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Executive Summary 1 

 2 

Human activity has substantially perturbed Earth’s energy budget [very high confidence]. Improved 3 

understanding of time-varying climate feedbacks since IPCC AR5 leads to an energy budget that is closed 4 

over 1971-2014 and consistent across observations, estimates of effective radiative forcing (ERF) and 5 

equilibrium climate sensitivity(ECS) [high confidence]. Observations, theory and model simulations 6 

demonstrate that total Earth system warming (i.e. total Earth system heat content change) has less variability 7 

than global surface temperature change and represents a more robust metric of the rate of global climate 8 

change on decadal and shorter timescales [high confidence].  [7.1, Box 7.2, 7.3.5, 7.4.3, 7.5.3] 9 

 10 

The Earth system gained substantial energy over the period 1971-2014, with a best estimate of 297 ZJ, 11 

or 0.42 W m-2 expressed relative to Earth’s surface area and period length [very high confidence]. 12 

Observations indicate that the Earth’s energy imbalance was larger in the 2000s than in the 1990s [high 13 

confidence].  Ocean warming dominates the energy inventory change accounting for ~93% of the observed 14 

energy change for the period 1971-2014, and the upper ocean (0-700m) accounting for ~60% [high 15 

confidence]. There is also medium confidence that the upper ocean warmed from the 1870s to 1971. Longer 16 

observational records, improved and new independent methods to estimate ocean heat content change and 17 

consistent closure of the global sea level budget, all promote increased confidence relative to AR5. Heat will 18 

continue to accumulate in the Earth system over the 21st Century [high confidence] and there is medium 19 

confidence this will continue until 2300, even under strong mitigation. [7.1, Box 7.2, Chapter 9 Box 9.2] 20 

 21 

Multidecadal dimming and brightening trends in surface solar radiation occurred at widespread 22 

locations which are not a local phenomenon nor a measurement artefact [high confidence]. There is low 23 

confidence in trend estimates of the other components of the Earth’s surface energy budget. [7.2.1] 24 

 25 

It is unequivocal that human activity has had a warming effect on the planet since 1750. Human-26 

induced surface temperature rise for the period 1750-2017 is 1.1 °C [0.9 to 1.3 °C 5% to 95% range].  27 

This warming is comprised of a greenhouse warming of 1.7 °C [1.3 to 2.3 °C 5% to 95% range] that has an 28 

increasing trend and an aerosol cooling of 0.6 °C [ 0.3 to 1.1 °C 5% to 95% range] that has remained 29 

relatively constant over the last 20 years. Changes in solar and volcanic activity are assessed to have had a 30 

negligible effect. [high confidence] [7.3.5] 31 

 32 

Under greenhouse gas forcing, poleward atmospheric heat transport is expected to increase, 33 

compensating decreased mid-latitude poleward ocean heat transport and resulting in modest changes 34 

in total poleward heat transport. Since AR5 there is improved understanding of the causes of heat 35 

transport changes under climate change. Ocean heat transport changes arise from a reduction in the Atlantic 36 

Meridional Overturning Circulation, and from the transport by ocean currents of excess heat taken up at the 37 

surface. Atmospheric heat transport changes and associated circulations are responses to energetic demands 38 

set by radiative feedbacks and ocean heat uptake. [high confidence] [7.2.1, 7.2.2] 39 

 40 

The effective radiative forcing (ERF) framework introduced in AR5 has become well established and 41 

it has been shown to provide a useful way of estimating temperature response and testing climate 42 

models. The ERF for a doubling of carbon dioxide since preindustrial is 4.0  0.7 W m-2 [5% to 95% range]. 43 

Climate models’ radiative transfer representation has improved since AR5, and they have ERFs that are 44 

generally within 20% of the assessed best estimate. [high confidence] [7.3.1, 7.3.2]. 45 

 46 

The total anthropogenic ERF over the industrial era (1750-2017) was 2.48 W m-2 [1.65 to 3.26 Wm-2 47 

5% to 95% range]. This is an 8% increase over AR5 estimates for 1750-2011. Changes in atmospheric 48 

concentrations of greenhouse gases since 2011 and upwards revisions of their forcing efficiencies has led to 49 

a 14% increase in their ERF.  This is partly offset by a new assessment of total aerosol ERF that is 22% more 50 

negative compared to AR5. [high confidence]. [7.3.5] 51 

 52 

Greenhouse gases contribute an ERF of 3.64 ± 0.42 Wm-2 [5% to 95% range] over the industrial era.  53 

An ERF of 3.22 ± 0.38 Wm-2 comes from the well-mixed greenhouse gases, with ozone changes 54 
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contributing the remainder.  Carbon dioxide continues to contribute the largest part of this forcing [high 1 

confidence]. There has been a significant increase in the estimated shortwave forcing from methane [high 2 

confidence] somewhat countered by a negative rapid adjustment [medium confidence]. There is also a ~5% 3 

upwards revision due to inclusion of tropospheric adjustments for CO2 [medium confidence]. [7.3.2] 4 

 5 

Aerosols contribute an ERF of -1.1 W m-2 [-1.8 to -0.5 W m-2 5% to 95% range] over the industrial era 6 

[high confidence] Aerosol-cloud interactions contribute most (~80%) to the magnitude of the total ERF, 7 

with the remainder due to aerosol-radiation interactions [high confidence]. There has been a 22% increase in 8 

the estimated magnitude but a marked reduction in the uncertainty of the total aerosol ERF relative to AR5, 9 

supported by a combination of increased process-understanding, progress in modelling and observational 10 

analyses and revised constraints from energy-balance considerations. Compared to AR5, there has been a 11 

~100% upward revision to the magnitude of ERF due to aerosol-cloud interactions, and a ~50% downward 12 

revision of the magnitude of ERF due to aerosol-radiation interactions [medium confidence]. [7.3.3] 13 

 14 

Understanding of cloud processes has improved since AR5, based on new observations, theory, and 15 

modelling. Combining all lines of evidence leads to an assessment that the net cloud feedback under 16 

future climate change is positive. Process understanding of tropical-marine low cloud feedbacks within 17 

GCMs has been complemented by emergent constraints on the cloud controlling factors and explicit 18 

simulations using cloud-system resolving models, altogether leading to strong evidence that the total cloud 19 

feedback amplifies global climate warming. It is also very unlikely that the feedback exceeds 1.1 W m-2 °C-1. 20 

This major advance assesses a positive cloud feedback to be more likely and reduces the uncertainty range 21 

by 50% compared to AR5. [high confidence] [7.4.2, Figures 7.4. 3, Table 7.4.1] 22 

 23 

Cloud feedbacks are the dominant source of uncertainty in this century’s transient global warming 24 

under increasing or stable emission scenarios, whereas uncertainty is dominated by aerosol ERF in 25 

strong mitigation scenarios. Global ocean heat uptake is a relatively minor source of uncertainty in long-26 

term warming. Carbon cycle feedbacks provide an increasing fraction of uncertainty on longer timescales. 27 

[high confidence] [7.6.1] 28 

 29 

Radiative feedbacks will become more positive in the future as the spatial pattern of warming evolves, 30 

leading to an ECS that is substantially higher than that inferred from warming over the historical 31 

record [high confidence]. This new understanding reconciles previously disparate ECS estimates. Historical 32 

surface temperature change since 1900 has shown little warming in several key regions of positive 33 

feedbacks, including the eastern equatorial Pacific Ocean and the Southern Ocean, with greater warming in 34 

key regions of negative feedbacks, including the Western Pacific warm pool. Based on process 35 

understanding, climate modelling, and paleoclimate reconstructions, it is expected that future warming will 36 

become enhanced over the eastern Pacific Ocean [medium confidence] and Southern Ocean [high 37 

confidence] on centennial timescales. While there is robust agreement across climate model simulations that 38 

radiative feedbacks will become more positive in the future, there is currently insufficient evidence to assess 39 

whether the magnitude of those projected feedback change is realistic. [7.4.3, 7.5.3, Figures 7.22, 7.6.4]  40 

 41 

Based on multiple lines of evidence the best estimate of ECS is 3 °C, the likely range is 2.5 to 4 °C and 42 

the very likely range is 2 to 5 °C. It is virtually certain that ECS is larger than 1.5 °C  43 

Substantial advances since AR5 have been made in quantifying ECS inferred from feedback process 44 

understanding (including dependence on climate state), the instrumental record, paleoclimates (including 45 

accounting for long-term Earth system feedbacks) and emergent constraints. There is a high level of 46 

agreement among the different lines of evidence. It remains challenging to rule out low-probability but high-47 

impact upper-end ECS, which is indicated by the notable asymmetry of the assessed ranges. [high 48 

confidence] [7.5.7] 49 

 50 

Based on a process understanding, warming over the instrumental record, and emergent constraints, 51 

the best estimate of Transient Climate Response (TCR) is 1.7 °C, the likely range is 1.4 to 2.0 °C and 52 

the very likely range is 1.2 to 2.2 °C. There is a high level of agreement among the different lines of 53 

evidence. [high confidence] [7.5.7] 54 
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 1 

It is now well understood that the Arctic warms more quickly than the Antarctic due to a combination 2 

of asymmetries in radiative feedbacks and ocean heat uptake between the poles. Since AR5, progress 3 

has been made to understand the mechanisms of polar amplification and its uncertainty. A variety of factors 4 

all contribute to Arctic amplification, making it a ubiquitous feature of climate model simulations and 5 

observations. The Antarctic warms more slowly than the Arctic owing primarily to upwelling in the Southern 6 

Ocean. [high confidence] [7.6.2, 7.6.3, 7.6.4] 7 

 8 

There is very high confidence that eventual surface warming will be polar amplified in both 9 

hemispheres. Polar amplification is supported across multiple lines of evidence, including the paleoclimate 10 

proxy record and GCM simulations of past warm climates and the climate response to CO2 forcing. GCMs 11 

also give high confidence that Antarctic amplification will emerge as the Southern Ocean surface warms on 12 

centennial timescales, although only low confidence of the feature emerging this century. [7.6.4].  13 

 14 

CO2 equivalent emissions aggregated across short and long-lived greenhouse gases using global 15 

warming potentials (GWPs) are ambiguous regarding their implications for surface warming. This 16 

leads to uncertainty in future warming from targets based on such equivalence, such as those arising 17 

from net zero greenhouse gas emissions targets, and most Nationally Determined Contributions. New 18 

metrics comparing pulse emissions of long-lived greenhouse gases with sustained emission changes in short-19 

lived gases do lead to appropriate equivalences. Alternatively, emissions of short and long-lived greenhouse 20 

gases should be considered separately. Long-lived greenhouse gas emission metrics are larger compared to 21 

AR5, due to the methodological change of accounting for carbon-cycle responses becoming standard. [high 22 

confidence] [7.7.1, 7.7.2] 23 

 24 

 25 

7.1 Introduction, conceptual framework and innovations since IPCC AR5 26 

 27 

This chapter assesses the major physical processes that drive changes in the Earth’s energy budget thereby 28 

affecting global warming. It focuses on documenting advances in scientific understanding of radiative 29 

forcing, climate feedbacks and climate sensitivity, and covers observations, theoretical developments and 30 

climate model evaluation. The chapter integrates elements that were dealt with separately in previous reports. 31 

Aggregate measures of climate response such as equilibrium climate sensitivity (ECS) and the transient 32 

climate response (TCR) are also assessed here (Box 7.1).  33 

 34 

Climate change arises when the Earth’s top of atmosphere energy budget is perturbed, and this energy 35 

imbalance determines whether the climate system, as a whole, cools or warms. The processes discussed here 36 

provide a link between observations (Chapter 2), modelling estimates of historic warming (Chapter 3), and 37 

global temperature projections (Chapter 4). They also quantify the relationship between anthropogenic 38 

emissions (Chapters 5 and 6) and climate system response. The chapter is primarily concerned with global 39 

measures of change, but also assesses regional changes in the energy budget and changes to atmospheric 40 

heating insofar as they support the assessments of the hydrological cycle (Chapter 8) and ocean circulation 41 

(Chapter 9). Thereby this chapter aids understanding of regional patterns of response (Chapters 10, 11,12 and 42 

the Atlas). This chapter builds on material assessed across all chapters of the AR5 WG1 assessment, but 43 

principally draws on the radiative forcing assessment within Chapters 7 (Boucher et al., 2013) and 8 (Myhre 44 

et al., 2013b), the assessment of feedbacks and model evaluation in Chapters 7 (Boucher et al., 2013) and 9 45 

(Flato et al., 2013), the observed estimates of energy budget change in Chapters 2 (Hartmann et al., 2013) 46 

and 13 (Church et al., 2013), and the assessment of climate sensitivity within Chapter 12 (Collins et al., 47 

2013a) of that report.  48 

 49 

The total earth system warming introduced here is quantified by the total heat content change in the Earth 50 

system. It is a measure of global warming that provides a more robust indication of Earth’s energy imbalance 51 

than globally averaged surface temperature (Von Schuckmann et al., 2016).  Research since AR5 has 52 

improved scientific understanding of this measure, and its changes through time (Section 7.2). Improved 53 
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understanding of rapid adjustments to radiative forcing and of aerosol-cloud interactions have led to 1 

substantial revision of forcing estimates (Section 7.3). New approaches to the quantification and treatment of 2 

feedbacks (Section 7.4) have improved the understanding of the nature and time-evolution of feedbacks so 3 

that climate sensitivity has become a more a transient property of the climate system which isn’t immediately 4 

relatable to the ECS. This change has helped to reconcile disparate estimates of ECS from different lines of 5 

evidence (Section 7.5).  Regional aspects of the energy budget help the understanding of model responses 6 

and their regional variation, informing the climate impacts assessed in WGII (Section 7.6). Finally, 7 

innovations in the use of emissions metrics have clarified the relationships between metric choice and policy 8 

goals, linking the Chapter to WGIII (Section 7.7). 9 

 10 

In Box 7.1 an extended energy budget framework is introduced, which forms the basis for the discussions 11 

and scientific assessment in the remainder of this chapter and across the report. The framework reflects 12 

advances in the understanding of the Earth system response to climate forcing agents since the publication of 13 

the AR5. A schematic of this framework and the key changes relative to the science reported in AR5 is 14 

provided in Figure 7.1. 15 

 16 

 17 

[START FIGURE 7.1 HERE] 18 

 19 
Figure 7.1: A conceptual energy budget framework to describe the state-of-the-art understanding of Earth’s energy 20 

budget, climate feedbacks and the policy implications. The new elements relative to IPCC AR5 are 21 
highlighted in red. 22 

 23 

[END FIGURE 7.1 HERE] 24 

 25 

 26 

The phrase “climate metrics” can carry a range of implications, depending on the context. This report 27 

distinguishes between “climate metrics” (e.g. ECS) and “emissions metrics” (such as the global warming 28 

potential) but this distinction is not clear cut. Climate metrics are generally used to summarise aspects of the 29 

overall climate system response (Box 7.1). Emissions metrics are generally used to summarise the relative 30 

effects of emissions of different forcing agents, usually greenhouse gases (see Section 7.7). Figure 7.2 shows 31 

how the various climate metrics and emission metrics assessed in this chapter fit within the overall chain of 32 

processes from human activities to climate impacts. The climate metrics used in this report typically evaluate 33 

how the Earth system response varies with atmospheric concentration or radiative forcing change. Whereas 34 

emission metrics evaluate how radiative forcing or climate is affected by the emissions of a certain amount 35 

of gas. Emission-related metrics are extensively employed in mitigation policy decisions such as trading 36 

greenhouse gas reduction measures to compare their effect on climate. Climate metrics are useful to gauge 37 

the range of future climate impacts for adaptation decisions under a given emission pathway. The TCR to 38 

emissions is used in both contexts: for gauging future surface temperature change under specific emission 39 

scenarios and to estimate remaining carbon budgets that are used to form mitigation policies (see Chapter 5, 40 

Section 5.5).   41 

 42 

 43 

[START FIGURE 7.2 HERE] 44 

 45 
Figure 7.2: A conceptual chain of processes linking human activity to climate impacts, showing where the climate 46 

indicators and emission metrics assessed in this chapter fit within the chain and how they associate with 47 
other Working Groups. 48 

 49 

[END FIGURE 7.2 HERE] 50 

 51 

 52 

 53 

 54 



First Order Draft Chapter 7 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 7-9 Total pages: 202 

 

[START BOX 7.1 HERE] 1 

 2 

BOX 7.1: Forcing, feedbacks and sensitivity definitions 3 

 4 

The forcing-feedback framework provides a methodology to assess the impact of individual drivers of global 5 

mean surface air temperature change, and to facilitate the understanding of the key phenomena that set the 6 

magnitude of this temperature change. The framework used here is developed from that adopted in previous 7 

IPCC reports. Effective Radiative Forcing (ERF), introduced in IPCC AR5 (Boucher et al., 2013; Myhre et 8 

al., 2013b) is more explicitly defined in this report and is employed as the central definition of radiative 9 

forcing. The framework has also been extended to allow variations in feedbacks over different timescales 10 

(Section 7.4.2.6; Section 7.4.3) and with climate state (Section 7.4.4). 11 

 12 

The global mean surface temperature response to perturbations to the Earth energy budget can be 13 

summarized in the following equation, in which ΔN (W m-2) represents the top of atmosphere (TOA) energy 14 

imbalance, ΔF (W m-2) is an effective radiative forcing perturbation to the energy budget,  (W m-2 °C-1) is 15 

an aggregated feedback parameter and ΔT (°C) is the change in global mean near-surface air temperature: 16 

 17 

ΔN = ΔF +  ΔT  Box 7.1, Equation (7.1) 18 

 19 

The ERF (Section 7.3) ΔF quantifies the change in the net radiative budget of the Earth system due to some 20 

imposed perturbation (e.g. change in carbon dioxide concentration, change in solar incoming radiation). ERF 21 

is adopted as the standard definition for quantifying radiative forcing of the climate system. ERF is 22 

expressed as a change in net downward radiative flux at the TOA following the initial rapid adjustments in 23 

both tropospheric and stratospheric temperatures, water vapour, clouds, and some surface properties. These 24 

rapid adjustments affect the energy balance both at the TOA and at the surface. Accounting for such 25 

processes gives an estimate of radiative forcing that is more representative of the climate change response 26 

associated with forcing agents than previous definitions of radiative forcing (Allan et al., 2014b; Andrews et 27 

al., 2010; Sherwood et al., 2015). The timescale of rapid adjustments generally ranges from hours to a few 28 

days, and feedbacks generally refer to longer timescale processes. However, there is no clear separation of 29 

timescale of processes between rapid adjustments and feedbacks. Therefore, following Sherwood et al. 30 

(2015) this report defines rapid adjustments as energy budget changes that are not associated with surface 31 

temperature change and feedbacks as those that are. The effect of these rapid adjustments can be 32 

estimated/quantified from climate model simulations with sea-surface temperature and sea-ice set to their 33 

climatological values (Forster et al., 2013; Pincus et al., 2016). ERF can be quantified as the equilibrium 34 

TOA energy imbalance in these experiments, although the effects of any global surface temperature change 35 

from changes in land surface temperatures need to be removed or assumed to be small to match the 36 

definition of rapid adjustments (Smith et al., 2018b). The stratospheric-temperature-adjusted radiative 37 

forcing and the instantaneous radiative forcing (IRF) extensively used in earlier assessments remain useful to 38 

quantify components of ERF and are also used to approximate ERF for small forcing agents, where the 39 

forcing signal is often swamped by the climate model internal variability, making a reasonable assessment of 40 

ERF difficult.  41 

 42 

The near-surface air temperature is a common model diagnostic used to infer global warming. Climate 43 

models have global coverage of this diagnostic which makes an estimate of their globally averaged surface 44 

warming straightforward, yet observations of temperature typically have incomplete coverage of the Earth’s 45 

surface. Further, estimates of globally averaged trends from observations combine sea-surface temperature 46 

measurements over open ocean with near-surface air temperatures over land and sea-ice, effectively blending 47 

two types of measurements together (see Chapter 2, Section 2.3 for further details). Modelling studies since 48 

AR5 have identified stronger historical trends in global near-surface air temperature than in this blended 49 

measure. When accounting for both this blending effect and that of incomplete coverage, biases of up to 16% 50 

are seen in global warming estimates between models and common observation-based datasets such as 51 

HadCRUT4, such that models give stronger trends (Richardson et al., 2016, 2018a). These biases were partly 52 

responsible for the divergent estimates of climate sensitivity across different lines of evidence in AR5 53 

(Collins et al., 2013a). In this assessment, potential biases are avoided by using a standard measure of 54 
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surface change to compare global warming from models and observations. For compatibility with previous 1 

climate projections and most previous estimates of feedback and climate sensitivity, this report adopts the 2 

globally averaged near-surface air temperature measure when assessing globally averaged trends in surface 3 

warming, climate feedbacks and climate sensitivity (see Chapter 2, Section 2.3).   4 

 5 

The feedback parameter   (Section 7.4) quantifies the sensitivity of the radiative flux at the TOA when the 6 

global mean near-surface air temperature changes. Many climate variables affect the radiative flux at the 7 

TOA, and the feedback parameter can be formally decomposed, at the first order, into a sum of terms 𝛼 =8 

∑ 𝛼𝑥𝑥 , where x represents a climate variable, or more generally a variable of the Earth system, that has a 9 

direct impact on the flux at the TOA. When surface temperature increases, a fundamental response of the 10 

climate system is an increase of the emitted longwave radiation, which corresponds to the Planck response 11 

for which the temperature change is assumed vertically uniform in the atmosphere and equal to that at the 12 

surface. The other climate variables commonly used for the feedback decomposition are the water vapour 13 

concentration, the temperature lapse rate, the surface albedo and the clouds. Earth System Models (ESM) 14 

now also include biogeochemical feedbacks and some of them include processes relevant at very long term 15 

(millennia, e.g. ice sheet changes). The sum of the feedback terms is a measure of how the real Earth might 16 

respond to a change in atmospheric CO2 concentration. All earth system feedbacks that do not alter the 17 

atmospheric CO2 concentration should be included in the sum, such as vegetation response and changes to 18 

natural aerosol emissions.  However, many model estimates exclude some of the biogeochemical feedbacks 19 

and should be regarded as incomplete estimates of the total feedback sum. A change in variable x amplifies 20 

the temperature change (positive feedback) when the associated feedback parameter 𝛼𝑥 is positive, and 21 

damps the temperature change (negative feedback) when  𝛼𝑥 is negative (Caldwell et al., 2016; Dufresne and 22 

Saint-Lu, 2016; Hansen et al., 1984; Sherwood et al., 2015).  New research since AR5 emphasises how 23 

feedbacks can vary over different timescales (Section 7.4.2.6; Section 7.4.3) and with climate state (Section 24 

7.4.4). Note there is no standardised notation or sign convention for feedbacks in the literature.  25 

 26 

The ECS (Section 7.5, units: °C) is defined as the value of ΔT at equilibrium (ΔN = 0) for a doubling of the 27 

CO2 concentration relative to a pre-industrial reference state. As it is referenced to a CO2 concentration 28 

change it does not include carbon concentration change-processes but is defined here to include all other 29 

Earth System processes that operate on ~150 year timescales (see the climate feedback definition above). 30 

Previous IPCC reports have quantified ECS according to the main physical processes (Planck response, 31 

water vapour feedbacks, lapse rate feedback, surface albedo feedbacks and cloud feedbacks), also known as 32 

the Charney sensitivity. These key physical processes are expected to dominate the response, but the 33 

definition used here now allows for other potential Earth system feedbacks such as atmospheric chemistry 34 

changes from changes in emissions from vegetation.  As coupled atmosphere-ocean climate models are not 35 

typically run over a long enough period of time to reach a new equilibrium and internal variability on 36 

multiple timescales makes it difficult to define a true equilibrium state, the ECS is estimated hereinafter as 37 

half the value of the point where the linear slope of ΔN against ΔT over the first 150 years of an abrupt 38 

4×CO2 climate model simulation crosses the x axis at ΔN = 0.   39 

 40 

Evidence since AR5 increasingly shows how feedbacks vary with timescales and climate state (Section 7.5). 41 

This means the ECS as defined is less applicable as an aggregate measure of climate feedbacks outside of the 42 

150-year CO2 change considered in its definition. The inferred climate sensitivity is used as a measure 43 

equivalent to ECS for shorter, typically historic, periods (Section 7.5.3) and the long-term Earth sensitivity, 44 

an equivalent measure to ECS applicable to longer paleo-relevant timescales that include shifting vegetation 45 

patterns and potential ice-sheet change (Section 7.5.4). Care has to be taken when comparing climate 46 

sensitivity across different lines of evidence to translate them onto the ECS standard (Sections 7.5.3 and 47 

7.5.5).  48 

 49 

The TCR (Section 7.5, units: °C) is defined as the change in the global mean near surface air temperature, 50 

averaged over a 20-year period, centred at the time of atmospheric CO2 doubling (year 70), in a climate 51 

model simulation in which CO2 increases at 1% yr-1 from pre-industrial and compared to the same time 52 

period within a preindustrial control simulation. It is a measure of transient warming accounting for the 53 

strength of climate feedbacks and ocean heat uptake. The transient climate response to emissions (TCRE) is 54 
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defined as the transient globally averaged near-surface air temperature change per 1000 Gt C of cumulative 1 

CO2 emissions. TCRE combines both information on the airborne fraction of cumulative CO2 emissions (the 2 

fraction of the total CO2 emitted that remains in the atmosphere, which is determined by carbon cycle 3 

processes) and on the TCR. TCR is assessed in this chapter, whereas TCRE is assessed in Chapter 5, Section 4 

5.5.  5 

 6 

[END BOX 7.1 HERE] 7 

 8 

 9 

7.2 Earth’s energy budget and its changes through time 10 

 11 

The Earth’s energy budget encompasses the major energy flows of relevance for the climate system (Figure 12 

7.3). All the energy that enters or leaves the system does so in the form of radiation at the TOA. The energy 13 

budget at the TOA is determined by the amount of incoming solar (shortwave) radiation and the outgoing 14 

radiation that is composed of reflected solar radiation and outgoing thermal (longwave) radiation emitted by 15 

the climate system. In an equilibrium climate, the outgoing and incoming radiative components are 16 

essentially in balance, although there are still fluctuations around this balanced state that arise through 17 

internal climate variability (Brown et al., 2014; Palmer and McNeall, 2014) . However, anthropogenic 18 

forcing has given rise to a persistent imbalance in the TOA radiation budget, known as Earth Energy 19 

Imbalance (Trenberth et al., 2014; Von Schuckmann et al., 2016). The Earth’s energy Imbalance is the 20 

fundamental driver of the various aspects of observed climate change and a critical metric determining the 21 

present rate of global warming. 22 

 23 

Earth’s energy budget also constitutes the internal flows of energy within the climate system, which 24 

characterize the current climate state. Figure 7.3 (left) shows a schematic representation of Earth’s energy 25 

budget including quantitative estimates of the magnitudes of its individual components averaged over the 26 

globe. A corresponding representation of the energy budget, but without consideration of clouds is given in 27 

Figure 7.3 (right), as a base state to enable an estimation of the effects of clouds on the energy flows in the 28 

climate system. The partitioning of the energy within the climate system plays a key role as driver of 29 

atmospheric and ocean dynamics, the global water cycle as well as a variety of surface processes. In the 30 

following sections, Earth’s energy budget and the internal energy flows are assessed both in terms of the 31 

mean state, variability and long-term response under climate change. 32 

 33 

 34 

[START FIGURE 7.3 HERE] 35 

 36 
Figure 7.3: Schematic representation of the global mean energy budget of the Earth (left), and its equivalent without 37 

consideration of cloud effects (right). Numbers indicate best estimates for the magnitudes of the globally 38 
averaged energy balance components in W m-2 together with their uncertainty ranges in parentheses 39 
(95% confidence range), representing present day climate conditions at the beginning of the 21 th century. 40 
Adapted from (Wild et al., 2015, 2019). [placeholder: change to 90% confidence range for SOD] 41 

 42 

[END FIGURE 7.3 HERE] 43 

 44 

 45 

7.2.1 Present-day energy budget  46 

 47 

AR5 (Church et al., 2013; Hartmann et al., 2013; Myhre et al., 2013b) highlighted the progress in 48 

quantifying the TOA radiation budget following new satellite observations that became available in the early 49 

21st Century (Clouds and the Earth’s Radiant Energy System, CERES; Solar Radiation and Climate 50 

Experiment, SORCE). Progress in the quantification of the magnitude and changes in incoming solar 51 

radiation at the TOA since AR5 is discussed in Chapter 2, Section 2.2.  Since AR5, the accuracy of the 52 

reflected solar and outgoing thermal fluxes at the TOA has been further enhanced with the release of the 53 

CERES Energy Balance EBAF Ed4.0 product, which includes algorithm improvements and consistent input 54 
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datasets throughout the record (Loeb et al., 2018a). However, the overall accuracy of these fluxes (regional 1 

mean 1 sigma uncertainties of 2.5 W m-2 in the all sky fluxes) is not sufficient to monitor the Earth’s energy 2 

imbalance in absolute terms. Therefore, one-time adjustments have been made to the solar and thermal TOA 3 

fluxes of the CERES EBAF dataset within their uncertainty ranges to ensure that the global mean net TOA 4 

flux for July 2005–June 2015 is consistent with an Earth’s energy imbalance of 0.71 ± 0.10 W m-2 (5% to 5 

95% confidence range) inferred from ocean heat content (OHC) measurements using 10 years of Argo 6 

measurements and energy uptake by the lithosphere, cryosphere and atmosphere (Johnson et al., 2016; Riser 7 

et al., 2016) (Section 7.2.2). Most climate models closely match the TOA radiative exchanges given by 8 

CERES-EBAF on a global mean basis, since they are typically tuned to these values, yet show significant 9 

discrepancies on regional scales, often related to their representation of clouds (Dolinar et al., 2015; Hwang 10 

and Frierson, 2013; Li et al., 2013b; Trenberth and Fasullo, 2010; Wild et al., 2015).   11 

 12 

The surface energy budget is associated with substantially larger uncertainties than the TOA energy budget. 13 

The components of the surface energy budget cannot be directly measured by passive satellite sensors from 14 

space and require retrieval algorithms and ancillary data for their estimation which gives rise to additional 15 

uncertainties (Kato et al., 2018; Raschke et al., 2016). On a global mean basis, confidence in the 16 

quantification of the surface energy budget has increased, since independent recent estimates converge to 17 

within a few W m-2 for different surface radiation components (Wild, 2017). These estimates are based  on 18 

complementary approaches which make use of satellite products from active and passive sensors (Kato et al., 19 

2018; L’Ecuyer et al., 2015) as well as of the information contained in surface observations and climate 20 

models (Wild et al., 2015). Inconsistencies in global annual mean fluxes between available satellite-derived 21 

surface energy data products and precipitation estimates noted in AR5 (Hartmann et al., 2013) remain, but it 22 

has become possible to reconcile the apparent discrepancies between the magnitudes of the global energy 23 

and water budgets within the uncertainty ranges of their components (L’Ecuyer et al., 2015; Wild et al., 24 

2013, 2015). On regional scales, the closure of the surface energy budgets remains a challenge with currently 25 

available satellite-derived datasets (Kato et al., 2016; L’Ecuyer et al., 2015; Loeb et al., 2014). Annual and 26 

seasonal energy budgets for seven continents and nine ocean basins for the period 2000 to 2009  have been 27 

estimated by L’Ecuyer et al. (2015) making use of a variety of satellite-derived products. To reintroduce 28 

energy and water cycle closure information lost in the development of these independently derived products, 29 

the authors developed a variational method that explicitly accounts for the relative accuracies in all 30 

component fluxes. A quantification of the energy budget over land and oceans taking into account the 31 

information contained in direct observations from both surface and space is given in (Wild et al., 2015) . 32 

 33 

Since AR5, quantification of the uncertainties inherent in the different surface energy flux datasets has 34 

improved. Uncertainties in global monthly mean downward solar and thermal fluxes in the CERES-EBAF 35 

surface dataset are, respectively, 10 W m-2 and 8 W m-2 (converted to 5% to 95% confidence level) (Kato et 36 

al., 2018). When these satellite-based surface solar and thermal fluxes are compared with surface 37 

observations, the difference between satellite-based and observed fluxes averaged at 36 Baseline Surface 38 

Radiation Network (Ohmura et al., 1998) sites and 46 moored buoys is nearly equivalent to the uncertainty 39 

of surface observations of approximately 5 W m-2 for both solar (Colbo and Weller, 2009; Michalsky et al., 40 

1999, 2003) and thermal (Groebner et al., 2014) downward fluxes. The uncertainties in latent and sensible 41 

heat fluxes averaged over global oceans are approximately 14 W m-2 and 6 W m-2 (converted to 95% 42 

confidence level) (L’Ecuyer et al., 2015), respectively, which correspond to about 8% and 11% of their 43 

respective global mean values and are consistent with the uncertainty in daily mean latent and sensible heat 44 

fluxes measured at a buoy observatory (Kubota et al., 2008). A recent review of the latent and sensible heat 45 

flux accuracies highlights significant differences between several products, while differences between 46 

mooring data and a multi-product ensemble reached up to 25 W m-2 for latent heat and 5 W m-2 for sensible 47 

heat (Bentamy et al., 2017). The uncertainty stems from the retrieval of flux-relevant meteorological 48 

variables, as well as from differences in the flux parameterizations (Yu, 2019). Turbulent flux uncertainty 49 

estimates consider the uncertainties in near surface wind speed, temperature and humidity, but generally 50 

exclude the uncertainty associated with the use of bulk parameterizations. Estimating the uncertainty in 51 

sensible and latent heat fluxes over land is difficult because of their large temporal and spatial variabilities. 52 

The spread of these fluxes over land computed with three global datasets is between 10% to 20% (L’Ecuyer 53 

et al., 2015). The uncertainty in the surface energy budget in polar regions is larger than the uncertainty of 54 
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other regions (e.g. Kato et al., 2018). The uncertainty estimate in the polar energy budgets remains 1 

challenging due to limited number of surface sites and larger uncertainty in surface observations (Previdi et 2 

al., 2015).  3 

 4 

Also climate models show substantially larger discrepancies in their simulated energy budgets at the surface 5 

than at the TOA, with a spread of 10-20 W m-2 in their surface energy budget components averaged globally, 6 

and an even greater spread on more regional scales (Boeke and Taylor, 2016; Li et al., 2013b; Wild et al., 7 

2013; Wild, 2017; Zhang et al., 2018a). The downward thermal and solar radiation in the CMIP5 climate 8 

models when averaged over the entire land surfaces varies by more than 30 and 40 W m-2, respectively (Wild 9 

et al., 2015). 10 

 11 

Several studies noted hemispheric contrasts in the present-day TOA radiation budget measured from space, 12 

namely a net gain of radiative energy of 1.4 W m-2 in the Southern Hemisphere (SH) and a net loss in the 13 

Northern Hemisphere (NH) of 0.2 W m-2 (Figure 7.4). This hemispheric difference is due to more outgoing 14 

longwave radiation in the NH than the SH, whereas the absorption of solar radiation is hemispherically 15 

symmetric (Liu et al., 2017a; Loeb et al., 2016; Marshall et al., 2014; Stephens et al., 2016; Voigt et al., 16 

2013). This results in a net cross-equatorial heat transport of 0.2 PW from the SH to the NH. The cross-17 

equatorial heat transport simulated by the CMIP5 models is on average twice as large as observed because 18 

they absorb more solar radiation in the SH than the NH, and also emit more outgoing LW radiation in the 19 

NH (Loeb et al., 2016; Voigt et al., 2013). Loeb et al. (2016) further inferred the regional distribution of the 20 

TOA, atmospheric and surface energy budget terms over the globe, by combining satellite-derived TOA and 21 

surface radiation budget observations with mass corrected vertically integrated atmospheric energy 22 

divergence and tendency from reanalyses. Their estimates imply that the cross-equatorial heat transport of 23 

0.2 PW from the SH to the NH is achieved by a cross-equatorial heat transport of 0.44 PW in the ocean from 24 

the SH to the NH, and an atmospheric heat transport of 0.24 PW in the opposite (southward) direction 25 

(Figure 7.4) (Loeb et al., 2016; Stephens et al., 2016). Liu et al. (2015, 2017a) estimated the global 26 

distribution of the net surface (air-sea) heat flux, based on a combination of satellite-derived radiative fluxes 27 

at the TOA, and the atmospheric energy tendencies and transports from the ERA-Interim reanalysis. Their 28 

derived northward cross-equatorial heat transport in the oceans, at 0.32 ± 0.13 PW (5% to 95% confidence 29 

level), is somewhat smaller than estimated by Loeb et al. (2016), due to the consideration of differential heat 30 

accumulation in the NH and SH oceans. To accomplish the southward cross-equatorial atmospheric heat 31 

transport, the location of the tropical rainfall peak in the Intertropical Convergence Zone (ITCZ) must be 32 

located in the NH in the annual mean (Bischoff and Schneider, 2014; Donohoe et al., 2013; Frierson and 33 

Hwang, 2012; Kang et al., 2008). There is thus high confidence that the northward cross-equatorial oceanic 34 

heat transport, owing to meridional overturning in the Atlantic Ocean, is the primary reason that the annual 35 

mean rainfall peak is located to the north of the equator (Frierson et al., 2013; Marshall et al., 2014). Cross-36 

equatorial energy transport derived from data products thus provides a key metric for the evaluation of 37 

energy budgets in climate models (Lembo et al., 2019; Loeb et al., 2016). Many CMIP5 models do not 38 

capture the correct sign and magnitude of the atmospheric cross equatorial heat transport, owing primarily to 39 

biases in absorbed shortwave radiation at the TOA, with an ensemble-mean cross-equatorial atmospheric 40 

heat transport near zero (Loeb et al., 2016). Too little simulated southward cross-equatorial atmospheric heat 41 

transport reflects a double ITCZ bias with too much rainfall to the south of the equator in the annual mean, 42 

which has been a persistent problem in multiple generations of climate models (Adam et al., 2016; Hwang 43 

and Frierson, 2013; Loeb et al., 2016).  44 

 45 

[Placeholder for possible CMIP6 assessment] 46 

 47 

 48 

[START FIGURE 7.4 HERE] 49 

 50 
Figure 7.4: Implied cross-equatorial energy transports in the atmosphere and ocean inferred from hemispheric 51 

asymmetries in CERES TOA and surface energy budgets and mass corrected divergence in ERA-Interim 52 
atmospheric total energy transport. From Loeb et al. (2016). 53 

 54 
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[END FIGURE 7.4 HERE] 1 

 2 

 3 

CMIP5 models capture the overall structure of the observed total (atmosphere + ocean) meridional heat 4 

transport, with peak poleward heat transport of about 6 PW in both hemispheres (Trenberth and Stepaniak, 5 

2003), as well as the structure of atmospheric and oceanic heat transports separately (Figure 7.5). However, 6 

as for CMIP3 (Donohoe and Battisti, 2012), many CMIP5 models show large (~1 to 2 PW) errors in the mid-7 

latitudes where the magnitude of total heat transport peaks (Figure 7.5a). Model errors in the total heat 8 

transport arise from errors in both atmospheric and oceanic heat transport components, with the majority of 9 

models showing too little poleward ocean heat transport in mid-latitudes (Figure 7.5c). The differences in 10 

peak total heat transport between models have been linked to their differences in the latitudinal structure of 11 

absorbed shortwave radiation suggesting that the heat transport errors arise from cloud biases (Donohoe and 12 

Battisti, 2012). The ability of models to reproduce the latitudinal structure of TOA radiation has been 13 

proposed as a constraint on projected warming over the 21st century (Section 7.5.6) (Brown and Caldeira, 14 

2017). 15 

 16 

In summary, since AR5, progress has been made in the estimation of the global mean energy budget, not 17 

only at the TOA, but also at the Earth’s surface, where independent estimates of the radiative components 18 

have converged (high confidence). Considerable uncertainties remain in regional surface energy budget 19 

estimates, particularly from climate models, as well as in their simulation of the cross-equatorial atmospheric 20 

heat transports and the magnitudes of total meridional heat transports in mid-latitudes. 21 

 22 

 23 

[START FIGURE 7.5 HERE] 24 

 25 
Figure 7.5: Observed and CMIP5 climatological energy transports in the atmosphere and ocean (top) and projected 26 

heat transport changes at year 100 following CO2 quadrupling (bottom). (a) Climatological total heat 27 
transport inferred from CERES TOA (Armour et al., 2019) and simulated by CMIP5 models. (b) 28 
Climatological atmospheric heat transport calculated from the NCEP Reanalysis (Trenberth and 29 
Stepaniak, 2003) and simulated by CMIP5 models. (c) Climatological oceanic heat transport inferred 30 
from surface energy budgets (calculated as a residual between atmospheric heat transport divergence and 31 
TOA radiation fluxes). Grey shading shows 5% to 95% range on observational estimates. For total 32 
meridional heat transport the range is estimated from inter-annual variability and total CERES calibration 33 
error added in quadrature at each latitude. For atmospheric heat transport the range is estimated from 34 
inter-annual variability and for oceanic heat transport the range is estimated as a residual from the total 35 
and atmospheric heat transports with errors propagated in quadrature. (d-f) Anomalies in total, 36 
atmospheric, and implied oceanic heat transports simulated by CMIP5 models under abrupt CO2 37 
quadrupling relative to pre-industrial control simulations which define their climatologies in (a)-(c) 38 
(following Armour et al., 2019). Implied ocean heat transport changes shown are those derived by net 39 
sea-surface heat fluxes and thus do not account for the pattern of ocean heat storage.  [placeholder redo 40 
for CMIP6 once available and update to new analyses.] 41 

 42 

[END FIGURE 7.5 HERE] 43 

 44 

 45 

7.2.2 Observed changes in Earth’s energy budget 46 

 47 

7.2.2.1 Changes in TOA radiative fluxes 48 

 49 

Since 2000, changes in the TOA energy fluxes can be tracked from space due to the CERES program (Figure 50 

7.6). The variations noted in the TOA energy fluxes reflect both radiative forcing of the climate system, 51 

climate feedbacks, and the influence of internal variations, particularly that of ENSO (Allan et al., 2014a; 52 

Loeb et al., 2018a) . For example, globally, the reduction in both outgoing thermal and reflected solar 53 

radiation during La Nina conditions in 2008/09 lead to an energy gain for the climate system, whereas 54 

enhanced outgoing thermal and reflected solar radiation lead to an energy loss during the El Niños of 55 
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2002/03 and 2009/10(Figure 7.6) (Loeb et al., 2018a). Substantial anomalies in the global mean solar 1 

reflected radiation can also be attributed to anomalous sea ice cover in the Arctic and Antarctica. For the 2 

estimation of trends, the period for which CERES data is available (March 2000–September 2016) is still 3 

fairly short and dominated by internal variability of the climate system. Over this period a decrease in global 4 

mean solar reflectance of 0.57 ± 0.16 W m-2 per decade under all-sky and 0.36 ± 0.14 W m-2 per decade 5 

under clear sky conditions is observed (5% to 95% confidence level). The global mean TOA thermal 6 

outgoing radiation shows no significant changes over this period, neither under all-sky nor under clear-sky 7 

conditions (Loeb et al., 2018a). This implies an increase in the global mean net TOA radiation (Earth’s 8 

energy imbalance) induced largely by the decreasing TOA solar reflectance since 2000 (Figure 7.6).  The 9 

reconstruction of Allan et al. (2014a) and Liu et al. (2017a) offers insights into TOA radiative flux variability 10 

back to 1985, based on a combination of satellite data, atmospheric reanalyses, and climate model 11 

simulations. They estimated that over the 1985–1999 period the Earth’s energy imbalance is lower on 12 

average, at 0.27 ± 0.38 W m−2, than over the period 2000–2015, at 0.59 ± 0.14 W m−2 (5% - 95% confidence 13 

level). Their reconstruction is further able to capture the interannual variability in Earth’s energy imbalance 14 

caused by the volcanic eruption of Pinatubo in 1991 and the ENSO events before 2000.  In a similar 15 

reconstruction based on a combination of successive satellite missions, (Dewitte and Clerbaux, 2018) note a 16 

rise in thermal outgoing radiation at the TOA since 1985. 17 

 18 

In summation, the energy exchange between Earth and space can be accurately tracked since the turn of the 19 

millennium (high confidence), and solar reflectance has decreased over this period, while reconstructions 20 

indicate that the Earth’s energy imbalance has likely been higher in the 2000s than in the 1990s (high 21 

confidence). 22 

 23 

 24 

[START FIGURE 7.6 HERE] 25 

 26 
Figure 7.6: Anomalies in global mean all-sky TOA fluxes from EBAF Ed4.0 in terms of reflected shortwave (upper 27 

panel), emitted longwave (middle panel) and net TOA flux (lower panel). Thin lines are monthly 28 
anomalies. The thick line through monthly anomalies is the 12-month running mean. Larger reflected 29 
shortwave and emitted longwave flux anomalies are defined as positive in upper and middle panels. Net 30 
TOA flux is defined as incoming shortwave flux minus reflected and emitted fluxes (i.e. downward 31 
positive). Adapted from (Loeb et al., 2018a). 32 

 33 

[END FIGURE 7.6 HERE] 34 

 35 

 36 

7.2.2.2 Changes in ocean heat content 37 

 38 

On annual and longer timescales, changes in the Earth’s heat inventory are dominated by changes in global 39 

ocean heat content (GOHC) (Johnson et al., 2016; Palmer et al., 2011; Palmer and McNeall, 2014; Wijffels 40 

et al., 2016). Recent studies estimate an uncertainty of approximately ± 0.5 W m-2 on year-to-year changes in 41 

OHC, which falls to about ± 0.1 W m-2 for decadal trends (Johnson et al., 2016; Roemmich et al., 2015). The 42 

satellite measurements and in situ measurements of OHC are therefore complementary elements of the 43 

Global Climate Observing System, with the former constraining short-term variability in Earth’s energy 44 

imbalance and the latter providing longer-term estimates of the absolute magnitude and its changes over 45 

time.  46 

 47 

IPCC AR5 stated that there is high confidence that 93% of the excess heat accumulated in the climate system 48 

between 1971 and 2010 has been stored in the World’s oceans (Rhein et al., 2013), demonstrating a key role 49 

of the oceans in Earth’s energy budget on multi-decadal timescales. Confidence in this assessment is 50 

strengthened in AR6 through demonstration of consistent closure of both global sea level and energy budgets 51 

for the period 1971-present (Chapter 9, Box 9.2).  52 

 53 

Past IPCC assessments of OHC change have focussed on estimates based on in situ subsurface ocean 54 
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observations and have therefore been fundamentally limited by the availability and quality of in situ ocean 1 

temperature profile observations (Abraham et al., 2013; Palmer, 2017). Additional observation-based 2 

insights into OHC change are now available from a number of innovative approaches that employ methods 3 

that are independent of subsurface observations (Gebbie and Huybers, 2019; Resplandy et al., 2018; Zanna et 4 

al., 2019). These new methods strengthen the evidence for OHC change between the 1870s and 1971 and 5 

provide independent verification of the in situ-based estimates for the periods 1971–present and 2005–6 

present.  Incorporating this new evidence, there is medium confidence that global ocean warmed from the 7 

1870s to 1971 and very high confidence that the global ocean warmed between 1971 to present.   8 

 9 

In-situ subsurface ocean temperature measurements provide the most direct estimates of observed OHC 10 

change. However, both the observing technologies and their sampling capabilities and characteristics have 11 

evolved over time (Abraham et al., 2013; Palmer, 2017), which must be accounted for in our assessment of 12 

observed ocean warming. Prior to the widespread deployment of expendable bathythermographs (XBTs) in 13 

the late 1960s, there are very large uncertainties in estimates of OHC change (Lyman and Johnson, 14 

2008).Therefore, past IPCC assessments of GOHC change (e.g. Rhein et al., 2013) have focussed on the 15 

period since 1970. XBTs typically sample only the upper few hundred metres and most annually-resolved 16 

time series estimates of GOHC change are limited to the upper 700 m (Abraham et al., 2013; Lyman et al., 17 

2010). Insights into OHC changes for 700-2000 m has generally relied on generating pentadal averages or 18 

fitting trends to the available observations in order to mitigate the poorer sampling of the deep ocean (Cheng 19 

et al., 2017; Rhein et al., 2013). OHC changes below 2000 m rely on geographically and temporally sparse 20 

hydrographic research sections, and warming rates for this “abyssal” ocean are only available from the 1990s 21 

onwards (Desbruyères et al., 2017; Purkey and Johnson, 2010, 2013).   22 

 23 

The early 2000s saw a revolution in ocean observing capability in the form of the Argo array of autonomous 24 

profiling floats (Riser et al., 2016). Since about 2005–2006 this array has provided routine, quasi-global 10-25 

day sampling of in situ temperature and salinity for the upper two km of the open ocean with a nominal float 26 

separation of three degrees latitude/longitude. As well as providing more robust estimates of OHC change 27 

over the last decade or so (Johnson et al., 2016; Roemmich et al., 2015), Argo has enabled valuable insights 28 

into OHC change since the late 20th Century in combination with data collected as part of the pioneering 29 

Challenger expedition of 1872–1876 (Roemmich et al., 2012), albeit with much larger uncertainties than are 30 

associated with the recent period. Stringent delayed-mode quality control procedures in Argo data streams 31 

means that these data are much less prone to biases than XBT observations (Wong et al., 2018).  32 

 33 

Observation-based estimates of OHC change have tended to employ statistical approaches to mapping the 34 

available temperature profiles (Abraham et al., 2013; Boyer et al., 2016; Lyman et al., 2010). However, 35 

ocean state estimates and ocean reanalyses, which make use of a dynamical ocean model, have increasingly 36 

been used to gain insights into OHC change and Earth’s energy imbalance (Balmaseda et al., 2013; Palmer et 37 

al., 2017; Trenberth et al., 2014). These systems are designed to provide a dynamically consistent estimate of 38 

the evolving ocean state and can potentially bring additional insights into underlying processes and 39 

mechanisms of observed changes. However, they are also subject to additional uncertainties, biases and other 40 

limitations associated with the underlying model physics and data assimilation schemes.  41 

 42 

Gebbie and Huybers (2019) and Zanna et al. (2019) have taken novel approaches to reconstructing OHC 43 

changes back to the 19th Century. Both methods make use of estimates of ocean circulation to propagate the 44 

relatively well-constrained ocean surface conditions into the ocean interior. The agreement between these 45 

independent studies leads to a more robust assessment of the historical ocean warming than reported in AR5. 46 

There is medium confidence that the 0-700 m layer warmed from the 1870s to 1971 and very high confidence 47 

that this layer warmed over the periods 1971 to present and 2005 to present.  48 

 49 

 50 

7.2.2.3 Changes in Earth’s surface energy budget 51 

 52 

AR5 not only reported changes in the components of the Earth’s energy budget at the TOA and within the 53 

oceans, but also at the Earth’s surface (Hartmann et al., 2013). Pronounced changes were reported in multi-54 
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decadal records of in situ observations of surface solar radiation, which encompass a decline at widespread 1 

locations between the 1950s and 1980s, known as “global dimming”, and a partial recovery thereafter, 2 

termed “brightening”.  3 

 4 

Since AR5, additional evidence for dimming and/or subsequent brightening based on direct surface 5 

observations has been documented in previously less explored areas of the globe, such as in Iran, Bahrain, 6 

Teneriffe, Hawaii, the Taklaman desert and the Tibetan Plateau (Elagib and Alvi, 2013; Garcia et al., 2014; 7 

Longman et al., 2014; Wild, 2016; You et al., 2013). Strong decadal variations in surface solar radiation 8 

remain evident also after careful data quality assessment and homogenization of long-term records in Europe 9 

and China (He et al., 2018; Manara et al., 2015, 2016, Sanchez-Lorenzo et al., 2013, 2015; Yang et al., 10 

2018b). Thus, there is high confidence that these variations are not measurement artefacts. Since AR5, 11 

further investigations on potential impacts of urbanization on solar radiation trends were carried out, 12 

indicating that the urbanization effects are generally small, with the exception of some specific sites in 13 

Russia and China  (Imamovic et al., 2016; Tanaka et al., 2016; Wang et al., 2014). Climate models do not 14 

reproduce the full extent of  dimming and brightening (Allen et al., 2013; Storelvmo et al., 2018; Wild and 15 

Schmucki, 2011), potentially pointing to inadequacies in the representation of aerosol mediated effects or 16 

related emission data.    [Placeholder: may assess MERRA for SOD] 17 

 18 

As noted in AR5 (Hartmann et al., 2013) and substantiated in more recent studies, the tendencies in surface 19 

solar radiation are less coherent at the beginning of the 21th century, with continued brightening in different 20 

parts of Europe and in the US, some stabilization in China and India, and dimming in other areas such as in 21 

Iran (Augustine and Dutton, 2013; Jahani et al., 2018; Manara et al., 2016; Pfeifroth et al., 2018; Sanchez-22 

Lorenzo et al., 2015; Soni et al., 2016; Wang and Wild, 2016). The CERES-EBAF satellite-derived dataset 23 

of surface solar radiation (Kato et al., 2018), does not indicate a globally significant trend over the period 24 

2001–2012 (Zhang et al., 2015), whereas  a statistically significant increase in surface solar radiation of +3.4 25 

W m−2 per decade  over the period 1996–2010 has been noted over the area in view of the geostationary 26 

satellite Meteosat in the record of the Satellite Application Facility on Climate Monitoring (CM SAF) 27 

(Posselt et al., 2014). It should be noted that there is uncertainty associated with satellite-derived trends in 28 

surface solar radiation, and that they are partially reliant on modelling, particularly when it comes to aerosol 29 

effects.  30 

 31 

Since AR5 there is additional evidence that strong decadal variations in surface solar radiation occur also 32 

under cloud-free conditions, as shown for long term records in Europe, USA, China and India (Gan et al., 33 

2014; Manara et al., 2016; Soni et al., 2016). This suggests that changes in the composition of the cloud-free 34 

atmosphere, primarily aerosols, contribute to these variations, particularly since the second half of the 20th 35 

century (Wild, 2016). For Europe and East Asia, modelling studies also point to aerosols as an important 36 

factor for the variations in surface solar radiation by comparing simulations including and excluding 37 

historical aerosol variations (Folini and Wild, 2015; Golaz et al., 2013; Nabat et al., 2014; Persad et al., 38 

2014; Turnock et al., 2015). On the other hand, further evidence for  the influence of changes in cloudiness 39 

on dimming and brightening is emphasized in some studies (Augustine and Dutton, 2013; Parding et al., 40 

2014; Pfeifroth et al., 2018; Stanhill et al., 2014). Thus, the relative contribution of aerosol and clouds to 41 

dimming and brightening is still debated. The influence of cloud-mediated aerosol effects and aerosol 42 

radiative effects on dimming and brightening in a specific region may depend on the prevailing pollution 43 

levels (Wild, 2016).  44 

 45 

Uncertainties in the surface turbulent fluxes continue to limit the feasibility of determining their decadal 46 

changes. Nevertheless, over the oceans, reanalysis-based estimates of linear trends from 1948 to 2008 47 

indicate an increase of 4–7 W m-2 decade-1 for latent heat and 2–3 W m-2 decade-1 for sensible heat in the 48 

western boundary current regions, while trends in extreme fluxes can be higher than 15 W m-2 decade-1 49 

(Gulev and Belyaev, 2012). In addition, a satellite-based product shows a global ocean latent heat flux trend 50 

of around 5.15 W m-2 decade-1 between 1988 and 2008 (Gao et al., 2013). 51 

 52 

Over land, the terrestrial latent heat flux is estimated to have increased by 0.09 W m-2 decade-1 from 1989 to 53 

1997, and subsequently decreased 0.13 W m-2 decade-1 from 1998 to 2005 due to enhanced soil moisture 54 
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limitation mainly in the SH (Mueller et al., 2013). These trends are small in comparison to the uncertainty 1 

obtained from satellite-derived and in-situ observations, as well as from land surface models forced by 2 

observations and atmospheric reanalyses. Temporal and spatial variability in surface solar radiation and 3 

precipitation can affect the variability in terrestrial latent heat flux (Douville et al., 2013; Greve et al., 2014; 4 

Oliveira et al., 2011). Changes in evapotranspiration (latent heat flux) during the second half of the 20th 5 

century were greater than those in precipitation in the Mediterranean, Africa and northern China, whereas the 6 

opposite was the case in Eastern US and La Plata Basin (Greve et al., 2014). Ongoing advances in remote 7 

sensing of evapotranspiration from space (Fisher et al., 2017; Mallick et al., 2016; McCabe et al., 2017b, 8 

2017a), as well as terrestrial water storage (Rodell et al., 2018) may contribute to constrain changes in latent 9 

heat flux. Meanwhile, there was also progress in benchmarking the terrestrial sensible heat flux (Siemann et 10 

al., 2018). 11 

 12 

In summary, since AR5, multidecadal variations in surface solar radiation have been detected at many more 13 

locations also in remote areas. There is high confidence that these variations are of widespread nature, and 14 

not only a local phenomenon or a measurement artefact. The origins of these variations need further 15 

investigation, although there are indications that anthropogenic aerosols have substantially contributed to 16 

these variations (medium confidence). Confidence in the trends in surface sensible and latent heat remains 17 

low.  18 

 19 

 20 

[START BOX 7.2 HERE] 21 

 22 

BOX 7.2: The Global Energy Budget and its Future Changes 23 

 24 

The net ERF of the Earth System since 1971 has been positive (Box 7.2, Figure 1; Section 7.3), mainly as a 25 

result of increases in atmospheric greenhouse gas concentrations (Section 2.2.8, 7.3.2). These positive 26 

forcing agents have been partly offset by negative radiative ERFs, primarily due to anthropogenic aerosols 27 

(Section 7.3.3). The net energy inflow to the Earth system from ERF since 1970 is estimated to be 1200 ZJ 28 

(1 ZJ = 1021 J) with a very likely range of 860 to 1510 ZJ.  29 

 30 

The ERF-induced warming of the climate system results in increased thermal radiation to space via the 31 

Planck response, but the picture is complicated by the variety of other climate and Earth system feedbacks 32 

(Section 7.4) that also influence Earth’s radiative response (Box 7.2, Figure 1c). The combined effects of 33 

these feedbacks can be estimated using atmospheric general circulation model (GCM) simulations using 34 

prescribed historical sea-surface temperatures (SSTs) and sea-ice concentrations, resulting in a net feedback 35 

parameter, α, that varies as the SST pattern evolves over the historical record (Section 7.4.3). Combining 36 

these model-based estimates of time-evolving α with the observed near-surface temperature change provides 37 

an estimates of the Earth radiative response (Box 7.2, Figure 1c). The net energy outflow from the Earth 38 

system associated with the radiative response since 1971 is estimated to be 860 ZJ with a very likely range of 39 

670 to 1210 ZJ.  40 

 41 

The combination of the ERF-induced changes and those associated with the radiative response lead to an 42 

implied change in Earth’s energy storage of 360 ZJ [-85 to 750 5% to 95% range]. This agrees well with an 43 

independent observation-based assessment of Earth’s energy storage change of 297 ZJ for the period 1971-44 

2014, which is dominated by the increase in OHC. Confidence in the observed energy storage change is 45 

strengthened by a consistent analysis and closure of the observed global sea level budget (Chapter 9, Box 46 

9.2). Overall, there is high confidence that Earth’s energy budget is closed within the estimated uncertainties 47 

and this provides strong evidence for our understanding of anthropogenic climate change and estimates of 48 

climate sensitivity (Section 7.5). [Placeholder: uncertainties computed for SOD] 49 

 50 

Recent studies have compared observation-based estimates of multi-decadal GOHC change with those 51 

simulated by CMIP5 climate models (Cheng et al., 2016, 2019; Gleckler et al., 2016). In general, there is 52 

good agreement in both total ocean heat uptake and its vertical structure between the observations and 53 

CMIP5 multi-model mean (Box 7.2, Figure 1f; Chapter 3, section 3.5). However, there is a large spread 54 
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among CMIP5 models compared to the observations, indicating that in some of the models the historical 1 

climates have not evolved in the same way as reality. This implies a broad range of net radiative forcings 2 

and/or spread in climate feedbacks over the 20th Century among climate models. In addition, the magnitude 3 

of internal variability in OHC and Earth’s energy imbalance simulated by each model varies substantially 4 

across the ensemble (Gleckler et al., 2016; Palmer and McNeall, 2014).  5 

 6 

Smith et al. (2015) presented a comparison of the evolution of Earth’s energy imbalance between CMIP5 7 

climate models and observation-based reconstructions of Earth’s energy imbalance and GOHC change. The 8 

reconstructions of ERB and GOHC change (based on 5-year rolling trends) generally showed good 9 

agreement and both exhibited a general tendency towards an increase in Earth’s energy imbalance that was 10 

punctuated by short-lived cooling episodes associated with major volcanic eruptions. The CMIP5 ensemble 11 

mean showed good agreement in both the timing and magnitude of the main signals seen in the observations, 12 

with a close correspondence between the time-evolution of Earth’s energy imbalance and GOHC change.  13 

 14 

Future projections show that Earth’s energy imbalance remains positive under all RCP scenarios for several 15 

centuries, contributing directly to long-term committed sea level rise through the associated thermal 16 

expansion of the global oceans (Box 7.2, Figure 2, e.g. Nauels et al. (2017); Palmer et al. (2018)). While 17 

GHG ERF acts initially through suppression of outgoing longwave radiation it is ultimately the increase in 18 

absorbed shortwave radiation that dominates the response of Earth’s radiation budget (Donohoe et al., 2014a; 19 

Trenberth and Fasullo, 2009). This arises because longwave emission to space increases with surface 20 

warming while shortwave radiation absorbed increases with warming due to reduced ice cover and increased 21 

atmospheric water vapour (Donohoe et al., 2014a). The behaviour of total Earth system warming is in 22 

contrast to that of global surface temperature change in two fundamental ways. The first is the long-term 23 

commitment, with the total warming continuing for centuries even under strong mitigation scenarios under 24 

which GMST stabilises or even reduces. The second is that GMST is much more prone to inter-annual-to-25 

multi-decadal variability than total warming, making the latter a more suitable basis for monitoring the rate 26 

of anthropogenic global warming on decadal and shorter timescales (Palmer et al., 2011; Palmer and 27 

McNeall, 2014; Wijffels et al., 2016).  28 

 29 

 30 

[START BOX 7.2, FIGURE 1 HERE] 31 

 32 

Box 7.2, Figure 1:  Estimates of the net cumulative energy change (ZJ = 1021 Joules) for the period 1971-2015 33 
associated with: (a) Earth System Energy Change; (b) Effective Radiative Forcing; (c) Earth 34 
System Radiative Response. Shaded regions indicate the 5th to 95th percentile uncertainty range. 35 
Panels (d) and (e) show the breakdown of components for energy storage and effective radiative 36 
forcings, respectively. Panel (f) shows the comparison of CMIP5 model simulations of 0-2000m 37 
heat content change with several observation-based estimates, following Cheng et al. (2019). 38 
The shaded regions indicate the 5th to 95th percentile range of model simulations, assuming a 39 
normal distribution. [placeholder: Observed Storage Change to be properly assessed for SOD). 40 

 41 

[END BOX 7.2, FIGURE 1 HERE] 42 

 43 

 44 

[START BOX 7.2, FIGURE 2 HERE] 45 

 46 

Box 7.2, Figure 2:  Two-layer model simulations of global mean surface temperature (left) and ocean thermal 47 
expansion (right) under the RCP2.6 and RCP4.5 scenarios, following Palmer et al (2018). 48 
Shaded regions indicate the 90% confidence interval based on the ensemble standard deviation. 49 
Dotted lines indicate the ensemble mean response. Solid lines show a single CMIP5 model 50 
simulation to illustrate the characteristics of variability in each variable.  Projections are shown 51 
relative to a 1986-2005 baseline period. [placeholder: baseline to be changed inline with AR6 52 
standard period of 1995-2014 at SOD]. 53 

 54 

[END BOX 7.2, FIGURE 2 HERE] 55 
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 1 

 2 

Changes in meridional heat transport have important consequences for the large-scale patterns of surface 3 

warming in response to greenhouse gas forcing (Section 7.6.2). Figure 7.5 illustrates heat transport changes 4 

within CMIP5 models at a century after abrupt CO2 quadrupling. Models simulate several consistent features 5 

including increased poleward atmospheric heat transport and decreased oceanic heat transport in both 6 

hemispheres (Figure 7.5d, f), except near 70N where the majority of models show increased poleward 7 

oceanic heat transport and decreased poleward atmospheric heat transport (Hwang et al., 2011). Models do 8 

not agree on the sign of the total heat transport changes, which are generally small owing to strong 9 

compensations between atmospheric and oceanic heat transport changes at all latitudes (Armour et al., 2019; 10 

He et al., 2019; Huang and Zhang, 2014). 11 

 12 

Improved process understanding of heat transport since AR5 increases the degree of evidence to provide 13 

high confidence in several key aspects of oceanic heat transport changes under global warming. Anomalous 14 

northward ocean heat transport in the Southern Ocean arises primarily from northward-flowing surface 15 

waters carrying anomalous heat from where it is taken up around 60S to where it is stored in the ocean 16 

further north (Armour et al., 2016; Froelicher et al., 2015; He et al., 2019; Liu et al., 2018; Marshall et al., 17 

2015; Morrison et al., 2016; Stouffer et al., 2006). Decreased northward oceanic heat transport in the NH 18 

mid-latitudes is associated with a reduction in the strength of the Atlantic Meridional Overturning 19 

Circulation (AMOC) (Gregory et al., 2005; Marshall et al., 2015; Oldenburg et al., 2018; Rugenstein et al., 20 

2013; Stouffer et al., 2006; Weaver et al., 2007; Winton et al., 2013b). The increase in oceanic heat transport 21 

into the Arctic Ocean seen in most models is associated with the northward transport of anomalous heat 22 

taken up within the North Atlantic subpolar gyre and with changing ocean currents in the Nordic Seas (Bitz 23 

et al., 2006; Holland and Bitz, 2003; Jungclaus et al., 2014; Koenigk and Brodeau, 2014; Mahlstein and 24 

Knutti, 2011; Marshall et al., 2015; Nummelin et al., 2017; Oldenburg et al., 2018). Ocean heat transport 25 

changes depend on the radiative forcing scenario considered, particularly in the NH where AMOC changes 26 

are influenced by aerosol forcing (Shi et al., 2018). CMIP5 models do not show a robust reduction in 27 

poleward ocean heat transport in the NH mid-latitudes under historical forcing (Huang and Zhang, 2014), but 28 

a reduction is projected to occur as AMOC declines over the 21st century (Chapter 4, Section 4.3.2; Cheng et 29 

al., 2013) (high confidence). 30 

 31 

There is improved understanding of atmospheric heat transport processes since AR5 as well. Atmospheric 32 

heat transport changes are commonly understood in terms of the heat flux divergence required to balance the 33 

anomalous energy input into the atmosphere at each latitude by radiative forcing, the radiative response to 34 

surface warming (i.e., radiative feedbacks), and ocean heat uptake (Armour et al., 2019; Feldl and Roe, 35 

2013b; Huang et al., 2017; Huang and Zhang, 2014; Zelinka and Hartmann, 2012). ERF from CO2 peaks in 36 

the tropics, contributing to increased poleward atmospheric heat transport in both hemispheres. Those 37 

radiative feedbacks that preferentially add energy to the tropical atmosphere (water-vapour and cloud 38 

feedbacks) contribute to increased poleward atmospheric heat transport in mid-latitudes, while those that 39 

preferentially remove energy from the tropical atmosphere (lapse-rate feedback) oppose that increase. The 40 

net TOA radiative changes under CO2 forcing are relatively uniform with latitude owing to weak latitudinal 41 

structure in both the ERF and the radiative response to warming (Armour et al., 2019), resulting in the near-42 

invariance of total meridional heat transport (Figure 7.5d) and thus requiring strong compensation between 43 

oceanic and atmospheric heat transport changes (Figure 7.5e,f). In this view, because TOA radiation changes 44 

relatively little with surface warming in the Arctic (owing to positive regional feedbacks; Section 7.6.2), 45 

atmospheric heat transport changes into the Arctic are required to balance the local energy input by CO2 46 

forcing and ocean heat transport changes. The degree of compensation between atmospheric and oceanic 47 

heat transport depends on the latitudinal structure of radiative feedbacks (Dai et al., 2017; Rose and Ferreira, 48 

2013; Yang et al., 2017) and thus varies across models.  49 

 50 

Atmospheric heat transport changes also reflect compensations between large changes in the poleward 51 

transport of latent energy and dry-static energy (sum of sensible and potential energy) (Held and Soden, 52 

2006; Hwang et al., 2011; Hwang and Frierson, 2010). Large increases in poleward latent energy transport 53 

are compensated by large decreases in dry-static energy transport in the mid-to-high latitudes where transient 54 
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eddies dominate the heat transport. Large increases in equatorward latent energy transport are compensated 1 

by large increases in poleward dry-static energy transport in the tropics where the Hadley Circulation 2 

dominates the heat transport. These latent energy transport changes correspond to changes in moisture 3 

convergence and thus shape the patterns of rainfall under global warming (Held and Soden, 2006; Siler et al., 4 

2018b) (Section 8.4). Moist diffusive energy balance models that approximate heat transport in terms of a 5 

flux down the near-surface moist static energy (sum of sensible and latent energy) gradient are able to 6 

replicate the atmospheric heat transport changes seen within climate models (Flannery, 1984; Hwang et al., 7 

2011; Hwang and Frierson, 2010; Roe et al., 2015; Rose et al., 2014), including the partitioning of latent and 8 

dry-static energy transports (Armour et al., 2019; Siler et al., 2018b). In this view, increased poleward latent 9 

heat transport in mid-to-high latitudes with global warming is a consequence of an increase in the meridional 10 

moisture gradient while decreased dry-static energy transport in mid-to-high latitudes is a consequence of a 11 

decrease in the meridional surface temperature gradient (i.e., polar amplification) (Alexeev et al., 2005; 12 

Hwang et al., 2011; Hwang and Frierson, 2010; Merlis and Henry, 2018). The success of this diffusive 13 

approximation suggests that relatively simple principles may govern atmospheric heat transport such as 14 

maximization of entropy production (Dyke and Kleidon, 2010; Ozawa et al., 2003; Pascale et al., 2012).  15 

 16 

There remain open questions regarding how energetic and diffusive perspectives on atmospheric heat 17 

transport can be reconciled with the perspective that invokes specific atmospheric circulations (Armour et 18 

al., 2019). Much research since AR5 has focused on establishing causal links between changes in regional 19 

atmospheric energy budgets and the response of atmospheric circulation (e.g., Ceppi and Hartmann, 2015; 20 

Ceppi and Shepherd, 2017; Donohoe et al., 2013, 2014b; Feldl and Bordoni, 2016; Mbengue and Schneider, 21 

2018; Merlis, 2015; Voigt and Shaw, 2015, 2016). A key uncertainty is how atmospheric heat transport 22 

changes can be understood in terms of the changes in atmospheric circulation that occur under CO2 forcing – 23 

such as a narrowing and shifting of the ITCZ (e.g., Huang et al., 2013; Neelin et al., 2003), a slowdown and 24 

poleward expansion of the Hadley Cell (Held and Soden, 2006; Lu et al., 2007), poleward shifts of mid-25 

latitude jets and storm tracks (e.g, Barnes and Polvani, 2013; Yin, 2005), or changing planetary wave activity 26 

(e.g., Graversen and Burtu, 2016; Lee, 2014; Liu and Barnes, 2015). 27 

 28 

[END BOX 7.2 HERE] 29 

 30 

 31 

7.3 Effective Radiative Forcing 32 

 33 

7.3.1 Methodologies and representation in models; overview of rapid adjustments 34 

 35 

As introduced in BOX 7.1, the IPCC AR5 report (Boucher et al., 2013; Myhre et al., 2013b) recommended 36 

ERF as a more useful measure of the climate effects of a physical driver than stratospheric temperature-37 

adjusted radiative forcing (SARF) adopted in earlier assessments. ERF extended the SARF concept to 38 

account for not only adjustments to stratospheric temperatures, but also responses in the troposphere to the 39 

heating profile induced by the relevant forcing mechanism, termed rapid adjustments. These rapid 40 

adjustments include changes in the atmospheric temperature profile, as well as the consequences of these 41 

temperature changes on clouds and water vapour. Microphysical effects of aerosol on clouds are also 42 

included in the total ERF, and within the literature can either be associated with a rapid adjustment and/or 43 

part of the initial IRF. The changes in evapotranspiration and sensible heat fluxed due to the CO2-physical 44 

effect are also considered as components of rapid adjustments (Cao et al., 2010; Doutriaux-Boucher et al., 45 

2009; Richardson et al., 2018b). 46 

  47 

The assessment of ERF in AR5 was preliminary as there was no agreed standard for estimating ERF and 48 

ERFs were only available for a few forcing agents, so for many forcing agents the report made the 49 

assumption that ERF and SARF were equivalent. A body of work since has computed ERFs across many 50 

more forcing agents and models, closely examined the methods of computation, quantified and probed the 51 

processes involved in delivering rapid adjustments and examined how well ERFs represent the ultimate 52 

temperature response. These have led to a much-improved understanding and gives increased confidence in 53 

the quantification of radiative forcing across the report. Importantly, the same techniques allow for a much 54 
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fuller evaluation of radiative forcing within climate models as a key test of their ability to represent both 1 

historical and future temperature changes (Chapters 3, Section 3.3 and Chapter 4, Section 4.3).  2 

 3 

There have been two main methods used to calculate ERF. The first method is to regress the net TOA 4 

radiation flux against global surface air temperature following a step change in the concentration of the 5 

forcing agent (Gregory et al., 2004), with the ERF derived from the intercept with the Y axis. Regression-6 

based estimates of ERF depend on the time resolution of the data used (Modak et al., 2016, 2018). For the 7 

first few months of a simulation both surface temperature change and stratospheric temperature adjustment 8 

occur at the same time leading to misattribution of the stratospheric temperature adjustment to the surface 9 

temperature feedback. At longer timescales the curvature of the relationship between TOA flux and surface 10 

temperature can also lead to biases in the ERF estimated from the regression method (Andrews et al., 2015; 11 

Armour et al., 2013; Knutti et al., 2017) ( Section 7.4). A second method for computing ERF is to remove 12 

the climate feedback by prescribing the SSTs and sea-ice (Hansen et al., 2005). The prescribed SST method 13 

is found to be more certain than the regression method. Nevertheless a 30-year integration needs to be 14 

conducted to reduce the uncertainty range to within 0.1 W m-2 (Forster et al., 2016).  15 

 16 

For the definition of ERF employed here (Section 7.1), the land surface temperature change is considered 17 

part of the response. This response can be removed from the prescribed SST and sea-ice TOA energy budget 18 

change through the use of radiative kernels or by extrapolating the surface temperature feedback to a 19 

temperature change of zero (Chung and Soden, 2015a; Forster et al., 2016; Richardson et al., Submitted; 20 

Sherwood et al., 2015). In some definitions of ERF land-surface responses are included, in others they are 21 

associated with climate feedbacks (Chung and Soden, 2015a; Richardson et al.; Sherwood et al., 2015). In 22 

regression based ERF estimates,  patterns of sea-surface temperature change additionally affect the forcing 23 

(Andrews et al., 2015). The definition adopted aims to have the cleanest separation between forcing (energy 24 

budget changes that are not mediated by surface temperature) and feedbacks (as energy budget changes that 25 

are mediated by surface temperature). The definition is also found below to have the most constant feedback 26 

parameter across forcing agents.  27 

 28 

The ERF can be broken down into the IRF plus the rapid adjustments. In theory this can be constructed 29 

bottom-up by calculating the IRF and adding in the rapid adjustments one-by-one or together. The 30 

stratospheric temperature adjustment can be calculated in offline radiative transport models (RTMs), for 31 

instance using fixed dynamical heating (Fels et al., 1980; Maycock, 2016), but there is no simple way to 32 

derive the other adjustment terms without using a full climate model. Methods to determine ERF therefore 33 

use top-down diagnoses of the total change in radiative fluxes in a full climate model following an applied 34 

forcing, allowing for rapid adjustments, but not climate feedbacks. The principle means for distinguishing 35 

between rapid adjustments and climate feedbacks is the dependence on surface temperature rather than the 36 

timescale of the response. Rapid adjustments are assumed to be independent of surface air temperature 37 

changes whereas climate feedbacks are the dependence of radiative fluxes on surface air temperature (Box 38 

7.1). 39 

 40 

The rapid adjustments can be calculated from models by calculating the difference between an IRF (using a 41 

double call to the radiative transfer scheme) and a climate model estimate of ERF (from a prescribed SST 42 

and sea-ice experiment); or by using radiative kernels (Chung and Soden, 2015b, 2015a; Smith et al., 2018b; 43 

Vial et al., 2013; Zelinka et al., 2014; Zhang and Huang, 2014) or a partial radiative perturbation approach 44 

(Colman, 2015). The radiative kernel approach is easier to implement through post-processing of climate 45 

model output and allows for a comparison of radiative kernels computed from different radiative transfer 46 

schemes, whereas the partial perturbation approach would be expected to give a more accurate estimate of 47 

the adjustments within the setup of a single model and its own radiative transfer code. Radiative kernels can 48 

also be used to estimate the ERF from prescribed SST and sea-ice experiments by removing the land-surface 49 

temperature response from the TOA energy budget change (Richardson et al., Submitted; Tang et al., 50 

accepted). IRFs and rapid adjustments computed from radiative kernels are shown for five forcing 51 

experiments across nine models in Figure 7.7 (Smith et al., 2018b). IRFs provide a useful test of models’ 52 

radiative transfer codes but few recent experiments have tested IRFs computed within climate models 53 

(Pincus et al., 2016). Chung and Soden's (2015b) kernel analyses suggested a large spread in CO2 IRF and 54 
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SARF across models, but this spread could also be attributable to the kernel method employed in estimating 1 

IRF. Smith et al. (2018b) find a similar spread in IRF for 2xCO2 and show that kernel methodological errors 2 

are typically smaller than 10%. This suggests the kernel method is a useful but not perfect way of estimating 3 

IRF and that the larger than expected spread in IRF in climate models compared to earlier estimates from 4 

line by line models could point to real errors in climate models radiative transfer codes (Pincus et al., 2016; 5 

Soden et al., 2018) (Section  7.4.2). Table 7.1 shows the estimates of IRF, SARF and ERF from the climate 6 

models analysed in Richardson et al. (submitted). This shows improved agreement over previous studies 7 

(Pincus et al., 2016 and references therein) and relatively good agreement with the overall assessment of CO2 8 

ERF in Section 7.3.2. The level of agreement in this and earlier intercomparisons gives high confidence in 9 

climate models’ representation of radiative forcing from greenhouse gases.  10 

 11 

 12 

[START Table 7.1 HERE] 13 
 14 

Table 7.1: IRF at the tropopause, SARF and ERF diagnosed from climate models for a 2xCO2 experiment.  Data 15 
taken from Richardson et al (submitted). An ERF is also given from prescribed sea-surface temperature 16 
and sea-ice experiments, where the effects of land-surface temperature changes are not removed (ERF 17 
with land changes). 18 
 19 

2xCO2 (W m-2) IRF 

(Tropopause) 

SARF ERF 

With land change 

ERF 

HadGEM2 4.55 3.45 3.44 4.00 

NorESM 4.44 3.67 3.50 3.82 

GISS 4.41 3.98 4.05 4.58 

CanESM2 4.44 3.68 3.54 3.97 

MIROC-SPRINTARS 4.62 3.89 3.70 4.10 

CESM1-CAM5 4.28 3.89 4.04 4.60 

HadGEM3 4.35 3.48 3.64 4.27 

IPSL-CM5A - 3.50 3.32 3.73 

MPI-ESM 4.47 4.27 4.13 4.64 

CESM1-CAM4 - 3.50 3.57 4.02 

ECHAM-HAM - - 4.32 - 

Multi-model Mean 

and std.dev. 

4.45 ± 0.11 3.73 ± 0.27 3.75 ± 0.33 4.17 ± 0.33 

 20 

[END Table 7.1 HERE] 21 

 22 

 23 

[Placeholder for possible analysis of IRF RFMIP experiments for SOD] 24 

 25 

 26 

[START FIGURE 7.7 HERE] 27 

 28 
Figure 7.7: The ERF, IRF and rapid adjustment (a) and breakdown of the rapid adjustment using radiative kernels (b) 29 

for five idealised forcing experiments across nine models. The 95% confidence range is shown. Note that 30 
the land-surface response is included in ERF as an adjustment.  Data modified from Smith et al. (2018b). 31 
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The results are computed from idealized single forcing experiments with the following abrupt 1 
perturbations from present day conditions; doubling CO2 concentration (2xCO2), tripling methane 2 
concentration (3xCH4), two percent increase in insolation (2%Sol), ten times black carbon concentrations 3 
or emissions (10xBC), five times sulphate concentrations or emissions (5xSul). [For SOD land response 4 
will be removed from the ERF in the figure] 5 

 6 

[END FIGURE 7.7 HERE] 7 

 8 

 9 

ERFs have been found to provide a more consistent measure of global temperature change per W m-2   of 10 

forcing compared to SARF, i.e. 𝛼 values show less variation across different forcing experiments. (Hansen et 11 

al., 2005; Marvel et al., 2015; Richardson et al., submitted). However, even for ERF, studies find that 𝛼 is 12 

not indentical across all forcing perturbations (Duan et al., 2018; Marvel et al., 2015; Modak et al., 2016, 13 

2018; Richardson et al. submitted; Shindell, 2014; Shindell et al., 2015). The latitudinal and altitudinal 14 

distribution of the forcing and the additional physiological effects of CO2 on plants cause variations in 𝛼 15 

(Kang and Xie, 2014; Modak et al., 2018; Richardson et al. submitted; Shindell, 2014; Shindell et al., 2015). 16 

The most comprehensive multi-model analyses compares 12 forcing types across nine models and explores 17 

how 𝛼 varies for different definitions of forcing, including different ways of measuring ERF (Richardson et 18 

al., Submitted). They find that the multi-model mean of 𝛼 is relatively constant (within ~20%, Figure 7.8) 19 

across different forcing experiments when computed using ERF from prescribed sea-surface temperature and 20 

sea-ice experiments. Additionally, removing the land-surface temperature response from the TOA energy 21 

imbalance using a radiative kernel methodology brings α for 2xCO2 into closer agreement with other forcing 22 

perturbations. When computed using regression-based ERF, 𝛼 exhibited both more variation in the model-23 

mean and a greater model spread, as did 𝛼 values computed from SARF (Figure 7.8). When examining 24 

single models in Richardson et al. (Submitted) there are variations in 𝛼 across forcings but the variation was 25 

not found to be consistent across models. Other single-model studies published since AR5 (Marvel et al., 26 

2016; Modak et al., 2018; Shindell et al., 2015) and studies examining the effectiveness of solar radiation 27 

management geoengineering (Crook et al., 2015; Duan et al., 2018) all show some variation in 𝛼 across 28 

different forcing agents. For more localised forcings 𝛼 shows greater variation between forcing agents and 29 

models (Richardson et al. (Submitted), Figure 7.8). However, as none of these variations are robust across 30 

models, this report’s assessment is that feedbacks derived from 2xCO2 are within a 20% range of that from 31 

other forcing agents (medium confidence). 32 

 33 

This report adopts an estimate of ERF based on rapid adjustments computed from prescribed SST and sea-34 

ice experiments, and additionally removing the TOA energy budget change from the land surface 35 

temperature response (Box 7.1). This is firstly for a theoretically cleaner separation between forcing and 36 

feedbacks in terms of factors respectively unrelated and related to surface temperature change. Secondly, the 37 

new studies highlighted above suggest climate feedback parameters computed within this framework have 38 

less variation across forcing agents. From high agreement and medium evidence there is high confidence that 39 

ERF as defined here represents a useful estimator of equilibrium surface temperature change across a range 40 

of typical forcing agents. For localised forcing patterns there are fewer studies and less agreement between 41 

them, resulting in low confidence that ERF is a suitable measure of surface temperature response. 42 

 43 

 44 

[START FIGURE 7.8 HERE] 45 

 46 
Figure 7.8: Values of climate feedback parameter (𝛼) derived from ERF and SARF for twelve forcing experiments. 47 

Multi-model means and full model ranges are shown. ERF is derived from prescribed SST and sea-ice 48 
experiments. The number of models analysed differs between experiments as indicated on the bars. Data 49 
from Richardson et al. (Submitted). The results are computed from idealized single forcing experiments 50 
with the following abrupt perturbations from present day conditions; doubling CO2 concentration 51 
(2xCO2), tripling methane concentration (3xCH4), two percent increase in insolation (2%Sol), ten times 52 
black carbon concentrations or emissions (10xBC), five times sulphate concentrations or emissions 53 
(5xSul), ten times sulphate concentrations or emissions over Asia only (10xSulasia), ten times sulphate 54 
concentrations or emissions over Europe only (10xSuleur), change in CFC-12 mixing ratio to 5ppb (CFC-55 
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12), change in CFC-11 mixing to 5ppb (CFC-11), change in N2O mixing ratio to 1ppm (N2O1p), five 1 
times tropospheric ozone concentration (Ozone), change in vegetation to pre-industrial conditions 2 
(LandUse). 3 

 4 

[END FIGURE 7.8 HERE] 5 

 6 

 7 

7.3.2 Well-Mixed Greenhouse Gases, ozone and stratospheric water vapour 8 

 9 

[note these are assessed from 1750-2017 currently but will be updated to 2018 for the SOD] 10 

 11 

Line-by-line (LBL) models provide the most accurate calculations of the radiative perturbations due to well 12 

mixed greenhouse gases (WMGHGs) with errors in the IRF of less than 1% (Mlynczak et al., 2016). They 13 

can calculate IRFs with no adjustments, or SARFs by accounting for the adjustment of stratospheric 14 

temperatures using a fixed dynamical heating. It is not possible with offline radiation models such as LBL to 15 

account for other rapid adjustments, so such models cannot calculate ERFs. The LBL calculations of SARF 16 

for carbon dioxide, methane and nitrous oxide have been updated since AR5, which were based on (Myhre et 17 

al., 1998). The new calculations (Etminan et al., 2016) include the shortwave forcing from methane and 18 

updates to the water vapour continuum (increasing its total SARF by 25%) and account for the overlaps 19 

between carbon dioxide and nitrous oxide., The associated simplified expressions are given in Table 7.1. The 20 

results for methane have been confirmed independently (Collins et al., 2018). Since they incorporate known 21 

missing effects we assess the new calculations as being a more appropriate representation than (Myhre et al., 22 

1998). 23 

 24 

As described in Section 7.3.1, ERFs can be estimated solely using climate models, however the radiation 25 

schemes in climate models are approximations to LBL models with large variations and biases in results 26 

between the schemes (Soden et al., 2018). Hence climate models alone should not be used to the make best 27 

estimates of the ERFs for the WMGHGs. This assessment therefore estimates ERFs from a combined 28 

approach, using the SARF from LBL codes with the tropospheric rapid adjustments added to this derived 29 

from climate models.  30 

 31 

The main information used in AR5 to assess components of ERFs was Vial et al. (2013) using 4×CO2 32 

experiments in CMIP5 models, who found a near-zero non-stratospheric adjustment with an uncertainty on 33 

this of 10% of the total CO2 ERF. The near-zero adjustment comes from an approximate balance between an 34 

increase due to water vapour and clouds and a decrease due to increased tropospheric and land surface 35 

temperatures. Since then, Zhang and Huang (2014) also analysed CMIP5 model results with similar 36 

conclusions to Vial et al. (2013). A more recent analysis from Smith et al. (2018b) of 2×CO2 experiments 37 

found agreement with these earlier two and separated the temperature adjustment into land-surface 38 

temperature and tropospheric temperatures (Table 7.2). Excluding the land-surface temperature response to 39 

follow the definition in Box 7.1 gives a tropospheric adjustment of +5% which we add to the Etminan et al. 40 

(2016) formula for SARF. Due to the agreement between the studies and the understanding of the physical 41 

mechanisms there is high confidence in the mechanisms underpinning the tropospheric adjustment. However, 42 

due to rapid adjustments of different signs there is only medium confidence that the overall tropospheric 43 

adjustment is positive.   44 

 45 

 46 

[START Table 7.2 HERE] 47 

 48 
Table 7.2: Rapid adjustments to CO2 forcing due to changes in stratospheric temperature, surface and tropospheric 49 

temperatures, water vapour, clouds and surface albedo, as a fraction of the SARF. Note that surface 50 
temperature changes are excluded from the forcing in out definition.  51 

 52 

Fraction of SARF Surface 

temperature 

Tropospheric 

temperature 

Stratospheric 

Adjustment 

Surface 

albedo 

Water 

vapour 

Cloud 

adjustment 
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response adjustment adjustment adjustment 

Vial et al. (2013) -0.2  0.02 0.06 0.11 

Zhang and Huang 

(2014) 

-0.23 0.26  0.06 0.16 

Smith et al. (2018) -0.06 -0.16 0.30 0.03 0.06 0.12 

 1 

[END Table 7.2 HERE] 2 

 3 

 4 

7.3.2.1 Carbon Dioxide 5 

 6 

The 2xCO2 ERF is assessed to be 4.0 ± 0.7 W m-2 (5% to 95% range). Its assessed components are given in 7 

Table 7.3. The combined spectroscopic and radiative transfer modelling uncertainties give an uncertainty in 8 

the CO2 SARF of around 10% or less (Etminan et al., 2016; Mlynczak et al., 2016). The overall uncertainty 9 

in CO2 ERF is assessed as 10%, as the more uncertain rapid adjustments only account for a small fraction of 10 

the ERF. The ERF estimate has increased by 8% since AR5 partly due to revised LBL calculations 11 

(contributing 3% increase), but mostly due to the combined effects of a series of rapid adjustments. The 12 

historical ERF estimate from CO2 is revised upwards by a total of 16% from a combination of these revisions 13 

and the 4% rise in atmospheric concentrations between 2011 and 2017.  14 

 15 

 16 

[START Table 7.3 HERE] 17 

 18 
Table 7.3: Assessed ERF, SARF and tropospheric rapid adjustments to 2xCO2 change since preindustrial times 19 

compared to the AR5 assessed range (Myhre et al., 2013b). Rapid adjustments are due to changes in 20 
tropospheric temperatures, water vapour, clouds and surface albedo and land cover. 21 

2xCO2  

forcing 

AR5 

SARF/ERF 

SARF 

(W m-2) 

Tropospheric 

temperature 

adjustment  

(W m-2) 

Water 

vapour 

adjustment 

(W m-2) 

Cloud 

adjustment 

(W m-2) 

Surface 

albedo and 

land cover 

adjustment 

(W m-2) 

ERF  

(W m-2) 

2xCO2 ERF 

components  

3.7 3.81 -0.58 0.23 0.43 0.12 4.01 

5%-95% 

uncertainty 

ranges as 

percentage of 

top row 

10% 

(SARF) 

20% (ERF) 

<10% 40% 70% 100% 50% 17% 

 22 

[END Table 7.3 HERE] 23 

 24 

 25 

7.3.2.2 Methane 26 

 27 

CH4 rapid adjustments have been calculated in nine climate models in Smith et al. (2018b). Since CH4 is 28 

known to absorb in the shortwave only adjustments from those models including shortwave absorption are 29 

taken into account. For these models the adjustments are robustly acting as a negative forcing as the 30 

shortwave absorption leads to tropospheric heating and changes in clouds. The adjustment is -14% ± 9% 31 

which counteracts much of the increase in SARF identified by Etminan et al. (2016). Modak et al. (2018) 32 

also found negative forcing adjustments from a methane perturbation including shortwave absorption, 33 

supporting the above assessment. We caution that since the climate models are not able to represent the 34 

shortwave absorption in the detail of Etminan et al. (2016) this introduces further uncertainty. This 35 

assessment increases the uncertainty in the rapid adjustment to include zero: -14% ± 14%. The spectroscopic 36 

uncertainty in the shortwave component is determined to lead to a 10% uncertainty in the SARF (Etminan et 37 
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al., 2016) leading to an overall uncertainty of 17% [5%- 95% range]. There is high confidence in the 1 

spectroscopic revision but only medium confidence in the rapid adjustment modification.  2 

 3 

 4 

7.3.2.3 Nitrous oxide 5 

 6 

There have been no studies of the rapid adjustments to N2O. An idea of the physical responses to N2O 7 

forcing can be gained from the responses CH4 without shortwave absorption which is 15% ± 8% driven by 8 

changes in clouds. The rapid tropospheric adjustments to N2O are therefore assessed to be 0 ± 10% with low 9 

confidence. The spectroscopic uncertainty is expected to be small (Etminan et al., 2016).  10 

 11 

 12 

7.3.2.4 Halogenated species 13 

 14 

The stratospheric-temperature adjusted radiative efficiencies for halogenated species were reviewed 15 

extensively using LBL models in (Hodnebrog et al., 2013) as used in AR5. That study used a consistent 16 

procedure for analysing each species and therefore is assessed as providing the most useful comparison 17 

between the species. More recent studies have updated some individual species (Le Bris et al., 2018; Le Bris 18 

and Graham, 2014; Lu et al., 2017; Papanastasiou et al., 2018; Totterdill et al., 2016) but do not cause 19 

sufficient changes in understanding to require updates to the AR5 ERF values (Myhre et al., 2013b). 20 

 21 

The overall uncertainty in the ERFs of halogenated species is estimated to 20% (including 13% from 22 

spectroscopic uncertainty (Hodnebrog et al., 2013). The ERF from CFCs is slowly decreasing, but this is 23 

more than compensated for by the increased forcing from the replacement species. The ERF from HFCs 24 

(which will be controlled under the Kigali agreement) has increased by 0.012 W m-2. Thus, the concentration 25 

changes mean that the total ERF from halogenated species has increased since AR5 from 0.363 W m-2 to 26 

0.374 W m-2 (Table 7.4). 27 
 28 
 29 
7.3.2.5 Ozone 30 

 31 

Determining the tropospheric ozone radiative forcing since 1750 or 1850 is hampered by our lack of 32 

measurement of ozone at that time. Estimates are therefore entirely based on models. There have been two 33 

studies of ozone ERFs, each based on a single model (MacIntosh et al., 2016; Xie et al., 2016). These did not 34 

report corresponding IRFs or SARFs so it is not possible to quantify the effects of tropospheric adjustments. 35 

MacIntosh et al. (2016) did present associated changes in cloud cover suggesting increases in stratospheric or 36 

upper tropospheric ozone would decrease high clouds and increase low clouds (giving a negative forcing 37 

from rapid adjustment), whereas an increase in lower tropospheric ozone decreases low cloud (a positive 38 

rapid adjustment).  Changes in circulation due to decreases in stratospheric ozone are found to affect SH 39 

clouds and the atmospheric levels of sea salt aerosol which would contribute additional rapid adjustments, 40 

possibly of comparable magnitude to the SARF from stratospheric ozone depletion (Grise et al., 2013, 2014). 41 

 42 

Without sufficient information yet to assess the ERFs, this assessment relies on offline radiative transfer 43 

calculations of SARF for both tropospheric and stratospheric ozone. Since AR5, the Coupled Chemistry 44 

Model Initiative (CCMI) project has used 20 coupled chemistry-climate models to simulate historical trends 45 

in tropospheric and stratospheric ozone (Morgenstern et al., 2017). The SARFs from these models were 46 

calculated with an offline radiative transfer model (Checa-Garcia et al., 2018). The values for the 1850 to 47 

2014 SARF were 0.33 W m-2 for changes in tropospheric ozone, and –0.03 W m-2 for changes in 48 

stratospheric ozone. These are in agreement with the AR5 values of 0.36 W m-2 (0.18 to 0.54 W m-2 5% to 49 

95% range) and –0.05 (–0.15 to 0.05) W m-2 for the period 1850 to 2011 (Myhre et al., 2013b). For 50 

tropospheric ozone the assessed central estimate follows Checa-Garcia et al. (2018) and maintains the 50% 51 

uncertainty (5%-95% range) from AR5 to give 0.33 (0.16 to 0.50) W m-2. For reference to 1750 an additional 52 

0.04 W m-2 should be added (Skeie et al., 2011), giving an overall assessed estimate of 0.37 (0.20 to 0.54) W 53 

m-2 over 1750-2017. 54 
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 1 

Stratospheric ozone has been observed since 1979 (Stolarski and Frith, 2006), covering the period over 2 

which much of the stratospheric ozone changes have occurred. However, these measurements are not able to 3 

constrain the forcing. A comparison of three stratospheric ozone reconstructions, none of which could be 4 

excluded by the observational record, showed a large variation (–0.33 W m-2 to –0.12 W m-2) (Hassler et al., 5 

2013). This assessment therefore increases the central estimate to be in the middle of the Hassler et al. (2013) 6 

range with a 5%-95% uncertainty of  ± 0.075 W m-2 to give –0.075 (–0.15 to 0.0) W m-2 for 1850 to 2014 7 

ERF. The same estimate is adopted for 1750–2017. This assessment finds no evidence to support an upper 8 

bound above zero. 9 

 10 

 11 

7.3.2.6 Stratospheric water vapour 12 

 13 

This assessment considers direct anthropogenic impacts on stratospheric water vapour by oxidation of 14 

methane. Stratospheric water vapour may also change as a rapid adjustment to species that warm or cool the 15 

UTLS region, in which case it should be included as part of the ERF for that species. Changes in global 16 

temperatures will also impact on stratospheric water vapour as part of the water vapour climate feedback. 17 

There have been no updates to the SARF estimate of 0.07 W m-2 of water vapour from methane oxidation 18 

by Myhre et al. (2007), and no estimate of associated tropospheric rapid adjustments. The AR5 SARF 19 

estimate (Myhre et al., 2013b) is retained as an estimate of the ERF. 20 

 21 

 22 

7.3.2.7 Synthesis 23 

 24 

CO2 has increased from 284 µmol mol-1 in 1850 to 405 µmol mol-1 in 2017 (Chapter 2, Section 2.2), an 25 

increase in ERF of 0.21W m-2 compared to the time of AR5 (2011). CH4 has increased from 808 nmol mol-1 26 

in 1850 to 1850 nmol mol-1 in 2017, an increase in ERF of 0.02 W m-2 compared to 2011, but an increase of 27 

0.06 W m-2 compared to using the AR5 SARF formula with the 2011 concentration (Myhre et al., 2013b). 28 

N2O has increased from 273 nmol mol-1 in 1850 to 330 nmol mol-1 in 2017, an increase in ERF of 0.02 W m-29 
2 compared to 2011 (Table 7.4).  30 

 31 

 32 

[START Table 7.4 HERE] 33 

 34 
Table 7.4: Present-day mole fractions in pmol mol–1 (ppt) except where specified) and ERF (in W m–2) for the 35 

WMGHGs. Data taken from Chapter 2, Section 2.2. The data for 2011 (the time of the AR5 estimates) 36 
are also shown. Some of the concentrations vary slightly from those reported in AR5 owing to averaging 37 
different data sources. Radiative efficiencies for the minor gases are given in the appendix. Uncertainties 38 
in the RF for all gases are dominated by the uncertainties in the radiative efficiencies [data and 39 
uncertainties will be revised for SOD].  40 

 41 

 Concentration ERF vs 1850 ERF vs 1750 

 2017 2011 2017 2011 2017 2011 

       CO2 (μmol mol-1) 405 390 2.00±0.34 1.79 2.12±0.36 1.91 

       CH4 (nmol mol-1) 1850 1803 0.49±0.08 0.47 0.54±0.09 0.52 

       N2O (nmol mol-1) 330 324 0.18±0.02 0.16 0.19±0.02 0.17 

     CFC-11 229 237 0.059 0.062 0.059 0.062 

     CFC-12 511 528 0.163 0.169 0.163 0.169 

     CFC-13 3.18 3.04 0.001 0.001 0.001 0.001 

    CFC-113 70.9 74.6 0.021 0.022 0.021 0.022 

    CFC-115 8.49 8.39 0.002 0.002 0.002 0.002 

    HCFC-22 241 213 0.051 0.045 0.051 0.045 
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  HCFC-141b 24.5 21.4 0.004 0.003 0.004 0.003 

  HCFC-142b 22.3 20.8 0.004 0.004 0.004 0.004 

     HFC-23 29.9 24.1 0.005 0.004 0.005 0.004 

     HFC-32 14.71 5.15 0.002 0.001 0.002 0.001 

    HFC-125 23.1 10.3 0.005 0.002 0.005 0.002 

   HFC-134a 95.6 62.7 0.015 0.010 0.015 0.010 

   HFC-143a 20.8 12.0 0.003 0.002 0.003 0.002 

   HFC-152a 6.80 6.55 0.001 0.001 0.001 0.001 

       SF6 9.25 7.30 0.005 0.004 0.005 0.004 

     SO2F2 2.32 1.71 0 0 0 0 

       NF3 1.62 0.83 0 0 0 0 

       CF4 83.6 79.0 0.004 0.004 0.004 0.004 

      C2F6 4.66 4.17 0.001 0.001 0.001 0.001 

   CH3CCl3 2.22 6.29 0 0 0 0 

      CCl4 79.6 86.1 0.014 0.015 0.014 0.015 

      CFCs1   0.254 0.263 0.254 0.263 

     HCFCs   0.059 0.052 0.059 0.052 

HFCs   0.033 0.021 0.033 0.021 

  Halogens   0.374±0.075 0.363 0.374±0.075 0.363 

     Total   3.02±0.24 2.77 3.21±0.24 2.97 

 1 

[END Table 7.4 HERE] 2 

 3 

 4 

7.3.3 Aerosols 5 

 6 

Anthropogenic activity, and particularly burning of biomass and fossil fuel, has led to a substantial increase 7 

in the atmospheric aerosol loading since pre-industrial times. This is particularly true for sulphate and 8 

carbonaceous aerosols, as discussed in Chapter 6 (Section 6.2.1). This has in turn led to changes in the 9 

scattering and absorption of incoming solar radiation, and also affected cloud micro- and macrophysics and 10 

thus cloud radiative properties. The aerosol changes have been strongly heterogeneous in both space and 11 

time and have impacted not just Earth’s radiation budget but also air quality, as discussed in detail 12 

thrroughout Chapter 6. Here, the assessment is focused on the global impacts of aerosols on Earth’s energy 13 

budget. Consistent with the terminology introduced above, the effective radiative forcing due to changes in 14 

direct aerosol-radiation interactions (ERFari) is equal to the sum of the instantaneous TOA radiation change 15 

(RFari) and the subsequent rapid adjustments. The rapid adjustments in ERFari are principally caused by 16 

cloud changes, and also by lapse rate and atmospheric water vapour changes, all mainly associated with 17 

absorbing aerosols (e.g., black carbon, organic carbon, soil dust). Likewise, the increase in cloud droplet 18 

number concentrations associated with an increase in aerosols with the ability to act as cloud condensation 19 

nuclei (CCN) can be divided into an instantaneous forcing component (RFaci) due to smaller but more 20 

numerous cloud droplets and subsequent adjustments to cloud water content or extent (spatial and/or 21 

temporal), which together give an effective radiative forcing due to aerosol-cloud interactions (ERFaci). In 22 

theory, a change in the abundance of ice nucleating particles (INPs), and thus ice crystal number 23 

concentration, may also have occurred since pre-industrial times, but whether anthropogenic activity in fact 24 

leads to appreciable changes in INP abundance remains controversial. However, if such changes have 25 

occurred, they could have had an impact on the properties of mixed-phase and cirrus (ice) clouds, and thus 26 

contributed to the ERFaci. In the following, an assessment of the RFari and ERFari (7.3.3.1) focusing on 27 

process-based evidence (7.3.3.1.1), satellite-based evidence (7.3.3.1.2) as well as model-based evidence 28 

                                                      
1 Includes CFC-114, Halon-1211, Halon-1301 and Halon-2401 
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(7.3.3.1.3) is presented. The same lines of evidence are presented for RFaci and ERFaci in 7.3.3.2. All of the 1 

above lines of evidence are thereafter combined with energy balance constraints on the total aerosol ERF 2 

(7.3.3.3) to arrive at an overall assessment of the total aerosol ERF (ERFari+aci) in 7.3.3.4. 3 

 4 

 5 

7.3.3.1 Aerosol-radiation interactions 6 

 7 

7.3.3.1.1 Process-based lines of evidence  8 

Aerosol radiative properties are described by the aerosol optical depth (AOD), the single-scattering albedo, 9 

and the asymmetry factor. These quantities are determined by the size distribution, the mixing state, the 10 

chemical composition (Haywood and Boucher, 2000; Forster et al., 2007), and the geometric shape of the 11 

aerosol particles (Dubovik et al., 2006; Kok et al., 2017; Mishchenko et al., 2003; Wang et al., 2013; Yang et 12 

al., 2007; Zhao et al., 2003). Since AR5, deeper understanding of the processes that govern the above 13 

properties, and thus RFari, has emerged. Combined with new insight related to rapid adjustments to aerosol 14 

forcing, this progress has informed new satellite-based and model-based estimates of RFari and ERFari and 15 

associated uncertainties (Sections 7.3.3.1.2, 7.3.3.1.3). 16 

 17 

Aersosol radiative properties can be computed accurately for spherical particles, but large uncertainties still 18 

exist for non-spherical particles.  Uncertainties related to particle shape have been estimated to contribute to 19 

an RFari uncertainty range from -18% to 26% and from -16.3% to 115.3% at the top and bottom of the 20 

atmosphere, respectively (Kahnert and Kylling, 2004), though other studies have reported lower estimates 21 

(e.g. Yi et al., 2011). Inconsistencies in the assumption of aerosol particle shape during the retrieval of 22 

aerosol radiative properties also introduce errors in satellite-based estimates of RFari. Wang et al. (2013) 23 

found that a non-spherical aerosol shape assumption leads to decreases in the absolute values of shortwave 24 

(by 13%) and longwave (by 6%) ERFari compared with a spherical shape assumption. Additionally, aerosol 25 

particle habit assumptions can also change the simulated ERFari (Wang et al., 2013).  26 

 27 

Overall, uncertainties in the estimation of aerosol radiative properties remain the largest source of 28 

uncertainties in determining RFari (Li et al., 2009), especially with regard to their vertical distribution (Kahn 29 

et al., 2017).  Since AR5, the absorbing component of organic aerosols (brown carbon), has been identified 30 

as a significant contributor to total aerosol absorption (Samset et al., 2018) which is present even at high 31 

altitudes where forcing efficiency is high (Zhang et al., 2017). Brown carbon has since AR5 been more 32 

widely included in climate models, thus influencing model-based estimates of RFari and ERFari. For 33 

example, Feng et al. (2013) found that brown carbon can contribute up to 20% of the total aerosol 34 

absorption, based on the IMPACT chemical transport model. Similar results were found by Jo et al. (2016) 35 

using the GEOS-Chem model.  36 

 37 

Apart from uncertainties in aerosol emissions, distributions, mixing state and optical properties, it has also 38 

been found that the ERFari simulated by climate models is sensitive to model parameterizations of radiative 39 

transfer, aerosol mixing treatment (Zhang et al., 2018b; Zhou et al., 2017b, 2018) and the subgrid-scale 40 

variability in clear-sky relative humidity (the key factor in calculating particle hygroscopic growth).  41 

 42 

Myhre and Samset (2015) showed how the use of 2-stream radiative transfer schemes, as included in many 43 

major climate models, leads to a 10% underestimate of RFari, relative to 8-stream calculations employed by 44 

some offline calculations.  Aerosol radiative properties also depend strongly on the degree to which different 45 

chemical species are mixed within the same particle (internal mixing) as opposed to existing in separate 46 

particles (external mixing). Regionally, the mixing state of aerosols may influence not only the magnitude 47 

but also the sign of the RFari. Significant errors in scattering, absorption, and hygroscopicity are produced if 48 

the aerosol mixing state is not properly represented (Ching et al., 2016). Matsui et al. (2018) found that 49 

resolving the diversity in black carbon mixing state could amplify the uncertainty range of black carbon 50 

RFari due to uncertainties in emission size distribution by five to seven times. Boucher et al. (2016) showed 51 

how aerosol uncertainties can be correlated, noting how accelerated ageing of black carbon in polluted 52 

environments (Gustafsson and Ramanathan, 2016; Peng et al., 2016) also leads to increased hygroscopicity, 53 

rapid wet removal, and, consequently, a modified aerosol distribution, with subsequent impacts on RFari. 54 
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 1 

Finally, as discussed in Section 7.1, there has been considerable progress in the understanding of rapid 2 

adjustments in response to a wide range of forcings since AR5. This is also true for aerosol forcing, and 3 

particularly the adjustments to forcings due to black carbon. Stjern et al. (2017) found that for black carbon, 4 

about 30% of the RFari is offset by rapid adjustments of clouds (specifically, an increase in low clouds and 5 

decrease in high clouds) and lapse rate, by analyzing the simulations of five Precipitation Driver Response 6 

Model Intercomparison Project (PDRMIP) models. Similar results have been reported from idealized 7 

experiments using modified black carbon wet removal and offline radiative transfer (Hodnebrog et al., 2014; 8 

Samset and Myhre, 2015). Smith et al. (2018b) considered more models participating in PDRMIP and 9 

suggested that half the RFari was offset by rapid adjustments for black carbon, whereas for sulfate aerosol, 10 

rapid adjustments of clouds amplified RFari somewhat. Zhao and Suzuki (submitted) found that about 70% 11 

of the RFari of black carbon is offset by rapid adjustments, whereas for sulphate, rapid adjustments amplified 12 

RF by about 35% based on climate simulations. 13 

 14 

7.3.3.1.2 Satellite-based lines of evidence  15 

The total radiative effect of aerosols on present-day radiative fluxes, REari, is easier to estimate from 16 

observations than RFari, because the latter requires knowledge of pre-industrial aerosol distributions. Since 17 

AR5, estimates of REari have progressed by including aerosols above land surface and clouds. Using passive 18 

and active aerosol remote sensing retrievals, Lacagnina et al. (2017) and Oikawa et al. (2018) both estimate a 19 

globally-averaged, all-sky REari of −2.1 W m−2, with a 1-sigma uncertainty range of 0.7 and 0.2 W m−2, 20 

respectively. That estimate is less negative than the ocean-only range of −4 to −6 W m−2 assessed in AR5 21 

(Boucher et al., 2013) because REari is less negative over more reflective surfaces. 22 

 23 

Estimating RFari requires an estimate of industrial-era changes in AOD and absorption AOD, which are 24 

often taken from global aerosol modelling. Since AR5, updates to methods of estimating RFari based on 25 

aerosol remote sensing or data-assimilated reanalyses of atmospheric composition have been published. Ma 26 

et al. (2014) applied the method of Quaas et al. (2008) to updated broadband radiative flux measurements 27 

from CERES, MODIS-retrieved AODs, and modelled anthropogenic fractions to find a clear-sky RFari of 28 

−0.6 W m−2. This would translate into an all-sky estimate of about −0.3 W m−2 based on the clear-to-all-sky 29 

scaling implied by Kinne (2019). Rémy et al. (2018) applied the methods of Bellouin et al. (2013b) to the 30 

reanalysis by the Copernicus Atmosphere Monitoring Service, which assimilates MODIS total AOD. Their 31 

estimate of RFari remains constant around −0.5 W m−2 over the period 2008-2014, and then strengthens from 32 

2015 to reach −0.7 W m−2 for the year 2017, a trend they attribute to increases in AOD over India and boreal 33 

forests. Kinne (2019) updated his monthly total AOD and absorbing AOD climatologies, obtained by 34 

blending multi-model averages with ground-based sun-photometer retrievals, to find a best estimate of RFari 35 

of −0.4 W m−2. Those three sets of RFari estimates are scattered around the midpoint of the RFari range of 36 

−0.35 ± 0.5 W m−2 assessed by AR5 (Boucher et al., 2013). None of these studies account for rapid 37 

adjustments.  38 

 39 

Satellite- and reanalysis-based estimates rely on the hypothesis that constraining total AOD narrows the 40 

uncertainty on RFari. There are two challenges against that hypothesis. First, total AOD varies strongly 41 

between different reanalyses (e.g. Table 4 of Randles et al. (2017)), indicating that efforts to improve global 42 

retrievals remain needed. Satellite aerosol retrieval capabilities have improved since AR5, including 43 

extending records back to the early 1980s (Hsu et al., 2017) and maturing retrievals of AOD and absorption 44 

AOD under cloudy-sky conditions (Jethva et al., 2013; Waquet et al., 2016). Second, Regayre et al. (2018) 45 

found, using a Perturbed Parameter Ensemble based on the Hadley Centre climate model, that uncertainties 46 

in the present-day aerosol distributions are not driven by the same parameters as uncertainties in the 47 

industrial-era RFari. Consequently, Johnson et al. (2018) found that AOD is a weak constraint on industrial-48 

era RFari, at least over Europe in July. They recommend applying multiple constraints, identifying sulphate 49 

concentrations and decadal trends in AOD as especially strong constraints for RFari, which could open the 50 

way to improved satellite- and reanalysis-based methodologies. 51 

 52 

In summary, updates to satellite-based RFari estimates made since the AR5 are either in close agreement  53 

(Kinne, 2019; Ma et al., 2014) or more negative (Rémy et al., 2018) than the AR5 best estimate of –0.35 W 54 
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m-2 (Boucher et al., 2013). The more negative estimate of Rémy et al. (2018) is due to neglecting a small 1 

positive contribution from absorbing anthropogenic aerosols above clouds and obtaining a larger 2 

anthropogenic fraction than Kinne (2019). However, Rémy et al. (2018) did not update their assumptions on 3 

black carbon anthropogenic fraction and contribution to anthropogenic absorption to reflect recent downward 4 

revisions (Section 7.3.3.1.3). If they had, their estimate would be even more negative. Kinne (2019) made 5 

those revisions so on balance, more weight is given to that study to re-assess the best estimate of satellite-6 

based RFari to be only slightly stronger than AR5 at –0.4 W m-2. The likelihood confidence interval given 7 

by AR5 was ±0.5 W m-2 (Boucher et al., 2013). Continuing uncertainties in the anthropogenic fraction and 8 

challenges to the basis of satellite-based approaches mean that this range is adopted again here, despite 9 

improved knowledge of anthropogenic absorption. The assessed best estimate and likely RFari range from 10 

satellite-based evidence is therefore –0.4 ±0.5 W m-2. 11 

 12 

7.3.3.1.3 Model-based lines evidence 13 

While satellite-based evidence can be used to calculate RFari, global climate models are needed to calculate 14 

the associated rapid adjustments and the resulting ERFari, using the methods described in Section 7.3.1. This 15 

calculation is complicated by the fact that the rapid adjustments of lapse rate, water vapour and clouds 16 

caused by absorbing aerosols through changes in the thermal structure of the atmosphere, previously termed 17 

the semidirect effect of aerosols, are not easily distinguished from cloud adjustments in ERFaci, especially as 18 

more models consider internally mixed aerosols that include both absorbing hydrophobic matter and 19 

hydrophilic aerosol species.  20 

 21 

Model-based estimates of RFari. In AR5, the RFari was assessed to –0.35 ± 0.5 W m-2 (Boucher et al., 22 

2013) based on all available lines of evidence. However, a range of developments since the AR5 affect our 23 

model-based estimate of RFari. Global emissions of most major species are found to be higher in the current 24 

inventories, and with increasing trends, except for the sulphate precursor SO2, which is similar to the AR5 25 

estimate and with a flat trend (Hoesly et al., 2018). Myhre et al. (2017) showed, in a multi-model 26 

experiment, that the net result of these changes is an RFari trend that is flat in recent years. Concurrently, the 27 

positive forcing from the absorbing component of organic aerosols has been found to be somewhat stronger 28 

than assessed in AR5. In AR5, the assessment of black carbon RFari was markedly strengthened by the 29 

assessments provided by Bond et al. (2013), where a key factor was a perceived underestimate of modelled 30 

atmospheric absorption when compared to Aeronet observations (Boucher et al., 2013). This assessment has 31 

since been modified by new knowledge of the impact of the resolution of emission inventories (Wang et al., 32 

2016), the representativeness of Aeronet sites (Wang et al., 2018), issues with comparing their absorption 33 

retrieval to models (Andrews et al., 2017a), and the ageing (Peng et al., 2016), lifetime (Lund et al., 2018b) 34 

and average optical parameters (Zanatta et al., 2016) of black carbon.  35 

 36 

Consistent with the above updates, Lund et al. (2018a) estimated the net RFari between 1750 and 2014 to be 37 

–0.17 W m-2, using CEDS emissions (Hoesly et al., 2018) as input to the chemical transport model 38 

OsloCTM3 (Figure 7.9). They attribute the weaker estimate relative to comparable AR5 numbers (Myhre et 39 

al., 2013a) to stronger absorption by organic aerosol, updated parameterization of BC absorption, and 40 

reduced sulfate cooling.  41 

 42 

Mewes et al. (2018) resolved the subgrid variability of relative humidity in the ECHAM6-HAM2 model 43 

consistent with the specific humidity probability distribution function assumed in the model cloud scheme; 44 

they found that the RFari simulated by the model changed from –0.15 to –0.19 W m-2.  45 

 46 

Model-based estimates of ERFari. In AR5, the best estimate of ERFari between 1750–2011, combining 47 

models and observational constraints, was –0.45±0.5 W m-2 (Boucher et al., 2013).  Zelinka et al. (2014) 48 

used the Approximate Partial Perturbation (APRP) technique to quantify the ERFari and ERFaci between 49 

1860 and 2000 in nine CMIP5 models; they estimated the ERFari (accounting for a small contribution also 50 

for longwave radiation) to be –0.25 ± 0.22 W m-2. However, it should be noted that in Zelinka et al. (2014) 51 

the semidirect effect of aerosols is not included in ERFari but in ERFaci. Zhang et al. (2016) found the 52 

overall ERFari of three major anthropogenic aerosols (sulfate, black carbon and organic carbon) between 53 

1850 and 2010 to be –0.3 W m-2 based on simulations with BCC_AGCM2.0_CUACE/Aero, in which a very 54 
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small contribution came from rapid adjustments, while Zhou et al. (2017) obtained a very similar value of 1 

the ERFari of –0.34 W m-2 by considering partial internal mixing (PIM) treatment of aerosols; In their study, 2 

the PIM treatment reduced the negative ERFari by 19%. Grandey et al. (2018) simulated the SW RFari 3 

between 1850 and 2000 to be –0.180.01 W m-2 based on the CAM5.3-MARC-ARG simulation. The 4 

average ERFari from GCM simulations since 2014 is about –0.26 W m-2 (Table 7.5), and thus much smaller 5 

in magnitude than the best estimate of ERFari in AR5.  6 

 7 

Overall, based on the model-based evidence alone, ERFari is assessed to be –0.2 ± 0.2 W m-2, slightly 8 

weaker (less negative) than in AR5. There is no model-based evidence that suggests a positive ERFari.   9 

 10 

 11 

[START FIGURE 7.9 HERE] 12 

 13 
Figure 7.9: Radiative forcing time series for the major anthropogenic aerosol species (1750-2014), based on CEDS 14 

emissions. From Lund et al. (2018a). [To be replaced by AeroCom Phsse III and/or AerChemMIP 15 
results.] 16 

 17 

[END FIGURE 7.9 HERE] 18 

 19 

 20 

[START Table 7.5 HERE] 21 

 22 

 23 
Table 7.5: ERFaci from GCM model simulations since 2014. 24 

 25 

Number Models ERFari 

(W m-2) 

ERFaci 

(W m-2) 

ERFari+aci 

(W m-2) 

reference 

1 Nine CMIP5 models: IPSL-

CM5A-LR, CanESM2, 

NorESM1-M, CSIRO-Mk3-6-0, 

HadGEM2-A, GFDL-CM3, 

MIROC5, MRI-CGCM3, 

CESM1-CAM5 

  

–0.25 ± 0.22 –0.92±0.34 –1.17±0.30 Zelinka et al. 

(2014) 

2 ECHAM6-HAM2 — –0.7 

(60°S–60°N 

ocean) 

— Neubauer et 

al. (2017) 

3 CAM5.3-Oslo — –1.07 — Karset et al. 

(2018) 

4 CAM5.3-MARC-ARG –0.17±0.01 –1.51±0.05 –1.69±0.05 Grandey et al. 

(2018) 

5 HadGEM3-GA4-UKCA –0.03  

(–0.19, 0.13) 

–1.42 

(–2.20, 

–0.61) 

–1.46 (–2.18, 

–0.71) 

Regayre et al. 

(2018) 

6 BCC_AGCM2.0_CUACE/Aero –0.23 –1.01 –1.23 Zhou et al. 

(2018) 

7 IPSL-CM6A-LR –0.37 –0.28 –0.65 RFMIP, 

CMIP6 

8 MRI-ESM2-0 –0.47 –0.72 –1.19 RFMIP, 

CMIP6 

9 CNRM-ESM2-1 –0.14 –0.61 –0.75 RFMIP, 

CMIP6 

 Post-AR5 Average –0.24 –0.91 –1.17 RFMIP, 

CMIP6 
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 1 

[END Table 7.5 HERE] 2 

 3 

7.3.3.2 Aerosol-cloud interactions 4 

 5 

7.3.3.2.1 Process-based evidence  6 

Aerosols effects on boundary layer clouds. Anthropogenic aerosol particles primarily affect boundary layer 7 

water clouds by serving as additional CCN and thus, to an extent that depends on cloud base updraft (Wb), 8 

increasing cloud drop concentration (Nd) (Twomey, 1959). Increasing Nd while holding liquid water path 9 

(LWP) constant reduces cloud drop effective radius (re) and increases the clouds’ albedo. This induces an 10 

instantaneous negative radiative forcing (RFari).  The clouds are thought to adjust to this primary effect of 11 

the CCN by slowing the coalescence rate, thus delaying or suppressing rain in precipitating clouds. Rain 12 

generally depletes LWP and shortens cloud life time and/or reduces cloud fractional coverage (Cf) (Albrecht, 13 

1989), thus any aerosol-induced rain delay or suppression would be expected to results in increased LWP 14 

and Cf. Such aerosol-induced changes are considered rapid adjustments associated with RFaci, and could 15 

potentially lead to an ERFaci considerably larger in magnitude than the RFaci alone. However, adding 16 

aerosols to non-precipitating clouds has been observed to have the opposite effect on LWP (i.e. a reduction). 17 

(Christensen and Stephens, 2011; Lebsock et al., 2008). These findings have challenged the understanding 18 

described above and have been explained by enhanced evaporation of the smaller droplets in the aerosol-19 

enriched environments, and resultant enhanced mixing with ambient air.  20 

 21 

Our understanding of the processes determining the LWP and Cf effects have improved substantially since 22 

AR5 (Fan et al., 2016). The cloud drop coalescence rate increases steeply with re
5, which increases 23 

monotonically with height above cloud base in developing convective clouds (Freud and Rosenfeld, 2012). 24 

The cloud geometrical thickness (CGT) required for rain initiation (Dr) is thought to occur when cloud top re 25 

reaches 13-14 m. For warm rain onset, the minimum CGT of a cloud increases with aerosol loading, 26 

ranging from tens of meters (ultra clean, small Nd) to several km (severe pollution, large Nd) (Chen et al., 27 

2008; Gerber and Gerber, 1996; Konwar et al., 2012; Pinsky and Khain, 2002; Prabha et al., 2011; Rosenfeld 28 

and Gutman, 1994; vanZanten et al., 2005). There is now evidence that the aerosol effects on LWP and Cf in 29 

marine boundary layer clouds may be greater than assessed in AR5. Aerosols, through their control on Nd 30 

and Dr, influence when marine stratocumulus clouds (MSC) would break up from full overcast to partly 31 

cloudy in response to the development of  substantial (greater than about 2 mm/day) rain rates (Muhlbauer et 32 

al., 2014; Stevens et al., 2005; Wood et al., 2011). This is not limited to MSC in the subtropics, but also 33 

occurs over mid-latitude oceans in polar air outbreaks (Abel et al., 2017). The transitions from broken to 34 

overcast MSC can be caused by anthropogenic aerosols such as emitted from ships stacks (Goren and 35 

Rosenfeld, 2012; Rosenfeld et al., 2006) or advected from the continents (Goren and Rosenfeld, 2015). 36 

However, most changes between overcast and broken MSC are observed without any obvious relationship to 37 

anthropogenic aerosols, thus not incurring any ERFaci. The difference in cloud radiative effects (CREs)at the 38 

TOA between broken and overcast MSC, regardless of the causes to the variability in aerosol, were observed 39 

to average 109 ±18 W m-2, composed of Cf (42 ± 8%), LWP (32 ± 8%) and albedo (26 ± 6%) effects (Goren 40 

and Rosenfeld, 2014). This decomposition was generally supported by other studies (George and Wood, 41 

2010; Kaufman et al., 2005).  The transitions from overcast to broken MSC are thought to occur when Nd 42 

decreases below a maximum Nd of about 50 cm-3, associated with large decreases in CCN as observed by in 43 

situ aircraft measurements (Cui et al., 2014; Terai et al., 2014; Wood et al., 2011), while breakup has been 44 

observed to occur for even larger Nd (about 80cm-3) in deeper clouds with CGT approaching 800 m (Lloyd et 45 

al., 2018).  Such low values of Nd are well within the aerosol-limited regime, where Wb has little effect on Nd 46 

(Chen et al., 2016a), meaning that CCN dominate the variability in Nd. However, processes other than 47 

aerosol effects control CGT, which must exceed Dr for precipitation to form and clouds to break up.  48 

 49 

Similar to the albedo effect being defined only for changes in Nd for a fixed LWP (Twomey, 1977), it has 50 

been argued that the LWP and Cf adjustments should be defined only for changes in Nd for a fixed CGT 51 

(Rosenfeld et al., 2019). Because CGT encapsulates much of the meteorological effects, application of this 52 

principle has made the problem of isolating aerosol effects from meteorological effects more tractable. 53 

Satellite analysis of LWP and Cf adjustments over the ocean between the Equator and 40°S during Austral 54 
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summers (Rosenfeld et al., 2019) showed that doubling Nd may increase LWP by more than 50% for Nd<150 1 

cm-3. This is applicable equally to MSC and cumulus (CU) clouds, although the absolute magnitude of the 2 

effect appears to be twice as strong for MSC compared to CU. Previous observational (Chen et al., 2014; 3 

Malavelle et al., 2017; Michibata et al., 2016; Toll et al., 2017) and modelling (Lebo and Feingold, 2014; 4 

Sato et al., 2018; Seifert et al., 2015) studies that analysed the LWP effect irrespective of CGT obtained 5 

negligible to slightly negative LWP susceptibility (=∂ln(LWP)/ ∂ln(Nd) ) and thus inferred much less 6 

cooling. This may have been caused by the fact that deeper clouds have larger LWPs, rain more, and thus 7 

scavenge aerosols more efficiently. The expected outcome is that clouds with higher Nd appear to have small 8 

LWP, which constitutes apparent negative susceptibility, when not measured for a fixed CGT. The same 9 

considerations apply to the Cf effect. Sorting by CGT, (Rosenfeld et al., 2019) find that the CRE at the TOA 10 

doubles for a doubling Nd, up to Nd of about 150 cm-3 where the LWP and Cf effects tend to saturate 11 

(Rosenfeld et al., 2019). In contrast to these findings are satellite observations of clouds affected by volcanic 12 

plumes and ship tracks, which showed that the reduction of re on the background of clouds with already 13 

suppressed precipitation can decrease LWP and CRE, possibly due to faster evaporation of the smaller 14 

droplets (Chen et al., 2014; Toll et al., 2017) (Section 7.3.3.2.2). 15 

 16 

Given enough time (several tens of hours), aerosol-induced cloud changes tend to modify their environment 17 

in a way that buffers the aerosol effects on the clouds. For example, in response to aerosol-induced 18 

suppression of rain, the clouds would deepen just enough to restore that amount of rain (Stevens and 19 

Feingold, 2009). More generally, LESs (Lee et al., 2012; Seifert et al., 2015) run until reaching subsidence 20 

radiative-convective equilibrium (SRCE) after a few days, showed that an additional slow cloud adjustment 21 

occurs because the environment is modified in a way that buffers the faster adjustment of Cf and LWP 22 

effects. Seifert et al., (2015) showed that after reaching SRCE the aerosol effect on mean properties such as 23 

Cf, total rain amount, and radiative forcing is negligible. Until SRCE is achieved, however, the aerosol 24 

concentration significantly affects the cloud field properties. Satellite observations and reanalysis data show 25 

that the conditions of SRCE are not realistic in nature due to the generally short cloud lifetimes (Dagan et al., 26 

2018). The large-scale forcing and SST change frequently enough to prevent the cloud field from ever 27 

reaching SRCE and hence cloud fields in nature are in a transient stage for which the aerosol effects on the 28 

LWP and Cf are still very important (Seifert et al., 2015). 29 

 30 

Buffering arguments have previously been used to exclude the LWP and Cf adjustments from newly 31 

developed parameterizations of aerosol effect (Fiedler et al., 2017, 2018; Pincus et al., 2016; Stevens et al., 32 

2017). In fact, the estimated LWP susceptibility was revised to be progressively lower during the last two 33 

decades from =0.15 to =-0.2 (Sato and Suzuki, 2019), along with respectively lower ERFaci. On this 34 

background the observed =0.58 of marine boundary layer clouds found in Rosenfeld et al. (2019) represents 35 

a sharp break with past estimates, although its general validity has yet to be confirmed and reproduced by 36 

other studies. If susceptibility is in fact as large as Rosenfeld et al. (2019) suggests, that would imply a 37 

considerable increase of ERFaci compared to many previous estimates. However, some of this increase may 38 

be offset by positive contribution to ERFaci through deep and ice clouds, for which some evidence has 39 

emerged since the AR5 (Kablick et al., 2018; Yan et al., 2014). However, cloud-resolving simulations of the 40 

aerosol effects on deep convective clouds have shown mostly neutral radiative effects (Blossey et al., 2018). 41 

Convective invigoration effects of ultrafine aerosols that are too small to serve as CCN (diameter smaller 42 

than about 60 nm) have been proposed to be important in this context (Fan et al., 2018), but are often 43 

neglected. 44 

 45 

In contrast to marine boundary layer clouds, boundary layer water clouds over land rarely produce rain 46 

(Jiang et al., 2018; Mülmenstädt et al., 2015) due to the much higher CCN and Nd there as compared to over 47 

ocean (Li et al., 2018a). Therefore, the adjustment of LWP and Cf in response to aerosol effects on drop 48 

coalescence is relatively less important over land. 49 

 50 

Aerosol effects on mixed-phase and ice clouds. Aerosols can serve as INPs that initiate the ice phase in 51 

supercooled water clouds. Glaciation of supercooled layer clouds, such as prevalent in the arctic, leads 52 

initially to conversion of the cloud droplets to fewer and larger ice particles, which reduce the cloud's albedo 53 

and hence have a positive shortwave radiative effect. The ice particles often precipitate and lead to cloud 54 
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dissipation, amplifying the positive shortwave radiative effects. However, during the polar night this leads to 1 

a strong surface cooling, because downward longwave radiation is reduced. Addition of anthropogenic INP 2 

were observed to glaciate and eventually dissipate supercooled layer clouds (Heymsfield et al., 2010). 3 

However, the ability of anthropogenic aerosols to act as INPs have recently been called into question 4 

(Vergara-Temprado et al., 2018). 5 

 6 

There has been some advancement since AR5 with respect to the effects of aerosols on mixed phase clouds. 7 

The importance of mixed phase clouds is manifested by the observations that very little precipitation over 8 

land originates from clouds without mixed phase processes (Mülmenstädt et al., 2015). The relative scarcity 9 

of INP in the Southern Oceans is the likely cause for the relatively larger abundance of persistent 10 

supercooled cloud decks compared to the NH and the resultant large solar reflectance from them (Bodas-11 

Salcedo et al., 2016). Adding anthropogenic aerosols from ship stacks to supercooled cloud decks of marine 12 

stratocumulus was observed to enhance mixed phase precipitation, which led to a decrease in the LWP and 13 

albedo compared to the effect of ship tracks in warmer clouds (Christensen et al., 2014). Secondary ice 14 

formation (i.e., not mediated by INP) becomes stronger with larger drops. In marine tropical clouds the 15 

secondary ice dominates, thus rendering the INP of little relevance (Yang et al., 2018a). This transition from 16 

dominance of INP to dominance of secondary ice nucleation was observed to occur when cloud drop 17 

effective radius exceed about 12 m at -5°C (Rosenfeld et al., 2011).  18 

 19 

Implications for ERFaci. A strong negative ERFaci mediated by marine boundary layer clouds was in AR5 20 

mostly attributed to the albedo effect (Boucher et al., 2013). Accumulating evidence shows that there is very 21 

high confidence in the existence of such an effect. Most of the recent studies have continued to show small 22 

negative changes of LWP associated with more aerosols, supporting the view that the albedo effect is 23 

dominant, despite some observations clearly showing aerosols enhancing cloud cover and LWP. This 24 

apparent discrepancy can potentially be resolved by the notion that deeper clouds have a larger LWP and 25 

rain more heavily, thus scavenging the aerosols more efficiently and resulting in clouds that have both larger 26 

LWP and less aerosols. This increases the likelihood that LWP and cloud cover effects work in the same 27 

direction as the albedo effect, thus increasing the magnitude of the negative ERFaci as assessed in AR5 to a 28 

yet poorly known extent. Observational quantification of aerosol effects on mixed phase, deep and ice clouds 29 

is challenging and poorly bounded. There is medium confidence that the net ERFaci of mixed-phase, deep 30 

and ice clouds is positive, thus potentially decreasing the absolute magnitude of the overall ERFaci. 31 

 32 

7.3.3.2.2 Satellite-based evidence 33 

Since AR5, the analysis of satellite observations to investigate aerosol-cloud interactions has progressed 34 

along several axes: (i) The concept of forcing and adjustments introduced rigorously in AR5 has helped 35 

better categorize studies; (ii) advances have been made to infer causality in aerosol-cloud relationships, and 36 

(iii) problems and uncertainties in retrievals are better characterized than before. 37 

 38 

There are four key cloud parameters that determine the bulk influence of clouds on Earth’s radiation budget. 39 

These are cloud particle number concentration (droplets or ice crystals), cloud horizontal extent (cloud 40 

fraction), cloud water path (vertical integral of cloud liquid- or ice specific mass, mainly determined by the 41 

CGT), and – relevant for terrestrial radiation only – cloud top temperature. As described above, the 42 

perturbation of cloud particle number concentrations leads to the radiative forcing due to aerosol-cloud 43 

interactions, RFaci. Adjustment processes lead to alterations also of cloud fraction, water path, and top 44 

temperature, which, together with RFaci, constitute ERFaci. Since AR5, the large body of literature that 45 

assessed statistical relationships between aerosol- and cloud retrievals has grown.  46 

 47 

Relationship between liquid-cloud droplet concentration and bulk aerosol quantities. Studies exploiting 48 

the statistical relationship between cloud droplet concentration and aerosol quantities to infer clues about 49 

RFaci follow the early work by Nakajima et al. (2001) and Bréon et al. (2002). In these, a positive 50 

relationship between column cloud droplet concentration and aerosol index (AI ; AOD multiplied by 51 

Angström exponent) and a negative relationship between cloud droplet effective radius, re, and AI, 52 

respectively were documented. Several other studies have related cloud quantities to AOD, but it is now well 53 

documented that such an approach leads to low estimates of RFaci since AOD is a poor proxy for cloud-base 54 
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CCN (Penner et al., 2011; Stier, 2016). Gryspeerdt et al. (2017) demonstrated that the statistical relationship 1 

between droplet concentration, Nd, and AOD leads to inferred RFaci that is underestimated by at least 30 %, 2 

while the use of AI leads to estimates of RFaci to within ±20 %, if the anthropogenic perturbation of AI is 3 

known.  4 

 5 

Further, studies assessed in AR5 mostly investigated the linear regression between cloud droplet 6 

concentration and aerosol (Boucher et al., 2013). Since in most cases, the relationships are not linear over the 7 

entire spatiotemporal distribution, this leads to a further bias (Gryspeerdt et al., 2016). Several studies did not 8 

relate cloud droplet concentration, but cloud droplet effective radius to the aerosol (Brenguier et al., 2000). 9 

This is problematic since then, in order to infer RFaci, one has to stratify by cloud LWP (McComiskey and 10 

Feingold, 2012) or else obtain a biased result. Where LWP positively co-varies with aerosol retrievals 11 

(which is often the case, Section 7.3.3.2.1) RFaci inferred from such relationships is biased towards too 12 

small values. Also, it is increasingly evident that different cloud regimes show different sensitivities (Stevens 13 

and Feingold, 2009). Averaging statistics over regimes thus again biases inferred RFaci (Gryspeerdt et al., 14 

2014b). AR5 concluded that RFaci estimates tied to satellite studies showed comparatively weak RFaci, but 15 

on the basis of these newer studies, this statement has to be revised (Boucher et al., 2013). 16 

 17 

Statistical relationships for liquid-cloud adjustments. Multiple studies related also cloud fraction and LWP 18 

to aerosol (e.g., Nakajima et al., 2001). Most studies document a strongly positive relationship between 19 

cloud fraction / LWP and AOD/AI (e.g. Kaufman and Koren, 2006; Quaas et al., 2009). Since AR5, 20 

however, it has been documented that factors independent of causal aerosol-cloud relationships heavily 21 

influence such statistical relationships. These are specifically the swelling of aerosol in the high relative 22 

humidity in the vicinity of clouds (Grandey et al., 2013) and the contamination of aerosol retrievals next to 23 

clouds by cloud remnants and cloud-side scattering (Christensen et al., 2017; Várnai and Marshak, 2015). 24 

Stratifying relationships by possible influencing factors such as relative humidity (Koren et al., 2010) does 25 

not yield satisfying results since observations of the relevant quantities are not available at the resolution and 26 

quality required. Another solution to this problem was to assess the relationship of cloud fraction / LWP with 27 

droplet concentration (Gryspeerdt et al., 2016; Michibata et al., 2016; Sato et al., 2018). The relationship 28 

between satellite-retrieved cloud fraction and Nd was found to be positive (Gryspeerdt et al., 2016), implying 29 

an overall adjustment that leads to a more negative ERFaci. However, Nd is biased low for broken cloudiness 30 

so that this result is called into question (Grosvenor et al., 2018).  Zhu et al. (2018) propose to circumvent 31 

this problem by considering Nd of only the brightest 10% of the clouds, on the basis of which Rosenfeld et 32 

al. (2019) still obtain a positive cloud fraction – Nd relationship (Zhu et al., 2018) and thus larger indicated 33 

LWP and Cf susceptibilities to Nd. 34 

 35 

The LWP – Nd relationship is debated. Most studies find negative statistical relationships (Gryspeerdt et al., 36 

2018a; Michibata et al., 2016; Sato et al., 2018). As discussed in Section 7.3.3.2.1, Rosenfeld et al. (2019) 37 

suggest that this is attributable to a coalescence sink for Nd for deeper clouds with large LWP, which produce 38 

more rain than thinner clouds. Further Rosenfeld et al. (2019) stratify the relationship by the thickness of the 39 

brightest, i.e. most adiabatic, clouds in each large-scale scene with the idea that these are unaffected by the 40 

aerosol.  Doing so, they obtain a large positive relationship between LWP and Nd. This methodology 41 

attempts to isolate the effects of aerosols on large-scale LWP from other causes that affect LWP of the 42 

adiabatic cores in each scene. Attempts to infer causality by conditioning on specific aerosol sources that did 43 

not classify clouds by adiabatic core thickness (see below) suggest a small overall LWP – Nd relationship.  44 

 45 

Several studies have documented a negative relationship between cloud -top temperature and AOD/AI (e.g. 46 

Koren et al., 2005) However, it has been demonstrated that such relationships are also affected by spurious 47 

co-variation (Gryspeerdt et al., 2014a). It remains thus unclear, from satellite data, whether a systematic 48 

causal effect exists. 49 

 50 

Statistical relationships for ice clouds. For ice clouds, different responses of the ice crystal concentration, 51 

Ni, to aerosol perturbations may occur, depending on the freezing mechanism and aerosol type (Kärcher, 52 

2017). Only few satellite studies investigate ice cloud responses to aerosol perturbations so far. Gryspeerdt et 53 

al. (2018b) find a positive relationship between aerosol and Ni for cold cirrus under strong dynamical 54 
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forcing. Zhao et al. (2018) conclude that the sign of the ice crystal size – aerosol relationship depends on 1 

humidity. While these studies support modelling results that ice clouds do respond to anthropogenic aerosols, 2 

no quantitative conclusions about RFaci for ice clouds can be drawn yet, precluding also conclusions about 3 

adjustments. 4 

 5 

Attempts to infer causality. Since AR5, there were many efforts to better characterize the causality in 6 

aerosol-cloud relationships. In order to explore a clear causal effect of aerosols on clouds, which is 7 

impossible from statistical relationships alone, two main aerosol sources external to the physical climate 8 

system have been exploited.  9 

 10 

(i) The fact that ships emit aerosols and aerosol precursor gases into an otherwise pristine marine air, 11 

sometimes visible as ship tracks (Conover, 1966), has been used as a means to assess cloud adjustments to 12 

aerosol emissions. Goren and Rosenfeld (2014) suggested that both, cloud LWP and cloud cover increase in 13 

response to the ship emissions, contributing three quarters to the total ERFaci for a case of mid-latitude 14 

stratocumulus. Christensen and Stephens (2011) found that such a strong adjustment occurs for open-cell 15 

regimes, while the adjustments to RFaci are comparatively small in closed-cell regimes. Also exploiting 16 

satellite observations of ship emissions, Christensen et al. (2014) demonstrated that ice- and mixed-phase 17 

cloud adjustments are such that the overall ERFaci for these clouds is small. Toll et al. (2017) found an 18 

overall small response of LWP and cloud fraction, with some discernible change only for raining clouds, 19 

especially in moist regimes. 20 

 21 

(ii) Volcanic emissions were identified as another source of information (Gassó, 2008). Yuan et al. (2011) 22 

document from satellite observations substantially larger cloud fraction, higher cloud tops, reduced 23 

precipitation likelihood, and increased albedo in the volcanic plume of the Kilauea volcano in cumulus cloud 24 

fields. Ebmeier et al. (2014) confirmed the increased LWP and albedo for other volcanoes. In turn, for the 25 

very large eruption of the Holuhraun (Iceland) volcano, Malavelle et al. (2017) did find a strong decrease in 26 

cloud droplet effective radius in satellite observations, but no large-scale change in LWP. However, when 27 

accounting for meteorological conditions, McCoy et al. (2018) concluded that at least for cyclonic 28 

conditions, the extra Holuhraun aerosol did enhance LWP. Toll et al. (2017) examined a large sample of 29 

volcanoes and also found a distinct Twomey effect, but found small LWP changes on average. Gryspeerdt et 30 

al. (2018a) demonstrate that the negative LWP – Nd relationship becomes very small when conditioned on a 31 

volcanic eruption. They conclude that the causal effect of the aerosol on LWP is small in most regions. 32 

 33 

Other approaches to identify causality (e.g. from the hemispheric contrast, or from weekly cycles) also allow 34 

to identify signals in Nd, but did not identify clear results for adjustments (Feng and Ramanathan, 2010; 35 

Quaas et al., 2009a).  36 

 37 

In summary of these findings, there is high confidence that anthropogenic aerosols lead to an increase in 38 

cloud droplet concentrations. In terms of the adjustments, most studies suggest that on average, no large, 39 

systematic changes in LWP occur, although there are also studies that suggest a strong negative forcing from 40 

adjustments. There is medium confidence that liquid-cloud fraction increases in response to aerosol 41 

increases. There is no observational evidence at present for a significant response of ice clouds to aerosol 42 

perturbations. 43 

 44 

 45 

[START Table 7.6 HERE] 46 

 47 
Table 7.6: Studies quantifying aspects of the global ERFaci that are mainly based on satellite retrievals and were 48 

published since AR5. All forcings/adjustments as global annual mean values in W m-2. Most studies split 49 
the ERFaci into RFaci and adjustments in LWP and cloud fraction separately. All published studies only 50 
considered liquid-water clouds. Some studies assessed the RFaci and the LWP adjustment together and 51 
called this “intrinsic forcing” and the cloud fraction adjustment “extrinsic forcing”. Published uncertainty 52 
ranges are converted to 5-95 % confidence intervals. 53 
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RFaci  LWP adjustment cloud fraction 

adjustment 

Reference 

“intrinsic forcing”  Nomenclature from Chen et al. (2014) and Christensen 

et al. (2016) 

–0.6±0.6 n/a n/a Bellouin et al. (2013a) 

–0.5±0.5 –0.5±0.5 Chen et al. (2014) 

–0.4±0.3 n/a Christensen et al. (2016) 

–0.3±0.4 –0.4±0.5 Christensen et al. (2017) 

–0.4 (–0.2 to –1.0) n/a n/a Gryspeerdt et al. (2017) 

–1.0±0.4 n/a n/a McCoy et al. (2017a) 

n/a n/a –0.5 (–0.1 to –0.6) Gryspeerdt et al. (2016) 

n/a +0.3 to 0 n/a Gryspeerdt et al. (2018b)  

(0 to -60% of RFaci) 

–0.8±0.7 n/a n/a Rémy et al. (2018) 

 1 

[END Table 7.6 HERE] 2 

 3 

 4 

Since AR5, there were several studies that assessed the global effective radiative forcing by aerosol-cloud 5 

interactions from satellite observations using different methods (Table 7.6). All studies relied on statistical 6 

relationships between aerosol- and cloud quantities to infer sensitivities. Four studies infer RFaci by 7 

estimating the anthropogenic perturbation of Nd. For this, Bellouin et al. (2013a) and Rémy et al. (2018) 8 

make use of regional-seasonal regressions between satellite-derived Nd and AOD following Quaas et al. 9 

(2008). Gryspeerdt et al. (2017) demonstrate that AI is a better proxy to infer RFaci corroborating earlier 10 

results by Penner et al. (2011) and Stier (2016) and use this in the regression. McCoy et al. (2017) instead 11 

use the sulphate specific mass derived in the MERRA aerosol re-analysis that assimilated MODIS AOD 12 

(Rienecker et al., 2011). The other key element is the estimate of the anthropogenic perturbation of the 13 

aerosol. Gryspeerdt et al. (2017) and Rémy et al. (2018) use the same approach as Bellouin et al. (2013a) that 14 

define anthropogenic fraction using a method adapted from Bellouin et al. (2005). In turn, McCoy et al. 15 

(2017) use an anthropogenic fraction from the AEROCOM multi-model ensemble (Schulz et al., 2006). 16 

Chen et al. (2014), Christensen et al. (2016) and Christensen et al. (2017) derive the combination of RFaci 17 

and the LWP adjustment to RFaci (“intrinsic forcing” in their terminology).  They relate statistically AI and 18 

cloud albedo and use the anthropogenic aerosol fraction from Bellouin et al. (2013a). The variant by 19 

Christensen et al. (2017) is an update compared to the Chen et al. (2014) and Christensen et al. (2016) 20 

studies in that it accounts better for ancillary influences on the aerosol retrievals such as aerosol swelling and 21 

3D radiative effects. Chen et al. (2014) and Christensen et al. (2017) use the relationship between cloud 22 

fraction and AI to further infer the cloud fraction adjustment. Gryspeerdt et al. (2017) do this in a similar 23 

way, but aim to account for non-causal aerosol – cloud fraction correlations by using Nd as a mediating 24 

factor. Finally, Gryspeerdt et al. (2018a) derive an estimate of the LWP adjustment using a method similar to 25 

Gryspeerdt et al. (2016). They estimate that the LWP adjustment offsets 0 to 60% of the (negative) RFaci.  26 

 27 

In summary of the studies, RFaci has a plausible range of –1.0 to –0.3 W m-2. The above estimates suggest 28 

that LWP adjustments decrease the ERFaci compared to the RFaci by 0 – 60%. In turn, the cloud fraction 29 

adjustment, according to the above studies, amplifies the ERFaci compared to the RFaci by about 130%. 30 

This brings the estimated range of ERFaci, considering only liquid-water clouds, to a plausible range of –0.5 31 

to –2.0 W m-2. 32 

 33 

On average across the published studies (Table 7.6), RFaci is –0.7 ± 0.5 W m-2. Only one study assessed 34 

global LWP adjustments. It concluded that they decrease the ERFaci compared to the RFaci by 0 – 60%. The 35 

average for the sum or RFaci and LWP adjustments, as well as published assessments of the “intrinsic 36 

forcing”) is –0.4 ± 0.4 W m–2. Three studies assessed the global cloud fraction adjustment, at –0.5 ± 0.5 37 

W m–2. From this assessment, the range of ERFaci considering only liquid-water clouds, is –0.9 ± 0.6 W m–2 38 

(5–95% uncertainty range). 39 
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 1 

7.3.3.2.3 Model-based evidence  2 

In addition to the general methods for calculating ERF described in 7.3.1, ERFaci can be estimated 3 

statistically from the susceptibility of cloud albedo to changes in aerosol properties (Christensen et al., 2017; 4 

Ghan et al., 2016; Neubauer et al., 2017). Ghan et al. (2016) found that estimates of relationships from recent 5 

variability were not applicable to the preindustrial to present-day change, which might affect the estimation 6 

of ERFaci. Neubauer et al. (2017) suggested that it was important to remove aerosol water uptake when 7 

calculating the susceptibilities of cloud properties to changes of aerosol properties.  8 

 9 

In AR5, ERFaci was diagnosed as the residual of the total aerosol ERF and ERFari, as the total aerosol ERF 10 

was easier to calculate based on available model simulations (Boucher et al., 2013). The best estimates of 11 

total aerosol ERF and ERFari in AR5 were –0.9 and –0.45 W m-2, respectively, yielding an ERFaci estimate 12 

of –0.45 W m-2. This value is much less negative than the bottom-up estimate of ERFaci from GCMs 13 

presented in AR5. Since AR5, efforts have been made continually to reconcile this difference. Zelinka et al. 14 

(2014) estimated ERFaci to be –0.92±0.34 W m-2, based on nine CMIP5 models (Table 7.5). It should be 15 

noted that in Zelinka et al. (2014) the semi-direct effect of aerosols is included in ERFaci. This is also true 16 

for the three RFMIP models from CMIP6 where data is available (IPSL-CM6A-LR, MRI-ESM2-0, CNRM-17 

ESM2-1, see Table 7.5). Combining these three models with the nine CMIP5 models results in a slightly less 18 

negative ERFaci estimate of –0.82 W m-2 (Figure 7.10a), with much more spread in model-derived SW 19 

aerosol ERF than net aerosol ERF (Figure 7.10b). Regayre et al. (2018) used a single model, the HadGEM3-20 

GA4-UKCA model, and 27 perturbed model parameters to assess the uncertainty range of ERFaci; they 21 

estimated ERFaci to be –1.42 W m-2, with a 95% uncertainty range of –2.20 to –0.61 W m-2. Other estimates 22 

of ERFaci based on single model simulations are also given in Table 7.5. The average ERFaci from GCM 23 

model studies since 2014 is about –0.91 W m-2. Together with the ERFari, the overall aerosol ERF 24 

(ERFari+aci) estimated from GCM studies since 2014 is about –1.17 W m-2.  25 

 26 

Aerosol-cloud interaction remains a very complex problem for large-scale model studies, because many 27 

subgrid-scale processes, from the emissions of aerosols and/or their precursors to precipitation formation, are 28 

involved. Large-scale models that simulate ERFaci typically include aerosol-cloud interactions in liquid 29 

stratiform clouds only, while very few include aerosol interactions with mixed-phase clouds and/or ice 30 

clouds. Several studies have pointed out shortcomings in the representation of aerosol-cloud interactions in 31 

GCMs (e.g. Jing and Suzuki, 2018; Seinfeld et al., 2016). Adding to this challenge, process-based constraints 32 

and temperature-trend constraints on ERFaci are not necessarily consistent with each other. While the latter 33 

place an upper bound on the magnitude of the ERFaci of –1.8 W m-2, adjusting the relationships between Nd 34 

and rain formation to observations for MSC in the GFDL CM3 model did not produce any warming since 35 

1860 (Suzuki et al., 2013). Doing the same with the MIROC cloud resolving GCM produced an ERFaci of 36 

–3 W m-2, six times larger than the assessed ERFaci in AR5 (Jing and Suzuki, 2018). It is thus possible that 37 

accepting a very strong negative ERFaci from marine boundary layer clouds implies missing positive ERFaci 38 

mediated by other cloud regimes, for example deep and/or ice clouds (low confidence).  39 

 40 

In AR5 a positive longwave ERFaci of +0.2 W m-2 was proposed, implying a partial compensation for such 41 

strong negative shortwave ERFaci estimates (Boucher et al., 2013). However, it was found that the net 42 

longwave forcing from cloud and thermodynamic adjustments is small for models without explicit aerosol-43 

ice cloud interaction parameterizations (Heyn et al., 2017); a few models with explicit aerosol-ice interaction 44 

commonly yield larger terrestrial spectrum forcing, but also larger solar forcing (Heyn et al., 2017; Salzmann 45 

et al., 2010). These studies imply that it was unjustified to assume a +0.2 W m-2 offset of ERFaci in the 46 

longwave spectrum in AR5. 47 

 48 

Based on above model-based evidence alone, ERFaci is assessed to –0.9 ± 0.5 W m-2 (5% to 95% uncertainty 49 

range) 50 

 51 

 52 

7.3.3.3 Energy balance constraints on the total aerosol ERF 53 

 54 
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Energy balance models of reduced complexity have in recent years increasingly been combined with Monte 1 

Carlo approaches to provide valuable “top-down” observational constraints on the total ERF, and in some 2 

cases for individual forcing components like the highly uncertain total aerosol ERF. When the first top-down 3 

estimates (also called inverse estimates) emerged (Knutti et al., 2002), it became clear that some of the early 4 

(“bottom-up”) GCM estimates of total aerosol ERF were inconsistent with the plausible ranges produced by 5 

the new and observationally constrained top-down methods. However, as more inverse estimates have been 6 

published, it has increasingly become clear that they too are model-dependent and span a wide range of ERF 7 

estimates, with confidence intervals that in some cases do not overlap (Forest, 2018). A recent review of 19 8 

such estimates reported a mean of –0.77 W m-2 for the total aerosol ERF, and a 95% confidence interval of 9 

–1.15 to –0.31 W m-2 (Forest, 2018). Adding to that review, a more recent study using the same approach 10 

reported an estimate of total aerosol ERF of –0.89 W m-2 and a 90% confidence interval of –1.82 to –0.01 11 

W m-2 (Bieltvedt Skeie et al., 2018). However, the estimate was very sensitive to how the increase in OHC 12 

was incorporated in the analysis. When incorporating the heat content change of the whole ocean, rather than 13 

separating the upper (0 m to 700 m) and deep (below 700 m) OHC change, the study produced a best total 14 

aerosol ERF of –1.34 W m-2 (90% confidence interval –2.20 to –0.46). 15 

 16 

Beyond the inverse estimates described above, several other approaches have since AR5 been used to 17 

constrain the total aerosol ERF, and among these the historical record of surface air temperature since pre-18 

industrial times has been the most frequently applied observational constraint. For example, Stevens (2015) 19 

used the global mean temperature record from the early 20th century to argue for a lower bound of –1.0 W m-20 
2 for the total aerosol ERF. Also, in this study a simplified model was used, but here to represent the 21 

historical total aerosol ERF evolution for comparison with the observed temperature record. Given the lack 22 

of temporally extensive cooling trends in the temperature record of the 20th century and the fact that the 23 

historical evolution of greenhouse gas forcing is relatively well constrained (Chapter 2, Section 2.2), the 24 

study concluded that a more negative total aerosol ERF than –1.0 W m-2 was incompatible with the historical 25 

temperature record. This was countered by Kretzschmar et al. (2017), who argued that the model employed 26 

in Stevens (2015) was too simplistic, and could therefore not account for the impact of geographical 27 

redistributions of aerosol emissions over time. Following the logic of Stevens (2015) but basing their 28 

estimates on a subset of CMIP5 models as opposed to a simplified modelling framework, they argued that a 29 

total aerosol ERF as low as –1.6 W m-2 was consistent with the observed temperature record. Similar 30 

arguments were put forward by Booth et al. (2018), who emphasized that the degree of non-linearity of the 31 

total aerosol ERF with aerosol emission is a central assumption in Stevens (2015). 32 

 33 

The historical temperature record was also the key observational constraint applied in two additional post-34 

AR5 studies (Rotstayn et al., 2015; Shindell et al., 2015) based on a subset of CMIP5 models. Rotstayn et al. 35 

(2015) found a strong temporal correlation (> 0.9) between the total aerosol ERF and the global mean 36 

surface air temperature. They used this relationship to produce a best estimate for the total aerosol ERF of 37 

–0.97 W m-2, but with considerable unquantified uncertainty, in part due to uncertainties in the Transient 38 

Climate Response (TCR). Shindell et al. (2015) came to a similar best estimate for the total aerosol ERF of 39 

–1.0 W m-2 and a 95% confidence interval of –1.4 to –0.6 W m-2 but based this on spatial temperature and 40 

ERF patterns in the models in comparison with observed spatial temperature patterns. 41 

 42 

A separate observational constraint on the total ERF was proposed by Cherian et al. (2014), who compared 43 

trends in downward fluxes of solar radiation observed at surface stations across Europe to those simulated by 44 

a subset of CMIP5 models. Based on the relationship between solar radiation trends and the total aerosol 45 

ERF in the models, they inferred a relatively strong total aerosol ERF of –1.3 W m-2 and a standard deviation 46 

of ± 0.4 W m-2. Related to Cherian et al. (2014), Storelvmo et al. (2018) found that the reduction in 47 

downward solar radiation fluxes measured at surface stations worldwide since the middle of the last century 48 

(known as “global dimming”) was severely underestimated by the CMIP5 model ensemble mean. The 49 

dimming has been attributed to, and is anticorrelated with, global aerosol emissions (Storelvmo et al., 2016), 50 

and an underestimation of the dimming trend therefore likely implies a too weak aerosol radiative effect. 51 

 52 

Weighing the above lines of evidence, which are based solely on energy balance considerations or other 53 

observational constraints, it is virtually certain that the total aerosol ERF is negative (high confidence), and 54 
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very unlikely that the total aerosol ERF is more negative than –1.8 W m-2 (medium confidence).  1 

 2 

 3 

7.3.3.4 Overall assessment of total aerosol ERF  4 

 5 

In AR5 (Boucher et al., 2013), the overall assessment of total aerosol ERF (ERFari+aci) used the median of 6 

all GCM estimates published prior to AR5 of –1.5W m-2 (5-95% confidence range of –2.4 W m-2 to –0.6 7 

W m-2) as a starting point, but reduced the magnitude of that estimate for the following reasons: 8 

1) Models that accounted for aerosol effects on liquid, mixed-phase and ice clouds tended to 9 

produce overall smaller ERFari+aci estimates and were at the time deemed “more complete” in 10 

their representation of ACI. This subset of models produced a smaller estimate of –1.38 W m-2 11 

for the ERFari+aci and consisted of seven semi-independent models. 12 

2) Studies that constrained models with satellite observations were given extra weight (five 13 

estimates in total). They produced a median estimate of –0.85 W m-2. For studies that only 14 

reported ERFaci, an ERFari of –0.45 W m-2 was added to produce an ERFari+aci estimate. 15 

Furthermore, a longwave ERFaci of +0.2 W m-2 was added to studies that only reported 16 

shortwave ERFaci values (which was true in most cases). 17 

3) Based on higher resolution models, doubt was raised regarding the ability of GCMs to represent 18 

the cloud adjustment component of ERFaci with fidelity, and particularly the way in which 19 

aerosol effects on warm-rain formation were parameterized. The expert judgement was therefore 20 

that aerosol effects on cloud lifetime were too strong in the models, reducing the overall ERF 21 

estimate.  22 

The above lines of argument, combined with the GCM estimate quoted above, resulted in an overall 23 

assessment of ERFari+aci of –0.9W m-2 and a 95% confidence range of –1.9 W m-2 to –0.1W m-2. 24 

 25 

This assessment revises the best estimate and the range relative to AR5 (Boucher et al., 2013), based on 26 

updates and revisions to the above lines of argument in post-AR5 publications. Firstly, the studies that 27 

included aerosol effects on mixed-phase and ice clouds (argument (1) above) in AR5 relied on the 28 

assumption that anthropogenic black carbon could act as atmospherically relevant ice-nucleating particles 29 

(INPs), which has since been challenged by the laboratory community (Kanji et al., 2017; Vergara-30 

Temprado et al., 2018). There is also no observational evidence of appreciable ERFs associated with these 31 

effects (Section 7.3.3.2.3), and modelling studies disagree when it comes to both their magnitude and sign 32 

(Storelvmo, 2017). Likewise, very few GCMs incorporate aerosol effects on deep convective clouds, and 33 

cloud-resolving modelling studies report very different impacts on cloud radiative properties depending on 34 

cloud environmental conditions (Tao et al., 2012). Thus, it is not clear whether omitting such effects in 35 

GCMs would lead to any appreciable net ERF biases, or if so, what the sign of such biases would be. As a 36 

result, and in contrast to (Boucher et al., 2013), all models are given equal weight in this assessment whether 37 

they include aerosol impacts on convective, ice and mixed-phase cloud processes or not.  38 

 39 

In relation to argument (2), there is now a considerably expanded body of literature which suggests that early 40 

modelling studies that incorporated satellite observations may have resulted in overly conservative estimates 41 

of the magnitude of ERFaci (Section 7.3.3.2.3). Furthermore, based on an assessment of the longwave 42 

ERFaci in the CMIP5 models, the offset of 0.2 W m-2 used to adjust the longwave contribution to some 43 

model’s ERF estimate also appears to be too strong (Heyn et al., 2017).  44 

 45 

Argument (3) is still valid when it comes to the general limitations in the ability of GCMs to simulate 46 

adjustments in LWP and cloud cover in response to aerosol perturbations, but as discussed in 7.3.3.2.1 it is 47 

not clear that this will result in biases that exclusively reduce the magnitude of the total aerosol ERF. 48 

 49 

The following assessment of total aerosol ERF is based on four lines of evidence: GCM-based, Process-50 

based and Satellite-based evidence as well as other observational and/or energy balance constraints. The 51 

median GCM estimate of total aerosol ERF in AR5 was –1.5 W m-2 (Boucher et al., 2013),  but there is 52 
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preliminary evidence from early models returning data to RFMIP that the latest generation of GCMs will 1 

produce ERFari+aci estimates that are slightly smaller in magnitude (currently a mean of –1.17 W m-2 based 2 

on six models only). Energy balance constraints appear to rule out that the total aerosol ERF is positive, but 3 

simultaneously do not support estimates that are less negative (smaller in magnitude) than -1.8 W m-2.  4 

Satellite-based studies indicate that the total ERFaci lies in the range –2.0 W m-2 to –0.5 W m-2 and support a 5 

central estimate of –0.9W m-2. The central estimate is consistent with the average based on 9 GCMs in Table 6 

7.6, but the 5% to 95% uncertainty range is narrower (–0.5 to –1.4 W m-2). Recent process-based evidence 7 

suggests that cloud adjustments may contribute more to ERFaci than previously thought (Section 7.3.3.2.2). 8 

For RFari satellite-based estimates remain consistent with the AR5 assessment, while emission updates and 9 

better understanding of the contribution of absorbing aerosols and related rapid adjustments have combined 10 

resulted in a model-based ERFari assessment of –0.2+/-0.2 W m-2, representing a downward revision of 11 

ERFari relative to the AR5 central estimate of –0.45 W m-2. 12 

Based on the above lines of evidence, the total aerosol ERF is assessed to be larger in magnitude than the 13 

assessed (Boucher et al., 2013) estimate, but with a narrower uncertainty range. However, our assessed total 14 

aerosol ERF estimate is smaller in magnitude than the GCM-based evidence presented in AR5, due in 15 

particular to some of the recent studies that fall in the categories of satellite-based evidence and other 16 

observational constraints.  17 

 18 

There is strong evidence for a substantive negative aerosol ERF with broad agreement between the three 19 

main lines of evidence for aerosol ERF, supported by the energy balance (top down) evidence. This leads to 20 

an overall high confidence in the estimate of ERF and narrowing of the uncertainty range. Combining all 21 

lines of evidence using expert judgement, the ERFari+aci is assessed to be –1.1 W m-2, with a very likely 22 

range of –1.8 W m-2 to –0.5 W m-2 and a likely range of –1.5 W m-2 to –0.7 W m-2. There is high confidence 23 

that EWFaci contributes most (about 80%) to ERFari+aci, with the remainder due to contributions from 24 

ERFari. In contrast to AR5 (Boucher et al., 2013), it is now virtually certain that the total aerosol ERF is 25 

negative.  Figure 7.10 depicts these various lines of evidence and compares them to modelling results from 26 

CMIP5 and emergent CMIP6-RFMIP models. 27 

 28 

 29 

[START FIGURE 7.10 HERE] 30 

 31 
Figure 7.10:  (a) Net aerosol ERFari+aci from different lines of evidence. Green lines show the very likely range based 32 

on satellite observations (solid bar ERFari+aci, dashed bar ERFaci). Blue line shows the very likely range 33 
based on observational constraints. Purple bars show the assessed very likely range (thin), likely range 34 
(thick), and best estimate (black diamond). Bars show climate model estimates, subdivided into CMIP5 35 
models  (Zelinka et al., 2014) and CMIP6 models with individual models depicted by grey dots, and 36 
multi-model mean ERFari (“Aerosol”) and ERFaci (“Cloud”). Overlaid black diamond and black line 37 
shows the multi-model mean and very likely range of model-derived ERFari+aci. (b) Contributions to the 38 
shortwave components of model-derived ERFari and ERFaci in (a) from scattering (“Scat”), absorption 39 
(“Abs”) and cloud amount (“Amt”), with total ERFari and ERFaci best estimates and very likely ranges 40 
overlaid as black diamonds and lines. 41 

 42 

[END FIGURE 7.10 HERE] 43 

 44 

 45 

7.3.4 Other agents 46 

 47 

In addition to the large anthropogenic ERFs associated with WMGHGs and atmospheric aerosols assessed in 48 

Sections 7.3.2 and 7.3.3, land use change, light absorbing particles deposited on snow and ice, and contrails 49 

and aviation-induced cirrus have also contributed to the overall anthropogenic ERF and are assessed in 50 

Sections 7.3.4.1, 7.3.4.2 and 7.3.4.3. Changes in solar irradiance and volcanic eruptions since pre-industrial 51 

combined represent the natural contribution to the total (anthropogenic + natural) ERF and are discussed in 52 

Sections 7.3.4.4 and 7.3.4.5. 53 

 54 

 55 
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7.3.4.1 Land use 1 

 2 

Land use forcing is caused by changes directly caused by human activity rather than by climate response. 3 

Land use change affects the surface albedo and thus imposes a radiative forcing on climate. It also affects the 4 

emissions or removal of greenhouse gases from the atmosphere (such as CO2, CH4, N2O). The emission 5 

changes have the greatest impact on climate (Ward et al., 2014), however these are already included in 6 

greenhouse gas inventories. Land use change also affects the emissions of dust and biogenic volatile organic 7 

compounds (BVOCs), which form aerosols and affect the atmospheric concentrations of ozone and methane 8 

(Chapter 6, Section 6.2). 9 

 10 

Using the definition of ERF from Section 7.1, the rapid adjustment in land surface temperature is excluded 11 

from the definition of ERF, but rapid changes in snow cover are included since these adjustments have an 12 

immediate effect on the local albedo and radiation budget. Land use change in the mid-latitudes induces a 13 

substantial amplifying rapid adjustment in snow cover. Few studies have attempted to quantify the ERF of 14 

land use change. Andrews et al. (2017) calculated a very large surface albedo ERF (–0.47 W m–2) in the 15 

HadGEM2-ES model although they did not separate out the surface albedo change from snow cover change. 16 

HadGEM2-ES is known to overestimate the amount of boreal trees and shrubs in the unperturbed state 17 

(Collins et al., 2011b) so will tend to overestimate the ERF associated with land use change. The increases in 18 

dust in HadGEM2-ES contributed an extra –0.25 W m–2, whereas cloud cover changes added a small 19 

positive adjustment. One estimate of the change due to reduced BVOCs leads to a negative contribution of 20 

–0.11 W m–2 over the historical period (Unger, 2014) through decreases in ozone and methane, whereas 21 

Scott et al. (2017) find that the decrease in aerosols from BVOCs outweighs the forcing contribution from 22 

ozone and methane. Rapid adjustments through changes in aerosols and chemistry are likely to be very 23 

model dependent, and it is not possible to make an assessment based on such a limited number of studies. 24 

The contribution of land use change to albedo changes has recently been investigated using MODIS and 25 

AVHRR to attribute albedos to geographically-specific land cover types (Ghimire et al., 2014). When 26 

combined with a historical land use map (Hurtt et al., 2011) this gives a 1700-2005 SARF of –0.15 ± 0.01 27 

W m-2, of which –0.12 W m–2 is from 1850. This study did account for correlations between vegetation type 28 

and snow cover, but not the rapid adjustment in snow cover identified in (Andrews et al., 2017b). Since the 29 

Ghimire et al. (2014) study supports the central AR5 value  (Myhre et al., 2013b) of –0.15 ± 0.10, this 30 

estimate of the land use ERF is maintained in this assessment (medium confidence), and do not add the 31 

effects of snow-albedo until confirmed by other studies. 32 

 33 

[placeholder update with RFMIP analysis for SOD] 34 

 35 

 36 

7.3.4.2 Contrails and aviation-induced cirrus 37 

 38 

Contrail cirrus form when hot and humid aircraft exhaust mixes with the cold air in the upper troposphere 39 

and lower stratosphere (UTLS), creating air that is supersaturated with respect to ice. This in turn leads to 40 

homogeneous freezing of small solution droplets, and thus produces narrow bands of cirrus contrail clouds. 41 

The contrails can be short-lived or persist for hours, depending on the conditions of the UTLS. In rare cases 42 

the contrails can spread out to form horizontally extensive cirrus cloud covers, and the aircraft emissions of 43 

water vapour can also generally increase UTLS water vapour concentrations and thereby produce additional 44 

cirrus clouds. In both cases, the resulting cirrus clouds are referred to as aviation-induced cirrus. In addition 45 

to the above effects, which are manly attributed to aircraft emissions of water vapour, it has also been 46 

hypothesized that aircraft emissions of aerosols can influence contrail formation and properties. This topic is 47 

assessed along with other ERFs arising from aerosol emissions in Section 7.3.3. 48 

 49 

In AR5 the ERF due to contrails and aviation-induced cirrus was assessed to 0.05 (0.02–0.15) W m–2, but a 50 

low confidence was assigned to that estimate. This positive ERF is the net result of a positive longwave ERF 51 

and a smaller negative shortwave ERF, as expected for thin cirrus clouds (Section 7.4). Since AR5, a 52 

comprehensive review on the topic (Kaercher, 2018) reported post-AR5 ERF estimates ranging from 0.01–53 

0.06 W m–2, based on three new studies that all used 2005 as their reference period. These estimates support 54 
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an ERF estimate slightly smaller than that of AR5 (Myhre et al., 2013b). However, due to the rapid growth 1 

in air traffic since 2005 (approximately 40%), these numbers probably represent underestimates for the 2 

present-day ERF. Post-AR5 updates thus collectively do not support a revision to the best estimate from 3 

AR5, but also do not support a range as wide as that of AR5.  4 

 5 

There is medium evidence but strong agreement (high confidence) that the ERF associated with contrails and 6 

aviation-induced cirrus is small but positive. The ERF due to contrails and aviation-induced cirrus is 7 

assessed to +0.05 W m–2, with a very likely range of 0.01–0.10 W m–2.  8 

 9 

 10 

7.3.4.3 Light absorbing particles on snow and ice 11 

 12 

Light-absorbing particles on snow and ice decreases surface albedo from the cryosphere, contributing a 13 

positive radiative forcing. Most previous research has focused on black carbon , although organic carbon and 14 

mineral dust can also contribute to the ERF (Skiles et al., 2018).  15 

 16 

AR5 assessed black carbon on snow radiative forcing to be 0.04 (0.02 to 0.09) W m–2 (Myhre et al., 2013b), 17 

with the review from Bond et al. (2013) informing this assessment. Since AR5, one further study of global 18 

radiative forcing from black carbon on snow deposition agrees with the AR5 best estimate of 0.04 W m–2 19 

(Namazi et al., 2015). Organic carbon deposition on snow and ice has been estimated to contribute a small 20 

positive radiative forcing of 0.001–0.003 W m–2 (Lin et al., 2014). No comprehensive global assessments of 21 

mineral dust deposition on snow are available. More radiative forcing estimates have a regional emphasis, 22 

focusing on the Arctic (Jiao et al., 2014), Himalayas (Wang et al., 2015), and to a lesser extent North 23 

America, Europe and northern China (Skiles et al., 2018). Black carbon deposition and associated snow-24 

albedo change over the Antarctic continent is considered to be negligible (Bauer et al., 2013; Bisiaux et al., 25 

2012). The regional focus of most studies makes estimating a global mean radiative forcing from aggregating 26 

different studies problematic, but the relative importance of each region is likely to change if the global 27 

pattern of emission sources changes (Bauer et al., 2013). Changes to surface albedo in the cryosphere are 28 

difficult to observe with satellites (Warren, 2013), and so modelling studies are often validated using field 29 

measurements (e.g. Jiao et al. (2014)). 30 

 31 

Owing to the small effect of organic carbon, and no significant revisions to the radiative forcing from black 32 

carbon, the best estimate and uncertainty range of radiative from absorbing aerosol on snow and ice is 33 

unchanged since AR5, remaining at 0.04 (0.02–0.09) W m–2. The efficacy of black carbon on snow forcing 34 

was estimated to be 2 to 4 times as large as for an equivalent CO2 forcing as the effects are concentrated at 35 

high latitudes in the cryosphere (Bond et al., 2013). However, it is unclear, how much of this effect would be 36 

accounted for if ERF was calculated, and how much comes from the high latitude nature of the forcing. For 37 

the overall ERF the radiative forcing is doubled to partly take the efficacy effects into account, giving an 38 

overall assessment of at 0.08 (0.04–0.18) W m–2, with low confidence.  39 

 40 

 41 

7.3.4.4 Solar 42 

 43 

Variations in the total solar irradiance (TSI) are a natural external forcing agent. The dominant cycle is the 44 

11-year sunspot activity cycle, which is superimposed on 205–210 and 24,000 year cycles (Section 2.2). 45 

Over the last three 11-year cycles, the peak-to-trough amplitude in TSI has differed by about 1 W m–2 46 

between solar maxima and minima (Chapter 2, Figure 2.1). 47 

 48 

Much of the variance in the solar irradiance, over the solar cycle and between solar cycles, occurs at short 49 

wavelengths in the 200–400 nm band (Lean et al., 1997, 2005). The IRF can be derived simply by TSI × (1 – 50 

albedo)/4 irrespective of wavelength, where the planetary albedo is taken to be 0.29 (Stephens et al., 2015). 51 

The adjustments are expected to be wavelength dependent. Gray et al. (2009) determined a stratospheric 52 

temperature adjustment of –22% to spectrally resolved changes in the solar radiance over one solar cycle. 53 

This negative adjustment is due to stratospheric heating from increased absorption by ozone at the short 54 



First Order Draft Chapter 7 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 7-46 Total pages: 202 

 

wavelengths. A multi-model comparison (Smith et al., 2018b) calculated rapid adjustments of –4% due to 1 

stratospheric temperatures and –6% due to tropospheric processes (mostly clouds), for a change in TSI 2 

across the spectrum. The smaller magnitude of stratospheric-temperature adjustment is consistent with the 3 

broad spectral change rather than the shorter wavelengths characteristic of solar variation. A single model 4 

study also found an adjustment that acts to make the forcing more negative  (Modak et al., 2016). While 5 

there has not yet been a calculation based on the appropriate spectral change, the –6% tropospheric 6 

adjustment from Smith et al. (2018b) is adopted along with the Gray et al. (2009) stratospheric temperature 7 

adjustment. The ERF due to solar variability over the historical period is therefore represented by 0.72 × TSI 8 

× (1 – albedo)/4 using the TSI timeseries from Section 2.2.2. 9 

 10 

AR5 (Myhre et al., 2013b) assessed solar SARF from 1750 to 2011 to be 0.05 (0.00–0.10) W m–2 which was 11 

computed from the 7-year mean around the solar minima in 1745 (being closest to 1750) and 2008 (being the 12 

most recent solar minimum). Solar minima are used because they are less variable between cycles and more 13 

appropriate to measure changes in activity (Myhre et al., 2013b). The inclusion of tropospheric adjustments 14 

that reduces ERF (compared to SARF in AR5) has negligible impact on the overall forcing. Prior to the 15 

satellite era, proxy records are used to reconstruct historical solar activity. In AR5, historical records were 16 

constructed using sunspot number observations. In this assessment historical time series are constructed from 17 

radiogenic compounds in the biosphere and in ice cores that are formed from cosmic rays (Steinhilber et al., 18 

2012). 19 

 20 

In this assessment the TSI from the Paleoclimate Model Intercomparison Project Phase 4 (PMIP4) 21 

reconstruction is used (Jungclaus et al., 2017). Proxies constructed from the 14C and 10Be radiogenic records 22 

for the SATIRE-M model (Vieira et al., 2011) and 14C record for the PMOD model (Shapiro et al., 2011) for 23 

the 1745 solar minimum provide 1745 to 2008 ERFs of –0.01, –0.02 and 0.00 W m-2 respectively. Several 24 

other proxy reconstructions of TSI since AR5 have become available (Egorova et al., 2018; Lean, 2018; Wu 25 

et al., 2018), resulting in 1745 to 2008 ERFs ranging from –0.05 to +0.10 W m-2. One substantially higher 26 

ERF estimate of +0.35 W m-2 derived from TSI reconstructions in Egorova et al. (2018) is based on a later 27 

recovery in solar modulation potential from the Maunder Minimum (Muscheler et al., 2016). 28 

 29 

The best estimate solar ERF is assessed to be –0.01 W m-2, being the mean of the PMIP4 datasets, with a 30 

likely range of –0.05 to +0.10 W m-2 (low confidence). The likely range is wider than in AR5 and asymmetric 31 

due to the increased diversity in TSI reconstructions prior to 1750, notably those that show a negative forcing 32 

due to an upward revision of TSI in the 1740s, and those showing a larger positive forcing due a slow 33 

recovery from the Maunder Minimum (Egorova et al., 2018). It is possible that the solar ERF will be revised 34 

in the Second Order Draft if a new solar minimum is confirmed in 2018 or 2019. 35 

 36 

 37 

7.3.4.5 Volcanic 38 

 39 

There is large episodic negative radiative forcing associated with aerosols being ejected into the stratosphere 40 

from explosive volcanic eruptions, accompanied by smaller eruptions, where only a small amount of aerosol 41 

reaches the upper troposphere/stratosphere.  The volcanic SARF in AR5 (Myhre et al., 2013b) was derived 42 

by scaling the stratospheric aerosol optical depth (SAOD) by a factor of –25 W m–2 per SAOD from Hansen 43 

et al. (2005). Quantification of the rapid adjustments to SAOD perturbations have determined a significant 44 

positive rapid adjustment in the shortwave, leading to estimates of –17 and –20 W m-2 per SAOD (Gregory 45 

et al., 2016; Larson and Portmann, 2016).  A study driven by emissions of SO2 rather than prescribed SAOD 46 

found a positive forcing through effects on upper tropospheric ice clouds, due to additional ice nucleation on 47 

the volcanic sulphate particles (Schmidt et al., 2018).  With only one study so far, the contribution to 48 

volcanic ERF due to sulphate aerosol impacts on ice clouds is not included in the overall assessment.  49 

 50 

Non-explosive volcanic eruptions generally yield negligible global ERFs due to the short atmospheric 51 

lifetimes (a few weeks) of volcanic aerosols in the troposphere. However, as discussed in Section 7.3.3.2, the 52 

massive fissure eruption in Holuhraun, Iceland persisted for months in 2014 and 2015 and did in fact result 53 

in a marked and persistent reduction in cloud droplet radii and a corresponding increase in cloud albedo 54 
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regionally (Malavelle et al., 2017). This shows that also non-explosive fissure eruptions can lead to strong 1 

regional and even global ERFs, but because the Holuhraun eruption occurred in NH winter, solar insolation 2 

was weak and the observed albedo changes therefore did not result in an appreciable global ERF.  3 

 4 

The rapid adjustment component of ERF for volcanic stratospheric aerosols is assessed to be an average of 5 

the two climate model based SAOD efficiency calculations: +6.5 W m–2 per SAOD with a 5% to 95% range 6 

estimated from the total range of rapid adjustment exhibited between the two models. To give a total ERF 7 

assessed scaling of –18.5 ± 3.5 W m–2 per SAOD (high confidence). This is applied to the SAOD timeseries 8 

from Chapter 2, Section 2.2 to generate a timeseries of ERF in Figure 7.14, and temperature response in 9 

Figure 7.15. 10 

 11 

 12 

7.3.5 Synthesis of Global Mean Radiative Forcing, Past and Future 13 

 14 

7.3.5.1 Summary of Major changes in forcing since IPCC AR5 15 

 16 

AR5 introduced the concept of ERF and rapid adjustments and made a preliminary assessment that the 17 

tropospheric adjustments were zero for all species other than the effects of aerosol cloud interaction and 18 

black carbon. Since AR5, new studies have allowed us to tentatively assess values for tropospheric 19 

adjustments to CO2, CH4, and stratospheric aerosol, to place a tighter constraint on adjustments from aerosol-20 

cloud interaction and to assess a likely sign of the tropospheric adjustments for other forcing agents (section 21 

7.3.2, 7.3.4).  22 

 23 

The radiative efficiencies for CO2, CH4 and N2O have been updated since AR5 (Etminan et al., 2016). The 24 

differences for CO2, and N2O are small at present day concentration, but the radiative efficiency for CH4 is 25 

increased by 25% (see section 7.3.2) (high confidence) although the tropospheric adjustment is tentatively 26 

assessed to offset around half of that (medium confidence). 27 

 28 

 29 

7.3.5.2 Summary ERF assessment  30 

 31 

Figure 7.11 shows the industrial era ERF estimates for 1750 to 2017 for the different forcing agents. It also 32 

highlights CMIP6 model results from RFMIP where preliminary results exist. The assessed uncertainty 33 

distributions are combined with a 2000 member Monte Carlo sampling of the different distributions 34 

assuming they are independent for making the overall assessment of possible ERFs, shown as distributions in 35 

Figure 7.13. 36 

 37 

 38 

[START FIGURE 7.11 HERE] 39 

 40 
Figure 7.11: Effective radiative forcing from 1750 to 2017 by contributing forcing agents. CMIP6 model estimates for 41 

1850-2014 are shown as circles where known. 42 
 43 
[END FIGURE 7.11 HERE] 44 

 45 

  46 

[START Table 7.7 HERE] 47 

 48 
Table 7.7: Summary table of ERF estimates for AR6 and comparison with the four previous IPCC assessment 49 

reports. For AR5 and AR6 these include tropospheric adjustments where known.  50 

 51 

 Global Mean Effective Radiative Forcing (W m–2) 

 SAR 

(1750–

TAR 

(1750–

AR4 

(1750–

AR5 

(1750–

AR6 

(1750–2017) 

Comment 
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1993) 1998) 2005) 2011) 

Well-mixed greenhouse 

gases (CO2, CH4, N2O, 

and halocarbons) 

2.45 (2.08 

to 2.82) 

2.43 (2.19 

to 2.67) 

2.63 (2.37 

to 2.89) 

2.83 (2.26 

to 3.40) 

3.22 (2.84 to 

3.60) 

Increases in concentrations. 

Changes to radiative 

efficiencies. 

Inclusion of tropospheric 

adjustments. 

Tropospheric ozone +0.40 

(0.20 to 

0.60) 

+0.35 

(0.20 to 

0.50) 

+0.35 

(0.25 to 

0.65) 

+0.40 

(0.20 to 

0.60) 

+0.37 (0.18 to 

0.56) 

Most recent model estimates. 

No tropospheric adjustment 

assessed. 

Stratospheric ozone –0.1 (–0.2 

to –0.05) 

–0.15 

(–0.25 to 

–0.05) 

–0.05 

(–0.15 to 

+0.05) 

–0.05 

(–0.15 to 

+0.05) 

–0.075 (–0.15 

to 0.0) 

Increased to include an 

additional dataset. No 

tropospheric adjustment 

assessed 

Stratospheric water 

vapour from CH4 

Not 

estimated 

+0.01 to 

+0.03 

+0.07 

(+0.02, 

+0.12) 

+0.07 

(+0.02 to 

+0.12) 

+0.07 (+0.02 

to +0.12) 

Estimate unchanged. 

Aerosol–radiation 

interactions 

Not 

estimated 

Not 

estimated 

–0.50 

(–0.90 to 

–0.10) 

–0.45 

(–0.95 to 

+0.05) 

–0.2 (–0.4 to 

0) 

Reduced by about 55% 

compared to AR5 

Aerosol–cloud 

interactions 

0 to –1.5 

(sulphate 

only) 

0 to –2.0 

(all 

aerosols) 

–0.70 

(–1.80 to 

–0.30) 

(all 

aerosols) 

 –0.45 

(–1.2 to 0) 

–0.9 (–1.4 to 

–0.5) 

Increased by 100% compared 

to AR5 

Surface albedo (land 

use) 

Not 

estimated 

–0.20 

(–0.40 to 

0.0) 

–0.20 

(–0.40 to 

0.0) 

–0.15 

(–0.25 to 

–0.05) 

–0.15 (–0.25 

to –0.05) 

No change, but no 

tropospheric adjustment 

assessed 

Surface albedo 

(black+organic carbon 

aerosol on snow and 

ice) 

Not 

estimated 

Not 

estimated 

+0.10 (0.0 

to +0.20) 

+0.04 

(+0.02 to 

+0.09) 

+0.08 (+0.04 

to +0.18) 

Increased since AR5 to better 

account for temperature 

effects 

Contrails Not 

estimated 

+0.02 

(+0.006 to 

+0.07) 

+0.01 

(+0.003 to 

+0.03)  

+0.01 

(+0.005 to 

+0.03) 

  

Combined contrails and 

contrail-induced cirrus 

Not 

estimated 

0 to +0.04 Not 

estimated 

+0.05 

(+0.02 to 

+0.15) 

+0.05 (+0.01 

to +0.10) 

Narrower range since AR5 

       

Total anthropogenic Not 

estimated 

Not 

estimated 

1.6 (0.6 to 

2.4) 

2.3 (1.1 to 

3.3)  

2.48 [1.65 to 

3.26] 

Slight increase due to 

compensating effects of 

greenhouse gases and aerosol 

Solar irradiance +0.30 

(+0.10 to 

+0.50) 

+0.30 

(+0.10 to 

+0.50) 

+0.12 

(+0.06 to 

+0.30) 

+0.05 (0.0 

to +0.10) 

–0.01 (–0.05 

to +0.10) 

Revised historical TSI 

estimates 

Notes: 1 

Volcanic RF is not added to the table due to the episodic nature of volcanic eruptions which makes it 2 

difficult to compare to the other forcing mechanisms. 3 

 4 

[END Table 7.7 HERE] 5 

 6 

 7 

The total anthropogenic ERF over the industrial era (1750–2017) is estimated as 2.48 W m–2 (1.65 to 3.25 W 8 

m–2 5% to 95% range) (Table 7.7). This is an 8% increase over AR5 (Myhre et al., 2013b) estimates for 9 

1750–2011. This modest increase is a result of compensating effects. Atmospheric concentrations of well-10 

mixed greenhouse gases since 2011 and upwards revisions of their forcing estimates has led to a 14% 11 
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increase in their ERF. Whereas, the total aerosol ERF is assessed to be 22% more negative compared to 1 

AR5, due to revised estimates rather than trends (high confidence).   2 

 3 

Greenhouse gases, including ozone and stratospheric water vapour from methane oxidation, are estimated to 4 

contribute an ERF of 3.64 W m–2 (3.22 to 4.06 W m–2 5% to 95% range). 3.22 (2.84 to 3.60) W m–2 of this 5 

ERF comes from the well-mixed greenhouse gases, with ozone and stratospheric water vapour changes 6 

contributing the remainder. Carbon dioxide continues to contribute the largest part of this ERF (high 7 

confidence). There has been a significant increase in the estimated shortwave forcing from methane (high 8 

confidence) somewhat countered by a negative rapid adjustment (medium confidence). There is also a 5% 9 

upwards revision due to inclusion of tropospheric adjustments for CO2 (medium confidence) and 3% increase 10 

in the SARF from LBL calculations (medium confidence). 11 

 12 

Aerosols have in total contributed an ERF of –1.1 W m–2 (–1.8 to –0.5 W m–2 5–95% confidence range). 13 

Aerosol-cloud interactions contribute –0.9 (–1.4 to –0.5) W m–2 to this ERF, with aerosol-radiation 14 

interactions contributing the remaining –0.2 (–0.4 to 0) W m–2. 15 

 16 

 17 

7.3.5.3 Temperature Contribution of forcing agents 18 

 19 

The contribution of forcing agents to 2017 temperature change relative to 1750 is shown in Figure 7.12. 20 

These estimates were produced using the FaIR simple climate model emulator (Smith et al., 2018a) using a 21 

2000-member Monte Carlo simulation of ERF (as in Figure 7.11), ECS and TCR. Distributions for ECS and 22 

TCR were informed by section 7.5 and chosen to approximately maintain the best estimate and likely/very 23 

likely ranges assessed in that section while also observing a strong positive correlation. The components to 24 

temperature change are assessed by removing each forcing component from the pre-industrial to present-day 25 

simulation in each ensemble member in FaIR and computing the difference.  26 

 27 

Figure 7.12  also shows an estimate of the temperature response to forcing calculated by the MAGICC model 28 

(Meinshausen et al., 2011; Nauels et al., 2017) as the bottom panel which is a more established and tested 29 

simple climate model emulator (Chapter 1, Section 1.6). Overall the temperature response in Figure 7.12 is 30 

dominated by the uncertainty in ERF, yet for WMGHG contribution to warming the uncertainty is dominated 31 

by ECS and TCR. 32 

 33 

 [SOD note, the MAGICC result use preliminary ERF estimates and its own ECS/TCR ranges, hence it 34 

warms more. For the SOD either Chapter 4 or this Chapter will have an Appendix with a comparison of 35 

simple climate models] 36 

 37 

 Error bars in Figure 7.12 show the contribution of ERF uncertainty with best estimates of ECS and TCR 38 

(solid lines) and total response uncertainty using the section 7.5 assessment of ECS and TCR (dashed lines).  39 

Overall the response is dominated by the uncertainty in ERF, yet for WMGHG contribution to warming the 40 

uncertainty is dominated by ECS and TCR.   41 

 42 

These results show that it is unequivocal that anthropogenic activity has had a warming effect on the planet 43 

since 1750. Analyses of radiative forcing and climate sensitivity presented in this chapter give an estimated 44 

human induced warming of 1.12°C (0.63 to 1.80°C 5% to 95% range) (high confidence). Changes in solar 45 

and volcanic activity are assessed to have had a negligible effect (high confidence). By applying historical 46 

observations of global near surface temperature trends the 1750 to 2017 anthropogenic warming estimate is 47 

narrowed to 1.08°C (0.86–1.30°C very likely range). This warming is comprised of a greenhouse warming of 48 

1.7°C (1.3–2.3°C) that has an increasing trend and an aerosol cooling of 0.6°C (0.3–1.1°C) that has remained 49 

relatively constant in terms of the globally averaged ERF over the last 20 years (Figure 7.15) (high 50 

confidence). 51 

 52 

Figure 7.13 shows the overall assessments from this chapter both before and after applying historical 53 

observational constraints. Posterior distributions of ECS and TCR are slightly narrower than their prior 54 
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distributions taken from Section 7.5.7. The ECS and TCR observationally-constrained posterior distributions 1 

give very likely ranges of 2.9°C (2.1–4.4°C) and 1.6°C (1.3–2.2°C) respectively (Figure 7.13a). Note, that to 2 

avoid double counting historical constraints on ECS and TCR, these posterior distribution are not applied to 3 

our overall assessment of ECS and TCR in Section 7.5.7. Applying observational constraints does not greatly 4 

change the distribution of aerosol ERF or its contribution to temperature (Figure 7.13b,c) but has more 5 

influence on greenhouse-gas induced warming. The anthropogenic warming is highly constrained by the 6 

observations owing to the small influence of natural forcers (Figure 7.13c).  7 

 8 

 9 

[START FIGURE 7.12 HERE] 10 

 11 
Figure 7.12: The contribution of forcing agents to 2017 temperature change relative to 1750. (top) These estimates 12 

were produced using the FaIR simple climate model emulator (Smith et al., 2018a) where ranges for ERF 13 
were taken from Section 7.3 and ranges for ECS and TCR were taken from Section 7.5. Error bars show 14 
the contribution of forcing uncertainty with best estimates of ECS and TCR (solid lines) and total 15 
response uncertainty. (bottom) the temperature changes simulated by the MAGICC simple climate model 16 
(Meinshausen et al., 2011; Nauels et al., 2017), using its own distribution of ECS and TCR, only the 17 
effect of forcing error is shown. [Preliminary results from MAGICC based on earlier forcing estimates, 18 
will be updated for SOD].  19 
  20 

[END FIGURE 7.12 HERE] 21 

 22 

 23 

[START FIGURE 7.13 HERE] 24 

 25 
Figure 7.13:  (a) Probability density functions (PDFs) of ECS and TCR; (b) Distributions of effective radiative forcing 26 

and (c) distributions of contribution to anthropogenic temperature change from 1750 to 2017. Ranges for 27 
ERF were taken from Section 7.3 and ranges for ECS and TCR were taken from Section 7.5. PDFs 28 
combine the contribution of forcing uncertainty with ranges of ECS and TCR. In each panel, the solid 29 
filled curves show the constrained (posterior) distributions after matching historical temperatures to the 30 
surface air temperature from Cowtan and Way (2014) using the FaIR simple climate model emulator 31 
(Smith et al., 2018a). In (a), dashed curves show the prior distributions as assessed in this chapter, 32 
whereas in (b) and (c) dashed curves represent distributions before constraint to historical temperature 33 
observations. 34 

 35 

[END FIGURE 7.13 HERE] 36 

 37 
 38 
7.3.5.4 Historical timeseries from models and observations 39 

 40 

Historical timeseries of the assessed ERF and the resulting near surface global temperature changes are 41 

shown in Figures 7.14 and 7.15. The historical timeseries of ERFs for the WMGHGs can be derived by 42 

applying the ERF calculations of section 7.3.2 to the observed timeseries of WMGHG concentrations in 43 

Chapter 2, Section 2.2. Stratospheric ozone ERF is scaled using the present day value in Section 7.3.2 to the 44 

observed levels of equivalent effective stratospheric chlorine (EESC) using values from Daniel et al. (2010) 45 

up to 1980 and Engel et al. (2018) after 1980. Changes in solar forcing are derived by scaling observed total 46 

solar irradiance (TSI) (Section 2.2.2), changes in volcanic forcing are derived by scaling observed 47 

stratospheric aerosol optical depth (SAOD) (Section 2.2.3). Tropospheric ozone and aerosol forcing uses 48 

model-derived results from ACCMIP (Shindell et al., 2013; Stevenson et al., 2013), which in the latter case 49 

is re-scaled to the updated assessment in this section. [note: will update for SOD.] The land use ERF 50 

timeseries is based on historical land use reconstructions. [note: currently using AR5, will get surface albedo 51 

timeseries from Chapter 2 for SOD]. 52 

  53 

These results show that for most of the historic period the overall long term trends closely followed the CO2 54 

contribution, as non-CO2 greenhouse gas forcing (from other WMGHGs and ozone) was more-or less 55 

cancelled out by the aerosol cooling. However, that is no longer the case and over the last few decades the 56 
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long-term warming has been occurring at a faster rate than that expected by CO2 alone (high confidence), see 1 

also Chapter 2, (Section 2.2). 2 

 3 

 4 

[START FIGURE 7.14 HERE] 5 

 6 
Figure 7.14: Timeseries of total (thick dashed line) and individual components (thin solid lines) of ERF from 1750 to 7 

2017 assessed in this chapter. Some small individual components are grouped for clarity.  8 
 9 

[END FIGURE 7.14 HERE] 10 

 11 

 12 

[START FIGURE 7.15 HERE] 13 

 14 
Figure 7.15: Timeseries of near surface global temperature changes, using the time series of ERFs assessed in this 15 

section (Figure 7.14) and calculated using the FaIR simple climate model emulator (Smith et al., 2018a) 16 
using the distribution of ECS and TCR assessed in section 7.5 and Section 7.3.5.3. The median of a 2000-17 
member Monte Carlo ensemble is shown for the total temperature and the contribution from each 18 
component. 19 

 20 

[END FIGURE 7.15 HERE] 21 

 22 

 23 

7.4 Climate and Earth system feedbacks 24 

 25 

The amplitude of climate change primarily depends on the magnitudes of the radiative forcings and 26 

feedbacks (Box 7.1, Equation 7.1?). The Earth system feedbacks are numerous and may be gathered in three 27 

groups: the climate, biogeochemical and long-term feedbacks. The latter includes feedbacks that are relevant 28 

only for time scales larger than a few centuries. The climate and biogeochemical feedbacks already act at 29 

shorter time-scale, i.e. the time scales that are used in practice to estimate the ECS. The feedback framework 30 

used here, and an overview of model-based estimates of feedbacks are presented in section 7.4.1. For each 31 

feedback, the basic underlying mechanisms and their assessment are presented in section 7.4.2. It has 32 

recently been recognized that the magnitude of climate feedbacks can change as climate evolves, which has 33 

implications for understanding the historical period and projected future warming. Progress has been made to 34 

understand and clarify the key causes of these changes in terms of the feedback dependence on temperature 35 

pattern (Section 7.4.3) and on climate mean state (Section 7.4.4). A synthesis of the feedback assessment is 36 

given section 7.4.5. 37 

 38 

 39 

7.4.1 Framework and methodology 40 

 41 

7.4.1.1 Standard framework 42 

 43 

The global temperature changes of the climate system are generally analysed with the classical forcing-44 

feedback theory (see also Box 7.1)  (Bony et al., 2006; Dessler and Zelinka, 2015; Dufresne and Saint-Lu, 45 

2016; Hansen et al., 1984; Sherwood et al., 2015; Wetherald and Manabe, 1988). As described in Box 7.1 46 

(Equation 7.1?), in response to a radiative forcing F, the global mean surface air temperature changes by 47 

T from its initial value. The resulting global energy imbalance N can be written as N = F + T, where 48 

 is the feedback parameter that quantifies the change in the radiative flux at the TOA in response to changes 49 

in global mean surface temperature.  50 

 51 

When surface temperature changes, many climate variables change, thus affecting the radiative flux at the 52 

TOA. The feedback parameter can then be formally decomposed, at the first order, into a sum of terms 𝛼 =53 

∑ 𝛼𝑥𝑥 , where x are vectors representing climate variables that have a direct impact on the flux at the TOA 54 



First Order Draft Chapter 7 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 7-52 Total pages: 202 

 

and 𝛼𝑥 =
𝜕𝑁

𝜕𝑥

𝜕𝑥

𝜕𝑇
. Climate feedbacks are commonly decomposed into variables associated with a vertically 1 

uniform temperature change (named the Planck response, P; Section 7.4.2.1), the water vapour concentration 2 

(WV; Section 7.4.2.2), the temperature lapse rate (LR; Section 7.4.2.2), the surface albedo (A; Section 3 

7.4.2.3), clouds (C; Section 7.4.2.4), and biogeochemical and other Earth system feedbacks (section 7.4.2.5). 4 

Alternative feedback decompositions have been suggested, in particular to focus on relative humidity (Held 5 

and Shell, 2012; Ingram, 2013). The biogeochemical feedbacks arise due to changes in aerosols and 6 

atmospheric chemical composition, and Gregory et al. (2009) show that they can be analysed using the same 7 

framework.  8 

 9 

Most feedback studies consider the radiative response to global mean surface temperature changes, although 10 

the response to local surface temperature changes is used for deeper analysis (Feldl and Roe, 2013a, Section 11 

7.6.2). Various methods can be used to estimate 𝛼𝑥 (Bony et al., 2006), but most recent modelling studies 12 

use a ‘radiative kernel’ method (Soden et al., 2008, Section 7.3.1) wherein the first term of 𝛼𝑥, the kernel 
𝜕𝑁

𝜕𝑥
, 13 

is evaluated by perturbing individual climate variables within the radiation code of a single atmospheric 14 

GCM; under the assumption that 
𝜕𝑁

𝜕𝑥
 is approximately constant and representative of other models, 15 

multiplication by values of x/T simulated by coupled GCMs produces an estimate of each 𝛼𝑥. The kernel 16 

method is an approximation which is only valid for small temperature changes (Jonko et al., 2013). 17 

Biogeochemical feedbacks need specific methods (Gregory et al., 2009; Heinze et al., 2018). 18 

 19 

 20 

7.4.1.2 Methodology of the feedback assessments 21 

 22 

In climate models the feedback parameters 𝛼𝑥  are commonly estimated as the mean differences in the 23 

radiative fluxes between atmosphere-only simulations in which the change in SST is prescribed (Cess et al., 24 

1990), or as the regression slope of change in radiation flux against change in global-mean surface 25 

temperature (T) using atmosphere-ocean coupled simulations with abrupt CO2 changes (abrupt4×CO2) 26 

(Andrews et al., 2012; Gregory et al., 2004). The regression slope is sometime replaced by a simple 27 

difference between two average periods. These simulations are also used to estimate the ERF (see Section 28 

7.3.1). Neither method is perfect as the latter estimate is affected by internal climate variability and time 29 

evolving pattern of SST increase, and the former does not include all changes of the surface conditions. 30 

Nevertheless, these approaches yield consistent results when the specificity of the experimental design is 31 

taken into account (Ringer et al., 2014). At inter-annual time scales, the radiative kernel method allows a 32 

direct comparison between observational, reanalysis and model estimates of αx, although the correlation 33 

between N and T is weak at this timescale. 34 

 35 

The assessment of feedbacks does not rely solely on the estimation from GCMs as the models inevitably 36 

contain errors in mean states and physical processes responsible for the radiative response to temperature 37 

changes. Instead, different lines of evidence from observations, theory, and process modelling are combined 38 

with the feedback derived from GCMs to make an overall assessment (Section 7.4.2). 39 

 40 

Feedback parameters were first assumed to be approximatively constant and independent of each other 41 

except for WV and LR feedbacks which are often combined due to a well-established mechanism that 42 

couples them (Section 7.4.2.2).  Previous assessments have understood that feedbacks would be time, state 43 

and forcing dependent but understanding of these dependencies has advanced considerably since AR5 44 

making this topic a major theme of the Chapter (Sections 7.1, 7.3.1, 7.4.3, 7.4.4.3, 7.4.4.4). Nevertheless, 45 

when the feedbacks are computed in a consistent way, they allow the main processes that drive the amplitude 46 

of climate change to be partitioned and analysed. Overall these developments improve understanding and 47 

advance the comparison of models with observations, and the comparison of different model experiments, 48 

resulting in an improved assessment.  49 

 50 

 51 

7.4.1.3 Updates of feedbacks in climate models 52 
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Since AR5, many modelling groups have newly participated in CMIP, leading to an increase in the number 1 

of models, from 38 in CMIP5 to 101 in CMIP6. Because some of the CMIP6 models share an atmosphere or 2 

ocean component, they are not completely independent, and such a structural similarity across models, called 3 

the model genealogy, can be identified by clustering them in terms of their climatology (Knutti et al., 2013). 4 

Yet, climate models having the same particular component can behave differently when other components of 5 

the models are not identical. Furthermore, changing details such as the resolution and internal model 6 

parameters can result in differences in climate feedbacks. Because of these reasons, for the purposes of this 7 

discussion, all models are displayed. 8 

 9 

Estimation of individual feedback terms is compared between CMIP5 and CMIP6 climate models (Figure 10 

7.16). The feedback is calculated using the linear regression between T and   for 150 years in the abrupt 11 

CO2 quadrupling (abrupt4xCO2) experiments (Andrews et al., 2012; Caldwell et al., 2016; Gregory et al., 12 

2004). Radiation kernels are also used to eliminate apparent dependence of one feedback on the other due, 13 

for example, to cloud masking effects (Soden et al., 2008; Zelinka et al., 2016). In CMIP5 models, the 14 

Planck feedback parameter has a mean of –3.16 W m-2 °C–1 with a likely range of 0.08 W m–2 °C–1 (2.5% of 15 

the mean value) because in the GCMs the clear-sky longwave radiation is calculated with small errors 16 

compared to the clear-sky shortwave radiation (Pincus et al., 2015). The combined WV+LR component 17 

provides the largest positive feedback compensating the negative Planck feedback, and shows a mean value 18 

of 1.15 W m–2 °C–1 and a likely range of 0.17 W m–2 °C–1.  Surface albedo and cloud feedbacks also act to 19 

amplify the temperature response. The mean value of the albedo feedback parameter is 0.37 W m–2 °C–1 and 20 

the likely range is 0.25–0.44 W m-2 °C-1, which accounts for about 50% of the mean. The evaluation of the 21 

cloud feedback is more uncertain; the likely range of 0.18–0.7 W m–2 °C–1 is much larger than the mean 22 

value of 0.44 W m–2 °C–1. The total combined feedback parameter derived from CMIP5 models of –1.1 W m-23 
2 °C-1 is thus accompanied by a likely range from –1.3 to –0.8 W m–2 °C–1 due largely to spread in the albedo 24 

and cloud feedbacks. There is a small discrepancy between the total feedback calculated directly using the 25 

time evolutions of T and  in each model and the accumulation of individual feedbacks (shown at the 26 

right of Figure 7.16) owing to long-term Earth system processes (Section 7.4.2.5) as well as errors in the 27 

radiative kernel method. The above estimations of the feedbacks will be revised with other lines of evidence 28 

in Section 7.4.2, in which the confidence levels will also be provided. 29 

 30 

[SOD Placeholder for evaluations of feedbacks in CMIP6 models] 31 

 32 

 33 

[START FIGURE 7.16 HERE] 34 

 35 
Figure 7.16: Estimates of global mean climate feedbacks in CMIP5 and CMIP6 abrupt4xCO2 simulations. The box-36 

whisker plot indicates the multi-model mean (horizontal lines), likely range (boxes) and very likely range 37 
(whiskers). Individual feedback terms are computed using a radiative kernel by multiplying temperature-38 
mediated changes in the respective field. A residual between the summed feedback and the total climate 39 
feedback, the latter directly derived from the models, is shown at the right. The CMIP5 data are adopted 40 
from Caldwell et al. (2016). [Note that the CMIP6 values are not yet available, so plotted using the 41 
CMIP5 values tentatively.]  42 

 43 

[END FIGURE 7.16 HERE] 44 

 45 

 46 

The ensemble sizes of the CMIP5 and CMIP6 models are not sufficiently large to sample the range of model 47 

uncertainty. One way to further explore the range of climate feedbacks that can be obtained from models is 48 

to construct perturbed parameter ensembles (PPEs), wherein uncertain parameters in a model are randomly 49 

altered (Collins et al., 2011a; Klocke et al., 2011; Sanderson et al., 2008a; Stainforth et al., 2005). Those 50 

parameters have repeatedly been changed through a tuning procedure of climate models, so that the PPE can 51 

naturally be generated as a consequence of the model tuning (Hourdin et al., 2017). The PPEs have shown 52 

commonly considerable variations in climate feedbacks within a single model (Klocke et al., 2011; 53 

Stainforth et al., 2005), but the range of uncertainty due to parametric differences in the PPE does not exceed 54 
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the range due to structural difference in the CMIP multi-model ensemble when the TOA energy balance is 1 

constrained (Shiogama et al., 2012). Since many of the parameter values were chosen to compensate errors 2 

in the energy budgets, they are not actually independent of each other if the PPE does not allow a large 3 

energy imbalance at TOA. 4 

 5 

The range of the total climate feedback shown in Figure 7.16 is derived directly from the ensemble of the 6 

total feedback in the multi model ensemble If, however, it is computed by adding in quadrature the likely 7 

ranges of individual feedbacks assuming that they are independent, the likely range of the total feedback 8 

becomes wider by 17%. This indicates that the feedbacks in climate models are partly dependent on each 9 

other. Besides a well-known co-dependency between the WV and LR feedbacks (Po-Chedley et al., 2018a; 10 

Soden and Held, 2006), two more possible co-dependencies have been suggested (Caldwell et al., 2016; 11 

Huybers, 2010). One is a negative covariance between the LR and longwave cloud feedbacks, which may be 12 

accompanied by a deepening of the troposphere (O’Gorman and Singh, 2013) leading both to more rising of 13 

high clouds and a larger upper-tropospheric warming. The other is a negative covariance between albedo and 14 

shortwave cloud feedbacks, which may occur due to compensation between a reduced surface albedo and an 15 

increase in low-level clouds with the loss of Arctic sea ice (Mauritsen et al., 2013). However, the 16 

covariances between these feedbacks are not extremely strong in the CMIP5 ensemble and furthermore not 17 

supported yet by sufficient observations. Therefore, assessments of the individual feedbacks are made 18 

separately in section 7.4.2 without a particular consideration on the co-dependency between them. 19 

 20 

 21 

7.4.2 Assessing climate feedbacks  22 

 23 

The goal of this section is to provide an overall assessment of individual feedbacks by combining different 24 

lines of evidence from observations, theory, process models and GCMs. For achieving this, the 25 

understanding of the processes governing the feedbacks, why the feedback estimates differ among models, 26 

studies or approaches, and the extent to which these estimates are consistent is presented. 27 

 28 

 29 

7.4.2.1 Planck response 30 

 31 

The Planck response represents the extra emission to space of LW radiation arising from a vertically uniform 32 

warming of the surface and the atmosphere. The feedback parameter associated with this warming is strongly 33 

negative, playing a fundamental stabilizing role.  This parameter has been estimated using climate simulation 34 

outputs or meteorological reanalysis (Caldwell et al., 2016; Dessler, 2013; Soden and Held, 2006; Vial et al., 35 

2013) and the value is in line with simple estimates based on Planck radiation. The spread among these 36 

estimates is low and is mainly due to differences in climatological cloud and water vapour distributions and 37 

the pattern of surface temperature changes. Models with greater high-latitude warming, where the 38 

temperature is colder, have smaller values of the Planck feedback. The physical processes that control this 39 

response are very well understood and the estimates from observations and climate models are consistent at 40 

interannual time scales (Dessler, 2013; Hansen et al., 1984; Soden and Held, 2006; Vial et al., 2013). This 41 

leads to an overall high confidence in the estimate of the Planck response, that is assessed to be 𝛼𝑃 = –3.15 42 

W m-2 °C–1 with a very likely range of –3.4 to –2.9 W m–2 °C–1 and a likely range of –3.3 to –3.0 W m–2 °C–1.  43 

 44 

 45 

7.4.2.2 Water vapour and lapse rate feedbacks 46 

 47 

The lapse rate feedback quantifies the change in radiative flux at the TOA due to the non­uniform change in 48 

vertical temperature profile associated with a change in global mean surface temperature. In the tropics, the 49 

vertical temperature profile is mainly driven by moist convection and thus follows a moist adiabat. The 50 

warming is therefore larger in the upper troposphere than in the lower troposphere (Bony et al., 2006; 51 

Manabe and Wetherald, 1975; Santer et al., 2005). This leads to a larger radiative emission to space per 52 

degree of surface warming and therefore a negative feedback. 53 
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 1 

At mid and high latitudes, the vertical temperature profile is mainly driven a balance between radiation and 2 

meridional heat transport rather than convection, leading to strong temperature inversions characterized by a 3 

cold surface and warmer atmosphere above, particularly in winter (Payne et al., 2015). As a consequence, 4 

warming is trapped near the surface, leading to a positive lapse rate feedback in polar regions (Manabe and 5 

Wetherald, 1975; Pithan and Mauritsen, 2014). However, the tropical contribution strongly dominates and 6 

the global lapse rate feedback is a large negative feedback. The 66% range in the CMIP5 climate models is 7 

αLR = –0.65 ± 0.3 W m–2 °C–1 (Caldwell et al., 2016; Dessler, 2013; Soden and Held, 2006; Vial et al., 2013).  8 

 9 

The water vapour feedback quantifies the change in radiative flux at the TOA due to changes in atmospheric 10 

water vapour concentration associated with a change in global mean surface temperature. As the relative 11 

humidity is nearly constant (Held and Shell, 2012; Soden and Held, 2006), specific humidity increases with 12 

temperature following approximatively the Clausius­Clapeyron relationship, which increases absorption of 13 

both LW and SW radiation and decreases the outgoing radiation. Compared to the assumption of fixed-14 

relative humidity, the water vapour feedback simulated by models is about 5% weaker (Soden et al., 2008; 15 

Soden and Held, 2006), the main reason being a decrease of the RH in the tropical upper troposphere (Vial et 16 

al., 2013).  17 

 18 

Because they are strongly linked by the Clausius-Clapeyron relationship and they are of opposite sign, the 19 

LR and WV feedbacks are often summed into one term. This reduces inter-model spread compared to the 20 

individual LR and WV feedbacks (Colman, 2003; Soden and Held, 2006). Held and Shell (2012) propose a 21 

formulation that explicitly takes into account the Clausius-Clapeyron relationship and that separates the 22 

effects of changes in temperature at constant relative humidity from the changes in relative humidity. This 23 

allows a better analysis of the role of the change in relative humidity. 24 

 25 

The tropics strongly contribute to the individual global LR and WV feedbacks but contribute much less to 26 

the combined WV+LR feedback because of the opposite signs of the two feedbacks (Bony et al., 2006; 27 

Colman, 2003; Soden and Held, 2006). The cancellation is almost perfect in the tropical upper troposphere 28 

(Vial et al., 2013). The inter-model spread in the tropical water vapour feedback is controlled by relative 29 

humidity changes (Po-Chedley et al., 2018a; Vial et al., 2013) which can be large (O’Gorman and Muller, 30 

2010). As a result, the coupling between the tropical LR and WV feedbacks across models is weak. The LR 31 

and WV feedback are closely tied in the extratropics since relative humidity changes are small there (Po-32 

Chedley et al., 2018a). 33 

 34 

Multi-model analyses show that models with relatively larger warming in the tropics have a more negative 35 

global lapse rate feedback (Soden and Held, 2006). As the LR feedback is more negative in the tropics than 36 

in the mid and high latitudes, it was first assumed that this was a direct consequence of the patterns of 37 

warming. However, recent studies demonstrate that this simple explanation was not sufficient (Po-Chedley et 38 

al., 2018a). If the local LR feedback is assumed to be constant among models, the spread of warming pattern 39 

explains only a small fraction of the global LR feedback spread. The main factor of this spread is the 40 

dependence of the local LR feedback to the pattern warming, especially over the sub-Antarctic region (Po-41 

Chedley et al., 2018a). A larger warming in the tropics compared to high latitudes leads to an increase of 42 

poleward heat and water vapour transport and an increase of the local LR feedback in the extratropics. As a 43 

consequence, both the individual WV and LR feedbacks and the combined WV+LR feedback depend on 44 

how models simulate the contrast between the tropical and the extratropical temperature. In particular they 45 

depend on how models simulate current sea-ice extent and how this extent decreases with global warming 46 

(Po-Chedley et al., 2018a). 47 

 48 

Idealized simulations of the radiative-convective equilibrium over large domains using cloud-resolving 49 

models (CRMs) or GCMs have shown that in certain conditions, convective atmospheres could 50 

spontaneously organize into dry and moist areas, a phenomenon referred to as ‘convective self-aggregation’, 51 

and that the clustering of convection leads to a dramatic drying of the free troposphere on average over the 52 

domain (Bretherton et al., 2005; Held et al., 1993). Observations also show that for given large-scale vertical 53 

motions and surface temperature, situations of stronger convective aggregation are associated with a drier 54 
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atmosphere (Holloway et al., 2017; Tobin et al., 2012, 2013). Numerical and theoretical studies suggest that 1 

the phenomenon of self-aggregation can depend on surface temperature (Emanuel et al., 2014), raising 2 

questions regarding whether a change of convective aggregation with global warming could affect the water 3 

vapour feedback, and whether GCMs could take this effect into account. The phenomenon of convective 4 

self-aggregation has been shown to also arise in GCMs, and like in CRMs it can be temperature-dependent 5 

(Arnold and Randall, 2015; Coppin and Bony, 2015; Held et al., 2007; Popke et al., 2013; Wing et al., 2017). 6 

It suggests that the GCMs have the potential to affect the WV feedback through changes in convective 7 

organization. However, although GCMs can simulate changes in the organization of deep convection on 8 

synoptic to planetary scales, they do not represent the mesoscale organization of convection. Whether or not 9 

this may affect the magnitude of the WV feedback in climate change remains unknown. 10 

 11 

The strength of the LR and WV feedbacks show statistical correlations among models under climate 12 

variability and change (Colman and Hanson, 2017). When analysing the LR and WV feedbacks at 13 

interannual time scale, there is a general consistency between GCMs and observations during the 14 

observational record (Colman and Hanson, 2017; Dessler, 2013; Po-Chedley et al., 2018a). Models have a 15 

behaviour that is fully consistent with observations and theories although observations do not allow to 16 

constrain the precise value of these feedbacks.  17 

 18 

This leads to an overall high confidence in the estimate of the water vapour plus lapse rate feedback, as the 19 

main physical processes that drive these feedbacks are well understood, are supported by multiple lines of 20 

evidence including models, theory and observations, and the various estimates cover a wide range of 21 

approaches. The combined water vapour plus lapse rate feedback is assessed to be αLR+WV = 1.12 W m–2 °C–1, 22 

with a very likely range of 0.85 to 1.40 W m–2 °C–1 and a likely range of 1.0 to 1.25 W m–2 °C–1. It is virtually 23 

certain that the combined water vapour plus lapse rate feedback is positive.  24 

 25 

 26 

7.4.2.3 Surface albedo feedback 27 

 28 

Surface albedo is determined primarily by surface reflectance, but also by the spectral and angular 29 

distribution of incident solar radiation. Changes in planetary albedo are roughly one-third the magnitude of 30 

surface albedo changes, owing to atmospheric absorption and scattering, with variability and uncertainty 31 

arising primarily from clouds (Donohoe and Battisti, 2011). Temperature change induces surface albedo 32 

change through several direct and indirect means.  In the present climate, the largest contributions by far are 33 

changes in the extent of sea ice and seasonal snow cover, as these media are highly reflective and there are 34 

large regions that are typically close to the melting temperature.  Reduced snow cover on sea ice may 35 

contribute as much to albedo feedback as reduced extent of sea ice. Changes in the snow metamorphic rate, 36 

which generally reduces snow albedo with warmer temperature, and warming-induced consolidation of light 37 

absorbing impurities near the surface, also contribute secondarily to the albedo feedback (Doherty et al., 38 

2013; Flanner and Zender, 2006; Qu and Hall, 2007; Tuzet et al., 2017). Other contributors to albedo change 39 

that are modulated indirectly by global temperature include vegetation state (Section 7.4.2.6), soil wetness, 40 

and ocean roughness. 41 

 42 

CMIP5 models show large spread in αA (Qu and Hall, 2014; Schneider et al., 2018), motivating attempts to 43 

quantify αA from global observations. Although estimates derived from the satellite record are hampered by 44 

interannual variability and its short duration compared with climate equilibration timescales, justification for 45 

using these data comes from analysis of transient simulations showing that αA estimates from time periods 46 

when global temperature change exceeds 0.5 K, regardless of the period length, offer good approximations 47 

of long-term (century-scale) αA (Schneider et al., 2018). Global temperature change during the period of 48 

consistent space-borne albedo measurements (1979 to present) is on the cusp of this threshold. 49 

 50 

Flanner et al. (2011) applied satellite observations to determine that the NH cryosphere contribution to αA 51 

over 1979–2008 was 0.48 (0.29–0.78) W m-2 °C-1, with roughly equal contributions from changes in seasonal 52 

snow cover and sea ice. Since AR5, and over similar periods of observation, Crook and Forster (2014) found 53 

an estimate of 0.8 ± 0.3 W m-2 °C-1 for the total NH extra tropical surface albedo feedback, when averaged 54 
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over global temperature change. Pistone et al. (2014) and Cao et al. (2015) estimated the Arctic sea ice 1 

contribution alone to be 0.31 ± 0.04 and 0.31 ± 0.08 W m–2 °C–1, respectively, substantially larger than the 2 

estimate from Flanner et al. (2011). Much of this NH discrepancy can be traced to different estimates of 3 

attenuation by Arctic clouds between model-derived radiative kernels and direct measurements of TOA 4 

irradiance, with the latter indicating much less attenuation and therefore suggesting that the two more recent 5 

studies showing larger αA are more realistic. All four studies show larger observational estimates of Arctic 6 

albedo change than exhibited by most CMIP3 and CMIP5 models over similar time periods, which can be 7 

traced to models generally underestimating the rate of Arctic sea ice loss during recent decades (Flato et al., 8 

2013; Stroeve et al., 2012; Chapter 9, Section 9.3.1). Crook and Forster (2014) additionally found that 9 

although models underestimated NH feedback values they agreed on similarly sized Southern Hemispheric 10 

extratropical values.  11 

 12 

Since AR5, Chen et al., (2016b) estimate that NH land snow changes during 1982–2013 contributed (after 13 

converting from NH temperature change to global mean temperature change) 0.1 W m–2 °C–1 to global αA, 14 

smaller than the estimate 0.48 (0.29–0.78) W m–2 °C–1 of Flanner et al. (2011). Qu and Hall (2014) report a 15 

CMIP5 multi-model mean NH land snow contribution to αA of 0.08 W m–2
 °C–1.  Encouragingly, this is about 16 

the same as the average of the 8 models (ranging from 0.05–0.10 W m–2 °C–1) whose seasonal cycle of 17 

albedo feedback falls within the observational range of uncertainty determined from satellite measurements.  18 

The seasonal cycle of αA offers a promising constraint on αA in the climate change context because the two 19 

are very highly correlated in models (Crook and Forster, 2014; Hall and Qu, 2006; Qu and Hall, 2014). 20 

 21 

These studies all focus on the northern hemisphere, though exclusion of the SH only slightly biases estimates 22 

of global αA because seasonal snow cover in the SH is relatively small, and trends in SH sea ice extent are 23 

relatively flat or slightly increasing over the satellite record (Comiso et al., 2017; see also Chapter 2, Section 24 

2.3). The multi-model mean global-scale αA (from all contributions) over the 21st century in CMIP5 models 25 

under the RCP8.5 scenario is 0.40 W m–2 °C–1 with a standard deviation of 0.10 W m–2 °C–1 (Schneider et al., 26 

2018), closely matching the summed observational contributions from NH sea ice and land snow over the 27 

satellite era. Moreover, Schneider et al. (2018) found that modelled αA does not decline over the 21st century, 28 

despite large losses of snow and sea ice, though a weakened feedback is apparent after 2100. Using the 29 

idealized abrupt4×CO2 as for the other feedbacks, the estimate of the global-scale albedo feedback in the 30 

CMIP5 models is 0.35 W m–2
 °C–1 with a standard deviation of 0.08 W m–2 °C–1 (Caldwell et al., 2016; Vial 31 

et al., 2013). 32 

 33 

[Assessment of the short-term albedo feedbacks due to vegetation will be included in the SOD] 34 

 35 

This leads to an overall high confidence in the estimate of the surface albedo feedback based on multiple 36 

lines of evidence including observations, models and theory. The basic phenomena that drive this feedback 37 

are well understood and the different studies cover a large variety of hypothesis or behaviours, including 38 

how the evolution of clouds affects this feedback. The global albedo feedback is therefore assessed to be αA 39 

= 0.35 W m-2 °C-1, with a very likely range of 0.10–0.60 W m–2 °C–1 and a likely range of 0.25–0.45 W 40 

m–2 °C–1. It is virtually certain that the surface albedo feedback is positive. 41 

 42 

 43 

7.4.2.4 Cloud feedbacks 44 

 45 

Clouds can be formed almost anywhere on the globe when moist air parcels rise and cool, enabling the water 46 

vapour to condensate or small water droplets to freeze. The cloud droplets, ice crystals, and their mixture 47 

interact with each other to grow into large particles of rain, snow, or drizzle, which fall down to the surface. 48 

These microphysical processes are coupled with aerosols, radiation and circulation, resulting in a complexity 49 

in the cloud processes, and it has been both observational and modelling challenges to measure them 50 

accurately and calculate them adequately, respectively. Regarding the energy budget, clouds affect SW 51 

radiation by reflecting solar insolation due to their high albedo (acting to cool the climate system) and also 52 

LW radiation by absorbing the energy emitted from the surface and re-emitting at a lower temperature than 53 

the surface temperature (i.e., the greenhouse effect, acting to warm the climate system). These effects of 54 
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clouds on radiation are measured by the CRE, which is the difference in TOA radiation between clear and 1 

cloudy skies. Because the SW CRE and LW CRE tend to compensate each other over the equatorial region 2 

where deep convective clouds dominate, the net CRE shows a large negative value over the eastern part of 3 

the subtropical oceans and the extratropical oceans owing to cooling by marine low clouds. The global-mean 4 

net CRE is approximately –18 W m–2, which comes from a SW CRE of –46 W m-2 partly cancelled by a LW 5 

CRE of +28 W m–2 (Loeb et al., 2018b). Albeit current GCMs lack the ability to reproduce some cloud 6 

regimes correctly, the overall distribution as well as the global mean of the net CRE derived from the CMIP6 7 

multi-model mean is similar to the satellite observations. 8 

 9 

The ability of GCMs to simulate clouds has now been evaluated not only for the cloud cover and CRE, but 10 

also for cloud properties directly associated with processes of cloud-radiative feedbacks, by means of the 11 

recent satellite observations and the so-called satellite simulators implemented in climate models (Bodas-12 

Salcedo et al., 2011; Tsushima et al., 2017). Measurements from A-Train satellites resolve the vertical 13 

distribution of clouds (Stephens et al., 2002), but they cannot be directly compared to the GCM outputs 14 

because all of the clouds are not seen from space simultaneously. The simulators apply the satellite retrieval 15 

algorithms to the instantaneous cloud fields simulated in a GCM, enabling a like-for-like comparison with 16 

the A-Train products. Consequently, a thorough evaluation of the vertical profile of simulated clouds has 17 

revealed model errors in the fraction,  liquid and ice contents, optical depth, and resultant CRE (Bodas-18 

Salcedo et al., 2012; Konsta et al., 2015; Nam and Quaas, 2012; Suzuki et al., 2015; Tsushima et al., 2013). 19 

For example, McCoy et al. (2014a; 2014b) showed that the too week negative SW CRE over the Southern 20 

Ocean, a well-known common error in GCMs, was due to a lack of sufficient supercooled cloud liquid 21 

droplets that should increase the cloud optical depth. While the cloud properties relevant to CREs have 22 

incrementally been improved in recent generations of GCMs (Jiang et al., 2012; Klein et al., 2013),  there 23 

still remain the common model errors such as in the subtropical low clouds  (Nam et al., 2012) and mixed-24 

phase cloud over the Southern Ocean (McCoy et al., 2016). Therefore, the assessment of cloud feedbacks in 25 

this section relies not only on GCMs but also on cloud process models and emergent constraints on cloud 26 

processes. 27 

 28 

Clouds have various types, from thick convective clouds to thin stratus and cirrus clouds, depending upon 29 

thermodynamic conditions and large-scale circulation. They are classified into several regimes as 30 

schematically shown in Figure 7.17. Over the equatorial warm pool, high SST stimulate the development of 31 

deep convective systems, which are accompanied by anvil and cirrus clouds near the tropopause where the 32 

convective air outflows. Deep convection also frequently occurs along the ITCZ in the Pacific and Atlantic. 33 

The large-scale circulation associated with these convective clouds leads to subsidence over the subtropical 34 

cool oceans, where deep convection is suppressed by a lower tropospheric inversion layer maintained by the 35 

subsidence and thereby shallow cumulus and stratocumulus clouds form. In the extratropics, mid-latitude 36 

storm tracks control cloud fraction, which occurs primarily in frontal bands of the extratropical cyclones. 37 

Because liquid droplets cannot freeze spontaneously at temperatures above approximately –40°C and ice 38 

nucleating particles that can aid freezing at warmer temperatures are rare, extratropical clouds often consist 39 

both of super-cooled liquid and ice crystal, shaping mixed-phase clouds. A challenge for understanding 40 

cloud feedbacks with surface warming is to assess the response of clouds not only to changes in local 41 

temperature and moisture but also to changes in the large-scale circulation such as the poleward retreat of 42 

storm tracks, expansion of subtropical dry zones, and increase of tropopause heights at all latitudes (red 43 

arrows in Figure 7.17). While these circulation changes have partly been detected in observations, and the 44 

past cloud change patterns derived from satellite records are overall consistent with the projected changes in 45 

GCMs (Norris et al., 2016), the broad consistency is not sufficient to quantify the net cloud feedback. 46 

 47 

 48 

[START FIGURE 7.17 HERE] 49 

 50 
Figure 7.17: Schematic cross section of diverse cloud regimes between the tropics and Polar Regions. Thick solid and 51 

dashed curves indicate the tropopause, melting level, and the subtropical inversion layer in the current 52 
climate. Thin grey arrows represent robust responses in the large-scale circulation to greenhouse 53 
warming, supported by independent lines of evidence. Text and arrows in red show the robust part of 54 
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cloud responses to the surface warming. 1 
 2 

[END FIGURE 7.17 HERE] 3 

 4 

 5 

In a first attempt to systematically evaluate ECS based on fully coupled GCMs in AR4, diverging cloud 6 

feedbacks were recognized as a dominant source of uncertainty. A thorough assessment of cloud feedbacks 7 

in different cloud regimes was then carried out in AR5 (Boucher et al., 2013), which provided high or 8 

medium confidence for some of the cloud feedbacks but low or no confidence for the rest (Table 7.8). Many 9 

studies that estimate the net cloud feedback using CMIP5 simulations (Caldwell et al., 2016; Colman and 10 

Hanson, 2017; Vial et al., 2013; Zelinka et al., 2016) show slightly different values depending on the 11 

methodology and the set of models but commonly report a considerable inter-model spread of the feedback, 12 

which has the 90% range spanning from a weak negative to a strong positive feedback (Figure 7.16).  Part of 13 

this diversity arises from the considerable dependence of the models’ cloud feedback on the parameterization 14 

of clouds and their coupling to other sub-grid processes (Gettelman et al., 2012; Watanabe et al., 2012). 15 

 16 

Since AR5, community efforts have been made to understand the cloud feedbacks in various cloud regimes 17 

coupled with large-scale circulation (Bony et al., 2015). For some cloud regimes, different lines of evidence 18 

from observations, theoretical arguments, and cloud process modelling using Large Eddy Simulation (LES) 19 

help quantifying the temperature-mediated feedbacks. Consequently, the net cloud feedback derived from 20 

GCMs has been revised by assessing separately the regional cloud feedbacks and summing them to give the 21 

global feedback. This bottom-up assessment is explained below with a summary of updated confidence of 22 

individual cloud feedback components in Table 7.8. 23 

 24 

Tropical high-cloud altitude feedback.  The cloud top altitude increases under global warming, concurrent 25 

with the rising of the tropopause at all latitudes. This increasing altitude of high clouds has been observed in 26 

early generation GCMs (Hansen et al., 1984) and the tropical high-cloud altitude feedback was assessed to 27 

be positive with high confidence in AR5 (Boucher et al., 2013). This is supported by a theoretical argument 28 

called the fixed anvil temperature (FAT) mechanism, which ensures temperature at the convective 29 

detrainment layer does not change when the altitude of high-cloud top increases with rising tropopause 30 

(Hartmann and Larson, 2002; Zelinka and Hartmann, 2010). Because the cloud top temperature does not 31 

change significantly with global warming, cloud longwave emission does not increase even though the 32 

surface warms, resulting in an enhancement of the high cloud greenhouse effect (a positive feedback). The 33 

upward shift of high clouds with surface warming is detected in observed interannual variability and trends 34 

in satellite records for 1983-2009 (Chepfer et al., 2014; Norris et al., 2016), and in global cloud-system 35 

resolving simulations and LES (Khairoutdinov and Emanuel, 2013; Narenpitak et al., 2017; Tsushima et al., 36 

2014). The high-cloud altitude feedback was estimated to be +0.5 W m–2 °C–1 based on GCMs in AR5, but is 37 

revised, using a recent re-evaluation that excludes effects of other clouds, downward to +0.20 W m–2 °C–1 38 

with the very likely range of 0.05–0.35 W m-2 °C–1  (Zelinka et al., 2016).  The positive high-cloud altitude 39 

feedback simulated in GCMs is supported by theoretical, observational, and process modelling studies, and 40 

is judged with high confidence.  41 

 42 

Tropical high-cloud amount feedback.  Updrafts in the convective plume lead to detrainment of air mass at 43 

a level where the buoyancy diminishes, and thus organized deep convective systems over high SSTs in the 44 

tropics are accompanied by so-called anvil clouds in the upper troposphere. The anvil clouds that occupy a 45 

wider area than the convective plumes themselves contribute substantially to the positive LW CRE in the 46 

present climate, so that they would exert a negative feedback if their area were reduced in the future (Figure 47 

7.17). A hypothesis known as the ‘iris effect’ that suggests the reduction of anvil clouds due to global 48 

warming was first proposed by Lindzen et al. (2001), who advocated that an increased precipitation 49 

efficiency with warming results in less condensates in the detrained air mass and consequently a strong 50 

negative feedback. This hypothetical microphysical process is not supported to date, but recent observational 51 

estimates reveal that variability in the tropical high-cloud area has a weak negative feedback on interannual 52 

time scales (Williams and Pierrehumbert, 2017). The reason for decreasing anvil clouds with increasing SST 53 

is likely different from the iris effect. Observational analyses show that the anvil cloud cover tends to be 54 
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reduced when convective clouds are clustered, accompanying a drying of the surrounding environment 1 

(Stein et al., 2016; Tobin et al., 2013). Simulations using LES and idealized GCM experiments consistently 2 

demonstrate that the convective aggregation is enhanced with increased SST and theoretical arguments have 3 

been made to explain this enhancement (Bony et al., 2016; Emanuel et al., 2014; Mauritsen and Stevens, 4 

2015; Muller and Held, 2012; Wing and Emanuel, 2014). A thermodynamic mechanism referred to as the 5 

‘stability iris effect’, independent of convective aggregation, has also been proposed to explain the tendency 6 

of many GCMs and CRMs to predict a decrease of the anvil cloud amount with warming (Bony et al., 2016; 7 

Cronin and Wing, 2017). However, a large uncertainty remains about the change in convective aggregation 8 

with warming. Moreover, the simulation of high-level clouds in GCMs and CRMs (including in global 9 

CRMs) strongly depends on the representation of parametrized processes such as cloud microphysics. 10 

Finally, anvil clouds represent only part of the upper-level cloudiness. For all these reasons, the behaviour of 11 

the high-cloud amount with warming remains quite uncertain. The tropical high-cloud amount feedback is 12 

therefore likely small and negative, counteracting a small portion of the positive high-cloud altitude 13 

feedback, but with a low confidence. 14 

 15 

Tropical marine low-cloud feedback.  It has long been argued that the response of low-latitude marine 16 

boundary layer clouds to surface warming was the largest contributor to the cloud feedback uncertainty  17 

(Bony and Dufresne, 2005). Because of their low altitude, low clouds in the stratus, stratocumulus, and trade 18 

cumulus regimes mainly affect shortwave radiation and would therefore act as a positive feedback if the 19 

amount declined with surface warming, and vice versa. Processes that control the low clouds are, however, 20 

not simple, and involve coupling with atmospheric motions on multiple scales from the boundary layer 21 

turbulence to the large-scale subsidence, which may be represented by a combination of shallow and deep 22 

convective mixing (Sherwood et al., 2014). Recent studies have attempted to disentangle the processes into 23 

several ‘cloud controlling factors’ that cause the cloud amount either to increase or decrease in response to 24 

the surface warming in a GCM (Brient and Schneider, 2016; McCoy et al., 2017b; Myers and Norris, 2016; 25 

Qu et al., 2014, 2015; Zhai et al., 2015). Two dominant factors are identified: a thermodynamic effect due to 26 

rising SST that works to reduce low cloud, and a stability effect accompanied by an enhanced inversion 27 

strength that works to increase low cloud. These controlling factors compensate with a varying degree in 28 

different GCMs, but can be constrained using the observed seasonal or interannual relationship between the 29 

low-cloud amount and the controlling factors in the environment, to which long-term changes in the latter 30 

from abrupt4xCO2 simulations are multiplied. The advantage of this approach over conventional calculation 31 

of cloud feedbacks is that the temperature-mediated cloud response can be estimated without using 32 

information of the simulated cloud responses that are less trustworthy than the changes in the environmental 33 

conditions. The synthetic analysis leads to a larger local positive feedback with smaller uncertainty:  34 

+1 W m–2 °C–1 with a likely range of 0.6–1.4 W m-2 °C-1, compared to the raw GCM estimates of 35 

+0.5 W m–2 °C–1 with the likely range from –0.2 to 1.2 W m–2 °C–1 (Klein et al., 2017) (Figure 7.18). The 36 

revision toward a larger positive feedback is supported by explicit simulations using LES applied to trade 37 

cumulus and stratocumulus regimes (Bretherton, 2015). Given that the tropical marine low clouds occupy 38 

about 25% of the globe, the global feedback due to low clouds is assessed to have the mean value of 39 

+0.25 W m–2 °C–1 and the very likely range of 0 to 0.5 W m–2 °C–1 with high confidence. 40 

 41 

Tropical land cloud feedback.  Intensification of the global hydrological cycle is a robust feature of global 42 

warming, but at the same time, many land areas in the subtropics will experience drying at the surface and 43 

the atmosphere (Chapter 8, Section 8.1). This occurs owing to a limited water availability over these regions 44 

and consequently the cloudiness is also expected to decrease over the warm subtropical land. The reduction 45 

of land clouds are consistently identified in the CMIP5 models and also in a super-parameterized GCM 46 

(Bretherton et al., 2014; Kamae et al., 2016). Because low clouds are the majority of the subtropical land 47 

clouds, this reduced amount of low clouds reflects less solar insolation and leads to a positive feedback 48 

similar to the marine low clouds. The mean estimate of the global land cloud feedback in GCMs is much 49 

smaller than the marine low cloud feedback, 0.08 W m–2 °C–1 with the inter-model standard deviation of 0.08 50 

W m–2 °C–1. However, the magnitude of this feedback has not yet been supported by other lines of evidence 51 

besides GCMs, which have considerable biases in the mean temperature and cloud fraction over land. 52 

Therefore, a small positive feedback due to decreasing land clouds is assessed likely with medium 53 

confidence. 54 
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 1 

Middle latitude cloud amount feedback.  Expansion of the subtropical dry zone and poleward shift of the 2 

storm tracks are prominent features of the large-scale circulation due to global warming. Because much of 3 

the middle latitude clouds are induced by extratropical cyclones in the storm tracks, it has long been 4 

suggested that the middle latitude cloud maxima will also move poleward with surface warming. If the cloud 5 

maxima are shifted poleward where solar insolation is low, shortwave cloud radiative cooling is weakened 6 

and it causes a positive feedback to occur. A long-term trend of the poleward shift of middle latitude clouds 7 

has indeed been seen both in observations and GCMs, but the magnitude of the feedback is still uncertain 8 

due to several reasons. On the one hand, observational estimates of the shifts in storm tracks and cloud areas 9 

(Bender et al., 2012; Eastman and Warren, 2013), though significant, may be partly due to data artefacts 10 

resulting in a spurious trend. On the other hand, GCMs predict a decrease of middle latitude cloud coverage 11 

with the radiative feedback smaller than observational estimates (Ceppi and Hartmann, 2015; Kay et al., 12 

2014) perhaps due to underestimation of shifts in the jet (Allen et al., 2012). A recent study suggests that the 13 

jet shift is caused by an altered radiative heating associated with an upward shift of clouds as in the tropics 14 

(Li et al., 2018b), indicating a mutual interaction between changes in the circulation and clouds. Overall, 15 

both observations and climate models support the positive mid-latitude cloud amount feedback, but the 16 

magnitude depends on the degree of circulation response to warming and it is not agreed between them due 17 

to limited accuracy of observations and errors in GCM simulations. This leads to the assessment with 18 

medium confidence as in AR5.  19 

 20 

Extratropical cloud optical depth feedback.  It has been argued that the cloud optical depth (opacity) will 21 

increase with surface warming in polar low clouds and hence result in a negative feedback. The most 22 

plausible explanation for this increase in cloud optical depth is a shift from ice-dominated to liquid-23 

dominated clouds with warming. Liquid clouds generally consist of many small cloud droplets, while the ice 24 

crystals in ice clouds are orders of magnitudes fewer and thus much larger, causing the liquid clouds to be 25 

optically thicker. However, other causes for the increase in optical thickness have also been proposed 26 

(McCoy et al., 2019). Despite the fact that the process responsible for increasing the cloud optical depth is 27 

not unique (Storelvmo et al., 2015), GCMs simulate a negative optical depth feedback of –0.27 W m–2 °C–1 28 

over the SH high latitudes. However, this negative feedback is very likely overestimated in the models 29 

because they tend to overestimate the relative amount of ice in these clouds (Tan et al., 2016). The feedback 30 

may actually be close to neutral considering an observational estimate using satellite datasets (Terai et al., 31 

2016). Because of these disagreements between climate models and observational estimates, the extratropical 32 

cloud optical depth feedback is assessed to be small positive with medium confidence. 33 

 34 

 35 

[START FIGURE 7.18 HERE] 36 
 37 
Figure 7.18: A synthetic evaluation of the tropical low-cloud feedback, derived from GCMs (blue), observed cloud 38 

controlling factors (yellow), and LES (dots). Central estimates are shown by white lines. Boxes and the 39 
error bars indicate the likely (66 %) and very likely (90 %) confidence intervals, respectively. The 40 
feedbacks are shown as local values but not the global mean. LES results are derived from six simulations 41 
for different cloud regimes over the tropical subsidence region. Data obtained from (Klein et al., 2017). 42 
[Note that results from CMIP6 models will be added when available.] 43 

 44 

[END FIGURE 7.18 HERE] 45 

 46 

 47 

Synthesis for the net cloud feedback.  Our understanding of the response of clouds to greenhouse warming 48 

and its radiative feedback has deepened since AR5. Of particular progress is the assessment of marine low 49 

cloud feedback, which has continuously been a major contributor to the cloud feedback uncertainty. 50 

Different sources of knowledge (theory, observations, and process modelling) are now available to verify or 51 

revise the low cloud feedback simulated in GCMs, and the positive low-cloud feedback is consequently 52 

assessed with high confidence. Yet, it is challenging to estimate the net cloud feedback by summing known 53 

feedbacks associated with individual cloud regimes because the processes involved in some of the cloud 54 
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feedbacks have been poorly understood to date (Table 7.8). 1 

 2 

Using CMIP5 GCMs, a broad agreement has been obtained in the net cloud feedback between different time 3 

scales at interannual variability and slow (decadal to centennial) climate change (Colman and Hanson, 2017). 4 

This means that the cloud feedback on the interannual time scale, due mostly to natural climate variability, 5 

can be a surrogate of the feedback to CO2-induced warming and the former can be estimated using 6 

observations. For the years 2000–2010, the net cloud feedback calculated using two atmospheric reanalysis 7 

data (ERA-Interim and MERRA) and TOA radiation budgets derived from the CERES product is +0.54 ± 8 

0.35 W m–2 °C–1 (Dessler, 2013) (the range indicates one standard deviation). The larger mean value 9 

suggests that GCMs underestimate a positive feedback or overestimate a negative feedback in some cloud 10 

regimes, but the observational estimate may certainly depend on the period used (see Section 7.4.3). 11 

Nonetheless, the net cloud feedback from GCMs becomes closer to the observational estimate when the 12 

tropical low-cloud feedback is revised using constraints from observations and LES (Figure 7.18).  13 

 14 

In summary, a broad agreement for the positive net cloud feedbacks is obtained from multiple lines of 15 

evidence. This leads to an overall high confidence in the estimate of the feedback sign, compared to AR5. 16 

When the two major cloud feedbacks assessed with high confidence (tropical high-cloud altitude and tropical 17 

marine low cloud) are summed, the net cloud feedback is assessed to be αcloud = 0.2+0.25 = 0.45 W m–2 °C–1, 18 

with medium confidence. While other cloud feedbacks are difficult to quantify, they are judged small 19 

compared to the two major feedbacks, and they will also partly compensate each other because of different 20 

signs, so that this value is used as a central estimate. The standard deviation of the combined two major 21 

feedbacks is 0.18 W m–2 °C–1, which is doubled given the uncertainty that the other cloud feedbacks do not 22 

cancel each other but are added in quadrature, i.e., the likely range of the net cloud feedback from 0.1 to 0.8 23 

W m–2 °C–1. Two out of five other cloud feedbacks are assessed small negative (Table 7.8), but of 24 

magnitudes that are insufficient to affect the sign of the estimated value of αcloud based on expert judgement. 25 

It is therefore very likely that the net cloud feedback lies between 0 and 1.1 W m–2 °C–1.  26 
 27 
 28 
[START Table 7.8 HERE] 29 
 30 
Table 7.8: Assessed sign and confidence level of cloud feedbacks in difference regimes, compared between AR5 31 

and AR6. For some cloud regimes, the feedback was not assessed in AR5, indicated by N/A.  32 

Feedback AR5  AR6 

Tropical high-cloud altitude feedback Positive (high confidence) Positive (high confidence) 

Tropical high-cloud amount feedback N/A Small negative (low confidence) 

Tropical marine low-cloud feedback N/A (low confidence) Positive (high confidence) 

Tropical land cloud feedback N/A Small positive (medium confidence) 

Middle latitude cloud amount 

feedback 
Positive (medium confidence) Positive (medium confidence) 

Extratropical cloud optical depth 

feedback 
N/A Small negative (medium confidence) 

Polar clouds Small positive (very low confidence) N/A 

Net cloud feedback Positive (medium confidence) Positive (high confidence) 

 33 

[END Table 7.8 HERE] 34 

 35 

 36 

7.4.2.5 Non-CO2 biogeochemical feedbacks and long-term Earth system feedbacks 37 

 38 

The feedbacks presented in the previous sections (7.4.2.2 to 7.4.2.4) were directly linked to major climate 39 

variables (temperature, water vapour, clouds, and surface albedo). The central role of these phenomena has 40 

been recognised since the very first studies on past and future climate change. However, in addition to these 41 

climate feedbacks, the Earth system includes feedbacks for which the impact of the global mean surface 42 
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temperature on the radiative budget is mediated by changes in the chemical composition of the dry atmosphere. 1 

They may be associated with changes in aerosols such as dust, sea-salt, or dimethylsulfide (DMS or (CH3)2S), 2 

or changes in non-H2O greenhouse gases or stratospheric ozone. Collectively, they are referred to as 3 

biogeochemical feedbacks. Among them, the most important is the carbon cycle feedback that describes how 4 

a change of the global mean surface temperature affects the carbon cycle, the CO2 concentration in the 5 

atmosphere, the radiative budget and eventually the global mean surface temperature.  However, carbon cycle 6 

feedbacks are explicitly excluded in a framework where feedbacks are referenced to a CO2 concentration 7 

change. Therefore, carbon cycle feedbacks (including weathering) are not considered here but are assessed in 8 

Chapter 5, Section 5.4.  In this section only the non-CO2 biogeochemical feedbacks are assessed. 9 

 10 

Some feedbacks act on very long timescales, such as those associated with changes in ice sheets, or vegetation 11 

distribution, or deep ocean circulation. These long-term Earth system feedbacks usually act on timescales 12 

longer that the observational record or the century-scale future, and longer than typical simulations carried out 13 

by full complexity climate models. The mechanisms associated with long-term Earth system feedbacks, and 14 

quantitative estimates of their magnitude from the paleoclimate record, are assessed in Sections (7.4.2.5.2) and 15 

(7.4.2.5.3) respectively. 16 

 17 

An overall assessment of non-CO2 biogeochemical feedbacks and long-term Earth system feedbacks is given 18 

in Section (7.4.2.5). 19 

 20 

 21 

7.4.2.5.1 Non-CO2 biogeochemical feedbacks 22 

Climate-DMS Feedback: DMS is indirectly produced by marine phytoplankton and is emitted to the 23 

atmosphere where it can lead to the subsequent formation of sulfate aerosol and CCN. Since the seminal 24 

work of (Charlson et al., 1987), the DMS-climate feedback loop has been invoked as a potential important 25 

climate-biogeochemical retroaction, with a warmer climate leading to higher DMS emissions, increased 26 

CCN and alteration of cloud properties, and subsequent changes in radiative fluxes. A few studies have 27 

attempted to estimate the potential climate feedback due to changes in DMS emissions using marine 28 

biogeochemical models embedded in climate models (Bopp et al., 2004; Gabric et al., 2013) with large 29 

discrepancies even on the sign of the feedback. Since AR5, new studies have used empirical evidence 30 

showing that climate-DMS feedback parameter is modulated by ocean acidification, with decreasing pH 31 

leading to a decrease of marine DMS emissions, and hence have updated the estimates of climate-DMS 32 

feedback parameter in the range 0.12 to 0.16 W m–2 °C–1 (Schwinger et al., 2017; Six et al., 2013).  33 

 34 

Climate-dust feedback: Mineral dust is the most abundant aerosol type in the atmosphere and affects the 35 

climate system by directly scattering and absorbing radiation as well as leading to CCN and ice nucleating 36 

particles. Overall, current understanding of dust radiative properties suggests a negative radiative forcing 37 

with dust increases (Balkanski et al., 2007).  Because dust emissions are sensitive to climate variability (e.g. 38 

through changes in the extent of dryland), it has been hypothesized that the climate-dust feedback could be 39 

an important retroaction loop in the climate system. In response to future climate change, predicted future 40 

dust conditions range from a 60% less dusty future (Mahowald and Luo, 2003) to a moderate increase of 10–41 

20% in dust (Tegen et al., 2004), thus leading to high uncertainties even on the sign of the feedback loop. 42 

Since AR5, Kok et al. (2018) have estimated the direct dust-climate feedback, from changes in the dust 43 

direct radiative effect only, and have constrained this feedback in the range –0.04 to +0.02 W m–2 °C–1.   44 

 45 

Climate-stratospheric ozone feedback: Ozone is both a key absorber of solar radiation and an important 46 

greenhouse gas. Changes in ozone concentrations in response to projected climate change have been shown 47 

to lead to a potential climate-atmospheric chemistry feedback. Climate-chemistry models consistently project 48 

an increase in the Brewer-Dobson circulation triggered by tropical sea surface warming (Bunzel and 49 

Schmidt, 2013) that leads to a decrease in lower stratospheric ozone levels in the tropical belt due to a 50 

reduced time for ozone production (Bekki et al., 2013). This would be responsible for a negative global mean 51 

ozone radiative feedback (Dietmüller et al., 2014). Since AR5, several studies have estimated the intensity of 52 

such a feedback, and obtained contrasted results, from an insignificant (Marsh et al., 2016), low (Dietmüller 53 

et al., 2014) to a first-order effect (Nowack et al., 2015) on climate sensitivity. The estimate of this climate-54 
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stratospheric ozone feedback is very model dependent, and its range is from –0.2 to 0 W m–2 °C–1. 1 

 2 

Climate-BVOC feedback:  BVOCs, such as isoprene and terpenes, are produced by land vegetation and 3 

marine plankton. Once in the atmosphere, BVOCs and their oxidation products lead to the formation of 4 

secondary organic aerosols and to increased ozone concentrations, with implications on radiative forcing. 5 

Because warmer temperatures and increased atmospheric CO2 levels are expected to increase the emissions 6 

of BVOCs by the land biosphere (Arneth et al., 2010; Kulmala et al., 2004), it has been speculated that 7 

BVOCs may be involved in a climate feedback loop. Since AR5, Paasonen et al. (2013) and Scott et al. 8 

(2018) have estimated the feedback associated with the BVOC-induced effect on clouds and radiation to be 9 

about –0.01 W m–2 °C–1 10 

 11 

Climate–CH4 and climate-N2O feedbacks:  As reported in Chapter 5, Section 5.4.7, global warming 12 

modifies CH4 emissions from wetlands, the CH4 lifetime in the atmosphere and the N2O emissions by land 13 

and ocean. The estimate of their combine feedback is in the likely range from –0.03 to 0.03 W m–2 °C–1, with 14 

low confidence. 15 

 16 

[Assessment of the short-term vegetation feedbacks, like stomatal conductance feedback, are only included 17 

in the long-term feedback in the FOD (7.4.2.5.2) but will be included here in the SOD] 18 

 19 

The CMIP6 ensemble provides a number of pairs of 4x CO2 simulations carried out with models that either 20 

do or do not include non-CO2 biogeochemical feedbacks. The comparison is not always completely clean 21 

because these pairs of models may differ by more than just their inclusion of these processes (e.g. they may 22 

run at different resolutions), but a comparison of the simulations provides a first-order estimate of the 23 

magnitude of the combination of these non-CO2 biogeochemical processes. (Table 7.9). [SOD: here will 24 

follow an assessment of the CMIP6 model-based estimates of the non-CO2 biogechemical feedbacks].    25 

 26 

 27 

[START Table 7.9 HERE] 28 
 29 

Table 7.9: [This table does not exist yet, but for SOD will be a table of those CMIP6 models that have an Earth 30 
system and an AO-only version, with the difference in their estimate of feedback parameter from the two 31 
versions.] 32 

 33 

[END Table 7.9 HERE] 34 

 35 

 36 

7.4.2.5.2 Long-term Earth system feedbacks: mechanisms and model-based estimates 37 

There are three main components of the Earth system that respond typically on timescales greater than a few 38 

decades. These are the deep ocean circulation (in particular the deep ocean overturning), the distribution of 39 

vegetation, and ice sheets. 40 

 41 

Long term Earth system feedbacks associated with deep ocean adjustment. The timescale for full 42 

equilibration global climate in response to a sustained CO2 forcing is of order several millennia owing to the 43 

slow adjustment of the deep ocean (Li et al., 2013a; Zickfeld et al., 2017). While the global-average SST is 44 

expected to be nearly equilibrated (within ten percent of equilibrium warming) after 1000 years (Knutti and 45 

Rugenstein, 2015), regions of the sea surface take longer to equilibrate owing to their strong connection to 46 

the deep ocean. In particular, SSTs in the Southern Ocean adjust more slowly than those in any other region 47 

(Li et al., 2013a; Stouffer, 2004) owing to strong circumpolar upwelling of deep ocean waters that have not 48 

been in direct contact with the atmosphere for hundreds to thousands of years (Armour et al., 2016; Marshall 49 

et al., 2015).  50 

 51 

Section 7.4.3 assesses the dependence of Earth’s global radiation budget on the spatial pattern of SST 52 

changes with a focus on the evolution of surface warming on centennial timescales. Warming of the 53 

Southern Ocean surface is thought to affect polar radiative feedbacks associated with the lapse rate, sea-ice 54 
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cover, and cloud cover. Hence, the feedback parameter, α, is expected to continue to change as the pattern of 1 

SSTs evolve as the deep ocean adjusts on millennial timescales. Fully coupled state-of-the-art climate 2 

models are rarely integrated for more than several hundred years, making it challenging to assess the 3 

magnitude of millennial-scale feedback changes. However, a few very long simulations have been carried 4 

out with fully coupled models, and with lower complexity models (Knutti and Rugenstein, 2015; Li et al., 5 

2013). Some indicate that α continues to evolve as the SST pattern changes for several thousand years, while 6 

others find that α becomes constant after a few hundred years as the spatial pattern of warming stabilizes 7 

(Armour et al., 2013). While there is high confidence that feedbacks will increase in the future as the spatial 8 

pattern of warming evolves on centennial timescales (Section 7.4.3), there is currently insufficient 9 

information to assess how radiative feedbacks will change as the deep ocean adjusts over millennial 10 

timescales. 11 

 12 

Long term Earth system feedbacks associated with vegetation. Vegetation is sensitive to climate on long 13 

timescales, because different species are adapted to different specific climates (e.g. Köppen and Geiger, 14 

1936; Prentice et al., 1992).  Furthermore, vegetation is directly sensitive to atmospheric CO2, which affects 15 

plant physiology through changes in stomatal conductance and photosynthesis rates (e.g. Ainsworth and 16 

Rogers, 2007).  As such, in response to CO2 and temperature changes (Chapter 5, Section 5.2.3), and 17 

changes to the hydrological cycle associated with temperature changes (Chapter 5, Section 5.2.3), the 18 

distribution of vegetation can change over time. As vegetation distributions change, there is a radiative effect 19 

on the climate system because different species of vegetation typically have different albedos (including 20 

when snow-covered; e.g. Essery et al., 2009). Furthermore, different species have different roughness 21 

lengths and different evapotranspiration properties, and so changes in vegetation can also influence 22 

atmospheric circulation and the hydrological cycle (Bonan, 2008).  Here, the associated feedback system is 23 

termed “physiological-biophysical vegetation feedbacks”.  In contrast, biogeochemical vegetation feedbacks, 24 

which influence atmospheric CO2, are explicitly excluded in our concentration-driven framework (Section 25 

7.1; Box 7.1) and are not considered here.  The timescale of response of vegetation to CO2 and climate 26 

change is relatively uncertain but can be hundreds of years (Willeit et al., 2014); full equilibrium only occurs 27 

when the soil system and associated carbon pools fully equilibrate, which can take longer (Sitch et al., 2008).   28 

 29 

Climate models that include a dynamical representation of vegetation (e.g. Harper et al., 2018) can been used 30 

to explore the importance of physiological-biophysical vegetation feedbacks (e.g. Alo and Anagnostou, 31 

2017; Armstrong et al., 2019; Arora et al., 2013; Notaro et al., 2007; O’ishi et al., 2009; Port et al., 2012; 32 

Willeit et al., 2014; Zhang et al., 2018). Typically, simulations driven by prescribed CO2 increases are 33 

carried out in climate models with and without dynamic vegetation, and the temperature responses 34 

compared.  In AR5, it was discussed that such model experiments predicted that expansion of vegetation in 35 

the high latitudes of the NH would enhance warming due to the associated surface albedo change (Boucher 36 

et al., 2013); an effect amplified by sea ice and snow feedbacks. Further, that reduction of tropical forests 37 

would also lead to warming, due to reduced evapotranspiration. However, no quantitative assessment was 38 

made of the global impact of physiological-biophysical vegetation feedbacks, although CMIP5 simulations 39 

at that time indicated a small mean positive warming (+0.42 °C after 140 years of a 1% per year CO2 40 

increase).  41 

 42 

Since AR5, several studies have confirmed that physiological-biophysical vegetation feedbacks lead to 43 

enhanced warming in NH high latitudes (high confidence), associated with a shift from tundra to boreal 44 

forests and the associated albedo change (Armstrong et al., 2019; Willeit et al., 2014; Zhang et al., 2018c). 45 

Although regional modelling indicates that vegetation feedbacks may act to cool climate in the 46 

Mediterranean (Alo and Anagnostou, 2017), in the tropics and subtropics the  regional response is  in general 47 

not consistent across models.   48 

 49 

On a global scale, modelling studies indicate that physiological-biophysical vegetation feedbacks are either 50 

positive (Armstrong et al., 2019; Arora et al., 2013; Notaro et al., 2007; O’ishi et al., 2009) or are close to 51 

zero (Port et al., 2012; Willeit et al., 2014).  Overall, the feedback parameter, αx, for physiological-52 

biophysical vegetation feedbacks is assessed to be likely positive, with medium confidence, but there is 53 

insufficient evidence at this time to give an assessment of its likely range. Higher confidence in the results 54 
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from coupled climate-vegetation models will be obtained if they are able to better simulate past observed 1 

changes in vegetation, such as under orbital forcing in the mid-Holocene, when data indicates extensive 2 

vegetation in the Sahara, which models are currently unable to capture ( Braconnot et al., 2012). 3 

 4 

Long term Earth system feedbacks associated with ice sheets. Earth’s ice sheets (Greenland and Antarctica) 5 

are also sensitive to climate change (Section 9.4).  Their surface mass balance depends on the net energy 6 

balance and P-E at their surface, and the stability of the Antarctic ice shelves depends on ocean temperature 7 

(Section 9.4.1).  The presence of ice sheets affects Earth’s radiative budget, hydrology, and atmospheric 8 

circulation due to their characteristic high albedo, low roughness length, and high altitude, and they influence 9 

ocean circulation through freshwater input from calving and melt (e.g. Fyke et al., 2018).  The timescale of 10 

response of ice sheets is of the order of thousands of years; due to the long timescales involved, fully coupled 11 

climate-ice sheet simulations with full complexity models cannot be run to full equilibrium, and as a result, 12 

long-term simulations are often carried out with lower complexity models, and/or are not fully coupled.  13 

 14 

In AR5, it was described that both the Greenland and Antarctic ice sheets would continue to melt in a 15 

warming world (Collins et al., 2013a), with a continuation in sea level rise beyond the year 2500 being 16 

assessed as virtually certain.  However, there was low confidence in the associated feedback mechanisms, 17 

and as such, there was no assessment of the magnitude of long-term Earth system feedbacks associated with 18 

ice sheets. 19 

 20 

The magnitude of the feedback associated with changes to ice sheets can be quantified by comparing the 21 

global mean long-term equilibrium temperature response to increased CO2 concentrations in simulations that 22 

include interactive ice sheets with that of simulations that do not include the associated ice-sheet climate 23 

interactions (Bronselaer et al., 2018; Goelzer et al., 2011; Golledge et al., 2019; Swingedouw et al., 2008; 24 

Vizcaíno et al., 2010). These simulations indicate that on multi-centennial timescales, fresh water fluxes 25 

from melting ice sheets modify ocean circulation (Bronselaer et al., 2018; Goelzer et al., 2011; Golledge et 26 

al., 2019; Swingedouw et al., 2008), leading to reduced warming, although other work suggests no net global 27 

temperature effect of ice sheet melting (Vizcaíno et al., 2010). However, model simulations in which the 28 

Antarctic ice sheet is removed completely in a paleoclimate context indicate a positive global mean feedback 29 

on multi-millennial timescales due primarily to the surface albedo change (Goldner et al., 2014; Kennedy-30 

Asser et al., 2019).  As such, overall, on multi-centennial timescales the feedback parameter, αx, associated 31 

with ice sheets is negative (medium confidence), but on multi-millennial timescales by the time the ice sheets 32 

reach equilibrium (or completely melt) and freshwater fluxes reduce (or stop), the feedback parameter is 33 

positive (high confidence).  However, there is currently not enough evidence to quantify these feedbacks, or 34 

the timescales on which they act.  35 

 36 

[SOD will add discussion of any new long simulations with and without ice sheets that are carried out in the 37 

framework of ISMIP6 (Goelzer et al., 2018; Nowicki et al., 2016)]. 38 

 39 

Long-term Earth system feedbacks: paleoclimate observations and modelling. In AR5 (Masson-40 

Delmotte et al., 2013), the only quantitative assessment of long-term Earth system feedbacks was in the 41 

context of the paleoclimate record, wherein it was assessed that evidence from the Mid Pliocene Warm 42 

Period (MPWP, 3.3 to 3.0 million years ago) implied that, with medium confidence, Long-term Earth 43 

sensitivity may be up to two times greater than Charney climate sensitivity. This implies a positive value of 44 

the feedback parameter, αx, for the combination of vegetation and ice sheet feedbacks.   45 

 46 

Since AR5, several studies have further explored long-term Earth system feedbacks using a combination of 47 

paleoclimate observations and modelling. In particular, model simulations under CO2 forcing can be carried 48 

out in which the vegetation and ice sheets are prescribed in a way that is informed by paleoclimate 49 

observations (Haywood et al., 2013b; Lunt et al., 2009)). For this approach, observations of past sea level 50 

(e.g. from paleo shorelines; Dowsett and Cronin, 1990; or from geochemical estimates; Winnick and Caves, 51 

2015) can provide information on ice sheet changes, and observations of past vegetation (e.g. from pollen 52 

records; Salzmann et al., 2013) can provide information on land surface changes, associated with past high-53 

CO2 time periods.   54 
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 1 

Overall assessment of non-CO2 biogeochemical feedbacks and long-term Earth system feedbacks. A 2 

limited number of studies provided new estimates of the non-CO2 biogeochemical feedbacks since AR5. The 3 

non-CO2 biogeochemical feedbacks come from a variety of models, with different level of complexity and 4 

that generally include only part of these feedbacks. The possible interaction between feedbacks may be 5 

lacking. The results vary across the different studies, which are generally based on a limited evidence. As a 6 

result, there is low confidence in the estimates of both the individual feedbacks and their total effect (Table 7 

7.10).  8 

 9 

The combination of model-based estimates, and paleoclimate approaches together indicate with high 10 

confidence that the feedback parameter associated with long-term Earth system feedbacks (vegetation and ice) 11 

is positive on multi-millennial timescales, but there is not enough robust evidence to give a quantitative 12 

assessment of its magnitude or the associated timescales [note:for SOD  may change with emerging papers]. 13 

 14 

 15 

[START Table 7.10 HERE] 16 

 17 
Table 7.10: Assessed estimates of non-CO2 biogeochemical feedbacks and long-term Earth system 18 

 19 

Feedback Parameter, αx Combined 

Feedback 

Parameter, αx 

Timescale Assessment Confidence 

DMS  Years likely 0.12 to 0.16  W m–2 °C–1 low 

Dust   Years likely –0.04 to +0.02  W m–2 °C–1 low 

Stratospheric ozone  Years likely –0.2 to 0 W m–2 °C–1 low 

BVOC  Years about –0.01 W m–2 °C–1 low 

CH4 and N2O  Years likely –0.02 to 0.03 W m–2 °C–1 low 

DMS, Dust, Stratospheric 

ozone, BVOC, CH4 and 

N2O 

All non-CO2 

biogeochemical 

Years likely –0.1 to 0.1 W m–2 °C–1 low 

Vegetation   Multi-

centennial 

likely positive Medium 

Ice sheets  Multi-

centennial 

likely negative Medium 

Ice sheets  Multi-

millennial 

likely positive High 

Vegetation, ice sheets All long-term 

Earth system 

Multi-

millennial 

very likely positive High 

 20 

[END Table 7.10 HERE] 21 

 22 

 23 

7.4.2.6 Synthesis  24 

 25 

Table 7.11 summarises the estimates and the assessment of the individual and the total feedbacks presented 26 

in the above sections. The GCMs estimates is computed using one single method whereas the assessed 27 

interval also includes uncertainties due to the calculation method. The medium confidence in the cloud 28 

feedback limited the level of confidence of the total feedback and prevents us from defining the very likely 29 

range of the total feedback. However, as the net cloud feedback is assessed positive with high confidence, the 30 

total climate feedback is assessed to be very likely more positive than –1.95 W.m-2 °C-1 with high confidence. 31 
 32 

 33 

[START Table 7.11 HERE] 34 
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 1 
Table 7.11: Synthesis Assessment of climate feedbacks 2 

 3 

Feedback parameter 

𝛼𝑥 

CMIP5 GCMs CMIP6 GCMs AR6 assessment 

5-95% interval 

(W m-2 °C-1) 

5-95% interval 

(W m-2 °C-1) 

very likely interval 

(W m-2 °C-1) 

likely interval 

(W m-2 °C-1) 

level of 

confidence 

Planck –3.2 to –3.0  –3.4 to –2.9 –3.3 to –3.0 high 

WV + LR 1.0 to 1.3  0.85 to 1.40 1.0 to 1.25 high 

Clouds –0.1 to 0.95   0.07 to 0.83 high 

Surface albedo 0.2 to 0.55  0.10 to 0.60 0.25 to 0.45 high 

non-CO2 

biogeochemistry 

Not evaluated  Not evaluated –0.1 to 0.1 low 

Total (i.e. relevant 

for ECS) 

–1.6 to –0.6   –1.6 to –0.9 medium 

Additional long term 

(millennial scale) 

  > 0.0  high 

 4 

[END Table 7.11 HERE] 5 

 6 

 7 

7.4.3 Dependence of feedbacks on temperature patterns 8 

  9 

Since AR5 there is a much-improved understanding of the dependence of radiative feedbacks on the spatial 10 

patterns of surface warming. Multiple generations of climate models have produced changes in the global 11 

radiative feedback under transient warming, and a variety of explanations have been proposed for this 12 

behaviour (Andrews et al., 2015; Boer and Yu, 2003; Geoffroy et al., 2013a; Murphy, 1995; Rose et al., 13 

2014; Senior and Mitchell, 2000; Williams et al., 2008; Winton et al., 2010). Research since AR5 has 14 

focused on the role of evolving SST patterns in driving radiative feedback changes (Andrews et al., 2015, 15 

2018; Andrews and Webb, 2018; Armour et al., 2013; Ceppi and Gregory, 2017; Dong et al., 2019; Gregory 16 

and Andrews, 2016; Marvel et al., 2018; Myhre et al., 2018; Proistosescu and Huybers, 2017; Silvers et al., 17 

2018; Zhou et al., 2016, 2017a). In particular, changes in warming patterns provoke changes in global TOA 18 

radiation that are not associated with global mean surface warming. Thus, if the warming pattern evolves, so 19 

too will global radiative feedbacks. This “pattern effect” (Stevens et al., 2016) is distinct from potential 20 

radiative feedback dependencies on the global mean surface warming, which are assessed in Section 7.4.4. 21 

This section assesses process understanding of the pattern effect. Section 7.5.3 describes how potential 22 

feedback changes affect estimates of ECS based on historical warming. 23 

 24 

The radiation changes most sensitive to warming patterns are thought to be those associated with the low-25 

cloud cover (affecting global albedo) and the tropospheric temperature profile (affecting infrared emission to 26 

space). The mechanisms and radiative impacts of these changes are illustrated in Figure 7.19a,b. SSTs in 27 

regions of deep convective ascent (e.g., in the western Pacific warm pool) govern the temperature of the 28 

tropical free troposphere and, in turn, affect low clouds through the strength of the inversion that caps the 29 

boundary layer (i.e., the lower-tropospheric stability) in subsidence regions (Klein et al., 2017; Wood and 30 

Bretherton, 2006). Surface warming within ascent regions thus warms the free troposphere and increases 31 

low-cloud cover, engendering an increase in infrared emission to space and a reduction in absorbed solar 32 

radiation. In contrast, sea-surface warming in regions of overall descent preferentially warms the boundary 33 

layer and enhances convective mixing with the dry free troposphere, decreasing low-cloud cover (Bretherton 34 

et al., 2013; Qu et al., 2014; Zhou et al., 2015) and engendering an increase in absorption of solar radiation 35 

but little change in infrared emission to space. As a result, warming in tropical ascent regions actuates 36 

negative lapse-rate and cloud feedbacks while warming in tropical descent regions actuates positive lapse-37 

rate and cloud feedbacks (Figure 7.19b; (Andrews and Webb, 2018; Dong et al., 2019; Rose and Rayborn, 38 

2016; Zhou et al., 2017a). Surface warming in mid-to-high latitudes engenders a weak radiative response 39 

owing to compensating changes in infrared emission (Planck and lapse-rate feedbacks) and absorbed solar 40 
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radiation (shortwave cloud and surface-albedo feedbacks) (Figure 7.19b) (Dong et al., 2019; Rose and 1 

Rayborn, 2016). 2 

 3 

 4 

[START FIGURE 7.19 HERE] 5 
 6 

Figure 7.19: Illustration of tropospheric temperature and cloud response to enhanced warming in the west Pacific 7 
Ocean relative to the east; adapted from (Mauritsen, 2016) based on results from (Zhou et al., 2016). (b) 8 
Global TOA radiative response to sea-surface warming at each location while SSTs are held fixed 9 
elsewhere in NCAR’s Community Atmosphere Model version 5 (CAM5); adapted from (Zhou et al., 10 
2017a). (c) Observed sea-surface temperature linear trend over 1900-2017 (HadISST dataset; Rayner et 11 
al., 2003). (d) Sea-surface temperature linear trend over 150 years following abrupt CO2 quadrupling 12 
simulations of CMIP5 GCMs (average of 17 models). [Note SOD will update to show observed 1900-13 
2018 SST trend. For SOD: show (a) as a separate figure and update. In its place add the pattern of 14 
warming under 1pctCO2 or historical for CMIP5/6] 15 

 16 

[END FIGURE 7.19 HERE] 17 

 18 

 19 

Since 1900, observed SSTs in the tropical western Pacific Ocean have increased while those in the tropical 20 

eastern Pacific Ocean have changed less (Figure 7.19c; Chapter 9, Section 9.2). Much of this strengthening 21 

of the equatorial Pacific temperature gradient has occurred since about 1980 due to strong warming in the 22 

west and cooling in the east associated with an intensification of the surface equatorial easterly trade winds 23 

that has been driven by a combination of internal variability and aerosol forcing (Chapter 9, Section 9.2). 24 

Southern Ocean SSTs have also been slow to warm since 1900 and have cooled since 1980 owing to a 25 

combination of upper-ocean freshening from ice-shelf melt, intensification of surface westerly winds from 26 

ozone depletion, and variability in ocean convection (Chapter 9, Section 9.2). Concurrent with these SST 27 

trends since 1980 has been an increase in the strength of the capping inversion in tropical descent regions, 28 

resulting in an observed increase in low-cloud cover over the tropical eastern Pacific (Zhou et al., 2016). 29 

Thus, tropical low-cloud cover increased over recent decades even as global-average surface temperature 30 

increased – a negative low-cloud feedback which is at odds with the positive low-cloud feedback expected 31 

under global warming (Section 7.4.2). Atmosphere-only GCMs run with prescribed observed SST and sea-32 

ice concentrations show pronounced variation in their radiative feedbacks over the last century, with a trend 33 

toward strongly negative net radiative feedback in recent decades, owing primarily to negative shortwave 34 

cloud feedbacks, as in observations (Figure 7.20a) (Andrews et al., 2018; Dong et al., 2019; Marvel et al., 35 

2018; Zhou et al., 2016). However, coupled versions of the same GCMs, with identical atmospheres, 36 

robustly produce more positive values of net radiative feedbacks primarily due to more positive shortwave 37 

cloud feedback in response to abrupt CO2 quadrupling (abrupt4xCO2) (Andrews et al., 2018; Marvel et al., 38 

2018). That is, the net radiative feedback within GCMs is more positive (higher ECS) for the long-term 39 

pattern of warming under CO2 forcing than it is over the historical record. This finding can be understood 40 

from Figure 7.19b,c,d: historical sea-surface warming has been relatively large in regions of tropical ascent, 41 

leading to enhanced radiation to space per degree of global warming and thus an anomalously net negative 42 

radiative feedback; however, coupled GCMs project that future warming will be largest in tropical descent 43 

regions and at high latitudes (Section 7.6.2), leading to a reduction in radiation to space per degree of global 44 

warming and thus a more positive global radiative feedback. 45 

 46 

Andrews et al. (2018) analysed available CMIP5/6 climate model simulations (6 in total) comparing 47 

feedbacks engendered by prescribed historical warming patterns (atmosphere-only GCMs) against feedbacks 48 

under projected abrupt4xCO2 warming (coupled GCMs). All models show a more positive global radiative 49 

feedback under abrupt4xCO2 than for the historical period (trend since 1870), with an average increase of 50 

around +0.6 W m-2°C-1 (+0.3 to +1.0 W m–2 °C–1 range across models) (Figure 7.20d,f). These feedback 51 

changes imply that the value of ECS may be substantially larger than that inferred from the historical record 52 

(Section 7.5.3.1). 53 

 54 

Feedback changes can alternatively be estimated within transient warming simulations of coupled GCMs.  55 
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(Armour, 2017) considered changes in radiative feedbacks between the transient response to an idealized 1 

1% yr–1 CO2 ramping (1pctCO2) and the long-term response under abrupt4xCO2 in 21 CMIP5 models. The 2 

majority of models show a more positive global radiative feedback under abrupt4xCO2 than transient 3 

warming, with an average increase of around +0.2 W m–2 °C–1 (–0.1 to +0.6 W m–2 °C–1 range across models) 4 

(Figure 7.19c). The increase in feedbacks within the coupled models is thus not as large as that found when 5 

prescribing observed warming patterns (Figure 7.19b,c). This arises from the fact that the spatial pattern of 6 

warming within the 1pctCO2 simulations is distinct from that observed over the historical record and more 7 

similar to the pattern under abrupt4xCO2. In general, coupled GCMs are not able to reproduce the observed 8 

cooling of the eastern tropical Pacific or Southern Ocean over recent decades, even within historical 9 

simulations where non-CO2 forcings are included (Kostov et al., 2018; Zhou et al., 2016). This suggests that 10 

internal climate variability may have played an important role in observed SST trends or that GCMs may 11 

have errors in either the applied forcing or forced response (Section 9.2). Simulations with prescribed 12 

historical warming patterns (Figure 7.19b) provide a more realistic representation of historical feedbacks and 13 

are thus thought to provide more accurate estimates of how feedbacks may change as the warming pattern 14 

evolves from present to equilibrium under CO2 forcing (Andrews et al., 2018). 15 

  16 

 17 

[START FIGURE 7.20 HERE] 18 

 19 
Figure 7.20: (a) Radiative feedback (α) over the historical record derived from atmospheric GCMs with prescribed 20 

observed SSTs and sea-ice concentration changes (modified from Andrews et al., 2018). Historical 21 
feedback is derived from linear regression of global TOA radiation against global near-surface air 22 
temperature over the simulations, with regression starting in year 1870 and ending in the year shown. (b) 23 
Radiative feedback derived from historical energy budget constraints (Section 7.5.3). (c) Relationship 24 
between historical net feedback in atmospheric GCMs constrained to match the observed pattern of 25 
warming over the over the historical record (Figure 7.19c) and the net feedback under abrupt CO2 26 
quadrupling within coupled versions of the same GCMs (average warming pattern shown in Figure 27 
7.19d). Equilibrium feedback is estimated based on regression of global TOA radiation against global 28 
near-surface air temperature over years 1-150 of abrupt4xCO2 simulations, but similar results are found if 29 
the feedback magnitude is estimated as CO2 ERF divided by ECS. (d) Relationship between historical net 30 
feedback and equilibrium net feedback in fully-coupled CMIP5 models. Historical feedback is estimated 31 
at year 100 of 1%/yr CO2 ramping simulations based on the change in global TOA radiation divided by 32 
the change in global near-surface air temperature where changes are taken with respect to pre-industrial 33 
(Armour, 2017). The equilibrium feedback magnitude is estimated as CO2 ERF divided by ECS where 34 
ECS is derived from linear regression over years 1-150 of abrupt4xCO2 simulations (Box 7.1). [SOD will 35 
add additional CMIP6 models to all panels when available. Calculate feedback changes over historical 36 
simulations when forcing become available (RFMIP).]  37 

 38 

[END FIGURE 7.20 HERE] 39 

 40 

 41 

The magnitude of radiative feedback changes, as quantified by GCMs, depends on the accuracy of both the 42 

projected patterns of SST and sea-ice concentration changes in response to CO2 forcing and the radiative 43 

response to those patterns (Andrews et al., 2018). It also depends on the accuracy of the historical SST and 44 

sea-ice concentration conditions prescribed within atmospheric GCMs to quantify the historical radiative 45 

feedback (Figure 7.20), which are uncertain for the early portion of the historical record but less problematic 46 

from the late 1970s (Section 2.2). While there are not yet direct observational constraints on the magnitude 47 

of the pattern effect, satellite measurements of TOA radiation fluxes show strong co-variation with changing 48 

patterns of SSTs, indicating the potential for a strong pattern effect in nature (Loeb et al., 2018c). Cloud 49 

responses to observed warming patterns in atmospheric model have also been found to compare favourably 50 

with those observed by satellite (Zhou et al., 2016). This suggests that the pattern effect will only be 51 

negligible if the observed pattern of warming persists to equilibrium. However, there is medium evidence 52 

and high agreement across paleoclimate proxies, GCM simulations, and process understanding that warming 53 

in the eastern equatorial Pacific Ocean and Southern Ocean, largely absent over the historical record, will 54 

eventually emerge as the response to CO2 forcing dominates temperature changes in these regions (Sections 55 
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7.6.2; 7.6.3; 9.2). This leads to medium confidence that the eastern Pacific SSTs will eventually warm by 1 

more than the western Pacific SSTs and high confidence that SSTs in the Southern Ocean will eventually 2 

warm by more than tropical SSTs. Thus, there is high confidence that radiative feedbacks will become more 3 

positive in the future as the pattern of surface warming evolves. The magnitude of the net radiative feedback 4 

changes between the present warming pattern and the projected equilibrium warming pattern in response to 5 

CO2 forcing (Figure 7.19b) estimated to be in the range +0.3 to +1.0 W m–2 °C–1 (Figure 7.19b) with a low 6 

confidence in this range because its quantification currently relies solely on GCM results. Section 7.5.3 7 

assesses the implications of changing radiative feedbacks for estimates of ECS based on the historical 8 

temperature record.  9 

 10 

 11 

7.4.4 Dependence of feedbacks on climate mean state 12 

 13 

In the standard framework of forcings and feedbacks (Section 7.4.1; Box 7.1), the strength of climate feedbacks 14 

are assumed to be independent of the background global mean temperature, i.e., the individual feedback 15 

parameters, αx, are assumed to be constant over a range of climate states.  If this approximation holds, then the 16 

equilibrium global mean temperature response to a unit forcing will be constant, regardless of the climate state 17 

to which that forcing is applied. 18 

 19 

In reality, this approximation will break down if climate feedbacks behave sufficiently non-linearly, varying 20 

as a function of, for example, background temperature (Bloch-Johnson et al., 2015; Roe and Armour, 2011; 21 

Roe and Baker, 2007; Zaliapin and Ghil, 2010).  If the real climate system exhibits this so-called “state-22 

dependence”, then future temperature change in response to large forcings may be different from that inferred 23 

using the standard framework. Climate models do in general include representations of feedbacks that allow 24 

non-linear behaviour, and so model results may also differ from the predictions from the standard framework.     25 

 26 

In AR5 (Boucher et al., 2013), there was a recognition that the climate system could be state-dependent 27 

(Colman and McAvaney, 2009), but modelling studies that explored this (e.g. Manabe and Bryan, 1985; 28 

Voss and Mikolajewicz, 2001; Stouffer and Manabe, 2003; Hansen, 2005) were not assessed in detail. 29 

However, in AR5 (Masson-Delmotte et al., 2013) paleoclimate evidence was used to assess that climate 30 

sensitivity in simulations of the Last Glacial Maximum (LGM, ~19,000 to 21,00 years ago; Table 2.A.1; 31 

Cross-Chapter Box 1.4) was less than that in simulations of warm climates (CO2 quadrupling), due to a state 32 

dependency in shortwave cloud feedbacks.   33 

 34 

Here recent evidence for state-dependence in feedbacks, from modelling studies (Section 7.4.4.1) and from 35 

the paleoclimate record (Section 7.4.4.2) are assessed.  Evidence for the dependence of feedbacks on the spatial 36 

pattern of warming, independent of global mean temperature change, is assessed in Section 7.4.3. 37 

 38 

 39 

7.4.4.1 Evidence for state-dependence in feedbacks from modelling studies 40 

 41 

There are several modelling studies since AR5 in which models have been used to explore state-dependency 42 

(Caballero and Huber, 2013; Good et al., 2015; Hansen et al., 2013; Heinemann et al., 2009; Jonko et al., 2013; 43 

Meraner et al., 2013).  Typically, multiple simulations are carried out across successive CO2 doublings; a non-44 

linear temperature response to these successive doublings may be partly due to forcing that increases more 45 

rapidly than expected from a purely logarithmic dependence and partly due to state-dependence in feedbacks.   46 

 47 

Not all modelling studies have partitioned the non-linearities in temperature response into components due to 48 

non-linearities in forcings versus feedbacks.  However, there is general agreement amongst GCMs that there 49 

is a net increase in overall feedback strength (i.e. the feedback parameter, α, becomes less negative) as 50 

temperature increases from preindustrial (Meraner et al., 2013; see Figure 7.21).  This increase is due in most 51 

models to the water vapour (Section 7.4.2.2) and cloud (Section 7.4.2.4) feedbacks becoming more positive 52 

with warming. These changes are offset partially but not completely by the surface albedo feedback 53 

becoming less positive with warming (Jonko et al., 2013; Meraner et al., 2013), which is a consequence of 54 
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reduced snow and sea ice in a warmer climate. At the same time there is little change in the Planck feedback 1 

(Section 7.4.2.1), which becomes slightly less negative with decreasing planetary emissivity as global 2 

temperature increases (Mauritsen et al., 2019).  Analysis of the spatial patterns of the non-linearities in 3 

temperature response (Good et al., 2015) suggests that these are also associated with a reduced weakening of 4 

the AMOC, and changes to evapotranspiration. There is some limited evidence from models that feedback 5 

strength may start decreasing (α becoming more negative) at very high CO2 concentrations (> 4000ppmv) 6 

(Caballero and Huber, 2013; Hansen et al., 2013; Popp et al., 2016). 7 

 8 

Several EMICs have been used to assess state-dependence of feedbacks (synthesised by Pfister and Stocker, 9 

2017). The majority of EMICs synthesised either did not exhibit state-dependence or had a net feedback 10 

strength that decreased (i.e. α became more negative) with increasing CO2 forcing, in contradiction to the 11 

GCM results. This is perhaps unsurprising since EMICs usually do not represent the water vapour and cloud 12 

feedbacks mechanistically.  One exception was the FAMOUS model, which had net feedbacks that increased 13 

with increasing CO2 forcing (i.e. α became less negative), and which, in contrast to the other EMICs in that 14 

study, is more akin to a low-resolution GCM.  Although Pfister and Stocker (2017) showed that care must be 15 

taken when interpreting results from current generation EMICs, it did suggest that non-linearities in 16 

feedbacks can take a long time to emerge in model simulations, implying that millennial-scale simulations 17 

are required to increase confidence in GCM studies examining state-dependence. 18 

 19 

The possibility of fundamental changes in state has also been suggested from theoretical studies; such 20 

changes in state could lead to substantial changes in climate feedbacks across relatively narrow CO2 21 

increases (Popp et al., 2016; Steffen et al., 2018; von der Heydt and Ashwin, 2016). However, even if such 22 

behaviour does exist, the threshold at which any such threshold might occur is highly uncertain.  23 

 24 

Overall, the modelling evidence indicates that there is medium to high confidence that the overall net 25 

feedback strength increases with background temperature, at least up to atmospheric CO2 concentrations of 26 

about 4000 ppmv, and medium confidence that this state-dependence primarily derives from increases in the 27 

water vapour and shortwave cloud feedbacks; however, there is insufficient evidence to provide a 28 

quantification of associated nonlinearities in the feedback parameter, α.   29 

 30 

 31 

7.4.4.2 Evidence for state-dependence in feedbacks from the paleoclimate record 32 

 33 

Several studies have estimated the strength of climate feedbacks from observations of the glacial-interglacial 34 

cycles of the last ~2 million years, and found a state dependence, with weaker net feedback (more negative 35 

α) during colder periods of the cycles and stronger net feedback (less negative α) during warmer periods 36 

(Friedrich et al., 2016; Köhler et al., 2015, 2017; Royer, 2016; von der Heydt et al., 2014); see summaries in 37 

Skinner (2012) and von der Heydt et al. (2016).  However, the nature of the non-linearity derived from these 38 

observations is dependent on the assumed ice sheet forcing (Köhler et al., 2015), which is not well known, 39 

and the orbital forcing (Köhler et al., 2018); furthermore, modelling studies support both decreased 40 

(Yoshimori et al., 2011) and increased (Kutzbach et al., 2013) temperature response to unit forcing during 41 

cold climates compared to modern.  Overall, there is medium confidence that the net feedback is stronger (α 42 

is less negative) in the warmer than in the colder episodes of the glacial-interglacial cycles.   43 

 44 

There is paleoclimate observational evidence that during time periods warmer than present there is an 45 

increase in net feedback strength (i.e. α becomes less negative) with increasing temperature (Anagnostou et 46 

al., 2016; Shaffer et al., 2016), but the uncertainties in global mean temperature and forcing at these times 47 

are relatively large. This state-dependence in feedbacks in Earth’s deep past is also supported by 48 

paleoclimate modelling studies of the Eocene (Caballero and Huber, 2013), wherein the state-dependence is 49 

associated with changes in shortwave cloud feedback.  The paleoclimate evidence indicates that the overall 50 

net feedback strength was likely greater during warm time periods of the last 65 million years than during 51 

colder time periods (low confidence). 52 

 53 

Overall, independent lines of evidence from models (Section 7.4.4.1) and from the paleoclimate record 54 
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(Section 7.4.4.2) indicate that the feedback parameter, α, likely becomes less negative as temperatures 1 

increase above modern-day values (high confidence); see Figure 7.21.  [note for SOD: the overall synthesis 2 

of evidence from paleoclimate and models at this point will likely depend on the forthcoming nonlinMIP 3 

results (Good et al., 2016), plus any emerging paleo work. The synthesis, summarised in Figure 7.21, could 4 

then be quantified with a likely range.] 5 

 6 

 7 

[START FIGURE 7.21 HERE] 8 
 9 

Figure 7.21: Feedback parameter, α (W m-2 °C-1), as a function of global mean surface air temperature relative to 10 
preindustrial, for model simulations (coloured circles and lines), and from paleoclimate data (grey circles 11 
and associated uncertainties).  [N.B. for SOD some of these values will need checking with the original 12 
authors, as they are not all clear from the publications.  Additionally, in some cases we have had to make 13 
assumptions about the forcing from CO2 doubling, or the ECS, or the LGM temperature]. 14 

 15 

[END FIGURE 7.21 HERE] 16 

 17 

 18 

7.5 Estimates of ECS and TCR 19 

 20 

ECS and TCR are metrics of the global mean temperature response to forcing (Section 7.1; Box 7.1) which 21 

can be estimated by combining several different lines of evidence from observations and GCMs. The 22 

constraints on these climate metrics assessed in this section are based on radiative forcing and climate 23 

feedbacks evaluated from process understanding (Section 7.5.2), climate change and variability seen within 24 

the instrumental record (Section 7.5.3), paleoclimate data (Section 7.5.4), and GCMs and emergent 25 

constraints (Sections 7.5.5 and 7.5.6). The overall assessments of the ECS and TCR are presented in Section 26 

7.5.7. 27 

 28 

The ECS has been extensively probed through CO2-doubling experiments using atmospheric GCMs coupled 29 

with mixed-layer oceans during CMIP3, and subsequently through standardized CO2-quadrupling 30 

experiments (abrupt4xCO2) using fully coupled GCMs during CMIP5 and CMIP6. Conventionally, the ECS 31 

is diagnosed by assuming that the radiative forcing of a quadrupling is exactly twice that of a doubling, and 32 

extrapolating to equilibrium the regression of global mean TOA radiation against global mean near-surface 33 

air temperature over years 1 to 150 within abrupt4xCO2 simulations (Box 7.1) (Andrews et al., 2012; 34 

Gregory et al., 2004), an approximation to the true ECS that would be reached if the model was run to 35 

equilibrium. However, methodological limitations do not alter the conclusions drawn here. The ECS of a 36 

given model is the net result of the model-specific effective radiative forcing (ERF) of CO2 doubling 37 

(ΔF2×CO2) and the sum of feedback parameters (α): ECS = ΔF2×CO2/(–α). Most of the spread in ECS among 38 

models arises from the contribution of cloud feedbacks to variations in α (Section 7.4.2.4).  39 

 40 

The TCR has been diagnosed in GCMs from simulations in which the CO2 concentration is increased at 41 

1% yr-1 (1%CO2, an approximately linear increase in ERF over time) and defined as the average over a 42 

20-year period, centred at the time of atmospheric CO2 doubling, which occurs at year 70 (Box 7.1). TCR is 43 

always smaller than ECS because ocean heat uptake acts to reduce surface warming. Yet, TCR is correlated 44 

(r =0.8) with ECS across CMIP5 models (Armour, 2017; Grose et al., 2018), as expected from the fact that 45 

TCR and ECS are inherently related measures of climate response to forcing: both depend on ΔF2×CO2 and α. 46 

The approximately linear relationship between TCR and ECS may become nonlinear for values of ECS 47 

higher than those spanned by CMIP5 models (Hansen et al., 1985; Knutti et al., 2005; Millar et al., 2015) 48 

owing to ocean heat uptake processes playing a more important role in setting the rate of warming when the 49 

radiative response to warming is weak. 50 

 51 

 52 

7.5.1 Relevance of ECS, TCR for projections and policy  53 

 54 
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Regional changes in temperature, rainfall, and climate extremes have been found to correlate well with the 1 

forced changes in global-mean surface temperature within coupled GCMs (Giorgetta et al., 2013; 2 

Seneviratne et al., 2016; Tebaldi and Arblaster, 2014). While this so-called ‘pattern scaling’ has important 3 

limitations arising from, for instance, localized forcings, land-use changes, or internal climate variability 4 

(Deser et al., 2012; Luyssaert et al., 2014), global temperature change nonetheless explains a substantial 5 

fraction of inter-model differences in projections of regional climate changes over the 21st century (Tebaldi 6 

and Knutti, 2018). This section assesses the relationships between the idealized metrics of global climate 7 

response assessed above and their relevance for model projections of global-mean surface temperature 8 

changes. 9 
 10 
Given that TCR and ECS are metrics of global temperature response to idealized CO2 forcing (Box 7.1), they 11 

are not expected to directly correspond to warming under realistic forcing scenarios that include time-12 

varying non-CO2 forcing agents (such as aerosols and land-use changes). However, their correlation with 13 

projected warming across models gives an indication of their usefulness as a predictor of future warming. It 14 

has been argued that TCR, as a metric of transient warming, is more policy-relevant than ECS (Frame et al., 15 

2006). However, recent results suggest that the situation is more complicated (Gregory et al., 2015; Grose et 16 

al., 2018). Grose et al. (2018) find that TCR is indeed more strongly correlated (r = 0.8) with warming to-17 

date than is ECS (r = 0.7) across historical simulations of CMIP5 models, and that TCR remains more highly 18 

correlated with warming over the 21st century when measured relative to the period 1880 to 1950. However, 19 

ECS is more highly correlated (r = 0.95) with the long-term (50- and 100-year) linear warming trends in 20 

moving windows starting around 2015. This result appears to be robust with respect to emissions scenario, 21 

but does not have a clear physical explanation at this time. A potential explanation is that the radiative 22 

feedbacks governing transient warming become more similar to those governing ECS over the course of the 23 

21st century as the pattern of surface warming becomes similar to the equilibrated warming pattern (Grose et 24 

al., 2018). 25 

 26 

Another key metric of changes in the Earth system is the transient climate response to cumulative emissions 27 

(TCRE) which measures the global mean surface temperature response as a function of cumulative 28 

anthropogenic emissions of carbon dioxide (Chapter 5, Section 5.5). Whereas ECS and TCR consider the 29 

climate system response to specific forcing trajectories, TCRE compares the climate system response to 30 

(cumulative) emissions of CO2. By including the carbon cycle, it captures more of the causal chain 31 

associated with anthropogenic climate change.  Here only ECS and TCR are assessed; TCRE is assessed in 32 

Chapter 5, Section 5.5.1. 33 

 34 

 35 

7.5.2 Process-based estimates 36 

 37 

7.5.2.1 ECS using process-based assessments of the forcing and feedbacks 38 

 39 

Steady global-mean near-surface air temperature response to a time-invariant perturbation in the CO2 40 

radiative forcing realizes once the Earth’s energy budget regains equilibrium, taking thousands of years. In a 41 

climate model, such a response is approximated in abrupt4xCO2 simulations, to which linear regression of 42 

N against T is applied and extrapolated to a point at N = 0. Assuming that ERF scales with the logarithm 43 

of the atmospheric CO2 concentration so that the ERF from CO2 quadrupling is approximately twice that of 44 

doubling, the above temperature response divided by two provides ECS, which is equal to the ratio between 45 

ERF to CO2 doubling and the total climate feedback, i.e., –𝐹2×CO2/α (cf. Box 7.1). Because radiative 46 

feedbacks can vary as the pattern of warming evolves (Section 7.4.3), the slope of the regression is in general 47 

only be an approximation to α; the assessment of feedbacks by regression (e.g., Section 7.4.2) introduces 48 

small (<10%) errors that do not affect the conclusions here. The range of ECS values directly calculated 49 

from abrupt4xCO2 simulations by GCMs is referred to as the raw ECS range. However, the raw ECS range 50 

may not be identical to a true range of process-constrained ECS because uncertainty in some important 51 

climate feedbacks have been underestimated and some processes are not included in the GCMs (Section 52 

7.4.2).  53 

 54 
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An alternative approach to assess the ECS range presented here, which is less dependent upon GCMs, is to 1 

use estimations of 𝐹2×CO2 and α obtained separately from independent lines of evidence (Sections 7.3.2 and 2 

7.4.2). The IRF can be accurately obtained using LBL calculations, to which uncertainty due to rapid 3 

adjustments are added for estimating the range in 𝐹2×CO2. The range of α is derived by combining estimates 4 

of individual climate feedbacks (α ≡ ∑ 𝛼𝑖𝑖 , where α𝑖 denotes the ith feedback parameter) based on theory, 5 

observations, and high-resolution process modelling. From these process-based evaluations, the central 6 

estimate of 𝐹2×CO2 is larger than 𝐹2×CO2 from CMIP5 models and has a narrow likely range, while α 7 

shows a slight negative mean value with a wide range compared to the CMIP5 (Table 7.11). Assuming that 8 

each of these two parameters follow an independent normal distribution, the likely range of ECS can be 9 

obtained by substituting the respective probability density function (PDF) into the expression of ECS. Since 10 

α is in the denominator, the Gaussian PDF leads to a long tail in ECS toward high values, indicating the 11 

great impact of uncertainty in α in estimating the likelihood of a high ECS (Knutti and Hegerl, 2008; Roe 12 

and Baker, 2007). Using the process-based assessment of ∆𝐹2×CO2=4.0 W m-2 and α=–1.25 W m-2 °C-1 13 

(Section 7.3.2 and 7.4.2.6), the ECS shows the median of 2.9 °C, which is slightly lower than the ensemble 14 

mean of raw ECS values from CMIP5 models whereas the 17-83 percentile range is widened by 20% (red 15 

and cyan curves in Figure 7.22). [Note estimate will be made consistent with Section 7.3 in SOD] 16 

 17 

The wide range of the process-based ECS compared with the range from GCMs is not due solely to different 18 

estimations of 𝐹2×CO2 and α, but is partly explained by an assumption that ∆𝐹2×CO2 and α are independent 19 

in the process-based estimates. In the CMIP5 ensemble, these two quantities are negatively correlated when 20 

they are calculated using the linear regression to abrupt4xCO2 simulations (r2 = 0.34, Andrews et al., 2012; 21 

Webb et al., 2013; see black dots in Figure 7.22). The correlation acts to compensate the inter-model spreads 22 

of ∆𝐹2×CO2 and α and thereby to narrow the ECS range directly estimated from the models. If the ECS 23 

distribution is reconstructed from PDFs of ∆𝐹2×CO2 and α derived from GCMs assuming that they are not 24 

correlated, the range of ECS is greater by 30% without a change in the mean (blue curve in Figure 7.22). 25 

Likewise, the process-based ECS distribution becomes narrower by 30% if ∆𝐹2×CO2 and α were assumed to 26 

have the covariance same as the CMIP5 models (pink curve in Figure 7.22).  27 

 28 

A significant correlation between ERF and the total feedback occurs when the two parameters are estimated 29 

separately from AGCM experiments with prescribed SST or the CO2 concentration, so is probably not an 30 

artefact of calculating them using the single linear regression in abrupt4xCO2 simulations. The possible 31 

physical cause may be a compensation between the cloud rapid adjustment and the cloud feedback over the 32 

tropical oceans (Chung and Soden, 2018; Ringer et al., 2014). It has been shown that the change in the 33 

boundary layer humidity is a controlling factor for the low-cloud adjustment (Kamae and Watanabe, 2012) 34 

and for the low-cloud feedback (Klein et al., 2017), and therefore the responses of these clouds to the direct 35 

CO2 radiative forcing and to the surface warming may not be independent indeed. However, the robust 36 

physical mechanisms are not yet clear, and furthermore, process-based assessment of the tropical low-cloud 37 

feedback does not refer to the GCMs given that physical processes which control the low clouds are not 38 

sufficiently well simulated in models. For these reasons, the co-dependency between ∆𝐹2×CO2 and α is 39 

judged with low confidence and the assumption that they are independent for the process-based assessment 40 

of ECS is employed, which has the mean of 2.9 °C and is likely between 2.3 and 4.1 °C with high 41 

confidence. It is very unlikely that ECS is greater than 5.6 °C or lower than 1.9 °C. [Note: the assessed values 42 

for ECS here are still tentative and subject to change in SOD] 43 

 44 

 45 

[START FIGURE 7.22 HERE] 46 

 47 
Figure 7.22: Probability distributions of ERF to CO2 doubling (ΔF2×CO2, top) and the total climate feedback (α, 48 

right), derived from CMIP5 abrupt4xCO2 simulations (blue) and process-based assessments in Sections 49 
7.3.2 and 7.4.2 (red). The joint PDF is calculated on a two-dimensional plane of ΔF2×CO2 and α 50 
(middle), on which the 90% range shown by an ellipse is imposed to the background theoretical values of 51 
ECS (color shading). The white dot, thick and thin curves in the ellipse represent the mean, likely and 52 
very likely range of ECS. For each set of PDFs of ΔF2×CO2 and α, two different estimations of the ECS 53 
range are presented; one assuming that ΔF2×CO2 and α are independent (red and blue) and the other 54 
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assuming that they have a covariance seen in the CMIP5 abrupt4xCO2 simulations (pink and cyan). The 1 
assumption about the co-dependence between ΔF2×CO2 and α does not alter the mean estimate of ECS 2 
but affects its likely range. Data for abrupt4xCO2 simulations are taken from Caldwell et al. (2016). 3 

 4 

[END FIGURE 7.22 HERE] 5 

 6 

 7 

7.5.2.2 Transferring ECS to TCR using a two-layer EBM 8 

 9 

In the previous section, ECS was estimated using the radiative forcing and the climate feedback parameter 10 

as: ECS = –𝐹2×CO2/α To transfer the process-bases assessment from ECS to TCR, the dampening effects 11 

of heat uptake by the ocean needs to be taken into account and for this purpose a two-layer energy balance 12 

model (EBM) that allows the heat exchange between the upper- and deep-layer oceans (mimicking the ocean 13 

heat uptake) has been widely used (Armour, 2017; Geoffroy et al., 2012, 2013a; Gregory, 2000; Held et al., 14 

2010; Mauritsen and Pincus, 2017; Rohrschneider et al., 2019). In the two-layer EBM, several parameters, in 15 

addition to ΔF and α, are introduced: heat capacities of the upper and deep oceans (C and C0), heat exchange 16 

coefficient (γ), and the so-called efficacy parameter of ocean heat uptake (ε) that represents the dependence 17 

of radiative feedbacks on the evolving SST pattern under CO2 forcing alone. This simple two-layer model 18 

does not include effects of natural internal variability and aerosol radiative forcing, which also affect the 19 

transient temperature response in observational records (Section 7.5.3). These parameters have different 20 

values in different GCMs, but the EBM was shown to reproduce well the global-mean surface temperature 21 

response in a GCM when the parameters are suitably estimated from the corresponding 1%CO2 simulation. 22 

The analytical solution of the EBM reveals that the surface temperature change to either abrupt or 1% 23 

increase of the atmospheric CO2 concentration is expressed by a combination of fast and slow responses 24 

having time scales of about 4 and 250 years, representing the fast adjustment of the surface components of 25 

the climate system and slow response of the deep ocean (Geoffroy et al., 2013a).  26 

 27 

In the equilibrium, the response of upper ocean temperature, assumed to be equivalent to surface 28 

temperature, reaches the ECS, which, by definition, depends only on ∆𝐹2×CO2 and α. In CMIP5 models, they 29 

both have inter-model spreads representing uncertainty (Figure 7.23), but uncertainty in α substantially 30 

(80–90%) contributes to the likely range of ECS. If additional parameters in the two-layer model are held 31 

fixed at constants taken from CMIP5 model mean estimates, the likely range of ECS (Section 7.5.2.1) is 32 

straightforwardly transferred to the likely range of TCR that is defined by the temperature response at the 33 

year 70 (1.4 to 2.2 °C, Figure 7.23b). For the range of TCR, contribution of uncertainty in α is reduced to 50 34 

to 60% while uncertainty in ΔF  becomes relatively important (Geoffroy et al., 2013b). TCR reflects the fast 35 

response occurring approximately during the first 20 years in the abrupt 4xCO2 simulation (Held et al., 36 

2010), but the fast response is not independent of the slow response because there is a nonlinear co-37 

dependence between them (Andrews et al., 2015). That is, larger the fast response occurs in a GCM, greater 38 

nonlinearity works to amplify the slow response. There are several mechanisms that give rise to the 39 

nonlinear amplification of the slow response (Gregory et al., 2015), but an important factor is the 40 

dependence of α on the evolving pattern of SST increase (Section 7.4.3). Consequently, the probability of 41 

high TCR is not very sensitive to changes in the probability of high ECS. 42 

 43 

The transient temperature response, in reality, varies with different estimates of the ocean heat uptake. A 44 

fitting of the two-layer model to the transient responses in CMIP5 models shows that uncertainty in heat 45 

capacities can be neglected and differences in ε and γ among GCMs explain 10-20% of the inter-model 46 

spread of TCR (Geoffroy et al., 2013b). Specifically, their product, εγ, appearing in a simplified form of the 47 

two-layer energy budget equations, TCR ≅ −∆𝐹2×CO2/(α − εγ), gives a single parameter quantifying the 48 

dampening effects of heat uptake (Jiménez-de-la-Cuesta and Mauritsen, submitted; see also Section 7.5.3). 49 

The ocean heat uptake in nature is controlled by multiple processes associated with advection and mixing 50 

(Exarchou et al., 2014; Kostov et al., 2014; Kuhlbrodt et al., 2015) but is crudely represented by a single 51 

term of heat exchange between the upper- and deep-oceans in the two-layer EBM. Therefore, it is 52 

challenging to constrain ε and γ from observations and these parameter values estimated from CMIP5 53 

models are used here (Geoffroy et al., 2013b). Because estimated values of ε and γ are only weakly 54 
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correlated, the mean value and one standard deviation of εγ are calculated by ignoring their covariance as 1 

εγ = 0.86 ± 0.29. By incorporating the inter-model spread in εγ, the likely range of TCR is widened by 17% 2 

(Figure 7.23c). Yet, the dominant contribution to the uncertainty range of TCR arises from the climate 3 

feedback, and the previous assessment stating that uncertainty in ocean heat uptake is of secondary 4 

importance remains unchanged.  5 

 6 

The resultant TCR has the central estimate 1.7 °C, judged with medium confidence. It is likely in the range 7 

from 1.4 to 2.2 °C and is very unlikely to be greater than 3.2 °C. The upper bound of the likely range was not 8 

reduced from of the process evidence alone but can well be constrained using multiple lines of evidence 9 

(Section 7.5.7).  10 

 11 

 12 

[START FIGURE 7.23 HERE] 13 
 14 
Figure 7.23: (a) Time evolution of the effective radiative forcing (ERF) to the CO2 concentration increased by 1% per 15 

year until the year 70 (equal to the doubling, grey line) and kept fixed afterword. The range of ERF has 16 
been assessed in Section 7.3. (b)-(c) Range of surface ocean temperature response (assumed to be 17 
equivalent to the surface air temperature response) to the CO2 forcing in the two-layer EBM calculated 18 
with a given range of ECS, considering uncertainty only in ΔF2×CO2 and α (b, shading by red and orange 19 
colours) and additionally in two parameters associated with the ocean heat uptake (c, shading by blue and 20 
cyan colours). The mean estimate of the response (black curve) is identical in (b) and (c). For comparison, 21 
the step response to abrupt doubling of the CO2 concentration is displayed by grey curves. The mean and 22 
ranges of ECS and TCR are shown at the right (the values also presented in the panel).  23 

 24 

[END FIGURE 7.23 HERE] 25 

 26 

 27 

7.5.3 Estimates based on the historical temperature record  28 

 29 

This section assesses the estimates of TCR and ECS based on the instrumental record of climate change and 30 

variability with an emphasis on evidence since AR5. Section 7.5.3.1 considers estimates based on the global 31 

energy budget. Section 7.5.3.2 considers estimates based on the use of simple climate models evaluated 32 

against the historical temperature record. Section 7.5.3.3 considers estimates based on internal variability in 33 

global temperature and TOA radiation. Section 7.5.3.4 provides an overall assessment of TCR and ECS 34 

based on the historical temperature record. 35 

 36 

 37 

7.5.3.1 Estimates based on the global energy budget  38 

 39 

Warming since the pre-industrial period is measured to be around 1°C with small uncertainty (Section 2.2). 40 

Together with estimates of Earth’s energy imbalance (Section 7.2) and the global ERF that has driven the 41 

observed warming (Section 7.3), the instrumental temperature record permits ‘global energy budget’ 42 

estimates of ECS and TCR. While energy budget estimates use instrumental data, they are not based purely 43 

on observations. GCM simulations inform estimates of the historical ERF (Section 7.3) as well as the global 44 

energy imbalance in the pre-industrial climate (the period against which changes are measured) (Lewis and 45 

Curry, 2015; Otto et al., 2013). GCMs are also used to characterize the internal climate variability that may 46 

have contributed to observed changes in temperature and energy imbalance. Moreover, a global-mean energy 47 

budget model is needed to relate ECS and TCR to the estimates of global warming, ERF and energy 48 

imbalance (Forster, 2016; Hegerl and Zwiers, 2011; Knutti et al., 2017). Research since AR5 has shown that 49 

the global-mean energy budget that is traditionally used produces values of ECS that are biased low for two 50 

main reasons: i) because it does not account for the dependence of radiative feedbacks on the spatial pattern 51 

of surface warming (Section 7.4.3) and ii) because there are inconsistencies in how global mean surface 52 

temperature trends are estimated.  53 

 54 

The traditional global-mean energy balance model employed for global energy budget estimates (Gregory et 55 
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al., 2002) (Section 7.4.1; Box 7.1) relates the difference between the ERF (ΔF) and the radiative response to 1 

observed global warming (αΔT) to the global energy imbalance (ΔN): ΔN = αΔT + ΔF, where α represents 2 

the net global radiative feedback parameter (units of W m-2 °C-1). Given the relationship ECS = ΔF2×CO2/(–α), 3 

where ΔF2×CO2 is the ERF from CO2 doubling, ECS can be inferred from historical estimates of ΔT, ΔF, ΔN 4 

and ΔF2×CO2: ECS = ΔF2×CO2 ΔT/(ΔF – ΔN). While TCR is defined as the temperature change at the time of 5 

CO2 doubling under an idealized 1%/yr CO2 increase, it can be inferred from the historical record as: 6 

TCR = ΔF2×CO2 ΔT/ΔF, under the assumption that radiative forcing increases quickly compared to the 7 

adjustment timescales of the deep ocean, but slowly enough that the upper ocean is adjusted, so that ΔT and 8 

ΔN increases approximately in proportion to ΔF. Because ΔN is positive, TCR is always smaller than ECS, 9 

reflecting lower transient warming than equilibrium warming. TCR is always better constrained than ECS 10 

owing the fact that the denominator of TCR, without the quantity ΔN, is more certain and further from zero 11 

than is the denominator of ECS. The upper bounds of both TCR and ECS are inherently less certain than 12 

their lower bound owing to the fact that ΔF is uncertain and in the denominator. 13 

 14 

This traditional global-mean energy balance model assumes globally homogenous feedbacks and forcings, 15 

and thus lacks a representation of the radiative feedback dependence on the spatial pattern of warming. 16 

Studies that employ this model to infer ECS (Gregory et al., 2002; Lewis and Curry, 2015; Otto et al., 2013) 17 

thus inherently assume that radiative feedbacks will remain constant between the period of historical 18 

transient warming and the equilibrium response to CO2 forcing. However, as summarized in Section 7.4.3, 19 

there are now multiple lines of evidence suggesting that radiative feedbacks will become less negative as the 20 

warming pattern evolves in the future. Extensions to the traditional energy balance model can be made to 21 

capture the pattern effect by allowing for multiple radiative feedbacks operating on different timescales 22 

(Armour, 2017; Armour et al., 2013; Geoffroy et al., 2013a; Held et al., 2010; Proistosescu and Huybers, 23 

2017; Rohrschneider et al., 2019), by allowing feedbacks to vary with the spatial pattern or magnitude of 24 

ocean heat uptake (Rose et al., 2014; Rugenstein et al., 2016; Winton et al., 2010), or by allowing feedbacks 25 

to vary with the type of radiative forcing agent (Kummer and Dessler, 2014; Marvel et al., 2016; Shindell, 26 

2014). However, a direct way to account for the pattern effect is to use the relationship ECS = ΔF2×CO2/(-α + 27 

α’), where α = (ΔN – ΔF)/ΔT is estimated from global energy budget changes and α’ represents the change in 28 

the radiative feedback parameter between the historical period and the equilibrium response to CO2 forcing, 29 

which can be quantified using GCMs (Andrews et al., 2018; Armour, 2017). A trend toward less negative 30 

radiative feedbacks in the future (α’ > 0) implies that the actual ECS will be larger than that inferred from 31 

historical warming. An alternative approach estimates feedback changes due in response to CO2 forcing 32 

alone in terms of the ocean heat uptake efficacy (see Section 7.5.2.2). 33 

 34 

Energy budget estimates of TCR and ECS have evolved in the literature over recent decades as global 35 

warming has continued. Revisions in estimates are also due to improved observations and understanding of 36 

global surface temperature trends (Richardson et al., 2016, 2018a), revised energy imbalance estimates 37 

(Johnson et al., 2016), and improved estimates of radiative forcing (Forster, 2016; Knutti et al., 2017). Prior 38 

to AR5, the global energy budget provided relatively weak constraints, primarily due to large uncertainty in 39 

the tropospheric aerosol forcing, giving ranges of ECS that typically included values above 10°C. Improved 40 

estimates of aerosol forcing together with a larger greenhouse-gas forcing by the time of AR5 led to an 41 

estimate of ΔF that was more positive and better constrained relative to AR4. Using energy budget estimates 42 

and radiative forcing estimates updated to 2009, Otto et al. (2013) found that TCR was 0.9°C to 2.0°C (5% 43 

to 95% range) with a most likely (median) value of 1.3°C, and that ECS was 1.2°C to 3.9°C (5% to 95% 44 

range) with a most likely value of 2.0°C. Studies since AR5 have confirmed these results or produced 45 

narrower ranges for TCR and ECS (Forster, 2016; Knutti et al., 2017).  46 

 47 

Accurate estimates of global energy imbalance can be made from around 2002 based on near-global ocean 48 

temperature observations from autonomous profiling floats (Section 7.2). Over the period 2002 to 2018 the 49 

global energy imbalance is estimated to be 0.75±0.1 W m-2 (90% confidence) (Section 7.2). Anomalies are 50 

taken with respect to the baseline period 1850 to 1900, although other baselines could be chosen to avoid 51 

major volcanic activity (Lewis et al., 2018; Otto et al., 2013). Several lines of evidence, including GCM 52 

simulations (Lewis and Curry, 2015), energy balance modelling (Armour, 2017), and ocean GCMs forced by 53 

observed SSTs (Zanna et al., 2019) suggest that global energy imbalance for 1850 to 1900 was 0.1±0.2 W m-54 
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2. Combined with estimates of internal variability in global energy imbalance within periods of equivalent 1 

lengths derived from unforced GCM simulations, the anomalous energy imbalance is estimated to be ΔN = 2 

0.65±0.24 W m-2. Global near-surface air temperature change between 1850–1900 and 2002–2018 is 3 

estimated to be ΔT = 1.02±0.14 °C (Chapter 2, Section 2.2; Box 7.2), accounting for internal variability 4 

derived from unforced GCM simulations. The ERF change between 1850–1900 and 2002–2018 is estimated 5 

to be ΔF = 2.11±0.58 W m-2 and the ERF from CO2 is estimated to be ΔF2×CO2 = 4.0 ± 0.7 W m-2 (Section 6 

7.3.2). Employing these values within the traditional global-mean energy balance model described above 7 

produces values of TCR that lie in the range 1.3°C to 2.6°C (5% to 95% range) with a most likely (median) 8 

value of 1.8°C (Figure 7.24a). The inferred ECS lies in the range 1.7°C to 4.6°C (5% to 95% range) with a 9 

most likely value of 2.6°C (Figure 7.24b). These TCR and ECS ranges are comparable to those in the recent 10 

literature (Lewis et al., 2018; Lewis and Curry, 2015; Otto et al., 2013) but with higher values owing to 11 

updated estimates of observed warming, ocean heat uptake, and ERF. [Will update for SOD] 12 

 13 

An important part of the upwards revision of the ECS inferred from energy budget studies is the use of 14 

global coverage near-surface air temperature indicators to estimate the surface temperature trends. Most 15 

studies have relied on HadCRUT4 global warming estimates that had incomplete coverage of some regions, 16 

especially the Arctic, and also blended near-surface air temperature observations with temperatures 17 

measured below the surface of the oceans. The HadCRUT4 historical trends are around 16% smaller than 18 

estimates of global surface air temperature warming and as a result ECS and TCR derived from these have  19 

similarly smaller ECS and TCR values (Richardson et al., 2016, 2018a). These surface warming trends are 20 

discussed in Chapter 2, Section 2.3 but it is important to note here that for a like-to-like comparison with 21 

ECS and TCR estimates derived from models it is necessary to make sure that the same measure of global 22 

surface temperature trends is used. The energy budget studies assessing ECS in AR5 employed HadCRUT4 23 

or similar measures of surface warming trends. Other lines of evidence assumed global surface air 24 

temperature trends meaning that AR5 based energy budget estimates of ECS were about 16% lower than 25 

other lines of evidence adding to the overall disparity (Collins et al., 2013a).  In this report, global near-26 

surface air temperature is chosen as the standard measure of global warming to aid comparison with previous 27 

model and process-based estimates of ECS, TCR and climate feedbacks (see Box 7.1). 28 

 29 

 30 

[START FIGURE 7.24 HERE] 31 

 32 
Figure 7.24: (a) TCR inferred from global energy budget constraints for the period 2002-2018 relative to 1850-1900; 33 

horizontal bar shows median value, box shows 17 to 83% range, and vertical line shows 5% to 95% 34 
range. (b) ECS inferred from global energy budget constraints for the period 2002-2018 relative to 1850-35 
1900 (blue) and ECS accounting for the pattern effect (red) (Section 7.4.3) based on feedback changes 36 
derived from coupled GCM simulations (Armour, 2017) (middle) or from GCM simulations with 37 
prescribed historical sea-surface temperature and sea-ice concentrations (Andrews et al., 2018) (right). (c) 38 
Relationship between inferred ECS (blue) and actual ECS (red) in GCMs where the inferred ECS is 39 
derived from coupled GCM simulations (Armour, 2017) (left) or from GCM simulations with prescribed 40 
historical sea-surface temperature and sea-ice concentrations (Andrews et al., 2018) (right); actual ECS is 41 
derived from abrupt4xCO2 simulations and differences between the two are shown in grey. [Eventually 42 
redo this with using historical simulations and RFMIP forcings for CMIP6 models rather than 1pctCO2 43 
runs.] 44 

 45 

[END FIGURE 7.24 HERE] 46 

 47 

 48 

Several approaches have been used to estimate the degrede to which the actual ECS may be larger than that 49 

inferred from historical warming due to changes in the net radiative feedback parameter (α’) as the warming 50 

pattern evolves in the future. By comparing radiative feedbacks in GCMs forced by a 1% yr-1 CO2 ramping 51 

(1pctCO2) (a rough analogue for historical warming) to radiative feedbacks in the same set of GCMs forced 52 

by CO2 quadrupling (abrupt4xCO2), Armour (2017) estimated that α’ = +0.2 W m-2 °C -1 (–0.1 to +0.6 W m-2 53 

°C -1 range across models) (Section 7.4.3). This implies modelled values of ECS under abrupt4xCO2 that are 54 

on average about 15% higher (about 5% lower to 50% higher across models) than those inferred under 55 
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1pctCO2 (Figure 7.24c). The strong tendency toward more positive feedbacks (α’ > 0) reflects the fact that 1 

the transient response to CO2 forcing shows relatively more warming in key negative feedback regions (e.g., 2 

western tropical Pacific Ocean) and less warming in key positive feedback regions (eastern tropical Pacific 3 

Ocean and Southern Ocean) than is projected in the near-equilibrium response to abrupt4xCO2 (Section 4 

7.4.3) (Held et al., 2010; Proistosescu and Huybers, 2017). 5 

 6 

By comparing radiative feedbacks in atmospheric GCMs run with observed surface warming patterns to 7 

radiative feedbacks in coupled versions of the same set of GCMs forced by abrupt4xCO2, Andrews et al. 8 

(2018) estimated that α’ = +0.6 W m-2 °C -1 (+0.3 to +1.0 W m-2 °C -1 range across models) (Section 7.4.3). 9 

This implies modelled values of ECS under abrupt4xCO2 that are on average about 60% higher (20% to 10 

100% across models) than those inferred from models using observed warming patterns (Figure 7.24c). 11 

These feedback changes reflect the fact that the observed spatial pattern of historical surface warming has 12 

been markedly different from the pattern of warming projected under abrupt4xCO2, with observations 13 

showing warming in key negative feedback regions (e.g., western tropical Pacific Ocean) and cooling in key 14 

positive feedback regions (eastern tropical Pacific Ocean and Southern Ocean) over recent decades (Section 15 

7.4.3; Chapter 9, Section 9.2). This estimate of feedback changes accounts for all factors that have 16 

contributed to the observed temperature changes, including radiative forcings, the climate response to those, 17 

and internal climate variability (Andrews et al., 2018), but the method assumes that atmospheric GCMs 18 

correctly translate patterns of surface warming to changes in the radiation balance. 19 

 20 

Using the value α’ = +0.2 ± 0.25 W m-2 °C -1 (5% to 95% range) derived from Armour (2017), ECS lies in 21 

the range 1.8°C to 6.6°C (5% to 95% range), with a most likely (median) value of 3.0°C (Figure 7.24b). 22 

Using the value α’ = +0.6 ± 0.4 W m-2 °C -1 (5% to 95% range) derived from Andrews et al. (2018), ECS lies 23 

in the range 1.9°C to 18°C (5% to 95% range), with a most likely (median) value of 4.2°C (Figure 7.24b). 24 

The low end of these ECS ranges are similar to that inferred using the traditional energy balance model (i.e., 25 

assuming α’ = 0), reflecting a weak dependence on the value of α’ when ECS is small (Andrews et al., 2018; 26 

Armour, 2017). However, the high end of the ECS range is strongly dependent on the value of α’. 27 

 28 

The values of ECS above are all considerably higher than those estimated from both AR5 and recently 29 

published estimates (Collins et al., 2013a; Forster, 2016; Lewis et al., 2018; Lewis and Curry, 2015; Otto et 30 

al., 2013) . Four revisions made in this report are responsible for this increase. i) An upwards revision of 31 

historic surface temperature trends from the adoption of near surface air temperature measure and newly 32 

published trend data (Chapter 2, Section 2.3). ii) An 8% increase in the ERF for ΔF2×CO2 (Section 7.3.2). iii) 33 

A 22% more negative best estimate of aerosol ERF, which acts to weaken estimates of historic ERF trends. 34 

iv)  Accounting for the pattern effect.  The concerted effect of all these revisions has yet to be tested in the 35 

published literature and leads to a cautious assessment at this stage [note: we will watch this space carefully 36 

for SOD]. 37 

 38 

ECS is very likely higher than that inferred from the historical global energy budget changes based on 39 

modelled changes in radiative feedbacks, but there is substantial uncertainty in how much higher. The 40 

accuracy of the estimated α’ hinges on the accuracy of projected changes in the warming pattern under CO2 41 

forcing and on the radiative response to those warming patterns within GCMs. While several lines of 42 

evidence indicate that α’ > 0 (Section 7.4.3), the quantitative accuracy of feedback changes is not known at 43 

this time (Section 7.4.3; Figure 7.24): GCMs produce a wide range of results for α’ (Figure 7.20) and there 44 

are currently no observational constraints on its value. Global energy budget constraints thus provide very 45 

high confidence in the lower bound of ECS: it is extremely unlikely to be less than 1.7°C, assuming no 46 

change in radiative feedbacks in the future. Estimates of α’ that are informed by observed historical warming 47 

patterns (Andrews et al., 2018) indicate a most likely (median) value of ECS of around 4°C. However, owing 48 

to large uncertainties in future feedback changes, the historical energy budget currently provides little 49 

information about the upper bound of ECS. 50 

 51 

 52 

7.5.3.2 Estimates based on simple climate models   53 

 54 
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Dynamical energy balance models, sometimes known as simple climate models (SCM), are more complex 1 

than global-average energy balance models but far less complex than comprehensive GCMs (Bodman and 2 

Jones, 2016; Forest, 2018). SCMs generally include a representation of the ocean and thus can simulate the 3 

temporal evolution of climate. While some SCMs capture only the global-average warming (Geoffroy et al., 4 

2012; Held et al., 2010; Padilla et al., 2011; Section 7.5.2.2), many SCMs represent warming within a small 5 

number of regions, such as at the scale of hemispheres, over land and ocean, and at different vertical levels 6 

of the ocean (Aldrin et al., 2012; Andronova and Schlesinger, 2001; Bieltvedt Skeie et al., 2018; Forest, 7 

2002; Forest et al., 2006, 2008; Johansson et al., 2015; Knutti et al., 2002; Libardoni and Forest, 2011; Skeie 8 

et al., 2014). A few utilize more complex Earth Models of Intermediate Complexity (EMICS) (Huber et al., 9 

2014; Olson et al., 2013; Tomassini et al., 2007). SCMs thus make use of more spatial and temporal 10 

information from the historical record than do estimates based on global-average energy balance model 11 

described above. However, lacking the comprehensive physics of GCMs, they rely on simple 12 

parameterizations of radiative feedbacks, radiative forcing, ocean heat uptake processes, and internal 13 

variability. 14 

 15 

The numerical efficiency of SCMs means that they can be empirically constrained by observations: a large 16 

number of possible parameter values (e.g., radiative feedback parameter, aerosol radiative forcing and ocean 17 

diffusivity) are randomly drawn from prior distributions; forward integrations of the model are performed 18 

with these parameters and weighted against observations of surface or ocean warming, producing posterior 19 

estimates of quantities of interest such as TCR, ECS and aerosol forcing (see Section 7.3). The choice of 20 

prior distributions generally has a large impact on the results (Bieltvedt Skeie et al., 2018; Bodman and 21 

Jones, 2016; Hegerl et al., 2006). 22 

 23 

Improved estimates of ocean heat uptake over the past two decades (Section 7.2) have diminished the role of 24 

ocean diffusivity in driving uncertainty in ECS, leaving the main trade-off between posterior ranges in ECS 25 

and aerosol radiative forcing (Forest, 2002; Frame et al., 2005; Knutti et al., 2002). AR5 (Bindoff et al., 26 

2013) assessed a variety of estimates of ECS based on SCMs and found that they were sensitive to the choice 27 

of prior parameter distributions chosen and temperature datasets used, particularly for the upper end of the 28 

ECS range. However, SCMs generally produced estimates of ECS between 1°C and 5°C and ranges of TCR 29 

between 0.9°C and 2.6°C. Padilla et al. (2011) use a simple global-average model with two timescales (see 30 

Section 7.5.2) to derive observationally-constrained estimate of TCR to be in the range 1.3°C to 2.6°C (5% 31 

to 95% range) with a median value of 1.6°C. Using the same model, Schwartz (2012) finds TCR in the range 32 

0.9°C to 1.9°C (5% to 95% range). 33 

 34 

Using an SCM comprised of northern and southern hemispheres and an upwelling-diffusive ocean (Aldrin et 35 

al., 2012), with surface temperature and OHC datasets updated to 2014, Skeie et al. (2018) estimate a median 36 

value of TCR of 1.4°C with range 0.9°C to 2.0°C (5% to 95% range) and infer a median value of ECS of 37 

1.9°C with range 1.2°C to 3.1°C (5% to 95% range). The median estimate of ECS increases to 2.9°C if the 38 

model is not constrained by the depth profile of ocean warming, suggesting that the results depend 39 

sensitively on the details of vertical heat transport in the ocean. Using a similar SCM comprised of land and 40 

ocean regions and an upwelling-diffusive ocean, with surface temperature and OHC datasets through 2011, 41 

Johansson et al. (2015) infer a most likely value of ECS of 2.5°C with range 2.0°C to 3.2°C (5% to 95% 42 

range). The estimate is found to be sensitive to the choice of dataset endpoint and the representation of 43 

internal variability meant to capture the El Niño–Southern Oscillation. 44 

 45 

Differences between these two studies arise, in part, from their different surface temperature and OHC 46 

datasets, different radiative forcing uncertainty ranges, different priors for model parameters, and different 47 

representations of internal variability. This leads to substantially different estimates of ECS, with the median 48 

estimate of Skeie et al. (2018) lying below the 5% to 95% range of ECS from Johansson et al. (2015). 49 

Neither of these studies account for the bias introduced by blending SST and near-surface air temperature 50 

data or spatial coverage effects (Richardson et al., 2016, 2018a), suggesting that their derived values of TCR 51 

and ECS may be biased low by about 16%. The Skeie et al. (2018) SCM has a constant value of the radiative 52 

feedback parameter, and thus should be compared to values of inferred ECS from global energy budget 53 

constraints (Section 7.5.3.2) that do not account for feedback changes with warming pattern (Bieltvedt Skeie 54 



First Order Draft Chapter 7 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 7-82 Total pages: 202 

 

et al., 2018). The Johansson et al. (2015) SCM allows distinct radiative feedbacks for land and ocean, likely 1 

contributing to the different results and making it unclear whether it can be compared directly with ECS 2 

values from global energy budget constraints. While neither study provides a constraint on the actual ECS, 3 

the most likely estimates of ECS inferred from both studies lie within the 5% to 95% range of the ECS 4 

inferred from historical warming (1.7°C to 4.6°C), which is consistent with higher values of ECS when 5 

accounting for changes in radiative feedbacks as the spatial pattern of warming evolves in the future (Section 6 

7.5.3.2). 7 

 8 

 9 

7.5.3.3 Estimates based on climate variability 10 

 11 

Continuous satellite measurements of TOA radiation fluxes, available since 2000, are now long enough to 12 

study inter-annual variations in the global energy budget (Figure 7.6). Although the measurements do not 13 

have sufficient accuracy to determine the absolute global energy imbalance (Section 7.2.1), they provide 14 

accurate estimates of its variations and trends since the year 2002 that agree well with estimates based on 15 

observed changes in GOHC (Johnson et al., 2016; Loeb et al., 2012). When combined with global surface 16 

temperature observations and simple models of global energy balance, satellite measurements of TOA 17 

radiation afford estimates of the radiative feedback parameter associated with recent climate variability 18 

(Dessler and Forster, 2018; Donohoe et al., 2014a; Forster and Gregory, 2006; Murphy et al., 2009; 19 

Tsushima and Manabe, 2013). These feedback estimates, derived from the regression of TOA radiation on 20 

surface temperature variability, imply values of ECS that are broadly consistent with those from other lines 21 

of evidence within large uncertainties (Forster, 2016; Knutti et al., 2017) (Figure 7.24). A history of 22 

regression-based feedbacks and their uncertainties is summarized in AR5 in Bindoff et al. (2013).  23 

 24 

Since AR5, it has been noted that regression-based feedback estimates depend on whether annual- or 25 

monthly-mean data are used and on the choice of lag employed in the regression, complicating their 26 

interpretation (Forster, 2016). The observed lead-lag relationship between global TOA radiation and surface 27 

temperature, and its dependence on sampling period, is well replicated within unforced simulations of GCMs 28 

(Dessler, 2011; Proistosescu et al., 2018). These features arise because the regression between global TOA 29 

radiation and surface temperature reflects a blend of different radiative feedback processes associated with 30 

several distinct modes of variability acting on different time scales, such as monthly atmospheric variability 31 

and inter-annual El Niño–Southern Oscillation (ENSO) variability (Lutsko and Takahashi, 2018; 32 

Proistosescu et al., 2018). It thus appears that regression-based feedbacks provide estimates of the radiative 33 

feedbacks that are associated with internal climate variability, and thus do not provide a direct estimate of 34 

ECS. Moreover, variations in global surface temperature that do not directly affect TOA radiation may lead 35 

to an a positive bias in regression-based feedback (Spencer and Braswell, 2010, 2011), although this bias 36 

appears to be small (Murphy and Forster, 2010) particularly when annual-mean data are used (Proistosescu 37 

et al., 2018). When tested within GCMs, regression-based feedbacks have been found to be weakly 38 

correlated with values of ECS (Chung et al., 2010; Lutsko and Takahashi, 2018), but finding such a 39 

correlation requires integrations that are much longer than the satellite record. However, correlations 40 

between regression-based feedbacks and long-term feedbacks have been found to be higher when focused on 41 

specific processes and regions, such as for subtropical low clouds (Zhou et al., 2015) or the water vapour 42 

feedback (Dessler, 2013; Section 7.4.2). 43 

 44 

Assessing the global radiative feedback in terms of the more stable relationship between tropospheric 45 

temperature and TOA radiation offers another potential avenue for constraining ECS, suggesting that CMIP5 46 

GCMs with ECS values between 2.0°C to 3.9°C are within uncertainties based on satellite measurements 47 

(Dessler et al., 2018). Using the CMIP5 models to quantify the relationship between feedbacks operating at 48 

interannual timescales and feedbacks operating at equilibrium under CO2 doubling produces an estimate of 49 

ECS of 3.3°C (median) with a range of 2.4°C to 4.6°C (17 to 83 percentiles) (Dessler and Forster, 2018). 50 

 51 

A number of studies consider the observed climate response to volcanic eruptions over the 20th century 52 

(Knutti et al., 2017). However, the constraint on ECS is weak, particularly at the high end, because the 53 

temperature response to short-term forcing depends only weakly on radiative feedbacks (Boer et al., 2007; 54 
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Wigley et al., 2005) and because it can take decades of a sustained forcing before the magnitude of 1 

temperature changes reflects differences in ECS across models (Geoffroy et al., 2013b; Merlis et al., 2014). 2 

The radiative feedbacks governing the global temperature response to volcanic eruptions are likely different 3 

than those governing long-term global warming (Marvel et al., 2016; Merlis et al., 2014). It is also a 4 

challenge to separate the response to volcanic eruptions from internal climate variability in the years that 5 

follow them (Wigley et al., 2005). Estimates based on the response to volcanic eruptions agree with other 6 

lines of evidence (Knutti et al., 2017), but likely do not constitute a direct constraint on ECS. 7 

 8 

Other studies have attempted to relate ECS to internal climate variability (Knutti et al., 2017) using variants 9 

of the fluctuation dissipation theorem, which state that the linear response of the climate system to external 10 

forcing is related to its unforced fluctuation properties about equilibrium. Such studies have generally made 11 

simplistic assumptions such as the use of a single climate timescale, a single radiative feedback value, and 12 

white-noise forcing, leading to biases in their estimates of ECS (Kirk-Davidoff, 2009; Knutti et al., 2017; 13 

Knutti and Hegerl, 2008). Using similar assumptions, (Cox et al., 2018a) derive a metric of historical 14 

temperature variability, defined as the ratio of temperature variability to a measure of the lag-1 15 

autocorrelation of annual-mean temperature, and show it to scale with ECS within historical simulations of 16 

CMIP5 models. Using the observed surface temperature record as an “emergent constraint” on the variability 17 

metric, Cox et al. propose a median estimate of ECS of 2.8°C with range of 1.6°C to 4.0°C (5% to 95% 18 

range). These results have been questioned on a number of points (Brown et al., 2018; Po-Chedley et al., 19 

2018b; Rypdal et al., 2018). Within CMIP5 historical simulations, the variability metric has been shown to 20 

primarily reflect forced temperature variations rather than internal variability as constructed, making it 21 

difficult to interpret. Using only the early portion of the 20th century temperature record between volcanic 22 

eruptions, where temperature variability is less driven by radiative forcing changes, increases the median 23 

estimate of ECS to 3.3°C and broadens the range to 1.9°C to 4.7°C (5% to 95% range) (Po-Chedley et al., 24 

2018b). Many climate models with higher values of ECS fail to match the characteristics of temperature 25 

variability in the latter half of the 20th century as measured by the Cox et al. variability metric, pointing to 26 

potential model deficiencies, but it is currently unclear whether these deficiencies are related to their values 27 

of ECS.   28 

 29 

 30 

7.5.3.4 Assessment of TCR and ECS based on the historical temperature record  31 

 32 

Multiple lines of evidence from the historical temperature record, including estimates using global energy 33 

budget changes, simple climate models, and internal climate variability, produce median ECS estimates that 34 

range between 3°C and 4°C, but a best estimate value cannot be given owing to a strong dependence on 35 

assumptions about how radiative feedbacks will change in the future. However, there is robust evidence and 36 

high agreement across the lines of evidence leading to very high confidence that ECS is extremely likely 37 

greater than 1.7°C. There is robust evidence and medium agreement across the lines of evidence that ECS is 38 

likely greater than 2.3°C (high confidence). While historical global energy budget changes do not provide 39 

constraints on the upper bound of ECS, estimates based on climate variability provide medium confidence 40 

(high agreement, limited evidence) that ECS is unlikely greater than 5°C.  41 

 42 

Global energy budget constraints indicate a most likely value of TCR of 1.8°C (high confidence). There is 43 

high confidence that TCR is likely in the range 1.5°C to 2.2°C and very likely in the range 1.3°C to 2.6°C.   44 

 45 

 46 

7.5.4 Paleoclimate estimates of ECS 47 

 48 

Evidence from paleoclimate data, and from a combination of paleoclimate data and models, can provide 49 

information regarding climate and Long-term Earth sensitivity (see Box 7.1) that is complementary to, and 50 

independent from estimates based on: process-based studies (Section 7.5.2); the historical record (Section 51 

7.5.3); and model simulations (Section 7.5.5).  The strengths of using the paleoclimate record to estimate 52 

climate sensitivity include: (i) The estimates are based on observations of a real-world Earth system response 53 

to a forcing, in contrast to using estimates from process-based studies or directly from models. (ii) The 54 
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forcings are often relatively large (similar in magnitude to a CO2 doubling or more), in contrast to data from 1 

the historical record.  (iii) The forcing often changes relatively slowly so the system is close to equilibrium, 2 

reducing or eliminating complications associated with accounting for ocean heat uptake, in contrast to the 3 

historical record.  However, these strengths are balanced by the fact that there can be relatively large 4 

uncertainties on estimates of the paleo forcing, and paleo temperature response.  Furthermore, uncertainty 5 

associated with the state-dependence of feedbacks (Section 7.4.4) means that climate sensitivity during 6 

Earth’s past may not be the same as it is today.  7 

 8 

The AR5 stated that data and modelling of the Last Glacial Maximum (LGM, 21,000 to 19,000 years ago) 9 

indicated that it was very unlikely that ECS to a doubling of atmospheric CO2 lay outside the range 1°C to 10 

6°C (Masson-Delmotte et al., 2013). Furthermore, that climate records of the last 65 million years indicated a 11 

climate sensitivity range of 1.1°C to 7°C, a range to which they assigned a 95% confidence interval.    12 

 13 

Compared with AR5, there is now higher confidence in estimates of the climate sensitivity during Earth’s 14 

past.  The strengthened understanding and improved lines of evidence come from: (i) the use of high-15 

resolution paleoclimate data across multiple glacial-interglacial cycles (Friedrich et al., 2016; Köhler et al., 16 

2015, 2017, 2018; von der Heydt et al., 2014); (ii) better constraints on pre-ice core estimates of atmospheric 17 

CO2 concentrations (Anagnostou et al., 2016; Martínez-Botí et al., 2015) and surface temperature (Hollis et 18 

al., submitted); (iii) more accurate paleoclimate boundary conditions for models (Haywood et al., 2016); and 19 

(iv) improvements in models themselves (Chapter 4, Section 4.1). 20 

 21 

The paleoclimate lines of evidence regarding climate and Long-term Earth sensitivity can be broadly 22 

categorised into two types: (i) direct estimates of radiative forcing and temperature response resulting in an 23 

estimate of the feedback parameter, α (Box 7.1, Equation 7.1?), and (ii) paleoclimate data constraints on 24 

model simulations resulting in an estimate of ECS.  25 

 26 

 27 

7.5.4.1 Direct estimates of radiative forcing and temperature response 28 

 29 

In order to provide direct estimates of climate sensitivity, evidence from the paleoclimate record can be used 30 

to estimate forcing (ΔF) and global mean temperature response (ΔT) in Box 7.1, Equation 7.1?, assuming the 31 

system is in equilibrium.  However, there are complicating factors with using the paleoclimate record, and 32 

these challenges and uncertainties are somewhat specific to the time period being used.   33 

 34 

The Last Glacial Maximum (LGM) can provide robust direct constraints on climate sensitivity (see Table 35 

7.12 for estimates since AR5). Because the major forcings and feedback processes that led to the cold 36 

climate (e.g., CO2, non-CO2 greenhouse gases and ice sheets) are relatively well-known (Chapter 5, Section 37 

5.1), orbital forcing relative to preindustrial is negligible, and there are relatively high spatial resolution and 38 

well-dated paleoclimate temperature data available for this time period (Chapter 2, Section 2.3.1).  39 

Uncertainties in deriving a climate sensitivity from the LGM data arise primarily from uncertainties on the 40 

calibration from the paleoclimate data to local annual mean temperature, and uncertainties on the conversion 41 

of the local temperatures to a global annual mean surface air temperature. As a result of these uncertainties, 42 

estimates of global mean LGM cooling relative to preindustrial vary from 3oC to 7oC (Chapter 2, Section 43 

2.3.2. [SOD will update according to their final assessment and baseline]).  The LGM climate is often 44 

assumed to be in full equilibrium with the forcing. Under this assumption, a calculation of sensitivity using 45 

solely CO2 forcing will give a Long-term Earth sensitivity rather than an ECS (see Box 7.1).  In order to 46 

calculate an ECS, which is often most comparable to direct estimates from models, the approach of Rohling 47 

et al. (2012) is now widely-used. This approach introduces an additional forcing term in Box 7.1, Equation 48 

7.1? that quantifies the resulting forcing associated with various feedbacks (for example for the increase in 49 

ice sheets, an estimate of the forcing associated with the change in albedo of the land surface).  However, 50 

differences between studies as to which processes are considered as forcings, and differing methodologies 51 

for estimating the ice sheet forcing, means that even with this approach, estimates are not always directly 52 

comparable.  Here, only estimates from studies that have accounted for the long-term Earth system 53 

feedbacks associated with vegetation and/or ice sheet feedbacks in this manner and therefore estimate ECS 54 
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are assessed (see Table 7.12).   1 

 2 

Since AR5, several studies have extended the Rohling et al. (2012) approach (described above for the LGM) 3 

to the glacial-interglacial cycles of the last about 1 to 2 million years (Friedrich et al., 2016; Köhler et al., 4 

2015, 2017, 2018; von der Heydt et al., 2014; see Table 7.7).  All the uncertainties that apply to the LGM 5 

also apply to this period but are in general amplified due to larger uncertainty in estimates of temperature 6 

response and CO2 forcing in the pre-ice core period.  Furthermore, orbital forcing is problematic to account 7 

for in the traditional framework of climate sensitivity because, although the orbital forcing over this period is 8 

close to zero in the global annual mean, its strong seasonal and latitudinal components result in a relatively 9 

large response in the global annual mean temperature (Singarayer and Valdes, 2010; Heinemann et al, 2014) 10 

and ice volume (Abe-Ouchi et al., 2013), even in the absence of CO2 changes.  In addition, for time periods 11 

in which the forcing relative to modern is small (interglacials), the inferred climate sensitivity has relatively 12 

large uncertainties because the denominator in Box 7.1, Equation 7.1? is close to zero. 13 

 14 

In the pre-Quaternary (prior to about 2.5 million years ago), the forcings and response are relatively large 15 

and are also generally in the same sense as future climate change (i.e. a warming).  Similar uncertainties as 16 

for the LGM apply, but in this case a major uncertainty relates to the forcing, because prior to the ice core 17 

record there are only indirect estimates of CO2 concentration, and in addition, there are currently no proxies 18 

for non-CO2 greenhouse gases. However, advances in using boron isotopes to reconstruct ocean pH (Foster 19 

and Rae, 2016) mean that the uncertainties on pre-Quaternary CO2 are narrower than they were in AR5, and 20 

these time periods can now contribute to an assessment of climate sensitivity.  The mid-Pliocene warm 21 

period (MPWP, 3.3 to 3.0 million years ago) has been targeted for constraints on climate and Long-term 22 

Earth sensitivity (Martínez-Botí et al., 2015; Royer, 2016; see Table 7.12), due to the fact that CO2 23 

concentrations were high at this time, and because the MPWP is sufficiently recent that topography and 24 

continental configuration are similar to modern-day; as such, a comparison of the mid-Pliocene with modern 25 

provides probably the closest natural analogue to a classic climate sensitivity simulation from a model. 26 

Within the mid-Pliocene, the KM5c interglacial has been identified as a particularly useful time period for 27 

assessing climate sensitivity (Haywood et al., 2013a, 2016) because its orbit and topography are very similar 28 

to modern-day.   29 

 30 

Further back in time, in the Eocene (about 50 million years ago), uncertainties in forcing and temperature 31 

change become larger, but the signals in general are larger too (Anagnostou et al., 2016; Shaffer et al., 2016; 32 

Hollis et al, submitted; see Table 7.12). However, additional uncertainties arise because differing continental 33 

position and topography/bathymetry mean that climate sensitivities derived from these time periods may be 34 

less relevant for the future (Fransworth et al., submitted). Furthermore, on even longer timescales of the last 35 

500 million years (Royer, 2016) the temperature and CO2 measurements are in general asynchronous, and 36 

therefore challenging to use to assess climate sensitivity.   37 

 38 

 39 

7.5.4.2 Paleoclimate data constraints on model simulations 40 

 41 

In order to obtain an observational constraint on climate sensitivity, model-derived estimates of warming due 42 

to elevated CO2 (usually from CO2 doubling or quadrupling experiments) from an ensemble of models are 43 

compared with simulations of a particular paleo time period from the same models, and with observational 44 

constraints of that time period.  This can provide a constraint on climate sensitivity (similar to an emergent 45 

constraint, see Chapter 3, Section 3.2) provided there is a statistically significant relationship between the 46 

results from the elevated CO2 and paleo model simulations.  The analysis can be carried out with an 47 

ensemble of parameter-perturbed instances of a single model, or with an ensemble of different models.  48 

Uncertainties in the resulting estimates of climate sensitivity arise from errors in the models used, 49 

uncertainties in the proxy observations, and in the boundary conditions used to force the paleo model 50 

simulations.  Paleoclimate data and model simulations of both the Last Glacial Maximum (Harrison et al., 51 

2014, 2015) and the Pliocene (Hargreaves and Annan, 2016)  have been used to estimate climate sensitivity 52 

in this way.  However, for the LGM, Hopcroft and Valdes (2015) showed that the PMIP3 models do not 53 

exhibit a significant relationship between ECS values in the paleo and elevated CO2 simulations. 54 
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 1 

 2 

7.5.4.3 Summary  3 

 4 

This summarises Table 7.12 and provide an overall assessment of, lines of evidence from paleoclimates for 5 

constraining ECS and ESS.  Although some of the estimates in Table 7.12 are not independent because they 6 

use similar proxy records to each other (e.g. von der Heydt et al., 2014; Köhler et al., 2015; Kohler et al., 7 

2017; Kohler et al, 2018), there are still multiple independent lines of paleoclimate evidence regarding 8 

climate sensitivity, from differing past time periods (LGM (Harrison et al., 2015); glacial-interglacial 9 

(Friedrich et al., 2016; Köhler et al., 2017), Pliocene (Martínez-Botí et al., 2015; Hargreaves and Annan, 10 

2016) and Eocene (Anagnostou et al., 2016; Shaffer et al., 2016)), with differing proxies for estimating 11 

forcing (e.g. CO2 from ice cores or boron isotopes) and response (e.g. temperature from δ18O, Mg/Ca or 12 

Antarctic δD), and from differing methodologies (direct or paleo constraints).  Furthermore, although 13 

different studies have uncertainty estimates that account for differing sources of uncertainty, some studies 14 

(Friedrich et al., 2016; Martínez-Botí et al., 2015) do consider many of the uncertainties discussed in Section 15 

7.5.4.1.  All the studies based on glacial-interglacial cycles explicitly take into account state-dependence of 16 

climate sensitivity (Section 7.4.4) by considering only the warm phases of the Pleistocene, but only two of 17 

those (Friedrich et al., 2016; Köhler et al., 2018) take into account orbital forcing. 18 

 19 

 20 

[START Table 7.12 HERE] 21 

 22 
Table 7.12: Estimates of ECS derived from paleoclimates since AR5 that account for at least some of the long-term 23 

Earth system feedbacks.  Not all of these are independent as some share common underlying datasets. 24 
Different studies (column 1) focus on different time periods (column 2) and use a variety of different 25 
methods (column 3). Different studies have accounted for different long-term feedbacks in their estimates 26 
of ECS, so the type of climate sensitivity reconstructed is also noted (column 4), using the nomenclature 27 
of Rohling et al. (2012).  As well as a best estimate many studies also give a range (column 5), which 28 
includes varying sources of uncertainty (column 6).   29 
 30 

Study Time period Method Climate 

sensitivity 

classification 

according to 

Rohling et al. 

(2012). 

 

Published best 

estimate [and 

uncertainty]  

Uncertainty 

estimate 

includes 

uncertainty in: 

von der Heydt 

et al. (2014) 

Warm states 

of glacial-

interglacial 

cycles 

Direct S[GHG, LI, 

AE, VG] 

2.3°C  

[2.0 – 3.5°C]b  

 

Range of LGM 

global mean 

temperatures. 

Köhler et al. 

(2015) 

Warm states 

of glacial-

interglacial 

cycles 

Direct S[CO2,LI] 5.7°C 

[3.7 – 8.1°C]b 

Range of LGM 

global mean 

temperatures, 

and uncertainty 

on regression. 

Köhler et al. 

(2017) 

Warm states 

of glacial-

interglacial 

cycles 

Direct S[CO2,LI] 5.8°C 

[4.1 – 8.0°C]b 

 

1 sigma 

uncertainty on 

regression 

Köhler et al. 

(2018) 

Warm states 

of glacial-

interglacial 

cycles 

Direct S[GHG, LI, 

VG, AE] 

[1.9 - 3.8°C]c Range of 3 

different 

temperature 

reconstructions. 
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Friedrich et 

al. (2016) 

Warm states 

of glacial-

interglacial 

cycles 

Direct S[GHG,LI,AE] 4.9°C 

[4.3 - 5.4°C]c 

Likely range.  

Range of LGM 

global mean 

temperatures, 

aerosol forcing,  

Martínez-Botí 

et al. (2015) 

Pliocene Direct S[CO2,LI] 3.7°C 

[2.4 – 5.1°C]b 

2 sigma 

uncertainty on 

regression. 

Anagnostou 

et al. (2016) 

Eocene Direct S[CO2,LI] [2.1 – 4.6°C] Calibration 

uncertainty in 

temperature and 

CO2. 

[PlioMIP 

data paper] 

Pliocene 

(KM5c) 

Direct - Does not yet exist - 

[DeepMIP 

data paper] ; 

Hollis et al 

(in review) 

Eocene 

(EECO) 

Direct - Does not yet exist - 

Shaffer et al. 

(2016) 

Eocene Direct S[GHG,AE,LI] [3.3 – 5.6°C] Calibration 

uncertainty in 

temperature and 

CO2. 

Royer (2016) Pliocene Direct S[CO2,LI] 7.7 ̊C  

Schmidt et 

al., (2014) 

LGM Paleo 

constraint 

Sa 3.1°C 

[1.2 – 4.9°C] 

90% interval 

based on proxy 

calibration 

uncertainties 

and spread on 

emergent 

constraint.  

Harrison et al. 

(2014) 

LGM Paleo 

constraint 

Sa 2.7°C - 

Harrison et al. 

(2015) 

LGM Paleo 

constraint 

Sa [1.4 - 4.4°C]  spread on 

emergent 

constraint 

Hargreaves 

and Annan 

(2016) 

Pliocene Paleo 

constraint 

Sa [1.9 – 3.7°C] spread on 

emergent 

constraint 

Sherwood et 

al (in prep) 

Glacial-

interglacial 

cycles 

 

Pliocene 

Synthesis 

of several 

lines of 

evidence 

Sa Not yet known - 

Notes: Note that Sa denotes a classification of climate sensitivity in the table.  1 

(b) = Best estimate and range calculated from published estimate assuming ERF due to CO2 doubling of 3.7 2 

W m-2.  3 

(c) = estimate from glacial-interglacial cycles that accounts for effect of orbital forcing. 4 

 5 

[END Table 7.12 HERE] 6 

 7 

 8 

None of the studies in Table 7.12 that directly estimate ECS from forcings and feedbacks (as described in 9 

Section 7.5.4.1) have a minimum estimate of ECS that is smaller than 1.9°C per CO2 doubling. The lowest 10 
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estimate of ECS using the paleoclimate constraint method (as described in Section 7.5.4.2) is 1.2°C. None of 1 

the studies have a maximum estimate of ECS that is greater than 8.1°C. Including only those studies that 2 

consider some form of uncertainty analysis, and account for orbital forcing, the maximum estimate of ECS is 3 

5.6°C. Overall, taking into account the uncertainties discussed in Section 7.5.4, the non-linearities of 4 

feedbacks discussed in Section 7.4.4, and the evidence assessed previously in AR5, the paleoclimate record 5 

on its own suggests that ECS is very likely in the range 2 to 5°C (high confidence). The high confidence 6 

comes from the multiple lines of independent evidence in the various studies, and the relative agreement 7 

between these studies.   8 

 9 

 10 

7.5.5 Climate sensitivity in global models 11 

 12 

Climate sensitivity has been extensively probed in global climate models through standardized CO2-13 

quadrupling experiments (abrupt4xCO2) and linear regression during CMIP5 (Andrews et al., 2012) and 14 

CMIP6 (reference), in CO2-doubling experiments coupled with mixed-layer oceans during CMIP3 and 15 

sometimes using a prescribed SST increase (e.g. amip4K). These different methods to estimate ECS in 16 

climate models yield slightly different results, though not to an extent that is deemed important for the 17 

conclusion to be drawn in this. The ECS of a model is the net result of the models effective radiative forcing 18 

from a doubling of CO2 and the sum of feedback parameters. It is well known that among models most of the 19 

spread arises from cloud feedbacks, and of that, most spread among models is related to tropical low-level 20 

clouds (Bony and Dufresne, 2005). Since these clouds are small-scale and shallow, the representation of such 21 

clouds is foremost controlled by the parameterizations in the models.  22 

 23 

Random variations from model to model or between model versions have a symmetric impact of the climate 24 

feedback parameter α and, since ECS is inversely proportional to the feedback parameter, an asymmetric 25 

impact on ECS. ECS and TCR values are presented in Table 7.13 and also illustrated in Figure 7.25 where 26 

the distribution of ECS probed in CMIP3, CMIP5 and CMIP6 models along with a theoretical distribution 27 

(Roe and Baker, 2007) adapted to feedback parameters and forcing diagnosed from CMIP5 models 28 

(Caldwell et al., 2016). From the figure there is a close agreement between the two distributions near the 29 

peak probability, but whereas CMIP3 and CMIP5 models are clearly under-represented in the long upper-30 

end tail, the CMIP6 models are more abundantly present above 4.5°C, though no model has been published 31 

to CMIP yet with an ECS above 6°C (see Table 7.13).  32 

 33 

 34 

[START FIGURE 7.25 HERE] 35 

 36 
Figure 7.25: Distribution of ECS from CMIP3 and CMIP5 (light gray) and CMIP6 models (dark gray). The black line 37 

is the distribution obtained by Monte-Carlo sampling feedback parameters estimated from CMIP5 models 38 
by Caldwell et al. (2016). [This is a preliminary analysis based partly on an informal survey will be 39 
updated for SOD]  40 

 41 

[END FIGURE 7.25 HERE] 42 

 43 

 44 

There can be several reasons why the CMIP3 and CMIP5 models tended to not occupy high ECS. First these 45 

are ensembles of opportunity and since the number of models overall is relatively low there is the possibility 46 

that by coincidence no models with higher ECS were published in CMIP3 and CMIP5. Alternatively, when 47 

high ECS models emerge from the development process they can become re-tuned, reconfigured or 48 

discarded and so might not see publication (Hourdin et al., 2017): modelling groups might have perceived a 49 

high ECS as generally unrealistic, have specific difficulties to reproduce the instrumental record warming, or 50 

a sensitive model might be prone to entering run-away warming or cooling for regularly applied forcings. 51 

Some modelling groups declare not tuning their modelled ECS (Schmidt et al., 2017a) (Schmidt et al., 52 

2017a), whereas one group reported tuning down a high ECS from about 7 to 3°C in order to improve the 53 

match with the instrumental record warming (Mauritsen et al., 2019).  About one third of modelling groups 54 
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participating in a large survey agreed, or somewhat agreed, that the tuning of ECS to improve the match with 1 

historical warming is eligible (Hourdin et al., 2017).  2 

 3 

[For SOD here will be a paragraph reporting on studies investigating why CMIP6 models are more 4 

sensitive] 5 

 6 

One way to explore how tuning parameters impact ECS is to construct PPEs, wherein typically tuned or 7 

uncertain parameters are randomly altered within expert-solicited ranges (Klocke et al., 2011; Stainforth et 8 

al., 2005). Typically, 100 or more perturbed models are constructed this way, and the influence on ECS 9 

explored. Uniformly, studies find substantial variations in ECS within a single model of similar magnitude to 10 

the CMIP multi-model ensemble, though the distributions are model-dependent and so contain a structural 11 

component. Nevertheless, ECS below 2°C occur only infrequently, and no PPE study to date has resulted in 12 

a model with an ECS below 1.5°C.  13 

 14 

An increasingly widely-used approach is to construct high-resolution convective CRMs or super-15 

parameterisations, in order to dispose of moist convection parameterisation thought to be a major source of 16 

uncertainty. Unfortunately, results from such model studies do not indicate convergence with regards to 17 

ECS. One study using the global cloud resolving model NICAM found total positive feedback due to 18 

increasing upper-level cloudiness (Tsushima et al., 2014), super-parameterised versions of the NCAR family 19 

of models suggest mid-range ECS (Bretherton et al., 2014). Support to the notion of a lacking convergence is 20 

found in a study where convective parameterisation is disabled in regular climate models (Webb et al., 21 

2015). 22 

 23 

Climate models, although comprehensive, cannot resolve or represent all processes that occur in nature with 24 

fidelity. The current understanding is that the most important feedback processes are included, but if there 25 

are important feedback processes not included in all, or the majority of models, then purely model-based 26 

inference may be biased. Proposed missing feedback mechanisms include a missing anvil cloud area 27 

feedback (Mauritsen and Stevens, 2015) or missing ozone chemistry (Nowack et al., 2015). Already 28 

represented feedback processes may also be systematically biased, here in particular mixed-phase cloud 29 

feedbacks are suspect of being too negative (Tan et al., 2016) (Section 7.4.2.4). The strength of these 30 

suggested missing- or biased feedback processes remain debated, though together they are deemed too 31 

weakly negative to cause modelled ECS below 1.5°C. This is because it requires a large negative change to 32 

the feedback parameter to substantially lower an already low ECS, e.g. going from 2.0 to 1.5°C requires 33 

additional negative feedback of about –0.6 W m-2 °C-1. 34 

 35 

The direct use of the raw ECS estimated from models is shifting from being the main source of information 36 

in early reports to instead playing a more supportive role in the present assessment. Instead, emergent 37 

constraints utilise inter model spread to infer either individual feedback mechanisms or aggregate ECS with 38 

some success (Section 7.5.6). Based on past model developments it is extremely likely that ECS is greater 39 

than 1.5°C (high confidence), because no model with a lower ECS has been constructed, possible missing 40 

feedbacks are not assessed strong enough to cause such low ECS, and available anecdotal evince of climate 41 

model tuning has only been to reduce ECS.  42 

 43 

 44 

[START Table 7.13 HERE] 45 

 46 
Table 7.13: Estimates of TCR, ECS, radiative forcing from a doubling of CO2 and α derived from available CMIP6 47 

models. ECS, radiative forcing and α are obtained based on (Andrews et al., 2012; Forster et al., 2013; 48 
Gregory et al., 2004) with uncertainties given as the 95 % confidence intervals from the regression. 49 
CMIP5 values from AR5 (Flato et al., 2013; Table 9.5) and CMIP3 values from AR4 (Randall et al., 50 
2007; Tables 8.2 and S8.1 and calculations on numbers therein) are also listed.  51 

 52 
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  TCR ECS 
Radiative forcing 

(W m-2) 
Feedback parameter, α 

(W m-2
 °C-1) 

CMIP6 

BCC-CSM2-MR  1.36 3.02 2.79 ± 0.13 0.92 ± 0.06 

CNRM-CM6-1  2.23 4.84 3.72 ± 0.13 0.77 ± 0.04 

CNRM-ESM2-1  1.86 4.76 2.98 ± 0.07 0.62 ± 0.03 

GISS-E2-1-G  1.73 2.72 3.92 ± 0.16 1.44 ±0.08 

IPSL-CM6A-LR  2.41 4.57 3.41 ± 0.16 0.75 ± 0.05 

MICROC6 1.56 2.61 3.63 ± 0.23 1.39 ± 0.12 

MRI-ESM2-0 1.67     

Model mean 1.83 3.75 3.41 0.98 

Std. Dev. 0.34 0.98 0.81 0.32 

CMIP5 

Model mean of 23 
models 

1.8 3.2 3.4 1.1 

Std. Dev. 0.4 0.8 0.5 0.3 

CMIP3 

Model mean of 19 
models 

1.8 3.2 3.6 1.42a 

Std. Dev. 0.4 0.7 0.3 0.32a 

Notes: (a) Model mean over 20 CMIP3 models and standard deviation from Forster and Taylor (2006). 1 

 2 

[END Table 7.13 HERE] 3 

 4 

 5 

7.5.6 Emergent constraints on ECS 6 

 7 

Methods to estimate ECS through emergent constraints that in diverse ways instead embrace model spread in 8 

ECS have seen increasing attention in the recent decade. The general methodology of emergent constraints is 9 

introduced in Chapter 1, Section 1.4. Table 7.14 summarises the emergent constraints used here.  10 

 11 

The perhaps simplest class of emergent constraints regress past global, or near-global, temperature change 12 

against modelled ECS to obtain a relationship that can be used to translate an observed climate change to 13 

ECS. Examples include using the relationship between ECS and last glacial maximum (LGM) cooling 14 

(Hargreaves et al., 2012), warming in the Pliocene epoch (Hargreaves and Annan, 2016), the response to 15 

Pinatubo (Bender et al., 2010), and the post-1970s warming (Jiménez-de-la-Cuesta and Mauritsen, 16 

submitted). The paleo-climate emergent constraints are particularly useful as they utilize past climates in 17 

equilibrium but are limited by structural uncertainties in the proxy-based temperature and forcing 18 

reconstructions (Section 7.5.4), possible differences in equilibrium patterns between models and Earth, and a 19 

small number of model simulations participating. A study that developed an emergent constraint based on 20 

the response to the Mount Pinatubo eruption yielded a best estimate of 2.4°C (likely 1.7-4.1) (Bender et al., 21 

2010). When accounting for ENSO variations they found a somewhat higher best estimate of 2.7°C, which is 22 

in line with later studies that suggest ECS inferred from periods with volcanic activity are low-biased 23 

(Gregory et al., submitted). Thus, this class of emergent constraints yield median ECS of 2.5-2.9°C and 24 

fairly tight uncertainty ranges, in particular at the upper end.   25 

  26 

Lagged-correlations present in short term variations in the global mean surface temperature can be linked to 27 

climate sensitivity through the fluctuation-dissipation theorem which is derived from a mixed-layer model 28 

(Cox et al., 2018a; Hasselmann, 1976; Schwartz, 2007). Initial attempts to apply the theorem directly to 29 

observations yielded a fairly low ECS estimate of 1.1°C (0.6°C  to 1.7°C, 17 to 83 percentiles) (Schwartz, 30 
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2007), but recently it was proposed to use variations in the historical experiments of the CMIP5 climate 1 

models as an emergent constraint giving a median ECS estimate of 2.8°C (2.2°C to 3.4°C, 17 to 83 2 

percentiles). A particular challenge is to separate short term from long term variability, and slightly arbitrary 3 

choices regarding the methodology of separating these in the global mean temperature from long term 4 

signals in the historical record, omission of the later strongly forced period, as well as input data choices, can 5 

lead to median ECS estimates ranging from 2.5°C to 3.5°C (Brown et al., 2018; Po-Chedley et al., 2018b; 6 

Rypdal et al., 2018). Calibrating the emergent constraint using CMIP5 modelled natural variability as 7 

measured in pre-industrial control simulations (Po-Chedley et al., 2018b) will inevitably lead to an 8 

overestimated ECS due to externally forced short term variability present in the historical record (Cox et al., 9 

2018b). Thus, when the same filter is applied to both the modelled and observed temperature records, the 10 

resulting ECS median is robustly close to 3°C and 17 to 83 percentiles not outside 2.2°C to 4.0°C.  11 

 12 

Short term variations in the Earth’s energy budget, observable from satellites, arising from variations in the 13 

tropical tropospheric temperature has been linked to ECS through models, either as a range of models 14 

consistent with observations (Dessler et al., 2018) or as a formal emergent constraint by deriving further 15 

model-based relationships to yield a median of 3.3°C and a likely range of 2.4-4.5°C (Dessler and Forster, 16 

2018). There are major challenges associated with short term variability in the energy budget, in particular 17 

how it relates to long-term forced response of clouds (Colman and Hanson, 2017; Lutsko and Takahashi, 18 

2018), and variations in the surface temperature that are not directly affecting the radiation balance leads to 19 

an overestimated ECS when using linear regression techniques where it appears as noise in the independent 20 

variable (Gregory et al., submitted; Proistosescu et al., 2018). The latter issue is largely overcome when 21 

using the tropospheric mean or mid-tropospheric temperature (Dessler et al., 2018; Trenberth et al., 2015).  22 

  23 

A substantial number of emergent constraint studies focus on observables that are related to tropical low-24 

cloud feedback processes (Brient et al., 2016; Brient and Schneider, 2016; Sherwood et al., 2014; Volodin, 25 

2008; Zhai et al., 2015). These studies yield median ECS estimates of 3.5°C to 4°C and provide only small 26 

probability to values below 3°C. The approach is attractive since most of the spread among climate models 27 

arises from low cloud feedbacks (Bony and Dufresne, 2005; Randall et al., 2007; Wyant et al., 2006), but 28 

nevertheless assumes that all other feedback processes are unbiased (Klein and Hall, 2015). In particular, 29 

accounting for a missing representation of the anvil cloud area feedback (section 7.4.2.4) with an assessed 30 

mean of –0.2 W m-2 °C-1, shifts the median estimates range of this class of emergent constraints down to 31 

2.9°C to 3.3°C and accordingly grants probability to values below 3°C. Thus, the subset of emergent 32 

constraints that focus on low-level tropical clouds are not inconsistent with other emergent constraints of 33 

ECS, but at the same time an inter-dependence with the process-based estimates (Section 7.5.2) is 34 

introduced. 35 

 36 

The fidelity of models in reproducing aspects of temperature variability or the radiation budget has also been 37 

proposed as emergent constraints on ECS (Bender et al., 2012; Brown and Caldeira, 2017; Covey et al., 38 

2000; Huber et al., 2010; Knutti et al., 2006; Siler et al., 2018a). Here indices based on spatial or seasonal 39 

variability are linked to modelled ECS, and overall the group of emergent constraints yield best estimates of 40 

3.3°C to 3.7°C. Some of these emergent constraints are subject to the same issue as identified for the low-41 

level cloud feedbacks-based constraints of assuming processes not probed for, e.g. the longwave feedbacks 42 

are unbiased in the underlying model ensemble and are thus assessed to be less reliable than other emergent 43 

constraints. 44 

 45 

The varied groups of emergent constraints have yielded median ECS estimates across a fairly wide range, 46 

however when critically assessed for systematic biases they robustly support best estimates close to 3°C. At 47 

the lower end practically all studies find lower bounds (5th percentiles) around 2°C, whereas the upper end is 48 

less consistent across studies. Since several of the emergent constraints can be considered nearly 49 

independent, a Bayesian approach could have been taken to multiply probability distributions in order to 50 

obtain a tighter combined range (Annan and Hargreaves, 2006). Nevertheless, there is sufficient cross-51 

dependencies, as for instance models are re-used in many of the derived emergent constraints, and 52 

furthermore the methodology has not yet reached a level of maturity to justify this approach. This therefore 53 

leads to the assessment that ECS inferred from emergent constraints is very likely 2 to 5°C.  54 



First Order Draft Chapter 7 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 7-92 Total pages: 202 

 

 1 

Emergent constraints on TCR with a focus on the instrumental temperature record have also been proposed. 2 

In the simplest form Gillett et al. (2012) regressed the response of one model to individual historical forcings 3 

to obtain a tight range, but later when an ensemble of models was used the range was widened (Gillett et al., 4 

2013). Another study used the response to the Pinatubo volcanic eruption to obtain a similar range (Bender et 5 

al., 2010). A tighter range, notably at the lower end, was found in an emergent constraint focusing on the 6 

post-1970s warming exploiting the lower spread in aerosol forcing change over this period (Jiménez-de-la-7 

Cuesta and Mauritsen, submitted). The study also found that a larger median compared to energy budget 8 

constraints (Section 7.5.3) is due to the finite heat capacity of the upper ocean that dampen the response in 9 

the first years to decades after a forcing is applied. Combining the three studies gives a very likely range of 10 

1.2°C to 2.2°C. 11 

 12 

[START Table 7.14 HERE] 13 

 14 
Table 7.14: Collection of emergent constraint studies estimating ECS.   15 

 16 

Study Emergent constraint description Published best 

estimate and 

uncertainty (°C) 

Uncertainty estimate: 

(Bender et al., 

2010) 

Pinatubo integrated forcing normalized by 

CMIP3 models own forcing versus 

temperature change regressed against 

ECS. 

[1.7-4.1] 5% to 95% 

(Brient et al., 

2016) 

Shallowness of low-level tropical clouds [2.4-4.6] Model range 

consistent with 

observations 

(Brient and 

Schneider, 

2016) 

Cloud fraction variability versus SST 

anomalies 

4 

[2.3-5.0] 

5% to 95%  

(Brown and 

Caldeira, 2017) 

Aspects of the representation of the 

present-day top-of-atmosphere radiation 

balance 

3.7 

[3.0-4.2] 

25% to 75% 

(Cox et al., 

2018a) 

Persistence of variability in global mean 

temperature in instrumental record 

2.8 

[2.2-3.4] 

17% to 83% 

(Dessler et al., 

2018) 

Tropical mean 500 hPa temperature 

against global top-of-atmosphere radiation 

balance 

[2.1-3.9] Model range 

consistent with 

observations 

(Dessler and 

Forster, 2018) 

Similar to (Dessler et al., 2018), but 

derive additional relationships from 

models 

3.3 

[2.4-4.5] 

17% to 83% 

(Hargreaves and 

Annan, 2016) 

Pliocene tropical SSTs [1.9-3.7] 5% to 95% 

(Huber et al., 

2010) 

Aspects of the representation of the 

present-day top-of-atmosphere radiation 

balance 

3.4 

[2.9-4.0] 

17% to 83% 

(Jimenéz-de-la-

Cuesta and 

Mauritsen, 

submitted) 

Post-1970s global warming 2.83 

[1.72-4.12] 

5% to 95% 

(Knutti et al., 

2006) 

Regional seasonal cycle in land surface 

temperature 

3.3 

[2.2-4.4] 

5% to 95% 

(Sherwood et 

al., 2014) 

Indicators of tropical convective mixing Around 4 

[ >3] 

Model range 

consistent with 
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observations 

(Siler et al., 

2018a) 

Spatial distribution of planetary albedo 

(shortwave reflectivity) 

3.68 

[2.38-4.98] 

5% to 95% 

(Volodin, 2008) Tropical variations in cloud fraction and 

humidity 

3.6 

[3.3-3.9] 

5% to 95% 

(Zhai et al., 

2015) 

Subsidence regime tropical low-level 

cloud variations 

3.9 

[3.45-4.35] 

17% to 83% 

 1 

[END Table 7.14 HERE] 2 

 3 

 4 

7.5.7 Synthesis 5 

 6 

Substantial quantitative progress has been made in interpreting evidence of Earth's climate sensitivity since 7 

the previous report, through innovation, scrutiny, theoretical advances and a rapidly evolving data base from 8 

current, recent and past climates. Noteworthy is that ECS as derived directly from climate models plays a 9 

secondary role, and that weight is given to the process-understanding, instrumental record warming, paleo-10 

climate records and emergent constraints in the assessment.  11 

 12 

A key advance over the AR5 assessment is that across the nearly independent lines of evidence there is broad 13 

agreement that the central estimates of ECS are close to or not inconsistent with 3°C. This advance is 14 

foremost following an improved quantification of Earth's imbalance, instrumental record global temperature 15 

change, and the strength of anthropogenic forcing, combined with an understanding of how pattern-effects 16 

influence ECS inferred from historical warming (Sections 7.4.3 and 7.5.3), improved quantification of paleo 17 

climate change from proxy evidence and a deepened understanding of how feedback mechanisms depend on 18 

the climate mean state such that they inrease ECS in warmer climates (Sections 7.4.4 and 7.5.4), and also an 19 

improved quantification that cloud feedback mechanisms together are likely positive based on multiple lines 20 

of evidence (Sections 7.4.2 and 7.5.2). The assessed statements are summarized in Table 7.14 for ECS and 21 

Table 7.15 for TCR. 22 

  23 

Whereas AR5 embraced the bulk of the evidence in the assessed ECS likely range (Collins et al., 2013a), the 24 

broader evidence-base presented here and the general agreement among the lines of evidence encourages the 25 

combination of the evidence to yield a tighter range. This can be done formally using Bayesian statistics 26 

(Annan and Hargreaves, 2006; Stevens et al., 2016). However, it is straightforward to understand that if two 27 

lines of independent evidence each give a low probability of an outcome being true, e.g. that ECS is less than 28 

1.5°C, then the combined probability that ECS is less than 1.5°C is true is lower than that of either line of 29 

evidence. On the contrary, if one line of evidence is unable to rule out an outcome, but another is able to 30 

assign a low probability, then there is a low probability that the outcome is true. This logic applies also when 31 

there is slight dependency between the lines of evidence, for instance between historical evidence, global 32 

models and emergent constraints, though the combined constraint will be closer to the tighter of the 33 

individual lines of evidence.  34 

 35 

Substantial advances over the previous report have been made in quantifying ECS inferred from a feedback 36 

process understanding, the instrumental record, paleoclimates, emergent constraints combined with a solid 37 

understanding that feedback processes change with time and depend on the climate state. Therefore, based 38 

on multiple lines of evidence the best estimate of ECS is 3 °C, and it is likely 2.5°C to 4°C and very likely 39 

2°C to 5°C. It is virtually certain that ECS is larger than 1.5°C. The assessed ranges are all assigned high 40 

confidence due to the high level of agreement among the different lines of evidence. It remains challenging 41 

to rule out low-probability but high impact upper end ECS, which is indicated by the notably asymmetry of 42 

the assessed ranges. 43 

 44 

It is worthwhile contemplating whether the consensus of the median ECS estimates is an expression of 45 

groupthink, i.e. whether evidence supporting a certain ECS that has long been the consensus (Charney et al., 46 

1979) is being sub-consciously favoured over other values. In this regard it is worth remembering the many 47 
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failed attempts to challenge an ECS of this magnitude, starting as early as (Ångström, 1900) criticizing the 1 

results of (Arrhenius, 1896) arguing that the atmosphere was already saturated in infrared absorption such 2 

that adding more CO2 would not lead to warming. The assertion was understood half a Century later to be 3 

incorrect. History has seen a multitude of challenges, e.g. (Lindzen et al., 2001; Schwartz, 2007; Svensmark, 4 

1998), mostly implying lower ECS than the range assessed as very likely here, but there are also examples of 5 

the opposite (Snyder, 2016) as criticised by (Schmidt et al., 2017b). Looking back, the resulting debates have 6 

led to a deeper understanding, strengthened the consensus, and so have been scientifically valuable. 7 

Certainly, also in the future there will be studies that will challenge the here presented assessment. 8 

 9 
 10 

[START Table 7.15 HERE] 11 
 12 

Table 7.15: Summary of ECS assessment   13 

 14 

ECS Central value Likely range Very likely range Extremely likely 

Process 

understanding 

(7.5.2) 

2.9°C 2.3-4.1°C 1.9-5.6°C  

Warming 

over 

instrumental 

record (7.5.3) 

   

> 1.7°C 

Paleoclimates 

(7.5.4) 
  2.0-5.0°C  

Global 

models 

(7.5.5) 

   > 1.5°C 

Emergent 

constraints 

(7.5.6) 

3°C  2.0-5.0°C  

Synthesis 3°C 2.5°C to 4.0°C 2.0°C to 5.0°C  

 15 

[END Table 7.15 HERE] 16 

 17 

 18 

The evidence for TCR is less abundant than for ECS, and for natural reasons it focuses on the instrumental 19 

temperature record (Sections 7.5.3 and 7.5.6) and process understanding (Section 7.5.2). TCR and ECS are 20 

not unrelated, though, and in any case TCR is less than ECS. Furthermore, unlike ECS, estimates of TCR 21 

from the historical record is not strongly influenced by externally forced surface temperature pattern effects 22 

since both historical transient warming and TCR are affected (Section 7.4.3).  23 

 24 

Based on a process understanding, warming over the instrumental record and emergent constraints the best 25 

estimate TCR is 1.7°C, and it is likely 1.4°C to 2.0°C and very likely 1.2°C to 2.2°C. The assessed ranges are 26 

all assigned high confidence due to the high level of agreement among the different lines of evidence. 27 

 28 

 29 

[START Table 7.16 HERE] 30 

 31 
Table 7.16: Summary of TCR assessment 32 

 33 

TCR Central value Likely range Very likely range 

Process 

understanding 

1.7 °C  1.4-2.2 °C 1.2-3.2 °C 
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(7.5.2) 

Warming 

over 

instrumental 

record (7.5.3) 

1.8 °C 1.5-2.2 °C 1.3-2.6 °C 

Emergent 

constraints 

(7.5.6) 

1.7 °C  1.2-2.2 °C 

Synthesis 1.7 °C 1.4-2.0 °C 1.2-2.2 °C 

 1 

[END Table 7.16 HERE] 2 

 3 

 4 

7.5.8 Evaluation of ECS and TCR in climate models  5 

 6 

The above lines of evidence offer opportunities to evaluate climate model values of climate sensitivity. 7 

Because energy budget constraints on ECS rely on climate models at multiple levels and permit a large range 8 

of values, they do not provide an independent evaluation of model ECS. However, comparisons can be made 9 

between model values of ECS inferred from transient warming simulations with those derived from historical 10 

energy budget constraints. Inferred values of ECS estimated within transient warming simulations of CMIP5 11 

GCMs (2.1°C to 3.8°C) lie within the very likely range of ECS derived from the global energy budget (1.7°C 12 

to 4.6°C) (Section 7.5.3; Figure 7.24; Armour 2017; Proistosescu et al. 2017). However, the inferred ECS 13 

values from GCMs do not span the full range of inferred ECS values allowed by energy budget constraints. 14 

It is possible that other effects such as internal variability or volcanic forcing (Gregory et al. 2019) have 15 

contributed values of inferred ECS over the historical record being lower than the actual ECS. The potential 16 

for internal variability to have contributed to inferred ECS is supported by large ensemble experiments, such 17 

as the 100-member MPI-ESM1.1 ensemble that produces values of ECS inferred for the historical period 18 

ranging from 2.1°C to 3.9°C due to internal variability alone (Dessler et al., 2018). This magnitude of natural 19 

variability is taken into account in energy balance inference, but since the real Earth only provides a single 20 

realization it is not easy to know if natural variability is actually biasing ECS. A ‘like-with-like’ comparison 21 

can be made between GCM values of inferred ECS derived from simulations with prescribed historical sea-22 

surface temperature and sea-ice concentrations and value of inferred ECS from the historical global energy 23 

budget. Inferred ECS from historical warming within the small subset of models that provide these 24 

simulations (6 in total) (Andrews et al., 2018) span a range 1.6°C to 2.2°C, consistent with but at the low end 25 

the range of ECS inferred from energy budget constraints (Figure 7.23). This suggests that radiative 26 

feedbacks within the current models are generally accurate given the observed pattern of warming. 27 

[For SOD: assess CMIP5/6 GCM ECS and TCR against other lines of evidence and against our assessed 28 

range.] 29 

 30 

 31 

7.6 Process understanding and model evaluation of climate response 32 

 33 

This section assesses process understanding of the long-term and large-scale climate response to greenhouse 34 

gas radiative forcing and evaluates the ability of models to capture the changes as it is inferred from the 35 

paleoclimate record. Section 7.6.1 considers the critical processes determining the global mean surface 36 

temperature response and its uncertainty within climate models. Section 7.6.2 considers the critical processes 37 

determining the large-scale spatial patterns of temperature response including polar amplification, land-38 

ocean warming contrasts, and gradients in sea-surface warming in the Pacific Ocean. Section 7.6.3 assesses 39 

what is known about these large-scale spatial patterns of temperature response within the paleoclimate record 40 

and evaluates the ability of climate models to reproduce those patterns.  An overall assessment considering 41 

all the lines of evidence is in Section 7.6.4. 42 

 43 

 44 
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7.6.1 Critical processes determining global temperature response to forcing 1 

 2 

The magnitude of long-term global temperature change in response to a given radiative forcing can be 3 

understood in terms of the factors contributing to the global atmospheric energy budget: the effective 4 

radiative forcing (ERF), which drives the global energy imbalance and associated surface temperature 5 

change; the TOA radiative response to this surface warming, as set by radiative feedbacks, which governs 6 

the rate and magnitude of warming through radiative energy loss to space; and global ocean heat uptake, 7 

which offsets some of the transient surface warming. 8 

 9 

A variety of studies evaluate the contribution that each of these factors makes to warming within coupled 10 

GCM simulations by diagnosing so-called ‘warming contributions’ for each process (Crook et al., 2011; 11 

Dufresne and Bony, 2008; Feldl and Roe, 2013b; Goosse et al., 2018; Pithan and Mauritsen, 2014; Vial et 12 

al., 2013). Warming contributions (units of C) are evaluated by calculating the global energy flux (units of 13 

W m-2) that each process contributes to the atmosphere (Figure 7.26a), either at the TOA or surface, then 14 

dividing that energy flux by the global mean Planck response (about 3.2 W m-2 C-1) (see Section 7.4.2). By 15 

construction, the individual warming contributions sum to the total global warming (Figure 7.26b). For long-16 

term warming in response to CO2 forcing, the energy added to the climate system by radiative feedbacks is 17 

larger than the ERF of CO2 (Figure 7.26a), implying that feedbacks more than double the magnitude of 18 

global warming (Figure 7.26b). Radiative kernel methods (see Section 7.4.1) can be used to decompose the 19 

net energy input from radiative feedbacks into its components. The water-vapour, cloud and surface-albedo 20 

feedbacks enhance global warming, while the lapse-rate feedback reduces global warming. Ocean heat 21 

uptake reduces global warming by sequestering heat at depth away from the ocean surface. 22 

 23 

 24 

[START FIGURE 7.26 HERE] 25 

 26 
Figure 7.26: Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to global 27 

atmospheric energy input and near-surface air temperature change at year 100 of abrupt CO2 quadrupling 28 
simulations of CMIP5 models. (a) The energy flux to the global atmosphere associated with the effective 29 
CO2 forcing, global ocean heat uptake, Planck response, and radiative feedbacks, which together sum to 30 
zero; inset shows energy input from individual feedbacks, summing to the total feedback energy input. (b) 31 
Contributions to net global warming calculated by dividing the energy inputs by the global Planck 32 
response (3.2 W m-2 C-1), with the contributions from radiative forcing, ocean heat uptake, and 33 
radiative feedbacks summing to the value of net warming; inset shows warming contributions associated 34 
with individual feedbacks, summing to the total feedback contribution. Uncertainties show 25% and 75% 35 
percentiles across models. Feedbacks are calculated using radiative kernels (Shell et al., 2008) and the 36 
analysis is based on that of Goosse et al. (2018). [SOD: redo for CMIP6 models when available.] 37 

 38 

[END FIGURE 7.26 HERE] 39 

 40 

 41 

Differences in projected transient global warming across GCMs are dominated by differences in their 42 

radiative feedbacks, while differences in ocean heat uptake and radiative forcing play secondary roles 43 

(Figure 7.26b) (Crook et al., 2011; Dufresne and Bony, 2008; Vial et al., 2013). The uncertainty in projected 44 

global surface temperature change associated with inter-model differences in cloud feedbacks alone is about 45 

three times larger than that associated with ocean heat uptake, radiative forcing, or the combined water-46 

vapour–lapse-rate feedback (Dufresne and Bony, 2008). Extending this energy budget analysis to 47 

equilibrium surface warming suggests that about 70% of the inter-model differences in ECS arises from 48 

uncertainty in cloud feedbacks, with the largest contribution to that spread coming from shortwave cloud 49 

feedbacks in the tropics (Vial et al., 2013).  50 

 51 

An important limitation of understanding global warming and its uncertainty based on energy budget 52 

diagnostics within the coupled climate system is that different feedbacks interact (Section 7.4.2). For 53 

example, water-vapour and lapse-rate feedbacks are correlated (Held and Soden, 2006) owing to their joint 54 

dependence on the spatial pattern of warming (Po-Chedley et al., 2018a). Likewise, sea ice changes and the 55 
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polar lapse-rate feedback are correlated because warming from sea ice loss becomes trapped near the surface 1 

in polar regions where strong temperature inversions exist (Feldl et al., 2017; Po-Chedley et al., 2018a). 2 

Moreover, feedbacks are not independent of ocean heat uptake because the spatial pattern of heat uptake 3 

influences the SST pattern on which global feedbacks depend (Section 7.4.3) (Rose et al., 2014; Rose and 4 

Rencurrel, 2016; Rugenstein et al., 2016; Winton et al., 2010). However, alternative decompositions of 5 

warming contributions that better account for correlations between feedbacks produce similar results 6 

(Caldwell et al., 2016). The key role of radiative feedbacks in governing the magnitude of global warming is 7 

also supported by the high correlation between radiative feedbacks (or ECS) and transient warming within 8 

GCMs (Grose et al., 2018; Section 7.5.1). 9 

  10 

Another approach to evaluating the roles of forcing, feedbacks and ocean heat uptake in projected warming 11 

employs idealized energy balance models that emulate the response of GCMs. These climate ‘emulators’ 12 

permit quantification of the relative importance of different processes while preserving the interactions 13 

between them, which could be missed within analyses based on energy budget diagnostics (as in Figure 14 

7.26). One such emulator assumes that the response of the deep ocean is so slow that ocean heat uptake can 15 

be approximated as proportional to global surface temperature change (Forster et al., 2013; Gregory et al., 16 

2015; Padilla et al., 2011; Raper et al., 2002). Another emulator resolves the heat capacity of both the surface 17 

components of the climate system and the deep ocean (Geoffroy et al., 2013b; Gregory, 2000) and has been 18 

modified to account for the inconstancy of radiative feedbacks by mimicking the effects of the pattern effect 19 

(Armour, 2017; Geoffroy et al., 2013a; Held et al., 2010; Kostov et al., 2014). Using this modified emulator, 20 

Geoffroy et al. (2012) find that: under increasing atmospheric CO2, radiative feedbacks constitute the 21 

greatest source of uncertainty (about 60% of variance) in transient warming beyond several decades; 22 

effective radiative forcing uncertainty plays secondary but important role in warming uncertainty (about 20% 23 

of variance) that diminishes beyond several decades; and ocean heat uptake processes play a minor role in 24 

warming uncertainty (less than 10% of variance) at all timescales. 25 

 26 

More computationally intensive approaches evaluate how the climate response depends on perturbations to 27 

key parameter or structural choices within GCMs. Large ‘perturbed physics ensembles’ wherein a range of 28 

parameters associated with cloud physics are explored within atmospheric GCMs reliably produces a wide 29 

range of ECS due to changes in cloud feedbacks, but often produces unrealistic climate states (Sanderson et 30 

al., 2008b). Rowlands et al. (2012) performed a multi-thousand member perturbed-physics ensemble of 31 

coupled GCMs by perturbing model parameters associated with radiative forcing, cloud feedbacks, and 32 

ocean vertical diffusivity (an important parameter for ocean heat uptake). After constraining the ensemble to 33 

have a reasonable climatology and to match the observed historical warming, they found a wide range of 34 

projected warming by the year 2050 (1.4C to 3C relative to the 1961–1990 average) that is dominated by 35 

differences in radiative feedbacks. By swapping out different versions of the atmospheric or oceanic 36 

components of the GFDL coupled GCM, Winton et al. (2013) found that TCR and ECS depend on which 37 

atmospheric component was used (using two versions with different atmospheric physics), but that only TCR 38 

is sensitive to which oceanic component of the model was used (using two versions with different vertical 39 

coordinate systems, among other differences); TCR and ECS changed by 0.4C and 1.4C, respectively, 40 

when the atmospheric model component was changed, while TCR and ECS changed by 0.3C and < 0.05C, 41 

respectively, when the oceanic model component was changed. However, Krasting et al. (2018) found that 42 

perturbing ocean vertical diffusivity over a wide range within the GFDL climate model changed ECS by 43 

about 0.6C, with this difference linked to different radiative feedbacks associated with different spatial 44 

patterns of sea-surface warming (see Section 7.4.3). 45 

 46 

There is robust evidence and high agreement across a diverse range of modelling approaches and thus high 47 

confidence that radiative feedbacks are the largest source of uncertainty in projected global warming out to 48 

2100 under a given emissions scenario, and that cloud feedbacks in particular are the dominant source of that 49 

uncertainty. Uncertainty in radiative forcing plays an important but generally secondary role. Uncertainty in 50 

global ocean heat uptake plays a relatively minor role in global warming uncertainty, but ocean dynamics 51 

could play an important role on long timescales through the impact on sea-surface warming patterns which in 52 

turn project onto radiative feedbacks (Section 7.4.3), or through changes in ocean circulation (Section 7.4.4).  53 

 54 
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The spread in historical warming across GCMs shows a weak correlation with inter-model differences in 1 

radiative feedback or ocean heat uptake processes but a high correlation with inter-model differences in 2 

radiative forcing owing to large variations in aerosol forcing across models (Forster et al., 2013). Likewise, 3 

the spread in projected 21st century warming across GCMs depends strongly on emissions scenario (Hawkins 4 

and Sutton, 2012; Chapter 4, Section 4.1). Strong emissions reductions would remove aerosol forcing and 5 

this could dominate the uncertainty in near-term warming projections (Armour and Roe, 2011; Mauritsen 6 

and Pincus, 2017; Smith et al., 2019). On post 2100 timescales carbon cycle uncertainty such as the 7 

uncertainty permafrost thawing becomes increasingly important, especially under high emission scenarios 8 

(Chapter 5, Section 5.3) 9 

 10 

In summary, cloud feedbacks are the largest dominant source of uncertainty in this century’s transient global 11 

warming under increasing or stable emissions scenarios (high confidence). Whereas, uncertainty is 12 

dominated by aerosol ERF in strong mitigation scenarios. Global ocean heat uptake is a relatively minor 13 

source of uncertainty in long-term warming. Carbon cycle feedbacks provide an increasing fraction of 14 

uncertainty on longer timescales (high confidence). 15 

 16 

 17 

7.6.2 Critical processes determining large-scale spatial patterns of warming 18 

  19 

The large-scale patterns of surface warming in observations (Chapter 2, Section 2.3) and climate model 20 

simulations (Chapter 4, Section 4.3; Figure 7.27a) share several common features. In particular, surface 21 

warming is greater in the Arctic than in the global average or even SH high latitudes; surface warming is 22 

generally greater over land than over nearby oceans; and GCMs generally simulate a weakening of the 23 

equatorial Pacific Ocean SST gradient, with greater warming in the east on multi-decadal to centennial 24 

timescales, although this feature has not yet emerged in observations (Figure 7.19, Chapter 9, Section 9.2). 25 

This section assesses process understanding of these large-scale patterns of surface temperature response 26 

from the perspective of a regional energy budget. Chapter 4, Section 4.5 discusses patterns of surface 27 

warming for 21st century forcing scenarios. Chapter 9, Section 9.2 assesses historical SST trends and the 28 

ability of coupled GCMs to replicate observed changes. 29 

 30 

 31 

7.6.2.1 Polar amplification 32 

 33 

Polar amplification (Flannery, 1984) describes the phenomenon that surface temperature changes tend to be 34 

amplified at the poles relative to the global mean in response to radiative forcing of the climate system. 35 

Amplified warming in the Arctic, known as Arctic amplification, was anticipated by Arrhenius (1896) based 36 

on a hypothesized loss of high-latitude snow cover with warming and thus a positive feedback associated 37 

with changes in albedo. Arctic amplification has been a ubiquitous emergent feature of climate model 38 

simulations (Hall, 2004; Hansen et al., 1984; Holland and Bitz, 2003; Manabe and Stouffer, 1980; Manabe 39 

and Wetherald, 1975; Pithan and Mauritsen, 2014; Robock, 1983; Winton, 2006) (Section 4.5; Figure 7.27a) 40 

and is also seen in observations (Serreze and Barry, 2011) (Chapter 2, Section 2.3). However, both climate 41 

models and observations show relatively less warming of the SH high latitudes. Since AR5 there is a much-42 

improved understanding of the processes that drive polar amplification in the NH and delay its emergence in 43 

the SH. 44 

 45 

 46 

[START FIGURE 7.27 HERE] 47 

 48 
Figure 7.27: Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to regional surface 49 

temperature changes at year 100 of abrupt CO2 quadrupling simulations of CMIP5 models. (a) Pattern of 50 
near-surface air temperature change. (b-d) Contributions to net Arctic (>60N), tropical (30S-30N), and 51 
Antarctic (<60S) warming calculated by dividing regional-average energy inputs by the regional-average 52 
Planck response, with the contributions from radiative forcing, changes in atmospheric heat transport, 53 
ocean heat uptake, and radiative feedbacks summing to the value of net warming; inset shows regional 54 
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warming contributions associated with individual feedbacks, summing to the total feedback contribution. 1 
Uncertainties show 25% and 75% percentiles across models. Feedbacks are calculated using radiative 2 
kernels (Shell et al., 2008) and the analysis is based on that of Goosse et al., (2018). [SOD: Redo for 3 
CMIP6 models when available.] 4 

 5 

[END FIGURE 7.27 HERE] 6 

 7 

 8 

Feedbacks associated with the loss of sea ice and snow are central to polar amplification (Dai et al., 2019; 9 

Hall, 2004; Screen and Simmonds, 2010), but a variety of other factors contribute substantially as well. 10 

Regional energy budget analyses are commonly used to diagnose the relative contributions of the different 11 

factors to regional warming as projected by climate models under increased CO2 concentrations (Crook et 12 

al., 2011; Feldl and Roe, 2013b; Goosse et al., 2018; Pithan and Mauritsen, 2014; Stuecker et al., 2018). 13 

Since the ERF of CO2 is simulated to be largest in the tropics and smallest at high latitudes, it is diagnosed to 14 

contribute more to tropical warming than to polar warming (Figure 7.27b-d). The net atmospheric poleward 15 

heat transport into the Arctic does not change substantially because a decrease in poleward dry-static energy 16 

(sensible + potential energy) transport compensates the increase in latent energy transport (Figure 7.5) 17 

(Armour et al., 2019; Huang and Zhang, 2014; Hwang et al., 2011; Kay et al., 2012), thus suggesting little or 18 

no role for changes in atmospheric heat transport in Arctic amplification (Figure 7.27b). Instead, the primary 19 

cause of amplified Arctic warming in climate models appears to be large and positive local radiative 20 

feedbacks in the Arctic (Pithan and Mauritsen, 2014; Stuecker et al., 2018) (Figure 7.27b). 21 

 22 

The larger contribution of feedbacks to Arctic warming than tropical warming arises from the latitudinal 23 

structure of the surface-albedo feedback, which warms the Arctic but not the tropics, and the lapse-rate 24 

feedback, which warms the Arctic but reduces warming in the tropics (Goosse et al., 2018; Graversen et al., 25 

2014; Pithan and Mauritsen, 2014; Winton, 2006). Latitudinal structure of the lapse-rate feedback reflects 26 

weak radiative damping to space with surface warming in polar regions, where atmospheric warming is 27 

constrained to the lower troposphere owing to stably stratified conditions, and strong radiative damping in 28 

the tropics, where warming is enhanced in the upper troposphere owing to moist convective processes. 29 

Differences in the lapse-rate feedback between the tropics and polar regions are only partially compensated 30 

by differences in the water-vapour feedback (Taylor et al., 2013) and cloud feedbacks, which both favour 31 

tropical warming (Pithan and Mauritsen, 2014). Another factor contributing to polar amplification is a 32 

weaker Planck response at high latitudes owing to less efficient radiative damping where surface and 33 

atmospheric temperatures are colder (Pithan and Mauritsen, 2014). 34 

 35 

Regional feedbacks contribute to greater warming in the Arctic than the Antarctic owing to weaker Antarctic 36 

lapse-rate and water-vapour feedbacks and a negative shortwave cloud feedback over the Southern Ocean 37 

(Figure 7.27c) (Yoshimori et al., 2017; Section 7.4.2). However, the primary driver of reduced Antarctic 38 

warming in transient simulations is the large heat uptake in the Southern Ocean associated with the 39 

upwelling of unmodified waters from depth (Armour et al., 2016; Marshall et al., 2015) (Section 9.?). The 40 

relatively weak surface cooling arising from ocean heat uptake in the NH high latitudes (Figure 7.27b) 41 

reflects strong heat uptake in the subpolar North Atlantic Ocean (Section 9.?) being partially compensated by 42 

increased heat fluxes from the ocean to the atmosphere in the Arctic Ocean which, in turn, is associated with 43 

increased northward heat transport into the Arctic under global warming (Bitz et al., 2006; Holland and Bitz, 44 

2003; Hwang et al., 2011; Jungclaus et al., 2014; Koenigk and Brodeau, 2014; Mahlstein and Knutti, 2011; 45 

Marshall et al., 2015; Nummelin et al., 2017; Oldenburg et al., 2018; Rugenstein et al., 2013; Singh et al., 46 

2017) (Figure 7.5). Climate model simulations of near-equilibrium warming project polar amplification in 47 

both hemispheres, but generally with less warming in the Antarctic than the Arctic (Danabasoglu and Gent, 48 

2009; Hall, 2004; Li et al., 2013a; Yoshimori et al., 2017). 49 

 50 

While energy budget analyses (Figure 7.27) are useful for diagnosing contributions to regional warming, 51 

their value for assessing the underlying role of individual factors is limited by interactions inherent to the 52 

coupled climate system. Polar lapse-rate, water-vapour, and surface-albedo feedbacks are coupled and 53 

influenced by warming at lower latitudes through heat transport changes (Alexeev and Jackson, 2013; Cai, 54 
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2005; Dai et al., 2019; Dong et al., 2019; Feldl et al., 2017; Graversen et al., 2014; Graversen and Burtu, 1 

2016; Po-Chedley et al., 2018a; Rose and Rencurrel, 2016; Screen et al., 2012; Screen and Simmonds, 2010; 2 

Singh et al., 2018; Stuecker et al., 2018; Yoshimori et al., 2017; Zhou et al., 2017a). For example, episodic 3 

increases in latent heat transport into the Arctic are thought to enhance the water-vapour feedback and drive 4 

sea-ice loss on sub-seasonal timescales (Gong et al., 2017; Lee et al., 2011, 2017; Solomon, 2006; Woods 5 

and Caballero, 2016). If Arctic warming depends on the relative partitioning of atmospheric latent and 6 

sensible heat transport, then atmospheric heat transport changes could play a more prominent role in polar 7 

amplification than implied by regional energy budget analyses (Armour et al., 2019; Graversen and Burtu, 8 

2016; Lee, 2014; Yoshimori et al., 2017). Poleward atmospheric heat transport changes are also influenced 9 

by the latitudinal structure of regional feedbacks, radiative forcing, and ocean heat uptake (Armour et al., 10 

2019; Feldl and Roe, 2013b; Huang and Zhang, 2014; Hwang et al., 2011; Merlis, 2014; Roe et al., 2015; 11 

Rose et al., 2014; Stuecker et al., 2018; Zelinka and Hartmann, 2011). 12 

 13 

While these various factors are thus not cleanly separable, they appear to work in concert to favour polar 14 

amplification. That is, polar amplification still occurs within GCMs when the surface-albedo (Alexeev et al., 15 

2005; Graversen and Wang, 2009; Hall, 2004) and lapse-rate feedbacks (Graversen et al., 2014) are 16 

suppressed. It also occurs in models without any sea ice (Feldl and Roe, 2013b; Rose et al., 2014), provided 17 

that the polar atmosphere is stably stratified (Kim et al., 2018). Moist diffusive energy balance models 18 

suggest that polar amplification would occur even in the absence of any latitudinal structure in climate 19 

feedbacks owing to increased poleward latent heat transport with warming (Alexeev et al., 2005; Alexeev 20 

and Jackson, 2013; Armour et al., 2019; Flannery, 1984; Merlis and Henry, 2018; Roe et al., 2015; Rose et 21 

al., 2014). Poleward latent heat transport changes also act to favour polar amplification and prevent tropical 22 

amplification within climate models (Armour et al., 2019), resulting in strongly polar-amplified warming in 23 

response to polar forcing and a more latitudinally-uniform warming in response to tropical forcing (Alexeev 24 

et al., 2005; Rose et al., 2014; Stuecker et al., 2018). 25 

 26 

Because many factors contribute to polar amplification, projections of polar warming are inherently more 27 

uncertain than global mean warming (Bonan et al., 2018; Holland and Bitz, 2003; Roe et al., 2015; Stuecker 28 

et al., 2018). The magnitude of Arctic amplification (ratio of Arctic to global warming) ranges from a factor 29 

of two to four in projections of 21st century warming (Section 4.5). While uncertainty in both global and 30 

tropical warming is dominated by tropical cloud feedbacks (Vial et al., 2013), uncertainty in polar warming 31 

arises primarily from polar surface-albedo and lapse-rate feedbacks, changes in atmospheric poleward heat 32 

transport, and ocean heat uptake (Bonan et al., 2018; Pithan and Mauritsen, 2014). Increases in ocean heat 33 

transport into the Arctic, as simulated by GCMs, are also correlated with the degree of projected Arctic 34 

amplification (Holland and Bitz, 2003; Hwang et al., 2011; Mahlstein and Knutti, 2011) suggesting that 35 

ocean heat transport may influence polar feedbacks (Singh et al., 2018). 36 

  37 

Arctic amplification has a distinct seasonality with a peak in early winter (Nov-Jan) owing to sea-ice 38 

thinning and associated increases in heat fluxes from the ocean to the atmosphere resulting in strong near-39 

surface warming (Dai et al., 2019; Hall, 2004; Holland and Bitz, 2003; Manabe and Stouffer, 1980; Pithan 40 

and Mauritsen, 2014; Serreze and Barry, 2011). Surface warming may be further amplified by cloud and 41 

lapse-rate feedbacks in autumn and winter (Burt et al., 2016; Morrison et al., 2018). Arctic amplification is 42 

weak in summer owing to surface temperatures remaining stable as excess energy goes into sea-ice melting 43 

or into the ocean mixed layer. 44 

 45 

Based on mature process understanding, robust evidence, and a high degree of agreement across a hierarchy 46 

of climate models, there is very high confidence that polar amplification will be a long-term response to 47 

greenhouse gas forcing in both hemispheres. There is high confidence that amplified warming of the Arctic 48 

will continue over the 21st century and that polar amplification will eventually emerge in the SH on 49 

centennial timescales as the climate equilibrates with radiative forcing and Southern Ocean heat uptake is 50 

reduced. However, the timing of the emergence of SH polar amplification remains uncertain due to 51 

insufficient knowledge of the timescales associated with Southern Ocean warming and the response to 52 

surface wind and freshwater forcing (Bintanja et al., 2013; Kostov et al., 2017, 2018; Pauling et al., 2017; 53 

Purich et al., 2018). GCM simulations indicate that large freshwater input to the Southern Ocean from 54 
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melting ice shelves could substantially delay the emergence of polar amplified warming by stratifying and 1 

cooling the surface ocean around Antarctica (Bronselaer et al., 2018; Golledge et al., 2019) (low confidence 2 

due to medium agreement but limited evidence). However, even a large reduction in the AMOC due, for 3 

instance,  to greatly increased freshwater runoff from Greenland would be insufficient to eliminate Arctic 4 

amplification (Liu et al., 2017b, 2017c; Wen et al., 2018) (medium confidence based on to medium 5 

agreement and medium evidence). 6 

 7 

 8 

7.6.2.2 Land–ocean warming contrast  9 

 10 

Greater warming over land than oceans, at equivalent latitudes, is a ubiquitous feature of both observations 11 

(Chapter 2, Section 2.3.1) (Byrne and O’Gorman, 2018) and GCMs simulations of the climate response to 12 

greenhouse gas forcing (Chapter 4, Section 4.5.1; Figure 7.27). The contrast in land versus ocean warming is 13 

not transient in nature, as it persists to equilibrium in model simulations (e.g., Danabasoglu and Gent, 2009; 14 

Li et al., 2013; Rugenstein et al., 2019). As assessed in Chapter 4, Section 4.5.1, research since AR5 15 

provides a much-improved understanding of the processes driving amplified warming over land than oceans. 16 

There is high confidence that greater warming over land is a consequence of the fact that relative humidity is 17 

lower over land than over the oceans. One theory relates the land-ocean warming contrast to different lapse 18 

rate changes over land and ocean: under greenhouse gas forcing, homogeneous warming of the tropical free 19 

troposphere requires more warming of near-surface air temperatures over land, where the tropospheric lapse 20 

rate follows an approximately dry adiabat, than over the ocean surface, where the moist adiabatic lapse rate 21 

can weaken with warming (Joshi et al., 2013). A related theory relates the land-ocean warming contrast to 22 

the temperature changes required to maintain a nearly-uniform increase in moist static energy (latent plus 23 

sensible energy) of the near-surface air over land and oceans: over land, where relative humidity is low, a 24 

given increase in moist static energy requires a large sensible energy increase and thus a larger increase in 25 

temperature than over oceans, where relative humidity is high and moist static energy increase can be 26 

accomplished by latent energy (Byrne and O’Gorman, 2013, 2018). The land-ocean warming contrast causes 27 

relative humidity to decrease over land (Byrne and O’Gorman, 2016, 2018; Chadwick et al., 2016), 28 

constituting a feedback that further strengthens the land-ocean warming contrast. An idealized representation 29 

of these thermodynamic arguments is able to replicate the in land-ocean warming contrast and land relative 30 

humidity observed over recent decades and simulated by GCMs (Byrne and O’Gorman, 2013, 2018). Section 31 

4.5.1 discusses the causes of uncertainty in land-ocean warming contrast as simulated by GCMs. 32 

 33 

Based on mature process understanding, robust observational and modelling evidence, and a high degree of 34 

agreement across studies, there is high confidence that near-surface air temperature over land will, on 35 

average, increase by more than that over the oceans in both the transient and equilibrium response to 36 

greenhouse gas forcing. 37 

  38 

 39 

7.6.2.3 Tropical sea-surface temperature gradients  40 

 41 

A weakening of the equatorial Pacific Ocean’s east-west SST gradient, with greater warming in the east than 42 

the west, is a common feature of the equilibrium climate response to CO2 forcing as projected by GCMs 43 

(e.g., Figure 7.27). There are thought to be several factors contributing to this patter. In the absence of any 44 

changes in atmospheric or oceanic circulations, the east-west surface temperature difference is theorized to 45 

decrease owing to weaker evaporative damping, and thus greater warming in response to forcing, where 46 

climatological temperatures are colder in the eastern Pacific cold tongue (Hartmann and Michelsen, 1993; 47 

Knutson and Manabe, 1995; Luo et al., 2015; Xie et al., 2010). Within atmospheric GCMs overlying mixed-48 

layer oceans, this gradient in damping has been linked to the rate of change with warming of the saturation 49 

specific humidity, which is set by the Clasius-Clapeyron relation (Merlis and Schneider, 2011). Gradients in 50 

low-cloud feedbacks may also favour eastern equatorial Pacific warming (DiNezio et al., 2009; Meehl and 51 

Washington, 1996). 52 

 53 

In the coupled climate system, changes in atmospheric and oceanic circulations will influence the east-west 54 
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temperature gradient as well. It is expected that as global temperature increases and as the east-west 1 

temperature gradient weakens, a weakening Walker circulation (Vecchi et al., 2006, 2008) will further 2 

weaken the east-west temperature gradient through a reduction of equatorial upwelling of cold water in the 3 

east Pacific and a reduction in the transport of warmer water to the western equatorial Pacific and Indian 4 

Ocean (Dong and McPhaden, 2017; England et al., 2014; Li et al., 2017; Maher et al., 2018). 5 

 6 

Research since AR5 (Burls and Fedorov, 2014; Erfani and Burls, 2019; Fedorov et al., 2015) has built on an 7 

earlier theory (Barreiro and Philander, 2008; Liu and Huang, 1997) linking the east-west temperature 8 

gradient to the north-south temperature gradient. In particular, model simulations suggest that a reduction in 9 

the equator-to-pole temperature gradient (polar amplification) increases the temperature of water subducted 10 

in the extra-tropics, which in turn is upwelled in the eastern Pacific. Thus, polar amplified warming, with 11 

greater warming in the mid-latitudes and subtropics than in the deep tropics, is expected to contribute to the 12 

weakening of the east-west equatorial Pacific SST gradient on decadal to centennial timescales. For all of 13 

these reasons, GCMs generally project an El Niño–like pattern of Pacific warming on centennial timescales. 14 

 15 

The transient adjustment of equatorial Pacific SST gradient is influenced by the fact that upwelling waters 16 

delay surface warming in the east since they have not been at the surface for years to decades to experience 17 

the greenhouse gas forcing. This ‘thermostat mechanism’ (Cane et al., 1997; Clement et al., 1996) is not 18 

thought to persist to equilibrium since it does not account for the eventual increase in temperatures of 19 

upwelled waters (Liu et al., 2005; Luo et al., 2017; Xie et al., 2010) which will occur as surface warming 20 

becomes polar amplified. An individual CMIP5 GCM (GFDL’s ESM2M) has been found to transiently 21 

warm with a La Niña–like pattern of Pacific temperature change, more similar to the SST trends seen over 22 

the historical record (Section 9.2), owing to a weakening nonlinear ENSO amplitude (Kohyama et al., 2017), 23 

but this pattern does not appear to persist to equilibrium (Paynter et al., 2018). 24 

 25 

Chapter 9, Section 9.2 assesses the ability of models to replicate observed Pacific warming trends over the 26 

historical record and discusses possible reasons for model deficiencies including mean state biases, a 27 

misrepresentation of radiative forcing, or a misrepresentation of the forced response due, for instance, to 28 

inadequate representation of the equatorial undercurrent (Coats and Karnauskas, 2018). Coupled GCMs are 29 

generally unable to replicate the observed strengthening of the Walker circulation that is thought to have 30 

contributed to the La Niña–like warming pattern seen over recent decades, perhaps due to biases in simulated 31 

tropical Atlantic SSTs which diminish the connection between Atlantic and Pacific basins and thus reduce 32 

multi-decadal Pacific temperature variability (Kajtar et al., 2018; Kucharski et al., 2014; Luo et al., 2018; 33 

McGregor et al., 2018). With medium confidence, the observed Walker circulation strengthening is thought 34 

to have resulted from a combination of transient factors including sulfate aerosol forcing (Hua et al., 2018; 35 

Takahashi and Watanabe, 2016) and multi-decadal tropical Atlantic SST trends (Chafik et al., 2016; Kajtar et 36 

al., 2017; Kucharski et al., 2011, 2014, 2015; Li et al., 2016; Sun et al., 2017). There is emerging evidence 37 

that the Walker circulation has strengthened again since around 2011, suggesting that a transition to an El 38 

Niño–like warming pattern may currently be underway (Cha et al., 2018) (low confidence due to limited 39 

evidence). 40 

 41 

Based on medium evidence and a high degree of agreement, GCM simulations and process understanding 42 

provides medium confidence that the La Niña–like warming pattern seen over the historical record is 43 

transient in nature and that the eastern tropical Pacific Ocean will increase by more than SSTs in the western 44 

tropical Pacific Ocean on multi-centennial timescales under greenhouse gas forcing. 45 

 46 

 47 

7.6.3 Paleoclimate constraints on patterns of warming 48 

 49 

Paleoclimate data can provide observational evidence of patterns of surface warming during past time 50 

periods of high atmospheric CO2 concentration [SOD: add PlioMIP2 and DeepMIP data papers; Hollis et al, 51 

submitted].  Furthermore, comparison of these data with paleoclimate model simulations of the same time 52 

periods allows an evaluation of modelled patterns of surface warming in response to high CO2 and other 53 

forcings.  Furthermore, paleoclimate model simulations can provide insights into the possible mechanisms 54 
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that led to these patterns of warming.  In this context, there has been a focus on the mid-Pliocene warm 1 

period (MPWP, about 3 million years ago, CO2 concentrations of 350 to 400 ppmv [SOD: CO2 estimates will 2 

depend on Chapter 5 assessment], reduced Greenland and Antarctic ice sheets, Chapter 2, Section 2.3.2.1.1; 3 

Table 2.A.1; Chapter 5, Section 5.2.2.2), and the early Eocene climatic optimum (EECO, ~50 million years 4 

ago, CO2 concentrations of 800 to 1200 ppmv [SOD CO2 estimates will depend on Chapter 5 assessment], 5 

absence of continental ice sheets, Chapter 2, Section 2.3.2.1.1; Table 2.A.1; Chapter 5, Section 5.5.1).  These 6 

time periods provide indirect observational evidence for long-term changes in meridional temperature 7 

gradients (polar amplification) and longitudinal temperature gradients in the tropics, in a world with elevated 8 

atmospheric CO2 concentrations compared with pre-industrial.  9 

[For SOD this could be extended to the LGM, but for now we keep it as relevant as possible to future 10 

changes by restricting to higher-then-preindustrial CO2.  An LGM model-data comparison is due to be 11 

carried out in Chapter 3]] 12 

 13 

 14 

7.6.3.1 Polar amplification in past high-CO2 climates 15 

 16 

At the time of AR5, polar amplification was evident in estimates of paleoclimate SST and land temperature 17 

records from both the MPWP and the EECO, but uncertainties associated with proxy calibrations (MPWP 18 

and EECO) and the role of orbital forcing (MPWP) meant that the degree of polar amplification during these 19 

time periods was not accurately known.  Furthermore, although some models (CCSM3; Winguth et al., 2010; 20 

Huber and Caballero, 2011) at that time were able to reproduce the strong polar amplification implied by 21 

temperature proxies of the EECO, this was achieved at CO2 concentrations substantially higher than those 22 

indicated by CO2 proxies (Anagnostou et al., 2016). 23 

 24 

Since AR5 there has been progress in improving the accuracy of temperature reconstructions of the MPWP 25 

and EECO time periods (Hollis et al., submitted). In particular, reconstructions of the MPWP have been 26 

focused on a short time slice with an orbit similar to modern-day (isotopic stage KM5C; Haywood et al., 27 

2013, 2016), and there are more robust constraints on CO2 concentrations from both of these time periods 28 

(Martínez-Botí et al., 2015; Anagnostou et al., 2016); as such, the degree of polar amplification during these 29 

high-CO2 time periods can now be better quantified, and the ability of models to reproduce this pattern can 30 

be better assessed. 31 

 32 

 33 

[START FIGURE 7.28 HERE] 34 

 35 
Figure 7.28: [N.B. that the model results in this figure are old simulations, and the data has been synthetically 36 

generated.  This placeholder is just to show the style of the anticipated figure for SOD.]. Temperature 37 
changes compared with pre-industrial for the high-CO2 MPWP and EECO time periods, from proxies 38 
and models. (a) proxy reconstructions of temperature change (black circles), including published 39 
uncertainties (vertical bars), for the MPWP (Stage KM5c), as synthesized by [PlioMIP data paper]. 40 
Coloured lines show the modelled zonal mean surface air temperature difference compared with 41 
preindustrial for 4 models from the PlioMIP ensemble [(b) proxy reconstructions of temperature change 42 
(black circles), including published uncertainties (vertical bars), for the early Eocene (EECO), as 43 
synthesized by Hollis et al. (submitted). Coloured lines show the modelled zonal mean surface air 44 
temperature difference compared with preindustrial. for 4 models from the DeepMIP ensemble (c) proxy 45 
reconstructions of temperature change (coloured filled circles) for the MPWP (Stage KM5c), as 46 
synthesized by [PlioMIP data paper].  Background colours show the mean surface air temperature 47 
difference compared with preindustrial for the ensemble mean of the PlioMIP ensemble (d) proxy 48 
reconstructions of temperature change (coloured filled circles) for the early Eocene (EECO), as 49 
synthesized by Hollis et al (submitted).  Background colours show the mean surface air temperature 50 
difference compared with preindustrial for the ensemble mean of the DeepMIP ensemble. 51 

 52 

[END FIGURE 7.28 HERE] 53 

 54 

 55 
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Since AR5 there has also been a change in the degree of polar amplification predicted by paleoclimate 1 

models of the EECO and MPWP.  For the EECO, initial work indicated that changes to model parameters 2 

associated with clouds could increase simulated polar amplification, and improve agreement between models 3 

and data (Kiehl and Shields, 2013; Sagoo et al., 2013), but such parameter changes were not process-based.  4 

In support of these initial findings, recent models that include a process-based representation of cloud 5 

microphysics also exhibit increased polar amplification compared to models in AR5, which agrees better 6 

with the proxy-based estimates, and which is obtained at CO2 concentrations in agreement with the proxy 7 

records (Figure 7.28b,d).  8 

 9 

Overall, the proxy reconstructions give high confidence that meridional temperature gradients were reduced 10 

in both hemispheres in the MPWP and EECO, and this is further supported by model simulations of these 11 

time periods, which are more consistent with the proxies than at the time of AR5. As such, the confidence is 12 

higher than at the time of AR5 in the ability of models to accurately simulate polar amplification.   13 

 14 

 15 

7.6.3.2 Tropical longitudinal temperature gradients in past high-CO2 climates 16 

 17 

In AR5, it was stated that paleoclimate proxies indicate a reduction in the longitudinal SST gradient across 18 

the equatorial Pacific during the MPWP (Masson-Delmotte et al., 2013). This assessment was based on SST 19 

reconstructions between two sites situated very close to the equator in the heart of the western Pacific warm 20 

pool (ODP 806) and eastern Pacific cold tongue (ODP 847), respectively. SST reconstructions based on the 21 

magnesium to calcium ratio (Mg/Ca) in foraminifera and the alkenone unsaturation index (𝑈37
𝑘′) generally 22 

agree that during the Pliocene the SST gradient between these two sites was reduced compared with the 23 

long-term mean of the modern (Dekens et al., 2008; Fedorov et al., 2013; Wara et al., 2005).  24 

 25 

Since AR5, the generation of a new SST record from the ODP 806 warm pool site based on the 26 

𝑇𝐸𝑋86
    𝐻proxy (Zhang et al., 2014), the inclusion of  𝑈37

𝑘′  and  𝑇𝐸𝑋86
    𝐻 SST reconstructions from sites in the 27 

South China Sea as warm pool estimates (O’Brien et al., 2014; Zhang et al., 2014), and the inclusion of 28 

several new sites from the eastern Pacific as cold tongue estimates (Fedorov et al., 2015; Zhang et al., 2014), 29 

has led to revised gradient estimates ranging between a about 1 and 1.5°C (Zhang et al., 2014) and about 3°C 30 

(Fedorov et al., 2015) reduction in the zonal gradient for the MPWP relative to the Late Quaternary (0-31 

0.5Ma). While these revised estimates differ in magnitude due to differences in the sites and SST proxies 32 

used to evaluate the longitudinal SST gradient, and while there are uncertainties associated with the 33 

calibrations of the proxies, there is medium confidence that the average zonal gradient in the tropical Pacific 34 

was weaker during the Pliocene than during the modern.  35 

 36 

 37 

7.6.4 Overall assessment of climate response 38 

 39 

[Note for SOD. This overall assessment will combine the observations, model, and paleo evidence from 40 

7.6.1-7.6.3.  Given the lack of CMIP6-PMIP4 model results available at present, this is just a placeholder 41 

for now]. 42 

 43 

The paleoclimate proxy record of past warm climates, GCM simulations of those past climates, and GCM 44 

projections of climate response to CO2 forcing provides robust evidence and a high degree of agreement and 45 

thus very high confidence that equilibrium warming will be polar amplified in both hemispheres. Arctic 46 

amplification has already been observed (Chapter 2, Section 2.3) and its causes are well understood. Polar 47 

amplification in the SH has yet emerged over the historical record (Chapter 2, Section 2.3) owing to delayed 48 

warming of the Southern Ocean surface and associated heat uptake. 49 

 50 

The paleoclimate proxy record of past warm climates, GCM simulations of those past climates, and GCM 51 

projections of climate response to CO2 forcing provides medium evidence and a medium degree of 52 

agreement and thus medium confidence that equilibrium warming will be characterized by a weakening of 53 

the east-west tropical Pacific SST gradient. 54 
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 1 

Overall the observed pattern of warming over the instrumental period, with minima of warming in the 2 

eastern tropical Pacific Ocean and Southern Ocean (Figure 7.27), stands in contrast to the equilibrium 3 

warming pattern either inferred from the proxy record or simulated by GCMs under CO2 forcing. There is 4 

medium confidence that the observed strengthening of the east-west SST gradient, which has been associated 5 

with increased easterly winds over the tropical Pacific in recent decades, is transient in nature and will 6 

eventually give way to a weakening of the gradient on centennial timescales. There is high confidence that 7 

the SH high latitudes will warm by more than the tropics on centennial timescales. However, there is only 8 

low confidence that such a feature will emerge this century. 9 

 10 

 11 

7.7 Metrics to evaluate emissions 12 

 13 

7.7.1 Introduction to metrics and innovations since IPCC AR5 14 

 15 

Emissions metrics attempt to summarise the contribution different gases and forcing agents make to some 16 

aspect of climate change. They do this by comparing the relative effects of emissions of different gases on 17 

some climate variable, according to some formula. Although absolute metrics exist, most metrics are usually 18 

relative, in the sense that they are constructed by comparing to a reference gas, which is almost always CO2 19 

(Myhre et al., 2013b). In effect, metrics are used as an imperfect summary of the “exchange rates” between 20 

different forcing species.  21 

 22 

The cause-effect chain for climate forcing, climate response, and climate impacts is displayed in Figure 7.2 23 

(Fuglestvedt et al., 2003). Each step in the causal chain requires an inference or modelling framework that 24 

maps causes to effects. Emissions metrics map from emissions of some species to somewhere further down 25 

the chain, radiative forcing (GWP) or temperature (GTP, MGTP, GWP*) or impacts (such as sea level rise or 26 

socioeconomic impacts). While items lower in the chain have greater policy relevance, they are also subject 27 

to greater uncertainty. 28 

 29 

Metrics can facilitate the comparison of effects of forcing agents in support of policy goals. They cannot 30 

define policy goals or targets but can support the evaluation and implementation of choices within multi-31 

component policies (i.e., they can help suggest which emissions to abate). The most appropriate metric will 32 

depend on which aspects of climate change are most important to a particular application, and different 33 

climate policy goals may lead to different conclusions about what is the most suitable metric (Myhre et al., 34 

2013b).  35 

 36 

While metrics can provide a useful way of comparing the effects of different gases, they may not be required 37 

if gases or forcing agents are treated separately (Harvey, 2000, p. 294-295). Alternatively, many of the most 38 

fundamental problems associated with combining short- and long-lived forcings in a single metric could be 39 

avoided via a two-basket approach, one for short-lived agents and one for long-lived (Jackson, 2009). In 40 

particular, because of the different effects of gases with a long residence time (e.g. CO2, N2O, SF6) and those 41 

of forcing agents with timescales of a couple of decades or less (e.g. CH4, black carbon) there may be 42 

reasons to compare either within a two-basket approach or a multi-basket approach. Multi-basket schemes 43 

manage different gases more directly at the level of policy design, where different approaches to regulation 44 

and price can be tailored around the specifics of different forcing agents (Daniel et al., 2012). Although there 45 

is a history of using single-basket approaches, supported by emissions metrics, in climate policy, multi-46 

basket approaches also have many precedents in environmental management, including the Montreal 47 

Protocol.  48 

 49 

  50 

7.7.2 Physical description of metrics 51 

 52 

This section, being part of the WG I report, discusses metrics that relate emissions to physical changes in the 53 

climate system. One such metric, the 100-year GWP, has extensively been employed in climate policy to 54 
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equate emissions of different greenhouse gases. Yet other physical metrics exist, which are discussed in this 1 

section. Further, metrics that relate emissions to more general “damage” or “cost” changes may be more of 2 

use when analysing the economics of mitigation pathways (Johansson, 2012; Sarofim and Giordano, 2018) 3 

(discussed in AR5 WG III Chapters 3 and 4). 4 

 5 

Emission metrics are a simple way of representing the magnitude of the climate effect of a unit emission of a 6 

species. Examples of the climate effect are the radiative forcing, global average surface temperature, global 7 

precipitation and global sea level (Houghton et al., 1990; Shine et al., 2005, 2015; Sterner et al., 2014). 8 

When used to represent the climate impact the metrics are referred to as absolute metrics and expressed in 9 

units of impact per kg (e.g. AGWP or AGTP). More commonly these are compared with a standard species 10 

(almost always CO2) to give a dimensionless factor (e.g. GWP or GTP).  11 

 12 

Chapter 8 of WGI AR5 (Myhre et al., 2013b) comprehensively discussed different physical metrics so this 13 

section focusses on key updates since that report. Since AR5 there has been further understanding of the 14 

radiative effects of emitted species (see 7.3.2). Note that for CO2, CH4 and N2O the radiative efficiencies 15 

vary with background and so have always evolved between assessment reports (see Figure 8.31 of Myhre et 16 

al. (2013)). Since AR5 metrics relating to new physical quantities (precipitation (Shine et al., 2015) and sea 17 

level (Sterner et al., 2014)) have been quantified. There have been developments in understanding how to 18 

compare short-lived species (SLCFs) to CO2 (Allen et al., 2016; Smith et al., 2012). Understanding of the 19 

effect on metrics of the carbon-cycle response to temperature has improved. Although there has been greater 20 

understanding since AR5 of the carbon cycle responses to CO2 emissions (Chapter 5, Section 5.5), there has 21 

been no new quantification of the response of the carbon-cycle to a pulse emission since Joos et al. (2013). 22 

 23 

• The radiative efficiencies used in climate metrics should include rapid adjustments to the target 24 

species and CO2 where available. 25 

• Carbon cycle responses are sufficiently well understood that they should be included in climate 26 

metrics 27 

• Mixed step and pulse metrics can be a useful way of comparing short-lived climate forcers with CO2. 28 

 29 

 30 

7.7.2.1 Radiative properties 31 

 32 

Since AR5 there have been changes in the understanding of the radiative properties of emitted species for 33 

details on these see 7.3.1, 7.3.2, 7.3.3. For CO2, CH4 and N2O better accounting of the spectral properties of 34 

these gases has led to re-evaluation of their stratospheric-temperature adjusted radiative efficiencies and their 35 

dependence on the background state (Etminan et al., 2016). For CO2 and CH4 the tropospheric rapid 36 

adjustments are assessed to be non-zero. The re-evaluated effective radiative efficiency forcing for CO2 will 37 

affect all relative climate metrics. 38 

 39 

The effective radiative efficiencies (including rapid adjustments) for 2017 conditions for CO2, CH4 and N2O 40 

are assessed to be 1.37×10-5 (1.23×10-5 to 1.51×10-5, 3.79×10-4 (3.15×10-4  to 4.43×10-4) and 2.92×10-3 41 

(2.63×10-3 to 3.21×10-3) W m-2 ppb-1 respectively, compared to 1.37×10-5, 3.63×10-4 and 3.00×10-3 W m-2 42 

ppb-1 in Myhre et al. (2013b). For CO2 and CH4 increases due to the re-evaluated radiative properties and 43 

rapid adjustments more than offset the decreases due to the increasing background. For N2O both the re-44 

evaluated radiative properties and the increasing background act to decrease the effective radiative 45 

efficiency.  46 

 47 

 48 

7.7.2.2 Physical quantities 49 

 50 

All the emission metrics are related to top of atmosphere (effective) radiative forcing following a change in 51 

emission. A global temperature-change potential was introduced by Shine et al. (2005) by convolving the 52 

radiative forcing with a temperature response function 𝑅T(𝑡)derived from a two-layer energy balance model. 53 

Sterner et al. (2014) took this further using an upwelling-diffusion energy balance model to derive sea level 54 



First Order Draft Chapter 7 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 7-107 Total pages: 202 

 

rise (SLR) as a SLR response function to radiative forcing or as a response function to global surface 1 

temperature 𝑅SLR(𝑡). Each step from radiative forcing to temperature to SLR includes longer timescales and 2 

therefore prolongs further the contribution of short-lived species. Thus, SLCFs become relatively more 3 

important for SLR than temperature or radiative forcing.  4 

 5 

To illustrate this, the absolute global radiative forcing metric is defined: 6 

 7 

 𝐴GRF𝑋(𝐻) = ∆𝐹𝑋(𝐻) Equation 7.1 

 8 

 9 

as the forcing after time 𝐻 due to a unit pulse emission of species 𝑋. This is similar to instantaneous climate 10 

impact (ICI) (Edwards and Trancik, 2014). Then the absolute global temperature-change potential:  11 

 12 

 
𝐴GTP𝑋(𝐻) = ∆𝑇𝑋(𝐻) = ∫ 𝐴GRF𝑋(𝑡)𝑅T(

𝐻

0

𝐻 − 𝑡)𝑑𝑡 Equation 7.2 

 13 

is the global mean surface temperature change after time 𝐻. The absolute global sea-level rise: 14 

 15 

𝐴GSR𝑋(𝐻) = ∆SLR𝑋(𝐻) = ∫ 𝐴GTP𝑋(𝑡)𝑅SLR(
𝐻

0

𝐻 − 𝑡)𝑑𝑡

= ∫ ∫ AGRF𝑋(𝑡′)𝑅T(𝑡 − 𝑡′)𝑅SLR(𝐻 − 𝑡)𝑑𝑡′𝑑𝑡
𝑡′

0

𝐻

0

 

Equation 7.3 

 16 

is the global mean sea level rise after time H. 17 

 18 

A metric for precipitation, absolute global precipitation potential AGPP (Shine et al., 2015) has two 19 

components, fast and slow. The fast component is related to the effective atmospheric forcing (not top of 20 

atmosphere forcing) and is assumed to be linearly related to the effective radiative forcing by a 21 

dimensionless factor 𝑓 𝑋 that is species dependent. The slow component is related to a change in surface 22 

temperature by a factor 𝑘 (W m-2 °C-1) that is species independent. The AGPP in kg s-1 m-2 is then given by: 23 

 24 

𝐴GPP𝑋(𝐻) = ∆𝑃𝑋(𝐻) =
1

𝐿
(𝑘𝐴GTP𝑋(𝐻) − 𝑓 𝑋𝐴GRF𝑋(𝐻))

=
1

𝐿
(𝑘 ∫ 𝑘𝐴GRF𝑋(𝑡)𝑅T(

𝐻

0

𝐻 − 𝑡)𝑑𝑡 − 𝑓 𝑋𝐴GRF𝑋(𝐻)) 

 

Equation 7.4 

where 𝐿 is the latent heat of vaporisation of water in J kg-1. 25 

 26 

Since the AGPP is the difference of two terms and is strongly dependent on the factor 𝑓𝑋 it is not possible to 27 

generalise as to whether this is higher or lower for SLCFs. Both 𝑓 𝑋 and 𝑘 need to be derived from climate 28 

models. 29 

 30 

It has been shown that for the physical variables discussed, metrics can be constructed that are linear 31 

functions of radiative forcing. Similar metrics could be devised for other climate variables provided they can 32 

be related by response functions to radiative forcing or temperature change. Global damage potentials have 33 

been designed (Sarofim and Giordano, 2018) that are related to powers of the surface temperature change. 34 

These can be more closely aligned with the economic and social costs of pollutant emissions but being non-35 

linear they depend on the size of the emission and rely on the assumption of an ideal climate state from 36 

which the perturbations are measured. 37 

 38 

The physical metrics described above are instantaneous or endpoint values defined at a time 𝐻 after the 39 

emission. These are appropriate when the goal is to not exceed a fixed target such as a temperature limit or 40 
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sea-level rise limit at a specific time. The above metrics can also be integrated from the time of emission, so 1 

the impact is in degree-years for temperature or metre-years for sea-level rise. These reflect that the impact 2 

depends on how long the change occurs for, not just how large the change is. The integrated version of a 3 

metric iAGxx is given by iAGxx(𝐻) = ∫ AGxx
𝐻

0
𝑑𝑡. The commonly used GWP metric is the integrated form 4 

of the radiative forcing metric, i.e. GWP=iGRF. Integrated metrics include the effects of a pulse emission 5 

from the shortest timescales up to the time horizon, whereas endpoint metrics only include the effects that 6 

persist out to the time horizon. SLCFs have therefore relatively higher integrated metrics than endpoint 7 

metrics (Levasseur et al., 2016). 8 

 9 

 10 

7.7.2.3 Carbon cycle responses and other indirect contributions 11 

 12 

AR5 (Myhre et al., 2013) included a contribution to climate metrics from carbon-cycle responses, 13 

representing an adjustment to conventional approaches which considers more of the causal chain displayed 14 

in Figure 7.2. Any agent that warms the surface perturbs the terrestrial and oceanic carbon fluxes, typically 15 

causing a net flux of CO2 into the atmosphere and hence further warming. This aspect is already included in 16 

the carbon cycle models that are used to generate the radiative effects of a pulse of CO2, but was neglected 17 

for non-CO2 species in the conventional metrics. A simplistic account of the carbon cycle response was 18 

included in AR5 based on a single study (Collins et al., 2013b). Since AR5 this understanding has been 19 

revised (Gasser et al., 2017; Sterner and Johansson, 2017) using carbon cycle models to derive the time 20 

evolution of CO2 following a unit pulse emission 𝑅CO2(𝑡) and the CO2 flux perturbation following a unit 21 

temperature pulse 𝑅𝐹(𝑡). In Collins et al. (2013a) 𝑅𝐹(𝑡) was set simply to Γ × 𝛿(𝑡) whereas the newer 22 

studies include a more complete functional form accounting for subsequent re-uptake after the removal of 23 

the pulse. The increase in any metric (AGxx𝑋) due to the carbon cycle response can be derived from the 24 

convolution of the temperature response AGTP𝑋(𝑡) with the CO2 flux response to temperature and the 25 

equivalent metric for CO2: 26 

 27 

 
∆AGxx𝑋 = ∫ ∫ 𝐴𝐺𝑇𝑃𝑋(𝑡′)𝑅𝐹(𝑡 − 𝑡′)AGxxCO2(𝐻 − 𝑡)𝑑𝑡′𝑑𝑡

𝑡

0

𝐻

0

 Equation 7.5 

 28 

Including the carbon cycle response for non-CO2 treats CO2 and non-CO2 species consistently. Confidence in 29 

the method for calculating the carbon cycle response is high therefore we assess that including this more 30 

accurately represents the climate effects of non-CO2 species than excluding it. The values have only been 31 

calculated in two carbon cycle models so the error is assessed to be ±100%. Carbon cycle response are 32 

included in all the metrics presented in Table 7.17 and Table 7.A.1 using the response function 𝑅𝐹(𝑡) of 33 

Gasser et al. ( 2017) (their Appendix C3). 34 

  35 

 36 

Emissions of non-CO2 species can affect the carbon cycle in other ways: emissions of ozone precursors can 37 

reduce the carbon uptake by plants (Collins et al., 2013b); emissions of reactive nitrogen species can fertilize 38 

the carbon cycle (Zaehle et al., 2015); and emissions of aerosols or their precursors can affect the utilisation 39 

of light by plants. There is robust evidence that these processes occur and are important, but insufficient 40 

evidence to determine the magnitude of their contributions to climate metrics. 41 

 42 

Emissions of chemically-reactive species can lead to indirect contributions from chemical production or 43 

destruction of other greenhouse gases. For methane AR5 assessed the contributions from ozone and 44 

stratospheric water vapour add 50% and 15% respectively to its climate metrics. There have been no updates 45 

to these values yet. IPCC AR5 included a contribution to the climate metrics for ozone-depleting substances 46 

(ODSs) from the loss of stratospheric ozone. These contributions are unchanged for AR6. Oxidation of 47 

methane and other hydrocarbons leads ultimately to the production of CO2 (Boucher et al., 2009). For 48 

hydrocarbons from fossil sources this will lead to new CO2 in the atmosphere however this can already be 49 

included in carbon emission totals (Muñoz and Schmidt, 2016). 50 

 51 
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 1 

7.7.2.4 Comparing short-lived climate forcers (SLCFs) with CO2 2 

 3 

Climate metrics are often criticised for over or under stating the importance of different species on climate in 4 

terms of their role on future globally averaged surface temperature change, particularly for short-lived 5 

climate forcers (SLCFs) e.g (Pierrehumbert, 2014). They are particularly sensitive to the choice of time 6 

horizon. Global temperature-change potentials (GTP) for 50-year and 100-year time horizons for methane 7 

range from 14 to 4, see (Table 7.17 and Table 7.A.1). The time dependence occurs because the temperature 8 

changes following a pulse of CO2 (in kg) emissions are roughly constant in time, the principle behind TCRE, 9 

(see Figure 7.29b) whereas the temperature change following a pulse of SLCF emission declines. A step 10 

change in SLCF emissions (in kg yr-1) that is maintained indefinitely leads to a constant change in SLCF 11 

abundance (for timescales significantly longer than the lifetime of the SLCF). This will also cause a roughly 12 

constant change in temperature (Figure 7.29a) – and hence more similar behaviour to CO2 (Allen et al., 2016, 13 

2018b; Smith et al., 2012). Metrics for step emission changes can be derived by integrating the more 14 

standard pulse emission changes up to the time horizon: 15 

 16 

 
AGTP𝑋

𝑆 = ∫ AGTP𝑋(𝐻 − 𝑡)𝑑𝑡
𝐻

0

 Equation 7.6 

 17 

The ratio of the step metric for SLCFs with the pulse metric for CO2 leads to a mixed-GTP  =18 

AGTP𝑋
𝑆/AGTPCO2. This has the units of years, (the standard GTP is dimensionless). This mixed-GTP shows 19 

much less variation with time than the standard GTP (comparing Figure 7.29c with d) and provides a scaling 20 

for comparing a change in emission rate (in kg yr-1) of SLCF with a pulse emission or change in carbon 21 

budget of CO2 (in kg). Allen et al. (2016) show that an approximation (which they designate GWP*) to the 22 

mixed-GTP metric can be derived by simply scaling the GWP by the time horizon 𝐻. While the mixed-GTP 23 

can be calculated for any species, it is most useful for short-lived species, i.e. those with lifetimes much less 24 

than the time horizon of the metric. The time variance of metrics can be accounted for exactly using the CO2 25 

forcing equivalent (CO2-fe) metric (Allen et al., 2018b). Such metrics provide a way of effectively 26 

comparing emissions of short- and long-lived greenhouse gases on globally averaged surface temperature. 27 

These could be challenging to implement into single-basket policy approaches for several reasons, especially 28 

the high relative value of changes in short-lived pollutants.  29 

 30 

 31 

[START FIGURE 7.29 HERE] 32 

 33 
Figure 7.29: Climate metrics for two SLCFs: HFC-32 and CH4, (lifetimes of 5.2 and 12.4) years.  (a) temperature 34 

response to a step change in SLCF emission. (b) temperature response to a pulse CO2 emission. (c) 35 
conventional GTP metrics (pulse vs pulse). (d) mixed-GTP metric (step vs pulse). 36 

 37 

[END FIGURE 7.29 HERE] 38 

 39 

 40 

7.7.2.5 Climate metrics by species 41 

 42 

Climate metrics for selected species are presented in Table 7.17, with further species presented in appendix 43 

Table 7.A.1. GWP(100) values are included for consistency with previous reports, but this does not imply a 44 

continued recommendation of their use. GWP values are not presented for other time horizons. Mixed 45 

metrics (MGTPs) comparing step changes in SLCFs with pulse emissions of CO2 are presented for shorter-46 

lived species. The decrease in radiative efficiency of CO2 at higher concentrations is compensated by the 47 

increase due to rapid adjustments (Section 7.7.2.2) leading to no change in the denominator for the climate 48 

metrics. The climate metrics for methane have increased due to the increase in the methane radiative 49 

efficiency (Etminan et al., 2016) although much of this is offset by the rapid adjustment (Section 7.3.2) 50 

leading to an increase of 4% in the methane radiative efficiency. The radiative efficiency of N2O is decreased 51 

following Etminan et al.  (2016) leading to lower climate metrics compared to AR5. The radiative properties 52 
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and lifetime of halocarbons are unchanged from AR5. The carbon cycle responses are assessed to contribute 1 

less than in AR5 so that for all species the climate metrics are slightly smaller than in AR5. 2 

 3 

 4 

[START Table 7.17 HERE] 5 

 6 
Table 7.17: Climate metrics for selected species. Mixed GTPs (MGTPs) are shown for species with a lifetime less 7 

than 20 years (see section 7.7.2.5). These values include carbon cycle responses as described in 7.7.2.4. 8 
The radiative efficiencies are as described in section 7.3.2 and include rapid adjustments where assessed 9 
to be non-zero in 7.3.2. The climate response function is from Geoffroy et al. (2013). Chemical effect of 10 
methane and N2O are included as in AR5. Contributions from stratospheric ozone depletion are not 11 
included. 12 

 13 
Species Lifetime GWP(100) GTP(50) GTP(100) MGTP(50) 

(years) 
MGTP(100) 
(years) 

       CH4 12.4 32 14.5 6.6 3050 3750 

       N2O 121 271 288 242 
  

    HFC-32 5.2 722 190 142 72500 86500 

  HFC-134a 13.4 1390 690 295 132000 164000 

    CFC-11 45 4950 5020 2590 
  

       CF4 50000 6980 7210 8550 
  

 14 

[END Table 7.17 HERE] 15 

 16 

 17 

[START BOX 7.3 HERE] 18 

 19 

BOX 7.3: Metric types 20 

 21 

Many single-valued emissions metrics struggle to capture aspects of the climate response under different 22 

scenarios.  23 

 24 

Environmental science and related disciplines often draw the distinction between stock pollution, in which 25 

pollutants and damages are essentially cumulative, and flow pollution, in which pollutants are short-lived 26 

and damages follow the flow of pollution. This distinction is relevant to climate change, since some forcing 27 

agents (CO2, N2O and other GHGs with multidecadal or longer residence times) behave as stock pollutants, 28 

while other  short lived climate pollutants (see Chapter 6) and methane) behave much more as flow 29 

pollutants. This means the impacts of CO2, N2O and other long-lived gases are usually functions of 30 

cumulative emissions: this is why there is a near-linear relationship between GSAT and cumulative CO2 31 

emissions, for instance. On the other hand, the climate effects of short lived climate pollutants and methane 32 

more closely follow the pattern of emissions themselves. The distinction is particularly important when 33 

emissions of different species are declining: as emissions decline to zero, the climate effects of CO2 34 

asymptote to a value implied by the total amount of anthropogenic CO2 emissions emitted since the pre-35 

industrial period, while the climate effects of methane decline to zero if methane emissions decline to zero. 36 

Metric choice can, and usually does, obscure this distinction.  37 

 38 

Whether or not the distinction between stock pollution and flow pollution is relevant within a given pollution 39 

management regime depends upon the goals of the regime and the considerations (including value 40 

judgements) underpinning it. However, the distinction is important in the calculation of the warming implied 41 

by a given emissions portfolio (Allen et al., 2018a; Box 2, 2018b). It is not possible to unambiguously 42 

calculate the future warming trajectory implied by an emissions portfolio containing substantial short lived 43 

climate pollutants and long-lived gases when these are reported on a common equivalence metric, unless the 44 
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metric itself preserves the distinction between stock and flow pollution. 1 

 2 

This box compares GWP20, GWP100, GTP, GWP* and MGTP against RCP2.6, RCP4.5 and RCP6.0 for 3 

ERF and temperature over the period 2000-2150.  4 

 5 

[Will be expanded for SOD with Figures] 6 

 7 

It can be seen that the metrics which preserve the stock vs flow distinction – GWP* and MGTP – shadow the 8 

effects of the gases on temperature across the period plotted (and beyond). The metric which provides the 9 

poorest mapping of emissions to temperatures is GWP20, followed by the customary metric, GWP100. 10 

 11 

[END BOX 7.3 HERE] 12 

 13 

 14 

7.7.3 Applications of metrics 15 

 16 

7.7.3.1 Interpretations of metrics 17 

 18 

As discussed in 7.1 above, emissions metrics can be interpreted in several different ways. For instance, the 19 

conversion of some quantity of emissions of one gas into some “equivalent” amount of CO2 informs 20 

something about relative contribution to climate change, and this may be more or less useful depending on 21 

the goodness of fit between the metric and the policy goals in question (Harvey, 2000). However, there are 22 

several choices that determine the numerical specifics of any emissions metric, and these choices pertain to a 23 

mix of scientific and value judgements over which reasonable minds may disagree.  24 

 25 

The variable used to compare the effects of different emissions is a matter of choice: common choices 26 

include radiative forcing (Houghton et al., 1990) and temperature (Shine et al., 2005), but other variables 27 

have also formed the basis of comparison, including sea level rise (Sterner et al., 2014), and dollar-28 

denominated climate change damages (Tol et al., 2012). Emissions metrics can play important roles in 29 

framing scientific information for policymakers. Metrics are also used in areas such as Life Cycle 30 

Assessments and Integrated Assessment Modelling (e.g., by IPCC WGIII). 31 

 32 

The timescale associated with the comparison is also a choice. Partly to show the effects of timescale on 33 

metrics, previous IPCC reports reported 20 year, 100 year, and 500 year values for GWP (Forster et al., 34 

2007), and 20-year and 100-year values for GWP and GTP, with and without the inclusion of carbon cycle 35 

feedbacks (Myhre et al., 2013b). Time-varying metrics also involve the choice of a time-horizon, though in 36 

these cases the time horizon is usually derived from a climate target (most commonly a temperature target). 37 

Time horizon is a choice that, ideally, ought to reflect decision-makers’ needs, depending on the specific 38 

application and the appropriate weighting of different aspects of climate change for a given situation. The 39 

most common approach uses a 100-year timescale, but this is not universally appropriate (Myhre et al., 40 

2013b; Chapter 8, Section 8.7). In fact, Houghton et al. (1990), specifically noted that 20, 100, and 500 year 41 

timescales they discussed were merely ‘candidates for discussion [that] should not be considered as having 42 

any special significance’.  43 

 44 

Because metrics have had a role in establishing the “exchange rate” between gases, there has been particular 45 

focus on the role of metrics in price-based comparisons between greenhouse gases. The most common 46 

economic interpretation of the role of metrics is that policy makers would like to undertake cost-effective 47 

reductions of GHG emissions by comparing the discounted marginal abatement costs and damages 48 

associated with the emission of another unit of one greenhouse gas against the emission of another unit of 49 

another greenhouse gas(Manne and Richels, 2001). Assuming a decision maker has access to the marginal 50 

abatement costs associated with their decision, they would like a signal regarding the discounted present 51 

value of the marginal impacts associated with each gas (Manne and Richels, 2001; Tol et al., 2012). 52 

However, scientists cannot directly measure or assess these marginal impacts; models that attempt to gauge 53 

the impacts from climate change report a wide range of possible responses. The observation of (Manne and 54 
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Richels, 2001), “Unfortunately, we lack at present the necessary knowledge to specify the shapes of the 1 

damage functions and to assign values to many categories of impacts” still holds and, in view of the inherent 2 

difficulty in modelling welfare impacts of climate change, will continue to be the case for the foreseeable 3 

future. Inability to access these damage functions has partly led to the deployment of simple, physically-4 

based metrics as scientific tools for policy (Myhre et al., 2013b).  5 

 6 

 7 

7.7.3.2 Matching metrics and policy goals 8 

 9 

Different metrics may be more or less well-aligned with the impacts of climate change on specific variables, 10 

but no single metric captures the relative roles of different forcing agents across all potential variables of 11 

interest. No matter how it is done, the way different gases are compared is value-laden. Scientifically, values 12 

play out through the choices behind the variable(s), as well as the associated functional form and timescales. 13 

The customary – GWP(100) – rests on path dependent decisions made by climate negotiators in response to 14 

the fact that GWP(100) was the only metric discussed in the IPCC FAR (Houghton et al., 1990). Yet 15 

scientists presented GWP(100) in the FAR not as a suggestion, but as an illustration “to illustrate the 16 

difficulties inherent in the concept.” GWP(100) was developed following precedents derived from the 17 

approach taken to the ozone problem (Shine, 2009), and though scientists were clear from the outset about 18 

the matters of choice involved.  19 

 20 

As well as the alignment between metrics and policy goals, other properties are also important, including the 21 

uncertainty associated with either the physical variable or the policy target. Often there is a trade-off between 22 

some of these properties – well-being is notoriously difficult to measure, for instance, and policy makers 23 

often resort either to well-measured variables that are only imperfectly aligned with well-being (such as 24 

financial income) or to variables that may be better aligned with the goals of policy, but are more uncertain 25 

or poorly measured (such as composite indicators of well-being). In practice, researchers have usually used a 26 

simple proxy measure to make this comparison (Myhre et al., 2013b). From a purely scientific view, the 27 

comparison between the impacts of different gases could be made in a number of ways, since there are a 28 

range of physical variables, functional forms and timescales on which basis the comparison could be made. 29 

 30 

Though metric choice is value-laden, it is not arbitrary. Metrics can be more or less well-aligned with a 31 

policy target or goal. For instance, if a policy-maker is concerned primarily with warming decades into the 32 

future, then an integrated metric is a relatively poor choice. If the metric aligns well with global damage 33 

potential, as is the case with GWP(100) (Myhre et al., 2013b; Tol et al., 2012) then the metric would be a 34 

good fit for a cost-benefit framework. If the metric aligns well with global cost potential, as is the case with 35 

GTP(100), then the metric would be a good choice for a cost-effectiveness framework (Myhre et al., 2013b; 36 

Tol et al., 2012).  37 

 38 

Box 7.3 shows the relative performance of a range of metrics in response to future scenarios. Within the 39 

current climate change regime, the most discussed targets are the global mean temperature targets 40 

established by Article 2 of the Paris Agreement. The Paris Agreement has no other numerical targets, but it 41 

does have two other implicit science targets in Article 4 which articulated in support of the temperature goals 42 

in Article 2: these are an early peaking target, and the aim to “achieve a balance between anthropogenic 43 

emissions by sources and removals by sinks of greenhouse gases in the second half of this century”.  The 44 

Article 4 goals contain important constraints regarding international equity, sustainable development, and 45 

poverty reduction.  46 

 47 

It is clear that the traditional metric, GWP100, gives the wrong sign of the contribution of SLCPs and 48 

methane to warming when emissions are declining. This is a general property of integrated metrics. End 49 

point metrics are less prone to this error. The least erroneous are newer metrics such as GWP* (Allen et al., 50 

2018b) and MGTP, developed since AR5, which compare a step-change in short-lived forcing with a pulse 51 

of long-lived gases more accurately correlate with the temperature effects of emissions scenarios. In 52 

response to the fact that the “Global Warming Potential” does not, under most scenarios, do a good job of 53 

representing the temperature effects of emissions, Myhre et al. (2013) observed that “the name ‘Global 54 
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Warming Potential’ may be somewhat misleading, and ‘relative cumulative forcing index’ would be more 1 

appropriate.” 2 

 3 

Innovations since AR5 have continued to develop longstanding critiques of the customary metric, GWP, and 4 

these critiques have been extended to include all metrics which do not preserve the distinction, important for 5 

variables such as global mean temperatures, between short- and long-lived forcing agents. Alternative 6 

methods for comparing greenhouse gases have been developed, and some of these give a more faithful 7 

simulation of the temperature effects of a portfolio of gases, especially under mitigation scenarios, such as 8 

those implied by successful attainment of the temperature goals set out in Article 2 of the Paris Agreement. 9 

(high confidence.)  While it is reasonable to call attention to the importance of coherence between choices 10 

regarding carbon accounting or metric choice and the science goals that have been agreed, such as those in 11 

the Paris Agreement, IPCC is a non-prescriptive body, and so it cannot make specific recommendations 12 

regarding metrics (and this includes previous recommendations (made in AR4), which should not have been 13 

made). Ultimately, it is a matter for policymakers to decide which metric to use, because they have the social 14 

licence to make the normative judgments regarding timescale, variable choice and functional form that 15 

underpin metric choice. Physical science can only form a subset of the inputs to those choices.  16 
 17 
 18 

7.8 Key Knowledge Gaps 19 

 20 

• Observations of ocean heat imbalance over the 19th century hampers assessing longer term historical 21 

trends with precision (Section 7.2) 22 

• The processes governing rapid adjustments that comprise a ~10% part of the effective radiative 23 

forcing need to be carefully tested with detailed numerical models and observations (Section 7.3) 24 

• In particular, the contribution of rapid adjustments to the effective radiative forcing associated with 25 

aerosol-cloud interactions is poorly bounded. The reasons why results from different observational 26 

analyses contradict each other in this respect need to be identified, as do the sources of model 27 

disagreement (Section 7.3) 28 

• Mixed-phase, ice and convective cloud responses to aerosol changes and climate feedbacks are 29 

poorly observed and modelled (Section 7.3, Section 7.4) 30 

• The future possible future warming of the Eastern Pacific and its timing has important implications 31 

for projections of global warming and ECS. It is predicted by most models but is difficult to infer 32 

from paleo observations, especially with the timing of such a warming. (Section 7.4, Section 7.5) 33 

• The high-end estimate of ECS remains relatively poorly constrained., emerging lines of evidence 34 

offer possible ways forward (Section 7.5) 35 

  36 
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Frequently Asked Questions 1 

 2 

FAQ 7.1: Clouds --- What have we learned since IPCC AR5? 3 

 4 

In often seems we are making little progress on understanding clouds and their role in climate change. We in 5 

fact have made a tonne of progress and can now quantify their amplifying effect on global warming from 6 

greenhouse gases, but details remain to be worked out. 7 

 8 

Clouds cover two thirds of the Earth’s surface. They generally form when the water vapour that is present in 9 

updrafts of air condenses out of the air to form water drops. We see the reflections from these little drops of 10 

water as clouds. When the drops grow large enough, they can fall to the surface as rain. If they get cold 11 

enough, they can freeze to make ice crystals that can grow and fall to the surface as snow. Clouds play a key 12 

role in the Earth’s water cycle and also in the Earth’s energy budget. Over the last four decades, numerous 13 

satellites have measured the role that clouds play in reflecting sunlight and trapping thermal radiation. High 14 

clouds tend to trap more radiation than they reflect, and low clouds reflect more than they trap. On average, 15 

their reflection wins out and overall clouds cool the climate.   16 

 17 

The temperature structure as well as the moisture structure of the atmosphere controls the occurrence of 18 

clouds, and clouds themselves shape the atmospheric circulation by releasing condensation heat and altering 19 

the radiative balance. For decades it has also been known that the radiative properties of clouds depend on 20 

the abundance of aerosol particles upon which cloud droplets and ice crystals must form. Since atmospheric 21 

aerosol concentrations have increased considerably since pre-industrial times due to fossil fuel and biomass 22 

burning, today’s atmosphere contains more such particles than at pre-industrial times. This has made clouds 23 

more reflective, because cloud droplets have predictably become more numerous and smaller. There is broad 24 

agreement that this cooling effect has counteracted a considerable portion of the greenhouse warming over 25 

the last century, though exact quantification has been a challenge. It has also been proposed that the more 26 

numerous but smaller droplets act to extend cloud lifetime and/or increase cloud water content by delaying 27 

rain formation, but this effect remains controversial. While some studies using satellite observations find 28 

evidence in strong support of it, others find a negligible impact. Climate models also disagree on the matter, 29 

simulating everything from negligible to very strong cooling due to aerosol effects on cloud temporal and 30 

spatial extent. On balance, the evidence points to an amplification of cloud-mediated aerosol cooling through 31 

increased cloud lifetimes and/or amounts, but the magnitude of this amplification remains poorly quantified. 32 

 33 

When the global radiation balance is perturbed by increasing atmospheric greenhouse gases clouds also 34 

change as the climate state warms. Climate scientists often refer to the ‘cloud feedback’. This feedback 35 

relates to how clouds will change in a warmer world, and how these changes will affect the radiation balance 36 

of the Earth. It is the largest component of uncertainty in global warming projections for a given emission 37 

pathway and has proved a tricky nut to crack. The problem stems from the fact that clouds can change in a 38 

myriad of ways and their processes tend to occur on much smaller scales than represented by current global 39 

climate models. The latest generation of climate models have improved their representation of clouds by 40 

both increasing their resolutions and sophisticating their representation of processes that occur at still finer 41 

scales, so-called sub-grid parameterisations (Chapter 1). Yet, this improvement is incremental, and the 42 

representation of cloud processes even in the world’s best climate models remains a challenge. 43 

 44 

Over the past decade, new detailed numerical simulation and measurement efforts have allowed us to 45 

accelerate our understanding of how the clouds interact with circulation, and how their changes affect 46 

climate.  Analyses in IPCC AR5 were able to make use of cloud measurements by radar and LiDAR on a 47 

series of satellites. These active sensors gave information on vertical profiles of cloud occurrence and cloud 48 

water, overcoming earlier limitations. Increase in computer power also made very large area simulations 49 

possible at horizontal resolutions of a few kilometres where convective cloud systems could be explicitly 50 

resolved (FAQ7.1, Figure 1). Such simulations complemented large-eddy simulations that simulate particular 51 

cloud systems over a few days and have the resolutions of 100m or less.   52 

 53 

Since IPCC AR5, these observations and modelling efforts have been further developed and integrated to 54 
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build a more complete understanding of cloud processes.  For example, aerosol-cloud processes are routinely 1 

represented in fine detail. Furthermore, extensive analyses of the latest climate model simulations have 2 

enabled scientists to propose a number of constraints on the overall cloud feedback.  3 

A coordinated set of simulations for stratocumulus and trade cumulus cloud regions has revealed how low 4 

clouds are reduced and thinned in response to increasing surface temperature, providing evidence that the 5 

cloud feedback amplifies global warming (Section 7.4.2). 6 

 7 

 8 

[START FIGURE FAQ7.1, Figure 1 HERE] 9 

 10 

FAQ7.1, Figure 1:   Global view of infrared brightness temperature (Tbb) on 6 August, 2016, and monthly- and 11 
zonal-mean cross section of cloud liquid (blue) and ice (purple) contents. Tbb has a low value 12 
where cloud covers surface and is used as a measure of cloud distribution from space. (Top) 13 
Satellite observations and (bottom) a global cloud-resolving simulation using 3.5 km NICAM. 14 
Colours are the same between the two panels. Thin purple curves in the top panel show the 15 
satellite paths along which the zonal mean is calculated. 16 

 17 

[END FIGURE FAQ7.1, Figure 1 HERE] 18 

 19 

 20 

 21 

Verification of cloud vertical structure in climate models using recent satellite products identified a common 22 

error in their simulations, particularly in representing mixed-phase clouds (clouds that may contain both 23 

liquid and ice) for the present climate over the Southern Ocean.  Recent studies have also revisited the 24 

problem of how deep tropical clouds will change with warming from a new perspective. If tropical high 25 

clouds, called anvil clouds, decrease in size in a warmer climate, that will have a cooling effect, reducing the 26 

amount of expected warming from greenhouse gas increases. Climate scientists now believe that a reduction 27 

of anvil cloud area will occur in association with a greater clustering of convective storms with warming. To 28 

date, observational analyses, detailed simulations, and theory have helped climate scientists understand these 29 

processes in greater detail, but they have yet to accurately determine their role in cloud feedback.  30 

 31 

In summary, more and more cloud processes are being understood and simulated well enough to enable us to 32 

narrow the range of possible cloud feedbacks and cloud responses to aerosol changes, which will ultimately 33 

help us better constrain future projections of climate. The assessment in Section 7.4 halves the uncertainty 34 

range in cloud feedback compared to IPCC AR5 and assesses that it is now very likely that cloud changes 35 

will amplify the global warming effect of greenhouse gases. In contrast our emissions of polluting gases such 36 

as sulphur dioxide and particles enhance the cooling effect of cloud, and this cooling effect can now be better 37 

constrained (Section 7.3). The nut is still firmly in its shell but scientists are hungry and we have much better 38 

nutcrackers than 10 years ago so it shouldn’t take long! 39 

 40 

  41 
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FAQ 7.2: Which emission metric should I use? 1 

 2 

Emission metrics are used in climate policy to compare greenhouse gases, but there is a debate over which 3 

to use. Science can help inform appropriate metrics for specific policy targets but societal values and 4 

judgements about what is important are the deciding factor.  5 

 6 

Emission metrics provide a summary of the comparative effects, over some time horizon, of different 7 

emissions, as assessed against some specific climate or socioeconomic measure. They provide a short-hand 8 

for comparing emissions. It has been customary to use one such metric, the global warming potential or 9 

GWP, in carbon accounting approaches. However, while they are potentially useful, metrics can be 10 

misleading if used inappropriately, and they are not essential. Gases and other forcing agents could be treated 11 

separately by a climate policy, without the need for comparison between them. The Montreal Protocol used a 12 

multi-basket approach which allowed trading within a basket of similarly behaving gases, but not between 13 

different baskets of gases. Climate policies, starting with the Kyoto Protocol, have adopted a single-basket 14 

approach based on GWP evaluated over a 100-year time horizon. However, the focus on a single metric to 15 

trade gases has received substantial criticism from the scientific and research community since Kyoto’s 16 

inception. Partly in response to this criticism, a range of alternatives have been proposed. GWP100 compares 17 

the integrated radiative forcing over 100 years of a gas to carbon dioxide. Some of the alternatives have 18 

attempted to instead compare the damages from different emissions. Others have made different choices over 19 

whether to compare the effects of emissions at a point in time, integrated over time or their transient effects. 20 

Some arguments regarding metrics have focused on choosing different time-horizons or on avoiding trade-21 

offs that are rational under GWP100 but which would leave the world warmer overall.  22 

 23 

Because emission metrics have, so far, attempted to compare the effects of different gases against some 24 

function of a single climate or socioeconomic measure, and because policy is multi-faceted, there is no 25 

universally-applicable metric. This does not mean that all metrics are equally valuable, or evidentially 26 

supported, or intellectually defensible. Some emission metrics probably are better than others, because some 27 

choices are either better-supported, scientifically, or more compatible with widely-shared normative 28 

judgements (e.g. about time horizons). 29 

 30 

In Box 7.3 the performance of different metrics against different climate variables is shown. Here we discuss 31 

metric performance against the scientific goals articulated in the Paris Agreement. The global climate change 32 

regime complex contains many elements, but temperature and greenhouse gas stabilization have central 33 

roles. Article 2 of the Convention states “The ultimate objective of this Convention [is] stabilization of 34 

greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic 35 

interference with the climate system.” The Paris Agreement commits countries to “holding the increase in 36 

the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit 37 

the temperature increase to 1.5°C above pre-industrial levels[.]” Article 4 states: “In order to achieve the 38 

long-term temperature goal set out in Article 2, Parties aim to reach global peaking of greenhouse gas 39 

emissions as soon as possible, recognizing that peaking will take longer for developing country Parties, and 40 

to undertake rapid reductions thereafter in accordance with best available science, so as to achieve a balance 41 

between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half 42 

of this century, on the basis of equity, and in the context of sustainable development and efforts to eradicate 43 

poverty.” The only explicit climate targets expressed numerically in the Paris Agreement are the temperature 44 

targets in Article 2. Neither the greenhouse gas stabilization (UNFCCC) nor the “balance between 45 

anthropogenic emissions by sources and removals by sinks of greenhouse gases” nor the early peaking 46 

targets in Article 4 are enumerated.  47 

 48 

It has been shown repeatedly that the temperature targets (Paris Agreement) are poorly-matched with 49 

integrated metrics such as GWP100 as traditionally used. It is a general property of integrating metrics that 50 

they cannot shadow the temperature effects of a trajectory of long-lived and short-lived greenhouse gases. 51 

They are better suited for comparing other climate measures, such as sea-level rise or the accumulation of 52 

energy in the climate system.  53 

 54 



First Order Draft Chapter 7 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 7-117 Total pages: 202 

 

Trajectory-based approaches to the comparison of gases and other forcing agents better capture the 1 

temperature effects of short-lived and long-lived emissions. The warming signal implied by a portfolio of 2 

gases under such metrics is much less ambiguous than that of the same portfolio of gases reported under 3 

GWP20 or GWP100. This does not mean that trajectory-based approaches have universal applicability as it 4 

is still inherent within them that short-lived greenhouse gases and long-lived gases should be treated 5 

differently: a one-off emission of a long-lived gas needs to be compared to an indefinitely sustained emission 6 

change in a short-lived gas.  If policy goals are focused instead on things other than temperature targets, such 7 

as integrated measures of change, then an integrated metric would be a better choice for those goals. 8 

 9 

As identified by previous reports, metric choice should be informed by policy goals. On the presumption that 10 

policymakers will care about many different measures over many different timescales, considering short and 11 

long-lived greenhouse gases separately may be advantageous. However, the choice of how – or whether – to 12 

compare the effects of different gases within either a single-basket approach or a two- or multi-basket 13 

approach, relies on choices that science alone cannot determine.  14 
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Appendix 7.A:  1 

 2 

 3 

[START TABLE 7.A.1 HERE] 4 

 5 

Table 7.A.1:  Radiative efficiencies, lifetimes, AGWP and GWP values for 100 years. AGTP, GTP, iAGTP and MGTP values for 50 and 100 years (see 7.7.2 for 6 

definitions). Carbon cycle responses are included for all species. Radiative efficiencies and lifetimes of halogenated species are from Hodnebrog et 7 

al. (2013) 8 

 9 

 Species  Lifetime 

 

yr 

Radiative 

Efficiency 

W m-2ppb-

1 

AGWP 

100 

W m-2yr 

kg-1 

GWP 

100 

AGTP 

50 

K kg-1 

GTP 

50 

AGTP 

100 

K kg-1 

GTP 

100 

iAGTP 

50 

K yr kg-

1 

MGTP 

50 

yr 

iAGTP 

100 

K yr kg-1 

MGTP 

100 

yr 

       CO2  
 

1.37E-05 9.20E-14 1 5.24E-

16 

1 4.86E-

16 

1 2.78E-

14 

53 5.28E-

14 

109 

       CH4  12.4 3.79E-04 2.91E-12 32 7.62E-

15 

15 3.23E-

15 

7 1.60E-

12 

3048 1.82E-

12 

3750 

       N2O  121 2.92E-03 2.49E-11 271 1.51E-

13 

288 1.17E-

13 

242 7.67E-

12 

14637 1.44E-

11 

29524 

    CFC-11  45 2.60E-01 4.56E-07 4954268 2.63E-

09 

5019926 1.26E-

09 

2590162 1.80E-

07 

3.43E+08 2.72E-

07 

5.59E+08 

    CFC-12  100 3.18E-01 9.94E-07 10805581 6.03E-

09 

11511359 4.38E-

09 

9014812 3.18E-

07 

6.07E+08 5.76E-

07 

1.19E+09 

    CFC-13  640 2.55E-01 1.35E-06 14641035 8.00E-

09 

15260722 8.23E-

09 

16923247 3.54E-

07 

6.75E+08 7.61E-

07 

1.56E+09 

   CFC-113  85 3.02E-01 5.67E-07 6162404 3.44E-

09 

6554303 2.33E-

09 

4797607 1.88E-

07 

3.59E+08 3.30E-

07 

6.79E+08 

   CFC-114  190 3.07E-01 8.33E-07 9061019 5.03E-

09 

9594424 4.42E-

09 

9092699 2.40E-

07 

4.58E+08 4.76E-

07 

9.8E+08 

   CFC-115  1020 2.02E-01 7.42E-07 8067808 4.39E-

09 

8380913 4.63E-

09 

9531719 1.92E-

07 

3.66E+08 4.18E-

07 

8.6E+08 

   HCFC-21  1.7 1.45E-01 1.45E-08 157233 2.05E-

11 

39078 1.48E-

11 

30451 8.36E-

09 

15940980 9.21E-

09 

18950765 

   HCFC-22  11.9 2.08E-01 1.73E-07 1877204 4.33E- 825769 1.90E- 390377 9.51E- 1.81E+08 1.08E- 2.22E+08 
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10 10 08 07 

  HCFC-122  0.97 1.68E-01 5.81E-09 63162 8.17E-

12 

15582 5.93E-

12 

12190 3.36E-

09 

6415062 3.71E-

09 

7621491 

 HCFC-122a  3.4 2.09E-01 2.53E-08 275391 3.66E-

11 

69808 2.61E-

11 

53780 1.46E-

08 

27801948 1.61E-

08 

33102825 

  HCFC-123  1.3 1.52E-01 7.80E-09 84826 1.10E-

11 

20996 7.97E-

12 

16397 4.51E-

09 

8608420 4.97E-

09 

10230211 

 HCFC-123a  4 2.30E-01 3.63E-08 394882 5.29E-

11 

101013 3.76E-

11 

77348 2.09E-

08 

39802717 2.31E-

08 

47420389 

  HCFC-124  5.9 1.98E-01 5.17E-08 561781 7.96E-

11 

151859 5.40E-

11 

111145 2.95E-

08 

56311433 3.27E-

08 

67255616 

 HCFC-132c  4.3 1.73E-01 3.33E-08 361858 4.88E-

11 

93078 3.45E-

11 

70989 1.91E-

08 

36444707 2.11E-

08 

43433680 

 HCFC-141b  9.2 1.62E-01 7.69E-08 836169 1.51E-

10 

287341 8.21E-

11 

168922 4.33E-

08 

82530384 4.84E-

08 

99556576 

 HCFC-142b  17.2 1.89E-01 1.94E-07 2113593 7.03E-

10 

1341810 2.41E-

10 

495725 1.01E-

07 

1.93E+08 1.21E-

07 

2.48E+08 

HCFC-225ca  1.9 2.21E-01 1.25E-08 135831 1.77E-

11 

33831 1.28E-

11 

26331 7.21E-

09 

13764450 7.96E-

09 

16366166 

HCFC-225cb  5.9 2.93E-01 5.14E-08 559076 7.92E-

11 

151127 5.38E-

11 

110610 2.94E-

08 

56040289 3.25E-

08 

66931775 

trans-CF3C  0.071 4.40E-02 1.45E-10 1576 2.02E-

13 

385 1.47E-

13 

303 8.41E-

11 

160418 9.26E-

11 

190444 

    HFC-23  222 1.75E-01 1.20E-06 13051373 7.23E-

09 

13786181 6.56E-

09 

13485873 3.40E-

07 

6.48E+08 6.85E-

07 

1.41E+09 

    HFC-32  5.2 1.10E-01 6.64E-08 721576 9.95E-

11 

189900 6.91E-

11 

142223 3.80E-

08 

72488638 4.20E-

08 

86484542 

    HFC-41  2.8 2.30E-02 1.14E-08 124193 1.64E-

11 

31244 1.18E-

11 

24181 6.58E-

09 

12556977 7.26E-

09 

14942637 

   HFC-125  28.2 2.26E-01 3.10E-07 3372397 1.56E-

09 

2980016 5.64E-

10 

1159782 1.42E-

07 

2.71E+08 1.89E-

07 

3.89E+08 

   HFC-134  9.7 1.91E-01 1.10E-07 1191235 2.25E-

10 

428687 1.18E-

10 

241655 6.14E-

08 

1.17E+08 6.89E-

08 

1.42E+08 
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  HFC-134a  13.4 1.61E-01 1.27E-07 1385744 3.61E-

10 

689601 1.44E-

10 

295446 6.92E-

08 

1.32E+08 7.96E-

08 

1.64E+08 

   HFC-143  3.5 1.28E-01 3.22E-08 349885 4.66E-

11 

88814 3.32E-

11 

68362 1.85E-

08 

35313286 2.04E-

08 

42050435 

  HFC-143a  47.1 1.58E-01 4.67E-07 5083399 2.72E-

09 

5188006 1.34E-

09 

2755301 1.82E-

07 

3.47E+08 2.78E-

07 

5.73E+08 

   HFC-152  0.4 4.40E-02 1.61E-09 17491 2.25E-

12 

4291 1.64E-

12 

3367 9.32E-

10 

1778932 1.03E-

09 

2112475 

  HFC-152a  1.5 9.80E-02 1.34E-08 146086 1.90E-

11 

36232 1.37E-

11 

28265 7.77E-

09 

14818110 8.56E-

09 

17612820 

   HFC-161  0.181 1.60E-02 3.63E-10 3951 5.07E-

13 

967 3.69E-

13 

760 2.11E-

10 

402031 2.32E-

10 

477324 

 HFC-227ca  28.2 2.67E-01 2.59E-07 2812421 1.30E-

09 

2485193 4.70E-

10 

967203 1.18E-

07 

2.26E+08 1.58E-

07 

3.24E+08 

 HFC-227ea  38.9 2.58E-01 3.27E-07 3558610 1.84E-

09 

3502301 8.00E-

10 

1645927 1.35E-

07 

2.58E+08 1.97E-

07 

4.04E+08 

 HFC-236cb  13.1 2.28E-01 1.18E-07 1287660 3.28E-

10 

625929 1.33E-

10 

273008 6.45E-

08 

1.23E+08 7.40E-

08 

1.52E+08 

 HFC-236ea  11 3.00E-01 1.31E-07 1423613 3.03E-

10 

577896 1.42E-

10 

292626 7.27E-

08 

1.39E+08 8.21E-

08 

1.69E+08 

 HFC-236fa  242 2.43E-01 7.81E-07 8489842 4.69E-

09 

8955812 4.33E-

09 

8898926 2.19E-

07 

4.18E+08 4.45E-

07 

9.15E+08 

 HFC-245ca  6.5 2.40E-01 7.02E-08 763705 1.12E-

10 

212820 7.37E-

11 

151597 4.00E-

08 

76389767 4.44E-

08 

91339699 

 HFC-245cb  47.1 2.43E-01 4.51E-07 4901646 2.62E-

09 

5002513 1.29E-

09 

2656787 1.76E-

07 

3.35E+08 2.68E-

07 

5.52E+08 

 HFC-245ea  3.2 1.60E-01 2.31E-08 250705 3.32E-

11 

63383 2.38E-

11 

48910 1.33E-

08 

25322705 1.47E-

08 

30145053 

 HFC-245eb  3.1 2.04E-01 2.85E-08 309661 4.10E-

11 

78189 2.94E-

11 

60382 1.64E-

08 

31285632 1.81E-

08 

37239983 

 HFC-245fa  7.7 2.43E-01 8.42E-08 915917 1.45E-

10 

276790 8.90E-

11 

183105 4.78E-

08 

91151564 5.31E-

08 

1.09E+08 

 HFC-263fb  1.2 1.00E-01 7.39E-09 80322 1.04E-

11 

19861 7.54E-

12 

15519 4.27E-

09 

8153371 4.71E-

09 

9688602 
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 HFC-272ca  2.6 7.20E-02 1.41E-08 153438 2.02E-

11 

38512 1.45E-

11 

29846 8.14E-

09 

15521687 8.98E-

09 

18467189 

  HFC-329p  28.4 3.06E-01 2.31E-07 2506382 1.16E-

09 

2221763 4.22E-

10 

867659 1.05E-

07 

2.01E+08 1.40E-

07 

2.89E+08 

HFC-365mfc  8.7 2.23E-01 7.91E-08 859636 1.48E-

10 

282400 8.41E-

11 

173008 4.46E-

08 

85102447 4.98E-

08 

1.02E+08 

HFC-43-10m  16.1 4.20E-01 1.61E-07 1754942 5.50E-

10 

1048529 1.94E-

10 

398644 8.51E-

08 

1.62E+08 1.00E-

07 

2.06E+08 

 HFC-1132a  0.011 4.00E-03 4.15E-12 45 5.77E-

15 

11 4.21E-

15 

9 2.41E-

12 

4592 2.65E-

12 

5451 

  HFC-1141  0.006 2.00E-03 1.52E-12 17 2.12E-

15 

4 1.54E-

15 

3 8.82E-

13 

1684 9.72E-

13 

1999 

(Z)-HFC-12  0.023 2.10E-02 2.24E-11 243 3.11E-

14 

59 2.27E-

14 

47 1.30E-

11 

24766 1.43E-

11 

29400 

(E)-HFC-12  0.013 1.30E-02 7.96E-12 87 1.11E-

14 

21 8.09E-

15 

17 4.62E-

12 

8817 5.09E-

12 

10467 

(Z)-HFC-12  0.027 1.90E-02 2.76E-11 300 3.84E-

14 

73 2.80E-

14 

58 1.60E-

11 

30506 1.76E-

11 

36215 

HFC-1234yf  0.029 2.30E-02 3.51E-11 381 4.88E-

14 

93 3.56E-

14 

73 2.03E-

11 

38815 2.24E-

11 

46079 

(E)-HFC-12  0.045 3.90E-02 9.27E-11 1008 1.29E-

13 

246 9.42E-

14 

194 5.38E-

11 

102606 5.92E-

11 

121809 

(Z)-HFC-13  0.06 7.40E-02 1.64E-10 1785 2.29E-

13 

436 1.67E-

13 

343 9.53E-

11 

181755 1.05E-

10 

215774 

HFC-1243zf  0.019 1.20E-02 1.45E-11 157 2.02E-

14 

38 1.47E-

14 

30 8.40E-

12 

16030 9.25E-

12 

19029 

HFC-1345zf  0.021 1.40E-02 1.20E-11 131 1.68E-

14 

32 1.22E-

14 

25 6.98E-

12 

13323 7.69E-

12 

15816 

C4F9CH=CH2  0.021 2.60E-02 1.33E-11 144 1.85E-

14 

35 1.35E-

14 

28 7.70E-

12 

14687 8.48E-

12 

17435 

C6F13CH=CH  0.021 2.90E-02 1.05E-11 114 1.47E-

14 

28 1.07E-

14 

22 6.11E-

12 

11647 6.72E-

12 

13827 

C8F17CH=CH  0.021 3.20E-02 9.00E-12 98 1.25E-

14 

24 9.15E-

15 

19 5.23E-

12 

9971 5.75E-

12 

11837 
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Methyl_chl  5 6.90E-02 1.56E-08 169750 2.33E-

11 

44403 1.63E-

11 

33423 8.94E-

09 

17062901 9.89E-

09 

20351953 

Carbon_tet  26 1.70E-01 1.69E-07 1840001 8.19E-

10 

1563388 2.85E-

10 

587122 7.94E-

08 

1.51E+08 1.03E-

07 

2.13E+08 

Methyl_chl  1 1.00E-02 1.20E-09 13003 1.68E-

12 

3209 1.22E-

12 

2510 6.92E-

10 

1320519 7.63E-

10 

1568898 

Methylene_  0.395 3.10E-02 8.69E-10 9453 1.22E-

12 

2319 8.85E-

13 

1820 5.04E-

10 

961476 5.55E-

10 

1141744 

Chloroform  0.408 7.80E-02 1.61E-09 17511 2.25E-

12 

4296 1.64E-

12 

3371 9.33E-

10 

1780939 1.03E-

09 

2114873 

CH2ClCH2Cl  0.178 8.00E-03 8.69E-11 945 1.21E-

13 

231 8.84E-

14 

182 5.04E-

11 

96186 5.55E-

11 

114200 

Methyl bromide  0.8 5.00E-03 2.54E-10 2766 3.57E-

13 

681 2.59E-

13 

533 1.47E-

10 

281043 1.62E-

10 

333849 

Methylene_  0.337 9.00E-03 1.05E-10 1145 1.47E-

13 

281 1.07E-

13 

220 6.11E-

11 

116520 6.73E-

11 

138359 

Halon-1201  5.2 1.54E-01 3.69E-08 401474 5.54E-

11 

105658 3.85E-

11 

79131 2.11E-

08 

40331633 2.34E-

08 

48118752 

Halon-1202  2.9 2.72E-01 2.27E-08 246797 3.26E-

11 

62163 2.34E-

11 

48076 1.31E-

08 

24946965 1.44E-

08 

29689328 

Halon-1211  16 2.94E-01 1.71E-07 1861172 5.79E-

10 

1105469 2.05E-

10 

421614 9.04E-

08 

1.72E+08 1.06E-

07 

2.19E+08 

Halon-1301  65 2.98E-01 6.12E-07 6651008 3.67E-

09 

7006772 2.19E-

09 

4496652 2.17E-

07 

4.14E+08 3.60E-

07 

7.4E+08 

Halon-2301  3.4 1.35E-01 1.70E-08 184915 2.46E-

11 

46873 1.76E-

11 

36111 9.78E-

09 

18667971 1.08E-

08 

22227313 

Halon-2311  1 1.32E-01 4.04E-09 43905 5.68E-

12 

10834 4.12E-

12 

8475 2.34E-

09 

4458829 2.58E-

09 

5297499 

Halon-2401  2.9 1.86E-01 1.80E-08 195704 2.58E-

11 

49293 1.85E-

11 

38123 1.04E-

08 

19782326 1.14E-

08 

23542902 

Halon-2402  20 3.13E-01 1.44E-07 1567586 5.91E-

10 

1127285 1.96E-

10 

403349 7.26E-

08 

1.38E+08 8.90E-

08 

1.83E+08 

       NF3  500 2.05E-01 1.56E-06 16954171 9.28E-

09 

17713820 9.37E-

09 

19275919 4.14E-

07 

7.9E+08 8.82E-

07 

1.81E+09 
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       SF6  3200 5.67E-01 2.28E-06 24745411 1.34E-

08 

25598479 1.46E-

08 

29974695 5.78E-

07 

1.1E+09 1.28E-

06 

2.63E+09 

    SF5CF3  800 5.92E-01 1.69E-06 18384008 1.00E-

08 

19127977 1.05E-

08 

21501068 4.41E-

07 

8.41E+08 9.54E-

07 

1.96E+09 

     SO2F2  36 2.01E-01 3.99E-07 4343208 2.20E-

09 

4190325 9.11E-

10 

1874658 1.69E-

07 

3.23E+08 2.41E-

07 

4.95E+08 

    PFC-14  50000 9.50E-02 6.42E-07 6981426 3.78E-

09 

7208145 4.16E-

09 

8549339 1.62E-

07 

3.09E+08 3.61E-

07 

7.42E+08 

   PFC-116  10000 2.51E-01 1.08E-06 11715575 6.34E-

09 

12102511 6.95E-

09 

14304086 2.72E-

07 

5.2E+08 6.06E-

07 

1.25E+09 

  PFC-c216  3000 2.28E-01 8.90E-07 9677948 5.25E-

09 

10012939 5.69E-

09 

11714024 2.26E-

07 

4.32E+08 5.01E-

07 

1.03E+09 

   PFC-218  2600 2.77E-01 8.61E-07 9357971 5.08E-

09 

9685100 5.50E-

09 

11305090 2.19E-

07 

4.18E+08 4.84E-

07 

9.96E+08 

   PFC-318  3200 3.15E-01 9.23E-07 10038443 5.44E-

09 

10384506 5.91E-

09 

12159801 2.35E-

07 

4.48E+08 5.19E-

07 

1.07E+09 

 PFC-31-10  2600 3.63E-01 8.91E-07 9686921 5.26E-

09 

10025549 5.69E-

09 

11702485 2.27E-

07 

4.33E+08 5.01E-

07 

1.03E+09 

    c-C5F8  0.085 7.60E-02 1.84E-10 1998 2.56E-

13 

488 1.87E-

13 

384 1.07E-

10 

203329 1.17E-

10 

241390 

 PFC-41-12  4100 4.05E-01 8.27E-07 8993522 4.87E-

09 

9299395 5.31E-

09 

10921944 2.10E-

07 

4E+08 4.65E-

07 

9.57E+08 

 PFC-51-14  3100 4.42E-01 7.66E-07 8330772 4.52E-

09 

8618530 4.90E-

09 

10087468 1.95E-

07 

3.72E+08 4.31E-

07 

8.87E+08 

 PFC-61-16  3000 5.02E-01 7.58E-07 8237969 4.47E-

09 

8523117 4.85E-

09 

9971099 1.93E-

07 

3.68E+08 4.26E-

07 

8.77E+08 

 PFC-71-18  3000 5.52E-01 7.38E-07 8024393 4.35E-

09 

8302148 4.72E-

09 

9712589 1.88E-

07 

3.58E+08 4.15E-

07 

8.54E+08 

 PFC-91-18  2000 5.53E-01 6.95E-07 7558792 4.10E-

09 

7828816 4.42E-

09 

9092320 1.78E-

07 

3.39E+08 3.91E-

07 

8.05E+08 

  Z-C10F18  2000 5.57E-01 7.00E-07 7613467 4.13E-

09 

7885444 4.45E-

09 

9158088 1.79E-

07 

3.41E+08 3.94E-

07 

8.11E+08 

  E-C10F18  2000 4.84E-01 6.08E-07 6615651 3.59E-

09 

6851984 3.87E-

09 

7957836 1.55E-

07 

2.97E+08 3.42E-

07 

7.04E+08 
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  PFC-1114  0.003 2.00E-03 3.62E-13 4 5.04E-

16 

1 3.68E-

16 

1 2.10E-

13 

401 2.31E-

13 

476 

  PFC-1216  0.013 1.30E-02 7.01E-12 76 9.76E-

15 

19 7.12E-

15 

15 4.07E-

12 

7760 4.48E-

12 

9212 

CF2=CFCF=C  0.003 3.00E-03 3.35E-13 4 4.67E-

16 

1 3.41E-

16 

1 1.95E-

13 

371 2.14E-

13 

441 

CF3CF2CF=C  0.016 1.80E-02 8.91E-12 97 1.24E-

14 

24 9.05E-

15 

19 5.17E-

12 

9862 5.69E-

12 

11708 

CF3CF=CFCF  0.085 6.80E-02 1.74E-10 1895 2.43E-

13 

463 1.77E-

13 

364 1.01E-

10 

192848 1.11E-

10 

228947 

   HFE-125  119 4.05E-01 1.20E-06 13083203 7.30E-

09 

13933229 5.65E-

09 

11619111 3.72E-

07 

7.1E+08 6.94E-

07 

1.43E+09 

HFE-134 (H  24.4 4.45E-01 5.44E-07 5920792 2.55E-

09 

4859604 8.68E-

10 

1785076 2.60E-

07 

4.96E+08 3.34E-

07 

6.86E+08 

  HFE-143a  4.8 1.77E-01 5.13E-08 557432 7.60E-

11 

145019 5.33E-

11 

109640 2.94E-

08 

56064230 3.25E-

08 

66854371 

 HFE-227ea  51.6 4.42E-01 6.29E-07 6840954 3.70E-

09 

7066705 1.93E-

09 

3971403 2.38E-

07 

4.55E+08 3.73E-

07 

7.68E+08 

HCFE-235ca  4.3 4.07E-01 5.73E-08 622665 8.39E-

11 

160163 5.94E-

11 

122153 3.29E-

08 

62711999 3.63E-

08 

74738230 

HCFE-235da  3.5 4.21E-01 4.82E-08 524278 6.98E-

11 

133081 4.98E-

11 

102435 2.77E-

08 

52914554 3.06E-

08 

63009714 

 HFE-236ca  20.8 5.62E-01 4.16E-07 4518807 1.75E-

09 

3345212 5.81E-

10 

1196149 2.07E-

07 

3.95E+08 2.56E-

07 

5.27E+08 

HFE-236ea2  10.8 4.53E-01 1.76E-07 1909817 3.99E-

10 

761190 1.90E-

10 

391670 9.77E-

08 

1.86E+08 1.10E-

07 

2.27E+08 

 HFE-236fa  7.5 3.57E-01 9.62E-08 1045641 1.63E-

10 

311228 1.02E-

10 

208780 5.46E-

08 

1.04E+08 6.07E-

08 

1.25E+08 

HFE-245cb2  4.9 3.26E-01 6.43E-08 698756 9.55E-

11 

182269 6.68E-

11 

137508 3.68E-

08 

70257995 4.07E-

08 

83790278 

HFE-245fa1  6.6 3.06E-01 8.12E-08 883337 1.30E-

10 

247579 8.53E-

11 

175444 4.63E-

08 

88322648 5.13E-

08 

1.06E+08 

HFE-245fa2  5.5 3.60E-01 7.96E-08 866084 1.21E-

10 

230309 8.31E-

11 

170979 4.56E-

08 

86926114 5.04E-

08 

1.04E+08 
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CF3CF2CH2O  0.33 1.39E-01 1.85E-09 20069 2.58E-

12 

4920 1.88E-

12 

3862 1.07E-

09 

2041510 1.18E-

09 

2424146 

HFE-254cb1  2.5 2.58E-01 2.95E-08 320624 4.21E-

11 

80383 3.03E-

11 

62335 1.70E-

08 

32442221 1.88E-

08 

38595146 

HFE-263fb1  0.063 3.90E-02 1.30E-10 1414 1.81E-

13 

346 1.32E-

13 

272 7.54E-

11 

143937 8.31E-

11 

170877 

 HFE-263m1  0.43 1.27E-01 2.89E-09 31430 4.04E-

12 

7712 2.94E-

12 

6051 1.68E-

09 

3196350 1.85E-

09 

3795749 

CF3CH2CH2O  0.033 2.20E-02 3.84E-11 418 5.35E-

14 

102 3.90E-

14 

80 2.23E-

11 

42534 2.45E-

11 

50494 

HFE-329mcc  22.5 5.29E-01 3.00E-07 3262689 1.34E-

09 

2548712 4.46E-

10 

918331 1.47E-

07 

2.8E+08 1.84E-

07 

3.79E+08 

HFE-338mmz  21.2 4.42E-01 2.57E-07 2789107 1.10E-

09 

2092939 3.64E-

10 

748956 1.27E-

07 

2.43E+08 1.58E-

07 

3.25E+08 

HFE-338mcf  7.5 4.39E-01 9.11E-08 990913 1.55E-

10 

294939 9.62E-

11 

197853 5.17E-

08 

98707137 5.75E-

08 

1.18E+08 

Sevofluran  2.2 3.20E-01 2.12E-08 231008 3.03E-

11 

57722 2.18E-

11 

44847 1.23E-

08 

23391878 1.35E-

08 

27820777 

HFE-347mcc  5 3.45E-01 5.20E-08 565945 7.76E-

11 

148040 5.42E-

11 

111431 2.98E-

08 

56887708 3.30E-

08 

67853407 

HFE-347mcf  6.6 4.21E-01 8.38E-08 911513 1.34E-

10 

255476 8.80E-

11 

181040 4.78E-

08 

91139887 5.30E-

08 

1.09E+08 

HFE-347pcf  6 4.82E-01 8.72E-08 948755 1.35E-

10 

257641 9.13E-

11 

187808 4.98E-

08 

95068594 5.52E-

08 

1.14E+08 

HFE-347mmy  3.7 3.19E-01 3.56E-08 387268 5.17E-

11 

98589 3.68E-

11 

75742 2.05E-

08 

39066072 2.26E-

08 

46528442 

HFE-356mec  3.8 3.01E-01 3.79E-08 412372 5.51E-

11 

105141 3.92E-

11 

80692 2.18E-

08 

41587547 2.41E-

08 

49536580 

HFE-356mff  0.288 1.72E-01 1.64E-09 17843 2.29E-

12 

4372 1.67E-

12 

3433 9.51E-

10 

1815236 1.05E-

09 

2155387 

HFE-356pcf  5.7 3.73E-01 7.05E-08 766426 1.08E-

10 

205408 7.36E-

11 

151468 4.03E-

08 

76874933 4.46E-

08 

91785391 

HFE-356pcf  3.5 3.77E-01 4.37E-08 475724 6.33E-

11 

120756 4.52E-

11 

92949 2.52E-

08 

48014105 2.78E-

08 

57174346 
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HFE-356pcc  3.8 3.22E-01 4.06E-08 441142 5.90E-

11 

112477 4.20E-

11 

86322 2.33E-

08 

44489003 2.58E-

08 

52992621 

HFE-356mmz  0.266 1.51E-01 1.33E-09 14483 1.86E-

12 

3548 1.35E-

12 

2786 7.72E-

10 

1473486 8.50E-

10 

1749567 

HFE-365mcf  0.053 4.70E-02 9.16E-11 997 1.28E-

13 

244 9.31E-

14 

192 5.32E-

11 

101453 5.85E-

11 

120441 

HFE-365mcf  0.59 2.64E-01 5.73E-09 62322 8.03E-

12 

15317 5.84E-

12 

12007 3.32E-

09 

6335564 3.66E-

09 

7524644 

HFE-374pc2  5 2.98E-01 6.16E-08 669439 9.18E-

11 

175112 6.41E-

11 

131808 3.53E-

08 

67290751 3.90E-

08 

80261746 

CF3(CH2)2C  0.011 5.00E-03 1.79E-12 19 2.50E-

15 

5 1.82E-

15 

4 1.04E-

12 

1986 1.15E-

12 

2357 

-(CF2)4CH  0.3 1.60E-01 1.26E-09 13698 1.76E-

12 

3357 1.28E-

12 

2635 7.30E-

10 

1393447 8.04E-

10 

1654577 

HFE-43-10p  13.5 1.02E+00 2.76E-07 3001958 7.89E-

10 

1505413 3.12E-

10 

641261 1.50E-

07 

2.86E+08 1.72E-

07 

3.55E+08 

HFE-449s1   4.7 3.64E-01 4.13E-08 449046 6.11E-

11 

116528 4.29E-

11 

88276 2.37E-

08 

45176049 2.62E-

08 

53864121 

n-HFE-7100  4.7 4.20E-01 4.76E-08 518130 7.05E-

11 

134455 4.95E-

11 

101856 2.73E-

08 

52126211 3.02E-

08 

62150908 

i-HFE-7100  4.7 3.52E-01 3.99E-08 434243 5.91E-

11 

112686 4.15E-

11 

85365 2.29E-

08 

43686729 2.53E-

08 

52088380 

HFE-569sf2  0.8 3.05E-01 5.58E-09 60654 7.83E-

12 

14938 5.69E-

12 

11697 3.23E-

09 

6162886 3.56E-

09 

7320841 

n-HFE-7200  0.8 3.47E-01 6.35E-09 69007 8.91E-

12 

16995 6.47E-

12 

13308 3.68E-

09 

7011546 4.05E-

09 

8328957 

i-HFE-7200  0.8 2.38E-01 4.35E-09 47330 6.11E-

12 

11656 4.44E-

12 

9127 2.52E-

09 

4809072 2.78E-

09 

5712656 

HFE-236ca1  25 6.53E-01 5.24E-07 5698730 2.49E-

09 

4741652 8.53E-

10 

1755372 2.49E-

07 

4.74E+08 3.21E-

07 

6.6E+08 

HFE-338pcc  12.9 8.58E-01 2.85E-07 3100304 7.77E-

10 

1483146 3.18E-

10 

654996 1.56E-

07 

2.97E+08 1.78E-

07 

3.67E+08 

(CF3)2CHOH  1.9 2.61E-01 1.78E-08 193733 2.53E-

11 

48252 1.83E-

11 

37556 1.03E-

08 

19631888 1.14E-

08 

23342651 
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     HG-02  26 1.15E+00 4.86E-07 5287752 2.36E-

09 

4492829 8.20E-

10 

1687257 2.28E-

07 

4.35E+08 2.97E-

07 

6.11E+08 

     HG-03  26 1.43E+00 4.46E-07 4854215 2.16E-

09 

4124467 7.53E-

10 

1548921 2.09E-

07 

3.99E+08 2.73E-

07 

5.61E+08 

     HG-20  25 9.20E-01 5.19E-07 5638632 2.46E-

09 

4691647 8.44E-

10 

1736860 2.46E-

07 

4.69E+08 3.17E-

07 

6.53E+08 

     HG-21  13.5 1.72E+00 3.81E-07 4145449 1.09E-

09 

2078848 4.30E-

10 

885527 2.07E-

07 

3.95E+08 2.38E-

07 

4.9E+08 

     HG-30  25 1.65E+00 7.18E-07 7802266 3.40E-

09 

6491908 1.17E-

09 

2403321 3.40E-

07 

6.49E+08 4.39E-

07 

9.04E+08 

CF3CF2CF2O  0.75 2.81E-01 5.94E-09 64627 8.34E-

12 

15908 6.06E-

12 

12460 3.44E-

09 

6567301 3.79E-

09 

7800915 

Fluoroxene  0.01 1.10E-02 5.26E-12 57 7.33E-

15 

14 5.35E-

15 

11 3.06E-

12 

5831 3.37E-

12 

6922 

CH2FOCF2CF  6.2 3.43E-01 8.55E-08 930164 1.34E-

10 

255067 8.96E-

11 

184331 4.88E-

08 

93141232 5.41E-

08 

1.11E+08 

C12H5F19O2  1 4.89E-01 5.45E-09 59214 7.66E-

12 

14612 5.56E-

12 

11430 3.15E-

09 

6013668 3.47E-

09 

7144791 

  CH3OCH2F  0.2 6.50E-02 1.23E-09 13323 1.71E-

12 

3262 1.25E-

12 

2562 7.11E-

10 

1355662 7.82E-

10 

1609580 

  CH3OCHF2  1.1 1.74E-01 1.41E-08 153144 1.98E-

11 

37829 1.44E-

11 

29575 8.15E-

09 

15549151 8.98E-

09 

18475390 

 CH2FOCH2F  0.9 1.93E-01 1.28E-08 138983 1.80E-

11 

34262 1.30E-

11 

26815 7.40E-

09 

14118148 8.15E-

09 

16772241 

 CH2FOCHF2  3.3 3.04E-01 6.05E-08 658269 8.73E-

11 

166639 6.25E-

11 

128486 3.48E-

08 

66472163 3.85E-

08 

79138448 

  CH2FOCF3  4.4 3.28E-01 7.38E-08 802594 1.08E-

10 

206865 7.66E-

11 

157532 4.24E-

08 

80811633 4.68E-

08 

96319521 

    HG'-01  2 2.92E-01 2.18E-08 236539 3.09E-

11 

58976 2.23E-

11 

45876 1.26E-

08 

23963763 1.39E-

08 

28495850 

    HG'-02  2 5.64E-01 2.32E-08 251804 3.29E-

11 

62782 2.37E-

11 

48837 1.34E-

08 

25510279 1.47E-

08 

30334847 

    HG'-03  2 7.65E-01 2.17E-08 235732 3.08E-

11 

58775 2.22E-

11 

45720 1.25E-

08 

23882065 1.38E-

08 

28398701 
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HFE-329me3  40 4.76E-01 4.44E-07 4833187 2.51E-

09 

4787070 1.11E-

09 

2290343 1.82E-

07 

3.48E+08 2.67E-

07 

5.48E+08 

HFE-338mec  0.055 6.10E-02 9.25E-11 1006 1.29E-

13 

246 9.40E-

14 

193 5.37E-

11 

102447 5.91E-

11 

121622 

CF3(CF2)6C  0.055 6.80E-02 3.22E-11 350 4.48E-

14 

86 3.27E-

14 

67 1.87E-

11 

35619 2.06E-

11 

42285 

CF3(CF2)8C  0.055 5.10E-02 1.85E-11 201 2.57E-

14 

49 1.88E-

14 

39 1.07E-

11 

20453 1.18E-

11 

24281 

CH3OCF2CHF  1.4 2.11E-01 1.20E-08 130583 1.70E-

11 

32354 1.23E-

11 

25254 6.94E-

09 

13248800 7.65E-

09 

15746175 

PFPMIE (pe  800 6.48E-01 9.40E-07 10221291 5.57E-

09 

10634929 5.81E-

09 

11954339 2.45E-

07 

4.67E+08 5.30E-

07 

1.09E+09 

   HFE-216  0.023 2.50E-02 2.09E-11 227 2.91E-

14 

56 2.12E-

14 

44 1.21E-

11 

23147 1.34E-

11 

27478 

   HCOOCF3  3.5 3.11E-01 5.76E-08 626715 8.34E-

11 

159083 5.95E-

11 

122450 3.32E-

08 

63253319 3.66E-

08 

75320932 

HCOOCF2CF3  3.5 4.42E-01 5.69E-08 619124 8.24E-

11 

157157 5.88E-

11 

120966 3.28E-

08 

62487240 3.62E-

08 

74408698 

HCOOCF2CF2  2.6 5.03E-01 3.69E-08 401118 5.28E-

11 

100678 3.79E-

11 

78023 2.13E-

08 

40576824 2.35E-

08 

48276960 

HCOOCF2CF2  3 5.61E-01 3.85E-08 418419 5.53E-

11 

105519 3.96E-

11 

81549 2.22E-

08 

42284308 2.45E-

08 

50327189 

HCOOCH2CF3  0.44 1.58E-01 3.28E-09 35646 4.59E-

12 

8748 3.34E-

12 

6863 1.90E-

09 

3624993 2.09E-

09 

4304809 

HCOOCH2CH2  0.3 1.34E-01 1.71E-09 18577 2.39E-

12 

4553 1.74E-

12 

3574 9.91E-

10 

1889792 1.09E-

09 

2243936 

HCOOCHFCF3  3.2 3.49E-01 4.62E-08 502025 6.65E-

11 

126921 4.76E-

11 

97940 2.66E-

08 

50707555 2.93E-

08 

60364085 

HCOOCH(CF3  3.2 3.33E-01 3.26E-08 354985 4.70E-

11 

89747 3.37E-

11 

69254 1.88E-

08 

35855610 2.08E-

08 

42683800 

CH3COOCF2C  0.06 1.25E-01 1.63E-10 1770 2.27E-

13 

433 1.65E-

13 

340 9.45E-

11 

180239 1.04E-

10 

213974 

CH3COOCF2C  0.06 1.07E-01 1.70E-10 1848 2.37E-

13 

452 1.73E-

13 

355 9.86E-

11 

188117 1.09E-

10 

223326 
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CH3COOCF2C  0.06 9.90E-02 2.01E-10 2190 2.81E-

13 

535 2.05E-

13 

421 1.17E-

10 

222939 1.29E-

10 

264666 

 CH3COOCF3  0.06 7.20E-02 2.04E-10 2215 2.84E-

13 

541 2.07E-

13 

426 1.18E-

10 

225465 1.30E-

10 

267665 

   FCOOCH3  1.8 6.70E-02 9.33E-09 101463 1.32E-

11 

25244 9.56E-

12 

19660 5.39E-

09 

10284308 5.94E-

09 

12227141 

FCOOCF2CH3  0.33 1.69E-01 2.63E-09 28596 3.67E-

12 

7010 2.68E-

12 

5502 1.53E-

09 

2908799 1.68E-

09 

3453990 

CF3COOCF2C  0.33 2.70E-01 3.02E-09 32853 4.22E-

12 

8054 3.07E-

12 

6322 1.75E-

09 

3341908 1.93E-

09 

3968275 

CF3COOCH2C  0.06 5.30E-02 1.35E-10 1469 1.88E-

13 

359 1.37E-

13 

282 7.84E-

11 

149577 8.63E-

11 

177573 

CF3COOCH2C  0.15 1.45E-01 6.70E-10 7284 9.34E-

13 

1782 6.81E-

13 

1400 3.89E-

10 

741245 4.28E-

10 

880046 

 CF3COOCH3  0.61 1.79E-01 5.15E-09 55986 7.21E-

12 

13762 5.24E-

12 

10787 2.98E-

09 

5691163 3.29E-

09 

6759412 

HCF2COOCH3  0.11 5.30E-02 3.20E-10 3478 4.46E-

13 

851 3.25E-

13 

669 1.86E-

10 

353971 2.04E-

10 

420239 

CF3COOCHF2  0.3 2.41E-01 2.66E-09 28939 3.72E-

12 

7092 2.71E-

12 

5568 1.54E-

09 

2943959 1.70E-

09 

3495653 

CHF2CHFOCF  9.834 3.45E-01 1.22E-07 1324619 2.53E-

10 

482666 1.31E-

10 

269034 6.82E-

08 

1.3E+08 7.66E-

08 

1.58E+08 

CF3CHFCF2O  0.389 1.91E-01 2.29E-09 24874 3.20E-

12 

6101 2.33E-

12 

4788 1.33E-

09 

2529893 1.46E-

09 

3004212 

CF3CF2CF2O  67 5.81E-01 6.32E-07 6867726 3.80E-

09 

7247104 2.30E-

09 

4726507 2.22E-

07 

4.24E+08 3.71E-

07 

7.63E+08 

CHF2CF2CH2  0.25 1.12E-01 1.28E-09 13920 1.79E-

12 

3410 1.30E-

12 

2677 7.42E-

10 

1416216 8.17E-

10 

1681544 

CF3CHFCF2C  0.26 1.94E-01 1.67E-09 18188 2.34E-

12 

4456 1.70E-

12 

3499 9.70E-

10 

1850414 1.07E-

09 

2197107 

CF3CF2CF2C  0.55 1.98E-01 3.29E-09 35736 4.60E-

12 

8779 3.35E-

12 

6884 1.90E-

09 

3633246 2.10E-

09 

4315002 

CHF2CF2CH2  0.039 3.20E-02 5.16E-11 561 7.18E-

14 

137 5.24E-

14 

108 2.99E-

11 

57090 3.29E-

11 

67774 
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perfluoro-  0.019 2.80E-02 9.68E-12 105 1.35E-

14 

26 9.84E-

15 

20 5.62E-

12 

10723 6.19E-

12 

12730 

 CF3CH2CHO  0.005 4.00E-03 1.19E-12 13 1.65E-

15 

3 1.20E-

15 

2 6.88E-

13 

1312 7.57E-

13 

1558 

 CH2FCH2OH  0.056 1.60E-02 8.41E-11 915 1.17E-

13 

224 8.55E-

14 

176 4.88E-

11 

93135 5.37E-

11 

110566 

 CHF2CH2OH  0.11 3.70E-02 2.98E-10 3245 4.16E-

13 

794 3.03E-

13 

624 1.73E-

10 

330235 1.91E-

10 

392060 

  CF3CH2OH  0.321 1.01E-01 1.95E-09 21243 2.73E-

12 

5207 1.99E-

12 

4088 1.13E-

09 

2160949 1.25E-

09 

2565951 

HCF2O(CF2C  26 1.46E+00 3.55E-07 3860431 1.72E-

09 

3280082 5.99E-

10 

1231817 1.67E-

07 

3.18E+08 2.17E-

07 

4.46E+08 

 1 

[END TABLE 7.A.1 HERE] 2 

 3 
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Figures: 2 

 3 

 4 

 5 

 6 
 7 
Figure 7.1: A conceptual energy budget framework to describe the state-of-the-art understanding of Earth’s energy 8 

budget, climate feedbacks and the policy implications. The new elements relative to IPCC AR5 are 9 
highlighted in red.  10 
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 1 
Figure 7.2: A conceptual chain of processes linking human activity to climate impacts, showing where the climate 2 

indicators and emission metrics assessed in this chapter fit within the chain and how they associate with 3 
other Working Groups. 4 

 5 

  6 
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 1 

 2 
Figure 7.3: Schematic representation of the global mean energy budget of the Earth (left), and its equivalent without 3 

considerations of cloud effects (right). Numbers indicate best estimates for the magnitudes of the globally 4 
averaged energy balance components in Wm-2 together with their uncertainty ranges in parentheses (95% 5 
confidence range), representing present day climate conditions at the beginning of the 21th century. 6 
Adapted from (Wild et al., 2015, 2019). [placeholder: change to 90% confidence range for SOD]  7 
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 2 

 3 
 4 
Figure 7.4: Implied cross-equatorial energy transports in the atmosphere and ocean inferred from hemispheric 5 

asymmetries in CERES TOA and surface energy budgets and mass corrected divergence in ERAinterim 6 
atmospheric total energy transport. From (Loeb et al., 2016). 7 

  8 
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 3 

 4 

 5 
Figure 7.5: Observed and CMIP5 climatological energy transports in the atmosphere and ocean (top) and projected 6 

heat transport changes at year 100 following CO2 quadrupling (bottom). (a) Climatological total heat 7 
transport inferred from CERES TOA (Armour et al., 2019) and simulated by CMIP5 models. (b) 8 
Climatological atmospheric heat transport calculated from the NCEP Reanalysis (Trenberth and 9 
Stepaniak, 2003) and simulated by CMIP5 models. (c) Climatological oceanic heat transport inferred 10 
from surface energy budgets (calculated as a residual between atmospheric heat transport divergence and 11 
TOA radiation fluxes). Grey shading shows 5-95% range on observational estimates. For total meridional 12 
heat transport the range is estimated from inter-annual variability and total CERES calibration error 13 
added in quadrature at each latitude. For atmospheric heat transport the range is estimated from inter-14 
annual variability and for oceanic heat transport the range is estimated as a residual from the total and 15 
atmospheric heat transports with errors propagated in quadrature. (d-f) Anomalies in total, atmospheric, 16 
and implied oceanic heat transports simulated by CMIP5 models under abrupt CO2 quadrupling relative 17 
to pre-industrial control simulations which define their climatologies in (a)-(c) (following Armour et al., 18 
2019). Implied ocean heat transport changes shown are those derived by net sea-surface heat fluxes and 19 
thus do not account for the pattern of ocean heat storage.  [placeholder redo for CMIP6 once available 20 
and update to new analyses.] 21 

 22 
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 2 
Figure 7.6: Anomalies in global mean all-sky TOA fluxes from EBAF Ed4.0 in terms of reflected shortwave (upper 3 

panel), emitted longwave (middle panel) and net TOA flux (lower panel). Thin lines are monthly 4 
anomalies. The thick line through monthly anomalies is the 12-month running mean. Larger reflected 5 
shortwave and emitted longwave flux anomalies are defined as positive in upper and middle panels. Net 6 
TOA flux is defined as incoming shortwave flux minus reflected and emitted fluxes (i.e. downward 7 
positive). Adapted from (Loeb et al., 2018). 8 

  9 
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 1 
Box 7.2, Figure 1: Estimates of the net cumulative energy change (ZJ = 1021 Joules) for the period 2 
1971-2015 associated with: (a) Earth System Energy Change; (b) Effective Radiative Forcing; (c) 3 
Earth System Radiative Response. Shaded regions indicate the 5th to 95th percentile uncertainty 4 
range. Panels (d) and (e) show the breakdown of components for energy storage and effective 5 
radiative forcings, respectively. Panel (f) shows the comparison of CMIP5 model simulations of 0-6 
2000m heat content change with several observation-based estimates, following Cheng et al. (2019). 7 
The shaded regions indicate the 5th to 95th percentile range of model simulations, assuming a normal 8 
distribution. [placeholder: Observed Storage Change to be properly assessed for SOD]. 9 



First Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-176 Total pages: 202 

  1 
 2 

Box 7.2, Figure 2: Two-layer model simulations of global mean surface temperature (left) and 3 
ocean thermal expansion (right) under the RCP2.6 and RCP4.5 scenarios, following Palmer et al 4 
(2018). Shaded regions indicate the 90% confidence interval based on the ensemble standard 5 
deviation. Dotted lines indicate the ensemble mean response. Solid lines show a single CMIP5 6 
model simulation to illustrate the characteristics of variability in each variable.  Projections are 7 
shown relative to a 1986-2005 baseline period. [placeholder: baseline to be changed inline with AR6 8 
standard period of 1995-2014 at SOD].  9 

 10 

 11 

12 
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 2 
Figure 7.7: The ERF, IRF and rapid adjustment (a) and breakdown of the rapid adjustment using radiative kernels (b) 3 

for five idealised forcing experiments across nine models. The 95% confidence range is shown. Note that 4 
the land-surface response is included in ERF as an adjustment.  Data modified from Smith et al. (2018). 5 
The results are computed from idealized single forcing experiments with the following abrupt 6 
perturbations from present day conditions; doubling CO2 concentration (2xCO2), tripling methane 7 
concentration (3xCH4), two percent increase in insolation (2%Sol), ten times black carbon concentrations 8 
or emissions (10xBC), five times sulphate concentrations or emissions (5xSul). [ For SOD land response 9 
will be removed from the ERF in the figure.] 10 

 11 

 12 
  13 

14 
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 1 
Figure 7.8: Values of climate feedback parameter (𝛼) derived from ERF and SARF for twelve forcing experiments. 2 

Multi-model means and full model ranges are shown. ERF is derived from prescribed SST and sea-ice 3 
experiments. The number of models analysed differs between experiments as indicated on the bars. Data 4 
from Richardson et al. (Submitted). The results are computed from idealized single forcing experiments 5 
with the following abrupt perturbations from present day conditions; doubling CO2 concentration 6 
(2xCO2), tripling methane concentration (3xCH4), two percent increase in insolation (2%Sol), ten times 7 
black carbon concentrations or emissions (10xBC), five times sulphate concentrations or emissions 8 
(5xSul), ten times sulphate concentrations or emissions over Asia only (10xSulasia), ten times sulphate 9 
concentrations or emissions over Europe only (10xSuleur), change in CFC-12 mixing ratio to 5ppb (CFC-10 
12), change in CFC-11 mixing to 5ppb (CFC-11), change in N2O mixing ratio to 1ppm (N2O1p), five 11 
times tropospheric ozone concentration (Ozone), change in vegetation to pre-industrial conditions 12 
(LandUse).  13 

  14 
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 2 
Figure 7.9: (placeholder) Radiative forcing time series for the major anthropogenic aerosol species (1750-2014), 3 

based on CEDS emissions. From Lund et al. (2018). [To be replaced by AeroCom Phsse III and/or 4 
AerChemMIP results.] 5 

 6 

 7 
  8 
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 2 

 3 
Figure 7.10: (a) Net aerosol ERFari+aci from different lines of evidence. Green lines show the very likely range based 4 

on satellite observations (solid bar ERFari+aci, dashed bar ERFaci). Blue line shows the very likely range 5 
based on observational constraints. Purple bars show the assessed very likely range (thin), likely range 6 
(thick), and best estimate (black diamond). Bars show climate model estimates, subdivided into CMIP5 7 
models  (Zelinka et al., 2014) and CMIP6 models with individual models depicted by grey dots, and 8 
multi-model mean ERFari (“Aerosol”) and ERFaci (“Cloud”). Overlaid black diamond and black line 9 
shows the multi-model mean and very likely range of model-derived ERFari+aci. (b) Contributions to the 10 
shortwave components of model-derived ERFari and ERFaci in (a) from scattering (“Scat”), absorption 11 
(“Abs”) and cloud amount (“Amt”), with total ERFari and ERFaci best estimates and very likely ranges 12 
overlaid as black diamonds and lines. 13 

 14 
 15 
  16 



First Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-181 Total pages: 202 

 1 

 2 
 3 

 4 
Figure 7.11: Effective radiative forcing from 1750 to 2017 by contributing forcing agents. CMIP6 model estimates for 5 

1850-2014 are shown as circles where known. 6 
 7 
  8 
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 2 

 3 
Figure 7.12: The contribution of forcing agents to 2017 temperature change relative to 1750. (top) These estimates 4 

were produced using the FaIR simple climate model emulator (Smith et al., 2018a) where ranges for ERF 5 
were taken from Section 7.3 and ranges for ECS and TCR were taken from Section 7.5. Error bars show 6 
the contribution of forcing uncertainty with best estimates of ECS and TCR (solid lines) and total 7 
response uncertainty. (bottom) the temperature changes simulated by the MAGICC simple climate model 8 
(Meinshausen et al., 2011; Nauels et al., 2017), using its own distribution of ECS and TCR, only the 9 
effect of forcing error is shown. [Preliminary results from MAGICC based on earlier forcing estimates, 10 
will be updated for SOD].  11 
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 1 
Figure 7.13: (a) Probability density functions (PDFs) of ECS and TCR; (b) Distributions of effective radiative forcing 2 

and (c) distributions of contribution to anthropogenic temperature change from 1750 to 2017. Ranges for 3 
ERF were taken from Section 7.3 and ranges for ECS and TCR were taken from Section 7.5. PDFs 4 
combine the contribution of forcing uncertainty with ranges of ECS and TCR. In each panel, the solid 5 
filled curves show the constrained (posterior) distributions after matching historical temperatures to the 6 
surface air temperature from Cowtan and Way (2014) using the FaIR simple climate model emulator 7 
(Smith et al., 2018a). In (a), dashed curves show the prior distributions as assessed in this chapter, 8 
whereas in (b) and (c) dashed curves represent distributions before constraint to historical temperature 9 
observations. 10 

11 
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Figure 7.14: Timeseries of total (thick dashed line) and individual components (thin solid lines) of ERF from 1750 to 3 

2017 assessed in this chapter. Some small individual components are grouped for clarity.  4 
5 



First Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-185 Total pages: 202 

 1 
Figure 7.15: Timeseries of near surface global temperature changes, using the time series of ERFs assessed in this 2 

section (Figure 7.14) and calculated using the FaIR simple climate model emulator (Smith et al., 2018a) 3 
using the distribution of ECS and TCR assessed in section 7.5 and Section 7.3.5.3. The median of a 2000-4 
member Monte Carlo ensemble is shown for the total temperature and the contribution from each 5 
component.  6 
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 4 
Figure 7.16: Estimates of global mean climate feedbacks in CMIP5 and CMIP6 abrupt4xCO2 simulations. The box-5 

whisker plot indicates the multi-model mean (horizontal lines), likely range (boxes) and very likely range 6 
(whiskers). Individual feedback terms are computed using a radiative kernel by multiplying temperature-7 
mediated changes in the respective field. A residual between the summed feedback and the total climate 8 
feedback, the latter directly derived from the models, is shown at the right. The CMIP5 data are adopted 9 
from Caldwell et al. (2016). [Note that the CMIP6 values are not yet available, so plotted using the 10 
CMIP5 values tentatively.]  11 
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 2 
 3 

Figure 7.17: Schematic cross section of diverse cloud regimes between the tropics and Polar Regions. Thick solid and 4 
dashed curves indicate the tropopause, melting level, and the subtropical inversion layer in the current 5 
climate. Thin grey arrows represent robust responses in the large-scale circulation to greenhouse 6 
warming, supported by independent lines of evidence. Text and arrows in red show the robust part of 7 
cloud responses to the surface warming.  8 
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 5 
Figure 7.18: A synthetic evaluation of the tropical low-cloud feedback, derived from GCMs (blue), observed cloud 6 

controlling factors (yellow), and LES (dots). Central estimates are shown by white lines. Boxes and the 7 
error bars indicate the likely (66 %) and very likely (90 %) confidence intervals, respectively. The 8 
feedbacks are shown as local values but not the global mean. LES results are derived from six simulations 9 
for different cloud regimes over the tropical subsidence region. Data obtained from (Klein et al., 2017). 10 
[Note that results from CMIP6 models will be added when available.] 11 
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Figure 7.19: (a) Illustration of tropospheric temperature and cloud response to enhanced warming in the west Pacific 3 

Ocean relative to the east; adapted from (Mauritsen, 2016) based on results from (Zhou et al., 2016). (b) 4 
Global TOA radiative response to sea-surface warming at each location while SSTs are held fixed 5 
elsewhere in NCAR’s Community Atmosphere Model version 5 (CAM5); adapted from (Zhou et al., 6 
2017). (c) Observed sea-surface temperature linear trend over 1900-2017 (HadISST dataset; Rayner et al., 7 
2003). (d) Sea-surface temperature linear trend over 150 years following abrupt CO2 quadrupling 8 
simulations of CMIP5 GCMs (average of 17 models). [Note SOD will update to show observed 1900-9 
2018 SST trend. For SOD: show (a) as a separate figure and update. In its place add the pattern of 10 
warming under 1pctCO2 or historical for CMIP5/6] 11 
 12 
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 2 
Figure 7.20: (a) Radiative feedback (α) over the historical record derived from atmospheric GCMs with prescribed 3 

observed SSTs and sea-ice concentration changes (modified from Andrews et al., 2018). Historical 4 
feedback is derived from linear regression of global TOA radiation against global near-surface air 5 
temperature over the simulations, with regression starting in year 1870 and ending in the year shown. (b) 6 
Radiative feedback derived from historical energy budget constraints (Section 7.5.3). (c) Relationship 7 
between historical net feedback in atmospheric GCMs constrained to match the observed pattern of 8 
warming over the over the historical record (Figure 7.19c) and the net feedback under abrupt CO2 9 
quadrupling within coupled versions of the same GCMs (average warming pattern shown in Figure 10 
7.19d). Equilibrium feedback is estimated based on regression of global TOA radiation against global 11 
near-surface air temperature over years 1-150 of abrupt4xCO2 simulations, but similar results are found if 12 
the feedback magnitude is estimated as CO2 ERF divided by ECS. (d) Relationship between historical net 13 
feedback and equilibrium net feedback in fully-coupled CMIP5 models. Historical feedback is estimated 14 
at year 100 of 1%/yr CO2 ramping simulations based on the change in global TOA radiation divided by 15 
the change in global near-surface air temperature where changes are taken with respect to pre-industrial 16 
(Armour, 2017). The equilibrium feedback magnitude is estimated as CO2 ERF divided by ECS where 17 
ECS is derived from linear regression over years 1-150 of abrupt4xCO2 simulations (Box 7.1). [SOD will 18 
add additional CMIP6 models to all panels when available. Calculate feedback changes over historical 19 
simulations when forcing become available (RFMIP).]  20 
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 3 
Figure 7.21: Feedback parameter, α (Wm-2 °C-1), as a function of global mean surface air temperature relative to 4 

preindustrial, for model simulations (coloured circles and lines), and from paleoclimate data (grey circles 5 
and associated uncertainties).  [N.B. that some of these values will need checking with the original 6 
authors, as they are not all clear from the publications.  Additionally, in some cases I have had to make 7 
assumptions about the forcing from CO2 doubling, or the ECS, or the LGM temperature]. 8 
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 1 
Figure 7.22: Probability distributions of ERF to CO2 doubling (ΔF2×CO2, top) and the total climate feedback (α, right), 2 

derived from CMIP5 abrupt4xCO2 simulations (blue) and process-based assessments in Sections 7.3.2 3 
and 7.4.2 (red). The joint PDF is calculated on a two-dimensional plane of ΔF2×CO2 and α (middle), on 4 
which the 90% range shown by an ellipse is imposed to the background theoretical values of ECS (color 5 
shading). The white dot, thick and thin curves in the ellipse represent the mean, likely and very likely 6 
range of ECS. For each set of PDFs of ΔF2×CO2 and α, two different estimations of the ECS range are 7 
presented; one assuming that ΔF2×CO2 and α are independent (red and blue) and the other assuming that 8 
they have a covariance seen in the CMIP5 abrupt4xCO2 simulations  (pink and cyan). The assumption 9 
about the co-dependence between ΔF2×CO2 and α does not alter the mean estimate of ECS but affects its 10 
likely range. Data for abrupt4xCO2 simulations are taken from Caldwell et al. (2016). 11 
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 2 
Figure 7.23: (a) Time evolution of the effective radiative forcing (ERF) to the CO2 concentration increased by 1% per 3 

year until the year 70 (equal to the doubling, grey line) and kept fixed afterword. The range of ERF has 4 
been assessed in Section 7.3. (b)-(c) Range of surface ocean temperature response (assumed to be 5 
equivalent to the surface air temperature response) to the CO2 forcing in the two-layer EBM calculated 6 
with a given range of ECS, considering uncertainty only in ΔF2×CO2 and α (b, shading by red and 7 
orange colours) and additionally in two parameters associated with the ocean heat uptake (c, shading by 8 
blue and cyan colours). The mean estimate of the response (black curve) is identical in (b) and (c). For 9 
comparison, the step response to abrupt doubling of the CO2 concentration is displayed by grey curves. 10 
The mean and ranges of ECS and TCR are shown at the right (the values also presented in the panel).  11 

 12 
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 1 
Figure 7.24: (a) TCR inferred from global energy budget constraints for the period 2002-2018 relative to 1850-1900; 2 

horizontal bar shows median value, box shows 17% to 83% range, and vertical line shows 5% to 95% 3 
range. (b) ECS inferred from global energy budget constraints for the period 2002-2018 relative to 1850-4 
1900 (blue) and ECS accounting for the pattern effect (red) (Section 7.4.3) based on feedback changes 5 
derived from coupled GCM simulations (Armour, 2017) (middle) or from GCM simulations with 6 
prescribed historical sea-surface temperature and sea-ice concentrations (Andrews et al., 2018) (right). (c) 7 
Relationship between inferred ECS (blue) and actual ECS (red) in GCMs where the inferred ECS is 8 
derived from coupled GCM simulations (Armour, 2017) (left) or from GCM simulations with prescribed 9 
historical sea-surface temperature and sea-ice concentrations (Andrews et al., 2018) (right); actual ECS is 10 
derived from abrupt4xCO2 simulations and differences between the two are shown in grey. [Eventually 11 
redo this with using historical simulations and RFMIP forcings for CMIP6 models rather than 1pctCO2 12 
runs.] 13 
 14 

  15 

a
ECS from global

energy budget

Inferred and actual ECS in 

climate models
TCR from global 

energy budget
b c

T
C

R
 (
ºC

)

E
C

S
 (
ºC

)

E
C

S
 (
ºC

)

ECS

inferred 

ECS E
C

S

in
fe

rr
ed

 E
C

S

d
if

fe
re

n
ce

E
C

S

in
fe

rr
ed

 E
C

S

d
if

fe
re

n
ce

GCMs with 

observed 

warming pattern 

Coupled 

GCMsTCR

ECS



First Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-195 Total pages: 202 

 1 
 2 

 3 
 4 

 5 
Figure 7.25: Distribution of ECS from CMIP3 and CMIP5 (light gray) and CMIP6 models (dark gray). The black line 6 

is the distribution obtained by Monte-Carlo sampling feedback parameters estimated from CMIP5 models 7 
by Caldwell et al. (2016). [This is a preliminary analysis based partly on an informal survey]  8 

 9 
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Figure 7.26: Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to global 4 

atmospheric energy input and near-surface air temperature change at year 100 of abrupt CO2 quadrupling 5 
simulations of CMIP5 models. (a) The energy flux to the global atmosphere associated with the effective 6 
CO2 forcing, global ocean heat uptake, Planck response, and radiative feedbacks, which together sum to 7 
zero; inset shows energy input from individual feedbacks, summing to the total feedback energy input. 8 
(b) Contributions to net global warming calculated by dividing the energy inputs by the global Planck 9 
response (3.2 W m-2 C-1), with the contributions from radiative forcing, ocean heat uptake, and radiative 10 
feedbacks summing to the value of net warming; inset shows warming contributions associated with 11 
individual feedbacks, summing to the total feedback contribution. Uncertainties show 25% and 75% 12 
percentiles across models. Feedbacks are calculated using radiative kernels (Shell et al., 2008) and the 13 
analysis is based on that of Goosse et al. (2018). [SOD: redo for CMIP6 models when available.] 14 
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 1 
Figure 7.27: Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to regional surface 2 

temperature changes at year 100 of abrupt CO2 quadrupling simulations of CMIP5 models. (a) Pattern of 3 
near-surface air temperature change. (b-d) Contributions to net Arctic (>60N), tropical (30S-30N), and 4 
Antarctic (<60S) warming calculated by dividing regional-average energy inputs by the regional-average 5 
Planck response, with the contributions from radiative forcing, changes in atmospheric heat transport, 6 
ocean heat uptake, and radiative feedbacks summing to the value of net warming; inset shows regional 7 
warming contributions associated with individual feedbacks, summing to the total feedback contribution. 8 
Uncertainties show 25% and 75% percentiles across models. Feedbacks are calculated using radiative 9 
kernels (Shell et al., 2008) and the analysis is based on that of Goosse et al., (2018). [SOD: Redo for 10 
CMIP6 models when available.] 11 

 12 
 13 

0 4 8

Tropical warming

Tropics warming contributions (ºC)

Effective radiative forcing

Ocean heat uptake

Atmospheric heat transport

c

Arctic warming contributions from 

individual radiative feedbacks (ºC)

0 4 8

Arctic warming

Arctic warming contributions (ºC)

Effective radiative forcing

Ocean heat uptake

Atmospheric heat transport

b

Tropics warming contributions from 

individual radiative feedbacks (ºC)

0 4 8

Antarctic warming

Antarctic warming contributions (ºC)

Effective radiative forcing

Ocean heat uptake

Atmospheric heat transport

d
Antarctic warming contributions from 

individual radiative feedbacks (ºC)

Radiative feedbacks

Radiative feedbacks

Radiative feedbacks

0-2 2 4

Water-vapor

Lapse-rate

Water-vapor + lapse-rate

Surface-albedo

Net cloud

Residual

0-2 2 4

0-2 2 4

0

4

8

Near-surface air 

temperature 

change (ºC)

a 10

2

6

Water-vapor

Lapse-rate

Water-vapor + lapse-rate

Surface-albedo

Net cloud

Residual

Water-vapor

Lapse-rate

Water-vapor + lapse-rate

Surface-albedo

Net cloud

Residual



First Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-198 Total pages: 202 

 1 
Figure 7.28: [N.B. that the model results in this figure are old simulations, and the data has been synthetically 2 

generated.  This placeholder is just to show the style of the anticipated figure for SOD.]. Temperature 3 
changes compared with pre-industrial for the high-CO2 MPWP and EECO time periods, from proxies and 4 
models. (a) proxy reconstructions of temperature change (black circles), including published uncertainties 5 
(vertical bars), for the MPWP (Stage KM5c), as synthesized by [PlioMIP data paper]. Coloured lines 6 
show the modelled zonal mean surface air temperature difference compared with preindustrial for 4 7 
models from the PlioMIP ensemble [(b) proxy reconstructions of temperature change (black circles), 8 
including published uncertainties (vertical bars), for the early Eocene (EECO), as synthesized by Hollis et 9 
al. (submitted). Coloured lines show the modelled zonal mean surface air temperature difference 10 
compared with preindustrial. for 4 models from the DeepMIP ensemble (c) proxy reconstructions of 11 
temperature change (coloured filled circles) for the MPWP (Stage KM5c), as synthesized by [PlioMIP 12 
data paper].  Background colours show the mean surface air temperature difference compared with 13 
preindustrial for the ensemble mean of the PlioMIP ensemble (d) proxy reconstructions of temperature 14 
change (coloured filled circles) for the early Eocene (EECO), as synthesized by Hollis et al (submitted).  15 
Background colours show the mean surface air temperature difference compared with preindustrial for 16 
the ensemble mean of the DeepMIP ensemble. 17 
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Figure 7.29: Climate metrics for two SLCFs: HFC-32 and CH4, (lifetimes of 5.2 and 12.4) years.  (a) temperature 3 

response to a step change in SLCF emission. (b) temperature response to a pulse CO2 emission. (c) 4 
conventional GTP metrics (pulse vs pulse). (d) mixed-GTP metric (step vs pulse). 5 
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FAQ7.1, Figure 1: Global view of infrared brightness temperature (Tbb) on 6 August, 2016, and monthly- and zonal-3 

mean cross section of cloud liquid (blue) and ice (purple) contents. Tbb has a low value where 4 
cloud covers surface and is used as a measure of cloud distribution from space. (Top) Satellite 5 
observations and (bottom) a global cloud-resolving simulation using 3.5 km NICAM. Colors are 6 
the same between the two panels. Thin purple curves in the top panel show the satellite paths 7 
along which the zonal mean is calculated. 8 
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