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Executive Summary 1 

 2 

The IPCC Second Assessment Report (1995) identified a discernible human influence on the climate. 3 

Since this initial assessment and throughout subsequent assessments (TAR, 2001; AR4, 2007 and AR5, 4 

2013), the evidence for human influence on the climate system has progressively strengthened. AR5 5 

concluded that human influence on the climate system is clear, evident from increasing greenhouse gas 6 

concentrations in the atmosphere, positive radiative forcing, observed warming, and physical understanding 7 

of the climate system. This evidence is now even stronger. {3.3-3.8} 8 

 9 

It is virtually certain that human influence has warmed the global climate system. Combining the 10 

evidence from across the climate system increases the level of confidence in the attribution of observed 11 

climate change to human influence and reduces the uncertainties associated with assessments based on single 12 

variables. Large-scale indicators in the atmosphere, ocean and cryosphere show clear responses to 13 

anthropogenic forcing consistent with those expected based on model simulations and physical 14 

understanding. {3.8.1} 15 

 16 

The likely range of human-induced warming in global-mean surface air temperature (GSAT) in 2010-17 

2019 relative to 1850-1900 of 0.8-1.4°C encompasses the observed warming of 1.0-1.3°C1, and it is 18 

extremely likely that human influence is the main driver2 of the observed warming. The high level of 19 

confidence comes from strengthening evidence from studies using new attribution approaches that better 20 

account for observational, model and methodological uncertainties, and from the strong warming observed 21 

since the publication of the AR5. However, a more confident assessment is hindered by remaining 22 

uncertainty in the magnitude of internal climate variability and its representation in models. The likely range 23 

for human-induced warming expressed in terms of global mean surface temperature (GMST) is 0.8-1.3°C, 24 

again encompassing the best estimate and range of observed GMST warming of 1.0-1.2°C. Over the same 25 

period the likely range of GSAT warming due to well-mixed greenhouse gas increases from human activities 26 

is 0.9-2.0°C, and the likely range of GSAT change due to aerosols and other anthropogenic forcings is -0.7-27 

0.2°C. It is very likely that human influence, dominated by greenhouse gases, was the main driver of 28 

warming of the troposphere since the start of comprehensive satellite observations in 1979, and extremely 29 

likely that human influence, dominated by stratospheric ozone depletion, was the main driver of the cooling 30 

of the lower stratosphere since 1979. {3.3.1} 31 

 32 

Since AR5, further assessments have been made on model reproducibility of surface and atmospheric 33 

temperature trends. The CMIP5 and CMIP6 multi-model ensemble averages reproduce the observed 34 

surface temperature trend well on global and continental scales. However, we assess with medium confidence 35 

that most CMIP5 and CMIP6 models overestimate observed warming in the upper tropical troposphere 36 

during the satellite era. Based on the latest updates to satellite observations of stratospheric temperature, 37 

simulated and observed changes of global mean temperature through the depth of the stratosphere are more 38 

consistent than based on previous datasets, but some differences remain (medium confidence). {3.3.1} 39 

 40 

The observed slower global mean surface temperature increase in the 1998-2012 period was 41 

temporary and with high confidence induced by variations in solar and volcanic forcing and internal 42 

variability, particularly Pacific Decadal Variability, that partly offset the anthropogenic warming 43 

tendency over this period. Global upper to mid (0 to 2000 m) ocean heat content, which represents 44 

more than 90% of the Earth’s energy imbalance continued to increase throughout this period (very 45 

high confidence). Using updated observational data sets and like-for-like comparison of simulated and 46 

observed merged near-surface air temperature and sea surface temperatures, all observed estimates of the 47 

1998-2012 trend in GMST lie within the 5-95% range of CMIP6 trends. Therefore, the observed 1998-2012 48 

trend is consistent with the CMIP6 multi-model ensemble of trends over the same period (high confidence). 49 

 

1 The ranges of observed GSAT and GMST warming quoted here are ranges for 2009-2018 taken from Chapter 2 and rounded to 1 

decimal place. These will be updated to ranges for 2010-2019 in the Final Draft. 

2 In this chapter, ‘main driver’ means responsible for more than 50% of the change. 
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Since 2012, global mean surface temperature has warmed strongly, with the past five years (2014-2018) 1 

being the hottest five-year period in the instrumental record until 2018 (high confidence). {Cross-Chapter 2 

Box 3.1, 3.3.1; 3.5.1} 3 

 4 

It is likely that human influence has contributed to3 observed large-scale precipitation changes since 5 

1950. New attribution studies find a detectable increase in high latitude precipitation over the Northern 6 

Hemisphere. Despite large decadal variability, there is medium confidence that rainfall over the wet regions 7 

of the tropics has increased due to enhanced greenhouse gas forcing. Yet, there is also growing evidence and 8 

medium confidence that this tropical precipitation increase has been partly muted by anthropogenic aerosols 9 

through a decreasing effect in the Northern Hemisphere summer monsoon region from the mid to late 20th 10 

century. There is medium confidence that ozone depletion has increased precipitation over the Southern 11 

Ocean and decreased it over southern midlatitudes during austral summer. This is an aspect of the 12 

strengthening of the Southern Annular Mode. However, even though there have been improvements, models 13 

still have deficiencies in simulating some characteristics of the precipitation patterns, in particular in the 14 

tropical oceans, and also in simulated runoff. {3.3.2, 3.3.3} 15 

 16 

There is medium confidence that greenhouse gas increases and stratospheric ozone depletion have 17 

contributed to the expansion of the zonal mean Hadley cell in the Southern Hemisphere since around 18 

1980. However, the expansion of the zonal mean Hadley cell in the Northern Hemisphere and changes in the 19 

Pacific Walker circulation strength have not exceeded the range of internal variability (medium confidence). 20 

Models capture the general characteristics of the tropospheric circulation, including monsoons. Systematic 21 

errors are, however, still present, for example in the frequency of blocking events in the North Atlantic, and 22 

rainfall associated with monsoons. {3.3.3} 23 

 24 

It is extremely likely that anthropogenic forcing has made a substantial contribution to the ocean heat 25 

content (OHC) increase over the historical period that extends into the deeper ocean (high confidence). 26 

Since AR5 there is improved consistency between recent observed estimates and model simulations of 27 

changes in upper OHC, particularly when accounting for forcing discrepancies. Improved upper ocean 28 

(<700 m) observed estimates provide increased agreement and more confidence in the ability of models to 29 

accurately simulate the historical OHC change. Updated observations, like model simulations, show that 30 

warming extends throughout the entire water column (high confidence), with models partitioning industrial-31 

era (1865 to 2017) heat uptake throughout the upper (0 – 700 m, 65%), intermediate (700 – 2000 m, 20%) 32 

and deep (>2000 m, 15%) layers. {3.5.1} 33 

 34 

It is extremely likely that human influence has contributed to observed near-surface and subsurface 35 

oceanic salinity changes since the mid-20th century. The associated pattern of change corresponds to 36 

fresh regions becoming fresher and salty regions becoming saltier (high confidence). Changes to the 37 

coincident atmospheric water cycle and ocean-atmosphere fluxes (evaporation and precipitation) are the 38 

primary drivers of the basin-scale observed salinity changes (high confidence). The observed depth-39 

integrated basin-scale salinity changes have been attributed to anthropogenic forcing, with CMIP5 models 40 

able to reproduce these patterns only in simulations that include greenhouse gases (medium confidence). The 41 

basin-scale changes are consistent across models and intensify on centennial scales from the historical period 42 

through to future projections (high confidence). {3.5.2} 43 

 44 

It is very likely that anthropogenic forcings are the main driver of the observed global mean 45 

thermosteric sea level increase since 1970. Since the AR5, studies have highlighted that simulations that 46 

exclude anthropogenic greenhouse gases are unable to capture the thermosteric sea level rise of the historical 47 

period and that model simulations that include all forcings (anthropogenic and natural) most closely match 48 

observed estimates. Combining the attributable contributions from glaciers, ice sheet surface mass balance 49 

and thermal expansion, it is very likely that anthropogenic forcings are the main driver of the observed global 50 

mean sea level rise since 1970. {3.5.3, 3.5.1, 3.4.3} 51 

 

3 In this chapter the phrase ‘human influence has contributed to’ an observed change means that the response to human influence 

is nonzero and consistent in sign with the observed change. 
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Observations highlight changes in the circulation of both the Southern Ocean and the Atlantic Ocean, 1 

but the observational record is not long enough to determine if these changes are due to internal 2 

variability, solar and volcanic forcing or a response due to anthropogenic forcing. The mean zonal and 3 

overturning circulations of the Southern Ocean and the mean overturning circulation of the North Atlantic 4 

(AMOC) are broadly reproduced by CMIP5 and CMIP6 models. However, biases are apparent in the 5 

circulation strengths, which contribute to biases in the model representation of mean ocean temperature and 6 

salinity (medium confidence). {3.5.4} 7 

 8 

It is very likely that anthropogenic forcing was the main driver of Arctic sea ice loss since 1979. There is 9 

new evidence that increases in anthropogenic aerosols have offset part of the greenhouse gas induced Arctic 10 

sea ice loss since the 1950s. In the Arctic, despite large differences in the mean sea ice state, loss of sea ice 11 

extent and thickness during recent decades is captured by all CMIP5 and CMIP6 models. By contrast, global 12 

climate models generally capture neither the observed increase in Antarctic sea ice extent during 1979-2015 13 

nor the reduced sea ice extent observed since 2016, and there is low confidence in the understanding of the 14 

causes of these changes. {3.4.1} 15 

 16 

It is very likely that anthropogenic influence contributed to the observed reductions in Northern 17 

Hemisphere springtime snow cover since 1950. The seasonal cycle in Northern Hemisphere snow cover is 18 

better reproduced by CMIP6 than CMIP5 models. Anthropogenic forcings very likely contributed to the 19 

observed retreat of glaciers. {3.4.2, 3.4.3} 20 

 21 

The observed increased amplitude of the seasonal cycle of atmospheric CO2 is likely attributable to 22 

fertilisation of plant growth by increased CO2. There is medium confidence that Earth system models 23 

simulate the magnitude and large interannual variability of the land carbon sink well if they account for 24 

nutrient limitation on plant growth, but a possible underestimate by models of the role of warming of surface 25 

temperature in affecting plant growth prevents a more confident assessment. {3.6.1} 26 

 27 

It is virtually certain that the uptake of anthropogenic CO2 has substantially contributed to the 28 

acidification of the global ocean. The observed increase in CO2 concentration in the subtropical and 29 

equatorial North Atlantic since mid-2000 is likely in part associated with an increase in ocean 30 

temperature, a response that corresponds to the expected weakening of the ocean carbon sink with 31 

warming. Consistent with AR5 there is medium confidence that deoxygenation in the surface ocean is due in 32 

part to anthropogenic forcing. There is high confidence that Earth system models simulate a realistic time 33 

evolution of the global mean ocean carbon sink. {3.6.2} 34 

 35 

There is high confidence that anthropogenic forcings have modulated the Southern Annular Mode 36 

(SAM). Since AR5, further model evidence supports the assessment that ozone depletion and greenhouse gas 37 

increases have contributed to a positive trend of the SAM, particularly during austral summer in the last 38 

several decades. There is medium confidence that climate models reproduce the spatiotemporal features and 39 

trends of the summertime SAM observed during recent decades, with CMIP6 models outperforming CMIP5 40 

models. {3.3.3} 41 

 42 

There is no robust evidence that anthropogenic forcing has affected the principal modes of interannual 43 

climate variability and associated regional teleconnections beyond the range of internal variability, 44 

with the exception of the SAM. Further assessment since the AR5 confirms that climate and Earth system 45 

models are able to reproduce most aspects of the spatial structure and variance of the interannual modes of 46 

variability, which are intrinsic to the atmosphere (North Atlantic Oscillation, Northern Annular Mode) and 47 

coupled to the ocean (El Niño-Southern Oscillation and Indian Ocean Basin and Dipole modes), although 48 

some underlying processes are still misrepresented. Biases exist in the spatial structure, magnitudes, and 49 

seasonality in CMIP6 despite slight improvement. In the Tropical Atlantic basin, major errors in mean state 50 

and variability remain. For all of these modes, internal variability overwhelms the influence of anthropogenic 51 

forcing in the simulation of their changes over the historical era (high confidence). {3.7.1 to 3.7.5} 52 

 53 

There is new evidence that anthropogenic aerosol changes have contributed to observed Atlantic 54 

Multidecadal Variability (AMV), but there is low confidence in the magnitude of this influence. Large 55 
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uncertainties remain in the identification of the human influence on AMV and Pacific Decadal Variability 1 

(PDV) due to the brevity of the observational records, difficulty in separating externally and internally driven 2 

decadal phenomena in observations, inconsistencies among proxy reconstructions, moderate model 3 

performance in reproducing these modes, and limited process understanding. In addition to the models’ 4 

moderate skills in reproducing the decadal-to-multidecadal modes of variability and underlying mechanisms, 5 

there is evidence for an underestimation of the magnitude of PDV and for a crude representation of the 6 

intrinsic tropical-extratropical teleconnectivity associated with both PDV and AMV. {3.7.6, 3.7.7} 7 

 8 

It is virtually certain that anthropogenic influences have caused increases in the frequency and severity 9 

of hot extremes and decreases in those of cold extremes at global and most continental scales. It is likely 10 

that anthropogenic influence is the main cause of the observed intensification of heavy precipitation in global 11 

land regions. {Cross-Chapter Box 3.2} 12 

 13 

For most large-scale indicators of climate change, the mean climate simulated by the latest generation 14 

climate models underpinning this assessment has improved compared to the models assessed in the 15 

AR5 (high confidence). High resolution models exhibit reduced biases in some but not all aspects of surface 16 

and ocean climate (medium confidence). While a broad range of warming rates across models and a 17 

lengthening observational record mean that significant differences between the climate response in 18 

individual models and observations can often be identified, the multi-model mean captures most aspects of 19 

observed climate change well (high confidence).{3.8.2} 20 

 21 

  22 
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3.1 Scope and Overview 1 

 2 

This chapter assesses the extent to which human influence on the climate system has affected its evolution 3 

and to what extent climate models are able to simulate observed changes and variability. This assessment 4 

informs our confidence in climate projections and is the basis for understanding what impacts of 5 

anthropogenic climate change are already occurring. Moreover, an understanding of the amount of human-6 

induced global warming to date is key to assessing how close we are to exceeding targets to limit the global 7 

mean temperature increase to below 1.5°C or to well below 2°C above pre-industrial levels, as defined in the 8 

Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) 21st session 9 

of the Conference of the Parties (COP21, UNFCCC (2015)). 10 

 11 

The evidence for human influence on the climate system has strengthened progressively over the course of 12 

the previous five IPCC assessments, from the Second Assessment Report that concluded ‘the balance of 13 

evidence suggests a discernible human influence on climate’ through to the Fifth Assessment Report (AR5) 14 

which concluded that ‘it is extremely likely that human influence caused more than half of the observed 15 

increase in GMST from 1951 to 2010’ (see also Section 3.3.1.1). In addition, significant uncertainties 16 

remained in the separation of the contribution of greenhouse gases and other anthropogenic forcings to 17 

observed temperature trends. These were related to uncertainties in forcings, particularly aerosol forcing, and 18 

the simulated response to those forcings (Bindoff et al., 2013). There was also low confidence in the assessed 19 

contribution of forcings to the reduced global mean temperature trend over the 1998-2012 period (Flato et 20 

al., 2013). AR5 concluded that climate models have continued to be developed and improved since the AR4 21 

and were able to reproduce many features of observed climate. Nonetheless, several systematic biases were 22 

detected (Flato et al., 2013). In addition, this chapter builds on the assessment of attribution of global 23 

temperatures contained in the IPCC Special Report on Global Warming of 1.5°C (IPCC, 2018), and 24 

assessments of attribution of changes in the ocean and cryosphere in the IPCC Special Report on the Ocean 25 

and Cryosphere in Changing Climate (SROCC, IPCC (2019)). 26 

 27 

This chapter assesses the evidence for human influence on observed large-scale indicators of climate change 28 

that are described in the Cross-Chapter Box 2.1 and assessed in Chapter 2. It takes advantage of the longer 29 

period of record now available in most observational datasets. The evaluation of human influence on the 30 

climate system requires an estimate of the expected responses to forcings and the contribution from internal 31 

climate variability, which are obtained primarily from climate and Earth system models. Since the AR5, a 32 

new set of coordinated model results from the World Climate Research Programme (WCRP) Coupled Model 33 

Intercomparison Project Phase 6 (CMIP6; Eyring et al. (2016a)) has become available. Together with 34 

updated observations of large-scale indicators of climate change (Chapter 2), CMIP simulations are a key 35 

resource for assessing human influences on the climate system. Pre-industrial control and historical 36 

simulations are of most relevance for model evaluation and assessment of internal variability. CMIP6 also 37 

includes an extensive set of idealized and single forcing experiments for attribution (Eyring et al., 2016; 38 

Gillett et al., 2016; Jones et al., 2016b). In addition to the assessment of model performance and human 39 

influence on the climate system during the instrumental era until present-day, this chapter also includes 40 

evidence from paleo-observations and simulations over past millennia (Kageyama et al., 2018). The 41 

assessment in this chapter is primarily based on studies using the CMIP6 model simulations, building on the 42 

evidence already assessed in the AR5 and Special Reports, as well as more recent studies using the CMIP5 43 

model simulations. It provides the primary evaluation of large-scale indicators of climate change in this 44 

report, and is complemented by fitness-for-purpose evaluation in subsequent chapters. 45 

 46 

Whereas in previous IPCC Assessment Reports the comparison of simulated and observed climate change 47 

was done separately in a model evaluation chapter and a chapter on detection and attribution, in AR6 these 48 

comparisons are integrated together. This has the advantage of allowing a single discussion of the full set of 49 

explanations for any inconsistency in simulated and observed climate change, including missing forcings, 50 

errors in the simulated response to forcings, and observational errors, as well as an assessment of the 51 

application of detection and attribution techniques to model evaluation. Where simulated and observed 52 

changes are consistent, this can be interpreted both as supporting attribution statements, and as giving 53 

confidence in simulated future change in the variable concerned. However, if a model’s simulation of 54 

historical climate change has been tuned to agree with observations, or if the models used in an attribution 55 
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study have been selected or weighted on the basis of the realism of their simulated climate response, this 1 

information would need to be considered in the assessment and any attribution results correspondingly 2 

tempered: an integrated discussion of evaluation and attribution supports such a robust and transparent 3 

assessment. 4 

 5 

This chapter starts with a brief description of methods for detection and attribution of observed changes in 6 

Section 3.2. The following sections address the climate system component-by-component, in each case 7 

assessing human influence and evaluating climate models’ simulations of the relevant aspects of climate and 8 

climate change. This chapter assesses the evaluation and attribution of continental and ocean basin-scale 9 

large-scale indicators of climate change in the atmosphere and at the Earth’s surface (Section 3.3), 10 

cryosphere (Section 3.4), ocean (Section 3.5), and biosphere (Section 3.6), and the evaluation and attribution 11 

of modes of variability (Section 3.7), the period of slower warming in the early 21st century (Cross-Chapter 12 

Box 3.1:) and large-scale analyses of changes in extremes (Cross-Chapter Box 3.2:). Model evaluation and 13 

attribution on sub-continental scales are not covered here, since these are assessed in the Atlas and Chapter 14 

10, and extreme event attribution is not covered since it is assessed in Chapter 11. Section 3.8 assesses 15 

multivariate attribution and integrative measures of model performance based on multiple variables, as well 16 

as process representation in different classes of models. The chapter concludes with a discussion of the limits 17 

to the assessment in Section 3.9.  18 

 19 

 20 

3.2 Methods 21 

 22 

New methods for model evaluation that are used in this chapter are described in Section 1.4. These include 23 

new techniques for process-based evaluation of Earth system models against observations that have rapidly 24 

advanced since the publication of AR5 (Eyring et al., 2019b) as well as newly developed CMIP evaluation 25 

tools that allow a more rapid and comprehensive evaluation of the models with observations. In this chapter, 26 

we use the Earth System Model Evaluation Tool (ESMValTool, Eyring et al. (2019a); Righi et al. (2019)) 27 

and the NCAR Climate Variability Diagnostic Package (CVDP, Phillips et al., 2014) that is included in the 28 

ESMValTool to produce the figures in order to ensure traceability of the results and to provide an additional 29 

level of quality control. The code to produce the figures will be released as open source software at the time 30 

of the publication of AR6. 31 

 32 

An introduction to recent developments in detection and attribution methods in the context of this report is 33 

provided in Cross-Chapter Box 1.5. Here we discuss new methods and improvements applicable to the 34 

attribution of changes in large-scale indicators of climate change which are used in this chapter. 35 

 36 

 37 

3.2.1 Methods Based on Optimal Fingerprinting 38 

 39 

Fingerprinting methods have been widely used for detection of climate change and attribution of the changes 40 

to different external drivers. Initially, these methods were applied to detect changes in global surface 41 

temperature (Hegerl et al., 1996), and were then extended to other climate variables at different time and 42 

spatial scales (e.g. Hasselmann, 1997; Allen and Tett, 1999b; Hegerl and Zwiers, 2011). These approaches 43 

assume that the observed change consists of a linear combination of externally forced signals plus internal 44 

variability, and are based on multivariate linear regression. The regressors are given by the expected space-45 

time response patterns to different climate forcings (fingerprints), and the residuals represent internal 46 

variability. Fingerprints and internal variability are usually estimated from climate model simulations. A 47 

regression coefficient which is inconsistent with zero implies that a detectable change is identified in 48 

observations. When the confidence interval of regression coefficient includes unity and is inconsistent with 49 

zero, the magnitude of model simulated fingerprints are assessed to be consistent with the observations, 50 

implying that the observed changes can be attributed in part to a particular forcing. Variants of linear 51 

regression have been used to address uncertainty in the fingerprints due to internal variability (Allen and 52 

Stott, 2003) as well as the structural model uncertainty (Huntingford et al., 2006). 53 

  54 

In order to improve the signal-to-noise ratio, optimisation is usually applied by normalizing observations and 55 
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model-simulated responses by internal variability. This procedure requires an estimate of the inverse 1 

covariance matrix of the internal variability, and some approaches have been proposed for more reliable 2 

estimation (Ribes et al., 2009). A signal can be spuriously detected due to too small noise, and model 3 

underestimation in simulating internal variability needs to be evaluated with care. Model-simulated 4 

variability is typically checked through comparing modelled variance from unforced simulations with the 5 

observed residual variance using a standard residual consistency test (Allen and Tett, 1999), or an improved 6 

one (Ribes and Terray, 2013). In this respect, Imbers et al. (2014) tested sensitivity of the detection and 7 

attribution results to the different representations of internal variability associated with short-memory and 8 

long-memory processes. Their results supported the robustness of previous detection and attribution 9 

statements for the global mean temperature change but also implicated the necessity of a wider variety of 10 

robustness tests. 11 

 12 

Some recent studies focused on the improved estimation of the scaling factor (regression coefficient) and its 13 

confidence interval. In order to address the same covariance structure assumption made between model error 14 

and internal variability, Hannart et al. (2014) proposed an inference procedure of scaling factor estimation 15 

using a maximum likelihood method. Hannart (2016) further suggested an integrated approach to optimal 16 

fingerprinting where all uncertainty sources (i.e., observed error, model error, and internal variability) are 17 

treated in one statistical model, which does not require a preliminary dimension reduction. Katzfuss et al. 18 

(2017) introduced a similar integrated approach based on a Bayesian model averaging. On the other hand, 19 

DelSole et al. (2019) suggested a bootstrap method to better estimate confidence intervals of scaling factors 20 

even in a weak-signal regime. It is notable that some studies do not optimise fingerprints, as uncertainty in 21 

the covariance introduces a further layer of complexity, resulting in limited improvement in detection 22 

(Polson and Hegerl, 2017). Li et al. (submitted) note that failing to take account of uncertainty in the 23 

estimated covariance matrix can result in underestimated uncertainty intervals, particularly in studies using a 24 

small number of realisations of internal variability to estimate this matrix. 25 

 26 

Another fingerprinting approach uses pattern similarity between observations and fingerprints, in which the 27 

leading empirical orthogonal function mode obtained from the time-evolving multi-model forced simulation 28 

is usually defined as a fingerprint (e.g. Bonfils et al., submitted; Marvel et al., 2019; Santer et al., 2013). 29 

Observations and model simulations are then projected onto the fingerprint to measure the degree of spatial 30 

pattern similarity with the expected physical response to a given forcing. This projection provides the signal 31 

time series, which is in turn tested against the internal variability noise estimated from long-term control 32 

simulations. As a way to extend this pattern-based approach to a high-dimensional detection variable, Sippel 33 

et al. (2019, 2020) proposed using the relationship pattern with a global climate change metric as a 34 

fingerprint. To solve the high-dimensional regression problem which makes regression coefficients not well 35 

constrained, they incorporated a machine learning technique based on a regularized linear regression, which 36 

maximizes a global warming signal by giving lower weight to regions with larger internal variability. 37 

 38 

 39 

3.2.2 Other Probabilistic Approaches 40 

 41 

Considering the difficulty in accounting for climate modelling uncertainties in the regression-based 42 

approaches, Ribes et al. (2017) introduced a new statistical inference framework based on an additivity 43 

assumption and likelihood maximization. The method was further developed by (Ribes et al., submitted), 44 

who linked it to Kriging, and applied it to narrow the uncertainty range in the estimated human-induced 45 

warming. Hannart and Naveau (2018), on the other hand, extended the application of standard causal theory 46 

(Pearl, 2009) to the context of detection and attribution by converting a time series into an event, calculating 47 

the probability of causation, and maximizing the causal evidence associated with the forcing. Application of 48 

these approaches to attribution of large-scale temperature changes supports the dominant anthropogenic 49 

contribution to the observed global warming. 50 

 51 

Climate change signals can vary with time and discriminant analysis has been used to obtain more accurate 52 

estimates of time-varying signals, and has been applied to different variables such as seasonal temperatures 53 

(Jia and DelSole, 2012) and the South Asian monsoon (Srivastava and DelSole, 2014). The same approach 54 

was applied to separate aerosol forcing responses from other forcings (Yan et al., 2016b) and results 55 
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indicated that using joint temperature-precipitation spatial structure may be more accurate. Paeth et al. 1 

(2017) introduced a detection and attribution method applicable for multiple variables based on a 2 

discriminant analysis and a Bayesian classification method. Finally, a systematic approach has been 3 

proposed to translating quantitative analysis into a description of ‘confidence’ in the detection and attribution 4 

of a climate response to anthropogenic drivers (Stone and Hansen, 2016). 5 

 6 

 7 

3.3 Human Influence on the Atmosphere and Surface 8 

 9 

3.3.1 Temperature 10 

 11 

3.3.1.1 Surface Temperature 12 

 13 

Surface temperature change is the aspect of climate in which the climate research community has had most 14 

confidence over past IPCC Assessment Reports, largely because of relatively good long-term observations, a 15 

response to anthropogenic forcing which is large compared to variability in the global mean, allowing 16 

detection from just a day of observations (Sippel et al., 2020), and a strong theoretical understanding of the 17 

key thermodynamics driving its changes (Collins et al., 2010; Shepherd, 2014). AR5 assessed that it was 18 

extremely likely that human activities had caused more than half of the observed increase in global mean 19 

surface temperature from 1951 to 2010, and virtually certain that internal variability alone could not account 20 

for the observed global warming since 1951 (Bindoff et al., 2013). The AR5 also assessed with very high 21 

confidence that climate models reproduce the general features of the global-scale annual mean surface 22 

temperature increase over 1850-2011 and with high confidence that models reproduce global and Northern 23 

Hemispere (NH) temperature variability on a wide range of time scales (Flato et al., 2013). This section 24 

assesses the performance of the current generation of CMIP6 models in simulating the most important 25 

aspects of surface temperature and its change, and assesses the evidence from detection and attribution 26 

studies of human influence on surface temperature. 27 

 28 

Paleoclimate context 29 

Paleoclimate studies provide context in which to attribute past climate transitions to external forcings, 30 

lengthen the period over which natural variability is quantified, and provide quantitative metrics for model 31 

evaluation. Cross-chapter Box 2.1 describes the paleoclimate periods considered in this section. 32 

 33 

In terms of attribution, AR5 assessed with high confidence that the 20th-century annual mean surface 34 

temperature warming reversed a 5000-year old cooling trend in NH mid-to-high latitudes caused by orbital 35 

forcing, attributing the reversal to anthropogenic forcing with high confidence. This trend reversal has since 36 

been dated to around 1800 for ocean temperatures (McGregor et al., 2015), 1830 for tropical ocean 37 

temperatures, mid-19th century for NH land temperatures, and 1900 for Southern Hemisphere (SH) 38 

temperatures (Abram et al., 2016; see also Section 2.3.1.1). Since AR5, the role of external forcings was 39 

detected in all NH continents (PAGES 2k-PMIP3, 2015) over the common era with good agreement between 40 

reconstructions and models. In contrast, the effect of external forcings was not detectable in the SH, where 41 

models and reconstructions disagree strongly (Neukom et al., 2018). Global or NH temperature changes over 42 

the common era are attributed from reconstructions mostly to volcanic forcing (Schurer et al., 2014; 43 

McGregor et al., 2015; Otto-Bliesner et al., 2016; Neukom et al., 2019), with solar forcing playing a small 44 

role (Schurer et al., 2014; Neukom et al., 2019). Attribution of warming to greenhouse gas forcing is made as 45 

early as the end of the 19th century (Schurer et al., 2014; Neukom et al., 2019), with volcanism contributing a 46 

detectable cooling in the early 19th century, a lack of volcanic activity contributing to early-20th century 47 

warming, and aerosols contributing a cooling throughout the 20th century, especially since the 1950s (Hegerl 48 

et al., 2019). 49 

 50 

In terms of model evaluation, paleoclimate proxies have been used to evaluate modelled past climate 51 

temperature change patterns. The AR5 found consistent polar amplification of warming in reconstructed and 52 

modelled temperatures from past periods of high (Pliocene and Eocene) and low (Last Glacial Maximum, 53 

LGM) CO2, although deficiencies were noted with the modelled patterns and seasonality (Masson-Delmotte 54 

et al., 2013). Since AR5, the understanding of uncertainties in proxies (Hollis et al., 2019) and the boundary 55 
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conditions used to simulate the Pliocene and Eocene warm periods (Haywood et al., 2016; Lunt et al., 2017) 1 

has improved, and model agreement with proxies has improved for these time periods (Haywood et al., 2 

submitted; Lunt et al., submitted; Zhu et al., 2019b) (Sections 7.4.4.1.2; 7.4.4.2.2). For the LGM, the AR5 3 

noted that models overestimated tropical cooling indicated in the sea surface temperature (SST) proxies 4 

(Annan and Hargreaves, 2015; Harrison et al., 2015, 2016) (upper panel of Figure 3.1:) but more recent SST 5 

and surface air temperature (SAT) proxy reconstructions show much better agreement with the models 6 

(Cleator et al., 2019; Tierney et al., submitted) (lower panel of Figure 3.1:), thanks to a better understanding 7 

of SST proxies and new calibration models (Tierney et al., submitted). CMIP5 simulations of the mid-8 

Holocene show regional biases similar to those in pre-industrial and historical simulations (Harrison et al., 9 

2015; Ackerley et al., 2017), as well as underestimated Arctic warming (Yoshimori and Suzuki, 2019). There 10 

is no evidence of improved agreement for CMIP6 models for these time periods. Indeed CMIP6 mid-11 

Holocene simulations find a mid-latitude, subtropical, and tropical cooling compared to pre-industrial 12 

(Brierley et al., submitted), whereas proxies indicate a warming (Kaufman et al., submitted; see also section 13 

2.3.1.1.2). For the Last Interglacial, improved temporal resolution of proxies (Capron et al., 2017) and better 14 

appreciation of the importance of freshwater forcing (Stone et al., 2016) brought improved understanding for 15 

the reasons behind apparent model-data inconsistencies. A metric-based assessment of paleoclimate model 16 

simulations is carried out in Section 3.8.2. 17 

 18 

 19 

[START FIGURE 3.1 HERE] 20 

 21 

 Last Glacial Maximum (LGM, 21 ka) anomalies in mean annual temperature over land and sea surface 22 

temperature in the Tropics (30S-30N) for paleoclimate reconstructions featured in AR5 (upper panel) and 23 

for updated estimates (lower panel). The coloured crosses show long-term modelled mean differences 24 

(experiment minus pre-industrial control) in the relative warming/cooling over tropical land and ocean 25 

where the model output has been sampled only at the locations for which there are temperature 26 

reconstructions. The black crosses show the paleo proxy reconstructions. 27 

 28 

[END FIGURE 3.1 HERE] 29 

 30 

 31 

Model evaluation 32 

To be fit for detecting and attributing human influence on globally-averaged surface temperatures, climate 33 

models need to represent, from physically-based understanding, both the response of surface temperature to 34 

external forcings and the internal variability in surface temperature over various time scales. This section 35 

evaluates those aspects in the latest generation of climate models. See Chapter 10 for model evaluation in the 36 

context of regional climate information, and the Atlas for regional assessments of model performance. 37 

 38 

AR5 assessed with very high confidence that CMIP5 models reproduced observed large-scale mean surface 39 

temperature patterns, although errors of several degrees appear in elevated regions, like the Himalayas and 40 

Antarctica, at the edge of North Atlantic sea-ice field, and in upwelling regions. CMIP5 models also showed 41 

overestimations of SST in subtropical stratocumulus regions and the Southern Ocean but underestimation in 42 

the equatorial Pacific (Lauer et al., 2017). This assessment is updated here with CMIP6 simulations. Figure 43 

3.2: shows the annual-mean surface air temperature at 2 m for the CMIP6 multi-model mean and its 44 

comparison to a reanalysis for the period 1995-2014. The AR5 assessment remains valid, with the largest 45 

biases being again seen in the same regions. CMIP6 model development studies support that view by 46 

reporting that regional absolute biases in surface temperature of more than 6°C remain (Crueger et al., 2018; 47 

Kuhlbrodt et al., 2018; Lauer et al., 2018). Along the Equator, although Planton et al. (submitted) found 48 

reduced biases in SST in CMIP6 compared to CMIP5, the reduction is not statistically significant. A cold 49 

bias is again found along the Pacific equator, with too cold sea surface temperatures extending too far west 50 

(Lauer et al., 2018). The causes of temperature biases are model-dependent but for example relate to biases 51 

in downward shortwave radiation at the surface caused by errors in cloudiness (Lauer et al., 2018), errors in 52 

oceanic circulation (Kuhlbrodt et al., 2018), errors in the simulation of trade winds (Lauer et al., 2018), and 53 

errors in surface albedo and moisture propagated from the vegetation schemes (Séférian et al., 2016). 54 

Increasing horizontal resolution however shows promise of decreasing long-standing biases in surface 55 

temperature, specifically in the North Atlantic, tropical Pacific, and upwelling regions, although Southern 56 
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Ocean biases get larger (Bock et al., submitted). As shown, in panels d and e of Figure 3.2:, biases in the 1 

mean HighResMIP model are smaller than those in the mean of the corresponding lower-resolution version 2 

of the same models simulating the same period, see further discussion in Section 3.8.2.2. 3 

 4 

In summary, CMIP6 models reproduce observed large-scale mean surface temperature patterns as well as 5 

their CMIP5 predecessors, but with little evidence for reduced systematic biases. This assessment is 6 

currently made with medium confidence while the CMIP6 database is being populated. 7 

 8 

 9 

[START FIGURE 3.2 HERE] 10 

 11 

 Annual-mean surface (2 m) air temperature (°C) for the period 1995–2014. (a) Multi-model (ensemble) 12 

mean constructed with one realization of CMIP6 historical experiments. (b) Multi-model-mean bias as 13 

the difference between the CMIP6 multi-model mean and the climatology from the Fifth generation of 14 

ECMWF atmospheric reanalyses of the global climate (ERA5). (c) Multi-model-mean of the root mean 15 

square error of the seasonal cycle with respect to the climatology from ERA5. Also shown is the multi-16 

model-mean bias as the difference between the multi-model mean of (d) low resolution and (e) high 17 

resolution simulations of the HighResMIP and the climatology from ERA5. (Figure from Bock et al. 18 

(submitted), their Figure 2, produced with ESMValTool v2.0.0b3.) 19 

 20 

[END FIGURE 3.2 HERE] 21 

 22 

 23 

AR5 assessed with very high confidence that models reproduce the general history of the increase in global-24 

scale annual mean surface temperature since the year 1850, although AR5 also reported that an observed 25 

reduction in the rate of warming over the first 15 years of the 20th century was not reproduced by the models 26 

(see Cross-Chapter Box 3.1). Figure 3.3: shows time series of anomalies in annually- and globally-averaged 27 

surface temperature simulated by CMIP6 models for the period 1850 to 2014, with the baseline set to 1850-28 

1900. Anomalies are shown instead of absolute temperatures to focus on simulated climate change, and 29 

because anomalies are less uncertain in observations. Results for CMIP6 shown in Figure 3.3: suggest that 30 

the history of surface temperature increase is well reproduced, including the increase in warming rates 31 

beginning in the 1960s and the temporary cooling that follows large volcanic eruptions. Virtually all CMIP6 32 

modelling groups report improvements in their model’s ability to simulate current climate compared to the 33 

CMIP5 version (Boucher et al., submitted; Dunne et al.; Gettelman et al., 2019; Golaz et al., 2019; Rind et 34 

al.; Swart et al., 2019; Voldoire et al., 2019b; Wu et al., 2019b). Yet, the CMIP6 multi-model mean shows 35 

very little early 20th century warming. It is also cooler over the period 1940-1990 than both observations 36 

(Figure 3.3:) and CMIP5 (Flynn and Mauritsen, submitted; Gillett et al., submitted). This bias is driven by 37 

biases of several tenths of degrees in individual models over that period, and may be due to an overestimate 38 

in aerosol radiative forcing (Andrews et al., submitted; Dittus et al., submitted; Flynn and Mauritsen, 39 

submitted). Indeed, several models had to reduce the strength of their simulated aerosol radiative forcing 40 

during development to ensure total radiative forcing remained positive (Danabasoglu et al., submitted; 41 

Mulcahy et al., 2018). The CMIP6 multi-model mean warms at the same rate as observations after 1970, 42 

although models with the largest transient climate sensitivities simulate exaggerated warming rates compared 43 

to observations after 1980 (Swart et al., 2019; Tokarska et al., submitted). Note however that the magnitude 44 

of the biases varies strongly both spatially and temporally across ensemble members of a given model, 45 

especially for the most variable models. According to Figure 3.3:, the CMIP6 multi-model mean tends to 46 

simulate too large a response to volcanic eruptions. CMIP5 models had a similar issue, which Lehner et al. 47 

(2016) explained by missed compensating effects on surface temperature change associated with ENSO, 48 

which was not simulated in its correct phase, rather than overestimated response to forcing. When 49 

interpreting model simulations of historical temperature change, it is important to keep in mind that some 50 

models are tuned towards representing the observed trend in global mean surface temperature (Hourdin et 51 

al., 2017). Figure 3.3: marks those models with an asterisk: these models are either tuned to reproduce 52 

observed warming directly, or indirectly by tuning equilibrium climate sensitivity. However, Bock et al. 53 

(submitted) found no significant difference in skill at reproducing observed warming between models that 54 

use observed warming in their tuning compared to models that do not. Model spread around the mean is 55 

larger for models that are not tuned to observed warming, as can be expected. Diversity in modelled radiative 56 
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forcing, especially for aerosols and land-use changes, may translate into biases in the simulation of historical 1 

temperature changes, so models that simulate those forcings may reproduce observed temperature change 2 

with less fidelity than physical climate models, in which those forcings are prescribed. Current CMIP6 data 3 

remain insufficient to assess whether that is the case. In summary, the CMIP6 results currently available 4 

suggest that CMIP6 models reproduce global-scale annual mean surface temperature change over the 5 

historical period less well than their CMIP5 counterparts, but medium confidence is placed on that 6 

assessment until CMIP6 historical simulations have been submitted in larger numbers. 7 

 8 

 9 

[START FIGURE 3.3 HERE] 10 

 11 

 Observed and simulated time series of the anomalies in annual and global mean surface temperature. All 12 

anomalies are differences from the 1850–1900 time-mean of each individual time series. The reference 13 

period 1850–1900 is indicated by grey shading. Single simulations for CMIP6 models (thin lines); multi-14 

model mean (thick red line). Observational data (thick black lines) are Hadley Centre/Climatic Research 15 

Unit gridded surface temperature data set 4 (HadCRUT4; Morice et al., 2012), and are merged surface 16 

temperature (2 m height over land and surface temperature over the ocean). (a) All models have been 17 

subsampled using the HadCRUT4 observational data mask (see Jones et al., 2013). (b) All models have 18 

been blended to GMST and subsampled using the HadCRUT4 observational data mask (Cowtan et al., 19 

2015). (c) HighResMIP models are displayed with the reference period 1950-1979. Masking was done 20 

like in (a). Inset: the global mean surface temperature for the reference period of the subsampled fields. 21 

(Figure from Bock et al. (submitted), their Figure 1, produced with ESMValTool v2.0.0b3.) 22 

 23 

[END FIGURE 3.3 HERE] 24 

 25 

 26 

The application of climate models to detection and attribution studies requires that those models simulate 27 

realistic internal variability on multi-decadal timescales. An underestimate of variability in models would 28 

make conclusions from detection and attribution overconfident. AR5 found that CMIP5 models simulate 29 

realistic variability in global-mean surface temperature on decadal time scales, with variability on multi-30 

decadal time scales being more difficult to evaluate because of the short observational record (Flato et al., 31 

2013). Since AR5, new work has characterized the contributions of variability in different ocean areas to 32 

SST variability, with tropical modes of variability like ENSO dominant on time scales of 5 to 10 years, while 33 

longer time scales see the variance move poleward to the North Atlantic, North Pacific, and Southern oceans 34 

(Monselesan et al., 2015). There may however be sizeable interdependencies between ENSO and sea surface 35 

temperature variability in different basins (Kumar et al., 2014), and ENSO’s influence on global surface 36 

temperature variability may not be confined only to decadal timescales (Triacca et al., 2014). Studies based 37 

on large ensembles of 20th and 21st century climate change confirm that internal variability has a substantial 38 

influence on global warming trends over a few decades (Kay et al., 2015; Dai and Bloecker, 2018) (FAQ 39 

3.1). Although the equatorial Pacific seems to be the main source of internal variability on decadal 40 

timescales, Brown et al. (2016) link diversity in modelled oceanic convection, sea ice, and energy budget in 41 

high-latitude regions to overall diversity in modelled internal variability. 42 

 43 

This renewed interest in internal variability stems in part from its importance in understanding the slowdown 44 

in global surface temperature warming rate in the early 21st century (see Cross-Chapter Box 3.1). Some 45 

evidence is emerging that decadal to multidecadal modes of variability, such as Pacific decadal variability 46 

(Section 3.7.6) (England et al., 2014; Thompson et al., 2014; Schurer et al., 2015) and Atlantic Multidecadal 47 

variability (Section 3.7.7) partly drive global scale temperature variations over the historical period, and that 48 

variability in these modes may be underestimated by CMIP5 models. But evidence, coming mostly from 49 

paleo studies, is more mixed on whether CMIP5 models also underestimate decadal and multi-decadal 50 

variability in global mean temperature in general. Schurer et al. (2013) found good agreement between 51 

internal variability derived from paleo reconstructions, estimated as the fraction of variance that is not 52 

explained by forced responses, and modelled variability, although the subset of CMIP5 models they used 53 

may have been associated with larger variability than the full CMIP5 ensemble. Zhu et al. (2019) showed 54 

agreement in the modelled and reconstructed temporal spectrum of global surface temperatures on annual to 55 

multi-millennial timescales, and Neukom et al. (2019) found that the largest 51-year trends in both 56 
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reconstructions of global mean temperature and fully forced climate simulations over the period 850 to 1850 1 

were almost identical. Laepple and Huybers (2014) found good agreement between modelled and proxy-2 

derived decadal ocean temperature variability, but underestimates of variance by models by at least a factor 3 

10 at longer timescales. In the SH, Hegerl et al. (2018) reported internal variability in the early 20th century 4 

larger than that modelled. (Friedman et al., submitted) found model biases in interhemispheric SST contrast 5 

that may be consistent with underestimated cooling after early-20th century eruptions or underestimated 6 

Pacific decadal variability. In addition, new literature suggests that anthropogenic forcing itself may affect 7 

variability in surface temperatures, at least on an interannual basis, challenging a common assumption in 8 

detection and attribution techniques that forcing does not change the variability. Screen (2014) reported an 9 

observed decrease in variance in the Northern Hemisphere mid-latitude land temperature, largest in Autumn, 10 

associated with Arctic amplification, and qualitatively consistent with simulated future changes in variance 11 

(Cross-Chapter Box 10.1). Qian and Zhang (2015) and Santer et al. (2018b) found an anthropogenic 12 

influence on the seasonal cycle of surface and tropospheric temperatures, respectively. Figure 3.4: shows the 13 

standard deviation of zonal-mean surface temperature in CMIP6 pre-industrial control simulations and 14 

observed temperature datasets. Results are consistent with the CMIP5 generation, which showed the largest 15 

model spread where variability is also large, in the tropics and mid- to high-latitudes (Flato et al., 2013). But 16 

CMIP6 models tend to overestimate variability in the high latitudes.  17 

 18 

 19 

[START FIGURE 3.4 HERE] 20 

 21 

 Global climate variability as represented by standard deviation of zonal-mean surface temperature of 22 

observed temperature datasets (in black: GISTEMP (dashed), Cowtan and Way (dot-dashed), HadCRUT4 23 

(solid), and Berkeley Earth (long dashed)) and in CMIP6 pre-industrial control simulations (after Jones et 24 

al., 2013). Figure produced with ESMValTool v2.0.0b3. 25 

 26 
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 28 

 29 

Figure 3.5:, taken from Parsons et al. (submitted), illustrates the large differences in GSAT variability in 30 

CMIP6 pre-industrial unforced control simulations. Surface temperatures in pre-industrial conditions are 31 

especially variable in the models on the top row, and some models substantially exceed the variability seen 32 

in CMIP5 models. Their variability in a small number of occurences approaches that observed under 33 

anthropogenically forced conditions (bottom-right panel of Figure 3.5:). Ribes et al. (submitted) reached 34 

similar conclusions. For the CNRM models, which are among the most variable, the large, low-frequency 35 

variability is attributed to a strong simulated Atlantic Multidecadal Variability (Séférian et al., 2019; 36 

Voldoire et al., 2019b), which is difficult to disprove because of the short observational record (Cassou et al., 37 

2018; Section 3.7.7). Given a potential oceanic origin for the large internal variability in GSAT in some 38 

CMIP6 models, it is noteworthy that the 10 most variable models, shown on the two topmost rows of Figure 39 

3.5:, share only two ocean models, either version 3.6 of Nucleus for European Modelling of the Ocean 40 

(NEMO) or versions of the Modular Ocean Model (MOM). 41 

 42 

 43 

[START FIGURE 3.5 HERE] 44 

 45 

 Global mean surface air temperature (GSAT) anomalies in 29 CMIP6 control simulations, compared with 46 

GISTEMP GMST observations. Blue lines show annual means, and red lines show 25-year low-pass 47 

filtered means. Red numbers show standard deviations of interdecadal GSAT/GMST variations. (From 48 

Parsons et al. (submitted), their Figure 1, updated to correct a latitude weighting error.) 49 

 50 

[END FIGURE 3.5 HERE] 51 

 52 

 53 

Detection and attribution 54 

AR5 assessed that it was extremely likely that human influence was the dominant cause of the observed 55 

warming since the mid-20th century, and that it was virtually certain that warming over the same period 56 
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cannot be explained by internal variability alone. Since AR5 and in anticipation of new CMIP6 simulations, 1 

most new attribution studies of changes in global surface temperature have focused on methodological 2 

advances. Those advances include improvements in the way observational and model uncertainties, and 3 

internal variability are accounted for in optimal fingerprinting (Ribes and Terray, 2013; Hannart, 2016; Ribes 4 

et al., 2017); formulating the attribution problem in a counterfactual framework (Hannart and Naveau, 2018); 5 

or reducing the dependence of the attribution on uncertainties in climate sensitivity and forcing by fitting an 6 

impulse-response model to observed temperatures (Otto et al., 2015; Haustein et al., 2017, 2019). Those 7 

studies make strongly confident attribution statements about global warming trends, finding that observed 8 

warming is consistent with the response to anthropogenic forcing and that natural forcings alone cannot 9 

explain the observed warming (Ribes et al., 2017); that anthropogenic forcing is a necessary and sufficient 10 

cause of the observed spatio-temporal anomalies of temperature change (Hannart and Naveau, 2018); that 11 

even the early 20th century was anthropogically-forced, much reducing the role of internal variability 12 

(Haustein et al., 2019); and that anthropogenic influence is detectable in a single day of observations (Sippel 13 

et al., 2020). The findings of those studies imply that the AR5 assessment could be strengthened, but based 14 

on expert judgement, those studies may also still underestimate the importance of the structural limitations of 15 

climate models, which probably do not represent all possible sources of internal variability, or use too simple 16 

climate models, which may underestimate the role of internal variability. While Li et al. (submitted) show 17 

that uncertainties in attributable warming may be underestimated in optimal detection studies which neglect 18 

uncertainties in the estimated covariance matrix of internal variability and use a small number of simulated 19 

realisations of internal variability to estimate this matrix (Gillett et al., 2013a; Jones et al., 2013), this source 20 

of uncertainty is explicitly considered by several recent studies (Hannart, 2016; Hannart and Naveau, 2018; 21 

Ribes et al., 2017, submitted), and moreover studies which validate their approaches by testing in an 22 

imperfect model framework also implicitly address this potential issue (Gillett et al., submitted; Ribes and 23 

Terray, 2013; Schurer et al., 2018). The influence of observational uncertainty on detection and attribution of 24 

global temperature changes has been studied in more detail than earlier studies, and Jones and Kennedy 25 

(2017) and Schurer et al. (2018) conclude that accounting for observational uncertainty inflates the 26 

uncertainty associated with the greenhouse gas regression scaling factor by 10-30%. Schurer et al. (2018) 27 

found that using blended SSTs over ocean and SAT over land from climate models, which is more 28 

comparable to observed global temperature estimates (Chapter 2), in an attribution analysis resulted in a 29 

greenhouse gas scaling factor 3-5% higher than using global mean SAT. 30 

 31 

It is more difficult to attribute observed warming to individual forcing mechanisms, such as increases in 32 

greenhouse gas concentrations or changes in anthropogenic aerosol loading, than to anthropogenic forcings 33 

combined. A new analysis of the observed warming between 1901 and 1950 (Hegerl et al., 2018) finds that 34 

approximately half of this warming was externally forced by a combination of greenhouse gas increases and 35 

natural forcing, partially offset by aerosols, with the remaining warming due to internal variability, although 36 

they caution that observational uncertainty over this period is substantial. Indeed, a growing body of 37 

literature suggests that closely constraining the separate contributions of greenhouse gas changes and aerosol 38 

changes to observed temperature changes remains challenging. For example, although Jones et al. (2016a) 39 

attribute a warming of 0.87 to 1.22°C per century to well‐mixed greenhouse gases, partially offset by a 40 

cooling of −0.54 to −0.22°C per century attributed to aerosols, they highlight the wide range covered by 41 

those two estimates, which they link to uncertainties in modelled patterns of change and internal variability. 42 

Ribes and Terray (2013) also conclude that the weak observational constraints on the contributions of 43 

greenhouse gas and aerosol forcing call for new attribution techniques. Linear addition of single-forcing 44 

responses implied by fingerprinting attribution techniques were found to hold for large-scale surface 45 

temperature changes in Bindoff et al. (2013) based on two studies. A more recent third study also finds 46 

additivity using the GISS climate model (Marvel et al., 2015).  47 

 48 

IPCC SR1.5 notes that anthropogenic warming has essentially been equal to total warming since the early 49 

2000s, based on the assessment by (Bindoff et al., 2013) that temperature changes by solar and volcanic 50 

forcings are small. By applying the method of Haustein et al. (2017), which accounts for forcing uncertainty 51 

and internal variability, and moderating their uncertainty estimates to account for additional forcing and 52 

model uncertainty, the IPCC SR1.5 assessed that GMST warming attributable to anthropogenic forcing has 53 

reached 1.0°C in 2017 with respect to the period 1850-1900, with a likely range of ±0.2°C. 54 

 55 
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Figure 3.6: shows two- and three-way fingerprinting regression coefficients for six CMIP6 models and the 1 

corresponding attributable warming ranges, derived using HadCRUT4 (Gillett et al., submitted). Some of 2 

those models have regression coefficients significantly less than 1, meaning that they significantly over-3 

predict the temperature response to either greenhouse gases or aerosols, and some have regression 4 

coefficients significantly greater than 1, implying that they underpredict the response to these forcings. 5 

However, all models are consistent in attributing most of simulated warming to anthropogenic influences, 6 

and five of six models exhibit constrained three-way regression coefficients, with warming from increases in 7 

greenhouse gases concentrations offset by a cooling attributed to other anthropogenic influences, mostly 8 

aerosols. Using HadCRUT5 (Chapter 2) in place of HadCRUT4 in the analysis results in only very small 9 

changes in estimates of anthropogenic warming in globally-complete GSAT (Gillett et al., submitted). 10 

 11 

 12 

[START FIGURE 3.6 HERE] 13 

 14 

 Upper panels show regression coefficients based a two-way regression (left) and three-way regression 15 

(right), of observed 5-yr mean global mean masked and blended surface temperature onto individual 16 

model response patterns, and a multi-model mean, labelled ‘Multi’. Combined anthropogenic (ANT), 17 

natural (NAT), well-mixed greenhouse gases (GHG), and other anthropogenic (aerosols, ozone, land-use 18 

change, OTH) regression coefficients are shown. Regression coefficients are the scaling factors by which 19 

the model responses must be multiplied to best match observations. Regression coefficients consistent 20 

with one indicate a consistent magnitude response in observations and models, and regression coefficients 21 

inconsistent with zero indicate a detectable response to the forcing concerned. Note that three-way 22 

regression coefficients for MIROC6 are unconstrained. Lower panels show corresponding 23 

observationally-constrained estimates of attributable warming in globally-complete GSAT for the period 24 

2010-2019, relative to 1850-1900, and the horizontal black line shows an estimate of observed warming 25 

in GSAT for this period. (Figure from Gillett et al. (submitted), their Figure S3.)  26 

 27 

[END FIGURE 3.6 HERE] 28 

 29 

 30 

Figure 3.7: shows 5-95% ranges in attributable trends in globally-complete global mean near-surface air 31 

temperature (GSAT) for the period 2009-2018 compared to 1850-1900 from five analyses: a multi-model 32 

regression analysis using CMIP6 simulations (Gillett et al., submitted), the method of Ribes et al. 33 

(submitted) also applied on CMIP6 simulations, the method of Haustein et al. (2017) directly applied, and in 34 

an implementation by Jenkins et al. (submitted) using three full-coverage observational datasets (GISTEMP, 35 

NOAA, and Cowtan/Way), and estimates derived using a simple climate model driven using assessed 36 

estimates of effective radiative forcing and transient and equilibrium climate sensitivity (see Section 7.3.5.4). 37 

The figure also shows the GSAT changes directly simulated in response to these forcings in six CMIP6 38 

models. In all approaches, the warming attributable to natural causes is close to zero. In spite of their 39 

different methodologies and input datasets, the four attribution approaches yield very similar results, with the 40 

anthropogenic attributable warming range encompassing observed warming, and the natural attributable 41 

warming being close to zero. The warming driven by greenhouse gas increases is offset in part by cooling 42 

due to other anthropogenic forcing agents, mostly aerosols, although confidence in that attribution is lower 43 

than attributing to all anthropogenic drivers, as discussed above. Physically-based estimates made by 44 

Chapter 7, not constrained by observed warming, while more uncertain, are remarkably close to estimates 45 

from attribution studies despite being the products of a totally different approach, enhancing confidence in 46 

the magnitude and causes of attributable surface temperature warming. 47 

 48 

 49 

[START FIGURE 3.7 HERE] 50 

 51 

 Coloured bands show assessed likely ranges of temperature change in GSAT, 2010-2019 relative to 1850-52 

1900, attributable to anthropogenic forcings (ANT), well-mixed greenhouse gases (GHG), other 53 

anthropogenic forcings (aerosols, ozone, land-use change, OTH), and natural forcings (NAT), and in 54 

observations (Obs). The observed warming shown currently is for 2009-2018 but will be updated to 55 

2010-2019 in the final draft. Bars show 5-95% ranges based on the individual studies indicated (Gillett et 56 

al., submitted; Haustein et al., 2017; Jenkins et al., 2019; Ribes et al., submitted), with the results from 57 
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Gillett et al. (submitted) corresponding to the multi-model attributable warming estimates shown in 1 

Figure 3.6:. The Jenkins et al. (submitted) range shown was calculated by subtracting 0.35 times an 2 

estimated anthropogenic warming rate of 0.17°C/decade (Haustein et al., 2017) from the Jenkins et al. 3 

(submitted) reported anthropogenic attributable warming in GSAT in 2018 of 1.04-1.37°C, to account for 4 

the difference in averaging period. The Chapter 7 best estimates and ranges are derived using assessed 5 

forcing timeseries and a two-layer energy balance model as described in Section 7.3.5.4. Chapter 7 6 

uncertainty ranges account for uncertainties in climate properties and radiative forcings, without 7 

constraints based on observed climate change, but are approximate and will be updated in the final draft. 8 

Coloured circles show the raw simulated responses to the forcings concerned in each of the models 9 

indicated. 10 

 11 

[END FIGURE 3.7 HERE] 12 

 13 

 14 

The AR5 found high confidence for a major role for anthropogenic forcing in driving warming over each of 15 

the inhabited continents, except for Africa where they found only medium confidence because of limited data 16 

availability (Bindoff et al., 2013). Friedman et al. (submitted) detect an anthropogenically forced response of 17 

inter-hemispheric contrast in surface temperature change, with the Northern Hemisphere cooling more than 18 

the southern hemisphere until 1980 but then warming more from 1980 to 2012. CMIP5 models simulate the 19 

correct sign of the inter-hemispheric contrast when forced with all forcings but underestimate its magnitude. 20 

There has been limited new literature on continental-scale attribution since the AR5. Stone and Hansen 21 

(2016) proposed and developed an automated empirical approach for developing confidence levels 22 

associated with detection and attribution statements, based on the amount of modelling and observational 23 

evidence, and the results of a detection and attribution analysis. Figure 3.8: shows global surface temperature 24 

change in CMIP6 all-forcing and natural-only simulations globally, at continental scales, and separately over 25 

land and ocean surfaces. All-forcing simulations encompass observed temperature changes for all regions, 26 

while natural-only simulations fail to do so in recent decades except in Antarctica, based on the annual 27 

means shown. As stated above, warming results from a partial offset of greenhouse warming by aerosol 28 

cooling. That offset is stronger over land than ocean. Regionally, models show a large range of possible 29 

temperature responses to greenhouse gas and aerosol forcing, which complicates single-forcing attribution. 30 

This is particularly true in North America and Europe. 31 

 32 

 33 

[START FIGURE 3.8 HERE] 34 

 35 

 Global, land, ocean and continental annual mean temperatures anomalies for CMIP6 historical (brown) 36 

hist-nat (green), hist-GHG (grey) and hist-aer (blue) simulations (multi-model means shown as thick 37 

lines, and minimum and maximum ranges shown as shaded area) and for Hadley Centre/Climatic 38 

Research Unit gridded surface temperature data set 4 (HadCRUT4, black). All models have been 39 

subsampled using the HadCRUT4 observational data mask (see Jones et al., 2013). Temperatures are 40 

shown with respect to 1850–1900, for Antarctica with respect to 1900–2010. (Figure produced with 41 

ESMValTool v2.0.0b3). 42 

 43 

[END FIGURE 3.8 HERE] 44 

 45 

 46 

In summary, since the publication of the AR5, new literature has emerged which better accounts for 47 

methodological and climate model uncertainties in attribution studies (Ribes et al., 2017; Hannart and 48 

Naveau, 2018), reporting results consistent with probabilities above 99% for human activities causing more 49 

than half the observed warming over the 1951-2010 period. Moreover, calculated anthropogenic warming 50 

and associated uncertainties calculated for 2017 relative to 1850-1900 (Haustein et al., 2017), and as 51 

assessed in the IPCC SR1.5 also imply probabilities over 99% that human activities caused more than half 52 

the observed warming trend under the assumption of normally distributed uncertainties. And finally, the 53 

strong observed warming that has occurred in the period since the publication of the AR5 (Chapter 2), and 54 

the improved understanding of the causes of the apparent slowdown in warming over the beginning of the 55 

21st century and the difference in simulated and observed warming trends over this period (Cross-Chapter 56 

Box 3.1), further improve our confidence in the assessment of the dominant anthropogenic contribution to 57 



Second Order Draft Chapter 3 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 3-19 Total pages: 180 

observed warming. However, there is also new literature that raise further questions about model ability to 1 

simulate variability in surface temperatures over a range of time scales (e.g. Friedman et al., submitted; 2 

Parsons et al., submitted), and some CMIP6 models exhibit substantially higher multidecadal internal 3 

variability than that seen in CMIP5, which remains to be fully understood (Parsons et al., submitted; Ribes et 4 

al., submitted). The IPCC SR1.5 best estimate and likely range of anthropogenic attributable warming was 5 

1.0±0.2°C in 2017 with respect to the period 1850-1900. Here, we derive ranges for attributable GSAT 6 

warming by finding the smallest ranges with a precision of 0.1°C which span all of the 5-95% ranges from 7 

the attribution studies shown in Figure 3.7:, and assess these ranges as likely rather than very likely to 8 

account for sources of uncertainty not considered in the studies, for example common errors in forcings 9 

across models. This leads to a likely range for anthropogenic attributable warming in 2010-2019 relative to 10 

1850-1900 of 0.8 to 1.4°C in terms of GSAT. Using the 4.3% scaling factor assessed in Cross-Chapter Box 11 

2.3, the likely anthropogenic attributable warming in terms of GMST is 0.8-1.3°C, which is also consistent 12 

with the range of 0.85-1.16°C directly calculated by Gillett et al. (submitted). Importantly, the range for 13 

anthropogenic attributable GMST warming encompasses the best estimate and range of observed GMST 14 

warming of 1.06 °C (0.95 – 1.17 °C) over the same period (Section 2.1.1.1.4). Natural attributable GSAT 15 

warming is −0.1 to 0.1°C. The likely range of GSAT warming attributable to well-mixed greenhouse gases is 16 

assessed in the same way to be 0.9 to 2.0°C while the GSAT change attributable to aerosols, ozone and land-17 

use change is −0.7 to 0.2°C. Balancing progress in attribution techniques with remaining uncertainty in the 18 

magnitude of internal climate variability, we assess that it remains extremely likely that human influence is 19 

the main driver of the observed increase in global-mean surface air temperature, causing more than half of 20 

observed warming in 2010-2019 relative to 1850-1900. 21 

 22 

The IPCC SR1.5 gave a likely range for human-induced warming rate of 0.1°C to 0.3°C per decade in 2017, 23 

with a best estimate of 0.2°C per decade (Allen et al., 2018). Since the SR1.5, the detection study of Ribes et 24 

al. (submitted), based on CMIP6 simulations constrained by observed warming, found a warming rate over 25 

the period 2010-2019 of 0.22 ± 0.05°C per decade attributable to anthropogenic forcing, with 0.23 ± 0.06°C 26 

per decade attributed to greenhouse gas forcing alone. The choice of SSP emission scenario to simulate the 27 

period 2015-2019 has an impact on estimated warming rates, so the SR1.5 uncertainty ranges of ±0.1°C 28 

represent a more conservative choice. For this reason, we retain the SR1.5 likely range for surface 29 

temperature warming rate of 0.1°C to 0.3°C per decade, with a best estimate of 0.2°C per decade. 30 

 31 

 32 

3.3.1.2 Upper-Air Temperature 33 

 34 

The AR5 (Bindoff et al., 2013) assessed that anthropogenic forcings, dominated by GHGs, likely contributed 35 

to the warming of the troposphere since 1961 and that anthropogenic forcings, dominated by the depletion of 36 

the ozone layer due to ozone-depleting substances, very likely contributed to the cooling of the lower 37 

stratosphere since 1979. Since the AR5, observational uncertainties in the radiosonde and satellite data have 38 

been further understood with more available data and longer coverage, and differences between models and 39 

observations in the tropical atmosphere have been investigated further. 40 

 41 

Tropospheric temperature 42 

The AR5 assessed with low confidence that most, though not all, CMIP3 and CMIP5 models overestimated 43 

the observed warming trend in the tropical troposphere during the satellite period 1979-2012, and that a third 44 

to a half of this difference was due to an overestimate of the SST trend during this period (Flato et al., 2013). 45 

Mitchell et al.( 2013) and McKitrick and Christy (2018) demonstrated an inconsistency between CMIP5 46 

simulated and observed temperature trends in the tropical troposphere with models suggesting more 47 

substantial warming than observations. However, Mitchell et al. (2013) found a smaller discrepancy in 48 

models forced with observed SSTs, and models and observations are consistent below 150 hPa when viewed 49 

in terms of the ratio of temperature trends aloft to those at the surface. Figure 3.9: shows that CMIP6 models 50 

forced by anthropogenic and natural forcings again overestimate temperature trends compared to radiosonde 51 

data in the tropical troposphere, although models show better consistency with observations in the lower 52 

troposphere. The largest difference can be seen between 300 and 100 hPa over the 1979-2014 period. 53 

Because of uncertainties from the observational data, the assessment of causes of observed trends in the 54 

upper troposphere and stratosphere is less confident than an assessment of overall atmospheric temperature 55 
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changes. Kamae et al. (2015) suggested that the recent slowdown of tropical upper tropospheric warming 1 

was associated with Pacific climate variability. Tuel (2019) found that most of the tropospheric temperature 2 

difference between CMIP5 models and the satellite-based trend over the 1970-2018 period are due to 3 

respective differences in SST warming trends in regions of deep convection. Moreover, Santer et al. (2017b) 4 

compared the global-mean mid-tropospheric temperatures from multiple Microwave Sounding Unit (MSU) 5 

datasets and climate model data during the satellite era and found that during the late twentieth century, the 6 

discrepancies between simulated and satellite-derived tropospheric temperature trends are consistent with 7 

internal variability, while during most of the early twenty-first century, simulated tropospheric warming is 8 

significantly larger than observed, which they relate to systematic deficiencies in some of the external 9 

forcings used after year 2000 in the models. However, we note that differences between simulated and 10 

observed upper tropospheric temperature trends persist in CMIP6 despite updated forcing estimates (Figure 11 

3.9). Focused on the temperature of the mid-to-upper troposphere (TMT), Santer et al. (2017c) used updated 12 

and improved satellite retrievals to investigate model performance in simulating the TMT trends and vertical 13 

profiles of warming, and removed the influence of stratospheric cooling by regression. These factors were 14 

found to reduce the size of the discrepancy in TMT trends between models and observations over the 15 

satellite era, but a discrepancy remained.  16 

 17 

Overall, these studies continue to find that CMIP5 and CMIP6 models indicated more warming than 18 

observations in the tropical mid- and upper-troposphere over the 1979-2012 period (McKitrick and Christy, 19 

2018; Mitchell et al., 2013, submitted, Santer et al., 2017a, 2017c; Suárez-Gutiérrez et al., 2017), and that 20 

overestimated surface warming is partially responsible (Mitchell et al., 2013). Although accounting for 21 

internal variability and residual observational errors can reconcile models with observations (Mitchell et al., 22 

2013; Suárez-Gutiérrez et al., 2017), studies also point to forcing errors in the CMIP5 simulations in the 23 

early 21st century as a possible contributor (Mitchell et al., 2013; Sherwood and Nishant, 2015; Santer et al., 24 

2017a). It is unknown whether forcing also explains part of the CMIP6 model biases. Hence, we assess with 25 

medium confidence that CMIP5 and CMIP6 models continue to overestimate observed warming in the upper 26 

tropical troposphere during the satellite era, in part because of an overestimate of the SST trend pattern over 27 

this period.  28 

 29 

 30 

[START FIGURE 3.9 HERE] 31 

 32 

 Vertical profiles of temperature trends in the tropics (20°S-20°N) for three periods between 1979 and 33 

2014. The black lines show trends in the RICH1.5 and RAOBCORE1.5 radiosonde datasets, and 34 

ERA5/5.1 reanalysis. Red lines show trends in 18 CMIP6 models’ historical simulations, and blue lines 35 

show trends in 18 CMIP6 models’ simulations with prescribed sea surface temperatures. Panel a), b) and 36 

c) show trends over the periods 1979-2014, 1979-1997 (ozone depletion era), and 1998-2014 (ozone 37 

recovery era) respectively. (Figure from Mitchell et al. (submitted), their Figure 1.) 38 

 39 

[END FIGURE 3.9 HERE] 40 

 41 

 42 

The human influence on changes in tropospheric tempeature has received much attention in recent years. The 43 

AR5 assessed as likely that anthropogenic forcings, dominated by GHGs, contributed to the warming of the 44 

troposphere since 1961 (Bindoff et al., 2013). Since then, there has been further progress in detecting and 45 

attributing tropospheric temperature changes. Santer et al. (2014) found significant correlations between 46 

observed stratospheric aerosol optical depth and satellite estimated tropospheric temperature and short-wave 47 

fluxes at the top of the atmosphere. They show that simulations which do not consider the influence of 48 

volcanic eruptions in the early 21st century overestimate the observed tropospheric warming since 1998. 49 

Focused on the seasonal cycle of tropospheric temperatures, Santer et al. (2018) investigated the changes in 50 

the annual mean and annual cycle of tropospheric temperature. They found clear human influence in the 51 

changes of seasonal cyle based on multiple observationally-based datasets and multiple models. They 52 

applied a standard fingerprint method to determine if the model “human influence” fingerprint can be 53 

distinguished from the background noise of internal variability. They found satellite data and the 54 

anthropogenic forcing-driven climate models show consistent geographical large-scale changes of seasonal 55 

cycle amplitude, including amplitude increases at mid-latitudes in both hemispheres, decreases in amplitude 56 
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at high latitudes in the Southern Hemisphere, and small changes in the tropics. The model fingerprint of 1 

externally forced seasonal cycle changes is identified in five out of six satellite temperature datasets. Their 2 

attribution results are not affected by removing the global mean information and by excluding the sea ice 3 

region. Santer et al. (2019) also quantify the stochastic uncertainty in detection time of human-caused 4 

climate signals. They used two climate models with large-ensemble runs and estimate signal detection time 5 

in individual ensemble members. They found that the stochastic uncertainty is greater for tropospheric 6 

warming (8-15 years) than stratospheric cooling (1-3 years) because of larger noise and slower recovery time 7 

from the Pinatubo eruption in the troposphere. The detection time of the anthropogenic signal in the 8 

tropospheric warming can be affetected by both the model climate sensitivity and the model response to 9 

aerosol forcing. Pallotta and Santer (submitted) further conducted a multi-frequency analysis of simulated 10 

versus observed variability in tropospheric temperature. They found on timescles of 5-20 years, that CMIP5 11 

climate models overestimate the observed natural variabilty in global mean tropospheric temperature. This 12 

thus indicates that the previous detection results about anthropogenic influence on the tropospheric warming 13 

may be conservative. 14 

 15 

Based on these additional analyses, we assess that it is very likely that anthropogenic forcing, dominated by 16 

GHGs, was the main driver of the warming of the troposphere since 1979.  17 

 18 

Stratospheric temperature 19 

The AR5 concluded that the CMIP5 models simulated a generally realistic evolution of lower stratospheric 20 

temperatures (Bindoff et al., 2013; Flato et al., 2013) and better than the CMIP3 models, in part because they 21 

generally include time-varying ozone concentrations, unlike many of the CMIP3 models. Nonetheless, it was 22 

noted that there was a tendency for the simulations to underestimate stratospheric cooling compared to 23 

observations. Based on attribution studies using simulations from CMIP5 and from the Chemsitry-Climate 24 

Model Validation Avtivity (CCMVal), Bindoff et al. (2013) concluded that it was very likely that 25 

anthropogenic forcing, dominated by stratospheric ozone depletion due to ozone-depleting substances, had 26 

contributed to the cooling of the lower stratosphere since 1979. Since the AR5, Santer et al. (2017b) 27 

compared observed lower stratospheric temperature trends with those simulated by the CMIP5 models, and 28 

found a tendency for the models to underestimate the cooling, which they attributed to an underestimation of 29 

stratospheric ozone depletion in many CMIP5 models (Eyring et al., 2013; Young et al., 2013), differences 30 

in stratospheric water vapour evolution, and internal variability. Maycock et al. (2018a) compared lower 31 

stratospheric temperature trends over the 1979-2005 period in the coupled chemistry climate simulations of 32 

the Chemistry-Climate Model Initiative (CCMI) with satellite observations, and found that observed trends 33 

were within the range of simulated trends, and the models reproduced the levelling off of lower stratospheric 34 

temperatures in the 1998-2016 period due to the cessation of ozone depletion and onset of recovery. Young 35 

et al. (2013) compared temperature trends based on various satellite and radiosonde observations and climate 36 

(GCM) and chemistry-climate model (CCM) outputs, with a focus on the influence of ozone depletion in the 37 

Antarctic lower stratosphere since mid-1950s. They found that CCMs and CMIP5 models’ simulation of 38 

Antarctic stratospheric cooling is consistent with recent radiosonde datasets to within modelling and 39 

observational uncertainties. In a modelling study, Aquila et al. (2016) found that in the lower stratosphere, 40 

the cooling trend due to increasing GHGs is roughly constant over the satellite era. Changes in 41 

concentrations of ozone-depleting substances (ODS), via their chemical effect on ozone which then affects 42 

heating, cause a significant stratospheric cooling only up to the mid-1990s. After that, a decrease in ODS 43 

caused a flattening of temperature, with more rapid fluctuations caused by the eruption of Mount Pinatubo 44 

and the solar cycle. Mitchell et al. (submitted) show that while the CMIP6 models simulate realistic trends in 45 

tropical lower stratospheric temperature over the whole 1979-2014 period, they tend to overestimate the 46 

cooling trend over 1979-1997 and underestimate it over 1998-2014 (Figure 3.9:), which they speculate may 47 

be due to possible deficiencies in prescribed stratospheric ozone changes. 48 

 49 

Upper stratospheric temperature changes were not assessed in the context of attribution or model evaluation 50 

in AR5, but this is an area where there has been considerable progress over recent years, with new versions 51 

of both Stratospheric Sounding Unit (SSU) datasets released, which are in better agreement than previous 52 

versions (Maycock et al., 2018a, Karpechko and Maycock et al., 2018) (see also Section 2.3.1.1.4). 53 

Simulated temperature changes in the CCMI coupled chemistry models show good consistency with the 54 

reprocessed dataset from NOAA STAR SSU but are less consistent with the revised UK Met Office record. 55 
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The latter still shows stronger cooling than simulated in the chemistry-climate models (Maycock et al., 1 

2018a). It has been shown that reanalyses indicate an upper-stratospheric cooling from 1979 to 2009 of about 2 

3°C at 5hPa and 4°C at 1hPa that agrees well with the cooling in AMIP-type simulations using CMIP5 3 

forcings (Simmons et al., 2014).The cooling in the reanalyses results from the assimilation of SSU and 4 

AMSU data. Mitchell (2016) used regularized optimal fingerprinting techniques to make an attribution 5 

analysis of annual mid to upper stratospheric temperature in response to external forcings. They found that 6 

anthropogenic forcing has caused an approximate cooling of 2-3 °C in the upper stratosphere over the period 7 

of 1979-2015, with GHGs contributing two thirds of this change and ozone depletion contributing one third. 8 

They find a temperature change in response to volcanic forcing is large (0.4-0.6 °C for Mount Pinatubo) in 9 

the upper stratosphere, although it is still smaller than the lower-stratospheric signal. Aquila et al. (2016) 10 

used chemistry climate models with added forcing factors and prescribed observed sea surface temperature 11 

to investigate the influence of different forcings on global stratospheric temperature changes. They find that 12 

the cooling of the stratosphere after 1979 is mainly due to changes in GHG concentrations in the middle and 13 

upper stratosphere. The changes of global temperature anomalies are mainly due to changes in solar 14 

irradiance and volcanically-induced ozone depletion and water vapour increases in the post-Pinatubo years. 15 

Therefore, in the upper stratosphere, both a standard detection and attribution approach (Mitchell, 2016) and 16 

chemistry-climate model studies (Aquila et al., 2016; Maycock et al., 2018a) indicate that about two-thirds 17 

of the global long-term cooling is attributed to GHGs and one third to ozone depletion. Chemistry-climate 18 

model results further show that the relatively rapid decreases in global upper stratospheric temperatures in 19 

the early 1980s and early 1990s are likely to be due to the combined influence of temperature decreases after 20 

the warming from major tropical volcanic eruptions and the declining phase of the 11-year solar cycle.  21 

 22 

Based on the latest updates to satellite observations of stratospheric temperature, we assess that simulated 23 

and observed changes of global mean temperature through the depth of the stratosphere are more consistent 24 

than based on previous datasets, but some differences remain (medium confidence). Studies published since 25 

the AR5 increase our confidence in the simulated stratospheric temperature response to greenhouse gas and 26 

ozone changes, and support an assessment that it is extremely likely that anthropogenic forcing, dominated 27 

by stratospheric ozone depletion due to ozone-depleting substances, was the main driver of the cooling of the 28 

lower stratosphere since 1979, as expected from physical understanding. 29 

 30 

 31 

3.3.2 Precipitation, Humidity and Streamflow 32 

 33 

Paleoclimate context 34 

A fact hindering detection and attribution studies in precipitation and other hydrological variables is the large 35 

internal variability of these fields relative to the anthropogenic signal. Moreover, the human influence can 36 

result in increases or decreases in precipitation. Paleoclimate records provide valuable context for observed 37 

trends in the 20th and 21st century and assist with the attribution of these trends to human influence (see also 38 

Sections 2.3.1.3.1 and 8.3.1.8). For example, many areas of the subtropics – such as the Mediterranean and 39 

the western United States – have experienced systematic drying in recent decades. This is an expected 40 

response as elevated greenhouse gases cause an increase in evaporative demand (Seager et al., 2014b, 41 

2014a), but can be difficult to attribute due to the large internal variability of the water cycle. Records of tree 42 

ring width provide evidence that recent prolonged dry spells in the Levant, Mongolia, and Chile are 43 

unprecedented in the last millennium (high confidence) (Pederson et al., 2014; Cook et al., 2016a; Garreaud 44 

et al., 2017). Recent drought in the Mediterranean may be attributable to anthropogenic forcing (medium 45 

confidence) (Kelley et al., 2015; Gudmundsson and Seneviratne, 2016). Likewise, tree rings indicate that the 46 

2012-2014 drought in California was exceptionally severe in the context of natural variability in the last 47 

millennium, and may have been exacerbated by the contribution of anthropogenic temperature rise (medium 48 

confidence) (Griffin and Anchukaitis, 2014; Williams et al., 2015). East Africa has been drying in recent 49 

decades (Hoell et al., 2017), a trend that is unusual in the context of the sedimentary paleorecord spanning 50 

the last millennium (Tierney et al., 2015). This may be a signature of anthropogenic forcing but cannot as of 51 

yet be distinguished from natural variability (Hoell et al., 2017; Philip et al., 2018). Tree rings also indicate 52 

the presence of prolonged megadroughts (droughts lasting two decades or more) in western North America 53 

throughout the last millennium that were more severe than 20th and 21st century events (high confidence) 54 

(Cook et al., 2004, 2010, 2015). These were with medium confidence associated with internal climate 55 
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variability (Coats et al., 2016; Cook et al., 2016b) and indicate that large-magnitude changes in the water 1 

cycle may occur irrespective of anthropogenic influence. 2 

 3 

Paleoclimate records also provide context for the human influence on large-scale atmospheric circulation, 4 

such as the inter-tropical convergence zone (ITCZ), the Walker circulation, and monsoon systems. In AR5, it 5 

was determined with high confidence that orbital forcing produces strong interhemispheric rainfall variability 6 

evident in multiple types of proxies. These large-magnitude intensifications and weakenings in the monsoon 7 

systems involved in some cases orders-of-magnitude changes in precipitation (Harrison et al., 2014; Tierney 8 

et al., 2017) and thus are virtually certain to have been larger than changes observed in the 20th and 21st 9 

centuries. Paleoclimate modeling and limited data from past climate states with high CO2 suggest that 10 

monsoon systems intensify under elevated greenhouse gases (medium confidence), providing context for 11 

present and future trends (Passey et al., 2009; Haywood et al., 2013; Zhang et al., 2013b). Paleoclimate data 12 

from the Pliocene epoch suggest that there was a reduction in the zonal and meridional gradients of SST in 13 

the tropical Pacific (Fedorov et al., 2006; Brierley, Chris M et al., 2009) with similar CO2 as today. Some 14 

studies suggest that this higher concentration of CO2 at that time (410 ppm) weakened the Walker circulation 15 

(Tierney et al., 2019), in agreement with theory (Vecchi et al., 2006; Vecchi and Soden, 2007) but in 16 

contradiction to recently-observed trends in the Pacific (L’Heureux et al., 2013; England et al., 2014) and the 17 

ambiguous trends across the last 100 years as a whole (Vecchi et al., 2006; Karnauskas et al., 2009; DiNezio 18 

et al., 2013). Other studies consider that present climate models cannot simulate the extent and patterns of 19 

Pliocene warmth due to unresolved climate feedbacks, which can change the simulated response of 20 

precipitation in the subtropics in the context of global warming (Burls and Fedorov, 2014, 2017). 21 

 22 

 23 

3.3.2.1 Precipitation 24 

 25 

The AR5 concluded that there was medium confidence that human influence had contributed to large-scale 26 

precipitation changes over land since 1950, including an increase in the NH mid to high latitudes. Moreover, 27 

AR5 concluded that observational uncertainties and challenges in precipitation modelling precluded a more 28 

confident assessment (Bindoff et al., 2013). Overall, they found that large-scale features of mean 29 

precipitation in CMIP5 models are in modest agreement with observations, but there are systematic errors in 30 

the Tropics. 31 

 32 

Since AR5, Li et al. (2016b) found that CMIP5 models simulate the large scale patterns of annual mean land 33 

precipitation and seasonality, as well as reproduce qualitatively the observed zonal mean land precipitation 34 

trends: models capture the drying trends in the tropics and along 45°S and the wetting trend in the NH mid-35 

to-high latitudes, but the amplitude of the changes are much smaller. Nevertheless, models do not appear to 36 

reproduce the zonal mean trends of seasonality, nor the trends of annual precipitation and seasonality over 37 

land, though internal variability and observational uncertainty may contribute to these apparent differences 38 

(Li et al., 2016b). The CMIP5 models have also been shown to adequately simulate the mean and interannual 39 

variability of the Global Monsoon (section 3.3.3.2), but maintain the double ITCZ bias in the equatorial 40 

Pacific (Lee and Wang, 2014; Ni and Hsu, 2018). CMIP5 models do better than CMIP3 models, in particular 41 

regarding the Global Monsoon domain and intensity (Lee and Wang, 2014). Regarding trends in 42 

precipitation intensity, models have also been shown to reproduce the compensation between precipitation 43 

extremes and the rest of the distribution (Thackeray et al., 2018), a characteristic found in the observational 44 

record (Gu and Adler, 2018). Regional performance is further assessed in chapters 8 and 10. 45 

 46 

The simulation of annual mean rainfall patterns in the CMIP6 models reveals minor improvements compared 47 

to those of CMIP5 models (Figure 3.10:). The persistent biases include the double ITCZ in the tropical 48 

Pacific and the southward-shifted ITCZ in the equatorial Atlantic, which has been suggested to be the result 49 

of underestimating the sensitivity of precipitation to local SST (Good et al., submitted). There is some 50 

improvement in the overly intense Indian ocean ITCZ and the too dry South American continent except over 51 

the Andes. Moreover, CMIP6 models represent better the storm tracks (Priestley et al., submitted; also 52 

Section 3.3.3.3) reducing the precipitation biases in the North Atlantic and midlatitudes of the SH. As result, 53 

pattern correlations between simulated and observed annual mean precipitation range between 0.80 and 0.92 54 

for CMIP6, compared to a range of 0.79 and 0.88 for CMIP5 (Bock et al., submitted). A recent study using 55 
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several coupled models showed that increasing the atmospheric resolution leads to a strong decrease in the 1 

precipitation bias in the tropical Atlantic (Vannière et al., 2019), see further discussion in Section 3.8.2.2. 2 

 3 

Observational data sets have also improved. Osborne et al. (2015) identified a data problem in observed land 4 

precipitation around 1930, proposing a correction which made the precipitation record more consistent with 5 

the runoff record. Moreover, the corrected data set became consistent with the expected negative 6 

precipitation response to mid-20th century aerosol forcing. 7 

 8 

 9 

[START FIGURE 3.10 HERE] 10 

 11 

 Annual-mean precipitation rate (mm day–1) for the period 1995–2014. (a) Multi-model-mean constructed 12 

with one realization of CMIP6 (included models: see Fig.3.3) historical experiments (b) Difference 13 

between multi-model mean and precipitation analyses from the Global Precipitation Climatology Project 14 

(GPCP) version 2.3 (Adler et al., 2003). (c) Multi-model-mean of the root mean square error of the 15 

seasonal cycle with respect to precipitation analyses from GPCP v2.3. Also shown is the Multi-model-16 

mean bias as the difference between the multi-model mean of (d) low resolution and (e) high resolution 17 

simulations of the HighResMIP and precipitation analyses from GPCP v2.3. (Figure from Bock et al. 18 

(submitted), their Figure 3, produced with ESMValTool v2.0.0b3). 19 

 20 

[END FIGURE 3.10 HERE] 21 

 22 

 23 

AR5 concluded that models can successfully reproduce to first-order patterns of past climate changes during 24 

the Last Glacial Maximum (LGM) and mid-Holocene; including the impacts of changes in monsoon 25 

circulation on precipitation patterns (Braconnot et al., 2012; Flato et al., 2013). Further analysis of CMIP5 26 

models confirmed these results but has also revealed systematic offsets from the paleoclimate record 27 

(DiNezio and Tierney, 2013; Hargreaves and Annan, 2014; Harrison et al., 2014, 2015; Bartlein et al., 2017; 28 

Scheff et al., 2017; Tierney et al., 2017). For example, the differences between reconstructed and CMIP5 29 

simulated changes in mid-Holocene rainfall over the African monsoon region is more than 50% (Perez-Sanz 30 

et al., 2014; Harrison et al., 2016; Tierney et al., 2017). As result, Harrison et al. (2014) concluded that 31 

CMIP5 models do not perform better in simulating rainfall than earlier model versions despite higher 32 

resolution and complexity. However, prescribing changes in vegetation and dust was found to improve the 33 

match to the paleoclimate record (Pausata et al., 2016; Tierney et al., 2017) suggesting that vegetation 34 

feedbacks in the CMIP5 models may be too weak (low confidence) (Hopcroft et al., 2017). Brierley et al. 35 

(submitted) compared the simulated annual precipitation changes by CMIP6 models during the mid-36 

Holocene with pollen based reconstructions. They conclude that CMIP6 models do not show a robust signal 37 

in area averaged rainfall over most regions where quantitative reconstructions exist, which is not 38 

incompatible with reconstructions (Figure 3.11:). These results are similar to CMIP5. Over the Sahara/Sahel 39 

region, where reconstructions suggest positive anomalies during the mid-Holocene, CMIP6 models simulate 40 

a more robust and stronger rainfall increase, showing some improvement over CMIP5.  41 

 42 

Liu et al. (2018) evaluated the terrestrial moisture changes that occurred during the LGM and concluded that 43 

the multi-model median from CMIP5 is consistent with available paleo-records in some regions, but not in 44 

others. CMIP5 models accurately reproduce an increase in moisture in the western United States, related to 45 

an intensified winter storm track and decreased evaporative demand (Oster et al., 2015; Ibarra et al., 2018; 46 

Lora, 2018). On the other hand, CMIP5 models show a wide variety of responses in the tropical Indo-Pacific 47 

region, with only a few matching the pattern of change inferred from the paleoclimate record (DiNezio and 48 

Tierney, 2013; DiNezio et al., 2018). The variable response across models is related to the effect of the 49 

exposure of the tropical shelves during glacial times, which variously intensifies or weakens convection in 50 

the rising limb of the Walker cell, depending on model parameterization (DiNezio et al., 2011). For the Last 51 

Interglacial, PMIP4 (CMIP6) models reproduce the proxy-based increased precipitation relative to pre-52 

industrial in the North African, South Asian and North American regions, but not in Australia (Scussolini et 53 

al., 2019).  54 

 55 

 56 
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[START FIGURE 3.11 HERE] 1 

 2 

 Comparison between simulated annual precipitation changes and pollen-based reconstructions. Six 3 

regions where multiple quantitative reconstructions exist are chosen. These are Northern Europe (NEU), 4 

Central Europe (CEU), the Mediterranean (MED), the Sahara/Sahel (SAH), East Asia (EAS) and Eastern 5 

North America (ENA). The distribution of reconstructions within the region are shown by boxes and 6 

whiskers. The area-averaged change in mean annual precipitation simulated by CMIP6 (individually 7 

identifiable) and CMIP5 (blue) within each region is shown for comparison. (Figure from Brierley and 8 

PMIP4 (submitted), their Figure 11). 9 

 10 

[END FIGURE 3.11 HERE] 11 

 12 

 13 

The observed trend for precipitation averaged over NH land areas throughout the 20th century is negligible 14 

(Wu et al., 2013). Also, no significant trend is found in the global precipitation mean value during the 15 

satellite era (Adler et al., 2017), consistent with model simulations (Wu et al., 2013). This has been 16 

suggested to be due to the negative effect of anthropogenic sulfates and volcanic forcing that opposed the 17 

positive influence of rising global mean temperatures due to greenhouse gases (Salzmann, 2016; Richardson 18 

et al., 2018). The precipitation change expected from ocean warming is also partly offset by the fast 19 

atmospheric adjustment to increasing greenhouse gas concentration as long as the concentration are not 20 

stabilized (Section 8.2.1). Over the ocean the negligible trend may be due to the cancelling effects of CO2 21 

and aerosols (Richardson et al., 2018). 22 

 23 

A gridpoint based analysis of precipitation trends over land regions since 1901 (Knutson and Zeng, 2018) 24 

comparing observed and model simulated trends finds that detectable anthropogenic increasing trends have 25 

occurred prominently over many middle to high latitude regions of both hemispheres. The observed trends in 26 

many cases are significantly stronger than modeled in the CMIP5 historical runs for the 1901-2010 period 27 

(though not for 1951-2010), suggesting possible deficiencies in models with capturing past forced trend 28 

behavior over the past century in precipitation trends. 29 

 30 

The observed precipitation increase in the NH high latitudes over the period 1966-2005 was attributed to 31 

anthropogenic forcing by a study using CMIP5 models (Wan et al., 2015) supporting the AR5 assessment. 32 

Initial results from CMIP6 also support the role of anthropogenic forcing in the precipitation increase 33 

observed in NH high latitudes(see Figure 3.12:). 34 

 35 

 36 

[START FIGURE 3. 12 HERE] 37 

 38 

 Global and zonal average changes in annual mean precipitation (mm day-1) over areas of land where 39 

there are observations, expressed relative to the base-line period of 1961–1990, simulated by CMIP6 40 

models forced with both anthropogenic and natural forcings (brown) and natural forcings only (blue). 41 

Multi-model means are shown in thick solid lines and shading shows minimum and maximum ranges of 42 

the individual model simulations. Observations (gridded values derived from Global Historical 43 

Climatology Network station data, updated from Zhang et al. (2007) are shown as a black solid line. 44 

(Figure produced with ESMValTool v2.0.0b2.) 45 

 46 

[END FIGURE 3.12 HERE] 47 

 48 

 49 

For the SH extratropics, Solman and Orlanski (2016) found that the observed summertime rainfall increase 50 

(decrease) over high (mid) latitudes during 1979-2010 are quasi-zonally symmetric and related to changes in 51 

eddy activity. The latter were in turn associated with the poleward shift of the westerlies due mostly to ozone 52 

depletion. Positive rainfall trends in the subtropics, particularly over southeastern South America and 53 

northern and central Australia, have been also attributed to ozone depletion (Kang et al., 2011; Gonzalez et 54 

al., 2014) and greenhouse gases (Vera and Diaz, 2014). During austral winter wetting and drying conditions 55 

at high and middle latitudes, respectively, are not zonally homogeneous, and both changes in eddy activity 56 
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and increased lower troposphere humidity contributed. Solman and Orlanski (2016) associate these climate 1 

changes to increase in GHG concentration levels. Recently, Blazquez and Solman (2017) have shown that 2 

CMIP5 models represent very well the dynamical forcing and the frequency of frontal precipitation in the SH 3 

winter extratropics, but the amount of precipitation due to fronts is overestimated. Chapter 10 validates in 4 

more detail the simulation of fronts in climate models. 5 

 6 

In the tropics and subtropics Polson and Hegerl (2017) found that the effect of external forcing on 7 

precipitation following the wet gets wetter, dry gets drier paradigm is robust if one takes into account the 8 

seasonal and interannual movement of the regions (Allan, 2014). A follow-up study found that the forced 9 

signal is already detectable over wet regions, but not over dry ones in the period 1988-2018 (Figure 3.13:; 10 

Schurer et al., submitted). Other studies suggest that this paradigm does not necessarily hold over dry regions 11 

where moisture is limited (Greve et al., 2014; Kumar et al., 2015, see also section 8.2.2.1). Based on long-12 

term island precipitation records, Polson et al. (2016) identified significant increases in precipitation in the 13 

tropics and decreases in the subtropics, which are consistent with those simulated by the CMIP5 models. 14 

Barkhordarian et al. (2018) attributed the observed reduced springtime precipitation in tropical South 15 

America during 1983-2012 to elevated GHGs and land use. Polson et al. (2014) found that anthropogenic 16 

aerosols were the dominant influence in the decrease of NH summer monsoon precipitation during the 17 

second half of the 20th century. Moreover, Undorf et al. (2018) identified remote aerosol emissions from 18 

North America and Europe as the main source regions to explain changes over West African monsoon. For 19 

South Asian monsoon local emissions are also needed to explain precipitation changes. 20 

 21 

Over the oceans, observations show coherent large-scale patterns of fresh ocean regions becoming fresher 22 

and salty ocean regions saltier across the globe, which has been related through modeling studies to changes 23 

in precipitation-evaporation and is consistent with the wet gets wetter, dry gets drier paradigm (see Section 24 

3.5.2.2; Durack, 2015; Durack et al., 2012, 2013; Grist et al., 2016; Hegerl et al., 2015; Levang and Schmitt, 25 

2015; Skliris et al., 2014; Zika et al., 2015).  26 

 27 

 28 

[START FIGURE 3. 13 HERE] 29 

 30 

 Wet (top) and dry (bottom) region tropical mean (30S-30N) annual precipitation anomalies with respect 31 

to 1988-2018 (mm) for observations (GPCP - in black) and CMIP6 model simulations (single simulations 32 

light blue/red with multi-model-mean in dark blue/red). Wet and dry region annual values are calculated 33 

as the mean over 4 seasons (OND, JFM, AMJ, JAS). The regions are defined by the wettest third and 34 

driest third by surface area, calculated for the observations and for each model separately for each season 35 

(following Polson and Hegerl 2017). Scaling factors (right) are calculated for the combination of the wet 36 

and dry region mean, where the observations and all the model simulations are first standardised using the 37 

mean standard deviation of piControl simulations. Two total least squares regression methods are used: 38 

noise in variables (following Polson and Hegerl 2017) which estimates a best estimate and a 5-95% 39 

confidence interval using the piControls (circle and thick green line) and the piControls with double the 40 

variance (thin green line); and the bootstrap method (DelSole et al., 2019) 5-95% confidence interval 41 

purple line, best estimate purple circle. 42 

 43 

[END FIGURE 3.13 HERE] 44 

 45 

 46 

Land precipitation was found to show enhanced seasonality (Chiang et al., 2013), consistent with the 47 

simulated response to anthropogenic forcing (Dwyer et al., 2014). However, observed trends in seasonality 48 

depend on data set used (Li et al., 2016b; Marvel et al., 2017), and Marvel et al. (2017) found inconsistent 49 

trends in the amplitude of the seasonal cycle of precipitation in global satellite precipitation observations and 50 

CMIP5 models. On the other hand, Marvel et al. (2017) found that observed changes to the annual cycle 51 

phase are consistent with model estimates of forced changes. These phase changes are mainly characterized 52 

by earlier onset of the wet season on the equatorward flanks of the extratropical storm tracks, particularly in 53 

the SH. 54 

 55 

Overall, several new studies detect an anthropogenic influence on precipitation over the continents and 56 
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oceans in the high latitudes and tropics, and we therefore now assess that it is likely that human influence has 1 

contributed to observed large-scale precipitation changes since 1950. Despite large decadal variability, there 2 

is medium confidence that rainfall over the wet regions of the tropics has increased due to enhanced 3 

greenhouse gas forcing. Yet, there is also growing evidence and medium confidence that this tropical 4 

precipitation increase has been partly muted by anthropogenic aerosols through a decreasing effect in the 5 

Northern Hemisphere summer monsoon region from the mid to late 20th century. There is medium 6 

confidence that ozone depletion has increased precipitation over the Southern Ocean and decreased it over 7 

southern midlatitudes during austral summer. Owing to observational uncertainties and inconsistent results 8 

between studies, we conclude that there is low confidence in the attribution of changes in the seasonality of 9 

precipitation. 10 

 11 

 12 

3.3.2.2 Atmospheric Water Vapour 13 

 14 

The AR5 concluded that an anthropogenic contribution to specific humidity is found with medium 15 

confidence at and near the surface. A levelling off of atmospheric water vapour over land in the last two 16 

decades that needed better understanding, and remaining observational uncertainties precluded a more 17 

confident assessment (Bindoff et al., 2013). Sections 4.1.1.12 and 8.3.1.4 show that there have been 18 

significant advances in the understanding of the processes controlling land surface humidity. In particular, 19 

there has been a focus on the role of oceanic moisture transport and land-atmosphere feedbacks in explaining 20 

the observed trends in relative humididty. 21 

 22 

Water vapor is the most important natural greenhouse gas and its amount is expected to increase in a global 23 

warming context leading to further warming. Particularly important are changes in the upper troposphere 24 

because there water vapor regulates the strength of the water-vapor feedback (section 7.1.15). CMIP5 25 

models have been shown to have a wet bias in the tropical upper troposphere and a drier-than-observed 26 

lower troposphere, with the former bias and model spread being larger than the latter (Jiang et al., 2012; Tian 27 

et al., 2013). Water vapor biases in models are dominated by errors in relative humidity throughout the 28 

troposphere, which are in turn closely related to errors in large scale circulation; temperature errors dominate 29 

near the tropopause (Takahashi et al., 2016). Section 7.1.1.5 discusses this topic in more detail for CMIP6 30 

models. 31 

 32 

Using satellite data as well as CMIP5 model output, Chung et al. (2014) demonstrated that the moistening 33 

observed in the upper troposphere over the period 1979–2005 cannot be explained by natural causes and 34 

results principally from an anthropogenic warming of the climate. This increase in water vapour is 35 

accompanied by a reduction in mid-tropospheric relative humidity and clouds in the subtropics and mid-36 

latitude in both models and observations related to changes in the Hadley cell (Lau and Kim, 2015; also 37 

section 3.3.3.1). 38 

 39 

Dunn et al. (2017) confirmed earlier findings that global mean surface relative humidity increased during 40 

1973-2000, followed by a steep decline, and specific humidity correspondingly increased and then remained 41 

approximately constant, with none of the CMIP5 models capturing this behaviour. They noted biases in the 42 

mean state of the CMIP5 models’ surface relative humidity (and ascribe the failure to the representation of 43 

land surface processes and their response to CO2 forcing), concluding that these biases preclude any 44 

detection and attribution assessment. A recent study has, however, identified an anthropogenically-driven 45 

decrease in relative humidity over the NH midlatitude continents in summer during 1951-2005 (Douville and 46 

Plazzotta, 2017). This drying was underestimated by CMIP5 models with potential implications for the 47 

projected 21st century changes in these regions. 48 

 49 

Based on new evidence we assess that it is likely that human influence has contributed to tropical moistening 50 

in the upper troposphere since 1979 with medium confidence. Owing to the limited number of studies and 51 

model biases we conclude that there is low confidence in the attribution of changes in the surface humidity. 52 

 53 

 54 

 55 
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3.3.2.3 Streamflow 1 

 2 

Stream flow is to-date the only variable of the terrestrial water cycle with enough in-situ observations to 3 

allow for detection and attribution analysis at continental to global scales. Based on evidence from a few 4 

formal detection and attribution studies, particularly on the timing of peak streamflow, and the qualitative 5 

evaluation of studies reporting on observed and simulated trends, AR5 concluded that there is medium 6 

confidence that anthropogenic influence on climate has affected streamflow in some middle and high latitude 7 

regions. AR5 also noted that observational uncertainties are large and that often only a limited number of 8 

models were considered. 9 

 10 

Section 2.3.1.3.6 assesses that there have not been significant trends in global average streamflow over the 11 

last century, though regional trends have been observed, driven in part by internal variability. Only a limited 12 

number of studies have systematically compared observed streamflow trends at continental to global scales 13 

with changes simulated by global circulation models (GCM) in a detection and attribution setting. Yang et 14 

al., (2017) did not find a significant correlation between observed runoff changes and changes simulated in 15 

CMIP5 models in most grid cells, consistent with the assessment that observed changes are dominated by 16 

internal variability. In a pan-European assessment, Gudmundsson et al. (2017) attribute the spatio-temporal 17 

pattern of decreasing streamflow in southern Europe and increasing streamflow in northern Europe to 18 

anthropogenic climate change, but also concluded that additional effects of human water withdrawals could 19 

not be excluded. Focussing on continental runoff during 1958-2004, Alkama et al. (2013) found a significant 20 

change only when using reconstructed data over all rivers, indicating a large uncertainty in the estimate of 21 

the global streamflow trend due to different statistical methods used and opposite changes over different 22 

continents. Gedney et al. (2014) detect the influence of aerosols on streamflow in North America and 23 

Europe, with aerosols having driven an increase in streamflow due to reduced evaporation (see Chapter 8 for 24 

details on processes). There is also evidence for a detectable anthropogenic contribution toward earlier 25 

winter-spring streamflows in north-central US (Kam et al., 2018) and in western Canada (Najafi et al., 2017). 26 

From a model evaluation perspective, Sheffield et al. (2013) report that CMIP5 models reproduce spatial 27 

variations in runoff in North America well, though they tend to underestimate it. 28 

 29 

Recently Gudmundsson et al. (2019) performed a global detection and attribution study and found that some 30 

regions are drying and others are wetting. Moreover, the simulated streamflow trends are consistent with 31 

observations only if anthropogenic climate change is considered, and the simulated effects of water and land 32 

management cannot reproduce the trends. The effects of volcanic eruptions in driving reduced streamflow 33 

have also been detected in many regions of the world (Iles and Hegerl, 2015).  34 

 35 

In summary, there is medium confidence that anthropogenic climate change has altered local and regional 36 

streamflow in various parts of the world and that the associated global-scale trend pattern is inconsistent with 37 

pre-industrial control simulations. Moreover, recent results suggest that human interventions and water 38 

withdrawals, while interfering with the streamflow, cannot explain the observed trends.  39 

 40 

 41 

3.3.3 Atmospheric Circulation 42 

 43 

3.3.3.1 Tropospheric Overturning Circulation in the Tropics 44 

 45 

The tropical tropospheric circulation features meridional and zonal overturning circulations, called Hadley 46 

and Walker circulations. In the zonal mean, the downwelling branch of the Hadley circulation cell is located 47 

in the subtropics and is often used as an indicator of the meridional extent of the tropics. In the zonal-vertical 48 

section, the major rising branch of the Walker cell is located over the Maritime continent with secondary 49 

upwelling regions over northern South America and Africa. The zonal component of the surface trade winds 50 

over most of the equatorial Pacific and Atlantic is associated with the Walker circulation. 51 

 52 

AR5 found medium confidence that the depletion of stratospheric ozone had contributed to Hadley cell 53 

widening in the Southern Hemisphere in austral summer. It also mentioned that in contrast to a simulated 54 

weakening in response to GHG forcing, the Walker circulation had actually strengthened since the early 55 
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1990s, precluding any detection of human influence. 1 

 2 

Hadley cell width 3 

Since AR5, studies identify dependence on metrics of the trends in the edge latitude of Hadley cells (Davis 4 

and Birner, 2017; Waugh et al., 2018). Grise et al. (2019) find that a metric based on surface zonal winds, 5 

which are well constrained by surface observations, best compares reanalyses with CMIP5 models. With this 6 

method and new reanalysis products, the CMIP5 historical simulation ensembles simulate comparable mean 7 

states and variability of the edge latitude of Hadley cells to those observed (Grise et al., 2019). Furthermore, 8 

the CMIP5 (Davis and Birner, 2017; Grise et al., 2018) and CMIP6 (Figure 3.14:) historical simulation 9 

ensembles capture the observed poleward shifting trend of the zonal-mean Hadley cell edges since around 10 

1980. The models confirm the contribution from human influence to this widening trend, mostly through 11 

GHG increase and stratospheric ozone depletion (Gerber and Son, 2014; Nguyen et al., 2015; Tao et al., 12 

2016a), although the mechanism remains inconclusive (Staten et al., 2018). However, a growing body of 13 

literature has found an important contribution from internal variability, including the Pacific Decadal 14 

Variability (PDV; Section 3.7.6), on the observed Hadley cell expansion for this period (Allen et al., 2014; 15 

Allen and Kovilakam, 2017; Mantsis et al., 2017; Amaya et al., 2018; Grise et al., 2018). Indeed, the 16 

simulated ensemble-mean expansion is much weaker than in reanalyses (Davis and Birner, 2017; Grise et al., 17 

2018; Nguyen et al., 2015). In the annual mean, internal variability contributed to the observed zonal-mean 18 

Hadley cell expansion since 1980 at least comparably with human influence (Allen and Kovilakam, 2017; 19 

Amaya et al., 2018). The human-induced change has not yet emerged out of the range of internal variability 20 

in the Northern Hemisphere (Quan et al., 2018; Grise et al., 2019), whereas for 3 out of the 4 reanalyses 21 

assessed in Figure 3.14: the trend in the Southern Hemisphere boundary is outside the 5-95th percentile range 22 

of internal variability in CMIP6. For the Southern Hemisphere summer when the simulated human influence 23 

is strongest, the trend in 2 out of the 4 reanalyses fall outside the 5-95th percentile range of internal variability 24 

(Grise et al., 2018, 2019; Tao et al., 2016). Regionally, while Kim et al. (2017b) find that the observed shift 25 

of the South Atlantic Hadley Cell edge exceeds the 95th percentile of internal variability in CMIP5 piControl 26 

simulations based on a sea level pressure (SLP)-based metric, this is not detected in other metrics in (Grise et 27 

al., 2019). It is also noteworthy that many CMIP5 models underrepresent the magnitude of the PDV (Section 28 

3.7.6), implying potential overconfidence on the detection of human influence on the Hadley cell expansion. 29 

Yet, CMIP6 models less suffer from this bias (Section 3.7.6). 30 

 31 

Walker circulation strength 32 

Historical CMIP5 simulations reproduce the mean state of the Walker circulation with reasonable fidelity, 33 

evidenced by the spatial pattern correlations of equatorial zonal mass stream function between models and 34 

observations being larger than 0.88 (Ma and Zhou, 2016). On average, historical CMIP5 simulations also 35 

simulate a weakening of the Pacific Walker circulation throughout the 20th century (DiNezio et al., 2013; 36 

Sandeep et al., 2014; Kociuba and Power, 2015). This weakening is accompanied by reduction and 37 

enhancement of convective activity over the Maritime Continent and the central Equatorial Pacific, 38 

respectively, and weakening of equatorial zonal SST gradient across the eastern Indian Ocean through the 39 

Pacific (DiNezio et al., 2013; Sandeep et al., 2014; Kociuba and Power, 2015), consistent with CMIP3 40 

(Vecchi et al., 2006; Vecchi and Soden, 2007). However, observations show substantial decadal variability 41 

in Walker circulation strengthen (Section 2.3.1.4.1). Studies based on in-situ observations of sea level 42 

pressure show weakening of the Pacific Walker circulation since the late 19th century (DiNezio et al., 2013; 43 

Bordbar et al., 2017) and the 1950s (further confirmed by surface wind and cloudiness; Bellomo and 44 

Clement, 2015; Tokinaga et al., 2012), whereas L’Heureux et al. (2013) find strengthening since 1950-2011 45 

based on blended sea level pressure data from in-situ observations and reanalyses. Trends since around 1980 46 

in in-situ and satellite observations and reanalyses exhibit strengthening of the Pacific Walker circulation and 47 

SST gradient (L’Heureux et al., 2013; Boisséson et al., 2014; England et al., 2014; Kociuba and Power, 48 

2015; Ma and Zhou, 2016). While these trends since around 1980 are contrary to CMIP5 ensemble mean, 49 

AGCM simulations forced by observed SST reproduce the Walker circulation strengthening (Boisséson et 50 

al., 2014; Ma and Zhou, 2016), suggesting dominance of internal variability (Bordbar et al., 2017). Yet, this 51 

Pacific Walker circulation strengthening found in reanalyses is outside of the CMIP5 ensemble spread 52 

(England et al., 2014; Kociuba and Power, 2015). This may be caused by overestimation of the strengthening 53 

in reanalyses (Chung et al., 2019) or underestimation of the magnitude of the PDV in CMIP5 models 54 

(Kociuba and Power, 2015; Section 3.7.6). DiNezio et al. (2013) compare the observed weakening trend of 55 



Second Order Draft Chapter 3 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 3-30 Total pages: 180 

the Walker circulation trend over the period 1870-2004, which may be subject to large observational 1 

uncertainty, with CMIP5 trends, finding that the models underestimate the weakening trend. Models suggest 2 

that while greenhouse gas increases drive a weakening of the Walker circulation, aerosols drive a 3 

strengthening (DiNezio et al., 2013; Takahashi and Watanabe, 2016; Hua et al., 2018), but large 4 

uncertainties remain (Hua et al., 2018; Oudar et al., 2018). 5 

 6 

Contrary to the model ensemble mean trends, and reflecting long-term changes observed in the Walker 7 

circulation, the equatorial zonal SST gradient from the eastern Indian Ocean through the Pacific has 8 

strengthened since 1900 (Coats and Karnauskas, 2017) and since the 1950s (Seager et al., 2019), although 9 

observational uncertainties are large (Deser et al., 2010; Tokinaga et al., 2012). CMIP5 historical simulations 10 

fail to capture the trend since the 1950s (Seager et al., 2019), which Seager et al. (2019) attribute to mean 11 

state biases in the models changing the sign of the zonal SST gradient response to greenhouse gas forcing. 12 

Yet, Watanabe et al. (submitted) find that large ensemble simulations by a few coupled models capture the 13 

observed strengthening since the 1950s, due in part to the realistic magnitude of PDV, suggesting an 14 

important contribution from internal variability. Coats and Karnauskas (2017) also find that the anthropgenic 15 

influence on the SST gradient is yet to emerge out of internal variability even on centennial timescales. 16 

 17 

In summary, there is medium confidence that greenhouse gas increases and stratospheric ozone depletion 18 

have contributed to the observed zonal-mean Hadley cell expansion in the Southern Hemisphere since 19 

around 1980. However, the Hadley cell expansion in the Northern Hemisphere and changes in the Pacific 20 

Walker circulation strength are within the range of internal variability (medium confidence). The latter 21 

assessment is supported by studies since AR5, which identify the important role of the PDV and other 22 

internal variability on long-term changes in both the zonal-mean Hadley cell extent and Walker circulation 23 

strength. However, differing views in the literature regarding human influence on the Walker circulation 24 

changes and limited process understanding prevent higher confidence. The fact that detection of human 25 

influence on the Southern Hemisphere zonal-mean Hadley cell expansion is sensitive to the choice of 26 

reanalysis datasets, along with the sensitivity to metric choice and limited understanding on the mechanism, 27 

makes the confidence level of the former assessment medium despite increasing model evidence on the role 28 

of human influence.  29 

 30 

 31 

[START FIGURE 3.14 HERE] 32 

 33 

 1980-2013 trend of subtropical edge latitude of the Hadley cells in (a) the Northern Hemisphere for 34 

annual mean and (b-c) Southern Hemisphere for (b) annual mean and (c) DJF. Positive values indicate 35 

northward shifts. Histograms are based on historical (red) and 34-year segments of piControl (grey) 36 

simulations of CMIP6. Horizontal lines indicate MME means of historical simulations of CMIP6 (red) 37 

and CMIP5 (blue; extended with RCP4.5) along with reanalyses. The edge latitude is defined where the 38 

surface zonal wind velocity changes sign from negative to positive, as described in the Appendix of Grise 39 

et al., (2018). Produced with 22 CMIP6 models (192 members of historical and 338 segments of 40 

piControl simulations) and 20 CMIP5 models (99 members). 41 

 42 

[END FIGURE 3.14 HERE] 43 

 44 

 45 

3.3.3.2 Global Monsoon 46 

 47 

Monsoons are seasonal transitions of regimes in atmospheric circulation and precipitation in association with 48 

redistribution of moist static energy (Biasutti et al., 2018). The global monsoon encompasses all the 49 

monsoon systems with specific metrics (Wang and Ding, 2008). Assessments of regional monsoon changes 50 

are made in Chapters 8 and 10. 51 

 52 

AR5 assessed that CMIP5 models better reproduce monsoons than CMIP3 models but biases remain in  53 

domains and intensity (high confidence). There were no detection and attribution assessment statements on 54 

the decreasing trend of global monsoon precipitation over land from the mid-20th century to the 1980s or the 55 

increasing trend of global monsoon precipitation afterwards. Paleoclimate information on monsoons was 56 
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mostly regional. 1 

 2 

Reproducing monsoons in terms of domain, precipitation amount, and timings of onset and retreat remains 3 

difficult. While CMIP5 historical simulations correctly capture global monsoon domains and intensity based 4 

on summer and winter precipitation difference, they underestimate the extent and intensity of East Asian and 5 

North American monsoons while overestimating those of western North Pacific monsoon (Lee and Wang, 6 

2014; Yan et al., 2016a). Wang et al. (submitted) report that CMIP6 models better reproduce the global 7 

monsoon domain and precipitation (Figure 3.15:), albeit with biases in annual mean precipitation in Southern 8 

Hemisphere monsoons and timing of onset. Notable inter-model differences are identified in CMIP5, with 9 

the MME mean outperforming individual models (Lee and Wang, 2014). Common biases are identified 10 

across CMIP5 models in the Northern Hemisphere summer monsoon. Thermodynamical biases associated 11 

with the South Asian summer monsoon are suggested to arise from overly smoothed model topography in 12 

CMIP5 models (Boos and Hurley, 2012). However, in AGCMs with increasing resolution of up to ~20 km, 13 

improvements in monsoon precipitation are not universal across regions and models, and overall 14 

improvements are unclear (Johnson et al., 2016; Ogata et al., 2017; Zhang et al., 2018b). 15 

 16 

Proxy evidence shows that global monsoon has varied with orbital forcing and GHGs (Chapter 2 Section 17 

2.3.1.4.2; Mohtadi et al., 2016; Seth et al., 2019). In model simulations for the mid-Pliocene, when globally 18 

averaged temperature was higher than present day in the equilibrium response to CO2, precipitation is larger 19 

in West African and South and East Asian monsoon than under the pre-industrial conditions, consistent with 20 

proxy evidence (Zhang et al., 2015; Sun et al., 2016b; Corvec and Fletcher, 2017), while proxy evidence is 21 

missing for the Southern Hemisphere monsoons. Models are also able to capture interhemispherically 22 

contrasting changes for the Last Interglacial in response to orbital forcing and GHGs, with wetter West 23 

African and Asian monsoons and a drier South American monsoon as revealed from proxies (Govin et al., 24 

2014; Gierz et al., 2017; Pedersen et al., 2017). During the mid-Holocene, global monsoons were stronger 25 

especially in the Northern Hemisphere with an expansion of the West African monsoon domain (Biasutti et 26 

al., 2018). CMIP5 PMIP simulations can qualitatively capture the stronger Northern Hemisphere monsoon 27 

(Jiang et al., 2015), but underestimate the expansion found in a proxy reconstruction (Harrison et al., 2015), 28 

which can be improved by imposing vegetation and dust changes (Pausata et al., 2016). Besides, while the 29 

models simulate a mid-Holocene decrease in the monsoons in Southern Africa and northern Australia proxy 30 

evidence suggests an increase, especially in southern Africa (Jiang et al., 2015). These studies indicate that 31 

models can qualitatively reproduce past global monsoon changes seen in proxies, but issues remain in 32 

hemispheric and regional monsoon changes and quantitative reproduction. Studies on last millennium 33 

simulations show that simulated global monsoon precipitation increases with global mean temperature, while 34 

changes in monsoon circulation and hemispheric monsoon precipitation depend on forcing sources (Liu et 35 

al., 2012; Chai et al., 2018).  36 

 37 

In the instrumental records, global summer monsoon precipitation intensity (measured by summer 38 

precipitation averaged over the monsoon domain) decreased from the 1950s to 1980s, followed by an 39 

increase (Chapter 2 Section 2.3.1.4.2; Figure 3.15:), mainly due to Northern Hemispheric land contributions. 40 

Model simulations over the instrumental era (Polson et al., 2014; Zhang et al., 2018c) and last millennium 41 

(Liu et al., 2012; Chai et al., 2018) show that GHG increases act to enhance Northern Hemisphere summer 42 

monsoon precipitation intensity. Since the mid-20th century, however, this effect was overwhelmed by 43 

influence from anthropogenic aerosols (Polson et al., 2014; Guo et al., 2015; Zhang et al., 2018c). Besides 44 

these human influences, the global monsoon is sensitive to internal variability and natural forcing including 45 

ENSO and volcanic aerosols on interannual time scales and PDV and Atlantic Multidecadal Variability 46 

(AMV; Section 3.7.7) on decadal to multidecadal time scales (Liu et al., 2016; Wang et al., 2013, 2018; but 47 

note the possibility that AMV in the 20th century has been partly driven by aerosols; see Section 3.7.7). A 48 

CMIP5 multi-model study by Zhang et al. (2018b) finds that observed 1951-2004 trends of the global and 49 

Northern Hemisphere summer land monsoon precipitation intensity are well captured by historical 50 

simulations, and CMIP6 models show similar results for global land summer monsoon precipitation (Figure 51 

3.15c). They also find that the multi-model ensemble mean trend of historical simulations, dominated by 52 

anthropogenic aerosol forcing contributions, emerges out of the 90% range of internally-driven trends in 53 

piControl simulations. However, it should be noted that CMIP5 models tend to underrepresent the PDV 54 

magnitude (Section 3.7.6). An enhancement in global summer monsoon precipitation since the 1980s is also 55 
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captured by the CMIP6 models (Figure 3.15:c). This tendency is accompanied by intensification of the 1 

Northern Hemisphere summer monsoon circulation, which appears to be outside the range of increase 2 

simulated by the CMIP6 ensemble (Figure 3.15:d). An important contribution of AMV to the subsequent 3 

enhancements in global monsoon precipitation and circulation has been pointed out (Kamae et al., 2017). 4 

However, it is unclear whether human influence has made a significant contribution to these increases 5 

directly through GHG increases or aerosol changes or indirectly via aerosol forcing on AMV. 6 

 7 

In summary, there is medium confidence that anthropogenic aerosols contributed to weakening of global land 8 

summer monsoon precipitation intensity from the mid- to late 20th century. Although there is possibility that 9 

GHG increases have contributed to the subsequent intensification of global land summer monsoon since the 10 

late 20th century, evidence is limited on whether this human-induced change has emerged out of the range of 11 

internal variability. The assessment on the mid- to late 20th century change is supported by multi-model 12 

detection and attribution studies which find the important role of anthropogenic aerosols in the weakening 13 

trend, but the confidence level is inhibited by the strong influences of multidecadal modes of variability 14 

which are often underrepresented in CMIP5 (Section 3.7.6 and 3.7.7). In addition, while CMIP5 models can 15 

capture the domain and precipitation intensity of the global monsoon and its changes found in paleoclimate 16 

proxies, biases remain in their regional representations, and they are unsuccessful in quantitatively 17 

reproducing changes in paleo reconstructions (high confidence). CMIP6 models better reproduce the domain 18 

and precipitation intensity of the global monsoon, but with low confidence due to limited evidence. 19 

 20 

 21 

[START FIGURE 3.15 HERE] 22 

 23 

 (a-b) Climatological summer-winter range of precipitation rate (scaled by annual mean precipitation rate; 24 

shading) and 850 hPa wind velocity (arrows) based on (a) GPCP and ERA5 and (b) MME mean of 25 

CMIP6 historical simulations for 1979-2014 (1 member each). Hatched regions are the monsoon domain 26 

based on the definition by (Wang and Ding, 2008) (c-d) 20-year running means of (c) summertime 27 

precipitation rate averaged over the monsoon regions over land (mm day–1) and (d) the NH summer 28 

monsoon circulation index defined as the vertical shear of zonal winds between 850 and 200 hPa levels 29 

averaged over 0º-20ºN, 120ºW-120ºE (Wang et al., 2013; m s–1). Summer and winter are defined for 30 

individual hemispheres: May through September for NH summer and SH winter, and November through 31 

March for NH winter and SH summer. Produced with 40 CMIP6 models (each 1 member). 32 

 33 

[END FIGURE 3.15 HERE] 34 

 35 

 36 

3.3.3.3 Extratropical Jets, Storm Tracks and Blocking 37 

 38 

Extratropical jets are wind maxima in the upper troposphere marking zones of baroclinic instability. 39 

Anomalies in the position of these jets are often associated with storms, blocking, and weather extremes. 40 

Extratropical storms result from such baroclinic instability; they are essential aspects of the equator-to-pole 41 

transport of heat that is a characteristic of the Earth’s climate. Blocking refers to long-lived, stationary high-42 

pressure systems that are often associated with a poleward displacement of the jet. Section 11.7.2 and 43 

chapter 10 discuss these features in more detail. 44 

 45 

AR5 concluded that models were able to capture the general characteristics of extratropical cyclones and 46 

storm tracks, although it also noted that most models underestimated cyclone intensity, that biases in cyclone 47 

frequency were linked to biases in sea surface temperatures, and that resolution can play a significant role in 48 

the quality of the simulation of storms. Similarly for blocking, AR5 found with high confidence that its 49 

simulation was improved due to increases in resolution. AR5 did not specifically assess changes in southern-50 

hemisphere storm track characteristics or blocking. 51 

 52 

Since AR5, new research using CMIP5 and CMIP6 models has confirmed that increasing the model 53 

resolution usually improves the simulation of cyclones and blocking and seasons (Davini et al., 2017; Davini 54 

and D’Andrea, submitted; Priestley et al., submitted; Schiemann et al., 2017; Zappa et al., 2013) and that the 55 

model performance with respect to the simulation of cyclones and that of blocking events are correlated 56 
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(Zappa et al., 2014), suggesting biases in either are aspects of the same underlying problem in models 1 

(Figure 3.16:). In the North Pacific basin the annual-mean blocking frequency is now well simulated 2 

compared to earlier evaluations but substantial errors of the blocking frequency remain in the Euro-Atlantic 3 

sector (Davini and D’Andrea, 2016; Dunn-Sigouin and Son, 2013; Mitchell et al., 2017; Woollings et al., 4 

2018b; Figure 3.16). While there is a resolution dependence in the size of this bias, even at very high 5 

resolution blocking in the Euro-Atlantic sector remains underestimated, and there is evidence of a 6 

compensation of errors as the resolution is increased (Schiemann et al., 2017). Davini and D’Andrea 7 

(submitted) show that while the simulation of blocking improves with increasing resolution in CMIP3, 8 

CMIP5, and CMIP6 models, other model deficiencies are also contributing, particularly to the 9 

underestimation of Euro-Atlantic blocking.  10 

 11 

Regarding the simulation of storm tracks, for the North Pacific storm track CMIP6 simulations simulations 12 

indicate large remaining underestimations of cyclone frequencies during summer (JJA) which for the low-13 

resolution models have essentially remained unchanged versus CMIP5, and only a small resolution 14 

dependence of this bias (Priestley et al., submitted). During winter (DJF), both CMIP5 and CMIP6 models 15 

tend to place the North Pacific storm track too far equatorward, leading to an overestimation of cyclones 16 

between 30 and 40°N in the Pacific and an underestimation to the north of it. Both low- and high-resolution 17 

models show this pattern, but low-resolution models generally simulate fewer cyclones throughout the North 18 

Pacific (Priestley et al., submitted).  19 

 20 

In winter, the North Atlantic storm track remains displaced to the south and east in many models, leading to 21 

underestimations of cyclone frequencies near the North American coast and overestimations in the eastern 22 

North Atlantic. Higher-resolution CMIP6 models perform slightly better in this regard than low-resolution 23 

models. In summer (JJA), cyclone frequencies throughout the extratropical North Atlantic, which were 24 

substantially underestimated in CMIP5, have improved in CMIP6 high-resolution models. In low-resolution 25 

CMIP6 models, the problem is essentially unchanged (Priestley et al., submitted). 26 

 27 

For the Southern Hemisphere (not considered in AR5), (Priestley et al., submitted) find considerable 28 

improvements in the placement of the Southern Ocean storm track during summer (DJF) in CMIP6 models 29 

versus CMIP5. Relative to CMIP5, both low- and high-resolution CMIP6 models have increased track 30 

densities south of about 55°S and decreases between about 40 and 55°S, in better agreement with 31 

observations than CMIP5 models. CMIP5 models simulate a storm track that is positioned substantially too 32 

far equatorward. This remains the case in CMIP6 high-resolution models, although the degree of 33 

misplacement is reduced. In CMIP6 low-resolution models, an opposite bias occurs, with mostly 34 

insignificant overestimations of the cyclone track density occurring near the Antarctic coast and 35 

underestimations in some lower-latitude regions. In winter (JJA), the biases found in CMIP5 are only 36 

slightly improved on in CMIP6, with models continuing to underestimate the broad maximum cyclone track 37 

density in the south-eastern Indian Ocean and overestimating the minimum in the south-western South 38 

Pacific. 39 

 40 

For the Northern Hemisphere, new research since AR5 has found trends in the occurrence of extratropical 41 

cyclones. An observed reduction in cyclone activity by about 4% per decade in the Northern Hemisphere in 42 

summer (Chang et al., 2016, Chapter 2) may be associated with human-induced warming. Although there is 43 

a mechanistic explanation for this effect (mainly decreasing baroclinic instability due to larger warming in 44 

the Arctic than at lower latitudes), CMIP5 models generally underestimate this trend (Chang et al., 2016), 45 

and there is a general paucity of studies examining this effect. Furthermore, feedback mechanisms associated 46 

with clouds may be responsible for substantial inter-model spread (Chang et al., 2016; Voigt and Shaw, 47 

2016). In boreal winter, recent studies have suggested a potential influence of the rapid Arctic warming on 48 

observed intensification of Northern Hemisphere storm track activity in the past few decades, while some 49 

other studies question this possibility (Cross-chapter Box 10.1).  50 

 51 

For the Southern Hemisphere, studies using CMIP5 and other models imply that both ozone depletion and 52 

increasing greenhouse gases have caused substantial atmospheric circulation change since the 1960s when 53 

concentrations of ozone-depleting substances started to increase (Eyring et al., 2013; Iglesias-Suarez et al., 54 

2016; Karpechko et al., 2018; Son et al., 2018). In particular, ozone depletion, during austral summer, has 55 
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been linked to a poleward shift of the westerly jet and Southern-Hemisphere circulation zones and a 1 

southward expansion of the tropics (Kang et al., 2011), which is associated with a strengthening trend of the 2 

Southern Annular Mode (SAM; Section 3.7.2). This has been well reproduced by climate models with 3 

prescribed historical ozone concentration or interactive ozone chemistry (Gerber and Son, 2014; Son et al., 4 

2018; Figure 3.17:). There is limited evidence that ozone depletion has also affected stratospheric and 5 

tropospheric variability, especially the frequency, duration, and intensity of SAM anomalies (Dennison et al., 6 

2015). For autumn, a role for SSTs in the tropical Pacific Ocean has been proposed, driving a continuing 7 

strengthening of the SAM in summer/autumn despite a levelling-off of ozone depletion (Clem et al., 2017) 8 

(Schneider et al., 2015). 9 

 10 

There is only one contiguous blocking region in the Southern Hemisphere, with the blocking frequency 11 

maximizing in the South Pacific and minimizing in the southern Indian Ocean regions (Parsons et al., 2016). 12 

CMIP5 simulations agree relatively well with ERA-Interim in this region regarding the frequency and 13 

distribution of blocking events (Parsons et al., 2016). The blocking frequency is anticorrelated with the 14 

amplitude of the SAM. Ozone depletion, through stratosphere-troposphere coupling, may have caused an 15 

increase in the blocking frequency in the South Atlantic sector (Dennison et al., 2016); this finding requires 16 

confirmation using a multi-model approach.  17 

 18 

In summary, there is low confidence that an observed decrease in the frequency of Northern Hemisphere 19 

extratropical cyclones is linked to anthropogenic influence. In the Southern Hemisphere, there is high 20 

confidence that human influence has contributed to the observed poleward shift of the jet in austral summer, 21 

while confidence is low for human influence on the historical blocking activity. The low confidence 22 

statements are due to the limited number of studies available. The shift of the Southern Hemisphere jet is 23 

correlated with modulations of the SAM, and justification for the associated high-confidence statement on 24 

attribution of changes in the SAM is provided in Section 3.7.2. Models have medium performance in 25 

reproducing the extratropical jets, storm track and blocking activity, with increased resolution sometimes 26 

corresponding to better performance, but important shortcomings remain, particularly for the Euro-Atlantic 27 

sector of the Northern Hemisphere (high confidence).  28 

 29 

 30 

[START FIGURE 3.16 HERE] 31 

 32 

 Instantaneous Northern-Hemisphere blocking frequency (% of days) in the extended northern winter 33 

season (DJFM) following the (D’Andrea et al., 1998) definition of blocking, for the years 1961-2000. 34 

Reproduced from (Davini and D’Andrea, submitted), their figure 11. Note the good simulation of Pacific 35 

blocking but a persistent remaining underestimation of the blocking frequency in the Euro-Atlantic 36 

sector. The lower two panels show the results from two HighResMIP models. (Figure produced with 37 

ESMValTool v2.0a1.) 38 

 39 

[END FIGURE 3.16 HERE] 40 

 41 

 42 

[START FIGURE 3.17 HERE] 43 

 44 

 Long-term mean (thin black contour) and linear trend (colour) of zonal mean DJF zonal winds for (a) 45 

ERA-Interim and (b) CMIP6 over 1979-2014. Only one ensemble member per model is included. (Figure 46 

produced with ESMValTool v1.0.) 47 

 48 

[END FIGURE 3.17 HERE] 49 

 50 

 51 

3.3.3.4 Stratospheric Sudden Warming Activity 52 

 53 

Sudden stratospheric warmings (SSWs) are stratospheric weather events associated with anomalously high 54 

temperatures at high latitudes. Section 2.3.1.4.1 discusses the definition and observational aspects of SSWs. 55 

 56 
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Seviour et al. (2016), analyzing stratosphere-resolving CMIP5 models, find that models, on average, 1 

reproduce the observed frequency of vortex splits (one form of SSWs) but with a wide range of model-2 

specific biases. There is a correlation between the quality of the mean state and the bias in SSW frequency. 3 

SSWs are generally associated with SLP anomalies, although the resultant mean anomaly in the models 4 

differs substantially from what is found in reanalyses (Seviour et al., 2016). Unlike high-top models, low-top 5 

models, which make up more than half of the CMIP5 ensemble, underestimate the frequency of SSWs 6 

(Osprey et al., 2013; Kim et al., 2017a).  7 

 8 

Some studies find an increase in the frequency of SSWs under increasing GHGs (e.g. Kim et al., 2017a; 9 

Schimanke et al., 2013; Young et al., 2013). However, this behaviour is not robust across ensembles of 10 

chemistry-climate models (Mitchell et al., 2012; Ayarzagüena et al., 2018). There is an absence of studies 11 

specifically focusing on simulated trends in SSWs during recent decades, possibly because large interannual 12 

variability would mask any trend. Such an absence of a trend and considerably large variability would be 13 

consistent with a recent reconstruction of SSWs extending back to 1850, based on surface observations of 14 

the NAO (Domeisen, 2019), although this timeseries does have limitations as it is not based on direct 15 

observations of SSWs. 16 

In summary, an anthropogenic influence on the frequency or other aspects of SSWs has not yet been robustly 17 

detected. There is low confidence in the ability of models to simulate any such trends over the historical 18 

period because of large natural interannual variability and also due to common substantial biases in the 19 

simulated mean state that impact on the simulated frequency of SSWs. 20 

 21 

 22 

3.4 Human Influence on the Cryosphere 23 

 24 

3.4.1 Sea Ice 25 

 26 

3.4.1.1 Arctic Sea Ice 27 

 28 

The AR5 concluded that “anthropogenic forcings are very likely to have contributed to Arctic sea ice loss 29 

since 1979” (Bindoff et al., 2013), based on studies showing that models can reproduce the observed decline 30 

only when including anthropogenic forcings and formal attribution studies. Since the beginning of the 31 

modern satellite era in 1979, Northern Hemisphere sea ice extent has exhibited significant declines in all 32 

months with the largest reduction in September (see Figure 3.18: and Section 2.3.2.1.1 for more details on 33 

observed changes). CMIP5 models also simulate Northern Hemisphere sea ice loss over the satellite era but 34 

with large differences among models (e.g., Massonnet et al., 2012; Stroeve et al., 2012). The envelope of 35 

simulated ice loss across model simulations encompasses the observed change, although observations fall at 36 

the low end of the CMIP5 distribution. In contrast, available CMIP6 models on average capture the observed 37 

Arctic sea ice decline well, albeit with large inter-model spread (Figure 3.18:). Notz et al. (submitted) found 38 

that CMIP6 models better capture the sensitivity of Arctic sea ice area to the global warming. For more 39 

information on comparisons with observations, see Section 9.3.1.1. Ivanova et al. (2016) evaluated the 40 

regional distribution of sea ice in the CMIP5 models, proposing and evaluating metrics based on the 41 

longitudinal distribution of sea ice, to reduce the effects of the compensating errors which may be occuring 42 

when evaluating models on the basis of the hemispheric mean sea ice extent (see also Section 9.3.1.1 for 43 

details on the physical processes associated with regional changes in Arctic sea ice). 44 

 45 

Since AR5, there have been several new detection and attribution studies on Arctic sea ice. Kirchmeier-46 

Young et al. (2017) compared the observed time series of the September sea ice extent (SIE) over the period 47 

1979-2012 with those from different large ensembles (CanEAM2, CESM1, IPSL, and CMIP5) using an 48 

optimal fingerprinting technique. They detected anthropogenic signals which were separable from natural 49 

forcing due to solar irradiance variations and volcanic aerosol, supporting previous findings (Figure 3.18; 50 

Kay et al., 2011; Min et al., 2008; Notz and Marotzke, 2012; Notz and Stroeve, 2016). Using selected 51 

CMIP5 models and three independently derived sets of observations, Mueller et al. (2018) detected 52 

fingerprints from greenhouse gases, natural, and other anthropogenic forcings simultaneously in the 53 

September Arctic SIE over the period 1953-2012. They further showed that about a quarter of the 54 

greenhouse gas-induced decrease in SIE has been offset by an increase due to other anthropogenic forcing 55 
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(mainly aerosols). Similarly, Gagné et al. (2017a) suggested that the observed increase in Arctic sea ice 1 

concentration during 1950-1975 was primarily due to the cooling contribution of anthropogenic aerosols 2 

forcing based on single model simulations. Gagné et al. (2017b) identified a detectable increase in Arctic SIE 3 

in response to volcanic eruptions using CMIP5 and four observational datasets. 4 

 5 

Differences in sea ice loss among the models (Figure 3.18:) have been attributed to a number of factors (see 6 

Section 9.3.1.1 for more information on physical processes associated with sea ice loss). These factors 7 

include the late 20th century simulated sea ice state (Massonnet et al., 2012), the magnitude of changing 8 

ocean heat transport (Mahlstein and Knutti, 2011), and the rate of global warming (e.g., Gregory et al., 2002; 9 

Mahlstein and Knutti, 2012; Rosenblum and Eisenman, 2017). Sea ice thermodynamic considerations 10 

indicate that the magnitude of sea ice variability and loss depends on ice thickness (Bitz, 2008; Massonnet et 11 

al., 2018) and hence the climatology simulated by different models may influence their projections of 12 

change. This allows for the possibility of using observational constraints to sub-select models and thereby 13 

narrow projection uncertainty (e.g. Knutti et al., 2017; Massonnet et al., 2012; Senftleben et al., 2019) 14 

although other studies suggest that this is difficult due to the short observational record (Stroeve and Notz, 15 

2015). 16 

 17 

An important consideration in comparing Arctic sea ice loss in models and observations is the role of 18 

internal variability. Using ensemble simulations from a single model, Kay et al. (2012) suggested that 19 

internal variability could account for about half of the observed September ice loss. More recently, large 20 

ensemble simulations have been performed with many more ensemble members (Kay et al., 2015). These 21 

enable a more robust characterization of internal variability in the presence of forced anthropogenic change. 22 

Using such large ensembles, some studies discussed the influence of internal variability on Arctic sea-ice 23 

trends (Swart et al., 2015) and the timing of ice-free summer conditions (Jahn et al., 2016). Song et al., 24 

(2016) also compared thre trends in the forced and unforced simulations using multiple climate models and 25 

found that the natural internal variability explains no more than 42.3% of the observed September sea ice 26 

melting trend, confirming previous studies (Stroeve et al., 2012). Based on the large ensembles of CESM and 27 

CanESM, September Arctic sea ice extent variance first increases and then decreases as SIE declines from its 28 

pre-industrial value (Kirchmeier-Young et al., 2017; Mueller et al., 2018) consistent with previous work 29 

(Goosse et al., 2009), but neither study found a strong sensitivity of detection and attribution results to the 30 

change in variability. Further work has indicated that internally-driven summer atmospheric circulation 31 

trends with enhanced ridging over the Arctic Ocean play an important role in the observed Arctic sea ice loss 32 

(Ding et al., 2017) and a fingerprint analysis using the CESM large ensemble suggests that this internal 33 

variability accounts for 40-50% of the observed September ice decline (Ding et al., 2019). Internally-34 

generated decadal-scale tropical variability and associated atmospheric teleconnections have likely 35 

contributed to the changing atmospheric circulation in the Arctic and the associated rapid sea ice decline 36 

from 2000 to 2014 (Meehl et al., 2018). 37 

 38 

Some recent studies evaluated the human contribution to recent record minimum SIE events in the Arctic. 39 

Analysing CMIP5 simulations, Zhang and Knutson (2013) found that the observed 2012 record low in 40 

September Arctic SIE is inconsistent with internal climate variability alone. Based on several large 41 

ensembles, Kirchmeier-Young et al. (2017) concluded that the observed 2012 SIE minimum is extremely 42 

unlikely in a scenario excluding human influence. Fučkar et al. (2016) showed that the underlying climate 43 

change has contributed to the record low March Arctic SIE in 2015. 44 

 45 

Based on the new attribution studies since AR5, we conclude that it is very likely that anthropogenic forcings 46 

mainly due to greenhouse gas increases have contributed substantially to Arctic sea ice loss since 1979, 47 

explaining at least half of the observed decreasing trend in summer sea-ice extent. There is new evidence that 48 

increases in anthropogenic aerosols have offset part of the greenhouse-gas-induced Arctic sea ice loss since 49 

the 1950s. Despite large differences in the mean sea ice state in the Arctic, Arctic sea ice loss is captured by 50 

all CMIP5 models and available CMIP6 models. Nonetheless, large inter-model differences in the Arctic sea 51 

ice decline remain, limiting our ability to quantify forced changes and internal variability contributions. 52 

 53 

 54 

 55 
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[START FIGURE 3.18 HERE] 1 

 2 

 Climatology (x-axis) and trend (y-axis) in Arctic sea ice extent in September (left) and Antarctic sea ice 3 

extent in February (right) for 1979-2014 from CMIP5 (upper) and CMIP6 (lower) models. All individual 4 

models (ensemble means) and the multi-model mean values are compared with the observations 5 

(HadISST, NSIDC NASA Team, and NSIDC Bootstrap). Solid line indicates a linear regression slope 6 

which is statistically significant at 5% level. 7 

 8 

[END FIGURE 3.18 HERE] 9 

 10 

 11 

3.4.1.2 Antarctic Sea Ice  12 

 13 

AR5 concluded that “there is low confidence in the attribution of the observed increase in Antarctic SIE 14 

since 1979” (Bindoff et al., 2013) due to the limited understanding of the external forcing contribution as 15 

well as the role of internal variability. Based on a least squares regression, Antarctic sea ice extent has 16 

exhibited a small increase in all months over the 1979-2017 period (Figure 3.19:). However, these trends are 17 

often not statistically significant and starting in late 2016, anomalously low sea ice has been present (see also 18 

Section 2.3.2.1.2). The mean hemispheric sea ice changes result from much larger, but partially 19 

compensating, regional changes with increases in the western Ross Sea and Weddell Sea and declines in the 20 

Bellingshausen and Amundsen Seas (Hobbs et al., 2016). Observed regional trends have been particularly 21 

large in austral fall (see Section 2.3.2.1.2, and also Section 9.3.2.1 for more details of regional changes and 22 

related physical processess). Starting in austral spring of 2016 the ice extent decreased strongly (Turner et 23 

al., 2017) and has since remained anomalously low (Figure 3.19:). This decrease has been associated with 24 

anomalous atmospheric conditions associated with teleconnections from warming in the eastern Indian 25 

Ocean and a negative Southern Annular Mode (Chenoli et al., 2017; Stuecker et al., 2017; Schlosser et al., 26 

2018; Meehl et al., 2019; Purich and England, 2019; Wang et al., 2019a). A decadal-scale warming of the 27 

near-surface ocean that resulted from strengthened westerlies also contributed to and helped to sustain the 28 

sea ice loss (Meehl et al., 2019).  29 

 30 

CMIP5 climate models generally simulate ice loss over the satellite era since 1979 (Mahlstein et al., 2013; 31 

Turner et al., 2013) in contrast to the observed change, and CMIP6 models also simulate Antarctic ice loss 32 

(Roach et al., submitted; Figure 3.19:). A number of studies have suggested that this discrepancy may be in 33 

part due to the role of internal variability in the observed change (Mahlstein et al., 2013; Polvani and Smith, 34 

2013; Zunz et al., 2013; Meehl et al., 2016a; Turner et al., 2016), including teleconnections associated with 35 

tropical Pacific variability (Meehl et al., 2016a) and changing surface conditions resulting from multi-36 

decadal ocean circulation variations (Singh et al., 2019). However, when the spatial pattern is considered, 37 

trends in the summer and autumn (from 1979-2005) appear outside the range of internal variability (Hobbs et 38 

al., 2015). This suggests that the models may have an unrealistic simulation of the Antarctic sea ice forced 39 

response or internal variability of the system. Discrepancies among the models in simulated sea ice 40 

variability (Zunz et al., 2013), the sea ice climatological state (Roach et al., 2018), upper ocean temperature 41 

trends (Schneider and Deser, 2018), Southern hemisphere westerly wind jet trends (Purich et al., 2016), or 42 

the sea ice response to Southern Annular Mode variations (Ferreira et al., 2014; Holland et al., 2017; Kostov 43 

et al., 2017; Landrum et al., 2017) may all play some role in explaining these differences with the observed 44 

trends. Increased fresh water fluxes caused by mass loss of the Antarctic ice sheet (either by melting at the 45 

front of ice shelves or via iceberg calving) have been suggested as a possible mechanism driving the 46 

multidecadal Antarctic sea ice expansion (Bintanja et al., 2015; Pauling et al., 2016). A recent study based on 47 

decadal predictability suggests that initializing the state of the Antarctic bottom water cell can reproduce the 48 

observed Antarctic sea ice increase (Zhang et al., 2017), consistent with the suggestion that multidecadal 49 

variability associated with variations in deep convection has contributed to the observed increase in Antarctic 50 

sea ice since 1979 (Latif et al., 2013; Zhang et al., 2017, 2019) (see also Section 3.4.1.2). A comprehensive 51 

assessment of these mechanisms using a multi-model ensemble of simulations is still outstanding, and 52 

confidence in our understanding of this process remains low. 53 

 54 

There have been several studies which aimed to identify causes of the observed Antarctic SIE changes. 55 
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Gagné et al. (2015) assessed the consistency of observed and simulated changes in Antarctic SIE for an 1 

extended period using recovered satellite-based estimates, and found that the observed trends since the mid-2 

1960s are not inconsistent with model simulated trends. Studies based on the satellite period also indicate 3 

that the observed trends are largely within the range of simulated internal variability (Hobbs et al., 2016). A 4 

few distinct factors that led to the weak signal-to-noise ratio in Antarctic SIE trends have been further 5 

identified, which include large multi-decadal variability (Monselesan et al., 2015), the short observational 6 

record (e.g., Abram et al., 2013), and the limited model performances at representing the complex Antarctic 7 

climate system as discussed above (Bintanja et al., 2013; Uotila et al., 2014). 8 

 9 

In conclusion, the multidecadal increase and the subsequent abrupt decrease of Antarctic sea ice extent for 10 

1979-2015 and 2016-2019, respectively, are not generally captured by global climate models, and there is 11 

low confidence in the attribution of these changes in Antarctic sea-ice extent. 12 

 13 

 14 

[START FIGURE 3.19 HERE] 15 

 16 

 Seasonal evolution of observed and simulated Arctic (left) and Antarctic (right) sea ice extent (SIE) over 17 

1979–2017. SIE anomalies relative to the 1979–2000 means from observations (OBS from HadISST, 18 

NASA Team, and Bootstrap, top) and historical (ALL, middle) and hist-nat (NAT, bottom) simulations 19 

from CMIP5 and CMIP6 multi-models. These anomalies were obtained by computing non-overlapping 3-20 

year mean sea ice anomalies for March (February for Antarctic SIE), June, September, and December 21 

separately. CMIP5 ALL runs are extended by using RCP4.5 scenario runs after 2005 while CMIP6 ALL 22 

runs are extended by using SSP2-4.5 scenario runs after 2014. CMIP5 NAT runs ends in 2012. Number 23 

in bracket represents the number of models used. The multi-model mean is obtained by taking the 24 

ensemble mean for each model first and then averaging over models. Grey dots indicate multi-model 25 

mean anomalies stronger than inter-model spread (beyond ± 1 standard deviation). Units: 106 km2. 26 

 27 

[END FIGURE 3.19 HERE] 28 

 29 

 30 

3.4.2 Snow Cover 31 

 32 

Seasonal snow cover is a defining climate feature of the northern continents. Feedbacks linked to snow 33 

include the planetary albedo, snow melt and associated hydrological impacts, thermal insulation by snow, 34 

and vegetation feedbacks associated with snow. A variety of human activities are impacted by the presence 35 

of snow, e.g. transport. It is therefore of considerable interest that climate models correctly represent snow 36 

cover. Snow cover is discussd in more detail in Section 9.5.4. 37 

 38 

AR5 noted the strong linear correlation between Northern Hemisphere snow cover extent (SCE) and annual-39 

mean surface air temperature in CMIP5 models. It was assessed as likely that there had been an 40 

anthropogenic contribution to observed reductions in Northern Hemisphere snow cover since 1970. AR5 41 

assessed that CMIP5 models reproduced key features of observed snow cover well, including the seasonal 42 

cycle of snow cover over northerly regions of Eurasia and North America, but had more difficulties in more 43 

southerly regions with intermittent snow cover. AR5 also found that CMIP5 models underestimate the 44 

observed reduction in spring snow cover over this period (see also Brutel-Vuilmet et al., 2013; Thackeray et 45 

al., 2016; see Figure 3.20). This behaviour has been linked to how the snow-albedo feedback is represented 46 

in models (Thackeray et al., 2018). The CMIP5 multi-model ensemble has been shown to represent the 47 

snow-albedo feedback more realistically than CMIP3, although some individual models present in both 48 

ensembles have not improved or even got worse (Thackeray et al., 2018). There is still a systematic 49 

overestimation of the albedo of boreal forest covered in snow (Li et al., 2016c; Thackeray et al., 2015). 50 

Consequently the snow albedo feedback might have been overestimated by CMIP5 models (Xiao et al., 51 

2017). This suggests that processes other than snow albedo might be implicated in the underestimated trend 52 

in springtime snow cover. This is dealt with in more detail in Chapter 9. 53 

 54 

 55 

 56 
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[START FIGURE 3.20 HERE] 1 

 2 

 Time series of Northern Hemisphere March-April mean snow cover extent (SCE) from observations 3 

[OBS: Brown and Robinson (2011), 20CR2, and GLDAS2 data], CMIP5 (upper) and CMIP6 (lower) 4 

models’ simulations of the response to natural plus anthropogenic forcing (ALL), natural forcing only 5 

(NAT), and pre-industrial control simulations (CTL). 5-year mean anomalies are shown for the 1923-6 

2017 period (left) and 1951-2015 period (right) with the x-axis representing the centre years of each 5-7 

year mean. CMIP5 ALL simulations are extended by using RCP4.5 scenario simulations after 2005 while 8 

CMIP6 ALL simulations are extended by using SSP2-4.5 scenario simulations after 2014. ALL and NAT 9 

results are based on ensemble means for each model while CTL results are based on all available non-10 

overlapping segments. Shading indicates the 5-95% range of CMIP5 ALL simulations and min-max 11 

range of CMIP6 ALL simulations. Blue dotted lines represent min-max ranges of NAT simulations while 12 

green dotted lines indicate 5-95% ranges of CTL simulations. Number in brackets indicate the number of 13 

models used. Anomalies are relative to the average over 1971-2000. For models, SCE is restricted to ice-14 

free land (ice-free fraction ≥ 25%). Greenland is excluded from the spatial averages as it contains 15 

essentially perennial snow cover. (Updated from Najafi et al. (2016), their Figure 3). 16 

 17 

[END FIGURE 3.20 HERE] 18 

 19 

 20 

Like the CMIP5 models, the CMP6 models capture the negative trend in spring snow cover that has occured 21 

in recent decades (Figure 3.20:). Until about 1980, the models produce a generally stable February-March 22 

SCE, but after that, produce a substantial decline, reaching a loss of about 2 × 106 km2 in 2012-2017 relative 23 

to the 1971-2000 average. Compared to earlier studies which evaluted trends for 1979-2005 (Brutel-Vuilmet 24 

et al., 2013), both CMIP5 and CMIP6 models show improved agreement with the observations by simulating 25 

stronger declining trends during recent years. 26 

 27 

Several CMIP5-based studies have consistently attributed the observed Northern Hemisphere spring SCE 28 

changes (Hori et al., 2017) to anthropogenic influences (Rupp et al., 2013; Najafi et al., 2016), the observed 29 

changes being inconsistent with natural variability alone. Similarly, spring snow mass (SWE: Snow Water 30 

Equivalent) changes on the scale of the Northern Hemisphere have been attributed to greenhouse gas forcing 31 

(Jeong et al., 2017). In the Arctic (Brown et al., 2017), SWE changes are not expected to emerge from noise 32 

before the mid-21st century. Using individual forcing simulations from multiple CMIP6 models, Paik and 33 

Min (submitted) detected greenhouse gas influence in the observed decrease of early spring SCE during 34 

1925-2019, which was found to be separable from the responses to other forcings.  35 

 36 

In summary, it is very likely that anthropogenic influence contributed to the observed reductions in Northern 37 

Hemisphere springtime snow cover since 1950. There is evidence for some progress in representing the 38 

seasonality and geographical distribution of snow cover in CMIP6 in comparison to CMIP5 simulations. 39 

Both CMIP5 and CMIP6 models simulate strong declines in spring-time SCE during recent years, in general 40 

agreement with observations, causing the multi-model mean decreasing trend in spring-time SCE to now 41 

better agree with observations than in earlier evaluations, with anthropogenic signals robustly detected. 42 

Evidence has yet to emerge that interactions between vegetation and snow, found problematic in CMIP5, 43 

have indeed improved in CMIP6 models (Section 9.5.3). This lack of process understanding means there is 44 

medium confidence in the simulation of snow cover over the northern continents in CMIP6 model 45 

simulations. The models consistently link snow extent to surface-air temperature (Figure 9.24). With surface 46 

air warming linked to anthropogenic influences, particularly greenhouse gas increases, this provides 47 

additional evidence that reductions in snow cover are also caused by human activities. 48 

 49 

 50 

3.4.3 Glaciers and Ice Sheets 51 

 52 

While Chapter 9 (Sections 9.4 and 9.5) discusses process understanding of glaciers and ice sheets, as well as 53 

evaluation of standalone models, our focus here is on the evaluation of glaciers and ice sheets in the context 54 

of global climate models, as well as attribution of their large-scale changes. Land surface ice in the form of 55 

glaciers has been included in CMIP climate and Earth system models as components of the land sub-models 56 
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(LSMs) for many years. However, their representation is simplified and is omitted altogether in the less 1 

complex modelling systems. The Antarctic and Greenland ice sheets were absent in global climate models 2 

that pre-date CMIP6 (Eyring et al., 2016), however some preliminary analyses that used results from CMIP5 3 

to drive offline models were included in AR5 (Church et al., 2013b). In CMIP3 (Meehl et al., 2007) and 4 

CMIP5 (Taylor et al., 2012) land ice area fraction, a component of LSMs, was defined as a time-independent 5 

quantity, and in most model configurations was preset at the simulation initialization as a permanent land 6 

feature. In CMIP6 considerable progress has been made in improving and evaluating the representation of 7 

modelled land ice. For glaciers, an example is the expansion of the Joint UK Land Environment Simulator 8 

(JULES) LSM to enable elevated tiles. These more accurately simulate the altitudinal atmospheric affects on 9 

glaciers, in addition to enhancing model tiles to simulate a multi-layered snowpack (Shannon et al., 2019a). 10 

For ice sheets, for the first time in CMIP, CMIP6 includes a coordinated effort in simulating temporally 11 

evolving ice sheets within the Ice Sheet Model Intercomparison Project (ISMIP6, Nowicki et al. (2016)). 12 

 13 

Our understanding of aspects of the global water storage contained in the cryosphere (glaciers and ice sheets) 14 

and their contribution to sea-level rise (SLR), has improved since AR5 both in models and observations 15 

(Huss and Hock, 2015; Bamber et al., 2018; Cazenave et al., 2018; Goelzer et al., 2018; Farinotti et al., 2019; 16 

Hock et al., 2019b; Meredith et al., 2019; Shepherd et al., 2019a; Wouters et al., 2019; Zemp et al., 2019)  17 

(see also Sections 9.4.1 (Greenland; virtually certain mass loss since the 1990s); 9.4.2 (Antarctica; very 18 

likely mass loss since at least the early 1990s); 9.5.1 (Glaciers; very high confidence in global glacier retreat 19 

since 1850)). Current knowledge suggests cryospheric contributions to the global SLR budget are 22% from 20 

glaciers and 18% from ice sheets for 1971 to 2015 (see Box 9.2).  21 

 22 

 23 

3.4.3.1 Glaciers 24 

 25 

Glaciers are defined as perennial surface land ice masses independent of the Antarctic and Greenland ice 26 

sheets. Glaciers occur most often in high latitude cold regions where climate and topographic characteristics 27 

allow snow to accumulate over many years. After initially falling on the land surface, snow transforms into 28 

firn (snow that persists for more than a year) and finally to ice, which flows and possibly slides downhill 29 

under gravitational pull (Section 9.5). AR5 assessed that anthropogenic influence had likely contributed to 30 

the retreat of glaciers observed since the 1960s (Bindoff et al., 2013), based on a high level of scientific 31 

understanding and robust estimates of observed mass loss, internal variability and glacier response to 32 

climatic drivers.  33 

 34 

The representation of glaciers in climate models is captured by the land sub-component LSMs, and for 35 

CMIP6 a small number of LSMs are being used (Shannon et al., 2019). In addition to ongoing glacier and 36 

land ice developments in climate and Earth system models participating in CMIP6, independent 37 

collaborative research efforts such as GlacierMIP (Hock et al., 2019a; Marzeion et al., submitted) that exist 38 

outside of the CMIP project are also underway. The GlacierMIP project aims to systematically compare 39 

several preceding modelling efforts. When contrasted to the relative abundance of ice sheet models, only 40 

very few models that are capable of modelling glaciers on a global scale have been documented in the 41 

literature (e.g. Maussion et al., 2018, 2019; for a review see Radić and Hock (2014)). A key limitation to 42 

glacier model evaluation is the poor observed record of global glacier changes prior to the development and 43 

release of the Randolf Glacier Inventory (Pfeffer et al., 2014; RGI Consortium, 2017) which led to highly 44 

simplified approaches and the extrapolation of results to regions of no data coverage (Hock et al., 2019a). 45 

 46 

While direct attribution of glacier changes from the CMIP5 output is not possible, offline simulations forced 47 

by a subset of CMIP5 historical simulations have been undertaken. The CMIP5 boundary forcing fields of 48 

air temperature and precipitation were used to drive a model that represents all global glaciers outside of 49 

Antarctica over the period 1851 to 2010. The conclusion of this work was that 25 ± 35% of the global glacier 50 

mass loss was attributable to anthropogenic influence, with this number increasing to 69 ± 24% over the 51 

1991 to 2010 period (Marzeion et al., 2014). A similar more regional study that considered 85 Northern 52 

Hemisphere glacier systems also concluded that there is a discernible human influence on glacier mass 53 

balance, with CMIP5 historical and greenhouse gas-only simulations showing a glacier reduction, whereas 54 

natural-only forced simulations showed a glacier accretion (Hirabayashi et al., 2016). In addition, statistical 55 
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assessment of the role of climate change in glacier retreat concludes that observed length changes would not 1 

have occurred without anthropogenic climate change (Roe et al., 2017). 2 

 3 

In summary, based on new evidence since the AR5, we conclude that the recent observed retreat of global 4 

glaciers is very likely attributable to anthropogenic influences. 5 

 6 

 7 

3.4.3.2 Ice Sheets 8 

 9 

Ice sheets are defined as a mass of glacial ice that extends over a region covering more than 50,000 km2. The 10 

persistent ice sheets of Antarctica are the largest cryospheric mass store, followed by the ice sheets of 11 

Greenland, which combined are two orders of magnitude larger than glaciers, the next largest global 12 

reservoir. These structures contain more than 99% of the freshwater (ice) on Earth. Ice sheets play an active 13 

role in sea level rise, with the Antarctic and Greenland ice sheets containing 58.3 m and 7.36 m of sea level 14 

equivalent (SLE) respectively (Vaughan et al., 2013). AR5 assessed that it is likely that anthropogenic 15 

forcing contributed to the surface melting of Greenland since 1993, but that there was low confidence in 16 

attributing the causes of the observed mass of loss from the Antarctic ice sheet since 1993 (Bindoff et al., 17 

2013). 18 

 19 

Ice sheet models have been developed in parallel to CMIP, with intercomparison activities extending across 20 

multiple decades, including the EISMINT (Huybrechts et al., 1996; Payne et al., 2000; Saito et al., 2006), 21 

ISMIP-HOM (Pattyn et al., 2008) and MISMIP (Pattyn et al., 2012) projects and the Sea level Response to 22 

Ice Sheet Evolution (SeaRISE) project (Bindschadler et al., 2013; Nowicki et al., 2013). With CMIP6, ice 23 

sheet modelling is formally contributing through ISMIP6 (Nowicki et al., 2016), marking the first time that 24 

coupled ice-sheet-climate models have been part of the project. It is likely that at least 3 ice-sheet-climate 25 

models will be contributing to CMIP6, with PISM coupled to the HTESSEL LSM (Bueler and Brown, 2009; 26 

Winkelmann et al., 2011; Balsamo et al., 2015) land model in EC-Earth3-GrIS, CISM (Lipscomb et al., 27 

2013) in the CESM2 and various NorESM2 variants through the CLM LSM, and GRISLI (Boone et al., 28 

2017; Napoly et al., 2017) in CNRM-CM6-1 in the Surfex LSM. 29 

 30 

Detection and attribution studies targeting the Antarctic and Greenland ice sheets remain challenging 31 

(Kjeldsen et al., 2015). This is in part due to the short observational record (1992-present) (Shepherd et al., 32 

2012, 2018, 2019b; Bamber et al., 2018; Cazenave et al., 2018; Mouginot et al., 2019; Rignot et al., 2019) 33 

and the challenges this poses to the evaluation of modelling efforts (Chapter 9.4.1 (Greenland) and 9.4.2 34 

(Antarctica)). The latter require not only dynamic ice sheet models, but also appropriate atmospheric and 35 

oceanic conditions to use as a boundary forcing to drive the models (Nowicki and Seroussi, 2018). Since the 36 

AR4 and AR5, a new generation of ice sheet models has been developed, with recent improvements and 37 

current challenges reviewed for Antarctica (Pattyn et al., 2017) and Greenland (Goelzer et al., 2017). Ice 38 

sheet models are being coupled as dynamic components of CMIP-class climate models, such that scenario 39 

projections are becoming possible in a coupled framework (Vizcaino et al., 2015) as well as being used for 40 

improving our understanding of interactions and feedbacks between ice sheets and the Earth system (Fyke et 41 

al., 2018). In parallel to these developments, community efforts leveraging CMIP5 boundary forcing fields 42 

with standalone ice sheet models, such as SeaRISE (Bindschadler et al., 2013; Nowicki et al., 2013), laid the 43 

foundations for an effort that was more closely aligned with CMIP, resulting in ISMIP6 (Nowicki et al., 44 

2016). However, insufficient new attribution literature has appeared since AR5 to justify updating our 45 

attribution assessment for the ice sheets. 46 

 47 

Due to the limited attribution literature available since the AR5, our assessment remains that it is likely that 48 

anthropogenic forcing contributed to the surface melting of Greenland since 1993, but that there is low 49 

confidence in attributing the causes of the observed mass of loss from the Antarctic ice sheet since 1993. 50 

 51 

 52 

 53 

 54 
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3.5 Human Influence on the Ocean 1 

 2 

The global ocean plays an important role in the climate system, as it is responsible for transporting and 3 

storing large amounts of heat (Section 3.5.1), freshwater (Section 3.5.2) and carbon (Section 3.6.2) that are 4 

exchanged with the atmosphere. Therefore, accurate ocean simulation in climate models is essential for 5 

skilful representation of the climatic response to anthropogenic warming, including the rate of warming, sea 6 

level rise and the representation of coupled modes of climate variability. Since AR5 (Flato et al., 2013; 7 

Rhein et al., 2013) ocean model development has advanced considerably, and a move toward more 8 

systematic evaluation, facilitated by the Coordinated Ocean-Ice Reference Experiments (COREs) (Griffies et 9 

al., 2009) have expanded ocean multi-model assessment. With the application of the CORE-II interannual 10 

forcing protocol (1948-2007), studies have focused on model intercomparison for sea level (Griffies et al., 11 

2014), the North Atlantic mean state, meridional overturning and their variability (Danabasoglu et al., 2014, 12 

2016), the Southern Ocean water mass structure, Antarctic Circumpolar Current (ACC) and meridional 13 

overturning (Downes et al., 2015; Farneti et al., 2015), North and equatorial Pacific Ocean circulation (Tseng 14 

et al., 2016), the Arctic Ocean, sea ice and freshwater (Ilicak et al., 2016; Wang et al., 2016b, 2016a), and the 15 

Indian Ocean’s mean state and seasonal cycle (Rahaman et al., 2020). 16 

 17 

With CMIP6, the importance of ocean modelling is highlighted by the inclusion of the Ocean Model 18 

Intercomparison Project (OMIP) as a CMIP6-Endorsed MIP (Griffies et al., 2016; Tsujino et al., submitted). 19 

Ongoing model developments since AR5 have focused on improving the realism of the simulated ocean in 20 

coupled models, with horizontal nominal resolutions increasing to 25 - 100 km (from about 200 km in 21 

CMIP5), and increased vertical resolutions in some modelling systems of up to 1 m near-surface levels (from 22 

the highest resolution 10 m in CMIP5) aimed at improving representation of the diurnal cycle coupling to the 23 

atmosphere (e.g. Bernie et al. 2005, 2007, 2008). A recent comparison using a hierarchy of GFDL ocean 24 

models with horizontal resolutions representing the CMIP5 contribution (nominal 1°) down to an eddy-25 

permitting (0.1°), showed that the highest resolution model was able to recover the spatial distribution and 26 

variability magnitude in sea surface height when compared to the satellite based AVISO measurements, 27 

considerably improving upon the coarse resolution simulation (Griffies et al., 2015). General improvements 28 

to simulated ocean fidelity with increasing resolution is an expectation for all ocean modelling systems 29 

(Hewitt et al., 2017) and significant progress has been made in the ocean-only OMIP-2 eddy-resolving (~10 30 

km) simulations, however inter-model differences remain (Chassignet et al., submitted). 31 

 32 

When evaluating simulated ocean fields, it is useful to consider available observational products, and their 33 

representativeness when compared to a 1-degree horizontal, 5 m vertical, and monthly-mean temporal 34 

resolution CMIP simulation. Measurement representativeness error has been a consideration of the data 35 

assimilation community for many years, first for the atmosphere (Daley, 1993; Janjić and Cohn, 2006) and 36 

more recently for the ocean (Oke and Sakov, 2008; Storto and Masina, 2017; Janjić et al., 2018). Many 37 

observed ocean surface properties such as sea surface temperature (SST) and sea surface salinity (SSS) are 38 

based on remotely sensed satellite retrievals reflecting swath passes of the surface ocean skin properties (top 39 

cm), achieving global measurement coverage over a 7-day or similar time period. The swath measurements 40 

are composited to provide weekly or monthly maps, with the resulting observational products representing 41 

the surface layer (top centimetres), much shallower than a typical simulated ocean model top layer (0 to 10 42 

m), but with comparable horizontal resolution of approximately 100 km. In the case of in-situ observations, 43 

additional complexities arise, as ocean profiles are point source measurements, which are often treated in 44 

composite observational analyses as representative of larger temporal and spatial scales. For instance, 45 

gridded products developed from Argo float profiles (Roemmich et al., 2019) aim to reproduce monthly 46 

mean maps of the upper 2000 m ocean state, often representative of 1-degree spatial resolution, whereas 47 

Argo floats provide a point source measurement in space and time, which may be influenced by ocean 48 

eddies, or fronts and other observed features that are present at very high temporal and spatial scales in the 49 

real world. Consequently, an Argo profile is not truly representative of a 1-degree grid cell and thus 50 

consideration must be made when contrasting gridded observational products which include such influences 51 

and model simulations, as such features are not explicitly resolved by the resolution of a typical CMIP-class 52 

model. Numerous techniques exist to map ocean circulation from measurements of ocean density (Bryden et 53 

al., 2005), gravity (Wahr et al., 2002), and surface wind and sea level measurements (Bonjean and Lagerloef, 54 

2002). However, direct measurements of ocean circulation are sparse relative to other ocean variables. This 55 
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temporal and spatial scale mismatch of the observed, relative to the modelled ocean adds a level of 1 

complexity when attempting to relate the variable frequencies of observed point measurements from in-situ 2 

and remote platforms, to those of CMIP-class models which most often are assessed using grid-box averaged 3 

fields and regular, most often monthly output frequencies. 4 

 5 

In this section we assess the broad- or basin-scale properties of the simulated ocean, with a focus on 6 

evaluation of the modelled realism in ocean properties, and the detection and attribution of a human-induced 7 

signal in changes to observed and simulated ocean properties over the period of observational coverage. 8 

Observed changes to ocean temperature (Section 2.3.3.1), salinity (Section 2.3.3.2), sea level (Section 9 

2.3.3.3) and ocean circulation (Section 2.3.3.4) are reported in Chapter 2. A more process-based 10 

understanding of the changes reported here, alongside the assessment of variability and changes of ocean 11 

properties with spatial scales smaller than ocean basin scales, are presented in Chapter 9 (ocean temperature 12 

and salinity Section 9.2.2, ocean circulation Section 9.2.3 and sea level in Sections 9.2.4 and 9.6). Discussion 13 

of extreme events with ocean relevance are captured in Chapter 9 (Marine heatwaves Cross-Chapter Box 14 

9.1) and Chapter 11 (the role of SST extremes). 15 

 16 

 17 

3.5.1 Ocean Temperature 18 

 19 

Ocean temperature and heat content are key physical variables considered for climate model evaluation and 20 

are the primary indicators of a changing ocean climate. This section assesses the performance of climate 21 

models in representing the mean state ocean temperature and heat content (Section 3.5.1.1), with a particular 22 

focus on the tropical oceans given the importance of air-sea coupling in these areas (Section 3.5.1.2). 23 

Simulations are evaluated with respect to available observational data. These are followed by an assessment 24 

of detection and attribution studies of changes in ocean temperature and heat content (Section 3.5.1.3). 25 

Changes in global surface temperature are assessed in Section 3.3.1.1. 26 

 27 

 28 

3.5.1.1 Sea Surface and Zonal Mean Ocean Temperature Evaluation 29 

 30 

In CMIP3 and CMIP5 models, large SST biases are found in the mid and high latitudes with marginal 31 

improvement in some of the CMIP5 models (Flato et al., 2013). In CMIP6, the Northern Hemisphere mid-32 

latitude surface temperature biases appear to be marginally improved in the multi-model mean in contrast to 33 

CMIP5, despite large biases in a few models (Figure 3.21:, Figure 3.24: a,c). The inter-model standard 34 

deviation of the zonal mean SST error has decreased south of 50°N, relative to CMIP5 (Figure 3.24: c). On 35 

the other hand, the Southern Oceans warm surface temperature bias remains (Figure 3.21:a; Beadling et al., 36 

submitted), and is potentially larger in CMIP6 than in CMIP5 models (Figure 3.21:, Figure 3.24: a,c). 37 

Several other large biases appear to remain largely unchanged in CMIP6: i) in the equatorial regions, large 38 

warm biases remain along the eastern continental boundary of the tropical Atlantic and Pacific Oceans 39 

(Figure 3.21:a); and ii) large warm and cold biases remain in the Northern Hemisphere western boundary 40 

current regions of the Atlantic and Pacific Oceans (Figure 3.21:a). 41 

 42 

In CMIP5, the multi-model mean zonally averaged ocean temperature shows warm biases between 200 m 43 

and 2000 m over most latitudes, whereas cold biases are simulated in the deep ocean (>2000 m) and near the 44 

surface. In CMIP6 the multi-model mean zonally averaged ocean temperature shows biases that are broadly 45 

consistent with those reported in CMIP5 for the near surface (<200 m) and mid-depth (between 200 and 46 

2000 m). However, there are also several prominent differences, the mid-depth warm bias that occurred 47 

north of ~55°S have increased in CMIP6 relative to CMIP5, and the Southern Ocean mid-depth which 48 

displayed a cold bias in CMIP5 shows a warm bias in CMIP6 (Figure 3.22:a). Focusing on the deep ocean 49 

(>2000 m), CMIP6 models show a prominent warm bias (Figure 3.22:a), which contrasts to a cold bias 50 

reported in CMIP5 (Flato et al., 2013). While we note that an updated observational temperature dataset is 51 

being used in this assessment (WOA09 in AR5 to WOA18 in AR6), the deep ocean warm bias remains and 52 

is approaching double the magnitude (~0.5C) of the equivalent CMIP5 multi-model ensemble mean. 53 

Assessing CMIP6 basin zonal mean biases allows a more effective analysis of the source basin(s) for the 54 

temperature biases (Figure 3.22:c,e,g). The warm temperature bias initiates between 200 and 400 m depth in 55 
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all three basins, however, is most prominent in the Atlantic Ocean at most depths and latitudes. Exceptions to 1 

this are the prominent warming of the extratropical Pacific region between the observed 5C and 10C 2 

isotherms, and the tropical Indian Ocean between 200 and 400 m depth. The cool near surface tropical bias is 3 

most prominent in the Pacific Ocean, however similar features are also present in the Atlantic (Figure 4 

3.22:c,e,g). 5 

 6 

Since AR5, there has been growing evidence on the improved representation of surface and deeper ocean 7 

mean temperature, by increasing the horizontal resolution both in the ocean and the atmosphere in coupled 8 

climate models (e.g. Small et al., 2014; Hewitt et al., 2016; Iovino et al., 2016; Roberts et al., 2019). High 9 

resolution ocean model components are shown to lead to an overall decrease in the surface temperature 10 

biases in some locations (e.g., Roberts et al., 2019a). Decreased biases are most prevalent over the central 11 

and western equatorial Pacific, as well as in the equatorial Atlantic (Figure 3.21:b; Haarsma et al., 2016), 12 

however the overall spread is larger than that of the CMIP6 models (Figure 3.24:c,d). Increasing model 13 

resolution also improves the simulation of eddy activity, thus, increases in the vertical eddy transport, and 14 

reduces the temperature drifts in the deeper ocean (Griffies et al., 2015; von Storch et al., 2016). On the other 15 

hand, the zonal mean SST from the high resolution simulations does not differ from that of the standard 16 

resolution CMIP6 simulations except in the Southern Ocean (Figure 3.24:c). 17 

 18 

 19 

[START FIGURE 3.21 HERE] 20 

 21 

 Multi-model mean bias of (a) sea surface temperature (°C) and (b) surface salinity as the difference 22 

between the CMIP6 multi-model mean constructed with one realization of CMIP6 historical experiments 23 

and the climatology from the World Ocean Atlas 2013 for the period 1995–2014. (Figure produced with 24 

ESMValTool v2.0.0b3.) 25 

 26 

[END FIGURE 3.21 HERE] 27 

 28 

 29 

[START FIGURE 3.22 HERE] 30 

 31 

 (a,c,e,g) Potential temperature (degrees C) and (b,d,f,h) salinity (PSS-78) for each of the ocean basins, 32 

global (GLO; a,b), Atlantic (ATL; c,d), Pacific (PAC; e,f) and Indian (IND; g,h). Shown in colour are the 33 

time-mean differences between the CMIP6 historical ensemble climatological mean and observations, 34 

zonally averaged for each basin (excluding marginal and regional seas). The observed climatological 35 

values are obtained from the World Ocean Atlas 2018 (WOA18; Prepared by the Ocean Climate 36 

Laboratory, National Oceanographic Data Center, Silver Spring, MD, USA), and are shown as labelled 37 

black contours for each of the basins. White contours show regions in potential temperature (left column) 38 

where the differences exceed positive or negative 1, 2, or 3 (degrees C), and regions in salinity (right 39 

column) where the differences exceed positive or negative 0.25, 0.5, 0.75 or 1 (PSS-78). The simulated 40 

annual mean climatologies are obtained for 1984 to 2014 from available CMIP6 historical simulations, 41 

whereas WOA18 synthesizes observed data from 1874 to 2018 in calculations of the decadally averaged 42 

annual mean; however, the median time for gridded observations most closely resembles the more 43 

modern era. Multiple realizations from individual models are first averaged to form a single model 44 

ensemble climatology, before construction of the CMIP6 multi-model mean from these fields. A total of 45 

20 available CMIP6 models have contributed to the temperature panels (left column) and 21 models to 46 

the salinity panels (right column). 47 

 48 

[END FIGURE 3.22 HERE] 49 

 50 

 51 

[START FIGURE 3.23 HERE] 52 

 53 

 Time series of simulated and observed global ocean heat content anomalies (with respect to 1971). 54 

CMIP5 historical simulations and observations for both the upper 700 m of the ocean (a) as well as for 55 

the total ocean heat content (b). The 0 to 700 m and total heat content observational estimates (thick lines) 56 

are respectively described in AR5 Figure 3.2 and AR5 Box 3.1, Figure 1. Simulation drift has been 57 
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removed from all CMIP5 runs with a contemporaneous portion of the quadratic fit to each corresponding 1 

pre-industrial control run (Gleckler et al., 2012). Units are 1022 Joules. 2 

 3 

[END FIGURE 3.23 HERE] 4 

 5 

 6 

3.5.1.2 Tropical Sea Surface Temperature Evaluation 7 

 8 

Tropical Pacific Ocean 9 

In CMIP5, mean state biases in the tropical Pacific Ocean including the excessive equatorial cold tongue, 10 

erroneous mean thermocline depth and slope along the equator were improved relative to CMIP3, but still 11 

remained. Misrepresentation of the interaction between the atmosphere and ocean via the Bjerknes feedback, 12 

vertical mixing parameterization, and a bias in winds were among the suggested reasons for the persistent 13 

biases (Li et al., 2014; Zhu and Zhang, 2018). Moving to CMIP6, a clear reduction of the cold bias in the 14 

equatorial cold tongue has been reported (Grose et al., submitted; Planton et al., submitted), however, this 15 

bias reduction is not statistically significant when considered across the entire multi-model ensemble 16 

(Planton et al., submitted). It is also noteworthy that the longitude of the 28C isotherm is closer to observed 17 

in CMIP6 than in CMIP5, with a coincident reduction in the CMIP6 inter-model standard deviation (Grose et 18 

al., submitted) (Figure 3.24:b,d). This latter result implies that there is an improvement in the representation 19 

of the tropical Pacific mean state in CMIP6 models. 20 

 21 

The CMIP6 HighResMIP multi-model mean shows further reduction of the cold bias in the equatorial cold 22 

tongue (Roberts et al., 2018, 2019a). The significance of the improvements is currently not known as the 23 

model spread remains large (Figure 3.24:b,d), model diversity is limited, and the observed and model 24 

comparison periods are different (Bock et al., submitted). 25 

 26 

Tropical Atlantic Ocean 27 

Fundamental features such as the mean zonal SST gradient in the tropical Atlantic are not reproduced in 28 

CMIP5 (see Figure 3.24:). Studies have proposed that weaker than observed alongshore winds, 29 

underestimation of stratocumulus clouds, coarse model resolution, and insufficient oceanic cooling due to a 30 

deeper thermocline depth and too weak vertical velocities at the base of the mixed layers in the eastern basin, 31 

underpin these tropical Atlantic SST gradient biases (Hourdin et al., 2015; Richter, 2015). These SST 32 

gradient biases still remain in CMIP6, on average the cold bias in the western part of the basin is reduced 33 

while the warm bias in the eastern part has increased (Figure 3.24:b,d; Richter and Tokinaga, submitted). 34 

Several CMIP6 models, however, display large reductions in biases of the zonal SST gradient, such that the 35 

eastern equatorial Atlantic warm SST and westerly wind biases are mostly eliminated in these models 36 

(Richter and Tokinaga, submitted). The high resolution (HighResMIP) CMIP6 models appear to show a 37 

better representation of the zonal SST gradient (Figure 3.24:b,d), but some lower resolution models also 38 

perform well suggesting that the resolution is not the only factor for bias reduction in Tropical Atlantic 39 

(Richter and Tokinaga, submitted). 40 

 41 

Tropical Indian Ocean 42 

The tropical Indian Ocean mean state appears to be reasonably well simulated both in CMIP5 and CMIP6 43 

(see Figure 3.24:b,d). However, CMIP5 models show a large spread in the thermocline depth, particularly in 44 

the equatorial part of the basin (Saji et al., 2006; Fathrio et al., 2017a), which have been linked to the 45 

parameterization of the vertical mixing and the wind structure, which then lead to a misrepresentation of the 46 

ventilation process (Schott et al., 2009; Richter, 2015; Shikha and Valsala, 2018). A common problem with 47 

the CMIP5 models is therefore a warm bias in the subsurface, mainly at depths around the thermocline. 48 

 49 

In the CMIP6 multi-model mean, the western tropical Indian Ocean shows a slightly warmer bias compared 50 

to CMIP5 (see Figure 3.24:b,d; Grose et al., submitted). Similarly, for HighResMIP, the bias does not differ 51 

significantly from that of the lower resolution models. However, the inter-model standard deviation is large 52 

over the Indian Ocean basin and so any improvement due to increased horizontal resolution is not significant 53 

across the model ensemble. 54 

 55 
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In summary, for the purposes of evaluating basin-scale properties, the CMIP5 and CMIP6 models are 1 

appropriate tools for investigating ocean temperature and OHC responses to forcing. In each successive 2 

phase of CMIP (CMIP3, CMIP5 and CMIP6) the fidelity of ocean temperature simulation has improved, and 3 

near-surface and subsurface biases have reduced. This provides some confidence in the utility of CMIP-class 4 

models for detection and attribution studies, for both OHC and thermosteric sea level applications (Section 5 

3.5.3). 6 

 7 

 8 

[START FIGURE 3.24 HERE] 9 

 10 

 (a) Zonally averaged sea surface temperature (SST) error in CMIP6 models. (b) Equatorial SST error in 11 

CMIP6 models. (c) Zonally averaged multi-model mean SST error for CMIP6 (green curve), CMIP5 (red 12 

curve) and HighresMIP (purple curve), together with inter-model standard deviation (shading). (d) 13 

Equatorial multi-model mean SST in CMIP6 (green curve), CMIP5 (red curve) and HighresMIP (purple 14 

curve) together with inter-model standard deviation (shading) and observations (black). Model 15 

climatologies are derived from the 1979-1999 mean of the historical simulations. The Hadley Centre Sea 16 

Ice and Sea Surface Temperature (HadISST) (Rayner et al., 2003) observational climatology for 1979-17 

1999 is used as the reference for the error calculation in (a), (b) and (c); and for observations in (d). 18 

 19 

[END FIGURE 3.24 HERE] 20 

 21 

 22 

3.5.1.3 Ocean Heat Content Change Attribution 23 

 24 

Observed OHC changes are discussed in Section 2.3.3.1, where it is reported that it is virtually certain that 25 

the global upper ocean (0-700 m) and very likely that the global intermediate ocean (700-2000 m) warmed 26 

substantially between 1971 to present. Further, ocean layer warming contributions are reported as 27 

approximately 64% (0 – 700 m), 27% (700 – 2000 m) and 9% (2000 – 6000 m) for the 1971 to 2018 period 28 

(Box 7.2). CMIP5 model simulations replicate this partitioning fairly well for the industrial-era (1865 to 29 

2017) throughout the upper (0 – 700 m, 65%), intermediate (700 – 2000 m, 20%) and deep (>2000 m, 15%) 30 

layers (Figure 3.25:a; Durack et al., 2018; Gleckler et al., 2016). The spatial distribution of these changes for 31 

different ocean depths are assessed in Section 9.2.2. 32 

 33 

Overall, CMIP5 and observational estimates show an increase in OHC over time (see Figure 3.23:) (Flato et 34 

al., 2013). The AR5 concluded that anthropogenic forcing has very likely made a substantial contribution to 35 

upper ocean warming. Below 700 m, limited measurements restricted the assessment of OHC changes in 36 

AR5 and prevented a robust comparison between observations and models. 37 

 38 

The recent increase in ocean sampling by Argo to 2000 m (Roemmich et al., 2015; Riser et al., 2016; von 39 

Schuckmann et al., 2016) and the resulting improvements in the recent estimates of ocean heat content 40 

(Balmaseda et al., 2013; Durack et al., 2014a; Cheng et al., 2017) allow a more quantitative assessment of 41 

the global OHC changes to extend into the intermediate ocean (700 to 2000 m) over the more recent period 42 

(from 2005 to the present) (Durack et al., 2018). SROCC assessed that it is virtually certain that both the 43 

upper and intermediate ocean warmed from 2004 to 2016, with an increased rate of warming since 1993 44 

(Bindoff et al., 2019). The reported long-term OHC increase is further supported by a recent independent 45 

study that focuses on the well sampled Argo period (2006 to 2017) and uses a new method to partition OHC 46 

change into the addition of excess heat versus heat redistribution for the global ocean. A robust globally 47 

consistent warming is reported, with increased magnitude in the Atlantic and western subtropical Indian and 48 

Pacific Oceans contrasted to the global mean (Zika et al., submitted). In addition, the observed upper OHC 49 

continued to increase through the so called “hiatus” period (Nieves et al., 2015; Liu et al., 2016b), which 50 

highlights that the “hiatus” was a pause in global surface warming only (Cross-Chapter Box 3.1:). 51 

 52 

The multi-model mean of both CMIP5 and CMIP6 historical simulations forced with time varying natural 53 

and anthropogenic forcing shows robust increases in OHC in the upper (0 – 700 m) and intermediate (700 – 54 

2000 m) ocean (high confidence) (Figure 3.25:) (Bilbao et al., 2019; Cheng et al., 2016, 2019; Garry et al., 55 

submitted; Gleckler et al., 2016; Tokarska et al., 2019), with temporary surface and subsurface cooling 56 
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during large volcanic eruptions (e.g. Balmaseda et al., 2013), which are also captured in the upper-ocean, and 1 

global mean OHC (Figure 3.25:). Simulated OHC changes are consistent with the updated observational 2 

analyses and improved estimates of OHC over the period of 1960 to 2018 (Domingues et al., 2008; Ishii and 3 

Kimoto, 2009; Purkey and Johnson, 2010; Roemmich et al., 2012, 2015; Cheng et al., 2017) (also see 4 

Section 2.3.3). In addition, deep observed estimates (2000 – 6000 m), also share remarkable similarity to the 5 

rate of coincident simulated changes. The rate of ocean heat uptake, both in the observed estimates and 6 

simulations, has doubled in the past few decades (Figure 3.25:), with over a third of the accumulated heat 7 

stored below 700 m (Cheng et al., 2016, 2019; Gleckler et al., 2016; Durack et al., 2018). The Southern 8 

Ocean shows the strongest ocean heat uptake that penetrates to deeper layers, whereas OHC increase in the 9 

Pacific and Indian Oceans occur in the upper layers (Bilbao et al., 2019; Garry et al., submitted). This 10 

provides further evidence that a robust increase in OHC has occurred over the observed record (high 11 

confidence), and globally averaged, this warming has extended into the deep ocean (medium confidence). 12 

 13 

With newly developed methods for OHC estimation (Gebbie and Huybers, 2019; Zanna et al., 2019), 14 

observational reconstructions have been generated to replicate the model-based historical period (1850-15 

2014). The agreement between the new OHC observational reconstructions and simulations further confirms 16 

that there is high confidence that the upper and intermediate (0 to 2000 m) OHC has increased since 1960 17 

and there is medium confidence that the deep ocean OHC (below 2000 m) has increased since 1992. Further, 18 

due to the enhanced ocean observing network since 2005, there is high confidence that ocean heat uptake has 19 

been accelerating in the past two decades. 20 

 21 

Since AR5, the attribution of OHC increase to anthropogenic forcings has been supported by more evidence 22 

from independent detection and attribution studies. By separating natural and anthropogenic forcings in the 23 

CMIP5 multi-model mean, it is shown that contributions from natural forcings alone cannot explain the 24 

observed changes in OHC both in upper and intermediate ocean layers (Gleckler et al., 2016; Bilbao et al., 25 

2019; Tokarska et al., 2019).  26 

 27 

Recently, new studies have focused on separating the importance of different anthropogenic forcings 28 

(aerosols, ozone, greenhouse gases) to ocean warming. Overall, the global OHC changes have been 29 

attributed to greenhouse gases alone, and the warming signal in the greenhouse gas forcing experiments is 30 

shown to penetrate deeper in the North Atlantic than other basins (Tokarska et al., 2019). More evidence 31 

from other independent studies show that the Indo-Pacific Warm Pool warming and expansion are 32 

dominantly caused by greenhouse gas forcing, with natural fluctuations only having a small effect (Weller et 33 

al., 2016), whereas, temperature changes in the Southern Ocean are attributed to both greenhouse gas 34 

emissions and ozone depletion (Swart et al., 2018). 35 

 36 

In summary, there is strong evidence and understanding on the increase in global OHC. It is extremely likely 37 

that anthropogenic forcing has made a substantial contribution to the OHC increase over the historical period 38 

that extends into the deeper ocean (high confidence). Updated observations, like model simulations, show 39 

that warming extends throughout the entire water column (high confidence). 40 

 41 

 42 

[START FIGURE 3.25 HERE] 43 

 44 

 (a) Ocean heat uptake (percentage of total 1865-2017 change) for the CMIP5 multi-model mean layers. 45 

The three shaded wedges are combined similarly to the AR5 change in global inventory (Rhein et al. 46 

(2013); Box 3.1, Figure 1). The thick vertical grey bar represents a +/- one standard deviation spread from 47 

the CMIP5 simulations about the year (1999) at which the multi-model heat uptake reaches 50% of the 48 

net (1865-2017) industrial-era increase, and the thick horizontal grey bar indicates the CMIP5 +/- one 49 

standard deviation spread om the year at which 50% of the total accumulated heat is reached. Black 50 

(forcing included) and grey (forcing not included) triangles represent major twentieth- and twenty-first-51 

century volcanic eruptions with magnitude (volcanic explosivity index [VEI] represented by symbol size. 52 

(b) The inset box displays the upper and intermediate layer warming for the years 1998 to 2017, with an 53 

adjustment for the 0 to 2000 m total warming by -0.19 W m-2, the estimated discrepancy between CMIP5 54 

modelled and the observed volcanic forcing (Ridley et al., 2014). When observed 0 to 2000 m ocean 55 

warming is compared across five independent available estimates these rates of change are approximately 56 
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equal. (Figure from Durack et al., 2018, their Figure 2). 1 

 2 

[END FIGURE 3.25 HERE] 3 

 4 

 5 

3.5.2 Ocean Salinity 6 

 7 

While ocean assessments have primarily focused on temperature changes due to poor measurement coverage 8 

of other oceanic variables, improving observational salinity products since the early 2000s has led to a recent 9 

increase in the assessment of long-term ocean salinity change and variability from AR4 (Bindoff et al., 2007) 10 

to AR5 across both models and observations (Flato et al., 2013; Rhein et al., 2013). AR5 assessed that it was 11 

very likely that anthropogenic forcings have made a discernible contribution to surface and subsurface 12 

oceanic salinity changes since the 1960s. SROCC augmented these insights, noting that observed high 13 

latitude freshening and warming have very likely made the surface ocean less dense with stratification 14 

increase of between 2.18 and 2.42% from 1970 to 2017 (Bindoff et al., 2019). A recent observational 15 

analysis has expanded on these assessments, suggesting a very marked summertime density contrast 16 

enhancement across the mixed layer base of 7.4 to 13.9% per decade, driven by changes to tempeature and 17 

salinity, which is an order of magnitude larger than previous estimates (Sallée et al., submitted). An idealised 18 

ocean modelling study suggests that the enhanced stratification can account for a third of the salinity 19 

enhancement signal since 1990 (Zika et al., 2018). Thus, there has been an expansion of observed broad- and 20 

basin-scale salinity changes assessment literature since AR5, with many new studies reproducing the key 21 

patterns of long-term salinity change reported in AR5 (Rhein et al., 2013), and linking these through 22 

modelling studies to coincident changes to evaporation-precipitation patterns at the ocean surface (Sections 23 

2.3.1, 3.3.2).  24 

 25 

Unlike SSTs, simulated sea surface salinity (SSS) does not provide a direct feedback to the atmosphere. 26 

While a direct feedback is not simulated, some recent work has identified indirect radiative feedbacks 27 

through sea-salt aerosol interactions (Ayash et al., 2008; Amiri-Farahani et al., 2019; Wang et al., 2019b) 28 

and these have been found to have an effect of strengthening tropical cyclones and hurricanes and increasing 29 

precipitation (Balaguru et al., 2012, 2016; Grodsky et al., 2012; Reul et al., 2014; Jiang et al., 2019). The 30 

absence of a direct feedback is one of the primary reasons why salinity simulation is difficult to constrain in 31 

ocean modelling systems, and why deviations from the observed near-surface salinity mean state between 32 

models and observations are often apparent (Durack et al., 2012; Shi et al., 2017). 33 

 34 

Due to the recent availability of a number of surface salinity satellite products (SMOS, Aquarius and SMAP) 35 

(Berger et al., 2002; Lagerloef et al., 2008; Tang et al., 2017), recent modelling studies have been 36 

investigating the role of surface salinity in the diurnal cycle and atmosphere-ocean coupling (Fine et al., 37 

2015; Large and Caron, 2015; Song et al., 2015; Bellenger et al., 2017). Following dedicated observational 38 

campaigns (see Chapter 1), modelling studies have also started investigating the processes that maintain the 39 

high mean salinity regime in the North Atlantic in a global ocean model (Qu et al., 2011, 2013; Bryan and 40 

Bachman, 2015), in addition to more idealized studies that were focused on the role of land-ocean 41 

geometries in setting the salinity mean state in the global ocean (Nilsson et al., 2013; Ferreira and Marshall, 42 

2015). 43 

 44 

 45 

3.5.2.1 Sea Surface and Depth-profile Salinity Evaluation 46 

 47 

When compared to the assessment of simulated SST, simulated SSS has not been systematically investigated 48 

at global- to basin-scales. For CMIP3, there was reasonable agreement between the basin-scale patterns of 49 

salinity, with a comparatively fresher Pacific when contrasted to the salty Atlantic, and basin salinity 50 

maxima features aligning well with the corresponding evaporation-precipitation field (Durack et al., 2012). 51 

Similar features are also reproduced in CMIP5 along with realistic variability in the upper layers, but less 52 

than observations at 300 m and deeper, especially in the poorly sampled Antarctic region (Pierce et al., 53 

2012). In a regional study, only considering the Indian Ocean, CMIP5 SSS was assessed and it was shown 54 

that model biases were primarily linked to biases in the precipitation field, with ocean circulation biases 55 
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playing a secondary role (Fathrio et al., 2017b). 1 

 2 

For the first time in AR5, alongside global zonal mean temperature, global zonal mean salinity through depth 3 

was assessed for the CMIP5 models. This showed a strong upper ocean (< 300 m) negative fresh bias of 4 

order 0.3 PSS-78, with a tendency toward a positive salty bias (< 0.25 PSS-78) in the Northern Hemisphere 5 

intermediate layers (200 to 2000 m) (Flato et al., 2013). These biases are also present in CMIP6, albeit with 6 

slightly smaller magnitudes (Figure 3.22:b). Here we expand the global zonal mean bias assessment to 7 

consider the three independent ocean basins individually, which allows for an assessment as to which biases 8 

and which basin features are dominating the global zonal mean. The basin with the most pronounced biases 9 

is the Atlantic which shares the strong upper ocean (<300 m) fresh bias, of order 0.3 PSS-78 just like the 10 

global zonal mean, but shows a marked subsurface salinity bias that exceeds 0.5 PSS-78 in equatorial waters 11 

between 300 – 500 m. Like the global mean, the high latitude Atlantic >60N/S expresses a surface enhanced 12 

fresh bias, which has a much larger magnitude (~1 PSS-78) in the high northern region (Figure 3.22:d). The 13 

Pacific Ocean shares the strongest similarity to the global bias, with a similar upper ocean (<300 m) fresh 14 

bias, of a smaller magnitude than the Atlantic, except for a strong off-equator feature associated with the 15 

subtropical salinity maximum subsiding at 30S. Lower magnitude positive salinity biases (~ 0.3 PSS-78) are 16 

present in both hemispheres between 100 and 2500 m, deeper in the Southern Hemisphere (Figure 3.22:f). 17 

The Indian Ocean shows similar features to the Southern Hemisphere Pacific, with a marked upper ocean (< 18 

500 m) fresh bias of order 0.3 PSS-78, and a strong near-surface positive bias of order 0.4 PSS-78 (Figure 19 

3.22:h). For the Southern Ocean in CMIP5, considerable fresh biases exist through the water column, and are 20 

most pronounced in the ventilated layers representing the subtropical, mode and intermediate water masses 21 

(Sallée et al., 2013b) and these features are reproduced, with a slightly larger magnitude in CMIP6 (Figure 22 

3.22:b,d,f,h). The structure of the biases in CMIP6 multi-model mean (which averages across many 23 

simulations with differing subsurface geographies) strongly reflect the same biases evident in the CMIP5 24 

multi-model mean, but with slightly smaller magnitudes. It must be noted that assessing each simulation 25 

field independently yields a subsurface salinity structure and salinity minima subduction pathways that 26 

approximate observations, albeit with large regional differences expressed across models that contributed to 27 

CMIP5 (Sallée et al., 2013b, 2013a). 28 

 29 

In summary, in each successive phase of CMIP (CMIP3, CMIP5 and CMIP6) the fidelity of ocean salinity 30 

simulation has improved, and near-surface and subsurface biases have been reduced. This provides 31 

confidence in the utility of CMIP-class models for detection and attribution of ocean salinity studies. 32 

 33 

 34 

3.5.2.2 Salinity Change Attribution 35 

 36 

AR5 (Bindoff et al., 2013; Rhein et al., 2013) concluded that it was very likely that anthropogenic forcings 37 

had made a discernible contribution to surface and subsurface ocean salinity changes since the 1950s and 38 

1960s. They highlighted that the spatial patterns of salinity trends, along with the mean fields of salinity and 39 

evaporation-precipitation (E-P) are all similar, with an enhancement to Atlantic Ocean salinity, and 40 

freshening in the Pacific and Southern Oceans. Since AR5 all subsequent work focused on assessing 41 

observed and modelled salinity changes has confirmed these results. 42 

 43 

Considerable changes to observed broad- or basin-scale ocean near-surface salinity fields have been reported 44 

(see Section 2.3.3.2), and these have been linked to changes in the evaporation-precipitation patterns at the 45 

ocean surface through model simulations, expressing a pattern of change where climatological mean fresh 46 

regions become fresher and corresponding salty regions becoming saltier (Durack et al., 2012, 2013; Lago et 47 

al., 2015; Skliris et al., 2016; Zika et al., 2015, 2018; Figure 3.26:). The depth-integrated effect of mean 48 

salinity changes as captured in halosteric sea level for the top 0 to 2000 m has also been assessed, and these 49 

results mirror near-surface patterns (Durack et al., 2014b; Figure 3.27:). Further investigations using 50 

observations and models together have tied the long-term patterns of surface and subsurface salinity changes 51 

to coincident changes to the evaporation-precipitation field over the ocean (Durack et al., 2012, 2013; 52 

Durack, 2015; Lago et al., 2015b; Levang and Schmitt, 2015; Zika et al., 2015, 2018; Grist et al., 2016), 53 

however the rate of these changes through time continues to be an active area of active research (Sallée et al., 54 

submitted; Skliris et al., 2014, 2016, Zika et al., 2015, 2018). 55 
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Climate change detection and attribution assessments have considered salinity, with the first of these 1 

assessed in AR5 (Bindoff et al., 2013). Since this time, the positive detection conclusions (Stott et al., 2008; 2 

e.g., Pierce et al., 2012; Terray et al., 2012) have been supported by a number of more recent and 3 

independent assessments which have replicated the multi-decadal basin-scale patterns of change in 4 

observations and models (Figure 3.26:; Durack, 2015; Durack et al., 2014b; Levang and Schmitt, 2015; 5 

Skliris et al., 2016). Depth-integrated basin responses, contrasting the Pacific and Atlantic basins (freshening 6 

Pacific and enhanced salinity Atlantic) were also shown to be replicated in all historical (natural and 7 

anthropogenic) simulations, with this basin contrast absent in CMIP5 natural only simulations that excluded 8 

the greenhouse gas forcing (Durack et al., 2014b; Figure 3.27:).  9 

 10 

While observational sparsity considerably limits quantifying all regional changes, a recent study by 11 

Friedman et al. (2017) assessed salinity changes in the Atlantic Ocean from 1896 to 2013 and confirmed the 12 

pattern of mid-to-low latitude enhanced salinity, and high latitude North Atlantic freshening over the period 13 

exists, even after removing the effects of variability modes NAO and AMO. 14 

 15 

Considering the bulk of evidence, it is extremely likely that human influence has contributed to observed 16 

near-surface and subsurface salinity changes across the globe since the mid-20th century. All available multi-17 

decadal assessments have confirmed that the associated pattern of change corresponds to fresh regions 18 

becoming fresher and salty regions becoming saltier (high confidence). Changes to the coincident 19 

atmospheric water cycle and ocean-atmosphere fluxes (evaporation and precipitation) are the primary drivers 20 

of the basin-scale observed salinity changes (high confidence). This result is supported by all available 21 

observational assessments, along with a growing number of CMIP5 and idealised climate modelling studies 22 

targeted at assessing ocean and water cycle changes. The basin-scale changes are consistent across models 23 

and intensify on centennial scales from the historical period through to future projections (high confidence). 24 

 25 

 26 

[START FIGURE 3.26 HERE] 27 

 28 

 Maps of 50-year salinity trends for the near-surface ocean. (a) the 1950-2000 observational change and 29 

(b) the corresponding 1950-2000 climatological mean (Durack and Wijffels, 2010) (analysis period 1950-30 

2008). (c) Modelled changes for the 1950-2000 period from the CMIP5 historical experiment multi-31 

model mean. Black contours bound the climatological mean salinity associated with each map, and white 32 

contours bound the salinity trend in increments of 0.25 (PSS-78). (Figure from Durack, 2015, their Figure 33 

7). 34 

 35 

[END FIGURE 3.26 HERE] 36 

 37 

 38 

[START FIGURE 3.27 HERE] 39 

 40 

 Long-term trends in 0 to 2000 dbar total halosteric (salinity-driven) sea level anomaly, and the contrast of 41 

basin-integrated results for the Pacific and Atlantic Oceans compared to CMIP5 models. Units are mm 42 

year-1. Maps of 0 to 2000 dbar halosteric anomalies (left column, a3, b3 and c3) from (Ishii and Kimoto, 43 

2009, a3), (Durack and Wijffels, 2010, b3) and the CMIP5 historical multi-model mean (c3). Blue 44 

colours show a halosteric contraction (enhanced salinity) and orange a halosteric expansion (reduced 45 

salinity). Stippling is used to mark regions where the two observational estimates do not agree in their 46 

sign (a3, b3) and where less than 50% of the contributing models do not agree in sign with the multi-47 

model mean map from the ensemble. Basin-integrated halosteric (right column, top panel A) and 48 

thermosteric (right column, panel B) anomalies for the Pacific, where Pacific anomalies are presented on 49 

the x-axis and Atlantic on the y-axis. Observational estimates are presented in the red (Ishii and Kimoto, 50 

2009) and black (Durack and Wijffels, 2010) diamonds, CMIP5 historical models are shown in grey 51 

diamonds, with the multi-model mean in dark grey, and CMIP5 historicalNat models are shown in green 52 

diamonds with the multi-model mean in dark green. (Figure from Durack et al. (2014b), their Figures 1 53 

and 4). 54 

 55 

[END FIGURE 3.27 HERE] 56 
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3.5.3 Sea Level 1 

 2 

In the AR5, the observed sea level budget was closed by considering all contributing factors (see Box 9.2) 3 

including ocean warming, mass contributions from terrestrial storage, glaciers and ice caps, and the Antarctic 4 

and Greenland ice sheets (Church et al., 2013a). The SROCC found that the observed global mean sea level 5 

(GMSL) rise is consistent within uncertainties with the sum of the estimated observed contributions for 6 

1993–2015 and 2006–2015. 7 

 8 

 9 

3.5.3.1 Sea Level Evaluation 10 

 11 

A complication with modelling sea level change is that many of the necessary components, such as glaciers, 12 

ice sheets and land water storage required to close the observed budget were only partially resolved or 13 

missing from CMIP5 modelling systems (see Section 9.6 / Box 9.2). Consequently, most CMIP-based 14 

analyses of sea level change have focused on the thermosteric sea level changes (thermal expansion due to 15 

warming) and the ocean dynamic sea level change, which are simulated in the CMIP5-generation of models. 16 

Other contributions are computed using dedicated models, driven by CMIP output where possible. With the 17 

introduction of background volcanic forcing in the model control simulations (Eyring et al., 2016), modelled 18 

estimates of thermal expansion during the historical period have improved and agree better with the observed 19 

estimates. This agreement led the SROCC to assess a high confidence level in the simulated thermal 20 

expansion using climate models and high confidence in their ability to project future thermal expansion. 21 

 22 

While CMIP5 models did not include all necessary components, some meta-studies have used offline mass 23 

inputs to account for glacier and terrestrial contributions. Slangen et al. (2017) and Meyssignac et al. (2017) 24 

suggest including corrections to several contributions to sea level changes including to the Greenland surface 25 

mass balance and glacier contributions, based on differences between CMIP5-driven model results and 26 

reanalysis-driven results. This helps close the gap between models and observations for the 20th century 27 

globally, as well as better agreement with tide gauge observations in terms of interannual and multi-decadal 28 

variability at the regional scale. 29 

 30 

In CMIP6, ice sheets (see Section 3.4.3.2) are included for the first time in ISMIP6 (Nowicki et al., 2016). 31 

There is also scope for new insights of terrestrial water contributions from land surface (and sub-surface) 32 

modelling in the Land Surface, Snow and Soil moisture Model Intercomparison Project (LS3MIP; van den 33 

Hurk et al., 2016), providing a more comprehensive assessment of land surface snow and soil moisture 34 

feedbacks, as well as diagnosing systematic biases in land models. In parallel, the GlacierMIP project (Hock 35 

et al., 2019a; see Section 3.4.3.1) is also underway, and will provide more quantitative guidance and a 36 

comprehensive assessment of the uncertainties and best estimates of the sea level budget. 37 

 38 

 39 

3.5.3.2 Sea Level Change Attribution 40 

 41 

The SROCC concluded with high confidence that the dominant cause of global mean sea level rise since 42 

1970 is anthropogenic forcing. Prior to that, the AR5 had concluded that it is very likely that there is a 43 

substantial contribution from anthropogenic forcings to the global mean sea level rise since the 1970s. Since 44 

the AR5, several studies have identified a human contribution to observed sea level change, manifest in 45 

thermosteric sea level which can be separated into global mean and spatial pattern assessments. 46 

 47 

For the global mean thermosteric sea level change, Slangen et al. (2014) showed the importance of 48 

anthropogenic (combined greenhouse gas and aerosol forcings) to explain the magnitude of the observed 49 

changes considering the full depth of the ocean between 1957-2005 and natural forcings in order to capture 50 

the variability (see also Figure 3.28:). Over the 1950-2005 time period, Marcos and Amores (2014) found the 51 

human influence on thermosteric sea level rise in the 0-700m global ocean to be 87%. Both thermosteric and 52 

regional dynamic patterns of sea level change in individual forcing experiments from CMIP5 were 53 

considered by Slangen et al. (2015) who showed that responses to anthropogenic forcings are significantly 54 

different from both internal climate variability and inter-model differences and that although GHG and 55 
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anthropogenic aerosol forcings produce opposite global mean sea level responses, there are differences in 1 

response on regional scales. Based on these studies, we conclude that it is very likely that anthropogenic 2 

forcings are responsible for most of the observed global mean thermosteric sea level change since 1970. 3 

 4 

In an attribution study of the sea-level contributions of glaciers, Marzeion et al. (2014) found that between 5 

1991 to 2010, the anthropogenic fraction of global glacier mass loss was 69 ±24%. Slangen et al. (2016) 6 

considered all quantifiable components of the global mean sea level budget and showed that anthropogenic 7 

forced changes account for 69 ± 31% during 1970 to 2005, whereas natural forcings combined with internal 8 

climate variability have a much smaller impact only contributing 9 ± 18% of the change over the same 9 

period. These studies reveal that about 70% of the combined change in glaciers, ice sheet surface mass 10 

balance and thermal expansion since 1970 can be attributed to anthropogenic forcing, and that this 11 

percentage has increased over the course of the 20th century. Detection studies on GMSL change in the 20th 12 

century (Becker et al., 2014; Dangendorf et al., 2015) found that observed total GMSL change in the 20th 13 

century was inconsistent with internal climate variability. Dangendorf et al. (2015) identified that for 1900 to 14 

2011 it is virtually certain (P = 0.99) that at least 45% is human-induced and extremely likely (P = 0.95) that 15 

at least 61% is human-induced. A study that semi-empirically coupled GMST to sea-level change concluded 16 

it was very likely that at least 41% of the 20th century sea-level rise would not have happened in the absence 17 

of the century’s increasing GMST and that there was a 95% probability that by 1970 GMSL was higher than 18 

that which would have occurred in the absence of increasing GMST (Kopp et al., 2016).  19 

 20 

We note that current detection and attribution studies do not yet include all processes that are important for 21 

sea-level change, such as ice sheet dynamical changes, local subsidence or direct human interventions in 22 

landwater storage such as groundwater extraction. However, based on the body of literature available, we 23 

conclude that most of the observed GMSL rise since 1970 is very likely caused by anthropogenic forcings. 24 

 25 

 26 

[START FIGURE 3.28 HERE] 27 

 28 

 Comparison of global annual mean thermosteric sea level anomalies for CMIP6 historical (purple), 29 

natural-forcing only (green), well-mixed GHG only (red) and aerosol only (blue) simulations (multi-30 

model means shown as thick lines, and individual model simulations as thin lines) and for observed 31 

thermosteric sea level anomalies (Zanna et al. (2019), black). Anomalies are shown with respect to 1985–32 

2004. Numbers within brackets denote number of models used in producing the multi-model mean. 33 

 34 

[END FIGURE 3.28 HERE] 35 

 36 

 37 

3.5.4 Ocean Circulation 38 

 39 

Circulation of the ocean, whether it be wind or density driven, plays a prominent role in the heat and 40 

freshwater transport of the Earth system (Buckley and Marshall, 2016). Thus, its accurate representation is 41 

crucial for the realistic representation of water mass properties, and replication of observed changes driven 42 

by atmosphere-land-ocean coupling. Here, we assess the ability of the models to reproduce the observed 43 

large-scale ocean circulation and the detection and attribution of anthropogenic-driven its changes, while 44 

noting that the process based understanding of these circulation changes and circulation changes occuring at 45 

smaller scales are reported in Chapter 9.2.3. 46 

 47 

 48 

3.5.4.1 Atlantic Meridional Overturning Circulation (AMOC) 49 

 50 

The Atlantic Meridional Overturning Circulation (AMOC) represents a largescale flow of warm salty water 51 

northward at the surface and a return flow of colder water southward at depth and, as such, its mean state 52 

plays an important role in transporting heat in the climate system, while its variability can act to redistribute 53 

heat (see Chapter 2.3.3.4.1 and Chapter 9.2.3.1 for more details). 54 

 55 
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AR5 concluded that while climate models suggested that an AMOC slowdown would occur in response to 1 

anthropogenic forcing, the short direct observational AMOC record precluded it from being used to support 2 

this model finding. The SROCC increased the confidence in historical AMOC changes, concluding with 3 

medium confidence that the AMOC weakened over the historical period. This increased confidence was 4 

based on the agreement between three different lines of evidence (CMIP5 climate model simulations, 5 

historical reconstructions using SST fingerprints and paleoclimatic evidence) that all supported an AMOC 6 

weakening during the historical period. 7 

 8 

The CMIP5 and CMIP6 model ensembles simulate the general features of the AMOC similarly, but there is a 9 

large spread in the latitude and depth of the maximum overturning, and the maximum AMOC strength. In 10 

CMIP5 maximum AMOC strength ranges from 13 to 31 Sv (Sverdrups = 106 m3 s-1 (Zhang and Wang, 2013) 11 

and deviations of AMOC strength have been related to global-scale sea surface temperature biases (Wang et 12 

al., 2014). Despite the additional six years or so of observations since the AR5 was prepared, the evaluation 13 

of the AMOC in models continues to be severely hampered by the geographically sparse and temporally 14 

short observational record. The longest continuous observational estimates of the AMOC are at 26°N by the 15 

RAPID-MOCHA array (Smeed et al., 2018). Basic evaluation of the AMOC at 26°N shows that the CMIP5 16 

and CMIP6 multi-model mean overturning strength is comparable with RAPID (Reintges et al., 2017; Weijer 17 

et al., submitted), but the model range is large (12-29 Sv for CMIP5 and 10-22Sv for CMIP6) (see Figure 18 

3.29:a). Both coupled and ocean-only models also underestimate the depth of the AMOC cell (Danabasoglu 19 

et al., 2014; Weijer et al., submitted; Figure 3.29:a). Paleo-climatic evidence has also raised questions 20 

regarding the accuracy of the representation of the strength and depth of the modelled AMOC during past 21 

periods (Otto-Bliesner et al., 2007; Muglia and Schmittner, 2015). 22 

 23 

The short length of the observed time-series (about 14 years long for RAPID), sparse observations, and 24 

observational uncertainties (Sinha et al., 2018), as well as significant observed variability on interannual and 25 

longer time scales, also makes comparison of variability with models challenging. RAPID observations show 26 

that overturning at 26°N is 2.5 and 3.0 Sv weaker in the multi-year averages of 2008-2011 and 2012-2016 27 

relative to the 2004-2007 period, respectively (Smeed et al., 2014, 2018) (see Section 2.3.3.4.1). CMIP5 28 

models do produce a forced weakening of AMOC over the 2012-2016 period relative to 2004-2007, but at 29 

26°N the multi-model mean response is 0.92 Sv, which is substantially weaker than the reported observed 3 30 

Sv AMOC decline over the same period. The discrepancy between modelled and the RAPID observed 31 

AMOC changes has led studies to suggest that the observed weakening over 2004-2015 is largely due to 32 

internal variability (Yan et al., 2018). However, comparison of observed RAPID AMOC variability with 33 

modelled variability also reveals that CMIP5 models appear to underestimate the interannual and decadal 34 

timescale variability (Roberts et al., 2014; Yan et al., 2018), and similar results are found analysing the 35 

CMIP6 models (Figure 3.29:b,c). It is currently unknown why models underestimate this variability, but it 36 

may partly stem from underestimated surface wind variability and biases in the major atmospheric modes of 37 

variability over the North Atlantic, such as the NAO (see Section 3.3.3.3). This underestimation of AMOC 38 

variability likely also has implications for detection and attribution, the relationship between AMOC and 39 

AMV (see Section 3.7.7), and near-term predictions. There is also emerging evidence, based on analysis of 40 

freshwater transports, that the AMOC in CMIP5-era models is too stable, largely due to systematic biases in 41 

ocean salinity (Liu et al., 2017; Mecking et al., 2017). Such a systematic bias may potentially be linked with 42 

the underestimation of both simulated AMOC internal variability through eddy-mean flow interactions that 43 

are poorly represented in standard CMIP-class model resolution (Leroux et al., 2018), and externally forced 44 

change. 45 

 46 

Instrument-based reconstructions suggest the AMOC weakened during the 20th century (Chapter 2) (Ezer et 47 

al., 2013; Caesar et al., 2018). Over the same period, the CMIP5 multi-model mean showed no significant 48 

net forced response in AMOC (Cheng et al., 2013). The CMIP6 multi-model mean opposes the observed 49 

estimate (Weijer et al., submitted), as despite a near zero long term trend, a clear increase of the AMOC is 50 

seen over ~1940-1985 period (Menary et al., submitted; Figure 3.29:e). Models suggest that the AMOC is 51 

sensitive to natural (Menary and Scaife, 2014; Swingedouw et al., 2017) and anthropogenic external forcing 52 

(Caesar et al., 2018; Menary et al., 2013, submitted; Undorf et al., 2018a). However, the response between 53 

models can be different and, hence, the relative importance of the influences of external forcings on 54 

AMOC’s evolution in models is uncertain. Although there is general agreement that the influence of GHG 55 
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acts to a weaken the modelled AMOC (Delworth and Dixon, 2006), changes in solar, volcanic and 1 

anthropogenic aerosol emissions can often lead to temporary increases in AMOC on decadal-to-multidecadal 2 

timescales (Delworth and Dixon, 2006; Menary et al., 2013). The simulated net forced response in AMOC 3 

is, therefore, often a balance between different forcing factors (Delworth and Dixon, 2006; Menary et al., 4 

submitted). The differing AMOC response of CMIP5 and CMIP6 models during the historical period has 5 

been associated with stronger aerosol effective forcing in the CMIP6 models (Menary et al., submitted), such 6 

that the aerosol induced AMOC increase during the 1940-1985 period overcomes the GHG induced decline 7 

(Figure 3.29:e). However, there remains considerable uncertainty over the realism of the CMIP6 AMOC 8 

response during the 20th century due to disagreement among the differing lines of observational evidence. 9 

For example, indirect proxies of observed AMOC suggest that AMOC weakened over the period 1870–2015 10 

(Caesar et al., 2018; Thornalley et al., 2018). Ocean reanalysis (Jackson et al., 2019) and forced ocean model 11 

simulations (Robson et al., 2012; Danabasoglu et al., 2016) generally beginning in the late 1950s do suggest 12 

a peak in AMOC in the 1990s, but their short length precludes an assessment of 20th century trends. The 13 

mechanisms of AMOC strengthening in the forced ocean model simulations is reportedly associated with 14 

atmospheric circulation changes, and primarily the North Atlantic Oscillation (NAO) (Robson et al., 2012; 15 

Danabasoglu et al., 2016). However, there is little evidence for a significant role of external forcing in 16 

driving the observed interannual to multidecadal variations of the NAO over the 20th century from CMIP5 17 

and CMIP6 models (Section 3.7.1; Figure 3.32:). Significant questions also remain about the veracity of the 18 

forced AMOC response and, as discussed above, along with the relative importance of internal variability 19 

which is depicted by the extent of the box and whiskers, relative to the mean (Figure 3.29:d).  20 

 21 

In summary, models do not currently help us to understand the role of anthropogenic forcing in the recently 22 

observed reduction in AMOC as the changes currently sit outside of the range of forced AMOC trends and 23 

outside of the range of modelled internal variability. Thus, we have low confidence that anthropogenic 24 

forcing has had an impact on observed changes in AMOC strength in the post-2004 period. Chapter 2 25 

identified agreement from proxy evidence for a century-or longer-term decline in the AMOC, however, low 26 

confidence was placed on these findings (Section 2.3.3.4.1). In addition to this, there remains considerable 27 

uncertainty over the realism of the CMIP6 AMOC response during the 20th century due to disagreement 28 

among the differing lines of model simulation evidence (i.e., reanalysis, forced ocean simulations and 29 

historical CMIP6 simulations). Thus, we have low confidence that anthropogenic forcing has had an impact 30 

on observed changes in AMOC strength during the historical period (1860-2014). 31 

 32 

 33 

[START FIGURE 3.29 HERE] 34 

 35 

 (a) AMOC streamfunction profiles at 26.5°N from the historical CMIP5 (1860-2004) and CMIP6 (1860-36 

2014) simulations compared with the mean overturning observed with the RAPID data (2004-2018, black 37 

line). Overturning maxima are indicated by diamonds and the RAPID, CMIP5 MMM and CMIP6 MMM 38 

values are given in the legend. (b) Distribution of 8-year AMOC trends from individual CMIP6 historical 39 

simulations and the observed 2004-2012 trend (grey line). (c) Distribution of interannual AMOC 40 

variability from individual CMIP6 model historical simulations, along with the combined distributions of 41 

all available CMIP5 and CMIP6 models. The grey line is the observed value for 2009/2010 minus 42 

2008/2009 (following Roberts et al., 2014). All annual means are for April-March. (d-f) distribution of 43 

linear AMOC trends calculated over various time periods (see panel titles) over the historical period in 44 

CMIP6 simulations forced with: Anthropogenic greenhouse gas forcing only (GHG), Natural forcing only 45 

(NAT), Anthropogenic Aerosol forcing only (AER) and all forcing combined (Historical; HIST). (b-d) 46 

Boxes indicate 25th to 75th percentile, whiskers indicate 1st and 99th percentiles, and dots indicate outliers, 47 

while the horizontal black line and text value are the multi-model mean trends. (a-c) were produced with 48 

one historical ensemble member per model where the AMOC variable was available (listed), while (d-f) 49 

were produced with the AMOC detection and attribution simulation data sets utilised by Menary et al. 50 

(submitted). (Figure produced with ESMValTool v2.0a1.) 51 

 52 

[END FIGURE 3.29 HERE] 53 

 54 
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3.5.4.2 Southern Ocean Circulation 1 

 2 

The Southern Ocean circulation provides the principal connections between the world’s major ocean basins 3 

through the circulation of the Antarctic Circumpolar Current (ACC), while also largely controlling the 4 

connection between the deep and upper layers of the global ocean circulation, through its upper and lower 5 

overturning cells.  6 

 7 

AR5 reported, that in spite of changes in overlying surface winds, there was no direct evidence to support an 8 

intensification of the ACC (AR5 Section 3.6.4, and 3.6.5.2) and findings since then also agree that ACC 9 

transport has been stable since the 1990s (Section 9.2.3.2). However, post AR5 observational advances 10 

revealed that the observed magnitude of ACC mean transport is likely higher than reported in AR5. SROCC 11 

reported that that it is unlikely that the ACC meridional position has shifted in recent decades, in contrast to 12 

AR5.  13 

 14 

The modelled strength of the ACC clearly improved from CMIP3, in which the models tended to 15 

underestimate the strength of the ACC, to CMIP5 (Meijers et al., 2012). This improvement in the realism of 16 

ACC strength continues from CMIP5 to CMIP6, with the modelled ACC strength converging toward the 17 

magnitude of observed estimates of net flow through the Drake Passage (Beadling et al., submitted). There 18 

is, however, a small number of models that still display an ACC that is much weaker than that observed, 19 

while several models also display much more pronounced ACC decadal variability than that observed 20 

(Beadling et al., submitted). The increased realism of the ACC was at least partly related to noted 21 

improvements in all metrics of the Southern Ocean’s surface wind stress forcing (Beadling et al., submitted). 22 

The most notable wind stress forcing improvements were found in the strength and the latitudinal position of 23 

the zonally-averaged westerly wind stress maximum (Beadling et al., submitted; Bracegirdle et al., 24 

submitted). 25 

 26 

SROCC concluded that there is low confidence in an increase of the Southern Ocean’s upper cell overturning 27 

circulation due to large decadal variability and indirect measurements, and medium confidence that the lower 28 

overturning cell had slowed since the 1950s, decreasing the production of Antarctic Bottom Water. While 29 

the two-cell structure of the overturning circulation appears to be well captured by CMIP5 models (Sallée et 30 

al., 2013b; Russell et al., 2018), they tend to underestimate the intensity of the lower cell overturning, and 31 

overestimate the intensity of the upper cell overturning (Sallée et al., 2013b). As the lower overturning cell is 32 

closely related to Antarctic Bottom Water formation and deep convection, both fields also display substantial 33 

errors in CMIP5 models (Heuzé et al., 2013, 2015). Changes in the CMIP6 model representation of the 34 

Southern Ocean’s overturning circulation is curently unknown due to lack of literature. 35 

 36 

More generally, some of the climate model biases in characterizing Southern Ocean circulation come from 37 

inherent limitations in representing important processes at play in the horizontal and vertical overturning 38 

circulation of the Southern Ocean (Chapter 9.2.3.2). For instance, Southern Ocean mesoscale eddies are 39 

wholly paramerterised in the current generation of climate models and despite their small spatial scales they 40 

are a key element for establishing the ACC and upper overturning cell, as well as for their future evolution 41 

under changing atmospheric forcing (Kuhlbrodt et al., 2012; Downes and Hogg, 2013; Gent, 2016; Downes 42 

et al., 2018; Poulsen et al., 2018). 43 

 44 

SROCC reported that there is low confidence that the ACC or the Southern Ocean’s upper overturning 45 

branch have displayed significant changes during the relatively short observational period, and medium 46 

confidence that the production of Antarctic Bottom Water reduced over this time. These Southern Ocean 47 

circulation assessments remain valid (Section 2.3.3.4 and 9.2.3.2). Models display continued improvement in 48 

the representation of the ACC strength from CMIP3 to CMIP6 (Beadling et al., submitted; Meijers et al., 49 

2012). However, limitations in the representation of Antarctic Bottom Water formation remain in CMIP5 50 

and it is currently unclear whether these biases have been improved in CMIP6. Model studies assessing the 51 

potential drivers of the decreased Antarctic Bottom Water production during the historical period are not 52 

available at this time. It is noted that existing model biases place important limits in the correct 53 

representation of the ACC and Southern Ocean overturning cells, as well as in their representation of 54 

associated water-masses. 55 
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In summary, while there have been improvements across successive phases of the CMIP project (CMIP3 to 1 

CMIP6) in representation of the Southern Ocean circulation, substantial observational uncertainty precludes 2 

attribution of Southern Ocean circulation changes. Overall, the mean zonal and overturning circulations of 3 

the Southern Ocean and the mean overturning circulation of the North Atlantic (AMOC) are broadly 4 

reproduced by CMIP5 and CMIP6 models. However, we assess that some biases are apparent in the 5 

circulation strengths, which contribute to biases in the model representation of mean ocean temperature and 6 

salinity (medium confidence). 7 

 8 

 9 

3.6 Human Influence on the Biosphere 10 

 11 

3.6.1 Terrestrial Carbon Cycle 12 

 13 

The AR5 did not make attribution statements on changes in global carbon sinks. The IPCC SRCCL reported 14 

medium evidence but high agreement that global vegetation photosynthetic activity has increased since the 15 

1980s (Jia et al., 2019). That increase is attributed to CO2 fertilisation, nitrogen deposition, and climate 16 

change. The AR5 assessed with high confidence that CMIP5 ESMs simulate the global mean land and ocean 17 

carbon sinks within the range of observation-based estimates (Flato et al., 2013). The IPCC SRCCL, 18 

however, notes the remaining shortcomings of carbon cycle schemes in ESMs, which for example do not 19 

properly incorporate thermal responses of respiration and photosynthesis (Jia et al., 2019). Other routine 20 

omissions from terrestrial carbon cycle models of components expected to interact with climate change 21 

forcings are representations of permafrost thaw (Comyn-Platt et al., 2018), the nitrogen cycle (Thomas et al., 22 

2015b) and its impact on vegetation dynamics (Jeffers et al., 2015), the phosphorus cycle (Fleischer et al., 23 

2019), and accurate implications of carbon store changes for a range of land use options (Harper et al., 24 

2018). 25 

 26 

This section considers three main large-scale indicators of climate change relevant to the terrestrial carbon 27 

cycle: atmospheric CO2 concentration, atmosphere-land CO2 fluxes, and leaf area index. CMIP5 and CMIP6 28 

ESMs generally provide century-timescale climate simulations and diagnose CO2 emissions consistent with 29 

these. Such calculations require that the models simulate realistic changes in the terrestrial carbon cycle over 30 

the historical period, as changes to land carbon stores will influence the size of consistent CO2 emissions. 31 

Such testing of existing models is needed while also recognising there are process representations still 32 

requiring inclusion. 33 

 34 

Since the AR5, atmospheric inversion studies have helped test or constrain models, while new datasets have 35 

been used to constrain specific parts of the terrestrial carbon cycle such as plant respiration (Huntingford et 36 

al., 2017). Figure 3.30: shows historical emissions-driven CMIP6 simulations to compare the simulated 37 

global mean atmospheric CO2 concentration, ocean and land carbon sinks to observational estimates 38 

provided by the Global Carbon Project (Le Quéré et al., 2016). The CMIP6 models simulate a range of 39 

current CO2 values centred around the observed value of 380 ppmv in 2010, with a range of approximately 40 

360 to 400 ppmv. Most models simulate a realistic temporal evolution of the global ocean carbon sink 41 

(Figure 3.30:b, see also Section 3.6.2). Models without nutrient limitations on plant growth generally 42 

overestimate the contemporary land carbon sink (Figure 3.30:c), predominantly because they do not include 43 

a modelled terrestrial nitrogen cycle (Peng and Dan, 2015), but also because of uncertainties in the 44 

photosynthetic response to CO2 at global scales, shifts in carbon allocation and turnover, and land-use 45 

change (Hoffman et al., 2014). When considered globally, these simulated sinks fall within the range of 46 

observation-based estimates with high confidence, but only when the land models include representation of 47 

nutrient limitation (Thomas et al. (2015b) and Figure 3.30:). 48 

 49 

All models and the observational estimates agree that interannual variability in net CO2 uptake is much 50 

larger over land than over the ocean. Differences in the simulated interannual variability of the land carbon 51 

sink reveal differences in the simulated sensitivity of land carbon storage to climate fluctuations, and 52 

comparison of this variability with observations can be used to derive an emergent constraint on this 53 

sensitivity to long-term climate change (Section 5.4.6). Data-led studies demonstrate that regional variations 54 

in both the trends and the yearly strength of the terrestrial carbon sink are considerable. Datasets of the leaf 55 
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area index (LAI) and atmospheric inversions from point CO2 concentration measurements, as well as land 1 

simulations, imply that the majority of current terrestrial carbon accumulation is in the tropics (Sitch et al., 2 

2015). Extrapolation of eddy-covariance point measurements of land-atmosphere CO2 exchanges suggests 3 

that for local to regional scales, the dominant control of yearly sink strength is water availability, while at 4 

continent to global scale, the main driver is whether it is an anomalously hot or cold year (Jung et al., 2017). 5 

The major role of levels of water stored in the ground in influencing land-atmosphere CO2 exchange is 6 

reconfirmed through simultaneous analysis of satellite gravimetry and atmospheric CO2 levels (Humphrey et 7 

al., 2018). New CMIP6 simulations reconfirm that Earth system models estimate overall mean land and 8 

ocean carbon sinks to be an on-going substantial fraction of emissions. When considered globally, these 9 

simulated sinks fall within the range of observation-based estimates with high confidence, but only when the 10 

land models include representation of nutrient limitation (Figure 3.30:). 11 

 12 

 13 

[START FIGURE 3.30 HERE] 14 

 15 

 Evaluation of historical emissions-driven CMIP6 simulations for 1860-2014, against observational 16 

estimates of global mean (a) atmospheric CO2 concentration (ppmv) (observational constraints are not yet 17 

included; red dot: 2005 Global CO2 value) Models: BCC-CSM2-MR, CNRM-ESM2-1, (b) ocean carbon 18 

uptake (PgC yr-1) Models: CanESM5, CNRM-ESM2-1, NorESM2-LM, GFDL-ESM4, (c) land carbon 19 

uptake (PgC yr-1). Models: CanESM5, CNRM-ESM2-1, UKESM1-0-LL, NorESM2-LM. FL represents 20 

the atmosphere-land CO2 flux and can be compared with the models. FLN is the residual land sink, 21 

excluding the effects of land-use change. (Figure produced with ESMValTool v2.0.0b3.) 22 

 23 

[END FIGURE 3.30 HERE] 24 

 25 

 26 

The seasonal cycle in atmospheric CO2 in remote locations across the Northern Hemisphere, which is driven 27 

by the drawdown of carbon by photosynthesis on the land during the summer and release by respiration 28 

during the winter, has increased its amplitude since the start of systematic monitoring (Figure 3.31:, see also 29 

Section 2.3.4.6). This trend, which is larger at higher latitudes, was first reported by Keeling et al. (1996) and 30 

has continued. Proposed causes of this trend, and its amplification at higher latitudes, include increases in the 31 

summer productivity and/or increases in the magnitude of winter respiration of northern ecosystems 32 

(Barichivich et al., 2013; Graven et al., 2013; Forkel et al., 2016; Wenzel et al., 2016), increases in 33 

productivity throughout the Northern Hemisphere by CO2 fertilisation, and increases in the productivity of 34 

agricultural crops in northern mid-latitudes (Gray et al., 2014; Zeng et al., 2014). Changes have been 35 

observed in both vegetation productivity as well as longer growing seasons (Park et al., 2016). However, a 36 

slowdown of the increasing trend has been noted, linked to a slowdown of both vegetation greening and 37 

growing-season length increases (Li et al., 2018). Terrestrial carbon cycle models partially capture the 38 

increasing amplitude observed at Mauna Loa Observatory, Hawaii, and suggest that the dominant driver is 39 

CO2 fertilisation, with substantial uncertainty in the contributions from climate change and land use change 40 

(Zhao et al., 2016). However, many of these global models do not include nitrogen fertilization, changes to 41 

crop cultivars or irrigation effects, with the latter associated with deficiencies in simulated terrestrial water 42 

cycling (Yang et al., 2018). All these missing factors may influence the response. Attribution of the drivers 43 

at Barrow, Alaska, suggests a more even contribution of CO2 fertilisation and warming in the high northern 44 

latitudes (Piao et al., 2017), although here too, models differ and are believed to underestimate current levels 45 

of carbon fixation (Winkler et al., 2019). Deficiencies in phenological representation of greenness levels in 46 

land models, and particularly for Autumn, are suggested as an explanation for remaining seasonal 47 

discrepancies between expected and measured CO2 levels at Barrow (Li et al., 2018). Based on these studies 48 

and noting the uncertainty in the processes ultimately driving changes in atmospheric CO2 seasonal cycles 49 

(Section 5.2.2.4.3), we assess as likely, with medium confidence, that anthropogenic increases in CO2 have 50 

resulted in an increase in the amplitude of its atmospheric seasonal cycle. 51 

 52 

Detection and attribution methods have been applied to Leaf Area Index (LAI), which represents 53 

“greenness” and general photosynthetic productivity (see Section 2.3.4.5). Nitrogen deposition and land 54 

cover change trends remain small compared to variability, so attributing changes in LAI to those processes is 55 

difficult. Using three satellite products and ten land models, Zhu et al. (2016) find increases in LAI 56 
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(greening) over 25-50% of global vegetated areas, which they attribute mostly to increasing atmospheric CO2 1 

concentrations. This observed greening supports findings of Mao et al. (2016), although Mao et al. (2013) 2 

note the faster warming rates in the Southern Hemisphere lessen this fertilisation effect compared to the 3 

Northern Hemisphere. These conclusions remain in Zhu et al. (2017), where land models are additionally 4 

first weighted by performance, but have been challenged by Chen et al. (submitted) who show that greening 5 

in India and China is driven by land-use change. LAI increases attributed to CO2 fertilisation is due to a 6 

direct raised physiological response. However, for drylands, CO2-induced stomatal closure may operate to 7 

conserve soil moisture and higher water use efficiency can offset closure impacts on photosynthesis (Lu et 8 

al., 2016). The recent merging of terrestrial ecosystem models with CO2-enrichment experiments has better 9 

constrained the fertilisation effect (Liu et al., 2019). For models with nitrogen deposition, there is attributable 10 

evidence that this simulated effect is observable as influencing LAI trends. However, because only a very 11 

small number of large-scale land simulations include both nutrient limitation and crop intensification, and 12 

even fewer factorial simulations exist with these effects modelled as “on” or “off”, it is not yet possible to 13 

make an attribution statement about their individual roles in LAI changes. 14 

 15 

In summary, there is medium confidence that Earth system models simulate the magnitude and large 16 

interannual variability of the land carbon sink well if they account for nutrient limitation on plant growth. 17 

Based on new studies that attribute changes in atmospheric CO2 seasonal cycle mostly to CO2 fertilisation, 18 

combined with the medium confidence that models represent the processes driving changes in the seasonal 19 

cycle, we assess that anthropogenic increases in CO2 have likely resulted in an increase in the amplitude of 20 

its atmospheric seasonal cycle. Based on new studies that attribute increases in LAI to CO2 fertilisation, but 21 

noting the low number of models that represent the whole suite of processes involved, especially nutrient 22 

limitation and crop intensification, we assess with low confidence that CO2 fertilisation due to the increase in 23 

atmospheric CO2 has contributed to observed increases in LAI. 24 

 25 

 26 

[START FIGURE 3.31 HERE] 27 

 28 

 Changes to the amplitude of the seasonal cycle of global land-carbon uptake in the historical simulations 29 

from 1961-2014. (a) Net biosphere production (nbp) estimates from CMIP6 models (CanESM5, MIROC-30 

ES2L, UKESM1-0-LL, CNRM-ESM2-1, IPSL-CM6A-LR, GISS-E2-1-G, GISS-E2-1-G-CC, GISS-E2-31 

1-H, CESM2, CESM2-WACCM, SAM0-UNICON, in black) and atmospheric CO2 seasonal cycle 32 

amplitude changes from observations (global in blue, Mauna Loa Observatory (MLO) in grey). Seasonal 33 

Cycle Amplitude calculated using the curve fit algorithm package 34 

(https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html) from the National Oceanic and Atmospheric 35 

Administration Earth System Research Laboratory (NOAA ESRL). Trends are relative to the 1961-1970 36 

mean and for short time series adjusted to have the same mean as the model ensemble in the last 10 years. 37 

Interannual variation was removed with a 9-year Gaussian smoothing. Shaded areas show the 1 sigma 38 

model spread (grey) and the 1 sigma standard deviation (light-grey) for the CMIP6 ensemble and the CO2 39 

MLO observations respectively. Inset: average seasonal cycle of ensemble mean for 1961-1970 and its 1 40 

sigma model spread (dashed line, light grey shading) and 2005-2014 (solid line, darker grey shading). (b) 41 

Attribution of causes of increasing amplitude from CMIP6 models using historical, hist-bgc (fixed 42 

climate in biogeochemistry) and hist-noLu (no land-use change) simulations and calculated from the 43 

amplitude trend following panel a (similar to Zhao et al., 2016, their Figures 4 and 5), Models: CNRM-44 

ESM2-1, UKESM1-0-LL. (Figure produced with ESMValTool v2.0.0b3.) 45 

 46 

[END FIGURE 3.31 HERE] 47 

 48 

 49 

3.6.2 Ocean Biogeochemical Variables 50 

 51 

Since CMIP5, there has been a general increase in ocean horizontal grid resolution and vertical grid 52 

parametrization and resolution in ocean model components (Arora et al., submitted; Séférian et al., 53 

submitted). The latter of these developments is particularly significant for projections of ocean stressors as it 54 

directly affects the representation of stratification. Updates in the representation of ocean biogeochemical 55 

processes between CMIP5 and CMIP6 have typically involved an increase in model complexity. Specific 56 
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developments have been the more widespread inclusion of micronutrients, such as iron, variable 1 

stoichiometric ratios, more detailed representation of lower trophic levels including bacteria and the cycling 2 

and sinking of organic matter. CMIP6 biogeochemical model performance is generally an improvement on 3 

that of the parent CMIP5 generation of models (Séférian et al., submitted). The global representation of 4 

present-day air-sea carbon fluxes and surface chlorophyll concentrations show moderate improvements 5 

between CMIP5 and CMIP6. Similar improvements are seen in the representation of subsurface oxygen 6 

concentrations in most ocean basins, while the representation of surface macronutrient concentrations in 7 

CMIP6 is shown to have improved with respect to silicic acid but declined slightly with respect to nitrate. 8 

Model representation of micronutrient iron has not improved substantially since CMIP5, but many more 9 

models are capable of representing iron. In addition, a comparison of the feedbacks in carbon concentration 10 

and carbon climate shows no significant change between CMIP5 and CMIP6 (Arora et al., submitted).  11 

 12 

Since AR5 research has also focused on the detection and attribution of regional patterns in ocean 13 

biogeochemical change relating to interior deoxygenation, air-sea CO2 flux, and ocean carbon uptake and 14 

associated acidification. Characterization of flux variability requires understanding of the suite of physical 15 

and biological processes including transport, heat fluxes, interior ventilation, biological production and gas 16 

exchange which can have very different controls on seasonal versus interannual timescales in both the North 17 

Pacific (Ayers and Lozier, 2012) and North Atlantic (Breeden and McKinley, 2016). In the Southern Ocean, 18 

models have difficulty reproducing the observed seasonal cycle and interannual variability, making 19 

attribution particularly challenging (Lovenduski et al., 2016; Mongwe et al., 2016, 2018). 20 

 21 

The AR5 concluded that oxygen concentrations have decreased in the open ocean since 1960 and such 22 

decreases can be attributed in part to human influences with medium confidence. The decrease in ocean 23 

oxygen content in the upper 1000m, between 1970-2010, is further confirmed in SROCC (medium 24 

confidence), with the oxygen minimum zone expanding in volume. Observed oxygen declines over the last 25 

several decades (Stendardo and Gruber, 2012; Stramma et al., 2012; Schmidtko et al., 2017) match model 26 

estimates in the surface ocean (Oschlies et al., 2017) but are much larger than model derived estimates in the 27 

interior (Bopp et al., 2013; Cocco et al., 2013). Some of this difference has been interpreted as a lack of 28 

representation of coastal eutrophication in these models (Breitburg et al., 2018), but much of it remains 29 

unexplained. This disparity is particularly true in the Eastern Pacific oxygen minimum zone, where some 30 

CMIP5 models showed increasing trends whereas observations show a strong decrease (Cabré et al., 2015). 31 

However, proxy reconstructions suggest that the last century may have in fact undergone increases in oxygen 32 

in the most oxygen poor regions (Deutsch et al., 2014). The global upper ocean O2 inventory (0–1000 m) 33 

changed at the rate of −243 ± 124 T mol O2 per decade and is negatively correlated with ocean heat content 34 

(r = −0.86; 0–1000 m) with a regression coefficient of −8.2 ± 0.66 nmol O2 J
−1, on the same order of 35 

magnitude as the simulated O2-heat relationship typically found in ocean climate models (Ito et al., 2017). 36 

Variability and trends in the observed upper ocean O2 concentration are dominated by the apparent oxygen 37 

utilization component with relatively small contributions from O2 solubility. While not providing a direct 38 

biogeochemical process, this consistency between the correlations suggests that changing ocean circulation, 39 

mixing, and/or biochemical processes, rather than the direct thermally induced solubility effects may be the 40 

explanation. 41 

 42 

As one of the most commonly observed surface parameters, the partial pressure of CO2 (pCO2, an estimate of 43 

ocean CO2 sink), has been the topic of considerable detection and attribution work. In North Atlantic 44 

subtropical and equatorial biomes, warming has been shown to be a significant and persistent contributor to 45 

the observed increase in pCO2 since the mid‐2000s with long‐term warming leading to a reduction in ocean 46 

carbon uptake (Fay and McKinley, 2013), and with both pCO2 and associated carbon uptake demonstrating 47 

strong predictability as a function of interannual to decadal climate state (Li et al., 2016a; Li and Ilyina, 48 

2018). In the Southern Ocean however, detection and attribution of surface pCO2 trends has proven more 49 

elusive and dependent on methodology, with some suggestion that Southern Ocean carbon uptake slowed 50 

from about 1990 to 2006 and subsequently strengthened from 2007 to 2010 (Lovenduski et al., 2008; Fay et 51 

al., 2014; Ritter et al., 2017). Other methods have suggested that representation of the seasonal cycle may 52 

confound models’ ability to represent these signals (Nevison et al., 2016; Mongwe et al., 2018). 53 

 54 

Based on pCO2, the global net flux of CO2 into the ocean is estimated to have weakened during the 1990s to 55 
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-0.8 ± 0.5 PgC yr-1 in 2000, and thereafter to have strengthened considerably to rates of -2.0 ± 0.5 PgC yr-1, 1 

associated with changes in SST, the surface concentration of dissolved inorganic carbon and alkalinity, and 2 

decadal variations in atmospheric forcing (Landschützer et al., 2016, see also Section 5.2).  3 

 4 

Ocean acidification is also one of the most detectible and attributable metrics of environmental change and 5 

was well covered in the AR5. The AR5 assessed with high confidence that the uptake of anthropogenic CO2 6 

has resulted in ocean acidification. Since then, observations and synthesis of multidecadal trends in surface 7 

carbon chemistry have increased in robustness, suggesting a detectable surface pH decrease of 0.018 ± 0.004 8 

decade−1 for the period of 1991-2011 (Lauvset et al., 2015) with an observed range of 0.013 - 0.026 decade-1 9 

(Bates et al., 2014). The evidence on ocean pH decline is further strengthened in SROCC (virtually certain) 10 

with a good agreement between CMIP5 models and observations. The ocean acidification occurs not only in 11 

the surface layer but also in the interior of the ocean (Section 5.3.3). Rates have been observed to be nearly 12 

as high (between −0.015 and −0.020 decade-1) in mode and intermediate waters of the North Atlantic through 13 

the combination of increased anthropogenic and remineralized carbon (Ríos et al., 2015) and down to 3000 14 

m in the deep water formation regions (Perez et al., 2018). There has also been considerable improvement in 15 

detection and attribution of anthropogenic CO2 versus eutrophication based acidification in coastal waters 16 

(Wallace et al., 2014). 17 

 18 

In summary, increased evidence in recent studies supports an assessment that it is virtually certain that the 19 

uptake of anthropogenic CO2 has substantially contributed to the acidification of the global ocean. The 20 

observed increase in acidity over the North Atlantic subtropical and equatorial regions since mid-2000 is 21 

likely in part associated with an increase in ocean temperature, a response which corresponds to the expected 22 

weakening of the ocean carbon sink with warming. Due to strong internal climate variability, systematic 23 

changes in carbon uptake in response to climate warming have not been observed in most other ocean basins 24 

at present. We further assess, consistent with AR5 and SROCC, that deoxygenation in the surface ocean is 25 

due in part to anthropogenic forcing, with medium confidence. There is high confidence that Earth system 26 

models simulate a realistic time evolution of the global mean ocean carbon sink. 27 

 28 

 29 

3.7 Human Influence on Modes of Climate Variability and their Teleconnections 30 

 31 

3.7.1 North Atlantic Oscillation and Northern Annular Mode 32 

 33 

The Northern Annular Mode (NAM; also known as Arctic Oscillation) is an oscillation of atmospheric mass 34 

between the Arctic and northern mid-latitudes, analogous to the Southern Annular Mode (SAM; Section 35 

3.7.2). It is the leading mode of variability of sea-level pressure in the northern extratropics but also has a 36 

clear fingerprint through the troposphere up to the lower stratosphere, with maximum expression in boreal 37 

winter (Kidston et al., 2015). The North Atlantic Oscillation (NAO) can be interpreted as the regional 38 

expression of the NAM and captures most of the related variance in the troposphere over a broad North 39 

Atlantic/Europe domain. Indices measuring the state of the NAO correlate highly with those of the NAM, 40 

and teleconnection patterns for both modes are rather similar (Feldstein and Franzke, 2006). A detailed 41 

description of the NAM and the NAO is given in Technical Annex AVI.1. 42 

 43 

AR5 found that while models simulated some general aspects of the NAM, substantial inter-model 44 

differences remained regarding the details of the associated teleconnection patterns. Also, models did not 45 

reproduce short-term (daily to subseasonal) variability of the NAO/NAM index and generally produced too 46 

few persistent episodes. AR5 reported that most models did not reproduce the observed positive trend of the 47 

NAO/NAM during the late 20th century; it was unclear to what extent this failure reflected model 48 

shortcomings and/or if the observed trend could be simply related to pronounced internal climate variability. 49 

AR5 accordingly did not comment on any anthropogenic influence on the NAO/NAM. 50 

 51 

CMIP5 and newer models reproduce the structure and magnitude of the NAM reasonably well (Lee and 52 

Black, 2013; Zuo et al., 2013; Davini and Cagnazzo, 2014; Ying et al., 2014; Ning and Bradley, 2016; Deser 53 

et al., 2017b; Gong et al., 2017). But any progress from CMIP3 to CMIP5 models remains unclear (Davini 54 

and Cagnazzo, 2014). North Pacific SLP anomalies remain generally too strong (Zuo et al., 2013; Gong et 55 
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al., 2017) while the subtropical North Atlantic lobe of SLP anomalies is too weak (Ning and Bradley, 2016) 1 

in many models. Such overall biases persist in CMIP6 historical simulations, even if the multi-model multi-2 

member ensemble mean spatial correlation between modelled and observed NAM is slightly better (Figure 3 

3.32:a,d,g). Regarding the NAO, the majority of CMIP5 models successfully simulate its spatial structure 4 

(Lee et al., 2018) and its associations with jet, storm track and blocking variations over a broad North-5 

Atlantic/Europe domain (Davini and Cagnazzo, 2014). The good performance of the models is confirmed in 6 

CMIP6 even showing a marginal improvement of the averaged observation-model spatial correlation (Figure 7 

3.32:b,e,h) and better skill based on other evaluation metrics (Fasullo et al., submitted). The slight 8 

underestimation of the SLP anomalies related to the NAO centers of actions over the Azores and Greenland-9 

Iceland-Norwegian Seas remain unchanged compared to CMIP5. 10 

 11 

Low-top CMIP5 models (with model top within the stratosphere) seriously underestimate the variability of 12 

the wintertime NAM in the stratosphere, in contrast to high-top models (extending above the stratopause) 13 

(Lee and Black, 2015). However, even in the latter models, the stratospheric NAM events are insufficiently 14 

persistent (Lee and Black, 2015) and so are their downward influences on the troposphere (Charlton-Perez et 15 

al., 2013). Increased vertical resolution does not show any significant added value in reproducing the 16 

structure and magnitude of the tropospheric NAM (Lee and Black, 2013) nor in the NAO predictability as 17 

assessed in a seasonal prediction context from a multimodel approach (Butler et al., 2016). On the other 18 

hand, there is more evidence that a correct representation of the Quasi Biennal Oscillation and the 19 

extratropical stratospheric dynamics (polar vortex and sudden stratospheric warming) as well as their 20 

interplay with ENSO, are important for NAO/NAM temporality (Scaife et al., 2016; Karpechko et al., 2017; 21 

Domeisen, 2019; Domeisen et al., 2019), in spite of underestimated troposphere-stratosphere coupling found 22 

in models compared to observations (O’Reilly et al., 2019a). 23 

 24 

The observed trend of the NAM and NAO over 1958-2014 is overall positive in winter (Chapter 2 Section 25 

2.4.5.1; Technical Annex VI.1) while including large multidecadal variability, which means that the trend is 26 

not statistically significant (Gillett et al., 2013b). Dedicated SST-forced stand-alone atmospheric model 27 

experiments suggest that ocean forcing appears to play a role in decadal variability of the NAO and 28 

associated fluctuations in the strength of the jet (Woollings et al., 2015). In particular, Atlantic and Indian 29 

Ocean SST anomalies (Fletcher and Cassou, 2015; Baker et al., 2019; Douville et al., 2019) may have 30 

contributed to the long-term positive trend of the winter NAO/NAM over the 20th century, but there is only 31 

low confidence in such a causal relationship because of the limitation of imposed SST approach, the 32 

uncertainties in observed SST trends among datasets used as forcing and sampling issues due to limited 33 

ensemble size. There is also a tendency of the CMIP5 models to systematically underestimate the level of 34 

multidecadal versus interannual variability of the winter NAO and jet stream compared to observations 35 

(Bracegirdle et al., 2018; Simpson et al., 2018). This is further confirmed in CMIP6. Even if one cannot rule 36 

out that it was an exceptional period of variability, the observational estimates of 1958-2014 wintertime 37 

NAO trends lay outside of the 2.5-97.5th percentile range of the model distribution drawn from CMIP6 38 

historical simulations, and multi-model multi-member ensemble means of the trends are equal to zero in both 39 

CMIP5 and CMIP6 (Figure 3.32:j,k). This has strong implications in the interpretation of climate seasonal 40 

trends over the Northern Hemisphere continents affected by NAM/NAO through teleconnections (Iles and 41 

Hegerl, 2017). 42 

 43 

Focusing on the most recent two decades, the wintertime NAO/NAM trends are mostly negative since the 44 

mid-1990s, albeit very weak due to increased variability leading to record breaking in both phases (Hanna et 45 

al., 2015). Evidence is provided from observations (Gastineau and Frankignoul, 2015) and dedicated 46 

modeling experiments (Davini et al., 2015; Peings and Magnusdottir, 2016) that the recent dominance of 47 

negative NAM/NAO could be partly related to the latest shift of the Atlantic Multidecadal Variability 48 

(AMV) in a warm phase (Chapter 2 Section 2.4.3 and Section 3.7.7). Some recent modelling studies also 49 

find that the Arctic sea ice decline might be partly responsible for more recurrent negative NAM/NAO 50 

(Peings and Magnusdottir, 2013; Kim et al., 2014a; Nakamura et al., 2015), while other studies do not 51 

robustly identify such responses in models (Screen et al., 2013, 2018; Sun et al., 2016a; Boland et al., 2017; 52 

Blackport et al., 2019). These contradictory results may arise from nonlinearity in the NAO/NAM response 53 

to sea ice perturbations (Semenov and Latif, 2015; Chen et al., 2016b) and sensitivity to background state 54 

(Smith et al., 2017) in the atmospheric response to sea ice changes, lack of atmosphere-ice-ocean coupling in 55 
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many model experiments (Deser et al., 2016), and strong wintertime internal variability in the extratropics 1 

(Screen et al., 2014; Boland et al., 2017) (see also Cross-chapter Box 10.1). 2 

 3 

As opposed to winter, the observed trend of the NAO over 1958-2014 is overall negative in summer 4 

associated with more recurrent blocking conditions over Greenland, in particular since the mid-1990s, thus 5 

contributing to accelerated ice melting (Fettweis et al., 2013; Hanna et al., 2015; Ding et al., 2017). The 6 

origin of the negative trend of the summer NAO is not clearly identified, and is hypothesized to be the result 7 

of combined influences (Lim et al., 2019). The recent observed negative NAO prevalence and related 8 

blocking over Greenland is not present in any of the CMIP5 models (Hanna et al., 2018) nor in the most 9 

recent CMIP6 historical simulations, which tends to produce opposite sign with decreased summertime 10 

blocking activity over Greenland and despite a clear reduction of the mean biases in the latest generation of 11 

models (Davini and D’Andrea, submitted).  12 

 13 

Regarding the direct effects of external forcings, Gillett and Fyfe (2013) find a significant strengthening of 14 

the NAM in the CMIP5 historical ensemble, strongest in boreal autumn and winter. A single-model study 15 

suggests that aerosol changes may also have driven significant climate change in the Arctic in recent decades 16 

(Navarro et al., 2016) which would have been reflected in the NAO/NAM. However, a multi-model 17 

assessment of eight CMIP5 models finds no robust influence of aerosol changes onto the NAM (Gillett et al., 18 

2013b). Ozone depletion does not have a robust detectable influence on long-term trends of the NAO/NAM 19 

(Maycock et al., 2018b) in contrast to the SAM (Section 3.7.2), but there are indications that extreme Arctic 20 

ozone depletion events and their surface expression are linked to an anomalously strong NAM (Calvo et al., 21 

2015; Ivy et al., 2017). However, the direction of causality here is not clear.  22 

 23 

These conclusions are supported by CMIP6 results based on single forcing ensembles (Figure 3.33:a). There 24 

is a slight tendency for positive trends of the winter NAM in historical simulations over 1958-2014 driven 25 

mainly by GHG increases. No contributions are found from the other external forcings, except for an 26 

apparent small negative trend due to natural forcing. Albeit weak, such a signal is consistent with the 27 

observed slow reduction of solar activity since the 1980s (Chapter 2 Section 2.1.1) whose influence would 28 

favor negative phases of NAM/NAO based on the fingerprint of the 11-year solar cycle extracted from 29 

models (Scaife et al., 2013; Andrews et al., 2015) or observations (Gray et al., 2016) in the Northern 30 

Hemisphere wintertime circulation. In winter, results are not sensitive to the metrics chosen for NAM 31 

throughout the report (Figure 3.33:a; also see Tech. Annex. AVI.1), by contrast to summertime. Fixed zonal 32 

indices (Jianping and Wang, 2003) do not exhibit any significant trends in summer NAM whatever the type 33 

of simulations of CMIP6, whereas positive trends are found in historical runs based on pattern indices (EOF, 34 

Lee et al., 2019). The sign of the trend, which is opposite to observational estimates, is associated with GHG 35 

forcing and is consistent with Davini and D’Andrea (submitted).  36 

 37 

In summary, despite some model suggestions that anthropogenic forcings influence the NAM/NAO, the 38 

weakness of the model signals in the presence of pronounced internal variability indicates that there is little 39 

evidence for a significant role for anthropogenic forcings in driving the observed multidecadal variations of 40 

the NAM/NAO over the instrumental period. There is however very high confidence that the associated 41 

teleconnections have contributed to a significant fraction of observed multidecadal variability over the 42 

Northern Hemisphere continents and have modulated human-induced changes at regional scale. The 43 

difficulty in detecting and attributing NAM/NAO changes is mostly related to the larger role of internal 44 

variability relative to any human imprint over the historical period. However, although CMIP5 and CMIP6 45 

models have medium to high performance in simulating the spatial features and the variance of the 46 

NAM/NAO and teleconnectivity (high confidence), there is an apparent signal-to-noise problem referred to 47 

as “paradox” as evident in seasonal hindcasts (Scaife and Smith, 2018). Whilst skillful NAO hindcast is 48 

demonstrated, it appears to have a relatively weak predictable signal and this may have possible implications 49 

in that the NAO response to external forcing could be too weak in models. The weakness of the signal has 50 

been related to chronic model biases in the persistence of the NAO/NAM regimes, which is critically 51 

underestimated in coupled models (Strommen and Palmer, 2019), and to the troposphere-stratosphere 52 

coupling which is too intermittent (O’Reilly et al., 2019a). Nonetheless, large ensembles and related new 53 

statistical techniques such as dynamical adjustment (Deser et al., 2016; Saffioti et al., 2016) allow us to 54 

better quantify the contributions of human-forced and internal components in observed changes in 55 
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temperature and precipitation over land affected by NAO/NAM teleconnectivity. 1 

 2 

 3 

[START FIGURE 3.32 HERE] 4 

 5 

 Regression of Mean Sea Level Pressure (MSLP) anomalies (in hPa) onto the normalized principal 6 

component (PC) of the leading mode of variability obtained from empirical orthogonal decomposition 7 

(EOF) of the boreal winter (Dec.-Feb) MSLP poleward of 20ºN for the Northern Annular Mode (NAM, 8 

a) over 20-80°N, 90°W-40°E for the North Atlantic Oscillation (NAO, b), and poleward of 20ºS for the 9 

Southern Annular Mode (SAM, c) for the JRA-55 reanalysis. The selected period for NAO/NAM is 10 

1958-2014 but 1979-2014 for SAM. (d-f) Same but for multi-model multi-member ensemble mean from 11 

CMIP6 historical simulations. Models are weighted in compositing to account for differences in their 12 

respective ensemble size. (g-i) Taylor diagram summarizing the representation of the modes in models 13 

and observations following Lee et al. (2019) for CMIP5 (light blue) and CMIP6 (red). The reference 14 

pattern is taken from JRA-55 (a-c). Ratio of standard deviation (radial distance), spatial correlation (radial 15 

angle) and resulting root-mean-squared-errors (solid isolines) are given from individual members and 16 

models and for other observational products (ERA-20C combined with ERA-Interim, NOAA-20CR 17 

atmospheric reanalyses, black dots). (j-l) Histogram of the trends built from all members and all the 18 

models PCs (light pink bars). Vertical lines in black stand for all the observational estimates. The red and 19 

light blue lines indicate the multi-model multi-member ensemble mean of CMIP6 and CMIP5, 20 

respectively. A total of 293 CMIP6 historical simulations from 35 models and 152 CMIP5 historical 21 

simulation from 39 models have been used for the computation. 22 

 23 

[END FIGURE 3.32 HERE] 24 

 25 

 26 

[START FIGURE 3.33 HERE] 27 

 28 

 Simulated and observed trends (hPa decade–1) in NAM indices over 1958-2014 (a) and in SAM indices 29 

over 1979-2014 (b) for boreal winter (December-February average; DJF) and summer (June-August 30 

average; JJA). Ensemble mean, interquartile ranges and 5th and 95th percentiles are shown by boxes and 31 

whiskers based on CMIP6 DAMIP ensembles forced by individual forcings. The number of simulations 32 

used for computing the distribution is given in brackets with the colour code of the DAMIP ensemble. 33 

For grey shading (observations) and filled boxes, the indices are based on latitudinal difference of the 34 

zonally averaged mean sea level pressure (between 35ºN and 65ºN for the NAM and between 40ºS and 35 

65ºS for the SAM as defined in Jianping and Wang (2003) and Gong and Wang (1999), respectively). For 36 

open boxes, the indices are defined as projection coefficients onto the EOF pattern as in Figure 3.32: but 37 

applied to the corresponding piControl simulations following Lee et al. (2019). Grey shading shows the 38 

range of observed trend among JRA-55, ERA-20C combined with ERA-Interim and NOAA-20CR. 39 

 40 

[END FIGURE 3.33 HERE] 41 

 42 

 43 

3.7.2 Southern Annular Mode 44 

 45 

The Southern Annular Mode (SAM) consists of a meridional redistribution of atmospheric mass around 46 

Antarctica (Figure 3.32:e), associated with a meridional shift of the jet and surface westerlies over the 47 

Southern Ocean. SAM indices are variously defined as the difference in zonal-mean SLP between middle 48 

and high latitudes or via a principal-component analysis (Technical Annex AVI.2). 49 

 50 

AR5 summarized that CMIP5 models have medium performance in reproducing the SAM with biases in 51 

shape and associated surface anomalies. It also concluded that the strengthening trend of the SAM in austral 52 

summer since the mid-20th century is likely to be due in part to stratospheric ozone depletion, and there was 53 

medium confidence that GHGs have also played a role. Based on proxy reconstructions, AR5 found with 54 

medium confidence that the SAM trend since 1950 was anomalous compared to the last 400 years.  55 

 56 

Additional research has shown that CMIP5 models reproduce the spatial structure of SAM well, but tend to 57 
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overestimate its variability in austral summer at interannual time scales, albeit within the observational 1 

uncertainty (Zheng et al. 2013; Schenzinger and Osprey 2015; Figure 3.32:c,f,i). This is related to the 2 

models’ tendency to simulate a slightly more persistent SAM circulation in summer than is found in the 3 

ERA-Interim reanalyses (Schenzinger and Osprey, 2015) due in part to too weak a negative feedback from 4 

tropospheric planetary waves (Simpson et al., 2013). CMIP6 models show improved performance in 5 

reproducing the spatial structure and interannual variance of the SAM in summer based on Lee et al. (2018) 6 

diagnostics (Figure 3.32:i), with a better match of its trend with reanalyses over 1979-2014 (Figure 3.32:), 7 

more realistic timescales of variability and improved positioning of the westerly jet which in CMIP5 models 8 

on average is located too far equatorward (Bracegirdle et al., submitted). 9 

 10 

CMIP6 historical simulations capture the observed positive trend of summertime SAM since the 1970s 11 

(Figure 3.33:b). The chance for the observed 1980-2004 trend to occur only due to internal variability is less 12 

than 10% in many of the CMIP5 models according to Thomas et al. (2015), and with CMIP6 models the 13 

chance for the 1979-2014 trend is even lower (less than 5%; Figure 3.33:b). Although paleo-reconstructions 14 

of the SAM index are uncertain and vary in terms of long-term trends (Hessl et al., 2017), new 15 

reconstructions show that the summertime SAM trend since the mid-20th century is outside the 5-95% range 16 

of its pre-industrial variability, which well matches the trend range of CMIP5 pre-industrual control 17 

simulations (Dätwyler et al., 2018). 18 

 19 

New research since AR5 continues to indicate that both stratospheric ozone depletion and increasing GHGs 20 

have contributed to the strengthening trend of the SAM during austral summer in recent decades (Solomon 21 

and Polvani, 2016), with ozone depletion dominating, in general agreement with AR5 (Gerber and Son, 22 

2014; Son et al., 2018). The influences of ozone changes and GHG increases are confirmed based on CMIP6 23 

single forcing historical simulations. For the period 1979-2014, the ozone and GHG contributions are nearly 24 

equal in summer while the ozone influence is much weaker in winter, and the results are not sensitive to the 25 

metrics chosen for SAM throughout the report (Figure 3.33:b). Since ~1997, the effective abundance of 26 

ozone-depleting halogen compounds has been decreasing in the stratosphere (WMO, 2018), leading to a 27 

stabilization or even a reversal of the influence of stratospheric ozone depletion. Accordingly, its impact on 28 

summertime SAM trends is more dominant during earlier periods dominated by declining ozone (such as 29 

1979-2005) than in the last decade. Ozone recovery since ~2000 has even caused a pause in the 30 

strengthening of the summertime SAM (Banerjee et al., submitted), although one cannot rule out some 31 

influence from internal variability. Based on CMIP5, it is also found that high-top models (extending above 32 

the stratopause, typically 1hPa) tend to simulate stronger summertime trends in the late 20th century than 33 

their low-top counterparts (model top within the stratosphere, typically 10hPa) despite large inter-model 34 

diversity (Rea et al., 2018; Son et al., 2018). It is however unclear to what extent the increased vertical 35 

resolution is causing this behaviour, versus other differences between high-top and low-top configurations, 36 

such as additional physical processes operating in the stratosphere or interactive ozone chemistry (Gillett et 37 

al., 2003; Sigmond et al., 2008; Rea et al., 2018). At the surface, Ogawa et al. (2015) demonstrate with an 38 

AGCM the importance of sharp midlatitude SST gradients for stratospheric ozone depletion to induce a 39 

strengthening of the SAM in summer, suggesting a need for improved ocean horizontal simulation. While 40 

some studies find anthropogenic aerosol influence on the summertime SAM (Gillett et al., 2013b; Rotstayn, 41 

2013), recent studies with a larger multi-model ensemble find that this effect is not robust (Steptoe et al., 42 

2016; Choi et al., 2019), consistent with CMIP6 single forcing ensembles (Figure 3.33:). In the CMIP5 43 

simulations, volcanic stratospheric aerosol has a significant weakening effect on the SAM in autumn and 44 

winter (Gillett and Fyfe, 2013), but there is no evidence that this effect leads to a significant multidecadal 45 

trend since the late 20th century. Beyond external forcing, Fogt et al. (2017) show a significant association of 46 

tropical Pacific variability with the summertime SAM trend since the mid-20th century, but this is based on a 47 

single AGCM experiment. 48 

 49 

On longer time scales, last Millennium experiments by CMIP5 models fail to capture multicentennial 50 

variability seen in the reconstructions for the pre-industrial era (Abram et al., 2014; Dätwyler et al., 2018; 51 

Figure 3.34:), although there is large uncertainty among reconstructions (Hessl et al., 2017). This model 52 

failure suggests that either the variations in the imposed insolation may be too weak, models are 53 

insufficiently sensitive to such variations, or internal variability including that associated with tropical 54 

Pacific variability is underrepresented (Abram et al., 2014), or a combinaison of all these factors. However, 55 
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notwithstanding the aforementioned limitations of the reconstructions, the present anomalously positive state 1 

of the SAM is unprecedented since about the year 1400 in all reconstrutions. CMIP5 last-millennium 2 

simulations only capture this anomalous state during the final decades of the simulations dominated by 3 

human influence; this state is outside the range of variability characteristic of pre-industrial times. 4 

 5 

In summary, there is high confidence that stratospheric ozone depletion and GHG increases have contributed 6 

to the strengthening trend of the summer SAM during the late 20th century. This assessment is supported by 7 

further model evidence of the influence of ozone depletion and GHG increases on the SAM with improved 8 

models since AR5. While ozone depletion was the dominant driver of the trend over 1980-2000 (high 9 

confidence), its influence is reduced after ~2000 because stratospheric ozone no longer declined, resulting in 10 

comparable contributions from long-lived GHG and ozone changes to trends over the 1979-2014 period as 11 

diagnosed from CMIP6 simulations. CMIP5 models reproduce the spatial structure of the summertime SAM 12 

well, despite biases in its magnitude and persistence and a large spread in the intensity of the SAM response 13 

to ozone and GHG changes (high confidence). CMIP6 models reproduce the spatiotemporal features and 14 

recent multidecadal trend of the summertime SAM better than CMIP5 models (medium confidence). CMIP5 15 

models do not capture multicentennial variability of the SAM found in proxy reconstructions. It is however 16 

unclear whether this reflects a model or an observational shortcoming. 17 

 18 

 19 

[START FIGURE 3.34 HERE] 20 

 21 

 SAM indices in the last millennium. SAM reconstructions (top: annual mean, middle: December-January-22 

February) by Abram et al. (2014), Villalba et al. (2012) and Dätwyler et al. (2018). 7-year (thin lines) and 23 

70-year (thick lines) moving averages. (bottom) CMIP5 Last Millennium simulations extended by 24 

historical simulations. 7-year (grey lines) and 70-year (thin black lines) moving averages for individual 25 

simulations and the MME mean of the 70-year running means (thick black line). Normalized with AD 26 

1961-1990 means and standard deviations. 27 

 28 

[END FIGURE 3.34 HERE] 29 

 30 

 31 

3.7.3 El Niño-Southern Oscillation 32 

 33 

The El Niño-Southern Oscillation (ENSO), which is generated via seasonally modulated interactions 34 

between the tropical Pacific ocean and atmosphere, influences severe weather, rainfall, river flow and 35 

agricultural production over large parts of the world (McPhaden et al. 2006). In fact, the impacts of ENSO 36 

are so large that knowledge of its current phase and forecasts of its future phase largely underpin many 37 

seasonal rainfall and temperature forecasts worldwide (Technical Annex AVI.3). 38 

 39 

AR5 noted that there have been clear improvements in simulation of ENSO through previous generations of 40 

CMIP models (Flato et al., 2013), such that many CMIP5 models displayed behaviour that was qualitatively 41 

similar to that of the observed ENSO (e.g., Guilyardi et al., 2012). However, systematic errors were 42 

identified in the models’ representation of the Tropical Pacific mean state and aspects of their interannual 43 

variability that impact quantitative comparisons. The AR5 assessment of ENSO concluded that considerable 44 

observed inter-decadal modulations in ENSO amplitude and spatial pattern were largely consistent with 45 

unforced model simulations. Thus, there was low confidence in the role of a human-induced influence in 46 

these changes.  47 

 48 

Observed ENSO amplitude, which is measured by the standard deviation of central Pacific SST anomalies, 49 

and the lifecycle of events are both reasonably well reproduced by most CMIP5 and CMIP6 models (Figure 50 

3.35:; Bellenger et al., 2014; Planton et al., submitted). The average CMIP5 model ENSO amplitude is 51 

slightly lower than that observed, while the average CMIP6 model ENSO amplitude displays slightly more 52 

variability than observed (Figure 3.35:). The modeled ENSO amplitude, however, is highly variable with 53 

many CMIP5 and CMIP6 models displaying more or less variability than observed (Grose et al., submitted; 54 

Planton et al., submitted; Stevenson, 2012). 55 
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[START FIGURE 3.35 HERE] 1 

 2 

 Life cycle of (left) El Niño and (right) La Niña events in observations (black) and historical simulations 3 

in CMIP5 (blue; extended with RCP4.5) and CMIP6 (red). An event is detected when December Niño 3.4 4 

SST anomaly in year zero exceeds 0.5 times its standard deviation for 1950-2010. The horizontal axis 5 

represents month relative to the reference December, with numbers in parentheses indicating relative 6 

years. (a, b) Composites of Niño 3.4 SST anomalies (ºC). Shading and lines represent 5th-95th percentiles 7 

and ensemble means, respectively. (c, d) Mean durations (months) of El Niño and La Niña events defined 8 

as number of months in individual events for which Niño 3.4 SST anomaly exceeds 0.25 times its 9 

December standard deviation. The horizontal axis indicates modelling centres. The boxes and whiskers 10 

represent multi-model ensemble median, interquartile ranges and 5th and 95th percentiles of CMIP5 and 11 

CMIP6. All based on 5-month running mean SST anomalies with triangular-weights after linear 12 

detrending. Produced with 257 members from 38 CMIP6 models and 115 members from 35 CMIP5 13 

models. 14 

 15 

[END FIGURE 3.35 HERE] 16 

 17 

 18 

ENSO events are often synchronized to the seasonal cycle in the observations, as the associated SST 19 

anomalies tend to peak in boreal winter (November-January) and be at their weakest in the boreal spring 20 

(March-April) (Harrison and Larkin, 1998; Larkin and Harrison, 2002). The majority of CMIP5 and CMIP6 21 

models broadly reproduce the timing of ENSOs SST variability in the central equatorial Pacific (Abellán et 22 

al., 2017; Grose et al., submitted; Planton et al., submitted; Taschetto et al., 2014; Figure 3.36:). However, 23 

CMIP5 models, while displaying an improvement on CMIP3 models, appear to underrepresent the 24 

magnitude of the seasonal variance modulation (Bellenger et al. 2014;). This under-representation of 25 

seasonal variance modulation continues in CMIP6 models (Planton et al., submitted; Figure 3.36:). 26 

 27 

 28 

[START FIGURE 3.36 HERE] 29 

 30 

 ENSO seasonality diagnosed from Niño 3.4 SST anomalies in observations (black) and historical 31 

simulations in CMIP5 (blue; extended with RCP4.5) and CMIP6 (red). (a) Climatological standard 32 

deviation of monthly Niño 3.4 SST (°C). Shading and lines represent 5th-95th percentiles and ensemble 33 

means, respectively. (b) Seasonality metric defined as the ratio of climatological standard deviation of 34 

Niño 3.4 SST between November-January (NDJ) and March-May (MAM). The boxes and whiskers 35 

represent multi-model ensemble median, interquartile ranges and 5th and 95th percentiles of CMIP5 and 36 

CMIP6 individually. Produced with 257 members from 38 CMIP6 models and 115 members from 35 37 

CMIP5 models. 38 

 39 

[END FIGURE 3.36 HERE] 40 

 41 

 42 

Observations show strong multi-decadal modulation of ENSO variability throughout the 20th century, with 43 

the most recent period displaying larger variability while the mid-century displays relatively low ENSO 44 

variability. As reported in Chapter 2 Section 2.4.1.1, analysis of many paleo reconstructions of ENSO over 45 

the past 500-1000 years suggests that recent ENSO variability appears to be higher than during the 1400-46 

1850 period (Chapter 2 Figure 2.40; Hope et al., 2017; Li et al., 2013; McGregor et al., 2013). Contrary to 47 

this evidence, however, coral records from within the tropical Pacific suggest that ENSO had higher 48 

variability than present during the mid 17th century. The former suggests that external forcing plays a role in 49 

the ENSO variance changes (Hope et al., 2017), while the latter suggests a prominent role for internal 50 

climate variability (Cobb et al., 2013). Large ensembles of single model or multiple model simulations do 51 

not find strong trends in ENSO variability over the historical period, which suggests that external forcing has 52 

not yet modulated ENSO variability with a magnitude that exceeds the range of internal variability (Hope et 53 

al., 2017; Stevenson et al., 2017; Maher et al., 2018b).  54 

 55 

Most CMIP5 and CMIP6 models are found to realistically represent the intensity and location of maximum 56 

SST anomalies during ENSO events (Grose et al., submitted; Kim and Yu, 2012; Taschetto et al., 2014). 57 
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However, systematic biases exist in the representation of ENSO in CMIP5 that are related to SST anomalies 1 

as the majority of models display anomalies that: i) extend too far to the west (Capotondi et al., 2014; 2 

Taschetto et al., 2014); and ii) have meridional widths that are too narrow (Zhang and Jin, 2012) compared 3 

to the observations. CMIP6 models display a significant improvement in the longitudinal representation of 4 

ENSO SST anomalies relative to CMIP5 models, however the models still display systematic biases in the 5 

zonal extent and meridional width (Fasullo et al., submitted; Planton et al., submitted). The ENSO phase 6 

asymmetry, where observed strong El Niño events are larger and have a shorter duration than strong La Niña 7 

events (Ohba and Ueda, 2009; Frauen and Dommenget, 2010), is also underrepresented in both CMIP5 and 8 

CMIP6 models (Fasullo et al., submitted; Planton et al., submitted; Zhang and Sun, 2014). In this instance, 9 

both CMIP model phases display El Niño events that are longer than those observed, La Niña events which 10 

are shorter than those observed, and there is very little asymertry in the magnitude and duration of simulated 11 

El Niño and La Niña phases (Figure 3.35:). Roberts et al. (2018) find an improvement in amplitude 12 

asymmetry in a HighResMIP model, but the underrepresentation remains. 13 

 14 

The continuum of El Niño events are typically stratified into two types (or flavours), Central Pacific (CP) 15 

and East Pacific (EP), where the name denotes the location of the events’ largest SST anomalies (Technical 16 

Annex AVI.3). As discussed in Chapter 2, Section 2.4.1.2, the different types of events tend to produce 17 

different teleconnections and climatic impacts. For most of the CMIP5 models, the characteristics of El Niño 18 

events of these two flavours are comparable to the observations (Taschetto et al., 2014). The short 19 

observational record displays an increase in the number of the CP type events in recent decades (Ashok et 20 

al., 2007; McPhaden et al., 2011), which has also been identified as unusual in the context of the last 500-yrs 21 

by a recent paleo-climatic reconstruction (Section 2.4.1.3; Freund et al., 2019). However, the short 22 

observational record, observational (L’Heureux et al., 2013) and paleo-climatic reconstruction uncertainties 23 

preclude firm conclusions being made about the long-term changes in the occurrence of different El Niño 24 

event types. Initial analysis with a select number of CMIP3 models suggested that there may be a forced 25 

component to this recent prominence of CP type events (Yeh et al., 2009), but analysis since then suggests 26 

that this behavior is i) consistent with that expected from internal climate variability (Newman et al., 2011); 27 

and ii) not apparent across the full CMIP5 ensemble of historical simulations (Taschetto et al., 2014). 28 

Analysis of single models large ensemble of simulations suggests that changes to ENSO event type in 29 

response to historical radiative forcing is not significant (Stevenson et al., 2017). These same results, 30 

however, also suggest multiple forcings can have significant impacts on ENSO type and that the net response 31 

will depend on the accurate representation of the balance of these forcings (Stevenson et al., 2017). 32 

 33 

The impacts of ENSO outside of the tropical Pacific largely arise through atmospheric teleconnections that 34 

are driven by changes in deep convection and atmospheric heating (Yeh et al., 2018). The teleconnections to 35 

higher latitudes are forced by waves that propagate into the extratropics (Hoskins and Karoly, 1981) and 36 

respectively excite a Pacific-North American (PNA) pattern (Horel and Wallace, 1981) and Pacific-South 37 

American (PSA) pattern (Karoly, 1989; Irving and Simmonds, 2016) in the Northern and Southern 38 

Hemispheres. Given the impact of these teleconnections on climate and extremes around the globe, it is 39 

important to understand how well they are reproduced in CMIP models. What has also become clear is that 40 

spatial correlations of ENSO’s teleconnections over relatively short periods may not be the most effective 41 

way to assess these relationships (Langenbrunner and Neelin, 2013; Perry et al., 2017). This is because the 42 

spatial patterns are significantly impacted by internal atmospheric variability on relatively short time scales 43 

(<100 years) (Batehup et al., 2015; Perry et al., 2017). However, looking at simplified metrics like the 44 

agreement in the sign of the teleconnections (Langenbrunner and Neelin, 2013), regional average 45 

teleconnection strength over land (Perry et al., 2019), or a combination of both (Power and Delage, 2018) 46 

provides a more robust depiction of the teleconnection representation. Examining sign agreement for the 47 

teleconnection patterns, ensembles of CMIP5 AMIP simulations display broad spatial regions with high sign 48 

agreement with the observations, suggesting that the model ensemble is producing useful information 49 

regarding the teleconnected precipitation signal (Langenbrunner and Neelin, 2013; Figure 3.37:). Looking at 50 

regional averages of CMIP5 historical simulations, Power and Delage (2018) show that the average coupled 51 

model teleconnection pattern reproduces the sign of the observed teleconnections in the majority of the 25 52 

SREX defined regions. The sign agreement between the observed teleconnection and the MMM 53 

teleconnection remains strong in CMIP6 (18 out of 20 displayed regions) (Figure 3.37:), and the observed 54 

DJF teleconnection strength falls within the modelled range in all of the displayed regions for temperature 55 
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and precipitation. It is noted, however, that while there is broad agreement in ENSO teleconnections between 1 

CMIP6 models and observations during DJF, there are regions and seasons where the modelled 2 

teleconnection strength is outside of the observed range (Chen et al., submitted). 3 

 4 

 5 

[START FIGURE 3.37 HERE] 6 

 7 

 Observed and simulated ENSO teleconnections for 2m-temperature and precipitation during December-8 

January-February. Teleconnections are identified by linear regression with the Niño 3.4 SST index based 9 

on ERSSTv5 during the period 1958-2014. Maps show observed patterns for temperature from the 10 

Berkeley Earth dataset over land and from ERSSTv5 over ocean (top) and for precipitation from GPCC 11 

over land and GPCP over ocean (contour, period: 1979-2014). Distributions of regression coefficients for 12 

regional means drawn from 261 historical simulations from 30 CMIP6 models are provided for a subset 13 

of pre-defined AR6 regions in the Atlas for temperature (light pink, top) and precipitation (green, 14 

bottom). Multi-model multi-member ensemble means are indicated by thick vertical coloured lines (red 15 

for temperature, blue for precipitation). Black vertical lines stand for observational estimates based on 16 

Berkeley Earth and GISTEMP datasets for temperature and from GPCC and GPCP datasets for 17 

precipitation. 18 

 19 

[END FIGURE 3.37 HERE] 20 

 21 

 22 

Most CMIP5 and CMIP6 models exhibit ENSO behavior that, to first order, is qualitatively similar to that of 23 

the observed ENSO. Many studies are now delving deeper into the models to understand if they are 24 

accurately producing the dynamics driving ENSO and its initiation (Bayr et al., 2019; Bellenger et al., 2014; 25 

Jin et al., 2006; Planton et al., submitted; Vijayeta and Dommenget, 2017). For both CMIP3 and CMIP5, 26 

diagnostics of ENSO event growth appear to show that the models, while producing ENSO variability that is 27 

qualitatively similar to that observed, do not represent the balance of the underlying dynamics well. The first 28 

look at ENSO in CMIP6 models provided by Planton et al. (submitted) suggests that these issues remain.The 29 

atmospheric Bjerknes feedback is too weak in the majority of models, while fluxes of heat at the surface are 30 

also too weak in the majority of models. The former restricts event growth, while the latter restricts event 31 

damping, which when combined allow most models to produce variability in a range that is consistent with 32 

the observations (Bellenger et al., 2014; Kim et al., 2014b; Vijayeta and Dommenget, 2017; Bayr et al., 33 

2019).  34 

 35 

To conclude, the instrumental record, paleo proxy evidence through the Holocene and coupled models all 36 

suggest that ENSO can display considerable modulations in amplitude, pattern and period (see also Section 37 

2.4.1). Further to this, paleo-proxy evidence indicates (medium confidence) that ENSO activity in the late 38 

20th and early 21st century was greater than at any time between 1400 and 1850 (Section 2.4.1). ENSO 39 

representation in CMIP5 models displayed a significant improvement from the representation of ENSO 40 

variability in CMIP3 models, which displayed much more intermodel spread in standard deviation, and 41 

stronger biennial tendencies (Guilyardi et al., 2012; Flato et al., 2013). In general there has been no large 42 

step changes in the representation of ENSO between CMIP5 and CMIP6, however, CMIP6 models appear to 43 

better represent some key ENSO charactoristics (Planton et al., submitted). Coupled models display large 44 

changes of ENSO behaviour in the absence of external forcing changes, and little-to-no variance sensitivity 45 

to anthropogenic forcing. Thus, we have low confidence that anthropogenic forcing has led to the observed 46 

changes of ENSO activity.  47 

 48 

Chapter 2 reported low confidence that the apparent change from eastern Pacific to central Pacific type El 49 

Niño events that occurred in the last 20-30 years was representative of a long term change. While some 50 

coupled models do suggest external forcing may impact El Niño event type, model simulations also suggest 51 

that what has been observed is well within the range of natural variability. Thus, there is low confidence that 52 

anthropogenic forcing has had an impact on observed changes in El Niño event type.  53 

 54 

 55 
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3.7.4 Indian Ocean Basin and Dipole Modes 1 

 2 

The Indian Ocean Basin (IOB) and Dipole (IOD) modes are the two leading modes of interannual SST 3 

variability over the tropical Indian Ocean, featuring basin-wide warming/cooling and an east-west dipole of 4 

SST anomalies, respectively (Technical Annex AVI.4). The IOD mode is anchored to boreal summer to 5 

autumn by the air-sea feedback, and develops often in concert with ENSO. Driven by matured ENSO, the 6 

IOB mode peaks in boreal spring and often persists into the subsequent summer. Similar patterns of Indian 7 

Ocean SST variability also dominate its decadal and longer time scale variability (Han et al., 2014b). 8 

 9 

AR5 concluded that models show high and medium performance in reproducing IOB and IOD, respectively 10 

(medium confidence), with difficulty in reproducing persistence of the IOB and pattern and magnitude of 11 

IOD. There was low confidence that changes in the IOD were detectable or attributable to human influence. 12 

GHG-induced warming projects onto the IOB, and its 20th century trend is captured by CMIP3 20th century 13 

simulations.  14 

 15 

Since the AR5, CMIP5 models have been analysed in detail, finding that most of the models qualitatively 16 

reproduce the spatial and seasonal features of the IOB and IOD modes (Chu et al., 2014; Liu et al., 2014; 17 

Tao et al., 2016b). Improvements in simulating the IOB mode since CMIP3 have been identified in reduced 18 

multi-model mean bias and inter-model spread (Tao et al., 2016b). CMIP5 models overall capture the 19 

transition from the IOD to IOB modes during an ENSO event (Tao et al., 2016b). The IOB mode is forced 20 

through the cross-equatorial wind-evaporation-SST feedback triggered by ENSO-forced anomalous ocean 21 

Rossby waves that propagate to the shallow climatological thermocline dome in the tropical southwestern 22 

Indian Ocean (Du et al., 2009). Consistently, models with a deeper climatological thermocline dome produce 23 

a weaker and less persistent IOB mode (Li et al., 2015b; Zheng et al., 2016). The deep thermocline bias 24 

remains in the ensemble mean of CMIP5 models due to a common surface easterly wind bias over the 25 

equatorial Indian Ocean (Lee et al., 2013) associated with a weaker South Asian summer monsoon (Li et al., 26 

2015c). However, the influence of this systematic bias is compensated by other biases, resulting in a realistic 27 

IOB magnitude (Tao et al., 2016b). By contrast, the IOD magnitude is overestimated by CMIP5 models on 28 

average, with noticeable improvements from CMIP3 models (Liu et al., 2014). Both a shallower 29 

climatological thermocline off Sumatra and Java and biases in ENSO contribute to this IOD magnitude bias 30 

(Liu et al., 2014). Improvement in CMIP6 models is unknown due to lack of literature. 31 

 32 

The observed Indian Ocean basin-average SST increase on multidecadal and centennial time scales is well 33 

represented by CMIP5 historical simulations, and attributed to compensating effects by GHGs and 34 

anthropogenic aerosols mainly through aerosol-cloud interactions (Dong and Zhou, 2014; Dong et al., 35 

2014b). The observed SST trend is larger in the western than eastern tropical Indian Ocean, which leads to 36 

an apparent upward trend of the IOD index, but this trend is statistically insignificant (Chapter 2 Section 37 

2.4.3). CMIP5 models capture this warming pattern, which may be associated with Walker circulation 38 

weakening over the Indian Ocean due to GHG forcing (Dong and Zhou, 2014). However, strong internal 39 

decadal IOD-like variability and observational uncertainty preclude validation of the simulated modulations 40 

and attribution (Cai et al., 2013; Gopika et al., submitted; Han et al., 2014b). Such a positive IOD-like 41 

change in equatorial zonal SST gradient suggests an increase in the frequency of extreme positive events 42 

(Cai et al., 2014) and skewness (Cowan et al., 2015) of the IOD mode. While proxy reconstructions indeed 43 

show IOD intensification and increase of extreme positive events in the 20th century (Chapter 2 Section 44 

2.4.3), this trend still remains in the range of internal variablity simulated by CMIP5 models (Abram et al., 45 

submitted). Likewise, while a strengthening tendency of the ENSO-IOB mode correlation and resultant 46 

intensification of the IOB mode are found in historical or future simulations in selected CMIP5 models (Hu 47 

et al., 2014; Tao et al., 2015), such a change has not been detected in observational records. 48 

 49 

After linear detrending, Pacific decadal variability (PDV) has been identified as the major driver of the 50 

decadal-to-multidecadal IOB mode (Dong et al., 2016). However, correlation between the PDV and a 51 

decadal IOB index, defined from linearly detrended SST, changed from positive to negative during the 1980s 52 

(Han et al., 2014a). The accelerating anthropogenic Indian Ocean warming and recovery from the eruptions 53 

of El Chichón in 1982 and Pinatubo in 1991, may have overwhelmed the PDV influence, and explain this 54 

change (Dong and McPhaden, 2017; Zhang et al., 2018a). However, the low number of statistical degrees of 55 
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freedom hampers clear detection of human influence in this correlation change. 1 

 2 

To summarize, evidence is limited that anthropogenic forcing has changed the interannual IOB and IOD. On 3 

decadal-to-multidecadal time scales, there is low confidence that human influence has caused a reversal of 4 

the correlation between PDV and the decadal IOB mode. The low level of confidence in the latter assessment 5 

is due to the short observational record, limited number of models used for the attribution, lack of model 6 

evaluation on reproducibility of the decadal IOB mode, and uncertainty in the contribution from volcanic 7 

aerosols. Nevertheless, models have medium overall performance in reproducing both the interannual IOB 8 

and IOD modes, with an apparently good skill in reproducing the IOB magnitude arising from compensation 9 

of biases in the formation process (high confidence).  10 

 11 

 12 

3.7.5 Atlantic Meridional and Zonal Modes 13 

 14 

The Atlantic Equatorial Mode, often referred to as the Atlantic Niño, and Atlantic Meridional Mode (AMM) 15 

are the two leading basin wide patterns of interannual-to-decadal variability in the tropical Atlantic 16 

(Technical Annex AVI.5). Akin to ENSO in the Pacific, the term Atlantic Niño is broadly used to refer to 17 

years when the SSTs in the tropical eastern Atlantic basin along the cold tongue are significantly warmer 18 

than the climatological average. The AMM is characterized by anomalous cross-equatorial gradients in SST. 19 

Both modes are associated with altered strength of the ITCZ and/or latitudinal shifts in the ITCZ, which 20 

locally affect African and American monsoon systems and remotely affect Tropical Pacific and Indian Ocean 21 

variability through inter-basins teleconnections. 22 

 23 

AR5 mentioned considerable difficulty simulating both Atlantic Niño and AMM despite some improvements 24 

in CMIP5 for some models. Severe biases in mean state and variance for both SST and atmospheric 25 

dynamics including rainfall (e.g. double ITCZ) as well as teleconnections were reported. AR5 highlighted 26 

the complexity of the Tropical Atlantic biases, which were explained by multiple sources both in the ocean 27 

and atmosphere. 28 

 29 

Since AR5, further understanding of the major persistent biases in models has been reported (Xu et al., 2014; 30 

Jouanno et al., 2017; Yang et al., 2017b; Dippe et al., 2018; Lübbecke et al., 2018; Voldoire et al., 2019a). 31 

Critical errors in equatorial and basin wide trade winds, cloud cover and ocean vertical mixing and dynamics 32 

both locally and in remote subtropical upwelling regions, key thermodynamic ocean-atmosphere feedbacks, 33 

tropical land-atmosphere interaction, have been shown to be detrimental to the representation of both 34 

Atlantic Niño and AMM leading to poor teleconnectivity over land (Rodríguez-Fonseca et al., 2015) and 35 

between tropical basins (Ott et al., 2015).  36 

 37 

Despite some improvements (Richter et al., 2014; Nnamchi et al., 2015) mean biases are so large that the 38 

mean east-west tridimensional temperature gradient at the equator remains opposite to observed in two thirds 39 

of the CMIP5 models (Section 3.5.1.1) which clearly affect the simulation of the Atlantic Niño and 40 

associated dynamics (Muñoz et al., 2012; Ding et al., 2015; Deppenmeier et al., 2016). The interhemispheric 41 

SST gradient is also systematically underestimated in models with erroneously too cold mean state in the 42 

northern part of the Tropical Atlantic ocean and too warm conditions in the Southern Atlantic basin. The 43 

seasonality is poorly reproduced and the wind-SST coupling is weaker than observed so that altogether, and 44 

despite AMM-like variability in 20th century climate simulations, AMM is not the dominant Atlantic mode 45 

in all CMIP5 models (Liu et al., 2013; Amaya et al., 2017). These biases translate into biases in modelling 46 

the ITCZ (Flato et al., 2013). Similar biases were found in experiments using CMIP5 models but with 47 

different mean background state, such as Last Glacial Maximum, Mid-Holocene and future scenario 48 

simulations (Brierley and Wainer, 2017) ⁠. First analyses from CMIP6 show encouraging results in the 49 

representation of Atlantic Niño and AMM modes of variability in terms of amplitude and seasonality. Some 50 

models now display very small biases but persistent errors still remain on average in the timing of the modes 51 

and in the coupled nature of the modes, i.e. the strength of the link between ocean (SST, mixed layer depth) 52 

and atmospheric (wind) anomalies (Richter and Tokinaga, submitted).  53 

 54 

There are some recent indications that increasing model resolution both vertically and horizontally, in the 55 
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ocean and atmospheric component (Richter, 2015; Small et al., 2015; Harlaß et al., 2018), could partly 1 

alleviate tropical Atlantic biases in mean state, seasonality, interannual-to-decadal variability and associated 2 

teleconnectivity over land (West African monsoon, Steinig et al., 2018) and the represenation of tropical 3 

cyclones (Roberts et al., 2015b), though this result appears to be model dependent (Goubanova et al., 2019). 4 

Preliminary results from CMIP6 tend to confirm such a statement which indicates that increasing resolution 5 

is not the unique way to address the biases in the Tropical Atlantic (Richter and Tokinaga, submitted).  6 

 7 

In summary, based on CMIP5 and CMIP6 results, there is no robust evidence that observed changes in either 8 

Atlantic Niño or AMM modes and associated teleconnections are detectable and attributable to 9 

anthropogenic forcing. Considering the physical processes responsible for model biases in these modes, it is 10 

probable that increasing resolution in both ocean and atmosphere components may be an opportunity for 11 

progress as evidenced for some individual models (Roberts et al., 2018) but needs confirmation from a multi-12 

model perspective.  13 

 14 

The lack of confidence on possible human influence on the Atlantic Modes and associated teleconnections is 15 

dictated by the poor fidelity of CMIP5 and CMIP6 models in reproducing the mean tropical Atlantic climate, 16 

its seasonality and variability, despite hint for some improvement in CMIP6, as well as other sources of 17 

uncertainties related to limited process understanding in the observations (Foltz et al., 2019), the response of 18 

the tropical Atlantic climate to anthropogenic aerorol forcing (Booth et al., 2012; Zhang et al., 2013a) and 19 

the presence of strong multidecadal fluctuations related to AMV (Section 3.7.7) and cross-tropical basins 20 

interactions (Martín-Rey et al., 2018; Cai et al., 2019). For instance, there has been an observed decrease in 21 

the variability of the Atlantic Niño since the 1960s (Tokinaga and Xie, 2011). The fact that most models 22 

poorly represent the climatology and variability of the tropical Atlantic combined with the short 23 

observational record makes it difficult to place the recent observed changes in the context of natural internal 24 

multi-annual variability versus anthropogenic forcing.  25 

 26 

 27 

3.7.6 Pacific Decadal Variability 28 

 29 

Pacific decadal variability (PDV) is the generic term for the modes of variability in the Pacific Ocean that 30 

vary on decadal to interdecadal timescales. PDV and its related teleconnection encompasses the Pacific 31 

Decadal Oscillation (PDO; Mantua et al. 1997; Mantua and Hare 2002; Zhang et al. 1997), an anomalous 32 

SST pattern in the North Pacific, as well as a broader structure associated with Pacific-wide SSTs termed the 33 

Interdecadal Pacific Oscillation (IPO; Power et al. 1999; Folland et al. 2002; Henley et al. 2015). Since the 34 

PDO and IPO indices are highly correlated, this section assesses them together as the PDV (Technical Annex 35 

AVI.6). 36 

 37 

AR5 mentioned an overall limited level of evidence for both CMIP3 and CMIP5 evaluation of the Pacific 38 

modes at interdecadal timescale leading to low confidence statements about the models’ performance in 39 

reproducing PDV and similarly low confidence in the attribution of the observed PDV changes to human 40 

influence. 41 

 42 

The implication of PDV in the observed slowdown of the GMST warming rate in the early 2000s (Cross-43 

Chapter Box 3.1:) has triggered considerable research on decadal climate variability and predictability since 44 

the AR5 (Meehl et al., 2013, 2016b; England et al., 2014; Dai et al., 2015; Kosaka and Xie, 2016; Cassou et 45 

al., 2018). Many studies find that the broad spatial characteristics of PDV are reasonably well represented in 46 

unforced climate models (Henley 2017; Newman et al. 2016) and in historical simulations in CMIP5 and 47 

CMIP6 (Figure 3.38:), although sensitivity to methodology used to remove the externally-forced component 48 

of the SST exists (Bonfils and Santer, 2011; Xu and Hu, 2018). Compared with CMIP3, CMIP5 models 49 

exhibit overall slightly better performance in reproducing PDV and associated teleconnections (Polade et al., 50 

2013; Joshi and Kucharski, 2017), and also smaller inter-model spread (Lyu et al., 2016). CMIP6 models on 51 

average show slightly improved reproduction of the PDV spatial structure than CMIP5 (Figure 3.38:a-c; 52 

Fasullo et al., submitted). SST anomalies in the subtropical South Pacific lobe remain however too weak 53 

relative to the equatorial and North Pacific lobes in both CMIP control and historical simulations (Henley et 54 

al., 2017). 55 
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Biases in the PDV temporal properties and amplitude are present in CMIP5 (Cheung et al., 2017; Henley, 1 

2017). While model evaluation is severely hampered by short observational records, the duration of PDV 2 

phases appears to be shorter in coupled models than in observations, and correspondingly the ratio of decadal 3 

to interannual variance is underestimated (Henley et al. 2017; Figure 3.38:e,f). This apparent bias may be 4 

associated with overly biennial behaviour of Pacific trade wind variability and related ENSO activity 5 

(Kociuba and Power, 2015), although basin-scale ENSO influence in the extratropics at decadal timescales is 6 

very diverse among both CMIP3 and CMIP5 models, being controlled by multiple factors (Nidheesh et al., 7 

2017). In terms of amplitude, the variance of the PDV index after decadal filtering is significantly weaker in 8 

the concatenated CMIP5 ensemble than the observational counterpart (p < 0.05 with F test). The observed 9 

fluctuations of PDV over the historical period often lay in the tails of the model distributions (Figure 10 

3.38:e,f). Even if one cannot rule out that the observed PDV over the instrumental era represents an 11 

exceptional period of variability, the tendency of the CMIP5 models to systematically underestimate the low 12 

frequency variance is likely due to an incomplete representation of decadal-scale mechanisms in climate 13 

models. This situation is slightly improved in CMIP6 historical simulations but remains a concern (Fasullo et 14 

al., submitted). The results of McGregor et al. (2018) suggest that the underrepresentation of the magnitude 15 

stems from Atlantic mean SST bias through inter-basin coupling. 16 

 17 

While PDV is primarily understood as an internal mode of variability (Si and Hu, 2017), there are some 18 

indications that anthropogenic forcing has partly contributed to past PDV evolution (Dong et al., 2014a). 19 

However, the level of evidence is limited because of the difficulty in correctly separating internal versus 20 

externally forced components in the observed SST. Part of the anthropogenically-induced warming signal 21 

might project onto the PDV (Bonfils and Santer, 2011; Xu and Hu, 2018). Over the last two to three decades, 22 

anthropogenic aerosols are suggested to have driven part of the PDV especially in the North Pacific (Yeh et 23 

al., 2013; Boo et al., 2015; Smith et al., 2016), while influence from both anthropogenic and volcanic 24 

aerosols are suggested on the tropial PDV (Maher et al., 2015; Takahashi and Watanabe, 2016). However, 25 

the mechanism is unclear and such a response is not robustly identified across CMIP5 models (Hua et al., 26 

2018; Oudar et al., 2018). Alternatively, inter-basin teleconnections associated with the warming of the 27 

North Atlantic Ocean related to the mid-1990s phase shift of the AMV (McGregor et al., 2014; Li et al., 28 

2015d; Chikamoto et al., 2016; Kucharski et al., 2016; Ruprich-Robert et al., 2017), and also in the Indian 29 

Ocean (Luo et al., 2012), could have favoured a delayed PDV transition to its negative phase in the 2000s. 30 

Considering the potential role of external forcing on the Indian Ocean decadal varability (Section 3.7.4) and 31 

AMV (Section 3.7.7), human influence on PDV would be indirect through changes in these ocean basins, 32 

being then imported to the Pacific via inter-basin coupling. However, this human influence on AMV, and 33 

how consistently the inter-basin processes affect PDV phase shifts, are uncertain. Lastly, the multimodel 34 

ensemble mean computed from CMIP6 historical simulations shows slightly stronger variation than the 35 

CMIP5 counterpart, suggesting a greater influence from anthropogenic and natural forcings. However, the 36 

magnitude of the forced signal relative to the ensemble spread is very low and not in phase with the observed 37 

PDV evolution (Figure 3.38:), in contrast to AMV (Section 3.7.7). 38 

 39 

In CMIP5 last millennium simulations, there is no consistency in temporal variations of PDV across the 40 

ensemble (Fleming and Anchukaitis, 2016). This supports the notion that PDV is internal in nature. This 41 

issue remains difficult to firmly conclude because of short instrumental observations and the fact that 42 

paleoclimate recontructions of PDV have too poor a level of agreement for a rigorous model evaluation of 43 

PDV in past millennia (Henley, 2017). 44 

 45 

To conclude, there is low confidence on whether human influence has induced any detectable changes in the 46 

PDV. This assessment is due to inconsistent results amongst models on anthropogenic influence, still limited 47 

understanding of physical mechanisms affecting the PDV and difficulties in clearly separating the externally 48 

forced versus internally generated components of Pacific variability at decadal timescales. Moreover, model 49 

evaluation is severely hampered by short observational records and poor agreement among paleoclimate 50 

reconstructions. Despite the limitations of these model-observation comparisons, CMIP5 models, on 51 

average, are very likely to underestimate PDV magnitude, while the simulated spatial structure is broadly 52 

realistic, but with a clear bias in the South Pacific (medium confidence). CMIP6 models tend to show better 53 

overall performance in spatial structure and magnitude of PDV, but there is low confidence in such a 54 

statement due to the lack of literature. 55 
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[START FIGURE 3.38 HERE] 1 

 2 

 PDV spatio-temporal properties in observations and models. (a, b) SST anomalies (ºC) regressed onto the 3 

Tripole Index (TPI; Henley et al., 2015) for 1900-2014 in (a) ERSSTv5 and (b) CMIP6 historical 4 

simulations (MME composite). A 10-year low-pass filter has been applied beforehand. (c) A Taylor 5 

diagram summarizing the representation of the PDV pattern in models and observations over [40ºS-60ºN, 6 

110ºE-70ºW] for CMIP5 (light blue) and CMIP6 (red). The reference pattern is taken from ERSSTv5. 7 

Black dots indicate other observational products (ERSSTv3b and HadISSTv1). (d) Autocorrelation of 8 

unfiltered monthly TPI at lag 1 year (“unsmoothed”) and 10-year low-pass filtered TPI at lag 10 years 9 

(“Low-Pass”) for observations (grey shading) and 115-year chunks of piControl simulations (open boxes) 10 

and historical ensemble simulations (filled boxes) over 1900-2014 from CMIP5 and CMIP6. (e) As in (d), 11 

but standard deviation of unfiltered and filtered TPI (ºC). Boxes and whiskers show mean, interquartile 12 

ranges and 5th and 95th percentiles. (f) Time series of 10-year low-pass filtered TPI (ºC) in ERSSTv5 13 

(black) and CMIP5 and CMIP6 historical simulations. The thick red and light blue lines are the MME 14 

mean for the historical simulations in CMIP5 and CMIP6, respectively, and the envelopes represent the 15 

±2 standard deviation range across ensemble members. 39 models and 149 historical members have been 16 

used for evaluation in CMIP5; 29 models and 250 historical members for CMIP6. 17 

 18 

[END FIGURE 3.38 HERE] 19 

 20 

 21 

3.7.7 Atlantic Multidecadal Variability 22 

 23 

Atlantic Multidecadal Variability (AMV) refers to a climate mode representing basin-wide multidecadal 24 

fluctuations in surface temperatures in the North Atlantic (Figure 3.39:a,f), with teleconnections particularly 25 

pronounced over the adjacent continents and the Arctic (Technical Annex AVI.8). Fingerprints of AMV 26 

exist in the subsurface ocean in AMOC fluctuations, gyre adjustments and salt and heat transport in the 27 

entire North Atlantic and subarctic basins. 28 

 29 

In AR5, climate models suggested that the AMV was primarily internally-driven alongside some 30 

contribution from external forcings (mainly anthropogenic aerosols) over the late 20th century. But AR5 also 31 

concluded that models show medium performance in reproducing the observed AMV (low confidence), with 32 

difficulties in simulating the timescale and spatial structure.  33 

 34 

Climate models analyzed since AR5 continue to simulate AMV-like variability as part of their internal 35 

variability. This statement is mostly based on CMIP5 piControl and historical simulations (Wouters et al., 36 

2012; Schmith et al., 2014; Menary et al., 2015; Ruprich-Robert and Cassou, 2015; Brown et al., 2016b; 37 

Chen et al., 2016a) and is confirmed by the most recent CMIP6 versions (Menary et al., 2018; Voldoire et 38 

al., 2019b). Models also continue to support links to a wide array of climate impacts through teleconnections 39 

(Martin et al., 2013; Ruprich-Robert et al., 2017; Monerie et al., 2019). Even if debate remains (Clement et 40 

al., 2015; Cane et al., 2017), there is now stronger evidence for a crucial role of oceanic dynamics in internal 41 

AMV that is primarily linked to the AMOC and its interplay with the NAO (Zhang et al., 2013a; O’Reilly et 42 

al., 2016, 2019b; Delworth et al., 2017; Zhang, 2017; Kim et al., 2019; Sun et al., 2019). However, 43 

considerable diversity in the spatio-temporal properties of the simulated AMV is found in both piControl and 44 

historical CMIP5 experiments (Zhang and Wang, 2013; Wills et al., 2019). Such model diversity is 45 

presumably associated with the wide range of coupled processes associated with AMV (Baker et al., 2017; 46 

Woollings et al., 2018a) including atmospheric teleconnection and regional feedbacks (cloud and 47 

composition changes, etc.), whose relative importance and interactions across timescales are specific to each 48 

model (Brown et al., 2016; Martin et al, 2014). 49 

 50 

Additional studies since the AR5 corroborate that CMIP5-era models tend to underestimate many aspects of 51 

observed AMV overall (Figure 3.39:). The duration of the modelled AMV is too short, its magnitude is too 52 

weak and its basin-wide spatial structure is limited by the poor representation of the link between the tropical 53 

North Atlantic and the subpolar North Atlantic/Nordic seas (Martin et al., 2013; Qasmi et al., 2017). Such 54 

mismatches between observed and simulated AMV has been associated with intrinsic model biases in both 55 

mean state (Menary et al., 2015; Drews and Greatbatch, 2016) and variability in the ocean and overlying 56 
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atmosphere. For instance, CMIP5 models appear to underestimate decadal versus interannual timescale of 1 

variability of the AMOC, NAO and related North Atlantic jet (Bracegirdle et al., 2018; Kim et al., 2018; 2 

Simpson et al., 2018; Yan et al., 2018), which has strong implications for the drivers of AMV, AMV-3 

induced teleconnections (Ault et al., 2012; Menary et al., 2015) and AMV predictability.  4 

 5 

These general statements for AMV are tempered in CMIP6. The modelled AMV in CMIP6 has a stronger 6 

magnitude and longer duration of the modelled AMV in historical simulations than in CMIP5 (Figure 3.39:). 7 

In particular, the increase of variance is mostly explained by the enhanced variability in the subpolar North 8 

Atlantic SST (Figure 3.39:b), which could be particularly pronounced in some models, associated with 9 

greater variability in the AMOC (Boucher et al., submitted; Voldoire et al., 2019a; Section 3.5.4) and greater 10 

GMST multidecadal variability (Parsons et al., submitted; Ribes et al., submitted, Section 3.3.1). The SST 11 

decadal variance in the subpolar North Atlantic is slightly overestimated in CMIP6 compared to 12 

observational estimates, while the AMV-related tropical SST anomalies remains weaker in line with CMIP5 13 

(Figure 3.39:b,c). The mechanisms producing the tropical-extratropical relationship at decadal timescales 14 

remain poorly understood despite stronger evidence since AR5 for the importance of the subpolar gyre SST 15 

anomalies in generating tropical changes through atmospheric teleconnection (Caron et al., 2015; Ruprich-16 

Robert et al., 2017; Kim et al., 2019).  17 

 18 

The increase of temporal variance and persistence of the AMV in CMIP6 is present in historical simulations 19 

and marginally in piControl ones (Figure 3.39:d-f) providing additional evidence since AR5 that external 20 

forcing have played an important role in shaping the observed AMV temporality and intensity. The 21 

competition between GHG warming and anthropogenic sulphate aerosol cooling has been proposed to be 22 

particularly important over the latter half of the 20th century (Booth et al., 2012; Steinman et al., 2015; 23 

Murphy et al., 2017; Undorf et al., 2018a; Haustein et al., 2019). Volcanic forcing has been also shown to 24 

contribute in part to the cold phases of the AMV observed in the 20th century (Terray, 2012; Bellucci et al., 25 

2017; Swingedouw et al., 2017; Birkel et al., 2018). Consistently, the timing of phase changes, and the 26 

magnitude and timescale of AMV, tend to be better reproduced in historical simulations compared to 27 

piControl simulations (Andrews et al., submitted; Bellomo et al., 2018), and in CMIP6 versus CMIP5 28 

(Figure 3.39:). However, observations still lie in the extreme bounds of the model ensemble spread, even if 29 

the total AMV variance is enhanced in CMIP6 due essentially to a greater forced component (Figure 3.39:f), 30 

and there remain significant discrepancies in simulated AMV when compared to multivariate observations 31 

(Yan et al., 2018). Model biases may be related to deficiencies in the represenation of the atmosphere-ocean 32 

coupling in some models (Kim et al., 2018) as well as in their representation of internal variability or forced 33 

response associated with climate sensitivity and aerosol-cloud interactions, or both. Meanwhile, the latest 34 

observed AMV shift from the cold to the warm phase in the mid-1990s is well captured in the CMIP6 forced 35 

component and may be associated with the lagged response to increased AMOC due to strong anthropogenic 36 

aerosol forcing over 1955-1985 (Menary et al., submitted) in combination with the rapid response through 37 

surface fluxes processes to declining aerosol forcing since then. Over the last millennium, natural forcings 38 

including major volcanic eruptions and fluctuations in solar activity may however have driven a larger 39 

fraction of the multidecadal variations in the AMV, with some interplay with internal processes (Otterå et al., 40 

2010; Wang et al., 2017b). 41 

 42 

Model evaluation of the AMV remains difficult however because of the short observational records and a 43 

lack of stationarity in AMV variance, spatial patterns, frequency (Qasmi et al., 2017), the difficulties in 44 

estimating the forced signals in both historical simulations and observations (Tandon and Kushner, 2015), 45 

and because of probable interplay between internally and externally-driven processes (Watanabe and Tatebe, 46 

2019). For example, the different response to external forcing in the tropical versus extratropical North 47 

Atlantic could explain the model-observations discrepancy in AMV spatial structure (Andrews et al., 48 

submitted). Related methodological and epistemological uncertainties also question the relevance of the 49 

traditional basin mean metrics to assessing AMV (Zanchettin et al., 2014; Frajka-Williams et al., 2017; 50 

Haustein et al., 2019; Wills et al., 2019).  51 

 52 

To summarize, results from CMIP5 and CMIP6 models together with new statistical techniques to evaluate 53 

the forced component in modelled and observed AMV, provide robust evidence that natural climate 54 

processes and feedbacks (including internal mechanisms and response to natural, mostly volcanic, forcings) 55 
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are important in generating AMV (high confidence). There is also increased evidence that anthropogenic 1 

aerosols have played a role in the timing and intensity of the negative (cold) phase of AMV recorded from 2 

the mid-1960s to mid-1990s and subsequent warming (medium confidence), but there is low confidence in 3 

the estimated magnitude of the human influence. The limited level of confidence is primarily explained by 4 

the difficulties in accurately evaluating model performance in simulating realistic AMV phenomena. The 5 

evaluation is severely hampered by short instrumental records but also, equally importantly, by the lack of 6 

detailed and coherent long-term process-based observations (for example of the AMOC, aerosol optical 7 

depth, surface fluxes and cloud changes), which limit our process understanding. In addition, studies often 8 

rely solely on simplistic SST indices that may be hard to interpret (Zhang et al., 2016) and may mask critical 9 

physical inconsistency in simulations of AMV compared to observational estimates and processes (Zhang, 10 

2017). Therefore, the relative importance of anthropogenic forcing on AMV and associated teleconnections 11 

in the historical period compared to natural (forced or internal) variability remains poorly understood and 12 

difficult to assess. 13 

 14 

 15 

[START FIGURE 3.39 HERE] 16 

 17 

 AMV spatio-temporal properties in observations and models. (a, b) SST anomalies (ºC) regressed onto 18 

the AMV index defined as the 10-year low-pass filtered North Atlantic (0º-60°N, 80°W-0°E) area-19 

weighted SST* anomalies over 1900-2014 in (a) ERSSTv5 and (b) CMIP6 historical simulations (MME 20 

composite). Asterisk denotes that the global mean SST anomaly has been removed at each time step of 21 

the computation. (c) A Taylor diagram summarizing the representation of the AMV pattern in models and 22 

observations over [0º-60°N, 80°W-0°E] for CMIP5 (light blue) and CMIP6 (red). The reference pattern is 23 

taken from ERSSTv5. Black dots indicate other observational products (ERSSTv3b and HadISSTv1). (d) 24 

Autocorrelation of unfiltered AMV index at lag 1 year (“Unsmoothed”) and 10-year low-pass filtered 25 

AMV at lag 10 years (“Low-Pass”) for observations (grey shading) and 115-year chunks of piControl 26 

simulations (open boxes) and historical ensemble simulations (filled boxes) over 1900-2014 from CMIP5 27 

and CMIP6. (e) As in (d), but standard deviation of unfiltered and filtered AMV (ºC). Boxes and whiskers 28 

show mean, interquartile ranges and 5th and 95th percentiles. (f) Time series of the AMV index (ºC) in 29 

ERSSTv5 (black) and CMIP5 and CMIP6 historical simulations. The thick red and light blue line are the 30 

MME mean for the historical simulations in CMIP5 and CMIP6, respectively, and the envelopes 31 

represent the ±2 standard deviation range across ensemble members. 39 models and 149 historical 32 

members have been used for evaluation in CMIP5; 29 models and 262 historical members for CMIP6. 33 

 34 

[END FIGURE 3.39 HERE] 35 

 36 

 37 

3.8 Synthesis across Earth system components 38 

 39 

 40 

3.8.1 Multivariate Attribution of Climate Change 41 

 42 

Evidence has grown since AR5 that observed changes since the 1950s in many parts of the climate system 43 

are attributable to anthropogenic influences. So far, this chapter has mostly focused on examining individual 44 

aspects of the climate system in separate sections. The results presented in Sections 3.3 to 3.7 strengthen the 45 

conclusion that human influence on climate has played the dominant role in observed warming since the 46 

1950s. In this section we look across the whole climate system to assess whether and to what extent a 47 

physically consistent picture of human induced change emerges across the climate system (Figure 3.40:). 48 

 49 

The assessed likelihood of a detectable and quantifiable, human contribution ranges from likely to extremely 50 

likely for temperatures from the depths of the ocean on up through the surface of the Earth to the troposphere 51 

and stratosphere (Sections 3.3.1 and 3.5.1.3). The observed warming trends in the atmosphere, ocean and at 52 

the surface over the past 65 years are only explained when contributions from both anthropogenic and 53 

natural forcings are included. As might be expected from a warming atmosphere, moisture in the troposphere 54 

has increased and precipitation patterns have changed. Anthropogenic factors have likely contributed to the 55 

observed changes in humidity and precipitation. Sea ice in the Arctic continues to decline; this is very likely 56 
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due to increases in greenhouse gases. There is medium confidence that reductions in snow cover over the 1 

Northern Hemisphere are associated with warming of near surface air, and that anthropogenic climate 2 

change has changed streamflow in many parts of the world. There continues to be low confidence in the 3 

scientific understanding of the changes in Antarctic sea ice.  4 

 5 

Combining the evidence from across the climate system increases the level of confidence in the attribution of 6 

observed climate change to human influence and reduces the uncertainties associated with assessments based 7 

on a single variable. From this combined evidence, it is virtually certain that human influence has warmed 8 

the global climate system. 9 

 10 

Further, AR5 concluded that human influence on the climate system is clear (IPCC, 2013). This assessment 11 

was based on observed increasing greenhouse gas concentrations in the atmosphere, positive radiative 12 

forcing, observed warming, and physical understanding of the climate system. Further observed increases in 13 

greenhouse gas concentrations and global temperatures (Chapter 2), as well as stronger and better-14 

constrained estimates of anthropogenic radiative forcing (Chapter 7), and improved physical understanding 15 

of these changes as reflected in stronger attribution assessments (Sections 3.3 to 3.7) demonstrate that this 16 

evidence has strengthened. 17 

 18 

 19 

[START FIGURE 3.40 HERE] 20 

 21 

 Summary figure showing simulated and observed changes in key large-scale indicators of climate change 22 

across the climate system, for continental, ocean basin and larger scales. Black lines show observations, 23 

red lines and shading show the multi-model mean and 5-95th percentile ranges for CMIP6 historical 24 

simulations including anthropogenic and natural forcing, and blue lines and shading show corresponding 25 

ensemble means and 5-95th percentile ranges for CMIP6 natural-only simulations. Temperature timeseries 26 

are as in Figure 3.8, but with smoothing by a 2-years running mean. Precipitation timeseries are as in 27 

Figure 3.12. Additional variables shown will be added in the final draft. Figure produced with 28 

ESMValTool v2.0.0b2. 29 

 30 

[END FIGURE 3.40 HERE] 31 

 32 

 33 

3.8.2 Multivariate Model Evaluation 34 

 35 

Similar to the assessment of multivariate attribution of climate change in the previous section, this section 36 

covers the performance of the models across different variables (Sections 3.8.2.1) and different classes of 37 

models (Section 3.8.2.2). Here the focus is on a system-wide assessment using integrative measures of model 38 

performance that characterize model performance using multiple diagnostic fields derived from multi-model 39 

ensembles. 40 

 41 

 42 

3.8.2.1 Integrative Measures of Model Performance 43 

 44 

For every diagnostic field considered, model performance is compared to one or multiple observational 45 

references, and the quality of the simulation is expressed as a single number, e.g. a correlation coefficient or 46 

a root mean square difference versus the observational reference. By simultaneously assessing different 47 

performance indices, model improvements can be quantified, similarities in behaviour between different 48 

models become apparent, and dependencies between various indices become evident (Gleckler et al., 2008; 49 

Waugh and Eyring, 2008).  50 

 51 

AR5 found significant variations in skill across the CMIP5 ensemble when measured against meteorological 52 

reanalyses and observations (Flato et al., 2013). AR5 determined that for the diagnostic fields analysed, the 53 

models usually compared similarly against two different reference datasets, suggesting that model errors 54 

were generally larger than observational uncertainties or other differences between the observational 55 

references. In agreement with previous assessments, the CMIP5 multi-model mean generally performed 56 
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better than individual models (Annan and Hargreaves, 2011; Rougier, 2016). AR5 considered 13 1 

atmospheric fields in its assessment for the instrumental period but did not assess multi-variate model 2 

performance in other climate domains (e.g., ocean, land, and sea ice). AR5 found only modest improvement 3 

regarding the simulation of climate for two periods of the Earth’ history (the Last Glacial Maximum and the 4 

mid-Holocene) between CMIP5 and previous paleoclimate simulations. Similarly, for the modern period 5 

only incremental progress was found between CMIP3 and CMIP5 regarding the simulation of precipitation 6 

and radiation. The representation of clouds remained a leading problem in climate modelling. 7 

 8 

The multi-variate analysis of CMIP5 models presented in AR5 is expanded to the previous-generation 9 

CMIP3 and present-generation CMIP6 models and also to more variables and more climate domains, 10 

covering land and ocean as well as sea ice. The multi-variate evaluation of these three generations of models 11 

is performed relative to the datasets listed in the Technical Annex on observations. For many of the 12 

observational datasets, a rigorous characterization of the observational uncertainty is not available, see 13 

discussion in Chapter 2. Here, as much as possible, multiple independent observational datasets are used. 14 

Disagreements amongst them would cause differences in model scoring, indicating that observational 15 

uncertainties may be substantial compared to model errors. Conversely, similar scores against different 16 

observational datasets would suggest model issues may be more important than the observational 17 

uncertainty.  18 

 19 

An analysis of a basket of 17 atmospheric metrics (Figure 3.41:a), assessed across CMIP3, CMIP5, and 20 

CMIP6 models but excluding high-resolution models used in HighResMIP, reveals the progress made 21 

between these three generations of models (Bock et al., submitted). This is evidenced by the increasing 22 

prevalence of blue colours (indicating a performance better than the median) for the more recent model 23 

versions. As a consequence, a few CMIP6 models outperform the best-performing CMIP5 models. Progress 24 

is evident across all 17 metrics, meaning that the three particular metrics chosen in FAQ3.2 to illustrate 25 

progress are not critical. One model (HadCM3) has participated both in CMIP3 and CMIP5 and scores very 26 

similarly in both, suggesting that the changes in forcings between these two experiments are not the leading 27 

cause for this general improvement in model behaviour. However, a more in-depth analysis of the role of the 28 

forcings would be required to confirm this finding. The models typically score similarly against both 29 

observational reference datasets, indicating that indeed uncertainties in these references are smaller than 30 

model biases. Several models and model families perform better compared to observational references than 31 

the median, across a majority of the climate variables assessed, and conversely some other models or model 32 

families compare more poorly against these reference datasets. Such a good correspondence across a range 33 

of metrics enhances confidence that it is not achieved via a cancellation of errors which would likely cause 34 

mismatches in some metrics (although some such mismatches -- red colours -- are still evident in the CMIP6 35 

generation of models). Family relationships between the models are apparent, for example, the GISS, GFDL, 36 

CESM, CNRM, and HadGEM/UKESM1/ACCESS families score similarly across all atmosphere variables, 37 

both for the CMIP5 and CMIP6 generations. In the cases of CESM2 / CESM2(WACCM) and HadGEM3 / 38 

UKESM1, both the low- and high-complexity members of these families score similarly, indicating that 39 

increasing complexity by adding “Earth System” features does not necessarily degrade a model’s 40 

performance. In accordance with AR5 and earlier assessments, the multi-model mean, with some notable 41 

exceptions, is better than any individual model (Annan and Hargreaves, 2011; Rougier, 2016). Bock et al. 42 

(submitted) discuss Figure 3.41:a in more detail. 43 

 44 

Regarding performance with regards to the ocean and the cryosphere (Figure 3.41:b), it is apparent that for 45 

many models there are substantial differences between the scores for Arctic and Antarctic sea ice 46 

concentration. This might suggest that it is not sea ice physics directly that is driving such differences in 47 

performance but rather other influences, such as differences in geography or large-scale ocean dynamics. As 48 

for atmospheric variables, progress is evident also across all 4 ocean and 10 land metrics from CMIP5 to 49 

CMIP6. 50 

 51 

 52 

[START FIGURE 3.41 HERE] 53 

 54 

 Relative space-time root-mean-square deviation (RMSD) calculated from the climatological seasonal 55 
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cycle of the CMIP simulations (1980-1999) compared to observational datasets (Table 1 of the Technical 1 

Annex on Observations): (a) CMIP3, CMIP5, and CMIP6 for 17 atmospheric variables (SWCRE, 2 

LWCRE, RSUT, RLUT, CLT, PR, TS, TAS, HUS400, PSL ZG500, VA200, VA850, UA200, UA850, 3 

TA200, TA850), (b) CMIP5 and CMIP6 for 10 land variables (RLUS, RSDS, RSUS, RSDS, ET, 4 

FGCO2, GPP, LAI, NBP, SM) and four ocean/sea-ice variables (TOS, SICONC Antarctic, SICONC 5 

Arctic, HFDS). A relative performance is displayed, with blue shading indicating better and red shading 6 

indicating worse performance than the median of all model results. A diagonal split of a grid square 7 

shows the relative error with respect to the reference data set (lower right triangle) and the alternative data 8 

set (upper left triangle). White boxes are used when data are not available for a given model and variable. 9 

Updated and expanded from Figure 9.7 of Flato et al. (2013). (Figure from Bock et al. (submitted), their 10 

Figure 5, produced with ESMValTool v2.0.0b3.) 11 

 12 

[END FIGURE 3.41 HERE] 13 

 14 

Using centred pattern correlations for selected fields, the AR5 had documented improvements between 15 

CMIP3 and CMIP5 in surface air temperature (tas), outgoing longwave radiation (rlut), and precipitation 16 

(pr). Little progress was found for fields that were already quite well simulated in CMIP3 and CMIP5 (such 17 

as tas and rlut). For precipitation, the spread reduced because the worst-performing models improved. The 18 

short-wave cloud radiative effect remained relatively poorly simulated with significant inter-model spread. 19 

This comparison is designed to help determine the quality of simulation of different diagnostics relative to 20 

each other, and also to demonstrate progress between generations of models. Figure 3.42: shows the centered 21 

pattern correlations for an enhanced number of variables for CMIP3, CMIP5 and CMIP6 models. In the 22 

ensemble averages, CMIP6 performs better than CMIP5 and CMIP3 for near-surface temperature, 23 

precipitation, and mean sea-level pressure, but also for several other variables (Figure 3.42:). 24 

 25 

 26 

[START FIGURE 3.42 HERE] 27 

 28 

 Centred pattern correlations between models and observations for the annual mean climatology over the 29 

period 1980–1999. Results are shown for individual CMIP3 (black), CMIP5 (blue) and CMIP6 (brown) 30 

models as short lines, along with the corresponding ensemble averages (long lines). The correlations are 31 

shown between the models and the reference observational data set listed in Table 5. In addition, the 32 

correlation between the reference and alternate observational data sets are shown (solid grey circles). To 33 

ensure a fair comparison across a range of model resolutions, the pattern correlations are computed after 34 

regridding all datasets to a resolution of 2.5º in longitude and 2.5º in latitude. Only one realization is used 35 

from each model from the CMIP3, CMIP5 and CMIP6 historical simulations. (Figure from Bock et al. 36 

(submitted), their Figure 6, produced with ESMValTool v2.0.0b3.) 37 

 38 

[END FIGURE 3.42 HERE] 39 

 40 

 41 

Simulations of selected periods of the Earth’s past can additionally help benchmark climate models by 42 

exposing them to climate forcings that are more radically different from the present and recent past (Harrison 43 

et al., 2015, 2016; Kageyama et al., 2018). These time periods provide an out-of-sample test of models because 44 

they are not in general used in the process of model development. The two periods of the mid-Holocene (MH) 45 

and the Last Glacial Maximum (LGM) are considered below; details on both are given in Cross-Chapter Box 46 

2.1. Two other periods, the Last Interglacial (LIG) and the mid-Pliocene Warm Period (mPWP) are also 47 

covered by the 4th Paleoclimate Model Intercomparison Project (PMIP4) but are not discussed here. 48 

 49 

AR5 found that there was only a slight improvement in CMIP5/PMIP3 models compared with earlier model 50 

versions (PMIP2), when evaluating the MH and LGM simulations of a range of variables, including annual 51 

mean temperatures, mean temperature of the coldest and warmest month, growing degree days above a 52 

threshold of 5°C, mean annual precipitation, and the ratio of actual to equilibrium evapotranspiration. For 53 

several regional signals, the magnitude of change seen in the proxies relative to pre-industrial (for example 54 

the north-south temperature gradient in Europe, and regional precipitation changes) was underestimated by 55 

the models. For the LIG, it was noted that the magnitude of observed annual mean warming in the Northern 56 

Hemisphere was only reached in summer in the models. For the mPWP, it was noted that both proxies and 57 
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models showed polar amplification of temperature compared with pre-industrial, but a formal model 1 

evaluation was not carried out.  2 

 3 

Since AR5, modelling protocols for evaluation of climate models as well as understanding of their 4 

differences with respect to today have been developed in the framework of PMIP4 (Kageyama et al. (2018) 5 

for an overview, Otto-Bliesner et al. (2017) for the mid-Holocene, and Kageyama et al. (2018) for the LGM). 6 

Both the mid-Holocene and the LGM climates have been continuously modeled with AMIP to CMIP models 7 

and serve as references to quantify model-data agreement from one IPCC assessment to another.  8 

 9 

The results of 12 PMIP4-CMIP6 models have been used for the mid-Holocene in comparison to the PMIP3-10 

CMIP5 models (Brierley et al., submitted). CMIP6 models show patterns of temperature changes similar to 11 

the CMIP5 ensemble, albeit with weaker cooling for Northern Hemisphere winters. The model spread is also 12 

similar in both ensembles. Therefore, there is no major improvement in the model’s ability to represent the 13 

mid-Holocene temperature, this conclusion being reinforced by the fact that it is based on larger data sets, 14 

covering more sites (Figure 3.43:). All models show an expansion of the monsoon areas from the pre-15 

industrial to the mid-Holocene simulations, but this expansion in some cases is just large enough to cancel 16 

out the low bias in the pre-industrial control simulations. However, there is a slight improvement in 17 

representing the northward expansion of the West African monsoon region, with one model reaching the 18 

reconstructed precipitation change.  19 

 20 

The results of 8 new climate simulations run with 7 models for the LGM differ from the PMIP3-CMIP5 21 

results in several aspects (Figure 3.43:). With a lower climate sensitvity of the models that have so far 22 

completed the PMIP4-CMIP6 simulations (i.e., not covering those models with a climate sensitivity at the 23 

upper end of the CMIP6 range, see Chapter 7) and lower ice sheet height in the updated boundary conditions 24 

used for those runs, the PMIP4-CMIP6 simulations tend to simulate a weaker cooling than the PMIP3-25 

CMIP5 ones. This difference in ice sheet height also impacts atmospheric circulation, and the hydrological 26 

cycle is affected by both the difference in temperature and in atmospheric circulation. Changes in the AMOC 27 

tend to be less strong than in the PMIP3-CMIP5 simulations, although the PMIP4-CMIP6 models still 28 

simulate an increased North Atlantic Deep Water circulation (Kageyama and PMIP4, submitted). The 29 

PMIP4-CMIP6 models do not show a systematic improvement in their comparison with reconstructions, 30 

except for western Europe with several models showing much improved ability to represent winter 31 

temperatures and annual precipitation. These preliminary results show that biases are similar for both sets of 32 

models, and this analysis of biases is strengthened because it is based on larger and improved reconstructions 33 

(Cleator et al., 2019, for terrestrial reconstructions; Tierney et al., submitted, for SST reconstructions).  34 

 35 

The MH and the LGM comparison over the same regions and for the same variables show that the biases are 36 

not the same for both periods. The reasons for this remain to be investigated. 37 

 38 

 39 

[START FIGURE 3.43 HERE] 40 

 41 

 Data-model comparisons for the mid-Holocene (top line) and LGM (bottom line) periods, for PMIP3-42 

CMIP5 and PMIP4-CMIP6 models. The figure shows the mid-Holocene - piControl (top) and LGM - 43 

piControl (bottom) averages and ranges computed for pollen-based reconstructions and model output 44 

taken over the grid points for which there are reconstructions, for the following regions: North America 45 

(20-50°N, 140-60°W), Western Europe (35-70°N, 10°W-30°E) and West Africa (0°-30°N, 10°W-30°E). 46 

MTCO: Mean Temperature of the Coldest Month (°C), MTWA: Mean Temperature of the Warmest 47 

Month (°C), MAP: Mean Annual Precipitation (mm/year). The ranges shown for the reconstructions are 48 

based on the standard error given at each site: the average and associated standard deviation over each 49 

area is obtained by computing 10000 times the average of randomly drawn values from the Gaussian 50 

distributions defined at each site by the reconstruction mean and standard error. The ranges for the model 51 

results are based on the interannual variability of the average over the area: the mean ± one standard 52 

deviation is plotted for each model. The reconstructions are from Bartlein et al. (2011) and Cleator et al. 53 

(2019). (Figure from Brierley et al. (submitted), their Figure S3 for the mid-Holocene and from 54 

Kageyama and PMIP4 (submitted), their Figure 12 for the LGM.) 55 

 56 
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[END FIGURE 3.43 HERE] 1 

 2 

 3 

In summary, there is high confidence that across a large range of metrics chosen to capture large-scale 4 

aspects of mean climate across different domains, CMIP6 models as a group compare better against available 5 

observational references covering the recent instrumental period than their CMIP5 and CMIP3 predecessors. 6 

Subsets of the CMIP6 models have also been evaluated for the MH and the LGM. For the MH, little 7 

substantial progress is evident, with model spread for several diagnostics remaining about as large as for 8 

PMIP3-CMIP5 and biases remaining essentially unchanged. For the LGM, there is reduced inter-model 9 

spread and better agreement with a new reconstruction for some diagnostics, but no improvement from 10 

PMIP3-CMIP5 for others. There are no regions/variables for which the simulations compare favourably with 11 

reconstructions for both periods. There is therefore low confidence in the ability of the CMIP6 models to 12 

simulate the climates of the MH and the LGM at the regional scale. 13 

 14 

 15 

3.8.2.2 Process Representation in Different Classes of Models 16 

 17 

Based on new physical insights and newly available observations, many improvements have been made to 18 

models from CMIP5 to CMIP6, including changes in the representation of physics of the atmosphere, ocean, 19 

sea-ice, and land surface. In many cases, changes in the detailed representation of cloud and aerosol 20 

processes have been implemented. This new generation of climate models also features increases in spatial 21 

resolution, as well as inclusion of additional Earth system processes and new components (see further details 22 

in Chapter 1). 23 

 24 

A key advance in CMIP6 compared to CMIP5 is the presence of several high-resolution models that have 25 

participated in the High-Resolution Model Intercomparison Project (HighResMIP, Haarsma et al., 2016). 26 

Resolution alone can significantly affect a model’s performance, with some effects propagating to the global 27 

scale. For example, the equilibrium climate sensitivity (ECS) and the total climate response (TCR), both 28 

measures of the climate’s response to anthropogenic forcings, can display a significant dependence on model 29 

resolution in experiments where resolution is the only difference between two model versions, although such 30 

findings are model dependent (Kiehl et al., 2006; Senior et al., 2016). Recent studies have shown that 31 

enhancing the horizontal resolution of models is seen to significantly affect aspects of large-scale circulation 32 

as well as improve the simulation of small-scale processes and extremes when compared to CMIP3 and 33 

CMIP5 models (Haarsma et al., 2016). 34 

 35 

As discussed in Section 3.3, CMIP6 models reproduce observed large-scale mean surface temperature 36 

patterns as well as their CMIP5 predecessors, but biases in surface temperature in the mean HighResMIP 37 

model are smaller than those in the mean of the corresponding lower-resolution version of the same models 38 

(Figure 3.2:). The extent and causes of improvements due to increased horizontal resolution depend on 39 

model (Sidorenko et al.; Kuhlbrodt et al., 2018; Roberts et al., 2018, 2019a), although they typically involve 40 

improved biases in top of atmosphere radiation and cloudiness, and generally require increased horizontal 41 

resolutions of both the atmosphere and ocean models. Precipitation has likewise improved in CMIP6 versus 42 

CMIP5 models, but biases remain. The high resolution (< 25 km) class of models participating in 43 

HighResMIP compares regionally better against observations than low resolution models (Figure 3.10:), 44 

partly because of an improved representation of orographic (mountain-induced) precipitation which 45 

constitutes a major fraction of precipitation on land, but other processes also play an important role 46 

(Vannière et al., 2019). However, there are also large parts of the tropical ocean where precipitation in high-47 

resolution models is not improved compared to low-resolution (Vannière et al., 2019). 48 

 49 

Additionally, the representation of surface and deeper ocean mean temperature is improved in models with 50 

higher horizontal resolution (Sections 3.5.1.1 and 3.5.1.2) with systematic improvements in coupled tropical 51 

Atlantic sea surface temperature and precipitation biases at higher resolutions (Roberts et al., 2019a, single 52 

model; Vannière et al., 2019), the North Atlantic cold bias (Bock et al., submitted, multi-model; Caldwell et 53 

al., 2019; Roberts et al., 2018, 2019a, all single models) as well as deep ocean biases (Caldwell et al., 2019; 54 

Gutjahr et al., 2019; Roberts et al., 2019a; in addition to earlier work e.g. Griffies et al., 2015; Small et al., 55 
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2014, all single model studies). Atlantic ocean transports (heat and volume) are also generally improved 1 

compared to observations (Caldwell et al., 2019; Docquier et al., 2019; Grist et al., 2018; Roberts et al., 2 

2019a, submitted, b), as well as some aspects of air-sea interactions (Wu et al., 2019a, single model). 3 

However, warm-biased sea-surface temperatures in the Southern Ocean get worse in comparison to low-4 

resolution models (Bock et al., submitted). AR5 noted problems with the simulation of clouds in this region 5 

which were later attributed to a lack of supercooled liquid clouds in this region (Bodas-Salcedo et al., 2016). 6 

Mesoscale ocean processes are critical to maintain the Southern Ocean stratification and response to wind 7 

forcing (Marshall and Radko, 2003; Hallberg and Gnanadesikan, 2006), and their explicit representation 8 

requires even higher ocean resolution (Hallberg, 2013). There is also evidence of improvements in the 9 

frequency, distribution and interannual variability of tropical cyclones (Roberts et al., 2019b, submitted, a), 10 

particularly in the Northern Hemisphere (see further discussion in Section 3.7.5), moisture budget (Vannière 11 

et al., 2019), and interaction with the ocean (Scoccimarro et al., 2017, single model). The track density of 12 

tropical cyclones is increased practically everywhere where tropical cyclones occur. Modelling of some 13 

climate extremes is shown to be improved in explosively developing extra-tropical cyclones (Gao et al.; 14 

Vries et al., 2019), blocking (Schiemann et al., submitted) and European extreme precipitation due to a better 15 

representation of the North Atlantic storm track (Van Haren et al., 2015) and orographic boundary conditions 16 

(Schiemann et al., 2018). 17 

 18 

In addition to increased horizontal resolution, other factors can be equally important for model 19 

improvements. These include dynamical core type (spectral vs finite difference / finite volume), physics 20 

parameters and parameterisations, structural uncertainty – many of the coupled HighResMIP models 21 

available so far use the NEMO ocean model – and the range and degree of process realism (e.g. for aerosols, 22 

atmospheric chemistry and other Earth System components). 23 

 24 

In CMIP6 a number of Earth system models have increased the realism by which key biogeochemical 25 

aspects of the coupled Earth system are represented (e.g. Danabasoglu et al., submitted; Séférian et al., 2019; 26 

Sellar et al., 2019). In addition to increased process realism, the level of coupling between the physical 27 

climate and biogeochemical components of the Earth system has also been enhanced in some models 28 

(Mulcahy et al., submitted), as well as across different biogeochemical components. The majority of these 29 

developments are intended to support investigation of potential future feedbacks in the coupled Earth system 30 

or to allow investigation of climate mitigation options (e.g. through managed land use change and terrestrial 31 

carbon uptake (Mahowald et al. (2017)) or interactions between differerent facets of the managed Earth 32 

system (e.g. interactions between mitigation efforts targeting climate warming and air quality (West et al., 33 

2013). A number of developments also explicitly target improved simulation of the past.  34 

 35 

Such developments include (i) Extending terrestrial carbon cycle models to simulate interactions between the 36 

carbon cycle and other nutrient cycles, such as nitrogen and phosphorous that are known to play an important 37 

role in limiting future plant uptake of CO2 (Zaehle et al., 2015). (ii) Introducing explicit coupling between 38 

interactive atmospheric chemistry and aerosol schemes (Gettelman et al., 2019; Sellar et al., 2019), which 39 

has been shown to impact estimates of historical aerosol radiative forcing (Karset et al., 2018). Furthermore, 40 

interactive treatment of atmospheric chemistry in a full ESM supports investigation of interactions between 41 

climate and air quality mitigation efforts, such as planned in AerchemMIP (Collins et al., 2017) as well as 42 

potential interactions between stratospheric ozone recovery and global warming (Morgenstern et al., 2018). 43 

(iii) Couplings between components of Earth system models have been extended to increase their utility for 44 

studying future interactions across the full Earth system, such as between; ocean biogeochemistry and cloud-45 

aerosol processes (Mulcahy et al., submitted), vegetation and impacts on dust production (Kok et al., 2018), 46 

production of secondary organic aerosols (SOA, Zhao et al., 2017) and even Effective Climate Sensitivity 47 

(ECS) via changes in regional surface albedo (Andrews et al., 2019). Increased coupling between physical 48 

climate and biogeochemical processes in a single ESM, along with an increased number of interactively 49 

represented processes, such as permafrost, vegetation, wildfires and continental ice sheets increases our 50 

ability to investigate the risk of abrupt and interactive changes in the Earth system (Lenton et al., 2019). 51 

 52 

In summary, both high-resolution and high-complexity models have been evaluated as part of CMIP6. 53 

Higher resolution improves aspects of the simulation of climate (particularly concerning sea surface 54 

temperature) but discrepancies remain and there are some regions where currently attainable resolution 55 
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produces inferior performance (high confidence). Such model behaviour can indicate deficiencies in model 1 

physics that are not simply associated with resolution. In several cases, ESMs perform as well as their low-2 

complexity counterparts, illustrating that interactively simulating these Earth System components as part of 3 

the climate system is now well established. 4 

 5 

 6 

3.9 Limits to the Assessment 7 

 8 

Physical understanding of the climate system and multiple lines of evidence of consistent changes across all 9 

climate components allowed us to provide a robust assessment of the human influence on the climate system, 10 

but observational and modelling uncertainties place upper limits on the level of confidence in our 11 

assessement. Firstly, despite longer observational records compared to AR5, the limied length of the 12 

observational record as well as observational uncertainty place upper limits on the confidence assessments of 13 

some variables assessed in this chapter. While instrumental observations of surface temperature extend back 14 

to the quasi-preindustrial base period, and therefore capture most of the anthropogenically-forced change, 15 

comprehensive direct instrumental observations of many important variables assessed in this chapter, such as 16 

the very short and geographically limited observational records of ocean circulation or the short 17 

observational record of Antarctic sea ice extent lower our confidence in the attribution of observed changes. 18 

In the case of the Antarctic sea ice extent, for example, the short period of comprehensive satellite 19 

observations, beginning in 1979, makes it challenging to set the observed increase between 1979 and 2015, 20 

or the subsequent decrease, in a long-term context, and to assess whether the difference in trend between 21 

observations and models, which all simulate long-term decreases, is systematic or a rare expression of 22 

internal variability. Moreover, for other variables, such as precipitation or atmospheric temperature, 23 

remaining observational uncertainty limits the confidence in our attribution and model evaluation 24 

assessments. 25 

 26 

The short observational record, as well as less than perfect knowledge of the forced response, also limit our 27 

ability to accurately estimate internal variability, especially on decadal to multi-decadal timescales. This 28 

challenge is particularly acute in the case of the decadal to multidecadal modes of varibility, PDV and AMV, 29 

for which the observational record samples only a small number of phase transitions. The latest-generation 30 

CMIP6 multi-model ensemble includes some models with substantially higher multi-decadal internal 31 

variability in global mean temperature than the previous generation CMIP5 models, which may be in part 32 

related to stronger AMV and AMOC. Based on the currently available literature, the short observational 33 

record limits our ability to assess to what extent this high multi-decadal internal variability is realistic. 34 

Paleoclimate data can provide a distinct line of evidence to evaluate the models’ forced and unforced internal 35 

variablity in the pre-industrial climate, but observational uncertainties and the inhomogeneous distribution of 36 

paleorecords limit the extent to which this can inform our assessment. Further, some lack in process 37 

understanding of the AMV and PDV, including their links to changes in ocean circulation and their 38 

teleconnections, as well as remaining uncertainty over the extent to which observed AMV has been forced 39 

by aerosol changes, constrains our ability to assess to what extent these modes are realistically represented in 40 

models.  41 

 42 

Moving beyond detection and quantification of the overall anthropogenic response, uncertainties in forcing 43 

datasets (including greenhouse gas concentrations, land use changes, aerosol precursor emissions, solar 44 

irradiance variations and volcanic aerosols) limit the confidence with which we can separately quantify the 45 

contributions of individual forcings to observed changes. In particular, uncertainties in the simulated indirect 46 

aerosol effect are still large, resulting in differences in historical global mean temperature evolution and in 47 

diagnosed aerosol-attributable cooling between different models. Moreover, like previous generations of 48 

coupled model simulations, historical and single forcing CMIP6 simulations follow a common experimental 49 

design and are thus all driven by the same common set of forcings, even though these forcings are uncertain. 50 

While this limitation can to some extent be addressed by comparing with previous generation multi-model 51 

ensembles or individual model studies using different sets of forcings, forcing uncertainty is not directly 52 

accounted in most of the attribution and model evaluation studies assessed in this chapter. This is one reason, 53 

for example, why reported 5-95% uncertainty ranges in attributable warming from individual studies, are 54 

bracketed and assessed as likely rather than very likely in this chapter. Finally, although systematic biases 55 
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remain in many aspects of climate, CMIP6 models have improved over CMIP5 in many aspects. 1 

 2 

Despite these remaining sources of uncertainty, observations, models and physical understanding of the role 3 

of human influence on climate system have evolved substantially since the time of AR5. And accounting for 4 

these limitations, it is still possible to make robust assessments on human influence across many parts of the 5 

climate system. Looking forward, we expect further improvements in models and physical understanding, 6 

along with a lengthening observational record and the availability of new measurements monitoring key 7 

aspects of the climate system, in order to support even better quantification of the role of human influence on 8 

the past and also future climate. 9 

 10 

 11 

[START CROSS-CHAPTER BOX 3.1 HERE] 12 

 13 

 Slower Surface Global Warming over the Early 21st Century 14 

 15 

Contributors: Christophe Cassou (France), John Fyfe (Canada), Nathan Gillett (Canada), Edward Hawkins 16 

(UK), Yu Kosaka (Japan), Blair Trewin (Australia) 17 

 18 

The observed rate of global mean surface temperature (GMST) increase was lower from the late 1990s to early 19 

2010s compared to the preceding few decades and to the ensemble mean of historical simulations produced by 20 

process-based climate models from both CMIP5 (extended by RCP scenarios beyond 2005) and CMIP6 21 

(Cross-Chapter Box 3.1, Figure 1a). This apparent slowdown of surface global warming from the preceding 22 

decades, often called the “hiatus”, was assessed with medium confidence to have been caused in roughly equal 23 

measure by a cooling contribution from internal variability and a reduced trend in external forcing (particularly 24 

associated with solar and volcanic forcing) in the AR5 based on expert judgement (Flato et al., 2013). In the 25 

AR5 it was assessed that almost all CMIP5 simulations did not reproduce the observed slower warming, and 26 

that there was medium confidence that the difference in trends was to a substantial degree caused by internal 27 

variability with possible contributions from forcing error and model response uncertainty. This Cross-Chapter 28 

Box assesses new findings from observational products and statistical and process-based models on trends 29 

over the 1998-2012 period considered in AR5, for which the observed GMST trend was at or near its lowest 30 

when computed for running 15-year periods starting in 1981. 31 

 32 

Updated observational data sets and reanalyses and comparison with model simulations 33 

Since the AR5, there have been version updates and new releases of most observational GMST data sets 34 

(Chapter 2 Section 2.3.1.1). All the updated products now available consistently find stronger positive trends 35 

for 1998-2012 than those assessed in AR5 (Cowtan and Way, 2014; Karl et al., 2015; Hausfather et al., 2017; 36 

Medhaug et al., 2017; Simmons et al., 2017; Risbey et al., 2018), a result which is also supported by satellite 37 

data (Hausfather et al., 2017). Simmons et al. (2017) report that the 1998-2012 GMST trends in the updated 38 

observational and reanalysis data sets range from 0.06 °C to 0.14 °C per decade, compared with the 0.05 °C 39 

per decade on average as reported in AR5. The lowest value in Simmons et al. (2017) is from HadCRUT4, 40 

whose latest version, HadCRUT5, show 0.12 ºC per decade. The upward revision is mainly due to improved 41 

sea surface temperature (SST) data sets that account for an increased amount of buoy data (which has a cold 42 

bias relative to ship observations), improved information on ship observations over time (bucket measurements 43 

versus engine room intake measurements or hull-mounted sensors, which all require different calibration; Karl 44 

et al., 2015), and infilling of surface temperature on locations with missing records in observational products, 45 

mainly in the Arctic, where warming since the 1990s has been faster than the global average (Cowtan and 46 

Way, 2014; Huang et al., 2017). Low frequency daily sampling of land surface air temperature is found as 47 

another source of trend biases in observational products, but this impact is much smaller when averaged 48 

globally (Zhou and Wang, 2016).  49 

Another artificial source of apparent model-observation discrepancy has been identified among the different 50 

methods of global temperature calculation used to evaluate models. Namely, global mean near-surface air 51 

temperature (GSAT), a field widely used for model outputs including by Flato et al. (2013), tends to show 52 

stronger warming trends than GMST, a blend of surface air temperature over land and sea ice and SST over 53 

open ocean, which currently available observational data sets operationally use (see Cross-Chapter Box 2.3 54 

for details). In CMIP6, the ensemble mean difference of the 1998-2012 trend between globally complete GSAT 55 



Second Order Draft Chapter 3 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 3-84 Total pages: 180 

and spatially masked GMST based on the five observational data sets assessed in Cross-Chapter Box 3.1, 1 

Figure 1 is 0.02-0.03 ºC per decade.  2 

 3 

Using updated observational data sets and blending and masking of simulated near-surface air temperature and 4 

SSTs (Cowtan et al., 2015) of CMIP6 data available at present, all the observed trends assessed in this Box lie 5 

within the 5th-95th percentile range of the simulated trends in CMIP6 (Cross-Chapter Box 3.1, Figure 1a). Most 6 

of those observed trends lie also within the same percentile range of CMIP5, with the exception of 7 

NOAAGlobalTemp with a narrow margin. The slightly different results between CMIP5 and CMIP6 arises 8 

from larger ensemble spread in the latter, related to higher internal variability in some models (Section 3.3.1.1) 9 

(Cross-Chapter Box 3.1, Figure 1a). Lin and Huybers (2016) take a continuous piecewise linear fitting 10 

approach and find no significant difference in 15-year GMST trends between HadCRUT4 and the CMIP5 11 

ensemble since 1970. Therefore the observed 1998-2012 trend is not inconsistent with either the CMIP5 or 12 

CMIP6 multi-model ensemble of trends over the same period (high confidence). 13 

 14 

Internal variability  15 

The blending and spatial masking explains 14-20% of the trend difference between the observed GMST and 16 

CMIP6 ensemble mean GSAT. The residual, which is still dominant in the trend difference, suggests a possible 17 

cooling contribution from internal variability during this period. This is supported by initialized decadal 18 

hindcasts, which account for the phase of the multidecadal modes of variability (Sections 3.7.6 and 3.7.7), and 19 

which better reproduce observed global mean SST and GSAT trends than uninitialized historical simulations 20 

(Guemas et al., 2013; Meehl et al., 2014). Since trend difference between GMST and GSAT is small, the 21 

following argument on GSAT trends also applies to GMST trends. 22 

 23 

On interannual timescales, the El Niño-Southern Oscillation (ENSO) is the leading internal driver of GSAT 24 

(Pan and Oort, 1983; Trenberth et al., 2002). Pacific Decadal Variability (PDV), which encompasses decadal 25 

modulations of ENSO, transitioned from positive (El Niño-like) to negative (La Niña-like) phases during the 26 

slow warming period (Cross-Chapter Box 3.1, Figure 1c). Statistical models based on the observed ENSO-27 

GSAT relationship, which are expected to also capture the relationship between PDV and GSAT, and the 28 

simulated PDV-GSAT relationship in a climate model (Meehl et al., 2016b), yield a slower GSAT increase 29 

over the slowdown period and a better match with observations (Schmidt et al., 2014; Hu and Fedorov, 2017). 30 

Moreover, studies identify PDV as the leading mode of variability associated with unforced decadal GSAT 31 

fluctuations in observations and a majority of CMIP5 and CMIP6 models (Brown et al., 2015; Dai et al., 2015; 32 

Parsons et al., submitted), with a secondary influence from AMV (Dai et al., 2015; Steinman et al., 2015). 33 

Model ensemble members and time segments of model simulations that capture the observed slower warming 34 

under transient forcing and that show substantial GSAT decrease under fixed forcing feature negative PDV 35 

trends (Maher et al., 2014; Meehl et al., 2011, 2013, 2014; Middlemas and Clement, 2016; Cross-Chapter Box 36 

3.1, Figure 1d). Alternatively, selecting ensemble members and time segments from model simulations where 37 

PDV by chance evolves in phase with observations over the slowdown period yields considerably better 38 

agreement with the observed GSAT increase (Huber and Knutti, 2014; Risbey et al., 2014). Coupled model 39 

experiments in which PDV evolution is constrained to follow the observations, simulate a slower GSAT 40 

increases than the ensemble mean of the historical simulations, and match the observations better (Kosaka and 41 

Xie, 2013, 2016; England et al., 2014; Watanabe et al., 2014; Delworth et al., 2015), despite uncertainties 42 

related to model and protocol sensitivity (Douville et al., 2015; Xu and Hu, 2018). It is noteworthy that part of 43 

the PDV trend may be driven by anthropogenic aerosols; however, this result is model-dependent (see Section 44 

3.7.6).  45 

 46 

New observational and modelling studies have improved understanding of how PDV affects GSAT. Stronger 47 

Pacific trade winds associated with the negative phase of PDV bring ocean subsurface cold water to the tropical 48 

eastern Pacific sea surface and subsiding warm water to the subsurface Indo-western Pacific Oceans (about 49 

100-300m; England et al., 2014; Gastineau et al., 2019; Lee et al., 2015; Maher et al., 2018; Nieves et al., 50 

2015). The tropical eastern Pacific SST anomalies affect global air temperature through teleconnections 51 

(Trenberth et al., 2014; Wang et al., 2017a). However, it is noteworthy that there is large model-to-model 52 

difference in remote influence of PDV (Wang et al., 2017a), introducing uncertainty in quantifying the PDV 53 

contribution to observed GSAT trends. 54 

 55 
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The reduced GMST trend over 1998-2012 is most pronounced in boreal winter, which accounts for the largest 1 

fraction of GMST variance at interannual timescales. This seasonality results from additional contributions 2 

from wintertime Northern Hemisphere atmospheric internal variability to GSAT changes, particularly 3 

associated with a trend towards the negative phase of the Northern Annular Mode/North Atlantic Oscillation 4 

(Section 3.7.1; Guan et al., 2015; Iles and Hegerl, 2017) or the Cold Ocean-Warm Land pattern (Molteni et 5 

al., 2017; Yang et al., submitted) leading to regional continental cooling over a large part of Eurasia and North 6 

America (Deser et al., 2017; Li et al., 2015; Cross-Chapter Box 3.1, Figure 1c).  7 

 8 

The contribution of internal variability to surface temperature changes over the 1998-2012 period is regionally- 9 

and seasonally-varying (Trenberth et al., 2014; Zang et al., 2019; Cross-Chapter Box 3.1, Figure 1c). In the 10 

southern U.S., the negative PDV contributed to faster warming and droughts (Burgman and Jang, 2015; 11 

Delworth et al., 2015; Meehl et al., 2015). Also of note is that there was no slowdown in increasing occurrence 12 

of hot extremes over land (Seneviratne et al., 2014). Kamae et al. (2014) and Johnson et al. (2018) find 13 

contributions from PDV and AMV to the increase in summer warm extremes over Northern Hemisphere lands. 14 

Thus, the internally-driven slowdown of GMST increase does not correspond to slowdown of warming 15 

everywhere on the Earth’s surface. 16 

 17 

Updated forcing 18 

CMIP5 historical simulations driven by observed forcing variations ended in 2005 and have been extended 19 

with RCP scenario simulations for model-observation comparisons beyond that date. Post AR5 studies based 20 

on updated external forcing show that while no net effect of updated anthropogenic aerosols is found (Murphy, 21 

2013; Oudar et al., 2018), natural forcing by moderate volcanic eruptions in the 21st century (Ridley et al., 22 

2014; Santer et al., 2014) and a prolonged solar irradiance minimum around 2009 compared to the normal 11-23 

year cycle (Lean, 2018) yields a negative contribution to radiative forcing, which was missing in CMIP5. This 24 

explains part of the difference between observed trend deviations and CMIP5 trends, as shown based on EMIC 25 

simulations (Huber and Knutti, 2014; Ridley et al., 2014), statistical and mathematical models (Schmidt et al., 26 

2014; Lean, 2018), and process-based climate models (Santer et al., 2014). However, in a single model study, 27 

updating all forcings (GHG concentrations, solar irradiance, and volcanic and anthropogenic aerosols) does 28 

not make a significant difference in 1998-2012 GMST trend from that obtained with original CMIP5 forcing 29 

(Thorne et al., 2015). Besides, CMIP6 historical simulations, in which observation-based forcing extends to 30 

2014, show a slightly higher GMST trend in the ensemble mean than the CMIP5 historical ensemble mean 31 

extended by RCP4.5 (Cross-Chapter Box 3.1, Figure 1a), though based on different model sets. Uncertainty 32 

therefore remains in the contribution to the difference in observed and ensemble mean GMST trends over the 33 

slower warming period from net forcing. New datasets suggest an overestimation of the decrease in lower 34 

stratospheric water vapour (Hegglin et al., 2014), which was considered as a contributor to the warming 35 

slowdown (Solomon et al., 2010), whereas other studies suggest that internal variability affects the lower 36 

stratospheric water vapour (Chapter 2 Section 2.2.5.1). Thus, while there is medium confidence that natural 37 

forcing that was missing in CMIP5 and contributed to the difference of observed and simulated GMST trends, 38 

confidence remains low on the net forcing contribution. 39 

 40 

Energy budget and heat redistribution 41 

The early 21st century warming slowdown was observed in atmospheric temperatures, but the heat capacity 42 

of the atmosphere is very small compared to that of the ocean. Although there is noticeable uncertainty among 43 

observational products (Su et al., 2017a) and observation quality changes through time, global ocean heat 44 

content and sea level rise continued to increase during the slower surface warming period at a pace similar to 45 

before and similar to that in CMIP5 and CMIP6 historical simulations (Chapter 2 Sections 2.3.3.1 and 2.3.3.3 46 

and Section 3.5.1.3). Internal decadal variability is mainly associated with redistribution of heat within the 47 

climate system (Yan et al., 2016c; Drijfhout, 2018) while associated top of the atmosphere radiation anomalies 48 

are weak (Palmer and McNeall, 2014). In the top 350 m of the ocean, heat redistribution in the Indian and 49 

Pacific Oceans has been the main contributor to reduced warming during the slower surface warming period 50 

(Lee et al., 2015; Nieves et al., 2015; Liu et al., 2016b), consistent with the simulated signature of PDV 51 

(England et al., 2014; Maher et al., 2018a; Gastineau et al., 2019). Below 700 m, enhanced heat uptake over 52 

the slower surface warming period is observed mainly in the North Atlantic and Southern Ocean (Chen and 53 

Tung, 2014), though whether this is a response to forcing or a unique signature of the slow GMST warming is 54 

questioned (Liu et al., 2016b).  55 
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 1 

Summary and implications for post-slow warming period 2 

With updated observation-based GMST data sets and forcing, improved analysis methods, new modelling 3 

evidence and deeper understanding of mechanisms, there is high confidence that the observed slower GMST 4 

and GSAT increase in the 1998-2012 period was a temporary event induced by internal and naturally-forced 5 

variability that partly offset the anthropogenic warming tendency over this period. Global ocean heat content 6 

continued to increase throughout this period, and the slowdown was only evident in the atmosphere and at the 7 

surface (very high confidence). Considering all the sources of uncertainties, it is impossible to robustly identify 8 

a single cause of the early 2000s slowdown (Hedemann et al., 2017); rather, it should be interpreted as a 9 

combination of several factors (Huber and Knutti, 2014; Schmidt et al., 2014; Medhaug et al., 2017).  10 

 11 

A major El Niño event in 2014-2016 led to three consecutive years of record annual GMST with unusually 12 

strong heat release from the Northwestern Pacific Ocean (Yin et al., 2018), which marked the end of the slower 13 

warming period (Hu and Fedorov, 2017; Su et al., 2017b; Cha et al., 2018). The past 5-year period (2014-14 

2018) is the hottest 5-year period in the instrumental record up to 2018 (high confidence). This rapid warming 15 

was accompanied by a PDV shift toward its positive phase. Consistent with the important role of internal 16 

variability, ensemble members with a slower GMST increase for 1998-2012 in the CMIP6 historical ensemble 17 

simulate faster warming for 2012-2024 in currently available SSP2-4.5 simulations (Cross-Chapter Box 3.1, 18 

Figure 1b), but with no clear relationship to changes in PDV (Cross-Chapter Box 3.1, Figure 1e). This is 19 

consistent with the predictions in AR5 Box 9.2 (Flato et al., 2013) and with a statistical prediction system 20 

(Sévellec and Drijfhout, 2018). The latest initialized decadal predictions show higher GMST trends in the early 21 

2020s compared to uninitialized simulations (Thoma et al., 2015; Meehl et al., 2016c). Internally-driven 22 

decadal slowdown and accelation of GSAT increase are commonly found in climate model simulations under 23 

transient forcing (Chapter 1 Section 1.4.1.1). Periods can be also found where the observed trend is larger than 24 

the ensemble mean of historical simulations (e.g. 1974-1988). In CMIP5, models with higher climate 25 

sensitivity tend to have stronger internal GMST and GSAT variability on decadal timescales (Colman and 26 

Power, 2018; Nijsse et al., 2019), although it is questioned whether this tendency is strong enough to increase 27 

the chance of slowdown by compensating the stronger forced warming (Modak and Mauritsen, submitted). 28 

While Brown et al. (2017) find that internal decadal to centennial GSAT variability becomes weaker under 29 

warmer equilibrium climate at 3% per ºC in CMIP5 models on average, the weakening is small under a realistic 30 

range of warming, the change under transient warming is unknown. Thus, there is very high confidence that 31 

events of reduced and increased GMST and GSAT trends at decadal timescales will continue to occur in the 32 

21st century (Meehl et al., 2013; Roberts et al., 2015a). However, such internal decadal variations in GSAT 33 

trend do not affect the centennial warming (England et al., 2015). 34 

 35 

 36 

[START CROSS-CHAPTER BOX 3.1, FIGURE 1 HERE] 37 

 38 

Cross-Chapter Box 3.1, Figure 1: (a, b) GMST trends for 1998-2012 (a) and 2012-2026 (b). Histograms (scaled so that 39 

the area under the curve sums to one) based on historical simulations of CMIP6 (red 40 

shading, extended by SSP2-4.5) and CMIP5 (blue outlines; extended by RCP4.5). 41 

Hatching shows histograms of HadCRUT5.0.0.0 and (Cowtan and Way, 2014). 42 

Triangles at the top of (a) represent GISTEMP, NOAAGlobalTemp and Berkeley 43 

Earth estimates. Selected CMIP6 members whose 1998-2012 trends are lower than 44 

the HadCRUT5.0.0.0 mean trend are indicated by darker shading (a) and vertical lines 45 

(b) in the histograms. Model GMST is based on a blend of SST and SAT masked to 46 

match HadCRUT data coverage, following Cowtan et al. (2015). (c-e) Trend maps of 47 

annual near-surface temperature. (c, d) 1998-2012 trends based on HadCRUT5.0.0.0 48 

mean (c) and composited trends of subsampled CMIP6 simulations included in darker 49 

shading area in (a). (e) Corresponding composited trends but for 2012-2026 indicated 50 

by dark red lines in (b). Ensemble size used for each of the histograms and trend 51 

composites is indicated at the top right of each of panels (a,b,d,e). 52 

 53 

[END CROSS-CHAPTER BOX 3.1, FIGURE 1 HERE] 54 
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[START CROSS-CHAPTER BOX 3.2 HERE] 1 

 2 

 Human Influence on Large-scale Changes in Temperature and 3 

Precipitation Extremes 4 

 5 

Contributors: Nathan Gillett (Canada), Seung-Ki Min (Republic of Korea), Ying Sun (China), Xuebin Zhang 6 

(Canada) 7 

 8 

Understanding how temperature and precipitation extremes have changed at large-scale and their possible 9 

causes are important for evaluating models’ performance as well as future projections. Chapter 11 assesses 10 

changes in extremes and their causes, while this Cross-Chapter Box summarizes relevant assessments and 11 

supporting evidence in Chapter 11 and relates changes in extremes to mean changes on global and 12 

continental scales.  13 

 14 

Attribution of extreme temperatures 15 

One important aspect of various indicators of temperature extremes is their connections to mean temperature 16 

at local, regional and global scales. For example, the highest daily temperature in a summer is often highly 17 

correlated with the summer mean temperature. Model projections show that changes in temperature extremes 18 

are often the manifestation of shifts in mean temperature. It is thus no surprise that changes in temperature 19 

extremes are consistent with warming mean temperature, with warming leading to more hot extremes and 20 

fewer cold extremes. Given that it is virtually certain that human influence has warmed the global climate 21 

system, and the connection between changes in mean and extreme temperatures, it is to be expected that 22 

anthropogenic forcing has also influenced temperature extremes. 23 

 24 

Chapter 11 shows widespread evidence of human influence on various aspects of temperature extremes, at 25 

global, continental, and regional scales. This includes attribution of observed changes to human influence on 26 

changes in intensity, frequency, and duration and other relevant characteristics at the global and continental 27 

scales. The left panel of Cross-Chapter Box 3.2 Figure 1 clearly shows that long-term changes in the global 28 

mean annual maximum daily maximum temperature can be reproduced by both CMIP5 and CMIP6 models 29 

forced with the combined effect of natural and anthropogenic forcings, but cannot be reproduced by 30 

simulations under natural forcing alone. 31 

 32 

It is virtually certain that anthropogenic increases in greenhouse gases have caused increases in the 33 

likelihood and/or magnitude of observed hot extremes (annual, seasonal, daily, heatwaves) and decreases in 34 

the frequency and/or severity of cold extremes across nearly land areas (Chapter 11). 35 

 36 

Attribution of precipitation extremes 37 

An important piece of evidence that supports the SREX and AR5 assessment that there is medium confidence 38 

that anthropogenic forcing has contributed to a global scale intensification of heavy precipitation during the 39 

second half of the 20th century is the anthropogenic influence on global hydrological cycle. The most 40 

significant aspect of that is the increase in atmospheric moisture content associated with warming and that 41 

higher availability of moisture should, in general, lead to enhanced extreme precipitation. Such a connection 42 

is supported by the fact that annual maximum one-day precipitation increases with global mean temperature 43 

at a rate similar to the increase in the mositure holding capacity in response to warming, both in observations 44 

and in model simulations. Additionally, models project an increase in extreme precipitation across global 45 

land regions even in areas in which total precipitation is projected to decrease.  46 

 47 

Evidence of human influence on extreme precipitation has become stronger since AR5, based on multiple 48 

lines of evidence. These include attribution of intensification of annual maximum 1-day and 5-day 49 

precipitation amounts to human influence and consistency between expected changes in record-breaking 50 

extreme precipitation in the observations and model simulations. The right panel of Cross-Chapter Box 3.2 51 

Figure 1 demonstrates the consistency in global average annual maximum daily precipitation in the 52 

observations and model simulations under combined anthropogenic and natural forcing, and inconsistency 53 

with natural forcing alone.  54 

 55 
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It is likely that anthropogenic influence is the main cause of the observed intensification of heavy 1 

precipitation in global land regions (Chapter 11). 2 

 3 

 4 

[START CROSS-CHAPTER BOX 3.2, FIGURE 1 HERE] 5 

 6 

Cross-Chapter Box 3.2, Figure 1: Time series of global averaged 5-year mean anomalies of TXx (°C) and Rx1day 7 

(standardized probability index, %) during 1953-2017 from the HadEX3 8 

observations and the CMIP5 and CMIP6 multi-models with natural and human 9 

forcing (upper) and natural forcing only (lower). For CMIP5, historical simulations 10 

for 1953-2005 are combined with corresponding RCP4.5 scenario runs for 2006-11 

2017. For CMIP6, historical simulations for 1953-2014 are combined with SSP2-12 

45 scenario runs for 2015-2017. Number in bracket represents the number of models 13 

used. The time-fixed observational mask has been applied to model data throughout 14 

the whole period. For TXx, grids with more than 70% data availability during 1953-15 

2017 plus having data for at least 3 years during 2013-2017 are used. For Rx1day, 16 

grids with more than 70% data availability during 1953-2011 plus having data for 17 

at least 2 years during 2008-2011 are used. Thick coloured lines indicate multi-18 

model means (with equal weighting given for each model). Shading represents the 19 

range of CMIP5 individual model (ensemble means) and thin lines display CMIP6 20 

individual model ensemble means. Anomalies are relative to 1961-1990 means. 21 

 22 

[END CROSS-CHAPTER BOX 3.2, FIGURE 1 HERE] 23 

 24 
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Frequently Asked Questions 1 

 2 

FAQ 3.1: How much of recent Climate Change is Actually Natural Variability? 3 

 4 

Natural variability refers to variations in climate which are caused by processes other than human influence. 5 

It includes variability that is internally generated within the climate system, for example via modes of 6 

variability like the El Niño-Southern Oscillation, as well as externally driven climate variations driven by 7 

changes in solar brightness and by aerosols released from volcanic eruptions. Internally-driven natural 8 

variability corresponds to a redistribution of energy within the climate system that is most clearly observed 9 

as regional-scale fluctuations in climate. Externally driven natural variability is driven by changes to 10 

Earth’s energy balance, and its impacts are most clearly observed in large scale climate indices like global 11 

mean surface temperature. While both forms of natural climate variability can cause large-scale climate 12 

changes, their influence on multidecadal trends is relatively small. This means that natural variability may 13 

play a prominent role in changes observed over one or two decades. However, as the observational period 14 

becomes longer, human-induced forcing changes become the dominant contributor to the observed climate 15 

changes, such that the large scale warming observed since 1900 is almost entirely driven by human 16 

influence. 17 

 18 

Paleoclimatic records (indirect measurements that span back thousands of years) and computer models all 19 

show that global temperatures have, and are always changing – and that these changes can occur for many 20 

reasons. One of these reasons is natural variability, which refers to variations in climate that are either 21 

internally generated within the climate system or externally driven by natural forcing changes. As well as 22 

variations in solar brightness and volcanoes, changes in Earth’s orbital characteristics can also create natural 23 

radiative forcing changes and have been related to large climate changes of the past. However, the orbital 24 

changes operate on very long time scales, meaning that they have had very little influence on the changes 25 

observed over the past century. 26 

 27 

To understand which aspects of observed climate change have been caused by natural variability, scientists 28 

use climate model simulations. When only natural climate drivers are used to force climate models, which 29 

implicitly generate their own natural internal variability, the resulting simulations are generally called 30 

naturally-forced similations. These simulations show small variations in climate in response to volcanic 31 

eruptions, variations in solar brightness, and internal models of climate variability, but they do not show 32 

long-term warming trends comparable to that observed. Only when human influences, particularly 33 

greenhouse gases, are included do the models simulate warming comparable to that observed.  34 

 35 

In reality, what both of these pieces of information combine to mean, is that on short time scales of a decade 36 

or less natural climate variability can dominate the human-induced warming trend, leading to periods with 37 

little warming. However, over periods longer than about twenty years, the impact of natural forcing is 38 

smaller than the human-induced warming-trend. Thus, warming will always be experienced. Another way to 39 

think of this is, although humans are causing recent increases in global temperatures, natural variability plays 40 

a role in how fast or slow temperatures rise. Much like riding a bike over hilly terrain, the bike is always 41 

going forward but the presence of the hills will either reduce or increase the speed. 42 

 43 

 44 

[START FAQ 3.1, FIGURE 1 HERE] 45 

 46 

FAQ 3.1, Figure 1: (Upper left) Climate model estimate of human-induced change in global average temperature. 47 

(Lower left) Representation of natural global average temperature variability from a climate model. (Right) The 48 

combined signal, which is similar to that observed. Overlying blue lines represent temperature changes during a period 49 

with strong naturally driven cooling, while red lines represent temperature changes during a period with strong naturally 50 

driven warming. 51 

 52 

[END FAQ 3.1, FIGURE 1 HERE] 53 
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FAQ 3.2: Are Climate Models Improving? 1 

 2 

Yes, climate models have improved and continue to do so. Models are now more suitable for capturing the 3 

complexities and small-scale processes of the climate system and compare better with observations for key 4 

climate variables. For decades, models have shown that changes to the climate come from man-made 5 

greenhouse gas emissions, but now our understanding of the impacts of these changes, and of the changes 6 

yet to come, are better than ever before.  7 

 8 

Since the 1950s, scientists have used computer models to understand the Earth’s climate. Fundamentally, 9 

models have improved due to advances in technology that allow for greater sophistication and more complex 10 

computer simulations, resulting in models that compare more closely with real-world observations of climate 11 

change. However, even the models used in the First Assessment Report of 1990 had skill at reproducing 12 

many aspects of climate, and their projections have since been generally validated by the actual evolution of 13 

climate. 14 

 15 

Fundamentally, climate models generally solve equations based on the laws of physics (fluid mechanics, 16 

thermodynamics, light and infrared radiation, to name a few), usually by representing atmosphere, ocean, 17 

and land with discrete grid points distributed around the globe. The quantity and spacing of grid points 18 

defines the resolution – more grid points with less space between them result in higher-resolution 19 

simulations of Earth’s climate system. Scientists also use more complex models called Earth System models 20 

that complement climate physics with representations of land and ocean biology (which are important for 21 

simulating carbon dioxide), atmospheric and oceanic chemistry, and sometimes more components, such as 22 

ice sheets.  23 

 24 

The internal make-up of models continues to evolve, making them more suitable for simulating a variety of 25 

climate processes. This evolution is driven by improvements in our understanding of the climate system, our 26 

ability to represent that understanding of processes in terms of computer code, and the availability of 27 

increasingly powerful computers needed to run such code. The most recent generation of models often has 28 

improved resolutions in the atmosphere, ocean, and land domains. Higher resolution means, for example, 29 

that the ocean components of some climate models now explicitly simulate the 100 km-scale eddies that are 30 

responsible for much of oceanic heat transport. Unlike the previous generation of models, many of the latest-31 

generation models now simulate higher levels of the atmosphere (above 50 km in altitude), meaning that 32 

coupling processes between the upper and lower atmosphere are now more realistic.  33 

 34 

Earth system models that simulate changes in greenhouse gas and aerosol concentrations in response to 35 

changes in emissions (rather than having these changes prescribed) are becoming more common. For carbon 36 

dioxide concentrations, this means that these models include interactive representations of the absorption of 37 

carbon dioxide by plants on land and by the ocean and how these systems respond to climate and 38 

environmental change, including for example the impacts of ocean warming and acidification on ocean 39 

biology. 40 

 41 

Progress in climate modelling is gradual, and more remains to be achieved. For example, it is still impossible 42 

to explicitly simulate atmospheric convection globally for multidecadal timescales. However, key aspects of 43 

climate are now better simulated than in previous model evaluations. We know this through comparisons 44 

against observational estimates, often using multiple climate variables. For example, model simulations of 45 

near-surface temperature, precipitation, and sea-level pressure compare better against their observational 46 

references for recent decades (for which these references are most reliable; FAQ 3.1, Figure 1), although in 47 

most cases the improvement is only gradual. A prime example is surface temperature, which was already 48 

well simulated in previous intercomparisons, so simulations of surface temperature only improved 49 

marginally in the current generation of models. Precipitation, a key aspect of climate which was problematic 50 

in previous evaluations, is now better captured than in the previous generation of models (see also FAQ 7.1). 51 

However, climate models still do not operate at the resolution of about 1 km needed to realistically represent 52 

clouds. An evaluation of the simulations informing the last three Assessment Reports of IPCC shows that for 53 

most atmospheric metrics (three of which are shown in Figure 1), the models of each generation as a group 54 

outperform those of the previous generation regarding the simulation of mean climate. Such improvements 55 
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in comparison with observations illustrate the increasing skill of models at simulating current climate. 1 

 2 

 3 

[START FAQ 3.2, FIGURE 1 HERE] 4 

 5 

FAQ 3.2, Figure 1: Centred pattern correlations between models and observations for the annual mean climatology 6 

over the period 1980–1999 for three different variables: surface air temperature, precipitation and sea level pressure. 7 

Results are shown for individual CMIP3 (black), CMIP5 (blue) and CMIP6 (brown) models as short lines, along with 8 

the corresponding ensemble average (long line). The correlations are shown between the models and the reference 9 

observational data set. In addition, the correlation between the reference and alternate observational data sets are shown 10 

(solid grey circles). To ensure a fair comparison across a range of model resolutions, the pattern correlations are 11 

computed at a resolution of 2.5º in longitude and 2.5º in latitude. Only one realization is used from each model from the 12 

CMIP3, CMIP5 and CMIP6 historical simulations. (Figure produced with ESMValTool v2.0.0b2.) 13 

 14 

[END FAQ 3.2, FIGURE 1 HERE] 15 
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FAQ 3.3: How do we Know Humans are Responsible for Climate Change? 1 

 2 

Synthesizing information from observations of climate change, from paleoclimate records that can show 3 

changes over the past thousands of years, and from computer models that can simulate past climate change 4 

based on physical principles, allows us to clearly identify the dominant role of humans in driving recent 5 

climate change.  6 

 7 

Climate is influenced by a range of factors. The main natural drivers of climate change on timescales of 8 

decades to centuries are variations in the sun’s brightness, and large volcanic eruptions which cause an 9 

increase in the number of small particles (aerosols) in the upper atmosphere for several years, which reflect 10 

sunlight and cool the surface. The main human drivers of climate change are increases in the concentration 11 

of greenhouse gases, which trap infrared radiation near the surface and warm the climate, and of aerosols 12 

from burning fossil fuels and other sources, which, like those produced naturally by volcanoes, on average 13 

have a cooling influence by increasing the reflection of sunlight. Multiple lines of evidence demonstrate that 14 

human drivers are the main cause of recent climate change.  15 

 16 

Firstly, the current rates of increase of the concentration of the major greenhouse gases (carbon dioxide, 17 

methane and nitrous oxide) are unprecedented over at least the last 22,000 years. Multiple lines of evidence 18 

show that these increases are the results of human activities. The basic physics underlying the warming 19 

effect of greenhouse gases on the climate has been understood for more than a century, and our latest 20 

understanding is encapsulated in the latest generation climate models. Like weather forecasting models, 21 

climate models represent the state of the atmosphere on a grid, and simulate its evolution over time based on 22 

physical principles. They include a representation of the ocean, sea ice and the main processes important in 23 

driving climate and climate change. Results consistently show that such climate models can only reproduce 24 

the observed warming (black line in FAQ 3.3, Figure 1) when including the effects of human activities 25 

(orange band in FAQ 3.3, Figure 1), in particular the increasing concentrations of greenhouse gases. These 26 

climate models show a dominant warming effect of greenhouse gas increases (grey band, which shows the 27 

warming effects of greenhouse gases by themselves), which has been partly offset by the cooling effect of 28 

increases in atmospheric aerosols (blue band). By contrast, simulations that include only natural processes, 29 

including internal climate variability related to El Niño and other similar variations, as well as variations in 30 

solar brightness and emissions from large volcanoes (green band in FAQ 3.3, Figure 1), are not able to 31 

reproduce the observed warming – they simulate much smaller temperature trends, indicating that these 32 

natural factors cannot explain the strong warming rate observed.  33 

 34 

An additional line of evidence for the role of humans in driving climate change comes from comparing the 35 

rate of warming observed over recent decades with that which occurred prior to human influence on climate. 36 

Evidence from tree rings and other paleoclimate records shows that the rate of increase of global mean 37 

surface temperature observed over the past fifty years far exceeded that which occurred in any previous 50-38 

year period over the past 2000 years. Taken together this evidence shows that humans are the dominant 39 

cause of observed global warming over recent decades. 40 

 41 

 42 

[START FAQ 3.3, FIGURE 1 HERE] 43 

 44 

FAQ 3.3, Figure 1: Global average changes in surface air temperature in observations (HadCRUT4), compared to 45 

climate model simulations of the response to all human and natural forcings (grey band), greenhouse gases only (red 46 

band), aerosols only (blue band) and natural forcings only (green band). Solid coloured lines show the multi-model 47 

mean, and coloured bands show the 5–95% range of individual simulations. 48 

 49 

[END FAQ 3.3, FIGURE 1 HERE] 50 
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Figures 1 

 2 

 3 

 4 

 5 

 Last Glacial Maximum (LGM, 21 ka) anomalies in mean annual temperature over land and sea surface 6 

temperature in the Tropics (30S-30N) for paleoclimate reconstructions featured in AR5 (upper panel) and 7 

for updated estimates (lower panel). The coloured crosses show long-term modelled mean differences 8 

(experiment minus pre-industrial control) in the relative warming/cooling over tropical land and ocean 9 

where the model output has been sampled only at the locations for which there are temperature 10 

reconstructions. The black crosses show the paleo proxy reconstructions.  11 
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 3 

 Annual-mean surface (2 m) air temperature (°C) for the period 1995–2014. (a) Multi-model (ensemble) 4 

mean constructed with one realization of CMIP6 historical experiments. (b) Multi-model-mean bias as 5 

the difference between the CMIP6 multi-model mean and the climatology from the Fifth generation of 6 

ECMWF atmospheric reanalyses of the global climate (ERA5). (c) Multi-model-mean of the root mean 7 

square error of the seasonal cycle with respect to the climatology from ERA5. Also shown is the multi-8 

model-mean bias as the difference between the multi-model mean of (d) low resolution and (e) high 9 

resolution simulations of the HighResMIP and the climatology from ERA5. (Figure from Bock et al. 10 

(submitted), their Figure 2, produced with ESMValTool v2.0.0b3.) 11 

 12 
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 1 

 2 

 Observed and simulated time series of the anomalies in annual and global mean surface temperature. All 3 

anomalies are differences from the 1850–1900 time-mean of each individual time series. The reference 4 

period 1850–1900 is indicated by grey shading. Single simulations for CMIP6 models (thin lines); multi-5 

model mean (thick red line). Observational data (thick black lines) are Hadley Centre/Climatic Research 6 

Unit gridded surface temperature data set 4 (HadCRUT4; Morice et al., 2012), and are merged surface 7 

temperature (2 m height over land and surface temperature over the ocean). (a) All models have been 8 

subsampled using the HadCRUT4 observational data mask (see Jones et al., 2013). (b) All models have 9 

been blended to GMST and subsampled using the HadCRUT4 observational data mask (Cowtan et al., 10 

2015). (c) HighResMIP models are displayed with the reference period 1950-1979. Masking was done 11 

like in (a). Inset: the global mean surface temperature for the reference period of the subsampled fields. 12 

(Figure from Bock et al. (submitted), their Figure 1, produced with ESMValTool v2.0.0b3.) 13 
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 1 

 2 

 Global climate variability as represented by standard deviation of zonal-mean surface temperature of 3 

observed temperature datasets (in black: GISTEMP (dashed), Cowtan and Way (dot-dashed), HadCRUT4 4 

(solid), and Berkeley Earth (long dashed)) and in CMIP6 pre-industrial control simulations (after Jones et 5 

al., 2013). Figure produced with ESMValTool v2.0.0b3. 6 

 7 
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 1 

 2 

 Global mean surface air temperature (GSAT) anomalies in 29 CMIP6 control simulations, compared with 3 

GISTEMP GMST observations. Blue lines show annual means, and red lines show 25-year low-pass 4 

filtered means. Red numbers show standard deviations of interdecadal GSAT/GMST variations. (From 5 

Parsons et al. (submitted), their Figure 1, updated to correct a latitude weighting error.) 6 

  7 



Second Order Draft Chapter 3 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 3-138 Total pages: 180 

 1 

 2 

 Upper panels show regression coefficients based a two-way regression (left) and three-way regression 3 

(right), of observed 5-yr mean global mean masked and blended surface temperature onto individual 4 

model response patterns, and a multi-model mean, labelled ‘Multi’. Combined anthropogenic (ANT), 5 

natural (NAT), well-mixed greenhouse gases (GHG), and other anthropogenic (aerosols, ozone, land-use 6 

change, OTH) regression coefficients are shown. Regression coefficients are the scaling factors by which 7 

the model responses must be multiplied to best match observations. Regression coefficients consistent 8 

with one indicate a consistent magnitude response in observations and models, and regression coefficients 9 

inconsistent with zero indicate a detectable response to the forcing concerned. Note that three-way 10 

regression coefficients for MIROC6 are unconstrained. Lower panels show corresponding 11 

observationally-constrained estimates of attributable warming in globally-complete GSAT for the period 12 

2010-2019, relative to 1850-1900, and the horizontal black line shows an estimate of observed warming 13 

in GSAT for this period. (Figure from Gillett et al. (submitted), their Figure S3.) 14 
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 Coloured bands show assessed likely ranges of temperature change in GSAT, 2010-2019 relative to 1850-2 

1900, attributable to anthropogenic forcings (ANT), well-mixed greenhouse gases (GHG), other 3 

anthropogenic forcings (aerosols, ozone, land-use change, OTH), and natural forcings (NAT), and in 4 

observations (Obs). The observed warming shown currently is for 2009-2018 but will be updated to 5 

2010-2019 in the final draft. Bars show 5-95% ranges based on the individual studies indicated (Gillett et 6 

al., submitted; Haustein et al., 2017; Jenkins et al., 2019; Ribes et al., submitted), with the results from 7 

Gillett et al. (submitted) corresponding to the multi-model attributable warming estimates shown in 8 

Figure 3.6:. The Jenkins et al. (submitted) range shown was calculated by subtracting 0.35 times an 9 

estimated anthropogenic warming rate of 0.17°C/decade (Haustein et al., 2017) from the Jenkins et al. 10 

(submitted) reported anthropogenic attributable warming in GSAT in 2018 of 1.04-1.37°C, to account for 11 

the difference in averaging period. The Chapter 7 best estimates and ranges are derived using assessed 12 

forcing timeseries and a two-layer energy balance model as described in Section 7.3.5.4. Chapter 7 13 

uncertainty ranges account for uncertainties in climate properties and radiative forcings, without 14 

constraints based on observed climate change, but are approximate and will be updated in the final draft. 15 

Coloured circles show the raw simulated responses to the forcings concerned in each of the models 16 

indicated. 17 
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 1 

 2 

 Global, land, ocean and continental annual mean temperatures anomalies for CMIP6 historical (brown) 3 

hist-nat (green), hist-GHG (grey) and hist-aer (blue) simulations (multi-model means shown as thick 4 

lines, and minimum and maximum ranges shown as shaded area) and for Hadley Centre/Climatic 5 

Research Unit gridded surface temperature data set 4 (HadCRUT4, black). All models have been 6 

subsampled using the HadCRUT4 observational data mask (see Jones et al., 2013). Temperatures are 7 

shown with respect to 1850–1900, for Antarctica with respect to 1900–2010. (Figure produced with 8 

ESMValTool v2.0.0b3). 9 
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 1 

 Vertical profiles of temperature trends in the tropics (20°S-20°N) for three periods between 1979 and 2 

2014. The black lines show trends in the RICH1.5 and RAOBCORE1.5 radiosonde datasets, and 3 

ERA5/5.1 reanalysis. Red lines show trends in 18 CMIP6 models’ historical simulations, and blue lines 4 

show trends in 18 CMIP6 models’ simulations with prescribed sea surface temperatures. Panel a), b) and 5 

c) show trends over the periods 1979-2014, 1979-1997 (ozone depletion era), and 1998-2014 (ozone 6 

recovery era) respectively. (Figure from Mitchell et al. (submitted), their Figure 1.) 7 
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 4 

 Annual-mean precipitation rate (mm day–1) for the period 1995–2014. (a) Multi-model-mean constructed 5 

with one realization of CMIP6 (included models: see Fig.3.3) historical experiments (b) Difference 6 

between multi-model mean and precipitation analyses from the Global Precipitation Climatology Project 7 

(GPCP) version 2.3 (Adler et al., 2003). (c) Multi-model-mean of the root mean square error of the 8 

seasonal cycle with respect to precipitation analyses from GPCP v2.3. Also shown is the Multi-model-9 

mean bias as the difference between the multi-model mean of (d) low resolution and (e) high resolution 10 

simulations of the HighResMIP and precipitation analyses from GPCP v2.3. (Figure from Bock et al. 11 

(submitted), their Figure 3, produced with ESMValTool v2.0.0b3). 12 
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 1 

 Comparison between simulated annual precipitation changes and pollen-based reconstructions. Six 2 

regions where multiple quantitative reconstructions exist are chosen. These are Northern Europe (NEU), 3 

Central Europe (CEU), the Mediterranean (MED), the Sahara/Sahel (SAH), East Asia (EAS) and Eastern 4 

North America (ENA). The distribution of reconstructions within the region are shown by boxes and 5 

whiskers. The area-averaged change in mean annual precipitation simulated by CMIP6 (individually 6 

identifiable) and CMIP5 (blue) within each region is shown for comparison. (Figure from Brierley and 7 

PMIP4 (submitted), their Figure 11). 8 

 9 
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 3 

 4 

 Global and zonal average changes in annual mean precipitation (mm day-1) over areas of land where 5 

there are observations, expressed relative to the base-line period of 1961–1990, simulated by CMIP6 6 

models forced with both anthropogenic and natural forcings (brown) and natural forcings only (blue). 7 

Multi-model means are shown in thick solid lines and shading shows minimum and maximum ranges of 8 

the individual model simulations. Observations (gridded values derived from Global Historical 9 

Climatology Network station data, updated from Zhang et al. (2007) are shown as a black solid line. 10 

(Figure produced with ESMValTool v2.0.0b2.) 11 
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 1 

 Wet (top) and dry (bottom) region tropical mean (30S-30N) annual precipitation anomalies with respect 2 

to 1988-2018 (mm) for observations (GPCP - in black) and CMIP6 model simulations (single simulations 3 

light blue/red with multi-model-mean in dark blue/red). Wet and dry region annual values are calculated 4 

as the mean over 4 seasons (OND, JFM, AMJ, JAS). The regions are defined by the wettest third and 5 

driest third by surface area, calculated for the observations and for each model separately for each season 6 

(following Polson and Hegerl 2017). Scaling factors (right) are calculated for the combination of the wet 7 

and dry region mean, where the observations and all the model simulations are first standardised using the 8 

mean standard deviation of  piControl simulations.  Two total least squares regression methods are used: 9 

noise in variables (following Polson and Hegerl 2017) which estimates a best estimate and a 5-95% 10 

confidence interval using the piControls (circle and thick green line) and the piControls with double the 11 

variance (thin green line); and the bootstrap method (DelSole et al., 2019a) 5-95% confidence interval 12 

purple line, best estimate purple circle. 13 

 14 
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 2 

 1980-2013 trend of subtropical edge latitude of the Hadley cells in (a) the Northern Hemisphere for 3 

annual mean and (b-c) Southern Hemisphere for (b) annual mean and (c) DJF. Positive values indicate 4 

northward shifts. Histograms are based on historical (red) and 34-year segments of piControl (grey) 5 

simulations of CMIP6. Horizontal lines indicate MME means of historical simulations of CMIP6 (red) 6 

and CMIP5 (blue; extended with RCP4.5) along with reanalyses. The edge latitude is defined where the 7 

surface zonal wind velocity changes sign from negative to positive, as described in the Appendix of Grise 8 

et al., (2018). Produced with 22 CMIP6 models (192 members of historical and 338 segments of 9 

piControl simulations) and 20 CMIP5 models (99 members). 10 
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 2 

 (a-b) Climatological summer-winter range of precipitation rate (scaled by annual mean precipitation rate; 3 

shading) and 850 hPa wind velocity (arrows) based on (a) GPCP and ERA5 and (b) MME mean of 4 

CMIP6 historical simulations for 1979-2014 (1 member each). Hatched regions are the monsoon domain 5 

based on the definition by (Wang and Ding, 2008) (c-d) 20-year running means of (c) summertime 6 

precipitation rate averaged over the monsoon regions over land (mm day–1) and (d) the NH summer 7 

monsoon circulation index defined as the vertical shear of zonal winds between 850 and 200 hPa levels 8 

averaged over 0º-20ºN, 120ºW-120ºE (Wang et al., 2013; m s–1). Summer and winter are defined for 9 

individual hemispheres: May through September for NH summer and SH winter, and November through 10 

March for NH winter and SH summer. Produced with 40 CMIP6 models (each 1 member). 11 
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HighResMIP: 2 

 3 

 4 

 Instantaneous Northern-Hemisphere blocking frequency (% of days) in the extended northern winter 5 

season (DJFM) following the (D’Andrea et al., 1998) definition of blocking, for the years 1961-2000. 6 

Reproduced from (Davini and D’Andrea, submitted), their figure 11.  Note the good simulation of Pacific 7 

blocking but a persistent remaining underestimation of the blocking frequency in the Euro-Atlantic 8 

sector. The lower two panels show the results from two HighResMIP models. (Figure produced with 9 

ESMValTool v2.0a1.) 10 

 11 
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 1 

 2 

 Long-term mean (thin black contour) and linear trend (colour) of zonal mean DJF zonal winds for (a) 3 

ERA-Interim and (b) CMIP6 over 1979-2014. Only one ensemble member per model is included. (Figure 4 

produced with ESMValTool v1.0.) 5 

 6 
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 1 

 Climatology (x-axis) and trend (y-axis) in Arctic sea ice extent in September (left) and Antarctic sea ice 2 

extent in February (right) for 1979-2014 from CMIP5 (upper) and CMIP6 (lower) models. All individual 3 

models (ensemble means) and the multi-model mean values are compared with the observations 4 

(HadISST, NSIDC NASA Team, and NSIDC Bootstrap). Solid line indicates a linear regression slope 5 

which is statistically significant at 5% level. 6 
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 1 

 Seasonal evolution of observed and simulated Arctic (left) and Antarctic (right) sea ice extent (SIE) over 2 

1979–2017. SIE anomalies relative to the 1979–2000 means from observations (OBS from HadISST, 3 

NASA Team, and Bootstrap, top) and historical (ALL, middle) and hist-nat (NAT, bottom) simulations 4 

from CMIP5 and CMIP6 multi-models. These anomalies were obtained by computing non-overlapping 3-5 

year mean sea ice anomalies for March (February for Antarctic SIE), June, September, and December 6 

separately. CMIP5 ALL runs are extended by using RCP4.5 scenario runs after 2005 while CMIP6 ALL 7 

runs are extended by using SSP2-4.5 scenario runs after 2014. CMIP5 NAT runs ends in 2012. Number 8 

in bracket represents the number of models used. The multi-model mean is obtained by taking the 9 

ensemble mean for each model first and then averaging over models. Grey dots indicate multi-model 10 

mean anomalies stronger than inter-model spread (beyond ± 1 standard deviation). Units: 106 km2.  11 
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 2 

 Time series of Northern Hemisphere March-April mean snow cover extent (SCE) from observations 3 

[OBS: Brown and Robinson (2011), 20CR2, and GLDAS2 data], CMIP5 (upper) and CMIP6 (lower) 4 

models’ simulations of the response to natural plus anthropogenic forcing (ALL), natural forcing only 5 

(NAT), and pre-industrial control simulations (CTL). 5-year mean anomalies are shown for the 1923-6 

2017 period (left) and 1951-2015 period (right) with the x-axis representing the centre years of each 5-7 

year mean. CMIP5 ALL simulations are extended by using RCP4.5 scenario simulations after 2005 while 8 

CMIP6 ALL simulations are extended by using SSP2-4.5 scenario simulations after 2014. ALL and NAT 9 

results are based on ensemble means for each model while CTL results are based on all available non-10 

overlapping segments. Shading indicates the 5-95% range of CMIP5 ALL simulations and min-max 11 

range of CMIP6 ALL simulations. Blue dotted lines represent min-max ranges of NAT simulations while 12 

green dotted lines indicate 5-95% ranges of CTL simulations. Number in brackets indicate the number of 13 

models used. Anomalies are relative to the average over 1971-2000. For models, SCE is restricted to ice-14 

free land (ice-free fraction ≥ 25%). Greenland is excluded from the spatial averages as it contains 15 

essentially perennial snow cover. (Updated from Najafi et al. (2016), their Figure 3). 16 
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 Multi-model-mean bias of (a) sea surface temperature (°C) and (b) surface salinity as the difference 4 

between the CMIP6 multi-model mean constructed with one realization of CMIP6 historical experiments 5 

and the climatology from the World Ocean Atlas 2013 for the period 1995–2014. (Figure produced with 6 

ESMValTool v2.0.0b3.) 7 
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 (a,c,e,g) Potential temperature (degrees C) and (b,d,f,h) salinity (PSS-78) for each of the ocean basins, 3 

global (GLO; a,b), Atlantic (ATL; c,d), Pacific (PAC; e,f) and Indian (IND; g,h). Shown in colour are the 4 

time-mean differences between the CMIP6 historical ensemble climatological mean and observations, 5 

zonally averaged for each basin (excluding marginal and regional seas). The observed climatological 6 

values are obtained from the World Ocean Atlas 2018 (WOA18; Prepared by the Ocean Climate 7 

Laboratory, National Oceanographic Data Center, Silver Spring, MD, USA), and are shown as labelled 8 

black contours for each of the basins. White contours show regions in potential temperature (left column) 9 

where the differences exceed positive or negative 1, 2, or 3 (degrees C), and regions in salinity (right 10 

column) where the differences exceed positive or negative 0.25, 0.5, 0.75 or 1 (PSS-78). The simulated 11 

annual mean climatologies are obtained for 1984 to 2014 from available CMIP6 historical simulations, 12 

whereas WOA18 synthesizes observed data from 1874 to 2018 in calculations of the decadally averaged 13 

annual mean; however, the median time for gridded observations most closely resembles the more 14 

modern era. Multiple realizations from individual models are first averaged to form a single model 15 

ensemble climatology, before construction of the CMIP6 multi-model mean from these fields. A total of 16 

20 available CMIP6 models have contributed to the temperature panels (left column) and 21 models to 17 

the salinity panels (right column). 18 
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 Time series of simulated and observed global ocean heat content anomalies (with respect to 1971). 3 

CMIP5 historical simulations and observations for both the upper 700 m of the ocean (a) as well as for 4 

the total ocean heat content (b). The 0 to 700 m and total heat content observational estimates (thick lines) 5 

are respectively described in AR5 Figure 3.2 and AR5 Box 3.1, Figure 1. Simulation drift has been 6 

removed from all CMIP5 runs with a contemporaneous portion of the quadratic fit to each corresponding 7 

pre-industrial control run (Gleckler et al., 2012). Units are 1022 Joules. 8 
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 (a) Zonally-averaged sea surface temperature (SST) error in CMIP6 models. (b) Equatorial SST error in 2 

CMIP6 models. (c) Zonally averaged multi-model mean SST error for CMIP6 (green curve), CMIP5 (red 3 

curve) and HighresMIP (purple curve), together with inter-model standard deviation (shading). (d) 4 

Equatorial multi-model mean SST in CMIP6 (green curve), CMIP5 (red curve) and HighresMIP (purple 5 

curve) together with inter-model standard deviation (shading) and observations (black). Model 6 

climatologies are derived from the 1979-1999 mean of the historical simulations. The Hadley Centre Sea 7 

Ice and Sea Surface Temperature (HadISST) (Rayner et al., 2003) observational climatology for 1979-8 

1999 is used as the reference for the error calculation in (a), (b) and (c); and for observations in (d). 9 
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 (a) Ocean heat uptake (percentage of total 1865-2017 change) for the CMIP5 multi-model mean layers. 3 

The three shaded wedges are combined similarly to the AR5 change in global inventory (Rhein et al. 4 

(2013); Box 3.1, Figure 1). The thick vertical grey bar represents a +/- one standard deviation spread from 5 

the CMIP5 simulations about the year (1999) at which the multi-model heat uptake reaches 50% of the 6 

net (1865-2017) industrial-era increase, and the thick horizontal grey bar indicates the CMIP5 +/- one 7 

standard deviation spread om the year at which 50% of the total accumulated heat is reached. Black 8 

(forcing included) and grey (forcing not included) triangles represent major twentieth- and twenty-first-9 

century volcanic eruptions with magnitude (volcanic explosivity index [VEI] represented by symbol size. 10 

(b) The inset box displays the upper and intermediate layer warming for the years 1998 to 2017, with an 11 

adjustment for the 0 to 2000 m total warming by -0.19 W m-2, the estimated discrepancy between CMIP5 12 

modelled and the observed volcanic forcing (Ridley et al., 2014). When observed 0 to 2000 m ocean 13 

warming is compared across five independent available estimates these rates of change are approximately 14 

equal. (Figure from Durack et al., 2018, their Figure 2). 15 

  16 



Second Order Draft Chapter 3 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 3-158 Total pages: 180 

 1 

 2 

 Maps of 50-year salinity trends for the near-surface ocean. (a) the 1950-2000 observational change and 3 

(b) the corresponding 1950-2000 climatological mean (Durack and Wijffels, 2010) (analysis period 1950-4 

2008). (c) Modelled changes for the 1950-2000 period from the CMIP5 historical experiment multi-5 

model mean. Black contours bound the climatological mean salinity associated with each map, and white 6 

contours bound the salinity trend in increments of 0.25 (PSS-78). (Figure from Durack, 2015, their Figure 7 

7). 8 
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 Long-term trends in 0 to 2000 dbar total halosteric (salinity-driven) sea level anomaly, and the contrast of 3 

basin-integrated results for the Pacific and Atlantic Oceans compared to CMIP5 models. Units are mm 4 

year-1. Maps of 0 to 2000 dbar halosteric anomalies (left column, a3, b3 and c3) from (Ishii and Kimoto, 5 

2009, a3), (Durack and Wijffels, 2010, b3) and the CMIP5 historical multi-model mean (c3). Blue 6 

colours show a halosteric contraction (enhanced salinity) and orange a halosteric expansion (reduced 7 

salinity). Stippling is used to mark regions where the two observational estimates do not agree in their 8 

sign (a3, b3) and where less than 50% of the contributing models do not agree in sign with the multi-9 

model mean map from the ensemble. Basin-integrated halosteric (right column, top panel A) and 10 

thermosteric (right column, panel B) anomalies for the Pacific, where Pacific anomalies are presented on 11 

the x-axis and Atlantic on the y-axis. Observational estimates are presented in the red (Ishii and Kimoto, 12 

2009) and black (Durack and Wijffels, 2010) diamonds, CMIP5 historical models are shown in grey 13 

diamonds, with the multi-model mean in dark grey, and CMIP5 historicalNat models are shown in green 14 

diamonds with the multi-model mean in dark green. (Figure from Durack et al. (2014b), their Figures 1 15 

and 4). 16 
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 Comparison of global annual mean thermosteric sea level anomalies for CMIP6 historical (purple), 3 

natural-forcing only (green), well-mixed GHG only (red) and aerosol only (blue) simulations (multi-4 

model means shown as thick lines, and individual model simulations as thin lines) and for observed 5 

thermosteric sea level anomalies (Zanna et al. (2019), black). Anomalies are shown with respect to1985–6 

2004. Numbers within brackets denote number of models used in producing the multi-model mean. 7 
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 (a) AMOC streamfunction profiles at 26.5°N from the historical CMIP5 (1860-2004) and CMIP6 (1860-3 

2014) simulations compared with the mean overturning observed with the RAPID data (2004-2018, black 4 

line). Overturning maxima are indicated by diamonds and the RAPID, CMIP5 MMM and CMIP6 MMM 5 

values are given in the legend. (b) distribution of 8-year AMOC trends from individual CMIP6 historical 6 

simulations and the observed 2004-2012 trend (grey line) (following Roberts et al., 2014). (c) 7 

Distribution of interannual AMOC variability from individual CMIP6 model historical simulations, along 8 

with the combined distributions of all available CMIP5 and CMIP6 models. The grey line is the observed 9 

value for 2009/2010 minus 2008/2009 (following Roberts et al., 2014). All annual means are for April-10 

March. (d-f) distribution of linear AMOC trends calculated over various time periods (see panel titles) 11 

over the historical period in CMIP6 simulations forced with: Anthropogenic greenhouse gas forcing only 12 

(GHG), Natural forcing only (NAT), Anthropogenic Aerosol forcing only (AER) and all forcing 13 

combined (Historical; HIST). (b-d) Boxes indicate 25th to 75th percentile, whiskers indicate 1st and 99th 14 

percentiles, and dots indicate outliers, while the horizontal black line and text value are the multi-model 15 

mean trends. (a-c) were produced with one historical ensemble member per model where the AMOC 16 

variable was available (listed), while (d-f) were produced with the AMOC detection and attribution 17 

simulation data sets utilised by Menary et al. (submitted). (Figure produced with ESMValTool v2.0a1.) 18 
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 Evaluation of historical emissions-driven CMIP6 simulations for 1860-2014, against observational 2 

estimates of global mean (a) atmospheric CO2 concentration (ppmv) (observational constraints are not yet 3 

included; red dot: 2005 Global CO2 value) Models: BCC-CSM2-MR, CNRM-ESM2-1, (b) ocean carbon 4 

uptake (PgC yr-1) Models: CanESM5, CNRM-ESM2-1, NorESM2-LM, GFDL-ESM4, (c) land carbon 5 

uptake (PgC yr-1). Models: CanESM5, CNRM-ESM2-1, UKESM1-0-LL, NorESM2-LM. FL represents 6 

the atmosphere-land CO2 flux and can be compared with the models. FLN is the residual land sink, 7 

excluding the effects of land-use change. (Figure produced with ESMValTool v2.0.0b3.) 8 
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 Changes of the amplitude of the seasonal cycle of global land-carbon uptake in the historical simulations 2 

from 1961-2014. (a) Net biosphere production (nbp) estimates from CMIP6 models (CanESM5, MIROC-3 

ES2L, UKESM1-0-LL, CNRM-ESM2-1, IPSL-CM6A-LR, GISS-E2-1-G, GISS-E2-1-G-CC, GISS-E2-4 

1-H, CESM2, CESM2-WACCM, SAM0-UNICON, in black) and atmospheric CO2 seasonal cycle 5 

amplitude changes from observations (global in blue, Mauna Loa Observatory (MLO) in grey). Seasonal 6 

Cycle Amplitude calculated using the curve fit algorithm package 7 

(https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html) from the National Oceanic and Atmospheric 8 

Administration Earth System Research Laboratory (NOAA ESRL). Trends are relative to the 1961-1970 9 

mean and for short time series adjusted to have the same mean as the model ensemble in the last 10 years. 10 

Interannual variation was removed with a 9-year Gaussian smoothing. Shaded areas show the 1 sigma 11 

model spread (grey) and the 1 sigma standard deviation (light-grey) for the CMIP6 ensemble and the CO2 12 

MLO observations respectively. Inset: average seasonal cycle of ensemble mean for 1961-1970 and its 1 13 

sigma model spread (dashed line, light grey shading) and 2005-2014 (solid line, darker grey shading). (b) 14 

Attribution of causes of increasing amplitude from CMIP6 models using historical, hist-bgc (fixed 15 

climate in biogeochemistry) and hist-noLu (no land-use change) simulations and calculated from the 16 

amplitude trend following panel a (similar to Zhao et al., 2016, their Figures 4 and 5), Models: CNRM-17 

ESM2-1, UKESM1-0-LL. (Figure produced with ESMValTool v2.0.0b3.) 18 
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 Regression of Mean Sea Level Pressure (MSLP) anomalies (in hPa) onto the normalized principal 3 

component (PC) of the leading mode of variability obtained from empirical orthogonal decomposition 4 

(EOF) of the boreal winter (Dec.-Feb) MSLP poleward of 20ºN for the Northern Annular Mode (NAM, 5 

a) over 20-80°N, 90°W-40°E for the North Atlantic Oscillation (NAO, b), and poleward of 20ºS for the 6 

Southern Annular Mode (SAM, c) for the JRA-55 reanalysis. The selected period for NAO/NAM is 7 

1958-2014 but 1979-2014 for SAM. (d-f) Same but for multi-model multi-member ensemble mean from 8 

CMIP6 historical simulations. Models are weighted in compositing to account for differences in their 9 

respective ensemble size. (g-i) Taylor diagram summarizing the representation of the modes in models 10 

and observations following Lee et al. (2019) for CMIP5 (light blue) and CMIP6 (red). The reference 11 

pattern is taken from JRA-55 (a-c). Ratio of standard deviation (radial distance), spatial correlation (radial 12 

angle) and resulting root-mean-squared-errors (solid isolines) are given from individual members and 13 

models and for other observational products (ERA-20C combined with ERA-Interim, NOAA-20CR 14 

atmospheric reanalyses, black dots). (j-l) Histogram of the trends built from all members and all the 15 

models PCs (light pink bars). Vertical lines in black stand for all the observational estimates. The red and 16 

light blue lines indicate the multi-model multi-member ensemble mean of CMIP6 and CMIP5, 17 

respectively. A total of 293 CMIP6 historical simulations from 35 models and 152 CMIP5 historical 18 

simulation from 39 models have been used for the computation. 19 
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 Simulated and observed trends (hPa decade–1) in NAM indices over 1958-2014 (a) and in SAM indices 4 

over 1979-2014 (b) for boreal winter (December-February average; DJF) and summer (June-August 5 

average; JJA). Ensemble mean, interquartile ranges and 5th and 95th percentiles are shown by boxes and 6 

whiskers based on CMIP6 DAMIP ensembles forced by individual forcings. The number of simulations 7 

used for computing the distribution is given in brackets with the colour code of the DAMIP ensemble. 8 

For grey shading (observations) and filled boxes, the indices are based on latitudinal difference of the 9 

zonally averaged mean sea level pressure (between 35ºN and 65ºN for the NAM and between 40ºS and 10 

65ºS for the SAM as defined in Jianping and Wang (2003) and Gong and Wang (1999), respectively). For 11 

open boxes, the indices are defined as projection coefficients onto the EOF pattern as in Figure 3.32: but 12 

defined based on the corresponding piControl simulations following Lee et al. (2019). Grey shading 13 

shows the range of observed trend among JRA-55, ERA-20C combined with ERA-Interim and NOAA-14 

20CR. 15 
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 SAM indices in the last millennium. SAM reconstructions (top: annual mean, middle: December-January-3 

February) by Abram et al. (2014), Villalba et al. (2012) and Dätwyler et al. (2018). 7-year (thin lines) and 4 

70-year (thick lines) moving averages. (bottom) CMIP5 Last Millennium simulations extended by 5 

historical simulations. 7-year (grey lines) and 70-year (thin black lines) moving averages for individual 6 

simulations and the MME mean of the 70-year running means (thick black line). Normalized with AD 7 

1961-1990 means and standard deviations.  8 
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 Life cycle of (left) El Niño and (right) La Niña events in observations (black) and historical simulations 3 

in CMIP5 (blue; extended with RCP4.5) and CMIP6 (red). An event is detected when December Niño 3.4 4 

SST anomaly in year zero exceeds 0.5 times its standard deviation for 1950-2010. The horizontal axis 5 

represents month relative to the reference December, with numbers in parentheses indicating relative 6 

years. (a, b) Composites of Niño 3.4 SST anomalies (ºC). Shading and lines represent 5th-95th percentiles 7 

and ensemble means, respectively. (c, d) Mean durations (months) of El Niño and La Niña events defined 8 

as number of months in individual events for which Niño 3.4 SST anomaly exceeds 0.25 times its 9 

December standard deviation. The horizontal axis indicates modelling centres. The boxes and whiskers 10 

represent multi-model ensemble median, interquartile ranges and 5th and 95th percentiles of CMIP5 and 11 

CMIP6. All based on 5-month running mean SST anomalies with triangular-weights after linear 12 

detrending. Produced with 257 members from 38 CMIP6 models and 115 members from 35 CMIP5 13 

models. 14 
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 ENSO seasonality diagnosed from Niño 3.4 SST anomalies in observations (black) and historical 2 

simulations in CMIP5 (blue; extended with RCP4.5) and CMIP6 (red). (a) Climatological standard 3 

deviation of monthly Niño 3.4 SST (°C). Shading and lines represent 5th-95th percentiles and ensemble 4 

means, respectively. (b) Seasonality metric defined as the ratio of climatological standard deviation of 5 

Niño 3.4 SST between November-January (NDJ) and March-May (MAM). The boxes and whiskers 6 

represent multi-model ensemble median, interquartile ranges and 5th and 95th percentiles of CMIP5 and 7 

CMIP6 individually. Produced with 257 members from 38 CMIP6 models and 115 members from 35 8 

CMIP5 models. 9 
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 Observed and simulated ENSO teleconnections for 2m-temperature and precipitation during December-2 

January-February. Teleconnections are identified by linear regression with the Niño 3.4 SST index based 3 

on ERSSTv5 during the period 1958-2014. Maps show observed patterns for temperature from the 4 

Berkeley Earth dataset over land and from ERSSTv5 over ocean (top) and for precipitation from GPCC 5 

over land and GPCP over ocean (contour, period: 1979-2014). Distributions of regression coefficients for 6 

regional means drawn from 261 historical simulations from 30 CMIP6 models are provided for a subset 7 

of pre-defined AR6 regions in the Atlas for temperature (light pink, top) and precipitation (green, 8 

bottom). Multi-model multi-member ensemble means are indicated by thick vertical coloured lines (red 9 

for temperature, blue for precipitation). Black vertical lines stand for observational estimates based on 10 

Berkeley Earth and GISTEMP datasets for temperature and from GPCC and GPCP datasets for 11 

precipitation. 12 
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 PDV spatio-temporal properties in observations and models. (a, b) SST anomalies (ºC) regressed onto the 3 

Tripole Index (TPI; Henley et al., 2015) for 1900-2014 in (a) ERSSTv5 and (b) CMIP6 historical 4 

simulations (MME composite). A 10-year low-pass filter has been applied beforehand. (c) A Taylor 5 

diagram summarizing the representation of the PDV pattern in models and observations over [40ºS-60ºN, 6 

110ºE-70ºW] for CMIP5 (light blue) and CMIP6 (red). The reference pattern is taken from ERSSTv5. 7 

Black dots indicate other observational products (ERSSTv3b and HadISSTv1). (d) Autocorrelation of 8 

unfiltered monthly TPI at lag 1 year (“unsmoothed”) and 10-year low-pass filtered TPI at lag 10 years 9 

(“Low-Pass”) for observations (grey shading) and 115-year chunks of piControl simulations (open boxes) 10 

and historical ensemble simulations (filled boxes) over 1900-2014 from CMIP5 and CMIP6. (e) As in (d), 11 

but standard deviation of unfiltered and filtered TPI (ºC). Boxes and whiskers show mean, interquartile 12 

ranges and 5th and 95th percentiles. (f) Time series of 10-year low-pass filtered TPI (ºC) in ERSSTv5 13 

(black) and CMIP5 and CMIP6 historical simulations. The thick red and light blue lines are the MME 14 

mean for the historical simulations in CMIP5 and CMIP6, respectively, and the envelopes represent the 15 

±2 standard deviation range across ensemble members. 39 models and 149 historical members have been 16 

used for evaluation in CMIP5; 29 models and 250 historical members for CMIP6. 17 
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 AMV spatio-temporal properties in observations and models. (a, b) SST anomalies (ºC) regressed onto 3 

the AMV index defined as the 10-year low-pass filtered North Atlantic (0º-60°N, 80°W-0°E) area-4 

weighted SST* anomalies over 1900-2014 in (a) ERSSTv5 and (b) CMIP6 historical simulations (MME 5 

composite). Asterisk denotes that the global mean SST anomaly has been removed at each time step of 6 

the computation. (c) A Taylor diagram summarizing the representation of the AMV pattern in models and 7 

observations over [0º-60°N, 80°W-0°E] for CMIP5 (light blue) and CMIP6 (red). The reference pattern is 8 

taken from ERSSTv5. Black dots indicate other observational products (ERSSTv3b and HadISSTv1). (d) 9 

Autocorrelation of unfiltered AMV index at lag 1 year (“Unsmoothed”) and 10-year low-pass filtered 10 

AMV at lag 10 years (“Low-Pass”) for observations (grey shading) and 115-year chunks of piControl 11 

simulations (open boxes) and historical ensemble simulations (filled boxes) over 1900-2014 from CMIP5 12 

and CMIP6. (e) As in (d), but standard deviation of unfiltered and filtered AMV (ºC). Boxes and whiskers 13 

show mean, interquartile ranges and 5th and 95th percentiles. (f) Time series of the AMV index (ºC) in 14 

ERSSTv5 (black) and CMIP5 and CMIP6 historical simulations. The thick red and light blue line are the 15 

MME mean for the historical simulations in CMIP5 and CMIP6, respectively, and the envelopes 16 

represent the ±2 standard deviation range across ensemble members. 39 models and 149 historical 17 

members have been used for evaluation in CMIP5; 29 models and 262 historical members for CMIP6. 18 
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 Summary figure showing simulated and observed changes in key large-scale indicators of climate change 2 

across the climate system, for continental, ocean basin and larger scales. Black lines show observations, 3 

red lines and shading show the multi-model mean and 5-95th percentile ranges for CMIP6 historical 4 

simulations including anthropogenic and natural forcing, and blue lines and shading show corresponding 5 

ensemble means and 5-95th percentile ranges for CMIP6 natural-only simulations. Temperature timeseries 6 

are as in Figure 3.8, but with smoothing by a 2-years running mean. Precipitation timeseries are as in 7 

Figure 3.12. Additional variables shown will be added in the final draft. (Figure produced with 8 

ESMValTool v2.0.0b2.) 9 
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 Relative space-time root-mean-square deviation (RMSD) calculated from the climatological seasonal 3 

cycle of the CMIP simulations (1980-1999) compared to observational datasets (Table 1 of the Technical 4 

Annex on Observations): (a) CMIP3, CMIP5, and CMIP6 for 17 atmospheric variables (SWCRE, 5 

LWCRE, RSUT, RLUT, CLT, PR, TS, TAS, HUS400, PSL ZG500, VA200, VA850, UA200, UA850, 6 

TA200, TA850), (b) CMIP5 and CMIP6 for 10 land variables (RLUS, RSDS, RSUS, RSDS, ET, 7 

FGCO2, GPP, LAI, NBP, SM) and four ocean/sea-ice variables (TOS, SICONC Antarctic, SICONC 8 

Arctic, HFDS). A relative performance is displayed, with blue shading indicating better and red shading 9 

indicating worse performance than the median of all model results. A diagonal split of a grid square 10 

shows the relative error with respect to the reference data set (lower right triangle) and the alternative data 11 

set (upper left triangle). White boxes are used when data are not available for a given model and variable. 12 

Updated and expanded from Figure 9.7 of Flato et al. (2013). (Figure from Bock et al. (submitted), their 13 

Figure 5, produced with ESMValTool v2.0.0b3.) 14 
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 Centred pattern correlations between models and observations for the annual mean climatology over the 3 

period 1980–1999. Results are shown for individual CMIP3 (black), CMIP5 (blue) and CMIP6 (brown) 4 

models as short lines, along with the corresponding ensemble averages (long lines). The correlations are 5 

shown between the models and the reference observational data set listed in Table 5. In addition, the 6 

correlation between the reference and alternate observational data sets are shown (solid grey circles). To 7 

ensure a fair comparison across a range of model resolutions, the pattern correlations are computed after 8 

regridding all datasets to a resolution of 2.5º in longitude and 2.5º in latitude. Only one realization is used 9 

from each model from the CMIP3, CMIP5 and CMIP6 historical simulations. (Figure from Bock et al. 10 

(submitted), their Figure 6, produced with ESMValTool v2.0.0b3.) 11 
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 Data-model comparisons for the mid-Holocene (top line) and LGM (bottom line) periods, for PMIP3-3 

CMIP5 and PMIP4-CMIP6 models. The figure shows the mid-Holocene - piControl (top) and LGM - 4 

piControl (bottom) averages and ranges computed for pollen-based reconstructions and model output 5 

taken over the grid points for which there are reconstructions, for the following regions: North America 6 

(20-50°N, 140-60°W), Western Europe (35-70°N, 10°W-30°E) and West Africa (0°-30°N, 10°W-30°E). 7 

MTCO: Mean Temperature of the Coldest Month (°C), MTWA: Mean Temperature of the Warmest 8 

Month (°C), MAP: Mean Annual Precipitation (mm/year). The ranges shown for the reconstructions are 9 

based on the standard error given at each site: the average and associated standard deviation over each 10 

area is obtained by computing 10000 times the average of randomly drawn values from the Gaussian 11 

distributions defined at each site by the reconstruction mean and standard error. The ranges for the model 12 

results are based on the interannual variability of the average over the area: the mean ± one standard 13 

deviation is plotted for each model. The reconstructions are from Bartlein et al. (2011) and Cleator et al. 14 

(2019). (Figure from Brierley et al. (submitted), their Figure S3 for the mid-Holocene and from 15 

Kageyama and PMIP4 (submitted), their Figure 12 for the LGM.) 16 
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Cross-Chapter Box 3.1, Figure 1: (a, b) GMST trends for 1998-2012 (a) and 2012-2026 (b). Histograms (scaled so 3 

that the area under the curve sums to one) based on historical simulations of CMIP6 4 

(red shading, extended by SSP2-4.5) and CMIP5 (blue outlines; extended by 5 

RCP4.5). Hatching shows histograms of HadCRUT5.0.0.0 and (Cowtan and Way, 6 

2014). Triangles at the top of (a) represent GISTEMP, NOAAGlobalTemp and 7 

Berkeley Earth estimates. Selected CMIP6 members whose 1998-2012 trends are 8 

lower than the HadCRUT5.0.0.0 mean trend are indicated by darker shading (a) and 9 

vertical lines (b) in the histograms. Model GMST is based on a blend of SST and 10 

SAT masked to match HadCRUT data coverage, following Cowtan et al. (2015). (c-11 

e) Trend maps of annual near-surface temperature. (c, d) 1998-2012 trends based on 12 

HadCRUT5.0.0.0 mean (c) and composited trends of subsampled CMIP6 13 

simulations included in darker shading area in (a). (e) Corresponding composited 14 

trends but for 2012-2026 indicated by dark red lines in (b). Ensemble size used for 15 

each of the histograms and trend composites is indicated at the top right of each of 16 

panels (a,b,d,e). 17 
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Cross-Chapter Box 3.2, Figure 1: Time series of global averaged 5-year mean anomalies of TXx (°C) and Rx1day 2 

(standardized probability index, %) during 1953-2017 from the HadEX3 3 

observations and the CMIP5 and CMIP6 multi-models with natural and human 4 

forcing (upper) and natural forcing only (lower). For CMIP5, historical simulations 5 

for 1953-2005 are combined with corresponding RCP4.5 scenario runs for 2006-6 

2017. For CMIP6, historical simulations for 1953-2014 are combined with SSP2-7 

45 scenario runs for 2015-2017. Number in bracket represents the number of models 8 

used. The time-fixed observational mask has been applied to model data throughout 9 

the whole period. For TXx, grids with more than 70% data availability during 1953-10 

2017 plus having data for at least 3 years during 2013-2017 are used. For Rx1day, 11 

grids with more than 70% data availability during 1953-2011 plus having data for 12 

at least 2 years during 2008-2011 are used. Thick coloured lines indicate multi-13 

model means (with equal weighting given for each model). Shading represents the 14 

range of CMIP5 individual model (ensemble means) and thin lines display CMIP6 15 

individual model ensemble means. Anomalies are relative to 1961-1990 means. 16 
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FAQ 3.1, Figure 1: (Upper left) Climate model estimate of human-induced change in global average temperature. 3 

(Lower left) Representation of natural global average temperature variability from a climate 4 

model. (Right) The combined signal, which is similar to that observed. Overlying blue lines 5 

represent temperature changes during a period with strong naturally driven cooling, while red lines 6 

represent temperature changes during a period with strong naturally driven warming. 7 
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FAQ 3.2, Figure 1: Centred pattern correlations between models and observations for the annual mean climatology 2 

over the period 1980–1999 for three different variables: surface air temperature, precipitation and 3 

sea level pressure. Results are shown for individual CMIP3 (black), CMIP5 (blue) and CMIP6 4 

(brown) models as short lines, along with the corresponding ensemble average (long line). The 5 

correlations are shown between the models and the reference observational data set. In addition, 6 

the correlation between the reference and alternate observational data sets are shown (solid grey 7 

circles). To ensure a fair comparison across a range of model resolutions, the pattern correlations 8 

are computed at a resolution of 2.5º in longitude and 2.5º in latitude. Only one realization is used 9 

from each model from the CMIP3, CMIP5 and CMIP6 historical simulations. (Figure produced 10 

with ESMValTool v2.0.0b2.) 11 

  12 
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FAQ 3.3, Figure 1: Global average changes in surface air temperature in observations (HadCRUT4), compared to 2 

climate model simulations of the response to all human and natural forcings (grey band), 3 

greenhouse gases only (red band), aerosols only (blue band) and natural forcings only (green 4 

band). Solid coloured lines show the multi-model mean, and coloured bands show the 5–95% 5 

range of individual simulations. 6 
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