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AVII.1 Introduction 1 
 2 
This Annex provides background information on hazard indices used within Chapter 11, Chapter 12, and the 3 
Atlas, including technical details of calculation, underlying data and models, bias adjustment procedures, and 4 
related references. It helps understanding the information processing behind some of the numbers and figures 5 
provided in these chapters.  6 
 7 
In the climate science literature, a number of indices have been used in order to characterize and quantify 8 
one or several aspects of climate phenomena occurring due to natural variability or due to long-term changes 9 
in the system. There is an extremely large number of examples. One can cite mean global climate indices, 10 
such as global mean sea level rise or global mean temperature, which characterize the state of the climate 11 
system and act as a shifting baseline for regional changes. One can also examine mean regional trends, for 12 
example in mean springtime precipitation, which reflect large-scale patterns and alter the background 13 
conditions within which episodic hazards may occur. One can also calculate indices of extremes 14 
characterizing episodic events within the tail of the distributions of specific variables within their variability 15 
range, for instance the annual maximal temperature at a given location or the 100-year return value of river 16 
discharge characterizing extreme floods. Such extreme indices have been the subject of a number of studies 17 
and have been used to characterize how climate change modifies extreme values of climate variables and 18 
subsequent impacts in the Special IPCC Report on “Managing the risks of Extreme Events and Disasters to 19 
Advance Climate Change Adaptation” (IPCC, 2012), as well other recent IPCC reports. 20 
 21 
Indices can also characterize aspects of hazards or, more generally, climatic impact drivers (see Chapter 1 22 
and Chapter 12 for definitions) that are key to impacts and risks to society and ecosystems. Chapter 12 23 
proposes a definition of “climatic impact drivers indices”: “numerically computable indices using one or a 24 
combination of essential climate variables (ECVs) designed to measure the severity of the climatic impact 25 
driver, or the probability of exceedance of a threshold. The change in climatic impact drivers can be 26 
measured via these indices in terms of magnitude (or intensity), duration, frequency, timing, and spatial 27 
extent”.  28 
 29 
Climatic impact drivers, as defined in Chapter 1, may not be related only to extremes, and therefore require a 30 
different set of indices. For instance, the rate of coastline recession, due to sea level rise, used in Chapter 12, 31 
is involved in the risk of damage and losses in coastal settlements and infrastructures. Mean trends and 32 
changes themselves are considered throughout the report as climatic impact drivers. For instance, beyond the 33 
warming trend which has a large number of consequences, changes in other indices such ‘snow season 34 
length’ is often used to study economic impacts on winter tourism (Damm et al., 2017). To characterize 35 
broad threats to societies Mora et al. (2018) used a set of 11 very different key hazard indices among which 36 
about half are related to extremes. This highlights the need of having a set of indices larger than only 37 
extremes for regional climate information for climate change risks and impacts reduction. Section 12.3 in 38 
Chapter 12 reviews the hazards described in the literature to characterize impacts and risks, and reveal the 39 
wide variety of indices used to characterize such hazards 40 
 41 
Indices are, in principle, computable from observations, re-analyses or model simulations, although it is 42 
important to consider scale in comparing across datasets. For example, an extreme precipitation event has a 43 
lower magnitude across a large grid cell than it would at a single station within that grid cell. In many cases, 44 
hazards are simply characterized by the exceedance of a threshold for an ECV. For instance, the probability 45 
of crop failure dramatically increases as temperature rises above certain thresholds, which may differ from 46 
one species to another (Hatfield and Prueger, 2015; Grotjahn, in press) heat stress on outdoor workers is 47 
often expressed as a combination of humidity and temperature, such as found for instance in the classical wet 48 
bulb temperature with typical thresholds characterizing the stress on work in different categories of activities 49 
and human adaptability (Pal and Eltahir, 2015; Im et al., 2017). Because of biases in model climatologies, to 50 
assess the effect of climate change on threshold-type of indices (e.g., the change in the number of days with 51 
maximum temperature above 35°C), a bias adjustment of model outputs is often desirable (see Chapter 10 52 
for assessment of bias adjustment). In some of the indices used in Chapter 12, bias adjustment is used and 53 
methods are described here. 54 
 55 
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Both regional indices (with time-varying values depending on location) and global indices (single integrated 1 
value at each time) are considered. Some of the latter are identified in Chapter 4 as iconic measures of global 2 
climate change, like global surface air temperature (GSAT), global land monsoon precipitation, the global 3 
monsoon circulation index, the Arctic sea ice area, the Atlantic Meridional Overturning Circulation 4 
(AMOC), global mean sea level (GMSL). Others include modes of internal climate variability such as the 5 
Southern Annual Mode (SAM), the North Atlantic Oscillation (NAO), and the El Niño–Southern Oscillation 6 
(ENSO). Some of these global quantities have been connected by literature and past assessment to risks 7 
relevant for the characterization of Reasons for Concern (O’Neill et al., 2017). In that context, the relation of 8 
these indices' evolution to global drivers, especially GMST at increasing warming levels, is of interest. 9 
 10 
Indices are used in many chapters of the IPCC AR6 report: in Chapter 4 for assessing changes in the global 11 
climate, in Chapter 8 for water cycle changes assessment, in Chapter 9 for oceans and the cryosphere, in 12 
Chapter 11 for assessing changes in extreme conditions and in Chapter 12 for assessing climatic impact 13 
drivers and their changing characteristics due to climate change. In the online Atlas, a number of such 14 
indices are displayed with possibility of changing several aspects of the extreme or hazard characteristics 15 
(threshold, duration, magnitude, etc.). 16 
 17 
 18 
AVII.2 Extreme indices selection 19 
 20 
In Chapter 11, extreme indices are assessed and studied based on available literature and data. Two approaches 21 
are usually used to define extreme indices, namely, non-parametric and parametric. In the non-parametric 22 
approach, the indices are estimated using the empirical distribution of daily data. These indices characterize 23 
moderate temperature and precipitation extremes with re-occurrence times of a year or shorter (Klein Tank et 24 
al., 2009). The Expert Team on Climate Change Detection and Indices (ETCCDI -https://www.wcrp-25 
climate.org/etccdi) defined 27 indices that characterize different aspects of temperature and precipitation and 26 
are described by Frich et al. 2002; Alexander et al. 2006; Donat et al. 2013.  In this chapter a subset of these 27 
indices is assessed in detail. The parametric approach complements the moderate indices and is based on 28 
extreme value theory (EVT) (Coles, 2001) in order to evaluate the intensity and frequency of rare events with 29 
longer return periods, such as events that occur once in 20 years. This approach has been used and adopted in 30 
the literature (e.g. Kharin and Zwiers 2000; Brown et al. 2008; Kharin et al. 2013). These types of events are 31 
also assessed in the Chapter 11. Aside from temperature and precipitation the chapter also assesses indices 32 
used to characterize droughts. Table AVII.1 list the indices used.  33 
  34 
 35 
[START TABLE AVII.1 HERE] 36 
 37 
Table AVII.1: Table listing extreme indices used in Chapter 11 38 
 39 

Extreme Label  Index name Units Variable 
Tempera
ture  
  
  
  
  
  
  
  
  
  
  
  
  
  

TXx  Monthly maximum value of daily maximum 
temperature  

°C Maximum 
temperature 

TXn  Monthly minimum value of daily maximum 
temperature  

°C Maximum 
temperature 

TNn    Monthly minimum value of daily minimum 
temperature  

°C Minimum 
temperature 

TNx   Monthly maximum value of daily minimum 
temperature  

°C Minimum 
temperature 

TX90p Percentage of days when daily maximum 
temperature is greater than the 90th percentile  

% Maximum 
temperature 

TX10p Percentage of days when daily maximum 
temperature is less than the 10th percentile  

% Maximum 
temperature 

TN90p Percentage of days when daily minimum 
temperature is greater than the 90th percentile 

% Minimum 
temperature 

TN10p Percentage of days when daily minimum % Minimum 
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  temperature is less than the 10th percentile  temperature 
ID Number of icing days: Annual count of days when 

TX (daily maximum temperature) < 0°C 
days Maximum 

temperature 
FD  Number of frost days: Annual count of days when 

TN (daily minimum temperature) < 0°C 
days Minimum 

temperature 
WSDI Warm spell duration index: Annual count of days 

with a least 6 consecutive days when TX >90th 
percentile  

days Maximum 
temperature 

CSDI Cold spell duration index: Annual count of days 
with a least 6 consecutive days when TN <10th 
percentile 

Days Minimum 
temperature 

SU Number of summer days: Annual count of days 
when TX (daily maximum temperature) > 25°C 

Days Maximum 
temperature 

TR Number of tropical nights: Annual count of days 
when TN (daily minimum temperature) > 20°C 

Days Minimum 
temperature 

DTR Daily temperature range: Monthly mean difference 
between TX and Tn 

°C Maximum and 
minimum 
temperature 

GSL Growing season length: Annual (1st Jan to 31st Dec 
in Northern Hemisphere (NH), 1st July to 30th June 
in Southern Hemisphere (SH)) count between first 
span of at least 6 days with daily mean temperature 
TG>5oC and first span after July 1st (Jan 1st in SH) 
of 6 days with TG<5oC 

Days Mean temperature 

20TXx one-in-20 year return value of monthly maximum 
value of daily maximum temperature  

°C Maximum 
temperature 

20TXn one-in-20 year return value of monthly minimum 
value of daily maximum temperature  

°C Maximum 
temperature 

20TNn one-in-20 year return value of monthly minimum 
value of daily minimum temperature  

°C Minimum 
temperature 

20TNn one-in-20 year return value of monthly maximum 
value of daily minimum temperature  

°C Minimum 
temperature 

Precipita
tion  
  
  
  
  
  
  
  
  
  
  
  
  

Rx1day Maximum 1-day precipitation mm Precipitation  
Rx5day Maximum 5-day precipitation mm Precipitation  
R5mm Annual count of days when precipitation is greater 

than or equal to 5mm 
days Precipitation  

R10mm Annual count of days when precipitation is greater 
than or equal to 10mm 

days Precipitation  

R20mm Annual count of days when precipitation is greater 
than or equal to 20mm 

days Precipitation  

R50mm Annual count of days when precipitation is greater 
than or equal to 50mm 

days Precipitation  

CDD maximum number of consecutive days with less 
than 1 mm of precipitation 

days Precipitation  

CWD maximum number of consecutive days with more 
than or equal  1 mm of precipitation 

days Precipitation  

R95p annual total precipitation when the daily 
precipitation exceeds the 95th percentile of the wet-
day precipitation 

mm Precipitation  

R99p annual total precipitation when the daily 
precipitation exceeds the 99th percentile of the wet-
day precipitation 

mm Precipitation  

SDII Simple precipitation intensity index mm/day Precipitation  
20Rx1d one-in-20 year return value of maximum 1-day mm/day Precipitation 
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ay precipitation  
20Rx5d
ay 

one-in-20 year return value of maximum 5-day 
precipitation  

mm/day Precipitation 

Drought 
  
  
  
  
  
  
  

SPI Standardized Precipitation Index months Precipitation  
EDDI Potential evaporation, Evaporative Demand Drought 

Index  
months Evaporation  

SMA Soil moisture anomalies months Soil moisture 
SSMI Standardized Soil Moisture Index months Soil moisture 
SRI Standardized Runoff Index months Stream flow 
SSI Standardized Streamflow Index months Stream flow 
PDSI Palmer drought severity index months Precipitation, 

Evaporation 
SPEI Standardized precipitation evapotranspiration index months Precipitation, 

Evaporation, 
Temperature 

  1 
[END TABLE AVII.1 HERE] 2 
 3 
 4 
AVII.3 Climatic impact drivers indices selection 5 
 6 
In Chapter 12, 31 climatic impact drivers types are identified on the basis of relevance for risks and available 7 
literature. They were classified into 7 categories: heat and cold, wet and dry, wind, snow and ice, coastal, 8 
oceanic, and other (see Tables 12.1 and 12.2). It would be impossible to cover all indices that have been 9 
developed in the literature. However, in order to illustrate how indices can inform on future regional climate, 10 
Chapter 12 and the Atlas use a limited number of indices to illustrate the main hazards and their evolution 11 
with climate change. 12 
 13 
The selection of indices, as displayed in Chapter 12 and the Atlas, is based on expert judgement using the 14 
following guiding principles. The set of indices should: 15 

(i) describe the evolution of a manageable and illustrative number of indices, 16 
(ii) cover these categories, while giving more weight to those with a higher number of potential impacts 17 

as described in the literature,  18 
(iii) be used broadly in the literature 19 
(iv) allow easy computation from publicly available model outputs and observations, or be accessible 20 

from published material through contact with the authors 21 
(v) be well-evaluated in model simulations, or based on ECVs that are well-evaluated in model 22 

simulations  23 
(vi) represent hazards of interest to regional impact and risk assessment. 24 

 25 
The selection resulted in 16 regional indices which are reported in Table AVII.2. The description of the 26 
formula used or processing is described below. In addition, 12 global hazard indices were used in Chapter 12 27 
in relation to reasons for concerns as indices that were calculated for different warming levels. 28 
 29 
 30 
AVII.3.1 Regional hazard indices used in Section 12.4 31 
 32 
Climatic impact drivers indices 33 
 34 
Length of frost-free period (LFFP): Many ecosystems and crops are sensitive to frost conditions, and can 35 
only develop over a frost-free period (e.g., (Wolfe et al., 2018)); the length of the frost-free period is 36 
calculated in Chapter 12 and the Atlas as in (McCabe et al., 2015) by counting the number of days between 37 
the last spring frost and first fall frost using 0°C as a threshold for the daily minimum temperature and 38 
adjusting for season between hemispheres (from January to December in the Northern Hemisphere and from 39 
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July to June in the Southern Hemisphere). 1 
 2 
Growing degree-days (GDD): Ecosystems and crop growth is often linked to a widely used index of 3 
thermal conditions, the cumulative number of degrees above a threshold (often between 0 and 10 °C, 4 
depending on species and farming system) during a given growing period.  In Chapter 12 and the Atlas we 5 
use 5 °C as an indicative threshold, which was also used in Ruosteenoja et al. (2016), and the calculation is 6 
taken from this reference. GDD calculations sometimes include a high temperature threshold above which  7 
plant development does not occur (e.g., (Mu et al., 2017)), but no cap was employed for our calculations.  8 
The GDD index used here is therefore the accumulated sum of the difference between daily mean 9 
temperature and the threshold (when higher than the threshold) over the April-September months that forms 10 
the primary growing season for mid-latitude agricultural areas in the northern Hemisphere. 11 
 12 
Cooling degree-days (CDD): Energy consumption in hot environments typically depends on the excess of 13 
temperature above a given threshold, where cooling is required. In Chapter 12 and the Atlas we used the 14 
formulation of (Spinoni et al., 2015), which uses the mean, maximum and minimum daily temperature with 15 
the formula taken from this reference : 16 
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With Tb=22°C, then 19 

 20 





365

1i
iCDDCDD  21 

 22 
The difference between Chapter 12, Atlas, and the previous reference is that in this report the sum is 23 
cumulated over the year instead of 6 months so it applies to all hemispheres. 24 
 25 
Number of days with mean daily temperature above threshold (Tnn): Climate change is driving changes 26 
in the incidence and spatial distribution of climate-sensitive vector-borne diseases. Malaria, dengue fever, 27 
leishmaniasis, yellow fever, chikungunya, and zika are among those diseases considered most likely to 28 
increase as global temperatures increase. Changes in climatic conditions could influence the behaviour of 29 
vectors (proliferation and frequency of blood meal feedings), their geographical distribution (expansion into 30 
formerly vector-free territories), and the development rate at which pathogens (viruses and parasites) inside 31 
the mosquitoes mature. Air temperature is an important determinant of the transmission of vector-borne 32 
diseases. Several research efforts suggest that the optimal malaria transmission takes place at around 25°C, 33 
and that the transmission of Zika, dengue and chikungunya can occur between 18 and 34°C and peak at 26–34 
29°C. The basic reproduction rate of these diseases declines to zero for temperatures below 16-18°C, 35 
thresholds at which the pathogen development ceases, and above 31.6-35°C, which are the thresholds at 36 
which death of mosquitoes occurs. The sudden increase from a zero basic reproduction rate to non-zero 37 
levels commonly takes place at air temperatures around 21.5°C. See details in (Lambrechts et al., 2011; 38 
Blanford et al., 2013; Mordecai et al., 2013, 2017; Ruiz et al., 2014). 39 
 40 
Number of days with maximum daily temperature above threshold (TXnn): The number of days with 41 
maximum temperature above a threshold can be critical for human health, infrastructure, ecosystems, and 42 
agriculture. Different thresholds are used for different crops, generally varying between 30 degrees and 40 43 
degrees (Hatfield and Prueger, 2015; Grotjahn, in press). Three thresholds are used in the Atlas (30°C, 35°C 44 
and 40°C). Chapter 12 uses the 35°C threshold globally (Figure 12.4), which was identified as a critical 45 
temperature for maize pollination and production (Wolfe et al., 2008; Schlenker and Roberts, 2009; Hatfield 46 
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et al., 2011, 2014; Lobell and Gourdji, 2012; Gourdji et al., 2013; Lobell et al., 2013; Deryng et al., 2014; 1 
Hatfield and Prueger, 2015; Tripathi et al., 2016; Schauberger et al., 2017; Tesfaye et al., 2017) as well as a 2 
notable threshold for human health hazards (Kingsley, Eliot, Gold, Vanderslice, & Wellenius, 2016; Petitti et 3 
al., 2016). However, a 30°C threshold was used for Asia as most studies used this threshold in this continent. 4 
Figure 12.4 also displays change for the number of days with daily maximum temperature above 40°C in 5 
order to see the sensitivity to the threshold. 6 
 7 
Wet Bulb Globe Temperature (WBGT): This index, together with the Wet Bulb Temperature and other 8 
indices, have widely been used to characterize the effect of temperature on health and outdoor work 9 
conditions (Lemke and Kjellstrom, 2012; Zhao et al., 2015). Thresholds have been defined as 10 
recommendations for workers (Kjellstrom et al., 2009). It is calculated in the Atlas and Chapter 12 using the 11 
simplified formula of the Australian Bureau of Meteorology (http://www.bom.gov.au/info/thermal_stress/) 12 
assuming constant radiation as taken from (Lemke and Kjellstrom, 2012): 13 
 14 

WBGT(°C) = 0.567 Ta + 0.393 r + 3.94 15 
 16 
Where Ta is the atmospheric temperature and r (hPa) is the partial water vapor pressure, calculated either 17 
from relative humidity or from absolute humidity, depending on availability of variables for each model. 18 
 19 
Heating Degree Day (HDD): symmetrical to the Cooling Degree Day index, the HDD index is used for 20 
illustrating energy demand for heating. It has been used in several studies of impacts of climate change on 21 
the energy sector. Chapter 12 and the Atlas follow the formulation proposed by (Spinoni et al., 2015). The 22 
calculation follows: 23 
 24 
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With Tb=15.5°C, then 27 
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 30 
 31 
To account for various geographic zones, however, the HDD index is cumulated over the year instead of 6 32 
months as in the previous reference. 33 
 34 
Number of frost days: Frost affects crops (Barlow et al., 2015; Crimp et al., 2016; Cradock-Henry, 2017; 35 
Mäkinen et al., 2018), and there has been a number of studies investigating changes in the number of frost 36 
days, with various thresholds, mostly between -10°C and 2°C. In Chapter 12 and the Atlas, we use the 37 
simple threshold of 0°C for the daily minimum temperature to define frost days as in Rawlins et al. (2016). 38 
 39 
99th percentile of daily precipitation (R99): this index is an extreme index used to measure extreme 40 
precipitations which can cause pluvial flooding. This index is used in several Figures of Chapter 12 and in 41 
the Atlas. It is calculated as the 99th percentile of the daily amounts at each grid point. 42 
River flood index using runoff (FI): As a flood indicator, the 100-year return value of discharge value (Q) 43 
has been used. The computation of the index follows Alfieri et al., (2015): 44 
 45 

1. Annual maximum river discharges are selected and a Gumbel distribution is fitted on time slices of 46 
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30 years and an analytical function is obtained. 1 
2. The analytical function is used to estimate extreme discharge peaks with chosen return period 2 

Q(RP), by inverting the formulation of the Gumbel distribution:  3 

 4 
where α and ξ are the scale and location parameters of the analytical Gumbel distributions. 5 

 6 
3. The peak discharge corresponding to the 100-year return period, Q(RP=100), is then calculated. 7 

 8 
For Euro-CORDEX regional models the total runoff of each of the models has been used as an input of the 9 
hydrological model CHyM (Coppola et al., 2007, 2018) to produce the river discharge for all the European 10 
network. The Q(RP=100) value has been computed for each of the river segment and for each of the 29 11 
CHyM simulations. 12 
 13 
This index is used for EURO-CORDEX data in Figure 12.12, while in other figures it is temporarily replaced 14 
by the mean 100-year return value of the runoff variable for some continents. The interpretation between the 15 
two indices should be different, and they are not directly comparable. 16 
 17 
Standardized Precipitation Index (SPI): The SPI is a statistical index that compares cumulated 18 
precipitation for n months (n=6 or n=12 in the SOD) with the long term precipitation distribution for the 19 
same location and cumulation period. The SPI months have been computed and are considered to be a 20 
medium-term cumulated value that can be used to measure the medium term impact on river flow and 21 
reservoir storage (Mckee et al., 1993). 22 
 23 
The index is computed in this way: 24 

1. A monthly precipitation time series is selected (at least 30 years). 25 
2. The running average for the n-months window is computed.  26 
3. The Gamma distribution is used to fit the data. The fitting can be achieved through the maximum 27 

likelihood estimation of the gamma distribution parameters.  28 
4. The values from this probability distribution are then transformed into a normal distribution, so that 29 

the mean SPI for the location and desired period is zero and the standard deviation is 1 (Edwards and 30 
McKee, 1997). 31 

 32 
Once SPI has been computed, the calculation of the Drought Frequency (DF) follows the method in 33 
(Naumann et al., 2013): a drought event starts in the month when SPI falls below −1 and it ends when SPI 34 
returns to positive values, for at least two consecutive months.  35 
 36 
It has to be noted that the SPI index has been recognized to be difficult to interpret in high latitudes and in 37 
arid areas due to statistical issues linked to inaccuracies in the estimation of the Gamma function (Spinoni et 38 
al., 2014). Two durations are considered in Figure 12.6 (6 and 12 months). 39 
 40 
SPEI accumulated over 6 months (SPEI-6):  41 
 42 
98th percentile of daily maximum wind speed (P98wind): This high-percentile index is used in several 43 
studies to characterize extreme winds (Klawa and Ulbrich, 2003; Martius et al., 2016), but other studies use 44 
other high percentiles in the same range from the 95th to 99th. This index is used in Chapter 12 and the Atlas. 45 
It is calculated using the maximum daily wind speed and its 98th percentile over reference and future periods. 46 
Importantly, wind speed modelled distribution can depend on resolution since highest wind speeds can be 47 
found in small spatial structures.  48 
 49 
Snow season length (SWE100): Several studies use the Snow Water Equivalent (SWE) variable (variable 50 
snw in model outputs) in order to define a “snow season length” as the number of days with enough snow on 51 
the ground. This index is particularly important for the winter tourism sector (Damm et al., 2017; Jacob et 52 
al., 2018). Several thresholds are used to define a day with “enough snow on the ground”, with (Wobus et 53 
al., 2017) marking 100mm as a key threshold for skiing. However this index is not only important for winter 54 
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tourism but also in other sectors such as water management. In several figures of Chapter 12 and the Atlas, 1 
the snow season length is calculated as the number of days with SWE > 100mm, following the definition of 2 
(Damm et al., 2017; Wobus et al., 2017). Seasonal limits are given (November through March) for studies in 3 
the Northern Hemisphere, and the index for the Southern Hemisphere is taken over the opposite season (May 4 
through September). SWE was assessed in several studies and its simulation depends on the representation of 5 
surface processes dealing with snow. Despite limitations, SWE was found to be useful in giving insight on 6 
the sign of changes (McCrary et al., 2017). When interpreting the figures shown in Chapter 12 and the Atlas, 7 
one should also keep in mind that altitudes are model altitudes and may not correspond to real ones due to 8 
the coarse resolution, and the changes can be quite sensitive to such effects. 9 
 10 
Extreme Sea Level (ESL): Factors contributing to extreme sea levels (ESL), are sea level rise, storm surge 11 
(e.g. associated with TCs and ETCs), tide, and extreme waves (resulting in high wave setup at the shoreline). 12 
The ESL used here is the summation of the aforementioned factors (Vitousek et al., 2017; Vousdoukas et al., 13 
2018) and the commonly used 1 :100yr ESL is adopted here as the index relevant to episodic coastal 14 
flooding. 15 
 16 
Coastline Recession (CR): Coastline recession is the slow and continuous landward movement of the 17 
coastline in response to Sea level rise (Bruun, 1962). Historically, the most commonly used coastline 18 
recession index is the (deterministic) recession amount due to a mid-high SLR by a pre-determined planning 19 
horizon, commonly 50 years or 100 years into the future (Ranasinghe, 2016). However, probabilistic 20 
coastline recession estimates are becoming more and more sought after and available (Jongejan et al., 2016; 21 
Toimil et al., 2017; Dastgheib et al., 2018). Here the median coastline recession (0.5 exceedance 22 
probability), together with the associated 5-95 % confidence interval, resulting from a fully probabilistic 23 
model that incorporates SLR from 7 GCMs is used as the index relevant for coastline recession. 24 
 25 
  26 
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 1 
[START TABLE AVII.2 HERE] 2 
 3 
Table AVII.2: Regional Hazard indices table. Boldfaced are indices considered presented in the SOD, whilst other 4 

indices are not considered in the Atlas or Chapter 12 for SOD, but will be in the FGD. 5 
 6 

Hazard 
category 

Climatic impact 
driver (from 
Table 12.1) and 
potential affected 
sectors  

Index Required 
ECVs 

Way to 
calculate 

Bias 
adjustment 

References 

 
Heat 

Warming indicator 
for crops, 
ecosystems and 
hydrosystems 

Length of Frost-
Free period (LFFP) 

Tasmin from 
projections 

yes (Kunkel et al., 2004; 
McCabe et al., 2015; 
Wolfe et al., 2018) 

Heat Warming indicator 
for agriculture and 
ecosystems 

yearly cumulated 
GDD over 5°C  

Tas from 
projections 

yes (Bonhomme, 2000; Cayton 
et al., 2015; Ruosteenoja et 
al., 2016) 

Heat Change in cooling 
demand for energy 
demand and 
building 
consumption 

CDD above 22°C tas, tasmin, 
tasmax 

from 
projections 

yes (Spinoni et al., 2015, 2018) 

Heat Warming Tmean>21.5°C 
(T21.5) 

Tas from 
projections 

yes (Ruiz et al., 2014) 

Heat Heat, with 
thresholds 
important for 
agriculture 

#days Tmax>35, 
40 
(TX35, TX40) 

Tasmax from 
projections 

yes (Hatfield and Prueger, 
2015; Hatfield et al., 2015; 
Grotjahn, in press) 

Heat Heat stress index 
combining 
humidity used in 
occupational and 
industrial health  

#days WBGT>28, 
31, 35 

tas hurs ps from 
projections 

yes (Lemke and Kjellstrom, 
2012; Zhao et al., 2015) 

Cold Heating Degree 
Day for Energy 
consumption 

HDD below 15.5°C tas, tasmin, 
tasmax 

from 
projections 

yes (Spinoni et al., 2015, 2018) 

Cold Frost #Frost days below 
0°C (FD) 

Tasmin from 
projections 

yes (Barlow et al., 2015; 
Rawlins et al., 2016) 

Wet Pluvial flooding 99th percentile of 
daily amounts 
(R99) 

Pr from 
projections 

No (Houston et al., 2011) 

Wet River flooding Flood index (FI) srroff/ mrro from 
projections 
and 
simplified 
routing 
model 

No (Forzieri et al., 2016; 
Alfieri et al., 2017) 

Drought drought SPI accumulated  
over 6 months and 
12 months (SPI-6 
and SPI-12) 

Pr from 
projections 

yes  (Naumann et al., 2018) 

Drought drought SPEI acc over 6 
months 

  from 
projections 

  (Arnell et al., 2018) 

Wind & 
storm 

Extreme wind, 
affecting key 
infrastructure 

P98 of the daily 
max wind (W98) 

sfcWindmax from 
projections 

yes (Klawa and Ulbrich, 
2003; Martius et al., 
2016) 

Snow/ice Snow season 
length 

Number of days 
with Snow water 
equivalent > 100 
mm. (SWE100) 

snw from 
projections 

no  (Damm et al., 2017; 
Wobus et al., 2017) 

Coastal Extreme Sea level 
(ESL) inducing 
storm surges 

100-year Return 
level (ESL) 

  data from 
authors 

 no (Vousdoukas et al., 2018) 

Coastal Coastal Recession 
inducing threats 
to infrastructures 

coastal recession   data from 
authors 

 no (Vousdoukas et al., in 
press) 

 7 
[END TABLE AVII.2 HERE] 8 
 9 
 10 
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AVII.3.2 Hazard indices used in Section 12.5.1 1 
 2 
Heatwaves 3 
Average annual likelihood of at least two consecutive days with Tmax greater than the 1981-2010 warm 4 
season 98th percentile of daily Tmax, averaged over grid cells with more than 1000 people in 2010 (see 5 
Arnell et al. 2019 ERL). CMIP5 climate model patterns, to be replaced with CMIP6 results. 6 
 7 
Major heatwaves 8 
Average annual likelihood of at least four consecutive days with Tmax greater than the 1981-2010 warm 9 
season 99th percentile of daily Tmax, averaged over grid cells with more than 1000 people in 2010 (see 10 
Arnell et al. 2019 ERL). CMIP5 climate model patterns, to be replaced with CMIP6 results. 11 
 12 
Average annual number of cooling degree-days 13 
Global average annual number of cooling degree-days relative to 18oC, averaged over grid cells with more 14 
than 1000 people in 2010.  CMIP5 model patterns, to be replaced with CMIP6 results. 15 
 16 
Average annual number of heating degree-days 17 
Global average annual number of heating degree-days relative to 15.5oC, averaged over grid cells with more 18 
than 1000 people in 2010.  CMIP5 model patterns, to be replaced with CMIP6 results. 19 
 20 
River floods 21 
Global average change in magnitude of the 100-year river flood. River flood index is defined in AVII.3.1. 22 
Global average weighted by grid cell area. This is based on available CMIP6 results 23 
 24 
Droughts 25 
Global average number of droughts per decade, based on Standardised Precipitation Index SPI (as defined in 26 
AVII.3.1). Global average weighted by grid cell area. This is based on available CMIP6 results 27 
 28 
Extreme coastal sea level 29 
Global average height of the 100-year extreme sea level, as defined in AVII.3.1 ((Vousdoukas et al., 2018). 30 
 31 
 32 
AVII.3.3 Global indices 33 
 34 
[START TABLE AVII.3 HERE] 35 
 36 
Table AVII.3: List and characteristics of global indices used in Chapter 12 (also in Chapter 2) 37 
 38 

Manifested hazard (from 
Table 12.1) and potential 
affected sectors  

Hazard Index Required ECVs Way to calculate References 

Warming Global average 
SSTs 

tas From projections (Donner et al., 2005, 2007; Bell 
et al., 2013; Frieler et al., 2013; 
Gattuso et al., 2015) 

Ocean acidification Global average 
pH 

Ocean pH From 
projections/Assessment 
by Chapter 5 

(Donner et al., 2005, 2007; Bell 
et al., 2013; Frieler et al., 2013; 
Gattuso et al., 2015) 

Deoxygenation Global average 
Oxygen 
content of the 
ocean 

Ocean Oxygen 
content 

From 
Projections/Assessment 
by Chapter 5 

(Donner et al., 2005, 2007; Bell 
et al., 2013; Frieler et al., 2013; 
Gattuso et al., 2015) 

Permanent inundation Global Mean 
Sea Level Rise 

Sea Level Rise From 
Projections/Assessment 
by Chapter 9 

(Kopp et al., 2014) 

Warming Arctic sea ice 
extent in 
September 

Arctic sea ice area 
in September 

From 
Projections/Assessment 
by Chapter 4 

(Jahn et al., 2016) 

Warming Equilibrium 
Mass Balance 
of Glaciers 

Equilibrium Mass 
Balance of Glaciers 

From 
projections/Assessment 
by Chapter 9 

(Marzeion et al., 2014) 

Warming Land area with Land area with From (Slater and Lawrence, 2013) 
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permafrost 
melting 

permafrost projections/Assessment 
by Chapter 9 

Warming Snow extent in 
Northern 
Hemisphere 

Snow cover From 
projections/Assessment 
by Chapter 9 

Chapter 9 and references 
therein 

Air Pollution/Allergens Atmospheric 
CO2 
concentrations 

Atmospheric CO2 
concentrations 

From Scenarios forcings 
input 

(Singer et al., 2005) 

Variability changes El-Nino3.4 
standard 
deviation 

SSTs From 
Projections/Assessment 
of Chapter 4 

(Drijfhout et al., 2015) 

Sea Level Rise WAIS/GIS ice 
volume 
changes 

Ice volume From 
Projections/Assessment 
by Chapter 9 

(DeConto and Pollard, 2016) 

Variability/Circulation 
Changes 

AMOC 
strength 

Maximum 
meridional 
streamfunction 
below 400m. depth 

From 
Projections/Assessment 
by Chapter 4 

(Collins et al., 2013) 
 
 

 1 
[END TABLE AVII.3 HERE] 2 
 3 
 4 
AVII.4 Models, Scenarios and reference periods used  5 
 6 
AVII.4.1 Models used to calculate hazard indices   7 
 8 
The models used in Chapter 12 and the Atlas are subsets of the full CMIP5 ensemble and CMIP6 ensemble, 9 
selected based on availability in the Atlas database, and from a few other sources. In three regions, Europe, 10 
Africa and North America, Chapter 12 used ensembles of regional simulations with high resolution. 11 
Associated regional figures were designed to compare these ensembles. However, different GCMs were used 12 
in both cases (see below). No model weighting is applied. 13 
 14 
In Chapter 12, only results for Scenario (SSP5-8.5 for CMIP6, RCP8.5 for CORDEX) are shown as maps. 15 
Figures 12.4 – 12.13 show the differences between results obtained for each index between statistics 16 
calculated over two periods: mid-century (2041-2060) and a reference period (1995-2014). Satellite plots 17 
show regional mean values and the 5-95th percentiles of model ensemble spread for the AR6 regions (see 18 
Chapter 1) for the above periods, ensembles and scenarios with the addition of a further scenario (SSP1-2.6 19 
for CMIP6), ensemble (CMIP5 RCP8.5) and time period (end of century 2081-2100). 20 
 21 
 22 
[START TABLE AVII.4 HERE] 23 
 24 
Table AVII.4: List of CMIP5 (Taylor et al., 2012) models used for each index. The indices are grouped when the 25 

same subset of models is used; “85” stands for “RCP8.5.  26 
 27 

CMIP5 Simulations TX35, TX40, 
R99 

T21.5 
WBGT SPI FI P98WIND SWE100 

ACCESS1-0 85 85 85 85  85  

ACCESS1-3 85 85 85 85  85  

bcc-csm1-1 85 85 85 85   85 

bcc-csm1-1-m 85 85 85 85   85 

BNU-ESM 85 85 85 85  85 85 

CanESM2 85 85 85 85 85 85 85 

CCSM4 85 85  85    

CESM1-BGC 85 85  85    

CMCC-CESM      85  

CMCC-CM 85 85  85 85 85  
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CMCC-CMS 85 85  85 85 85  

CNRM-CM5 85 85 85 85 85 85 85 

CSIRO-Mk3-6-0 85 85 85 85 85 85 85 

EC-EARTH 85* 85*  85*    

FGOALS-g2 85   85 85  85 

GFDL-CM3 85 85 85 85 85 85 85 

GFDL-ESM2G 85 85 85 85 85 85 85 

GFDL-ESM2M 85 85 85 85 85 85 85 

HadGEM2-CC 85 85 85 85  85 85 

HadGEM2-ES 85 85 85 85  85 85 

inmcm4 85 85 85 85 85  85 

IPSL-CM5A-LR 85 85 85 85  85  

IPSL-CM5A-MR 85 85 85 85  85  

IPSL-CM5B-LR 85 85 85 85  85  

MIROC5 85 85 85 85 85 85 85 

MIROC-ESM 85 85 85 85 85 85 85 

MIROC-ESM-CHEM 85 85 85 85  85 85 

MPI-ESM-LR 85 85  85  85 85 

MPI-ESM-MR 85 85  85 85 85 85 

MRI-CGCM3 85 85 85 85 85 85 85 

MRI-ESM1   85  85 85 85 

NorESM1-M 85 85 85 85 85  85 

*r12 1 
** r1,r2,r3 2 
 3 
[END TABLE AVII.4 HERE] 4 
 5 
 6 
[START TABLE AVII.5 HERE] 7 
 8 
Table AVII.5: List of CMIP6 (Eyring et al., 2016) models used for each index. The indices are grouped when the 9 

same subset of models is used; “85” stands for SSP5-8.5 and “26” stands for SSP1-2.6. 10 
 11 

CMIP6 Simulations TX35, TX40, 
R99 

T21.5 
WBGT SPI FI P98WIND SWE100 

AWI-CM-1-1-MR      85, 26  

BCC-CSM2-MR   85, 26 85, 26 85, 26 85, 26 85, 26 

CAMS-CSM1-0    85, 26    

CanESM5 
85, 26 85, 26 85, 26 

85††, 
26†† 

85 85, 26 85, 26 

CESM2    85, 26    

CESM-WACCM    85, 26    

CNRM-CM6-1 85, 26 85, 26 85, 26 85, 26  85, 26  

CNRM-CM6-1-HR      85  

CNRM-ESM2-1 85, 26 85, 26 85, 26 85, 26  85, 26  

EC-Earth3 
85*, 26* 

85*, 
26* 

85, 26 
85*, 
26* 

85, 26 85*, 26* 85*, 26* 

EC-Earth3-Veg 85, 26 85, 26 85, 26 85, 26  85, 26  

FGOALS-g3   85, 26 85, 26    
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GFDL-CM4 85 85 85 85 85 85 85 

GFDL-ESM4       26 85,  26       26 85, 26        26 85, 26 

INM-CM4-8      85, 26  

INM-CM5-0      85, 26  

IPSL-CM6A-LR 85, 26 85, 26 85 85, 26 85, 26 85, 26 85, 26 

MIROC-ES2L    85, 26    

MIROC6    85, 26 85, 26 85, 26 85, 26 

MPI-ESM1-2-HR   85, 26  85, 26 85, 26 85, 26 

MRI-ESM2-0 85, 26 85, 26 85, 26 85, 26 85, 26 85, 26 85, 26 

NESM3 85, 26 85, 26  85, 26 85, 26 85, 26 85, 26 

UKESM1-0-LL 85, 26 85, 26 85, 26  85, 26 85, 26 85, 26 

All r1i1p1f1 where available, r1i1p1f2 otherwise except : 1 
* r4i1p1f1 2 
† r6i1p1f1 3 
†† r1i1p2f1 4 
 5 
[END TABLE AVII.5 HERE] 6 
 7 
 8 
[START TABLE AVII.6 HERE] 9 
 10 
Table AVII.6: List of EURO-CORDEX models used for each index, Figures 12.4-12.6 and 12.12 (Vautard et al., 11 

submitted). The indices are grouped when the same subset of models is used. GCM and RCMs used 12 
are specified. For GCMs a simplified simulation name was taken (GCMrN, where N is the member). 13 
All simulations are for RCP8.5. 14 

 15 
GCM RCM TX35, TX40 WBGT PR, SPI, FI 

 
P98WIND SWE100 

CANESMr1 CCLM X X X  X 
 REMO X X X X X 
CNRMr1 ALADIN63 X X  X X 
 ALADIN53 X X   X 
 CCLM X X X X X 
 HIRHAM X X X X X 
 RACMO X X X X X 
 RCA X X X X  
 REMO X X X X X 
 WRF381P X X X X X 
ECEARTHr12 CCLM X X X X X 
 COSMO-crCLIM X X  X  
 HIRHAM X X X X X 
 RACMO X X X X X 
 RCA X X X X  
 REMO X X X X X 
 WRF361H X    X 
ECEARTHr1 HIRHAM X X X X X 
 RACMO X X X X X 
 RCA X X X X X 
ECEARTHr3 HIRHAM X X X X X 
 RACMO X X X X X 
 RCA X X  X X 
HADGEMr1 ALADIN63 X X  X X 
 CCLM X X X X X 
 HIRHAM X X X X X 
 RACMO X X X X X 
 RCA X X X X  
 REGCM X X X X X 
 REMO X X X X X 
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 WRF361H X    X 
 WRF381P X X  X X 
IPSLr1 RACMO X X  X X 
 RCA X X X X  
 WRF381P X X  X X 
MIROCr1 CCLM X X X X X 
 REMO X X X X X 
MPIr1 CCLM X X X X X 
 COSMO-crCLIM X X X X  
 RACMO X X X X X 
 RCA X X X X  
 REGCM X X  X X 
 REMO X X X  X 
 WRF361H X     
MPIr2 COSMO-crCLIM X X  X  
 REMO X X X  X 
MPIr3 COSMO-crCLIM X X  X  
 RCA X X X X X 
 REMO X X X X X 
NORESMr1 COSMO-crCLIM X X  X  
 HIRHAM X X X X X 
 RACMO X X X X X 
 RCA X X X X X 
 REMO X X X X X 
 WRF381P X X X X X 

² 1 
[END TABLE AVII.6 HERE] 2 
 3 
 4 
[START TABLE AVII.7 HERE] 5 
 6 
Table AVII.7: List of CORDEX models used for each index for North America for Figures 12.4-12.6 and 12.13. The 7 

indices are grouped when the same subset of models is used. GCM and RCMs used are specified. All 8 
simulations are for RCP8.5. 9 

 10 
GCM RCM Resolution PR P98WIND SWE100 
GFDL-ESM2M RegCM4 0.22 x   x 
HadGEM2-ES GERICS 0.22 x x x 
 RegCM4 0.22 x   x 
MPI-ESM-LR GERICS 0.22 x x x 
 RegCM4 0.22 x   x 
NorESM1-M GERICS 0.22 x x x 
CanESM2 CanRCM4 0.44 x     
 CRCM5-UQAM 0.44 x     
 SMHI-RCA4 0.44 x x   
EC-EARTH DMI-HIRHAM5 0.44 x x x 
 SMHI-RCA4 0.44 x x   
GFDL-ESM2M RegCM4 0.44 x     
 WRF 0.44 x     
HadGEM2-ES RegCM4 0.44 x     
 WRF 0.44 x     
 GERICS 0.44 x     
MPI-ESM-LR CRCM5-UQAM 0.44 x     
 CRCM5-UQAM 0.44 x     
 RegCM4 0.44 x     
 WRF 0.44 x     

 11 
[END TABLE AVII.7 HERE] 12 
 13 
 14 
 15 
 16 
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[START TABLE AVII.8 HERE] 1 
 2 
Table AVII.8: List of CORDEX models used for each index for North America for Figures 12.4-12.6 and 12.8. The 3 

indices are grouped when the same subset of models is used. GCM and RCMs used are specified. All 4 
simulations are for RCP8.5. 5 

 6 
GCM RCM member TX35, 

TX40 
WBGT PR 

 
SPI P98WIND 

CanESM2 RCA4 r1i1p1 x x x x x 
CNRM-CM5 CCLM4-8-17 r1i1p1 x x x x x 
 RCA4 r1i1p1 x x x x x 
CSIRO-Mk3-6-0 RCA4 r1i1p1 x x x x x 
EC-EARTH CCLM4-8-17 r12i1p1 x x x x x 
 RACMO22T r1i1p1 x x  x x 
 HIRHAM5_v2 r3i1p1 x x x x x 
 REMO2009 r12i1p1  x  x x 
 RCA4 r12i1p1  x x  x 
IPSL-CM5A REMO2009 r1i1p1 x x  x x 
 RCA4 r1i1p1 x x  x x 
MIROC5 RCA4 r1i1p1 x x  x x 
 REMO2009 r1i1p1 x x  x x 
HadGEM2-ES CCLM4-8-17 r1i1p1 x x x x x 
 RACMO22T r1i1p1 x x  x x 
 RCA4 r1i1p1 x x  x x 
 REMO2009 r1i1p1 x x  x x 
 RegCM4 r1i1p1   x   
MPI-ESM-LR CCLM4-8-17 r1i1p1 x x x x x 
 RCA4 r1i1p1 x x  x x 
 REMO2009 r1i1p1 x x  x x 
NorESM1-M HIRHAM5_v1 r1i1p1 x   x x 
 RCA4 r1i1p1 x x  x x 
 WRF331 r1i1p1 x   x  
GFDL-ESM2M RCA4 r1i1p1 x x  x x 

 7 
[END TABLE AVII.8 HERE] 8 
 9 
 10 
AVII.5 Bias adjustment 11 
 12 
The quantile delta mapping approach that is described by (Cannon et al., 2015). It adjusts the model data in 13 
the application period to fit the reference data in the base period (using quantile mapping). Afterwards, the 14 
climate change signal is added for each quantile by considering the change between the model’s reference 15 
and application period. This prevents that extremes outside the reference period are always corrected by a 16 
constant factor. The bias correction is applied directly onto the heat index. As reference, the ERA5 data is 17 
used after re-gridding to the model grid before calculating the heat index. Bias correction is applied on each 18 
grid point individually and for each month of the year separately. The reference period is 1981-2010 and the 19 
application periods are the IPCC periods 1995-2014, 2041-2060, and 2081-2100. 20 
  21 
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