
Figure 4.25: Multi-model mean change (hPa) in JJA and DJF mean sea level pressure in 2081-2100 in SSP1-2.6 and 7 

SSP5-8.5 relative to 1995-2014 [Figure produced with ESMValTool (Eyring et al., 2016b) based on the 8 
five CMIP6 models BCC-CSM2-MR, CanESM5, CNRM-CM6-1, IPSL-CM6A-LR, and MRI-ESM2-0. 9 
More CMIP6 models will be added as they become available.] 10 
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 3 
Figure 4.26: Multi-model mean annual mean zonal wind change (m s-1) in 2081-2100 in (left) SSP1-2.6 and (right) 4 

SSP5-8.5 relative to 1995-2014. Results are based on the IPSL-CM6A-LR and BCC-CSM models. The 5 
1995-2014 climatology is shown in contours with spacing 10 m s-1. [More CMIP6 models to be added as 6 
they become available.] 7 
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 4 

Figure 4.27: Multi-model mean change in winter (NH DJF, SH JJA) zonal wind at 850 hPa (u850) in 2081-2100 in 5 
(left) SSP1-2.6 and (right) SSP5-8.5 relative to 1995-2014. The 1995-2014 climatology is shown in 6 
contours with spacing 10 m s-1. [More CMIP6 models to be added as they become available.] 7 
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Figure 4.28: Multi-model mean change in winter, extratropical storm track density (NH DJF, SH JJA in 2081-2100 in 6 

SSP5-8.5 relative to 1995-2014. [The AR5 Figure 12.20, to be updated when high frequency output 7 
becomes available from CMIP6]. 8 
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Figure 4.29: Box plot showing wintertime (December to March) present-day (1986-2005) and future climate (2081-3 

2100) atmospheric blocking frequencies over (a) the Greenland region (65W-20W, 62.5N-72.5N), (b) the 4 
Central European region (20W-20E, 45N-65N), (c) the North Pacific region (130E-150W, 60N-75N). 5 
Values show the percentage of blocked days per season following the (Davini et al., 2012) index. Median 6 
values are the black horizontal bar. The numbers below each bar report the number of models included. 7 
Observations are obtained as the average of the ERA-Interim Reanalysis, the JRA-55 Reanalysis and the 8 
NCEP/NCAR Reanalysis.   9 
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Figure 4.30: Multi-model mean change (°C ) in annual mean ocean temperature in 2081–2100 in (left) SSP1-2.6 and 4 

(right) SSP5-8.5 relative to 1995–2014. [The AR5 Figure 12.12 lower panels, to be updated for FOD]. 5 
 6 
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Figure 4.31: Latitude-depth distribution of aragonite saturation state under RCP 8.5 in year 2100 for the Atlantic 4 

(upper panel) and Pacific Ocean (lower panel). Overplotted is the aragonite saturation horizon at year 5 
2010 (dotted lines) and 2100 (solid lines). Result are shown for the median projection of CMIP5 model 6 
results (taken from Figure 6.29 of the AR5, to be updated with CMIP6 SSP1-2.6 and SSP5-8.5 restuls 7 
relative to 1995-2014).  8 
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 4 

Figure 4.32: Simulated Annular Mode index change from present-day to the long-term: (a) NAM and (b) SAM. The 5 
NAM is defined as the difference in zonal mean SLP at 35°N and 65°N (Li and Wang, 2003) and the 6 
SAM as the difference in zonal mean SLP at 40°S and 65°S (Gong and Wang, 1999). Present-day values 7 
are averages over the period from 1995-2014. Near-term values are averages over the period from 2081-8 
2100. The vertical lines are ensemble-means and the shaded bars are 5-95% confidence intervals on the 9 
ensemble means. [These calculations are based on a ten-member ensemble of simulations from one 10 
CMIP6 model, CanESM5. Eventually, the figure will be updated using single simulations from the full 11 
CMIP6 ensemble.] 12 
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Figure 4.33: Comparison between past and future probability distributions of ENSO SST anomalies computed using 5 

two different ENSO indices (Cai et al., 2015), namely Niño3 and Niño4 Indices. [A similar analysis 6 
based on the CMIP6 multi-model ensemble potentially will be shown in this subsection. Additionally, a 7 
figure for ENSO-associated hydroclimate changes will be shown.] 8 

 9 
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Figure 4.34: Projected spatial patterns of changes in annual mean temperature (°C) at 1.5, 2, 3 and 4 °C of global 4 

warming compared to the pre-industrial period (1850–1900) (top), and the spatial differences of 5 
temperature change between 2, 3 and 4 °C of global warming relative to 1.5 °C of global warming 6 
(bottom). Cross-hatching highlights areas where at least two-thirds of the models (2 out of 3 models at the 7 
time of the FOD) agree on the sign of change, as a measure of robustness. Values were assessed from the 8 
transient response over a 21-year period at a given warming level, based on SSP5-8.5 in CMIP6. Note 9 
that the responses for stabilization scenarios at 1.5°C and 2 °C of global warming are similar (see Atlas, 10 
Section X.1). Maps depicting the effects of differential aerosol forcing on spatial patterns of temperature 11 
change at different levels of global warming are shown in Section X.2 of the Atlas. 12 
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Figure 4.35: Projected spatial patterns of changes in annual precipitation (expressed as a % change) at 1.5, 2, 3 and 4 5 

°C of global warming compared to the pre-industrial period (1850–1900).  Stippling highlights areas 6 
where at least two-thirds of the models (2 out of 3 models at the time of the FOD) agree on the sign of 7 
change, as a measure of robustness. Values were assessed from the transient response over a 21-year 8 
period at a given warming level, based on SSP5-8.5 in CMIP6. Note that the responses for stabilization 9 
scenarios at 1.5°C and 2 °C of global warming are similar (see Atlas, Section X.1). Maps depicting the 10 
effects of differential aerosol forcing on spatial patterns of temperature change at different levels of 11 
global warming are shown in Section X.2 of the Atlas. 12 

 13 

 14 

  15 



First Order Draft Chapter 4 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 4-149 Total pages: 163 

 1 
 2 
Figure 4.36: Projected spatial patterns of change in near-surface winter zonal winds (m/s, 1000 hPa) at 1.5°C, 2°C, 3 

3°C and 4°C of global warming compared to the pre-industrial period (1850–1900) for the SH (Panels a 4 
to d), and NH (Panels e to h). Cross-hatching highlights areas where at least two-thirds of the models (2 5 
out of 3 models at the time of the FOD) agree on the sign of change, as a measure of robustness. Values 6 
were assessed from the transient response over a 21-year period at a given warming level, based on SSP5-7 
8.5 in CMIP6 model simulations. Note that the responses for stabilization scenarios at 1.5°C and 2°C of 8 
global warming are similar (see Atlas, Section X.1). Maps depicting the effects of differential aerosol 9 
forcing on spatial patterns of temperature change at different levels of global warming are shown in 10 
Section X.2 of the Atlas. 11 
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Figure 4.37: Simulated Annular Mode index change under 1.5, 2, 3 and 4 °C of global warming. (a) Northern 3 

Annular Mode (NAM). (b) Southern Annular Mode (SAM). The NAM is defined as the difference in 4 
zonal mean sea-level pressure (SLP) at 35°N and 65°N (Li and Wang, 2003) and the SAM as the 5 
difference in zonal mean SLP at 40°S and 65°S (Gong and Wang, 1999). Values were assessed from the 6 
transient response over a 21-year period at a given warming level, based on SSP5-8.5 in CMIP6. The 7 
vertical lines are ensemble-means and the shaded bars are 5-95% confidence intervals on the ensemble 8 
means. [These calculations are based on a ten-member ensemble of simulations from one CMIP6 model, 9 
CanESM5. Eventually, the figure will be updated using single simulations from the full CMIP6 10 
ensemble.] 11 
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Figure 4.38: Projected mean change of ENSO SST under 1.5, 2, 3 and 4 °C of global warming relative to the 8 

pre-industrial period (1850-1900). Values were assessed from the transient response over a 21-year 9 
period at a given warming level, based on SSP1-2.6 and SSP5-8.5 from one CMIP6 model. The vertical 10 
lines are ensemble-means and the shaded bars are 5-95% confidence intervals on the ensemble means. 11 
[These calculations are based on a ten-member ensemble of simulations from one CMIP6 model, 12 
CanESM5. Eventually, the figure will be updated using single simulations from the full CMIP6 13 
ensemble.] 14 
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 5 
Figure 4.39: Projected changes in the global pattern of near-surface temperature and precipitation associated with a 6 

2oC increase in global temperature achieved by different pathways. Example above shows the doubling 7 
difference and ratio from experiments to 2x and 4x CO2 taken from (Good et al., 2016). 8 
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Figure 4.40: Near-term GSAT anomalies relative to the pre-industrial period (here, 1861–1880) in the 100-member 4 

Max Planck Institute Grand Ensemble (MPI-GE). (a) GSAT time series for each realization, scenario 5 
RCP2.6. (b) As (a) but for scenario RCP4.5. The thick blue, red, and green lines show, respectively, the 6 
RCP2.6 and RCP4.5 ensemble means and the observations. The climate response to RCP2.6 and RCP4.5 7 
is nearly indistinguishable in the near term, here 2005–2035, indicating the irreducible uncertainty due to 8 
internal variability. [Placeholder figure from (Marotzke, 2019); will be updated using CMIP6.]  9 
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Figure 4.41: Simulated lag and irrversibility in global and annual mean climate variables against atmospheric CO2. a) 2 

normalized anomaly for key climate variables, b) surface air temperature, c) precipitation, d) Arctic sea 3 
ice area, e) Atlantic meridional overturning circulation, and f) thermosteric sea level rise as a function of 4 
atmospheric CO2.  Atmospheric CO2 concentration increases at 1% per year to 4×CO2 and then decreases 5 
at 1% per year again to return to pre-industrial levels. Multi-model mean (solid lines) and individual 6 
model results (thin lines) that participated in CDRMIP are shown. For surface air temperature, results are 7 
shown for 7 models (ACCESS1, BNU-ESM, CNRM1-ESM, Mk3L-COAL, NorESM, UVic, and 8 
OSCAR). For precipitation, results are shown for 4 models (ACCESS1, BNU-ESM, CNRM1-ESM, and 9 
NorESM). For sea ice, AMOC, and sea level rise, only Uvic model reults are shown.  10 
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Figure 4.42: The spatial pattern of changes in annual mean temperature (left panels) and precipitation (right panels) 3 

from CO2 reduction, solar constant reduction, stratospheric sulphate aerosols, marine cloud brightening 4 
and cirrus cloud thinning experiments. The results are obtained from CESM slab ocean simulations. All 5 
geoengineering simulations are designed to offset global mean warming from an abrupt doubling of 6 
atmospheric CO2. All results are shown relative to 2×CO2. Correlation coefficient represent the spatial 7 
correlation between geoengineering case and 1×CO2 case, and NRMS is the root-mean-square difference 8 
of geoengineering case normalized by that of 1×CO2 case. The departure of the spatial patterns, relative to 9 
CO2 change, are larger for marine cloud brightening and cirrus cloud thinning and less for solar constant 10 
reduction and stratospheric sulphate aerosols. 11 
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Figure 4.43:  Demonstration of the ability to meet three simultaneous temperature objectives in the state-of-the-art 3 

model CESM1(WACCM) via SO2 injection at four independent locations (30°N, 15°N, 15°S, and 30°S, 4 
all at 180°E and 5 km above the annual mean tropopause), where the injection rate is adjusted every year 5 
based on feedback of the “observed” climate state. The objectives are to maintain, at 2020 levels, global 6 
mean temperature (ΔT0), the interhemispheric temperature gradient (ΔT1), and the equator-to-pole 7 
temperature gradient (ΔT2). Top and middle panels show comparisons between the base state (RCP8.5) 8 
and the model with geoengineering implemented (referred to as “feedback”); 2020 values, which are the 9 
objectives, are indicated by dashed gray lines. Bottom panel shows the injection rate at each location, as 10 
well as the sum of all injections. Figure is reproduced from (Kravitz et al., 2017) 11 
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Figure 4.44: (a) Atmospheric CO2 and projected (b) GSAT change and (c) AMOC change as simulated by EMICs for 3 

four RCPs up to 2300 [Placeholder Figure 12.42 from the AR5 – will be updated using more 4 
comprehensive EMIC and, if available, simulations with comprehensive ESMs. Other global climate 5 
indices may be included further.]. 6 
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Figure 4.45: Atlantic Meridional Overturning Circulation (AMOC) in ensembles of simulations of an Earth System 4 

Model (CanESM2). The black curve is the average over fifty simulations following historical forcings to 5 
2005 and RCP8.5 extensions to 2100. The colored curves are averages over five simulations (each) after 6 
global mean surface temperature (GMST) has been stabilized at the indicated degree of warming relative 7 
to pre-industrial. The vertical solid lines are the year at which all anthropogenic emissions were 8 
terminated and surface temperatures approximately stabilized. The dashed lines are ensemble-means 9 
averaged over 2400-2600. The open circles are individual averages over 2400-2600. Data based on 10 
(Sigmond et al., 2018a).  11 
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Figure 4.46: Global CO2 (left top) and temperature response (left lower) following a sudden cessation of emissions at 3 

three points on the 1% per year trajectory. Right hand panel shows collated temperature response from 4 
the point of departure after 1000 PgC cumulative emissions (hence year varies for each model). Figure 5 
compiled from preliminary data from UKESM1, MPI-ESM, GFDL-ESM2M, CLIMBER and UVic 6 
simulations. Results to be updated from further ESMs and EMICs under the new ZEC-MIP activity 7 
quantifying the Zero-emissions commitment consistent with TCRE estimates. This will be a key input to 8 
Ch.5 assessment of carbon budgets.  9 
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Figure 4.47: Changes in annual mean temperature and precipitation  in 2081-2100 relative to 1995-2014) in SSP5-8.5 4 

and SSP1-2.6 for a storyline representing a physically plausible high-global-warming storyline. 5 
 6 
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FAQ 4.1, Figure 1: Simulations over the period 1995–2040, encompassing the recent past and the near-term future, of 3 

four icons of global climate change, (a) globally averaged near-surface air temperature, (b) 4 
precipitation averaged globally over land, (c) the area of Arctic sea ice in September, and (d) 5 
globally averaged steric sea-level change, which arises purely from ocean warming.  All quantities 6 
except the Arctic sea-ice area are shown as deviations from the average over the period 1995–7 
2014. The black curves are for the historical period ending in 2014; the colours refer to various 8 
SSP scenarios as shown in the inlet. In (c), the dashed horizontal line is at 1 million km2, the 9 
threshold conventionally used for designating an ice-free Arctic. [Placeholder figure, based on the 10 
CMIP6 model CanESM5. To be updated with other CMIP6 models and shading for indicating 11 
uncertainty. Sea-level change to be augmented by contributions from land-ice melt, something that 12 
is not included in the CMIP6 models.] 13 
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FAQ 4.2, Figure 1: Illustrating the difficulty of discerning mitigation benefit in the near term: Shown are results from 4 
100 simulations with the same climate model that all assume the same reduction in greenhouse-gas 5 
emissions from 2020 onward. The difference between individual simulations arises solely through 6 
different manifestations of natural internal variability and represents an irreducible uncertainty. 7 
We want to assess quantitatively to what extent emissions reductions lead to a reduction in 8 
warming trend. Thus we compare, in each simulation separately, how the warming trend differs 9 
between the periods 2021–2035 and 2005–2020 (left), and between the periods 2036–2050 and 10 
2005–2020 (right). The length of each bar indicates how often a trend difference of a certain size 11 
occurs among the 100 simulations. In the near term (left), we already see a preponderance of a 12 
slowdown in surface warming, occurring in two-thirds of the simulations. But as many as one-13 
third of the simulations show faster warming in the near term, despite emissions reductions. By the 14 
mid-term (right), almost 90% of the simulations show a slowdown in warming compared to 2005–15 
2020. [Placeholder figure, based on (Marotzke, 2019). Suggest replacing by 20-year trends and 16 
using the AR6 WGI definitions of near term and mid-term, as well as by CMIP6 results.] 17 
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 4 
FAQ 4.3, Figure 1: Example for a robust warming pattern, which is presented here for the CMIP6 model MRI-ESM2 5 

and calculated from the scenario SSP3-7.0. Surface warming relative to 1850–1900 is shown here 6 
for time periods over which the globally averaged surface warming is 2°C. We recognise the 7 
strong warming over the Arctic, generally stronger warming over land than over the ocean, and a 8 
slight cooling over the central subpolar North Atlantic. [Placeholder figure, to be replaced by the 9 
average over more CMIP6 models.]  10 
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