Annex VII: Climatic Impact Driver Indices

1 2 2

3 4 **Contributors:**

Nigel Arnell (UK), Erika Coppola (Italy), José M. Gutiérrez (Spain), Carley Iles (France/UK), Izidine Pinto
 (Mozambique), Roshanka Ranasinghe (Netherlands/Sri Lanka/Australia), Alex Ruane (USA), Daniel Ruiz

7 Carrascal (Colombia/USA), Clemens Schwingshakl (Norway), Claudia Tebaldi (USA), Robert Vautard

8 (France)

910 Date of Draft:

- 11 01/03/2020
- 12

13 Notes:

- 14 TSU compiled version
- 15 16

1	Table of Contents	
23	AVII. Annex VII: Climatic Impact Driver Indices	1
4	AVII.1 Introduction	
5	AVII.2 Extreme indices selection	4
6	AVII.3 Climatic impact drivers indices selection	6
7	AVII.3.1 Regional hazard indices used in Section 12.4	6
8	AVII.3.2 Hazard indices used in Section 12.5.1	
9	AVII.3.3 Global indices	
10	AVII.4 Models, Scenarios and reference periods used	
11	AVII.4.1 Models used to calculate hazard indices	
12	AVII.5 Bias adjustment	
13	References	
14		

2 3

4 5

6

7

21

AVII.1 Introduction

This Annex provides background information on hazard indices used within Chapter 11, Chapter 12, and the Atlas, including technical details of calculation, underlying data and models, bias adjustment procedures, and related references. It helps understanding the information processing behind some of the numbers and figures provided in these chapters.

8 In the climate science literature, a number of indices have been used in order to characterize and quantify 9 one or several aspects of climate phenomena occurring due to natural variability or due to long-term changes 10 in the system. There is an extremely large number of examples. One can cite mean global climate indices, 11 such as global mean sea level rise or global mean temperature, which characterize the state of the climate 12 system and act as a shifting baseline for regional changes. One can also examine mean regional trends, for 13 example in mean springtime precipitation, which reflect large-scale patterns and alter the background 14 conditions within which episodic hazards may occur. One can also calculate indices of extremes characterizing episodic events within the tail of the distributions of specific variables within their variability 15 16 range, for instance the annual maximal temperature at a given location or the 100-year return value of river 17 discharge characterizing extreme floods. Such extreme indices have been the subject of a number of studies 18 and have been used to characterize how climate change modifies extreme values of climate variables and 19 subsequent impacts in the Special IPCC Report on "Managing the risks of Extreme Events and Disasters to 20 Advance Climate Change Adaptation" (IPCC, 2012), as well other recent IPCC reports.

Indices can also characterize aspects of hazards or, more generally, climatic impact drivers (see Chapter 1 and Chapter 12 for definitions) that are key to impacts and risks to society and ecosystems. Chapter 12 proposes a definition of "climatic impact drivers indices": "numerically computable indices using one or a combination of essential climate variables (ECVs) designed to measure the severity of the climatic impact driver, or the probability of exceedance of a threshold. The change in climatic impact drivers can be measured via these indices in terms of magnitude (or intensity), duration, frequency, timing, and spatial extent".

30 Climatic impact drivers, as defined in Chapter 1, may not be related only to extremes, and therefore require a 31 different set of indices. For instance, the rate of coastline recession, due to sea level rise, used in Chapter 12, 32 is involved in the risk of damage and losses in coastal settlements and infrastructures. Mean trends and 33 changes themselves are considered throughout the report as climatic impact drivers. For instance, beyond the 34 warming trend which has a large number of consequences, changes in other indices such 'snow season 35 length' is often used to study economic impacts on winter tourism (Damm et al., 2017). To characterize broad threats to societies Mora et al. (2018) used a set of 11 very different key hazard indices among which 36 37 about half are related to extremes. This highlights the need of having a set of indices larger than only 38 extremes for regional climate information for climate change risks and impacts reduction. Section 12.3 in 39 Chapter 12 reviews the hazards described in the literature to characterize impacts and risks, and reveal the 40 wide variety of indices used to characterize such hazards

41

42 Indices are, in principle, computable from observations, re-analyses or model simulations, although it is 43 important to consider scale in comparing across datasets. For example, an extreme precipitation event has a 44 lower magnitude across a large grid cell than it would at a single station within that grid cell. In many cases, 45 hazards are simply characterized by the exceedance of a threshold for an ECV. For instance, the probability 46 of crop failure dramatically increases as temperature rises above certain thresholds, which may differ from 47 one species to another (Hatfield and Prueger, 2015; Grotjahn, in press) heat stress on outdoor workers is often expressed as a combination of humidity and temperature, such as found for instance in the classical wet 48 49 bulb temperature with typical thresholds characterizing the stress on work in different categories of activities 50 and human adaptability (Pal and Eltahir, 2015; Im et al., 2017). Because of biases in model climatologies, to 51 assess the effect of climate change on threshold-type of indices (e.g., the change in the number of days with 52 maximum temperature above 35°C), a bias adjustment of model outputs is often desirable (see Chapter 10 53 for assessment of bias adjustment). In some of the indices used in Chapter 12, bias adjustment is used and 54 methods are described here.

55

1 Both regional indices (with time-varying values depending on location) and global indices (single integrated 2 value at each time) are considered. Some of the latter are identified in Chapter 4 as iconic measures of global 3 climate change, like global surface air temperature (GSAT), global land monsoon precipitation, the global 4 monsoon circulation index, the Arctic sea ice area, the Atlantic Meridional Overturning Circulation 5 (AMOC), global mean sea level (GMSL). Others include modes of internal climate variability such as the 6 Southern Annual Mode (SAM), the North Atlantic Oscillation (NAO), and the El Niño-Southern Oscillation 7 (ENSO). Some of these global quantities have been connected by literature and past assessment to risks relevant for the characterization of Reasons for Concern (O'Neill et al., 2017). In that context, the relation of 8 9 these indices' evolution to global drivers, especially GMST at increasing warming levels, is of interest.

Indices are used in many chapters of the IPCC AR6 report: in Chapter 4 for assessing changes in the global
climate, in Chapter 8 for water cycle changes assessment, in Chapter 9 for oceans and the cryosphere, in
Chapter 11 for assessing changes in extreme conditions and in Chapter 12 for assessing climatic impact
drivers and their changing characteristics due to climate change. In the online Atlas, a number of such
indices are displayed with possibility of changing several aspects of the extreme or hazard characteristics
(threshold, duration, magnitude, etc.).

19 AVII.2 Extreme indices selection

20 21 In Chapter 11, extreme indices are assessed and studied based on available literature and data. Two approaches 22 are usually used to define extreme indices, namely, non-parametric and parametric. In the non-parametric 23 approach, the indices are estimated using the empirical distribution of daily data. These indices characterize 24 moderate temperature and precipitation extremes with re-occurrence times of a year or shorter (Klein Tank et 25 al., 2009). The Expert Team on Climate Change Detection and Indices (ETCCDI -https://www.wcrp-26 climate.org/etccdi) defined 27 indices that characterize different aspects of temperature and precipitation and 27 are described by Frich et al. 2002; Alexander et al. 2006; Donat et al. 2013. In this chapter a subset of these indices is assessed in detail. The parametric approach complements the moderate indices and is based on 28 29 extreme value theory (EVT) (Coles, 2001) in order to evaluate the intensity and frequency of rare events with 30 longer return periods, such as events that occur once in 20 years. This approach has been used and adopted in 31 the literature (e.g. Kharin and Zwiers 2000; Brown et al. 2008; Kharin et al. 2013). These types of events are 32 also assessed in the Chapter 11. Aside from temperature and precipitation the chapter also assesses indices 33 used to characterize droughts. Table AVII.1 list the indices used.

34 35

18

36 [START TABLE AVII.1 HERE]

3738 Table AVII.1: Table listing extreme indices used in Chapter 11

39

Label	Index name	Units	Variable
TXx	Monthly maximum value of daily maximum	°C	Maximum
	temperature		temperature
TXn	Monthly minimum value of daily maximum	°C	Maximum
	temperature		temperature
TNn	Monthly minimum value of daily minimum	°C	Minimum
	temperature		temperature
TNx	Monthly maximum value of daily minimum	°C	Minimum
	temperature		temperature
TX90p	Percentage of days when daily maximum	%	Maximum
_	temperature is greater than the 90th percentile		temperature
TX10p	Percentage of days when daily maximum	%	Maximum
_	temperature is less than the 10th percentile		temperature
TN90p	Percentage of days when daily minimum	%	Minimum
	temperature is greater than the 90th percentile		temperature
TN10p	Percentage of days when daily minimum	%	Minimum
	Label TXx TXn TNn TNn TNx TX90p TX10p TN90p TN10p	LabelIndex nameTXxMonthly maximum value of daily maximum temperatureTXnMonthly minimum value of daily maximum temperatureTNnMonthly minimum value of daily minimum temperatureTNxMonthly minimum value of daily minimum temperatureTNxMonthly maximum value of daily minimum temperatureTX90pPercentage of days when daily maximum temperature is greater than the 90th percentileTX10pPercentage of days when daily maximum temperature is less than the 10th percentileTN90pPercentage of days when daily minimum temperature is greater than the 90th percentileTN90pPercentage of days when daily minimum temperature is greater than the 90th percentileTN10pPercentage of days when daily minimum temperature is greater than the 90th percentileTN10pPercentage of days when daily minimum temperature is greater than the 90th percentile	LabelIndex nameUnitsTXxMonthly maximum value of daily maximum temperature°CTXnMonthly minimum value of daily maximum temperature°CTNnMonthly minimum value of daily minimum temperature°CTNnMonthly minimum value of daily minimum temperature°CTNxMonthly maximum value of daily minimum temperature°CTXsMonthly maximum value of daily minimum temperature°CTX90pPercentage of days when daily maximum temperature is greater than the 90th percentile%TX10pPercentage of days when daily maximum temperature is less than the 10th percentile%TN90pPercentage of days when daily minimum temperature is greater than the 90th percentile%TN90pPercentage of days when daily minimum temperature is greater than the 90th percentile%TN10pPercentage of days when daily minimum temperature is greater than the 90th percentile%

		temperature is less than the 10th percentile		temperature
	ID	Number of icing days: Annual count of days when	days	Maximum
		TX (daily maximum temperature) $< 0^{\circ}$ C		temperature
	FD	Number of frost days: Annual count of days when	days	Minimum
		TN (daily minimum temperature) $< 0^{\circ}$ C		temperature
	WSDI	Warm spell duration index: Annual count of days	davs	Maximum
		with a least 6 consecutive days when $TX > 90^{th}$	5	temperature
		percentile		1
	CSDI	Cold spell duration index: Annual count of days	Davs	Minimum
		with a least 6 consecutive days when TN $<10^{\text{th}}$, _	temperature
		percentile		······p ········
	SU	Number of summer days: Annual count of days	Days	Maximum
		when TX (daily maximum temperature) $> 25^{\circ}$ C	, _	temperature
	TR	Number of tropical nights: Annual count of days	Days	Minimum
		when TN (daily minimum temperature) $> 20^{\circ}$ C	j -	temperature
	DTR	Daily temperature range: Monthly mean difference	°C	Maximum and
		between TX and Tn	_	minimum
				temperature
	GSL	Growing season length: Annual (1st Jan to 31st Dec	Days	Mean temperature
		in Northern Hemisphere (NH). 1st July to 30th June	j -	
		in Southern Hemisphere (SH)) count between first		
		span of at least 6 days with daily mean temperature		
		TG>50C and first span after July 1st (Jan 1st in SH)		
		of 6 days with TG<50C		
	20TXx	one-in-20 year return value of monthly maximum	°C	Maximum
		value of daily maximum temperature		temperature
	20TXn	one-in-20 year return value of monthly minimum	°C	Maximum
		value of daily maximum temperature		temperature
	20TNn	one-in-20 year return value of monthly minimum	°C	Minimum
		value of daily minimum temperature		temperature
	20TNn	one-in-20 year return value of monthly maximum	°C	Minimum
		value of daily minimum temperature		temperature
Precipita	Rx1day	Maximum 1-day precipitation	mm	Precipitation
tion	Rx5day	Maximum 5-day precipitation	mm	Precipitation
	R5mm	Annual count of days when precipitation is greater	davs	Precipitation
	-	than or equal to 5mm	5	1
	R10mm	Annual count of days when precipitation is greater	davs	Precipitation
		than or equal to 10mm	5	1
	R20mm	Annual count of days when precipitation is greater	days	Precipitation
		than or equal to 20mm	5	1
	R50mm	Annual count of days when precipitation is greater	days	Precipitation
		than or equal to 50mm	5	1
	CDD	maximum number of consecutive days with less	davs	Precipitation
		than 1 mm of precipitation	5	1
	CWD	maximum number of consecutive days with more	davs	Precipitation
		than or equal 1 mm of precipitation	5	1
	R95p	annual total precipitation when the daily	mm	Precipitation
	1	precipitation exceeds the 95th percentile of the wet-		1
		day precipitation		
	R99p	annual total precipitation when the daily	mm	Precipitation
		precipitation exceeds the 99 th percentile of the wet-		
		day precipitation		
	SDII	Simple precipitation intensity index	mm/day	Precipitation
	20Rx1d	one-in-20 year return value of maximum 1-day	mm/day	Precipitation

	ay	precipitation		
	20Rx5d	one-in-20 year return value of maximum 5-day	mm/day	Precipitation
	ay	precipitation		
Drought	SPI	Standardized Precipitation Index	months	Precipitation
	EDDI	Potential evaporation, Evaporative Demand Drought	months	Evaporation
		Index		
	SMA	Soil moisture anomalies	months	Soil moisture
	SSMI	Standardized Soil Moisture Index	months	Soil moisture
	SRI	Standardized Runoff Index	months	Stream flow
	SSI	Standardized Streamflow Index	months	Stream flow
	PDSI	Palmer drought severity index	months	Precipitation,
				Evaporation
	SPEI	Standardized precipitation evapotranspiration index	months	Precipitation,
				Evaporation,
				Temperature

[END TABLE AVII.1 HERE]

1 2

3 4 5

6 7

8

9

10

11 12

13

16

17

18

19

20

21

22

23

24

25

32

AVII.3 Climatic impact drivers indices selection

In Chapter 12, 31 climatic impact drivers types are identified on the basis of relevance for risks and available literature. They were classified into 7 categories: heat and cold, wet and dry, wind, snow and ice, coastal, oceanic, and other (see Tables 12.1 and 12.2). It would be impossible to cover all indices that have been developed in the literature. However, in order to illustrate how indices can inform on future regional climate, Chapter 12 and the Atlas use a limited number of indices to illustrate the main hazards and their evolution with climate change.

14 The selection of indices, as displayed in Chapter 12 and the Atlas, is based on expert judgement using the 15 following guiding principles. The set of indices should:

- (i) describe the evolution of a manageable and illustrative number of indices,
- (ii) cover these categories, while giving more weight to those with a higher number of potential impacts as described in the literature,
- (iii) be used broadly in the literature
 - (iv) allow easy computation from publicly available model outputs and observations, or be accessible from published material through contact with the authors
 - (v) be well-evaluated in model simulations, or based on ECVs that are well-evaluated in model simulations
 - (vi) represent hazards of interest to regional impact and risk assessment.

The selection resulted in 16 regional indices which are reported in Table AVII.2. The description of the formula used or processing is described below. In addition, 12 global hazard indices were used in Chapter 12 in relation to reasons for concerns as indices that were calculated for different warming levels.

- 30
 31 AVII.3.1 Regional hazard indices used in Section 12.4
- 33 Climatic impact drivers indices

Length of frost-free period (LFFP): Many ecosystems and crops are sensitive to frost conditions, and can
only develop over a frost-free period (e.g., (Wolfe et al., 2018)); the length of the frost-free period is
calculated in Chapter 12 and the Atlas as in (McCabe et al., 2015) by counting the number of days between
the last spring frost and first fall frost using 0°C as a threshold for the daily minimum temperature and

the last spring frost and first fall frost using 0°C as a threshold for the daily minimum temperature and adjusting for season between hemispheres (from January to December in the Northern Hemisphere and from

3 Growing degree-days (GDD): Ecosystems and crop growth is often linked to a widely used index of

4 thermal conditions, the cumulative number of degrees above a threshold (often between 0 and 10 °C,

5 depending on species and farming system) during a given growing period. In Chapter 12 and the Atlas we

6 use 5 °C as an indicative threshold, which was also used in Ruosteenoja et al. (2016), and the calculation is 7 taken from this reference. GDD calculations sometimes include a high temperature threshold above which

8 plant development does not occur (e.g., (Mu et al., 2017)), but no cap was employed for our calculations.

9 The GDD index used here is therefore the accumulated sum of the difference between daily mean

10 temperature and the threshold (when higher than the threshold) over the April-September months that forms 11 the primary growing season for mid-latitude agricultural areas in the northern Hemisphere.

Cooling degree-days (CDD): Energy consumption in hot environments typically depends on the excess of

temperature above a given threshold, where cooling is required. In Chapter 12 and the Atlas we used the formulation of (Spinoni et al., 2015), which uses the mean, maximum and minimum daily temperature with

16 the formula taken from this reference :

July to June in the Southern Hemisphere).

$$CDD_{i} = \begin{cases} 0 \\ \frac{T_{X} - T_{b}}{4} \\ \frac{T_{X} - T_{b}}{2} - \frac{T_{b} - T_{N}}{4} \\ T_{N} \leq T_{b} < T_{M} \\ T_{N} \geq T_{b} \end{cases} \quad if \quad \begin{cases} T_{X} \leq T_{b} \\ T_{M} \leq T_{b} < T_{X} \\ T_{N} \geq T_{b} \\ T_{N} \geq T_{b} \end{cases}$$

17

With $T_b=22^{\circ}$ C, then

20

21
$$CDD = \sum_{i=1}^{365} CDD_i$$

22

The difference between Chapter 12, Atlas, and the previous reference is that in this report the sum is cumulated over the year instead of 6 months so it applies to all hemispheres.

26 Number of days with mean daily temperature above threshold (Tnn): Climate change is driving changes 27 in the incidence and spatial distribution of climate-sensitive vector-borne diseases. Malaria, dengue fever, 28 leishmaniasis, yellow fever, chikungunya, and zika are among those diseases considered most likely to 29 increase as global temperatures increase. Changes in climatic conditions could influence the behaviour of 30 vectors (proliferation and frequency of blood meal feedings), their geographical distribution (expansion into 31 formerly vector-free territories), and the development rate at which pathogens (viruses and parasites) inside the mosquitoes mature. Air temperature is an important determinant of the transmission of vector-borne 32 33 diseases. Several research efforts suggest that the optimal malaria transmission takes place at around 25°C, 34 and that the transmission of Zika, dengue and chikungunya can occur between 18 and 34°C and peak at 26– 35 29°C. The basic reproduction rate of these diseases declines to zero for temperatures below 16-18°C, 36 thresholds at which the pathogen development ceases, and above 31.6-35°C, which are the thresholds at 37 which death of mosquitoes occurs. The sudden increase from a zero basic reproduction rate to non-zero 38 levels commonly takes place at air temperatures around 21.5°C. See details in (Lambrechts et al., 2011;

39 Blanford et al., 2013; Mordecai et al., 2013, 2017; Ruiz et al., 2014).

40

Number of days with maximum daily temperature above threshold (TXnn): The number of days with maximum temperature above a threshold can be critical for human health, infrastructure, ecosystems, and agriculture. Different thresholds are used for different crops, generally varying between 30 degrees and 40 degrees (Hatfield and Prueger, 2015; Grotjahn, in press). Three thresholds are used in the Atlas (30°C, 35°C and 40°C). Chapter 12 uses the 35°C threshold globally (Figure 12.4), which was identified as a critical

46 temperature for maize pollination and production (Wolfe et al., 2008; Schlenker and Roberts, 2009; Hatfield

First Order Draft

Annex VII

et al., 2011, 2014; Lobell and Gourdji, 2012; Gourdji et al., 2013; Lobell et al., 2013; Deryng et al., 2014;
Hatfield and Prueger, 2015; Tripathi et al., 2016; Schauberger et al., 2017; Tesfaye et al., 2017) as well as a
notable threshold for human health hazards (Kingsley, Eliot, Gold, Vanderslice, & Wellenius, 2016; Petitti et
al., 2016). However, a 30°C threshold was used for Asia as most studies used this threshold in this continent.
Figure 12.4 also displays change for the number of days with daily maximum temperature above 40°C in
order to see the sensitivity to the threshold.

Wet Bulb Globe Temperature (WBGT): This index, together with the Wet Bulb Temperature and other
indices, have widely been used to characterize the effect of temperature on health and outdoor work
conditions (Lemke and Kjellstrom, 2012; Zhao et al., 2015). Thresholds have been defined as
recommendations for workers (Kjellstrom et al., 2009). It is calculated in the Atlas and Chapter 12 using the
simplified formula of the Australian Bureau of Meteorology (<u>http://www.bom.gov.au/info/thermal_stress/</u>)
assuming constant radiation as taken from (Lemke and Kjellstrom, 2012):

Where Ta is the atmospheric temperature and r (hPa) is the partial water vapor pressure, calculated either
from relative humidity or from absolute humidity, depending on availability of variables for each model.

Heating Degree Day (HDD): symmetrical to the Cooling Degree Day index, the HDD index is used for illustrating energy demand for heating. It has been used in several studies of impacts of climate change on the energy sector. Chapter 12 and the Atlas follow the formulation proposed by (Spinoni et al., 2015). The calculation follows:

23 24

25

15 16

7

$$HDD_{i} = \begin{cases} T_{b} - T_{M} \\ \frac{T_{b} - T_{N}}{2} - \frac{T_{X} - T_{b}}{4} \\ \frac{T_{b} - T_{N}}{4} \\ 0 \end{cases} \quad if \quad \begin{cases} T_{X} \leq T_{b} \\ T_{M} \leq T_{b} < T_{X} \\ T_{N} \leq T_{b} < T_{M} \\ T_{N} \geq T_{b} \end{cases}$$

26
27 With
$$T_b=15.5^{\circ}$$
C, then

28
$$HDD = \sum_{n=1}^{365} H$$

$$HDD = \sum_{i=1}^{365} HDD_i$$

30 31

To account for various geographic zones, however, the HDD index is cumulated over the year instead of 6
 months as in the previous reference.

Number of frost days: Frost affects crops (Barlow et al., 2015; Crimp et al., 2016; Cradock-Henry, 2017; Mäkinen et al., 2018), and there has been a number of studies investigating changes in the number of frost days, with various thresholds, mostly between -10°C and 2°C. In Chapter 12 and the Atlas, we use the simple threshold of 0°C for the daily minimum temperature to define frost days as in Rawlins et al. (2016).

99th percentile of daily precipitation (R99): this index is an extreme index used to measure extreme
 precipitations which can cause pluvial flooding. This index is used in several Figures of Chapter 12 and in
 the Atlas. It is calculated as the 99th percentile of the daily amounts at each grid point.

River flood index using runoff (FI): As a flood indicator, the 100-year return value of discharge value (Q)
 has been used. The computation of the index follows Alfieri et al., (2015):

- 45 46
- 1. Annual maximum river discharges are selected and a Gumbel distribution is fitted on time slices of

2

3

4 5

6 7

8

13

26

27

28

32

36

- 30 years and an analytical function is obtained.
- 2. The analytical function is used to estimate extreme discharge peaks with chosen return period Q(RP), by inverting the formulation of the Gumbel distribution:

$$Q(\text{RP}) = \xi - \alpha \ln\left(-\ln\left(1 - \frac{1}{\text{RP}}\right)\right)$$

where α and ξ are the scale and location parameters of the analytical Gumbel distributions.

3. The peak discharge corresponding to the 100-year return period, Q(RP=100), is then calculated.

9 For Euro-CORDEX regional models the total runoff of each of the models has been used as an input of the 10 hydrological model CHyM (Coppola et al., 2007, 2018) to produce the river discharge for all the European 11 network. The Q(RP=100) value has been computed for each of the river segment and for each of the 29 12 CHyM simulations.

14 This index is used for EURO-CORDEX data in Figure 12.12, while in other figures it is temporarily replaced 15 by the mean 100-year return value of the runoff variable for some continents. The interpretation between the 16 two indices should be different, and they are not directly comparable. 17

18 Standardized Precipitation Index (SPI): The SPI is a statistical index that compares cumulated 19 precipitation for *n* months (n=6 or n=12 in the SOD) with the long term precipitation distribution for the 20 same location and cumulation period. The SPI months have been computed and are considered to be a 21 medium-term cumulated value that can be used to measure the medium term impact on river flow and 22 reservoir storage (Mckee et al., 1993). 23

24 The index is computed in this way: 25

- 1. A monthly precipitation time series is selected (at least 30 years).
- 2. The running average for the *n*-months window is computed.
- 3. The Gamma distribution is used to fit the data. The fitting can be achieved through the maximum likelihood estimation of the gamma distribution parameters.
- 29 4. The values from this probability distribution are then transformed into a normal distribution, so that 30 the mean SPI for the location and desired period is zero and the standard deviation is 1 (Edwards and McKee, 1997). 31

Once SPI has been computed, the calculation of the Drought Frequency (DF) follows the method in 33 34 (Naumann et al., 2013): a drought event starts in the month when SPI falls below -1 and it ends when SPI 35 returns to positive values, for at least two consecutive months.

37 It has to be noted that the SPI index has been recognized to be difficult to interpret in high latitudes and in 38 arid areas due to statistical issues linked to inaccuracies in the estimation of the Gamma function (Spinoni et 39 al., 2014). Two durations are considered in Figure 12.6 (6 and 12 months). 40

- 41 SPEI accumulated over 6 months (SPEI-6):
- 42
- 43 98th percentile of daily maximum wind speed (P98wind): This high-percentile index is used in several studies to characterize extreme winds (Klawa and Ulbrich, 2003; Martius et al., 2016), but other studies use 44 other high percentiles in the same range from the 95th to 99th. This index is used in Chapter 12 and the Atlas. 45 It is calculated using the maximum daily wind speed and its 98th percentile over reference and future periods. 46 Importantly, wind speed modelled distribution can depend on resolution since highest wind speeds can be 47 48 found in small spatial structures.
- 49

50 Snow season length (SWE100): Several studies use the Snow Water Equivalent (SWE) variable (variable 51 snw in model outputs) in order to define a "snow season length" as the number of days with enough snow on

- 52 the ground. This index is particularly important for the winter tourism sector (Damm et al., 2017; Jacob et
- 53 al., 2018). Several thresholds are used to define a day with "enough snow on the ground", with (Wobus et
- 54 al., 2017) marking 100mm as a key threshold for skiing. However this index is not only important for winter AVII-9
- **Do Not Cite, Quote or Distribute**

1 tourism but also in other sectors such as water management. In several figures of Chapter 12 and the Atlas, 2 the snow season length is calculated as the number of days with SWE > 100 mm, following the definition of 3 (Damm et al., 2017; Wobus et al., 2017). Seasonal limits are given (November through March) for studies in 4 the Northern Hemisphere, and the index for the Southern Hemisphere is taken over the opposite season (May 5 through September). SWE was assessed in several studies and its simulation depends on the representation of surface processes dealing with snow. Despite limitations, SWE was found to be useful in giving insight on 6 7 the sign of changes (McCrary et al., 2017). When interpreting the figures shown in Chapter 12 and the Atlas, one should also keep in mind that altitudes are model altitudes and may not correspond to real ones due to 8 9 the coarse resolution, and the changes can be quite sensitive to such effects.

Extreme Sea Level (ESL): Factors contributing to extreme sea levels (ESL), are sea level rise, storm surge (e.g. associated with TCs and ETCs), tide, and extreme waves (resulting in high wave setup at the shoreline). The ESL used here is the summation of the aforementioned factors (Vitousek et al., 2017; Vousdoukas et al., 2018) and the commonly used 1 :100yr ESL is adopted here as the index relevant to episodic coastal

flooding.
 16

10

17 **Coastline Recession (CR)**: Coastline recession is the slow and continuous landward movement of the

18 coastline in response to Sea level rise (Bruun, 1962). Historically, the most commonly used coastline

19 recession index is the (deterministic) recession amount due to a mid-high SLR by a pre-determined planning

20 horizon, commonly 50 years or 100 years into the future (Ranasinghe, 2016). However, probabilistic

21 coastline recession estimates are becoming more and more sought after and available (Jongejan et al., 2016;

Toimil et al., 2017; Dastgheib et al., 2018). Here the median coastline recession (0.5 exceedance

probability), together with the associated 5-95 % confidence interval, resulting from a fully probabilistic

24 model that incorporates SLR from 7 GCMs is used as the index relevant for coastline recession.

[START TABLE AVII.2 HERE]

Table AVII.2:Regional Hazard indices table. Boldfaced are indices considered presented in the SOD, whilst other
indices are not considered in the Atlas or Chapter 12 for SOD, but will be in the FGD.

Hazard	Climatic impact	Index	Required	Way to	Bias	References
category	Table 12.1) and potential affected sectors		ECVS	calculate	adjustment	
Heat	Warming indicator for crops, ecosystems and hydrosystems	Length of Frost- Free period (LFFP)	Tasmin	from projections	yes	(Kunkel et al., 2004; McCabe et al., 2015; Wolfe et al., 2018)
Heat	Warming indicator for agriculture and ecosystems	yearly cumulated GDD over 5°C	Tas	from projections	yes	(Bonhomme, 2000; Cayton et al., 2015; Ruosteenoja et al., 2016)
Heat	Change in cooling demand for energy demand and building consumption	CDD above 22°C	tas, tasmin, tasmax	from projections	yes	(Spinoni et al., 2015, 2018)
Heat	Warming	Tmean>21.5°C (T21.5)	Tas	from projections	yes	(Ruiz et al., 2014)
Heat	Heat, with thresholds important for agriculture	#days Tmax>35, 40 (TX35, TX40)	Tasmax	from projections	yes	(Hatfield and Prueger, 2015; Hatfield et al., 2015; Grotjahn, in press)
Heat	Heat stress index combining humidity used in occupational and industrial health	#days WBGT>28, 31, 35	tas hurs ps	from projections	yes	(Lemke and Kjellstrom, 2012; Zhao et al., 2015)
Cold	Heating Degree Day for Energy consumption	HDD below 15.5°C	tas, tasmin, tasmax	from projections	yes	(Spinoni et al., 2015, 2018)
Cold	Frost	#Frost days below 0°C (FD)	Tasmin	from projections	yes	(Barlow et al., 2015; Rawlins et al., 2016)
Wet	Pluvial flooding	99th percentile of daily amounts (R99)	Pr	from projections	No	(Houston et al., 2011)
Wet	River flooding	Flood index (FI)	srroff/ mrro	from projections and simplified routing model	No	(Forzieri et al., 2016; Alfieri et al., 2017)
Drought	drought	SPI accumulated over 6 months and 12 months (SPI-6 and SPI-12)	Pr	from projections	yes	(Naumann et al., 2018)
Drought	drought	SPEI acc over 6 months		from projections		(Arnell et al., 2018)
Wind & storm	Extreme wind, affecting key infrastructure	P98 of the daily max wind (W98)	sfcWindmax	from projections	yes	(Klawa and Ulbrich, 2003; Martius et al., 2016)
Snow/ice	Snow season length	Number of days with Snow water equivalent > 100 mm. (SWE100)	snw	from projections	no	(Damm et al., 2017; Wobus et al., 2017)
Coastal	Extreme Sea level (ESL) inducing storm surges	100-year Return level (ESL)		data from authors	no	(Vousdoukas et al., 2018)
Coastal	Coastal Recession inducing threats to infrastructures	coastal recession		data from authors	no	(Vousdoukas et al., in press)

1

[END TABLE AVII.2 HERE]

AVII.3.2 Hazard indices used in Section 12.5.1

2 3 Heatwaves

Average annual likelihood of at least two consecutive days with Tmax greater than the 1981-2010 warm 4 5 season 98th percentile of daily Tmax, averaged over grid cells with more than 1000 people in 2010 (see

Arnell et al. 2019 ERL). CMIP5 climate model patterns, to be replaced with CMIP6 results. 6 7

8 **Major heatwaves**

9 Average annual likelihood of at least four consecutive days with Tmax greater than the 1981-2010 warm season 99th percentile of daily Tmax, averaged over grid cells with more than 1000 people in 2010 (see 10 Arnell et al. 2019 ERL). CMIP5 climate model patterns, to be replaced with CMIP6 results.

11 12

1

13 Average annual number of cooling degree-days

14 Global average annual number of cooling degree-days relative to 18°C, averaged over grid cells with more than 1000 people in 2010. CMIP5 model patterns, to be replaced with CMIP6 results. 15

16

17 Average annual number of heating degree-days

18 Global average annual number of heating degree-days relative to 15.5°C, averaged over grid cells with more 19 than 1000 people in 2010. CMIP5 model patterns, to be replaced with CMIP6 results.

20

21 **River floods**

22 Global average change in magnitude of the 100-year river flood. River flood index is defined in AVII.3.1.

23 Global average weighted by grid cell area. This is based on available CMIP6 results

24 25 Droughts

26 Global average number of droughts per decade, based on Standardised Precipitation Index SPI (as defined in 27 AVII.3.1). Global average weighted by grid cell area. This is based on available CMIP6 results

29 **Extreme coastal sea level**

30 Global average height of the 100-year extreme sea level, as defined in AVII.3.1 ((Vousdoukas et al., 2018). 31

32 AVII.3.3 Global indices

33

28

34 35

[START TABLE AVII.3 HERE]

 Table AVII.3:
 List and characteristics of global indices used in Chapter 12 (also in Chapter 2)

37 38

36

Manifested hazard (from	Hazard Index	Required ECVs	Way to calculate	References
Table 12.1) and potential				
affected sectors				
Warming	Global average	tas	From projections	(Donner et al., 2005, 2007; Bell
	SSTs			et al., 2013; Frieler et al., 2013;
				Gattuso et al., 2015)
Ocean acidification	Global average	Ocean pH	From	(Donner et al., 2005, 2007; Bell
	pH	-	projections/Assessment	et al., 2013; Frieler et al., 2013;
	-		by Chapter 5	Gattuso et al., 2015)
Deoxygenation	Global average	Ocean Oxygen	From	(Donner et al., 2005, 2007; Bell
	Oxygen	content	Projections/Assessment	et al., 2013; Frieler et al., 2013;
	content of the		by Chapter 5	Gattuso et al., 2015)
	ocean			
Permanent inundation	Global Mean	Sea Level Rise	From	(Kopp et al., 2014)
	Sea Level Rise		Projections/Assessment	
			by Chapter 9	
Warming	Arctic sea ice	Arctic sea ice area	From	(Jahn et al., 2016)
	extent in	in September	Projections/Assessment	
	September	-	by Chapter 4	
Warming	Equilibrium	Equilibrium Mass	From	(Marzeion et al., 2014)
-	Mass Balance	Balance of Glaciers	projections/Assessment	
	of Glaciers		by Chapter 9	
Warming	Land area with	Land area with	From	(Slater and Lawrence, 2013)

	permafrost melting	permafrost	projections/Assessment by Chapter 9	
Warming	Snow extent in Northern Hemisphere	Snow cover	From projections/Assessment by Chapter 9	Chapter 9 and references therein
Air Pollution/Allergens	Atmospheric CO2 concentrations	Atmospheric CO2 concentrations	From Scenarios forcings input	(Singer et al., 2005)
Variability changes	El-Nino3.4 standard deviation	SSTs	From Projections/Assessment of Chapter 4	(Drijfhout et al., 2015)
Sea Level Rise	WAIS/GIS ice volume changes	Ice volume	From Projections/Assessment by Chapter 9	(DeConto and Pollard, 2016)
Variability/Circulation Changes	AMOC strength	Maximum meridional streamfunction below 400m. depth	From Projections/Assessment by Chapter 4	(Collins et al., 2013)

[END TABLE AVII.3 HERE]

AVII.4 Models, Scenarios and reference periods used

AVII.4.1 Models used to calculate hazard indices

The models used in Chapter 12 and the Atlas are subsets of the full CMIP5 ensemble and CMIP6 ensemble, selected based on availability in the Atlas database, and from a few other sources. In three regions, Europe, Africa and North America, Chapter 12 used ensembles of regional simulations with high resolution. Associated regional figures were designed to compare these ensembles. However, different GCMs were used in both cases (see below). No model weighting is applied.

In Chapter 12, only results for Scenario (SSP5-8.5 for CMIP6, RCP8.5 for CORDEX) are shown as maps. Figures 12.4 - 12.13 show the differences between results obtained for each index between statistics calculated over two periods: mid-century (2041-2060) and a reference period (1995-2014). Satellite plots show regional mean values and the 5-95th percentiles of model ensemble spread for the AR6 regions (see Chapter 1) for the above periods, ensembles and scenarios with the addition of a further scenario (SSP1-2.6 for CMIP6), ensemble (CMIP5 RCP8.5) and time period (end of century 2081-2100).

27

[START TABLE AVII.4 HERE]

Table AVII.4: List of CMIP5 (Taylor et al., 2012) models used for each index. The indices are grouped when the same subset of models is used; "85" stands for "RCP8.5.

CMIP5 Simulations	TX35, TX40, R99	T21.5	WBGT	SPI	FI	P98WIND	SWE100
ACCESS1-0	85	85	85	85		85	
ACCESS1-3	85	85	85	85		85	
bcc-csm1-1	85	85	85	85			85
bcc-csm1-1-m	85	85	85	85			85
BNU-ESM	85	85	85	85		85	85
CanESM2	85	85	85	85	85	85	85
CCSM4	85	85		85			
CESM1-BGC	85	85		85			
CMCC-CESM						85	
CMCC-CM	85	85		85	85	85	

CMCC-CMS	85	85		85	85	85	
CNRM-CM5	85	85	85	85	85	85	85
CSIRO-Mk3-6-0	85	85	85	85	85	85	85
EC-EARTH	85*	85*		85*			
FGOALS-g2	85			85	85		85
GFDL-CM3	85	85	85	85	85	85	85
GFDL-ESM2G	85	85	85	85	85	85	85
GFDL-ESM2M	85	85	85	85	85	85	85
HadGEM2-CC	85	85	85	85		85	85
HadGEM2-ES	85	85	85	85		85	85
inmcm4	85	85	85	85	85		85
IPSL-CM5A-LR	85	85	85	85		85	
IPSL-CM5A-MR	85	85	85	85		85	
IPSL-CM5B-LR	85	85	85	85		85	
MIROC5	85	85	85	85	85	85	85
MIROC-ESM	85	85	85	85	85	85	85
MIROC-ESM-CHEM	85	85	85	85		85	85
MPI-ESM-LR	85	85		85		85	85
MPI-ESM-MR	85	85		85	85	85	85
MRI-CGCM3	85	85	85	85	85	85	85
MRI-ESM1			85		85	85	85
NorESM1-M	85	85	85	85	85		85

*r12 ** r1,r2,r3

[END TABLE AVII.4 HERE]

[START TABLE AVII.5 HERE]

Table AVII.5:List of CMIP6 (Eyring et al., 2016) models used for each index. The indices are grouped when the
same subset of models is used; "85" stands for SSP5-8.5 and "26" stands for SSP1-2.6.

CMIP6 Simulations	TX35, TX40, R99	T21.5	WBGT	SPI	FI	P98WIND	SWE100
AWI-CM-1-1-MR						85, 26	
BCC-CSM2-MR			85, 26	85, 26	85, 26	85, 26	85, 26
CAMS-CSM1-0				85, 26			
CanESM5	85, 26	85, 26	85, 26	85 ^{††} , 26 ^{††}	85	85, 26	85, 26
CESM2				85, 26			
CESM-WACCM				85, 26			
CNRM-CM6-1	85, 26	85, 26	85, 26	85, 26		85, 26	
CNRM-CM6-1-HR						85	
CNRM-ESM2-1	85, 26	85, 26	85, 26	85, 26		85, 26	
EC-Earth3	85*, 26*	85*, 26*	85, 26	85*, 26*	85, 26	85*, 26*	85*, 26*
EC-Earth3-Veg	85, 26	85, 26	85, 26	85, 26		85, 26	
FGOALS-g3			85, 26	85, 26			

GFDL-CM4	85	85	85	85	85	85	85
GFDL-ESM4	26	85, 26	26	85, 26		26	85, 26
INM-CM4-8						85, 26	
INM-CM5-0						85, 26	
IPSL-CM6A-LR	85, 26	85, 26	85	85, 26	85, 26	85, 26	85, 26
MIROC-ES2L				85, 26			
MIROC6				85, 26	85, 26	85, 26	85, 26
MPI-ESM1-2-HR			85, 26		85, 26	85, 26	85, 26
MRI-ESM2-0	85, 26	85, 26	85, 26	85, 26	85, 26	85, 26	85, 26
NESM3	85, 26	85, 26		85, 26	85, 26	85, 26	85, 26
UKESM1-0-LL	85, 26	85, 26	85, 26		85, 26	85, 26	85, 26

All r1i1p1f1 where available, r1i1p1f2 otherwise except :

* r4i1p1f1

†r6i1p1f1

^{††} r1i1p2f1

[END TABLE AVII.5 HERE]

[START TABLE AVII.6 HERE]

Г 2 3

Table AVII.6:List of EURO-CORDEX models used for each index, Figures 12.4-12.6 and 12.12 (Vautard et al.,
submitted). The indices are grouped when the same subset of models is used. GCM and RCMs used
are specified. For GCMs a simplified simulation name was taken (GCMrN, where N is the member).
All simulations are for RCP8.5.

GCM	RCM	TX35, TX40	WBGT	PR, SPI, FI	P98WIND	SWE100
CANESMr1	CCLM	Х	Х	Х		Х
	REMO	Х	Х	Х	Х	Х
CNRMr1	ALADIN63	Х	Х		Х	Х
	ALADIN53	Х	Х			Х
	CCLM	Х	Х	Х	Х	Х
	HIRHAM	Х	Х	Х	Х	Х
	RACMO	Х	Х	Х	Х	Х
	RCA	Х	Х	Х	Х	
	REMO	Х	Х	Х	Х	Х
	WRF381P	Х	Х	Х	Х	Х
ECEARTHr12	CCLM	Х	Х	Х	Х	Х
	COSMO-crCLIM	Х	Х		Х	
	HIRHAM	Х	Х	Х	Х	Х
	RACMO	Х	Х	Х	Х	Х
	RCA	Х	Х	Х	Х	
	REMO	Х	Х	Х	Х	Х
	WRF361H	Х				Х
ECEARTHr1	HIRHAM	Х	Х	Х	Х	Х
	RACMO	Х	Х	Х	Х	Х
	RCA	Х	Х	Х	Х	Х
ECEARTHr3	HIRHAM	Х	Х	Х	Х	Х
	RACMO	Х	Х	Х	Х	Х
	RCA	Х	Х		Х	Х
HADGEMr1	ALADIN63	Х	Х		Х	Х
	CCLM	Х	Х	Х	Х	Х
	HIRHAM	Х	Х	Х	Х	Х
	RACMO	Х	Х	Х	Х	Х
	RCA	Х	Х	Х	Х	
	REGCM	Х	Х	Х	Х	Х
	REMO	Х	Х	Х	Х	Х

	WRF361H	Х				Х
	WRF381P	Х	Х		Х	Х
IPSLr1	RACMO	Х	Х		Х	Х
	RCA	Х	Х	Х	Х	
	WRF381P	Х	Х		Х	Х
MIROCr1	CCLM	Х	Х	Х	Х	Х
	REMO	Х	Х	Х	Х	Х
MPIr1	CCLM	Х	Х	Х	Х	Х
	COSMO-crCLIM	Х	Х	Х	Х	
	RACMO	Х	Х	Х	Х	Х
	RCA	Х	Х	Х	Х	
	REGCM	Х	Х		Х	Х
	REMO	Х	Х	Х		Х
	WRF361H	Х				
MPIr2	COSMO-crCLIM	Х	Х		Х	
	REMO	Х	Х	Х		Х
MPIr3	COSMO-crCLIM	Х	Х		Х	
	RCA	Х	Х	Х	Х	Х
	REMO	Х	Х	Х	Х	Х
NORESMr1	COSMO-crCLIM	Х	Х		Х	
	HIRHAM	Х	Х	Х	Х	Х
	RACMO	Х	Х	Х	Х	Х
	RCA	Х	Х	Х	Х	Х
	REMO	Х	Х	Х	Х	Х
	WRF381P	Х	Х	Х	Х	Х

[END TABLE AVII.6 HERE]

[START TABLE AVII.7 HERE]

Table AVII.7:List of CORDEX models used for each index for North America for Figures 12.4-12.6 and 12.13. The
indices are grouped when the same subset of models is used. GCM and RCMs used are specified. All
simulations are for RCP8.5.

GCM	RCM	Resolution	PR	P98WIND	SWE100
GFDL-ESM2M	RegCM4	0.22	Х		Х
HadGEM2-ES	GERICS	0.22	х	Х	Х
	RegCM4	0.22	Х		Х
MPI-ESM-LR	GERICS	0.22	Х	Х	Х
	RegCM4	0.22	Х		Х
NorESM1-M	GERICS	0.22	Х	Х	Х
CanESM2	CanRCM4	0.44	Х		
	CRCM5-UQAM	0.44	Х		
	SMHI-RCA4	0.44	Х	х	
EC-EARTH	DMI-HIRHAM5	0.44	Х	х	Х
	SMHI-RCA4	0.44	Х	х	
GFDL-ESM2M	RegCM4	0.44	Х		
	WRF	0.44	Х		
HadGEM2-ES	RegCM4	0.44	Х		
	WRF	0.44	Х		
	GERICS	0.44	Х		
MPI-ESM-LR	CRCM5-UQAM	0.44	Х		
	CRCM5-UQAM	0.44	X		
	RegCM4	0.44	X		
	WRF	0.44	х		

[END TABLE AVII.7 HERE]

[START TABLE AVII.8 HERE]

1

Table AVII.8: List of CORDEX models used for each index for North America for Figures 12.4-12.6 and 12.8. The indices are grouped when the same subset of models is used. GCM and RCMs used are specified. All simulations are for RCP8.5.

GCM	RCM	member	TX35,	WBGT	PR	SPI	P98WIND
			TX40				
CanESM2	RCA4	rlilpl	Х	х	Х	х	Х
CNRM-CM5	CCLM4-8-17	rlilpl	Х	Х	Х	Х	Х
	RCA4	rlilpl	х	Х	х	Х	Х
CSIRO-Mk3-6-0	RCA4	rlilpl	Х	х	х	х	Х
EC-EARTH	CCLM4-8-17	r12i1p1	Х	х	х	х	Х
	RACMO22T	rlilpl	Х	х		х	Х
	HIRHAM5_v2	r3i1p1	Х	х	х	х	Х
	REMO2009	r12i1p1		Х		Х	Х
	RCA4	r12i1p1		Х	Х		Х
IPSL-CM5A	REMO2009	rlilpl	х	Х		Х	Х
	RCA4	rlilpl	х	Х		Х	Х
MIROC5	RCA4	rlilpl	х	Х		Х	Х
	REMO2009	rlilpl	х	Х		Х	Х
HadGEM2-ES	CCLM4-8-17	rlilpl	х	Х	х	Х	Х
	RACMO22T	rlilpl	х	Х		Х	Х
	RCA4	rlilpl	х	Х		Х	Х
	REMO2009	rlilpl	х	Х		Х	Х
	RegCM4	rlilpl			х		
MPI-ESM-LR	CCLM4-8-17	rlilpl	Х	х	х	х	Х
	RCA4	rlilpl	х	Х		Х	Х
	REMO2009	rlilpl	х	Х		Х	Х
NorESM1-M	HIRHAM5_v1	rlilpl	Х			Х	х
	RCA4	rlilpl	Х	х		Х	Х
	WRF331	rlilpl	Х			Х	
GFDL-ESM2M	RCA4	rlilpl	х	х		х	Х

AVII.5 Bias adjustment

[END TABLE AVII.8 HERE]

12 13 The quantile delta mapping approach that is described by (Cannon et al., 2015). It adjusts the model data in 14 the application period to fit the reference data in the base period (using quantile mapping). Afterwards, the 15 climate change signal is added for each quantile by considering the change between the model's reference and application period. This prevents that extremes outside the reference period are always corrected by a 16 17 constant factor. The bias correction is applied directly onto the heat index. As reference, the ERA5 data is 18 used after re-gridding to the model grid before calculating the heat index. Bias correction is applied on each 19 grid point individually and for each month of the year separately. The reference period is 1981-2010 and the 20 application periods are the IPCC periods 1995-2014, 2041-2060, and 2081-2100.

References

- Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111, D05109. doi:10.1029/2005JD006290.
- Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., et al. (2017). Global projections of river flood risk in a warmer world. *Earth's Futur.* 5, 171–182. doi:10.1002/2016EF000485.
- Alfieri, L., Feyen, L., Dottori, F., and Bianchi, A. (2015). Ensemble flood risk assessment in Europe under high end climate scenarios. *Glob. Environ. Chang.* 35, 199–212. doi:10.1016/j.gloenvcha.2015.09.004.
- Arnell, N. W., Lowe, J. A., Lloyd-Hughes, B., and Osborn, T. J. (2018). The impacts avoided with a 1.5 °C climate target: a global and regional assessment. *Clim. Change* 147, 61–76. doi:10.1007/s10584-017-2115-9.
- Barlow, K. M., Christy, B. P., O'Leary, G. J., Riffkin, P. A., and Nuttall, J. G. (2015). Simulating the impact of extreme heat and frost events on wheat crop production: A review. *F. Crop. Res.* 171, 109–119. doi:https://doi.org/10.1016/j.fcr.2014.11.010.
- Bell, J. D., Ganachaud, A., Gehrke, P. C., Griffiths, S. P., Hobday, A. J., Hoegh-Guldberg, O., et al. (2013). Mixed responses of tropical Pacific fisheries and aquaculture to climate change. *Nat. Clim. Chang.* 3, 591–599. doi:10.1038/nclimate1838.
- Blanford, J. I., Blanford, S., Crane, R. G., Mann, M. E., Paaijmans, K. P., Schreiber, K. V, et al. (2013). Implications of temperature variation for malaria parasite development across Africa. *Sci. Rep.* 3, 1300. Available at: https://doi.org/10.1038/srep01300.
- Bonhomme, R. (2000). Bases and limits to using 'degree.day' units. *Eur. J. Agron.* 13, 1–10. doi:https://doi.org/10.1016/S1161-0301(00)00058-7.
- Brown, S. J., Caesar, J., and Ferro, C. A. T. (2008). Global changes in extreme daily temperature since 1950. J. *Geophys. Res. Atmos.* 113, n/a-n/a. doi:10.1029/2006JD008091.
- Cannon, A. J., Sobie, S. R., and Murdock, T. Q. (2015). Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 28, 6938–6959. doi:10.1175/JCLI-D-14-00754.1.
- Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E., and Ries, L. (2015). Do growing degree days predict phenology across butterfly species? *Ecology* 96, 1473–1479. doi:10.1890/15-0131.1.
- Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London, UK: Springer Series in Statistics.
 Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., et al. (2013). "Long Term Climate
- Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., et al. (2013). "Long Term Climate
 Change: Projections, Commitments and Irreversibility," in *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, eds. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Cambridge, United
 Kingdom and New York, NY, USA: Cambridge University Press), 1029–1136.
- Coppola, E., Raffaele, F., and Giorgi, F. (2018). Impact of climate change on snow melt driven runoff timing over the
 Alpine region. *Clim. Dyn.* 51, 1259–1273. doi:10.1007/s00382-016-3331-0.
- Coppola, E., Tomassetti, B., Mariotti, L., and Visconti, M. V. & G. (2007). Cellular automata algorithms for drainage network extraction and rainfall data assimilation. *Hydrol. Sci. Sci. Hydrol.*, 52. doi:10.1623/hysj.52.3.579.
- Cradock-Henry, N. A. (2017). New Zealand kiwifruit growers' vulnerability to climate and other stressors. *Reg. Environ. Chang.* 17, 245–259. doi:10.1007/s10113-016-1000-9.
- 42 Crimp, S. J., Gobbett, D., Kokic, P., Nidumolu, U., Howden, M., and Nicholls, N. (2016). Recent seasonal and long43 term changes in southern Australian frost occurrence. *Clim. Change* 139, 115–128. doi:10.1007/s10584-01644 1763-5.
- Damm, A., Greuell, W., Landgren, O., and Prettenthaler, F. (2017). Impacts of +2°C global warming on winter tourism demand in Europe. *Clim. Serv.* 7, 31–46. doi:https://doi.org/10.1016/j.cliser.2016.07.003.
- 47 DeConto, R. M., and Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. *Nature* 531, 591–
 48 597. doi:10.1038/nature17145.
- Deryng, D., Conway, D., Ramankutty, N., Price, J., and Warren, R. (2014). Global crop yield response to extreme heat
 stress under multiple climate change futures. *Environ. Res. Lett.* 9, 034011. doi:10.1088/1748-9326/9/3/034011.
- Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H. H., et al. (2013). Updated analyses of
 temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset.
 J. Geophys. Res. Atmos. 118, 2098–2118. doi:10.1002/jgrd.50150.
- Donner, S. D., Knutson, T. R., and Oppenheimer, M. (2007). Model-based assessment of the role of human-induced
 climate change in the 2005 Caribbean coral bleaching event. *Proc. Natl. Acad. Sci.* 104, 5483–5488.
 doi:10.1073/pnas.0610122104.
- Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M., and Hoegh-Guldberg, O. (2005). Global assessment of
 coral bleaching and required rates of adaptation under climate change. *Glob. Chang. Biol.* 11, 2251–2265.
 doi:10.1111/j.1365-2486.2005.01073.x.
- 60 Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M., Huntingford, C., et al. (2015). Catalogue of abrupt

shifts in Intergovernmental Panel on Climate Change climate models. *Proc. Natl. Acad. Sci.* 112, E5777–E5786. doi:10.1073/pnas.1511451112.

- Edwards, D. C., and McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales. Available at: https://mountainscholar.org/handle/10217/170176 [Accessed March 24, 2019].
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., et al. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. *Geosci. Model Dev.* 9, 1937–1958. doi:10.5194/gmd-9-1937-2016.
- Forzieri, G., Feyen, L., Russo, S., Vousdoukas, M., Alfieri, L., Outten, S., et al. (2016). Multi-hazard assessment in Europe under climate change. *Clim. Change* 137, 105–119. doi:10.1007/s10584-016-1661-x.
- Frich, P., Alexander, L., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A., et al. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. *Clim. Res.* 19, 193–212. doi:10.3354/cr019193.
- Frieler, K., Meinshausen, M., Golly, A., Mengel, M., Lebek, K., Donner, S. D., et al. (2013). Limiting global warming to 2 °C is unlikely to save most coral reefs. *Nat. Clim. Chang.* 3, 165–170. doi:10.1038/nclimate1674.
- Gattuso, J.-P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., et al. (2015). Contrasting futures for ocean and society from different anthropogenic CO 2 emissions scenarios. *Science* 349, aac4722. doi:10.1126/science.aac4722.
- Gourdji, S. M., Sibley, A. M., and Lobell, D. B. (2013). Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. *Environ. Res. Lett.* 8, 024041. doi:10.1088/1748-9326/8/2/024041.
- Grotjahn, R. (in press). "Weather extremes that impact various agricultural commodities," in *Extreme Events and Climate Change: A Multidisciplinary 28 Approach*, eds. F. Castillo, M. Wehner, and D. Stone (John Wiley & Sons, Inc. for American Geophysical Union), (in press).
- Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., et al. (2011). Climate Impacts on Agriculture: Implications for Crop Production. *Agron. J.* 103, 351. doi:10.2134/agronj2010.0303.
- Hatfield, J. L., and Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. *Weather Clim. Extrem.* 10, 4–10. doi:10.1016/J.WACE.2015.08.001.
- Hatfield, J., Swanston, C., Janowiak, M., and Steele, R. (2015). USDA Midwest and Northern Forests Regional Climate Hub: Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies. , ed. T. Anderson USA Available at: https://www.climatehubs.oce.usda.gov/content/usda-midwest-and-northern-forests-regionalclimate-hub-assessment-climate-change [Accessed February 22, 2019].
- Hatfield, J., Takle, G., Grotjahn, R., Holden, P., Izaurralde, R. C., Mader, T., et al. (2014). NCA 2014: Chapter 6
 Agriculture., eds. J. M. Melillo, T. C. Richmond, and G. W. Yohe USA doi:10.7930/J02Z13FR.On.
- Houston, D., Werrity, A., Bassett, D., Geddes, A., Hoolachan, A., and McMillan, M. (2011). Pluvial (rain-related)
 flooding in urban areas: the invisible hazard. Joseph Rowntree Foundation Available at: https://www.jrf.org.uk/report/pluvial-rain-related-flooding-urban-areas-invisible-hazard.
- Im, E.-S., Pal, J. S., and Eltahir, E. A. B. (2017). Deadly heat waves projected in the densely populated agricultural
 regions of South Asia. *Sci. Adv.* 3, e1603322. doi:10.1126/sciadv.1603322.
- IPCC (2012). "IPCC 2012, Summary for policymakers," in *Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation*, eds. C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi,
 et al. (Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press), 1–19.
 doi:10.1017/CB09781139177245.
- Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S. P., Vautard, R., Donnelly, C., et al. (2018). Climate Impacts in Europe Under +1.5°C Global Warming. *Earth's Futur*. 6, 264–285. doi:10.1002/2017EF000710.
- Jahn, A., Kay, J. E., Holland, M. M., and Hall, D. M. (2016). How predictable is the timing of a summer ice-free
 Arctic? *Geophys. Res. Lett.* 43, 9113–9120. doi:10.1002/2016GL070067.
- Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M. (2013). Changes in temperature and precipitation extremes in the CMIP5 ensemble. *Clim. Change* 119, 345–357. doi:10.1007/s10584-013-0705-8.
- Kharin, V. V, and Zwiers, F. W. (2000). Changes in the Extremes in an Ensemble of Transient Climate Simulations
 with a Coupled Atmosphere–Ocean GCM. J. Clim. 13, 3760–3788. doi:10.1175/15200442(2000)013<3760:CITEIA>2.0.CO;2.
- Kingsley, S. L., Eliot, M. N., Gold, J., Vanderslice, R. R., and Wellenius, G. A. (2016). Current and Projected Heat Related Morbidity and Mortality in Rhode Island. *Environ. Health Perspect.* 124, 460–467.
 doi:10.1289/ehp.1408826.
- Kjellstrom, T., Holmer, I., and Lemke, B. (2009). Workplace heat stress, health and productivity an increasing
 challenge for low and middle-income countries during climate change. *Glob. Health Action* 2, 2047.
 doi:10.3402/gha.v2i0.2047.
- Klawa, M., and Ulbrich, U. (2003). A model for the estimation of storm losses and the identification of severe winter
 storms in Germany. *Nat. Hazards Earth Syst. Sci.* 3, 725–732.
- Klein Tank, A. M. G., Zwiers, F. W., and Zhang, X. (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. *Clim. data Monit. WCDMP-No. 72, WMO-TD No. 1500,*.
 - Do Not Cite, Quote or Distribute

Total pages: 21

- Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer, M., Rasmussen, D. J., et al. (2014). Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. *Earth's Futur.* 2, 383–406. doi:10.1002/2014EF000239.
- Kunkel, K. E., Easterling, D. R., Hubbard, K., and Redmond, K. (2004). Temporal variations in frost-free season in the United States: 1895–2000. *Geophys. Res. Lett.* 31. doi:10.1029/2003GL018624.
- Lambrechts, L., Paaijmans, K. P., Fansiri, T., Carrington, L. B., Kramer, L. D., Thomas, M. B., et al. (2011). Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. *Proc. Natl. Acad. Sci.* 108, 7460– 7465. doi:10.1073/pnas.1101377108.
- Lemke, B., and Kjellstrom, T. (2012). Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. *Ind. Health* 50, 267–278. doi:10.2486/indhealth.MS1352.
- Lobell, D. B., and Gourdji, S. M. (2012). The Influence of Climate Change on Global Crop Productivity. *PLANT Physiol.* 160, 1686–1697. doi:10.1104/pp.112.208298.
- Lobell, D. B., Hammer, G. L., McLean, G., Messina, C., Roberts, M. J., and Schlenker, W. (2013). The critical role of extreme heat for maize production in the United States. *Nat. Clim. Chang.* 3, 497–501. doi:10.1038/nclimate1832.
- Mäkinen, H., Kaseva, J., Trnka, M., Balek, J., Kersebaum, K. C., Nendel, C., et al. (2018). Sensitivity of European wheat to extreme weather. *F. Crop. Res.* 222, 209–217. doi:10.1016/j.fcr.2017.11.008.
- Martius, O., Pfahl, S., and Chevalier, C. (2016). A global quantification of compound precipitation and wind extremes. *Geophys. Res. Lett.* 43, 7709–7717. doi:10.1002/2016GL070017.
- Marzeion, B., Jarosch, A. H., and Gregory, J. M. (2014). Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change. *Cryosph.* 8, 59–71. doi:10.5194/tc-8-59-2014.
- McCabe, G. J., Betancourt, J. L., and Feng, S. (2015). Variability in the start, end, and length of frost-free periods across the conterminous United States during the past century. *Int. J. Climatol.* 35, 4673–4680. doi:10.1002/joc.4315.
- McCrary, R. R., McGinnis, S., and Mearns, L. O. (2017). Evaluation of Snow Water Equivalent in NARCCAP Simulations, Including Measures of Observational Uncertainty. J. Hydrometeorol. 18, 2425–2452. doi:10.1175/JHM-D-16-0264.1.
- Mckee, T. B., Doesken, N. J., and Kleist, J. (1993). The relationship of drought frequency and duration to time scales. in *Eighth Conference on Applied Climatology, Anaheim California*, 17–22. Available at: http://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_ 1993.pdf [Accessed April 1, 2019].
- Mora, C., Spirandelli, D., Franklin, E. C., Lynham, J., Kantar, M. B., Miles, W., et al. (2018). Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. *Nat. Clim. Chang.*, 1. doi:10.1038/s41558-018-0315-6.
- Mordecai, E. A., Cohen, J. M., Evans, M. V., Gudapati, P., Johnson, L. R., Lippi, C. A., et al. (2017). Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. *PLoS Negl. Trop. Dis.* 11, e0005568. doi:10.1371/journal.pntd.0005568.
- Mordecai, E. A., Paaijmans, K. P., Johnson, L. R., Balzer, C., Ben-Horin, T., de Moor, E., et al. (2013). Optimal temperature for malaria transmission is dramatically lower than previously predicted. *Ecol. Lett.* 16, 22–30. doi:10.1111/ele.12015.
- Mu, J. E., Sleeter, B. M., Abatzoglou, J. T., and Antle, J. M. (2017). Climate impacts on agricultural land use in the USA: the role of socio-economic scenarios. *Clim. Change* 144, 329–345. doi:10.1007/s10584-017-2033-x.
- Naumann, G., Alfieri, L., Wyser, K., Mentaschi, L., Betts, R. A., Carrao, H., et al. (2018). Global Changes in Drought Conditions Under Different Levels of Warming. *Geophys. Res. Lett.* 45, 3285–3296. doi:10.1002/2017GL076521.
- Naumann, G., Barbosa, P., Vogt, J., Spinoni, J., and Carrao, H. (2013). World drought frequency, duration, and severity for 1951-2010. *Int. J. Climatol.* 34, 2792–2804. doi:10.1002/joc.3875.
- O'Neill, B. C., Oppenheimer, M., Warren, R., Hallegatte, S., Kopp, R. E., Pörtner, H. O., et al. (2017). IPCC reasons
 for concern regarding climate change risks. *Nat. Clim. Chang.* 7, 28–37. doi:10.1038/nclimate3179.
- Pal, J., and Eltahir, E. (2015). Future temperature in southwest Asia projected to exceed a threshold for human adaptability. *Nat. Clim. Chang.* 6, 197–200.
- Petitti, D. B., Hondula, D. M., Yang, S., Harlan, S. L., and Chowell, G. (2016). Multiple Trigger Points for Quantifying
 Heat-Health Impacts: New Evidence from a Hot Climate. *Environ. Health Perspect.* 124, 176–183.
 doi:10.1289/ehp.1409119.
- Petkova, E. P., Vink, J. K., Horton, R. M., Gasparrini, A., Bader, D. A., Francis, J. D., et al. (2017). Towards More
 Comprehensive Projections of Urban Heat-Related Mortality: Estimates for New York City under Multiple
 Population, Adaptation, and Climate Scenarios. *Environ. Health Perspect.* 125, 47–55. doi:10.1289/EHP166.
- Rawlins, M. A., Bradley, R. S., Diaz, H. F., Kimball, J. S., and Robinson, D. A. (2016). Future Decreases in Freezing
 Days across North America. J. Clim. 29, 6923–6935. doi:10.1175/JCLI-D-15-0802.1.
- Ruiz, D., Cerón, V., Molina, A. M., Quiñónes, M. L., Jiménez, M. M., Ahumada, M., et al. (2014). Implementation of
 Malaria Dynamic Models in Municipality Level Early Warning Systems in Colombia. Part I: Description of
 Study Sites. Am. J. Trop. Med. Hyg. 91, 27–38. doi:https://doi.org/10.4269/ajtmh.13-0363.
- 61Ruosteenoja, K., Räisänen, J., Venäläinen, A., and Kämäräinen, M. (2016). Projections for the duration and degree days
Do Not Cite, Quote or DistributeAVII-20Total pages: 21

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

of the thermal growing season in Europe derived from CMIP5 model output. *Int. J. Climatol.* 36, 3039–3055. doi:10.1002/joc.4535.

- Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., et al. (2017). Consistent negative response of US crops to high temperatures in observations and crop models. *Nat. Commun.* 8, 13931. doi:10.1038/ncomms13931.
- Schlenker, W., and Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. *Proc. Natl. Acad. Sci.* 106, 15594–15598. doi:10.1073/pnas.0906865106.
- Singer, B. D., Ziska, L. H., Frenz, D. A., Gebhard, D. E., and Straka, J. G. (2005). Research note: Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. *Funct. Plant Biol.* 32, 667. doi:10.1071/FP05039.
- Slater, A. G., and Lawrence, D. M. (2013). Diagnosing Present and Future Permafrost from Climate Models. J. Clim. 26, 5608–5623. doi:10.1175/JCLI-D-12-00341.1.
- Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., and Vogt, J. (2014). World drought frequency, duration, and severity for 1951-2010. *Int. J. Climatol.* 34, 2792–2804. doi:10.1002/joc.3875.
- Spinoni, J., Vogt, J., and Barbosa, P. (2015). European degree-day climatologies and trends for the period 1951-2011. *Int. J. Climatol.* 35, 25–36. doi:10.1002/joc.3959.
- Spinoni, J., Vogt, J. V, Barbosa, P., Dosio, A., McCormick, N., Bigano, A., et al. (2018). Changes of heating and cooling degree-days in Europe from 1981 to 2100. *Int. J. Climatol.* 38, e191–e208. doi:10.1002/joc.5362.
- Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. *Bull. Am. Meteorol. Soc.* 93, 485–498. doi:10.1175/BAMS-D-11-00094.1.
- Tesfaye, K., Zaidi, P. H., Gbegbelegbe, S., Boeber, C., Rahut, D. B., Getaneh, F., et al. (2017). Climate change impacts and potential benefits of heat-tolerant maize in South Asia. *Theor. Appl. Climatol.* 130, 959–970. doi:10.1007/s00704-016-1931-6.
- Tripathi, A., Tripathi, D. K., Chauhan, D. K., Kumar, N., and Singh, G. S. (2016). Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. *Agric. Ecosyst. Environ.* 216, 356–373. doi:10.1016/j.agee.2015.09.034.
- Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., and Al, E. (submitted). Evaluation of the large EURO-CORDEX regional climate model ensemble. *J. Geophys. Res.* (submitted).
- Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., Storlazzi, C. D., et al. (2017). Doubling of coastal flooding frequency within decades due to sea-level rise. *Sci. Rep.* 7, 1399. doi:10.1038/s41598-017-01362-7.
- Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., et al. (2018). Global
 probabilistic projections of extreme sea levels show intensification of coastal flood hazard. *Nat. Commun.* 9,
 2360. doi:10.1038/s41467-018-04692-w.
- Vousdoukas, M. I., Ranasinghe, R., Mentaschi, L., Plomaritis, T. A., Athanasiou, P., Luijendijk, A., et al. (in press).
 Sandy coastlines under threat of erosion. *Nat. Clim. Chang.* (in press).
- Wobus, C., Small, E. E., Hosterman, H., Mills, D., Stein, J., Rissing, M., et al. (2017). Projected climate change impacts
 on skiing and snowmobiling: A case study of the United States. *Glob. Environ. Chang.* 45, 1–14.
 doi:10.1016/j.gloenvcha.2017.04.006.
- Wolfe, D. W., DeGaetano, A. T., Peck, G. M., Carey, M., Ziska, L. H., Lea-Cox, J., et al. (2018). Unique challenges
 and opportunities for northeastern US crop production in a changing climate. *Clim. Change* 146, 231–245.
 doi:10.1007/s10584-017-2109-7.
- Wolfe, D. W., Ziska, L., Petzoldt, C., Seaman, A., Chase, L., and Hayhoe, K. (2008). Projected change in climate
 thresholds in the Northeastern U.S.: implications for crops, pests, livestock, and farmers. *Mitig. Adapt. Strateg. Glob. Chang.* 13, 555–575. doi:10.1007/s11027-007-9125-2.
- Zhao, Y., Ducharne, A., Sultan, B., Braconnot, P., and Vautard, R. (2015). Estimating heat stress from climate-based
 indicators: present-day biases and future spreads in the CMIP5 global climate model ensemble. *Environ. Res. Lett.* 10, 084013. doi:10.1088/1748-9326/10/8/084013.