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Executive Summary 1 
 2 
Changes in atmospheric composition, like those caused by anthropogenic greenhouse gas and aerosol 3 
emissions, impact climate through perturbations to the Earth’s energy budget. Effective Radiative Forcings 4 
(ERFs) quantify these perturbations. Climate feedbacks that help understand the response of the climate 5 
system to a given forcing are assessed, as are useful aggregate measures of climate response, namely 6 
equilibrium climate sensitivity (ECS) and the transient climate response (TCR). This chapter also assesses 7 
emission metrics, which are used to quantify how the climate response of an emission of a gas compares to 8 
the response from an emission of carbon dioxide. This chapter takes the assessment of aerosol processes 9 
from Chapter 6 to quantify the total ERF for aerosols. Chapters 3, 4, 5 and 9 use the assessment of ERF, ECS 10 
and TCR from this chapter to help understand historic and future temperature changes, the response to 11 
cumulative emissions, the remaining carbon budget and sea-level rise respectively. Unless otherwise noted, 12 
the following summary findings confirm or strengthen related findings from the IPCC Fifth Assessment 13 
Report (AR5), the Special Report on Global Warming of 1.5ºC (SR1.5) and the Special Report on Ocean and 14 
Cryosphere in a Changing Climate (SROCC). Uncertainty is expressed as 5% to 95% very likely ranges 15 
unless otherwise noted.   16 
 17 
 18 
Earth’s Energy Budget  19 
 20 
Total earth system warming, i.e., the total change in heat energy of the atmosphere, land, ice and 21 
ocean, increased by 406  84 Zeta Joules over 1971-2018 and by 144  24 over 2006-2018. Ocean heat 22 
uptake represents > 90% of the total, with roughly 5% associated with heating of the land surface, about 2% 23 
with the melting of ice and less than 1% in heating of the atmosphere. Total earth system warming is a more 24 
reliable indicator of the rate of global climate change on decadal timescales than globally averaged near 25 
surface temperature (GSAT), because it exhibits less unforced variability. The rate of earth system warming 26 
has roughly doubled since the 1970s. (high confidence) {Box 7.2, 7.2.2, Table 7.1} 27 
 28 
The rate of total earth system warming corresponds to an Earth’s energy imbalance of 0.54 0.11 W 29 
m-2 for the period 1971-2018, increasing to 0.81 0.14 W m-2 for the period 2006-2018 expressed 30 
relative to the Earth’s surface area (high confidence). There is increased confidence in the planetary 31 
heating rate since IPCC from a consistent closure of the sea-level budget for the period 1971-2018. Heat will 32 
continue to accumulate in the Earth system over the 21st Century driving future sea-level rise (high 33 
confidence) and there is medium confidence this will continue beyond 2100 for another century or more, 34 
even under strong mitigation of greenhouse gas emissions. {7.2.2, Box 7.2, Table 7.1, Chapter 9 Cross-35 
Chapter Box 9.2} 36 
 37 
Multidecadal dimming and brightening trends in incoming solar radiation at the Earth’s surface 38 
occurred at widespread locations. These trends are neither a local phenomenon nor a measurement 39 
artefact (high confidence). Since AR5, additional evidence for a widespread decline in surface solar 40 
radiation is found in the observational records between the 1950s and 1980s (“dimming”), with a partial 41 
recovery at many observational sites thereafter (“brightening”) (high confidence). Decadal variations in 42 
aerosol forcing are considered major contributors (medium confidence), but multi-decadal variability in 43 
cloudiness may also have played a role. There is medium confidence that downward thermal radiation has 44 
increased in recent decades, as expected from increased greenhouse gas concentrations and atmospheric 45 
warming, but low confidence in other energy flux changes and their contribution to the Earth’s surface 46 
energy budget due to limited and uncertain measurements. {7.2.2} 47 
 48 
 49 
Effective Radiative Forcing  50 
 51 
The effective radiative forcing framework introduced in the AR5 has become well established and has 52 
been shown to provide a useful way of estimating temperature response. The ERF for a doubling of 53 
carbon dioxide since preindustrial is 4.0  0.5 W m-2. Climate models’ radiative transfer representation 54 
has improved since AR5, and they have ERFs that lie within 11% of the assessed best estimate. (high 55 
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confidence) {7.3.1, 7.3.2} 1 
 2 
The total anthropogenic ERF over the industrial era (1750-2018) was 2.53 W m-2(1.58 to 3.34 Wm-2 3 
range). This is an 11% increase over AR5 estimates for 1750-2011. Changes in atmospheric 4 
concentrations of greenhouse gases since 2011 and upwards revisions of their forcing efficiencies have led to 5 
a 15% increase in their ERF. This is partly offset by a new assessment of total aerosol ERF that is 22% more 6 
negative compared to AR5. (high confidence) {7.3.5} 7 
 8 
Greenhouse gases contribute an ERF of 3.63 Wm-2 (3.27 to 3.97 Wm-2 range) over the industrial era 9 
(1750-2018).  90% of this comes from the well-mixed greenhouse gases, with ozone and stratospheric 10 
water vapour changes contributing the remainder. Carbon dioxide contributes the largest part of this 11 
forcing. There has also been an increase in the estimated shortwave forcing from methane. (high confidence) 12 
{7.3.2, 7.3.5} 13 
 14 
The reactive well-mixed greenhouses gases (methane, nitrous oxide, halocarbons) cause additional 15 
chemical adjustments to the atmosphere through changes in ozone and aerosols. The ERF attributed to 16 
the chemical adjustments from methane emissions has a significant contribution (0.45±0.11 W m-2).The net 17 
ERF attributable to halocarbons is smaller than the direct ERF due to their effect on ozone depletion, such 18 
that the range includes zero (0.0 to 0.16 W m-2). (high confidence) {7.3.5} 19 
 20 
Aerosols contribute an ERF of -1.1 W m-2 (-2.0 to -0.4 W m-2 range) over the industrial era (1750-2018). 21 
The ERF due to aerosol-cloud interactions (ERFaci) contributes most (about 3/4) to the magnitude of 22 
the total aerosol ERF, with the remainder due to the forcing associated with aerosol-radiation 23 
interactions (ERFari). There has been an increase in the estimated magnitude but a marked reduction in the 24 
uncertainty of the total aerosol ERF relative to AR5, supported by a combination of increased process-25 
understanding, and progress in modelling and observational analyses. Observation-based and modelling-26 
based estimates are now consistent with each other, in contrast to AR5. Compared to AR5, there has been a 27 
doubling of the magnitude of ERFaci, and a downward revision of the magnitude of ERFari. (high 28 
confidence) {7.3.3, 7.3.5} 29 
 30 
 31 
Climate Feedbacks and Sensitivity  32 
 33 
AR5 assessed the net cloud feedback to be positive with medium confidence. Major advances in the 34 
understanding of cloud processes leads to a high confidence assessment that the net cloud feedback is 35 
positive and halved its uncertainty range. Process understanding of tropical-marine low cloud feedbacks 36 
within GCMs has been complemented by a better understanding of cloud-climate interactions, satellite-based 37 
evidence, and explicit simulations using large-eddy simulations and cloud-system resolving models, 38 
altogether leading to strong evidence that the total cloud feedback amplifies global climate warming. The net 39 
cloud feedback is assessed to be +0.4 W m-2 °C–1 (–0.1 to 0.9 W m–2 °C–1 range). The CMIP5 and CMIP6 40 
ranges of cloud feedback are similar to this assessed range, with CMIP6 having a slightly more positive 41 
median cloud feedback. (high confidence) {7.4.2, Figure 7.14, Table 7.10} 42 
 43 
Radiative feedbacks will become less negative (more amplifying) in the future as the spatial pattern of 44 
surface warming evolves, leading to an ECS that is substantially higher than has been traditionally 45 
inferred from warming over the historical record (high confidence). This new understanding, along with 46 
updated estimates of historical temperature change, ERF, and energy imbalance, reconciles previously 47 
disparate ECS estimates. Historical surface temperature change since 1870 has shown relatively little 48 
warming in several key regions of positive feedbacks, including the eastern equatorial Pacific Ocean and the 49 
Southern Ocean, while showing greater warming in key regions of negative feedbacks, including the 50 
Western Pacific warm pool. Based on process understanding, climate modelling, and paleoclimate 51 
reconstructions, it is expected that future warming will become enhanced over the eastern Pacific Ocean 52 
(medium confidence) and Southern Ocean (high confidence) on centennial timescales. While there is robust 53 
agreement across climate model simulations that radiative feedbacks will become less negative in the future, 54 
there is currently insufficient evidence to quantify a likely range of the magnitude of those projected 55 
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feedback changes. {7.4.4, 7.5.2, 7.5.3, Figure 7.18, Figure 7.19, Figure 7.20} 1 
 2 
Based on multiple lines of evidence the best estimate of ECS is 3 °C, the likely range is 2.5 to 4 °C and 3 
the very likely range is 2 to 5 °C. It is virtually certain that ECS is larger than 1.5 °C. Substantial 4 
advances since AR5 have been made in quantifying ECS inferred from feedback process understanding 5 
(including dependence on climate state), the instrumental record, paleoclimates (including accounting for 6 
long-term Earth system feedbacks) and emergent constraints (a relationship between an observed variable 7 
and model field that can be related to the model ECS). There is a high level of agreement among the 8 
different lines of evidence. All lines of evidence help rule out ECS values below 1.5 °C. Emergent constraint 9 
evidence and paleo evidence help rule out ECS values above 5 °C, but it remains challenging to rule out low-10 
probability but high-impact upper-end ECS, which is indicated by the notable asymmetry of the assessed 11 
ranges. (high confidence) {7.5.5} 12 
 13 
Based on process understanding, warming over the instrumental record, and emergent constraints, 14 
the best estimate of Transient Climate Response (TCR) is 1.8°C, the likely range is 1.4 to 2.2°C and the 15 
very likely range is 1.2 to 2.4 °C. There is a high level of agreement among the different lines of evidence. 16 
(high confidence) {7.5.5} 17 
 18 
The distribution of CMIP6 models have higher average ECS and TCR values than the CMIP5 19 
generation of models and the assessed ranges of ECS and TCR within this Report (high confidence). 20 
The higher ECS and TCR values can be traced to changes in extra-tropical cloud feedbacks that have 21 
emerged from efforts to reduce biases in these clouds compared to satellite observations (medium 22 
confidence). The ranges of ECS and TCR from CMIP6 span the assessed very likely ranges, in contrast to 23 
previous assessment reports. The CMIP6 models with the highest ECS and TCRs values are assigned low 24 
probability, but are nevertheless useful as they provide insights into high-risk, low-probability futures. 25 
{7.5.6} 26 
 27 
 28 
Climate Response 29 
 30 
It is unequivocal that human activity has had a warming effect on the Earth since 1750. Estimates of 31 
ERF, ECS and TCR from this Chapter give an estimate of the human-induced GSAT rise which 32 
assumes little knowledge of the observed warming and is more-or-less independent and in strong 33 
agreement with attributed warming deduced by Chapter 3. For the period 1750-2018, this human-34 
forced trend is 1.1 °C (0.4 to 1.9 °C range) (high confidence). This warming is comprised of a greenhouse 35 
warming that has an increasing trend and an aerosol cooling that has remained relatively constant over the 36 
last 20 years (high confidence). Changes in solar and volcanic activity are assessed to have contributed a 37 
small warming effect since 1750 (< 0.1°C, best estimate 0.04 °C) (medium confidence). {7.3.5, Chapter 3 38 
ES, Cross-Chapter Box 7.1} 39 
 40 
Cloud feedbacks are the dominant source of uncertainty in this century’s transient global warming 41 
under emission scenarios with continued CO2 emissions, whereas uncertainty is dominated by aerosol 42 
ERF in scenarios reaching net zero CO2 emissions. Global ocean heat uptake is a relatively minor source 43 
of uncertainty in centennial warming. Carbon cycle feedbacks provide an increasing fraction of uncertainty 44 
on longer timescales. (high confidence) {7.5.7} 45 
 46 
It is now well understood that the Arctic warms more quickly than the Antarctic due to a combination 47 
of asymmetries in radiative feedbacks and ocean heat uptake between the poles, but that surface 48 
warming will eventually be amplified in both poles (very high confidence). Since the AR5, progress has 49 
been made to understand the mechanisms of polar amplification and its uncertainty. A variety of factors all 50 
contribute to Arctic amplification, including positive surface-albedo and lapse-rate feedbacks as well as 51 
increases in poleward atmospheric latent heat transport and ocean heat transport, making it a ubiquitous 52 
feature of climate model simulations and observations. The Antarctic warms slower than the Arctic owing 53 
primarily to upwelling in the Southern Ocean. Compared with the models used for paleoclimate simulations 54 
in AR5, the polar amplification simulated in more recent models is now more consistent with paleoclimate 55 
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observations of past warm climates. There is high confidence that the rate of Arctic surface warming will 1 
continue to exceed the global average over the 21st century. There is also high confidence that Antarctic 2 
amplification will emerge as the Southern Ocean surface warms on centennial timescales, although only low 3 
confidence of the feature emerging this century. {7.2.2, 7.4.4} 4 
 5 
Specifying short and long-lived greenhouse gases separately in emission scenarios generally improves 6 
the quantification of surface warming, compared to approaches that aggregate greenhouse gases using 7 
CO2 equivalent emission metrics. New metrics comparing pulse emissions of long-lived greenhouse gases 8 
with sustained emission changes in short-lived gases can lead to more equivalence in surface temperature 9 
response. Global Warming Potentials and Global Temperature change Potentials are larger compared to 10 
AR5, due to the methodological change of accounting for carbon-cycle responses. (high confidence) {7.6.1, 11 
Box 7.3, 7.6.2, 7.6.3} 12 
  13 
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7.1 Introduction, conceptual framework and innovations since IPCC AR5 1 
 2 
This chapter assesses the major physical processes that drive changes in the Earth’s energy budget, thereby 3 
affecting global warming. It focuses on documenting advances in scientific understanding of radiative 4 
forcing, climate feedbacks and climate sensitivity, and covers observations, theoretical developments and 5 
climate model evaluation. The chapter integrates elements that were dealt with separately in previous reports. 6 
Aggregate measures of climate response such as equilibrium climate sensitivity (ECS) and the transient 7 
climate response (TCR) are also assessed here (Box 7.1).  8 
 9 
When the Earth’s top-of-atmosphere energy budget is perturbed (a radiative forcing) over decadal 10 
timescales, the climate system responds by cooling or warming (i.e. the system gains or loses heat). 11 
Understanding of the Earth’s energy budget helps us to understand the main physical processes driving 12 
climate change. It also provides a fundamental test of climate models and their projections. Energy budget 13 
related changes can be observed (Chapter 2). These observations are combined with the process 14 
understanding developed within this chapter to provide a useful test of model estimates of historic warming 15 
(Chapter 3) and temperature projections (Chapter 4). The energy budget also helps us to understand the 16 
relationship between anthropogenic emissions (Chapters 5 and 6) and climate system response. The chapter 17 
is primarily concerned with global measures of change, but also assesses regional changes in the energy 18 
budget and changes to atmospheric heating insofar as they support the assessments of surface warming 19 
(Chapters 3 and 4), the hydrological cycle (Chapter 8) and ocean circulation (Chapter 9). Thereby the 20 
assessment aids understanding of regional patterns of response (Chapters 10, 11, 12 and the Atlas).  21 
 22 
This Chapter principally builds on material presented within the IPCC AR5 WG1 assessment (Boucher, 23 
2012; Church et al., 2013; Collins et al., 2013a; Flato et al., 2013; Hartmann et al., 2013; Myhre et al., 24 
2013b; Rhein et al., 2013). It also makes use of the subsequent IPCC Special Reports on Global Warming of 25 
1.5°C (SR1.5), the Ocean and Cryosphere in a Changing Climate (SROCC) and Climate Change and Land 26 
(SRCCL), as well as community-led assessments (e.g. Bellouin et al., 2019; Sherwood et al., submitted) 27 
when assessing specific details.  28 
 29 
Changes to globally-averaged surface temperature are fundamental to understanding how the Earth’s energy 30 
budget is affected by climate feedbacks. This chapter adopts globally-averaged near surface air temperature 31 
(GSAT) as its measure of surface temperature change (see Cross-Chapter Box 2.3, Chapter 4 Section 4.3.4). 32 
The global time integral of Earth’s energy budget directly determines the rate of total Earth system warming 33 
(i.e. the combined heating rate associated with warming of all climate system components, Box 7.2; Section 34 
7.2.2.2), which represents a metric of global change that is complementary to GSAT. As an integral quantity, 35 
total Earth System warming can be considered a more robust measure of global change than GSAT, which 36 
has considerably greater unforced variability on interannual-to-decadal timescales (Von Schuckmann et al., 37 
2016). Research and new observations since AR5 have improved scientific understanding of the total Earth 38 
system warming and its changes through time (Section 7.2). Improved understanding of rapid adjustments to 39 
radiative forcing and of aerosol-cloud interactions have led to revisions of forcing estimates (Section 7.3). 40 
New approaches to the quantification and treatment of feedbacks (Section 7.4) have improved the 41 
understanding of their nature and time-evolution, leading to a better understanding of how these feedbacks 42 
relate to ECS. This has helped to reconcile disparate estimates of ECS from different lines of evidence 43 
(Section 7.5). Innovations in the use of emission metrics have clarified the relationships between metric 44 
choice and policy goals, linking the chapter to WGIII (Section 7.6). 45 
 46 
In Box 7.1 an extended energy budget framework is introduced, which forms the basis for the discussions 47 
and scientific assessment in the remainder of this chapter and across the report. The framework reflects 48 
advances in the understanding of the Earth system response to climate forcing since the publication of the 49 
AR5. A schematic of this framework and the key changes relative to the science reported in AR5 are 50 
provided in Figure 7.1.  51 
 52 
 53 
 54 
 55 
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[START FIGURE 7.1 HERE] 1 
 2 
Figure 7.1: A visual abstract of the chapter, illustrating why the Earth’s energy budget matters and how it relates to 3 

the underlying chapter assessment. The methods used to assess processes and key new findings relative to 4 
IPCC AR5 are highlighted. 5 

 6 
[END FIGURE 7.1 HERE] 7 
 8 
A simple way to characterise the behaviour of different aspects of the climate is to summarise them using 9 
single climate metrics. The phrase “climate metrics” can carry a range of implications, depending on the 10 
context. This report distinguishes between “climate metrics” (e.g. ECS, TCR) and “emission metrics” (such 11 
as the global temperature-change potential; GTP), but this distinction is not definitive. Climate metrics are 12 
generally used to summarise aspects of the overall climate system response (Box 7.1). Emission metrics are 13 
generally used to summarise the relative effects of emissions of different forcing agents, usually greenhouse 14 
gases (see Section 7.6). Figure 7.2 shows how the various climate metrics and emission metrics assessed in 15 
this chapter fit within the overall chain of processes from human activities to climate impacts. The climate 16 
metrics used in this report typically evaluate how the Earth system response varies with atmospheric gas 17 
concentration or change in radiative forcing. Emission metrics evaluate how radiative forcing or a key 18 
climate variable (such as GSAT) is affected by the emissions of a certain amount of gas. Emission-related 19 
metrics are extensively employed in mitigation policy decisions such as trading greenhouse gas reduction 20 
measures to compare their effect on climate. Climate metrics are useful to gauge the range of future climate 21 
impacts for adaptation decisions under a given emission pathway. Metrics such as the Transient Climate 22 
Response to Emissions (TCRE) are used in both adaptation and mitigation contexts: for gauging future 23 
surface temperature change under specific emission scenarios, and to estimate remaining carbon budgets that 24 
are used to form mitigation policies (see Chapter 5, Section 5.5).  25 
 26 
Given that TCR and ECS are metrics of global mean surface temperature response to an idealized doubling 27 
of atmospheric CO2 (Box 7.1), they do not directly correspond to the warming that would occur under 28 
realistic forcing scenarios that include time-varying CO2 concentrations and non-CO2 forcing agents (such as 29 
aerosols and land-use changes). It has been argued that TCR, as a metric of transient warming, is more 30 
policy-relevant than ECS (Frame et al., 2006; Schwartz, 2018). However, as detailed in Chapter 4, both 31 
established and recent results (Forster et al., 2013; Gregory et al., 2015; Marotzke and Forster, 2015; Grose 32 
et al., 2018; Marotzke, 2019) indicate that TCR, ECS, radiative forcing and variability can all help explain 33 
variation across CMIP5 models both over the historical period and across a range of concentration-driven 34 
future scenarios. In emission-driven scenarios the carbon cycle response is also important (Smith et al., 35 
2019). The proportion of variation explained by ECS and TCR varies with scenario and the time period 36 
considered, but both past and future surface warming are highly correlated with both metrics (Section 7.5.7). 37 
 38 
Regional changes in temperature, rainfall, and climate extremes have been found to correlate well with the 39 
forced changes in GSAT within coupled General Circulation Models (GCMs) (Giorgetta et al., 2013; 40 
Tebaldi and Arblaster, 2014; Seneviratne et al., 2016) (Chapter 4, Section 4.6.1). While this so-called 41 
‘pattern scaling’ has important limitations arising from, for instance, localized forcings, land-use changes, or 42 
internal climate variability (Deser et al., 2012; Luyssaert et al., 2014), changes in GSAT nonetheless explains 43 
a substantial fraction of inter-model differences in projections of regional climate changes over the 21st 44 
century (Tebaldi and Knutti, 2018). This Chapter’s assessments of TCR and ECS thus provide constraints on 45 
future global and regional climate change (Chapter 4). 46 
 47 
 48 
[START FIGURE 7.2 HERE] 49 
 50 
Figure 7.2: A conceptual chain of processes linking human activity to climate impacts, showing where the climate 51 

indicators and emission metrics assessed in this chapter fit within the chain and how they associate with 52 
other IPCC Working Group Reports. 53 

 54 
[END FIGURE 7.2 HERE] 55 
 56 
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[START BOX 7.1 HERE] 1 
 2 
BOX 7.1: Forcing, feedbacks and climate sensitivity framework 3 

The forcing-feedback framework provides a methodology to assess the impact of individual drivers of global 4 
mean surface temperature change, and to facilitate the understanding of the key phenomena that set the 5 
magnitude of this temperature change. The framework used here is developed from that adopted in previous 6 
IPCC reports. Effective Radiative Forcing (ERF), introduced in IPCC AR5 (Boucher et al., 2013; Myhre et 7 
al., 2013b) is more explicitly defined in this report and is employed as the central definition of radiative 8 
forcing (Sherwood et al. 2015, Box 7.1, Figure 1a). The framework has also been extended to allow 9 
variations in feedbacks over different timescales and with changing climate state (Section 7.4.4; Section 10 
7.4.3).   11 
 12 
The global mean surface temperature response to perturbations to the Earth’s energy budget is traditionally 13 
approximated by the following linear equation, in which ΔN (W m-2) represents the change in the top-of-14 
atmosphere (TOA) energy budget, ΔF (W m-2) is an effective radiative forcing perturbation to the energy 15 
budget,  (W m-2 °C-1) is the net feedback parameter, and ΔT (°C) is the change in global mean near-16 
surface air temperature: 17 
 18 

ΔN = ΔF +  ΔT  Box 7.1, Equation (7.1) 19 
 20 

ERF is the TOA energy budget change resulting from the initial perturbation which is not related to a change 21 
in global mean surface temperature (i.e. ΔT =0). Climate feedbacks () represent those processes that change 22 
the TOA energy budget in response to a change in ΔT. AR5 adopted different measures of global surface 23 
temperature change in observation and projection chapters (see Cross Chapter Box 2.3). This report employs 24 
a consistent measure, associating ΔT with trends in the globally averaged near surface air temperature 25 
(GSAT). Using a single measure helps reconcile divergent estimates of ECS across the different lines of 26 
evidence reported in AR5 (see Section 7.5 and Cross Chapter Box 2.3). In previous assessments,  and the 27 
related ECS have been associated with a distinct set of physical processes (Planck response, and water 28 
vapour, lapse rate, surface albedo and cloud changes) (Charney et al., 1979). In this assessment a more 29 
general definition of  and ECS is adopted, whereby many Earth system processes are included. 30 
 31 
[START BOX 7.1, FIGURE 1 HERE] 32 
 33 
Box 7.1, Figure 1: Schematics of the forcing-feedback framework adopted within the assessment, following Equation 34 

7.1. Illustrated is how the Earth’s energy balance might evolve for a hypothetical doubling of 35 
atmospheric CO2 concentration above preindustrial levels, where an initial positive energy 36 
imbalance (energy entering the Earth system, shown on the y-axis) is gradually restored towards 37 
equilibrium as the surface temperature warms (shown on the x-axis). a) illustrates the definitions of 38 
ERF for the special case of a doubling of atmospheric CO2 concentration, the feedback parameter 39 
and the ECS. b) illustrates how approximate estimates of these metrics are made within the chapter 40 
and how these approximations relate to the exact definitions adopted in panel a). 41 

 42 
[END BOX 7.1, FIGURE 1 HERE] 43 
 44 
The effective radiative forcing, ERF (ΔF; units: W m-2) quantifies the change in the net TOA radiative 45 
budget of the Earth system due to an imposed perturbation (e.g. change in carbon dioxide concentration, 46 
change in incoming solar radiation). ERF is expressed as a change in net downward radiative flux at the 47 
TOA following the adjustments in both tropospheric and stratospheric temperatures, water vapour, clouds, 48 
and some surface properties, such as surface albedo, prior to any GSAT change. These adjustments affect the 49 
energy budget both at the TOA and at the surface. Accounting for such processes gives an estimate of 50 
radiative forcing that is more representative of the climate change response associated with forcing agents 51 
than stratospheric-temperature-adjusted radiative forcing (SARF) or the instantaneous radiative forcing (IRF) 52 
(see Section 7.3.1). Adjustments are processes that are independent of GSAT change, whereas feedbacks 53 
refer to processes moderated by GSAT change. Although adjustments generally occur on timescales of hours 54 
to several months, and feedbacks on timescales of a year or more, timescale is not used to separate the 55 
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definitions. ERF has often been approximated as the TOA energy budget change in climate model 1 
simulations with sea-surface temperature and sea-ice set to their pre-industrial climatological values (e.g. 2 
Myhre et al., 2013). However, to match the adopted forcing-feedback framework, the small effects of any 3 
GSAT change from changes in land surface temperatures need to be removed from the equilibrium TOA 4 
energy budget in such simulations to give an approximate measure of ERF (see Box 7.1., Figure 1b and 5 
Section 7.3.1).   6 
 7 
The feedback parameter,  , (units: W m-2°C-1) quantifies the sensitivity of the change in net energy budget 8 
at the TOA for a given change in GSAT. Many climate variables affect the TOA energy budget, and the 9 
feedback parameter can be decomposed, to first order, into a sum of terms 𝛼 = ∑ 𝛼௫௫ , where x represents a 10 
variable of the Earth system that has a direct impact on the energy budget at the TOA. The sum of the 11 
feedback terms (i.e. the net 𝛼 in Equation 7.1) is a measure of how the Earth might respond to an ERF. All 12 
Earth system feedbacks that do not affect the atmospheric concentration of CO2 can be included in the sum, 13 
such as changes in natural methane emissions and changes to natural aerosol emissions (Section 7.4.1). Note 14 
that there is no standardised notation or sign convention for the feedback parameter in the literature. Here the 15 
convention is used that the sum of all feedback terms (net 𝛼) is negative for a stable climate that radiates 16 
additional energy to space with a GSAT increase, with a more negative value of 𝛼 corresponding to a 17 
stronger radiative response and thus a smaller GSAT change required to balance a change in ERF (Equation 18 
7.1). A change in variable x amplifies the temperature change when the associated feedback parameter 𝛼௫ is 19 
positive (positive feedback) and dampens the temperature change when 𝛼௫ is negative (negative feedback). 20 
New research since AR5 emphasises how feedbacks can vary over different timescales (Section 7.4.4) and 21 
with climate state (Section 7.4.3), giving rise to the concept of an estimated feedback parameter that may be 22 
different from the value of the feedback parameter governing ECS.  23 
 24 
The equilibrium climate sensitivity, ECS (units: °C), is defined as the equilibrium value of ΔT in response to 25 
a sustained doubling of atmospheric CO2 concentration from a pre-industrial reference state (Section 7.5 and 26 
Box 7.1, Figure 1a). Equilibrium refers to a steady state where ΔN averages to zero over a multi-century 27 
period. ECS is representative of the multi-century to millennial ΔT response to an atmospheric CO2 28 
doubling. ECS as employed here excludes the long-term response of the ice-sheets which may take multiple 29 
millennia to reach equilibrium. The Earth System Sensitivity (ESS) is a metric related to ECS that addresses 30 
changes over these much longer timescales that would allow the ice-sheets to reach a new equilibrium state 31 
(assessed in Section 7.4.2.6). Due to a number of factors, studies rarely estimate ECS or  at equilibrium. 32 
Rather, they estimate a feedback parameter (Section 7.4.1 and Box 7.1, Figure 1b) or an effective ECS 33 
(Section 7.5.1and Box 7.1, Figure 1b), which represent an approximation to the true value of ECS or . For 34 
example, a feedback parameter can be estimated from the linear slope of ΔN against ΔT over a set number of 35 
years within an abrupt 2×CO2 or 4×CO2 climate model simulation, and the ECS can be estimated from the 36 
intersect of this regression line with ΔN = 0 (see Box 7.1, Figure 1b). To estimate ECS from a given estimate 37 
of effective ECS necessitates that assumptions are made for how ERF varies with CO2 concentration 38 
(Section 7.3.2) and how the slope of ΔN against ΔT relates to the slope of the straightline from ERF to ECS 39 
(see Section 7.5 and Box 7.1, Figure 1b). Care has to be taken when comparing results across different lines 40 
of evidence to translate different estimates of ECS into the ECS definition used here (Section 7.5.1).  41 
 42 
The transient climate response, TCR (units: °C), is defined as the change in the global mean near surface 43 
air temperature for the hypothetical scenario in which CO2 increases at 1% yr-1 from pre-industrial to the 44 
time of a doubling of atmospheric CO2 concentration (year 70) (Section 7.5). It is a measure of transient 45 
warming accounting for the strength of climate feedbacks, pattern effects and ocean heat uptake. The 46 
transient climate response to emissions (TCRE) is defined as the transient globally averaged near-surface 47 
air temperature change per 1000 Gt C of cumulative CO2 emission increase since preindustrial. TCRE 48 
combines information on the airborne fraction of cumulative CO2 emissions (the fraction of the total CO2 49 
emitted that remains in the atmosphere at the time of doubling, which is determined by carbon cycle 50 
processes) with information on the TCR. TCR is assessed in this chapter, whereas TCRE is assessed in 51 
Chapter 5, Section 5.5. TCRE can also be related to the global warming potential (GWP) emission metric 52 
covered in Section 7.6. 53 
 54 
[END BOX 7.1 HERE] 55 
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7.2 Earth’s energy budget and its changes through time 1 
 2 
Earth’s energy budget encompasses the major energy flows of relevance for the climate system (Figure 7.3). 3 
Virtually all the energy that enters or leaves the climate system does so in the form of radiation at the top-of-4 
atmosphere (TOA). The TOA energy budget is determined by the amount of incoming solar (shortwave) 5 
radiation and the outgoing radiation that is composed of reflected solar radiation and outgoing thermal 6 
(longwave) radiation emitted by the climate system. In a steady state climate, the outgoing and incoming 7 
radiative components are essentially in balance in the long-term global mean, although there are still 8 
fluctuations around this balanced state that arise through internal climate variability (Brown et al., 2014; 9 
Palmer and McNeall, 2014). However, anthropogenic forcing has given rise to a persistent imbalance in the 10 
TOA radiation budget, denoted Earth’s Energy Imbalance (EEI) (Trenberth et al., 2014; Von Schuckmann et 11 
al., 2016), represented by ΔN in Box 7.1, Equation 7.1. EEI is a fundamental aspect of observed climate 12 
change and a critical metric determining the present rate of global climate change (Hansen et al., 2005a). 13 
Earth’s energy budget constitutes not only the TOA energy fluxes, but also the internal flows of energy 14 
within the climate system, which characterize the climate state. The surface energy budget consists of the net 15 
solar and thermal radiation exchanges between the surface and atmosphere as well as the non-radiative 16 
components of sensible and latent heat, melt and ground heat flux (Figure 7.3 upper panel), and plays a key 17 
role as driver of the global water cycle, atmospheric and ocean dynamics, as well as a variety of surface 18 
processes.  19 
 20 
Assessments of the following aspects of Earth’s energy budget are presented in the following sections: the 21 
present-day mean energy flows (Section 7.2.1); observed changes in TOA radiative fluxes (Section 7.2.2.1); 22 
the accumulation of energy in the climate system (i.e. total Earth system warming) (Section 7.2.2.2); changes 23 
in the surface energy budget (Section 7.2.2.3); and the poleward energy transports that shape both present-24 
day climate and its future response (Section 7.2.2.4). A synthesis of the current understanding of observed 25 
climate change in the context of radiative forcing, radiative response and total Earth system warming is 26 
presented in Box 7.2.  27 
 28 
 29 
7.2.1 Present-day energy budget 30 
 31 
Figure 7.3 (upper panel) shows a schematic representation of Earth’s present-day energy budget including 32 
quantitative estimates of the global mean magnitudes of its individual components. Clouds are major 33 
modulators of the energy flows. Thus, any perturbations in the cloud fields, such as caused by aerosol-cloud 34 
interactions (Section 7.3) or through cloud feedbacks (Section 7.4) can have a strong influence on the energy 35 
distribution in the climate system. To illustrate the overall effects that clouds exert on the energy flows, the 36 
complementary Figure 7.3 (lower panel) additionally depicts the energy budget without clouds, but 37 
otherwise identical atmospheric and surface radiative properties. It has been derived by taking into account 38 
information contained in clear-sky radiation measurements from both surface and space (Wild et al., 2019). 39 
A comparison of Figure 7.3 upper and lower panels shows that without clouds, almost 50 Wm-2 less solar 40 
radiation is reflected back to space globally (53 ± 2 W m-2instead of 100 ± 2 W m-2) (Loeb et al., 2018a), 41 
thereby increasing absorption of solar radiation at the Earth’s surface accordingly. On the other hand, 42 
thermal outgoing radiation at the TOA is enhanced without clouds by nearly 30 Wm-2 (268 ± 3 W m-2 instead 43 
of 239± 3 W m-2 globally). Since clouds reflect more shortwave radiation than they trap thermal radiation, 44 
the overall effect of clouds is to reduce the radiative energy available and thereby cool the climate system. 45 
 46 
[START FIGURE 7.3 HERE] 47 
 48 
Figure 7.3: Schematic representation of the global mean energy budget of the Earth (upper panel), and its equivalent 49 

without consideration of cloud effects (lower panel). Numbers indicate best estimates for the magnitudes 50 
of the globally averaged energy balance components in W m-2 together with their uncertainty ranges in 51 
parentheses (5% to 95% confidence range), representing present day climate conditions at the beginning 52 
of the 21th century. Adapted from Wild et al. (2015, 2019). 53 

 54 
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Second Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-14 Total pages: 206 

The AR5 (Church et al., 2013; Hartmann et al., 2013; Myhre et al., 2013b) highlighted the progress in 1 
quantifying the TOA radiation budget following new satellite observations that became available in the early 2 
21st Century (Clouds and the Earth’s Radiant Energy System, CERES; Solar Radiation and Climate 3 
Experiment, SORCE). The AR5 used these analyses to understand observed changes and estimate radiative 4 
forcing. Progress in the quantification of the magnitude and changes in incoming solar radiation at the TOA 5 
since AR5 is discussed in Chapter 2, Section 2.2.  Since the AR5, the accuracy of the reflected solar and 6 
outgoing thermal fluxes at the TOA has been further enhanced with the release of the CERES Energy 7 
Balance EBAF Ed4.0 product, which includes algorithm improvements and consistent input datasets 8 
throughout the record (Loeb et al., 2018a). However, the overall accuracy of these fluxes (uncertainty in 9 
global mean TOA flux 1.7% (1.7 W m-2) for reflected solar and 1.3% (3.0 W m-2) for outgoing thermal 10 
radiation at the 90% confidence level) is not sufficient to quantify the Earth’s energy imbalance in absolute 11 
terms. Therefore, one-time adjustments have been made to the reflected solar and emitted thermal TOA 12 
fluxes of the CERES EBAF dataset within their uncertainty ranges to ensure that the global mean net TOA 13 
flux for July 2005–June 2015 is consistent with an EEI of 0.71 ± 0.10 W m-2 (5% to 95% confidence range) 14 
inferred from ocean heat content (OHC) measurements using 10 years of Argo measurements and energy 15 
uptake by the lithosphere, cryosphere and atmosphere (Johnson et al., 2016; Riser et al., 2016) (Section 16 
7.2.2). Since climate models are typically adjusted to match the magnitudes of their global mean solar and 17 
thermal fluxes at the TOA with corresponding satellite references from CERES-EBAF, they often do not 18 
greatly deviate from those values on a global mean basis. However they show significant discrepancies on 19 
regional scales, often related to their representation of clouds (Trenberth and Fasullo, 2010; Hwang and 20 
Frierson, 2013; Li et al., 2013b; Dolinar et al., 2015; Wild et al., 2015).   21 
 22 
The surface energy budget is associated with substantially larger uncertainties than the TOA energy budget. 23 
The components of the surface energy budget cannot be directly measured by passive satellite sensors from 24 
space and require retrieval algorithms and ancillary data for their estimation, which gives rise to additional 25 
uncertainties (Raschke et al., 2016; Kato et al., 2018; Huang et al., 2019). On a global mean basis, 26 
confidence in the quantification of the surface energy budget has increased, since independent recent 27 
estimates converge to within a few W m-2 for different surface radiation components (Wild, 2017). Best 28 
estimates for downward solar and thermal radiation at Earth’s surface are thus near 185 W m-2 and slightly 29 
above 340 W m-2, respectively. These estimates are based on complementary approaches which make use of 30 
satellite products from active and passive sensors (L’Ecuyer et al., 2015; Kato et al., 2018) as well as the 31 
information contained in surface observations and climate models (Wild et al., 2015). Inconsistencies in the 32 
quantification of the global mean energy and water budgets discussed in the AR5 (Hartmann et al., 2013) 33 
have been reconciled within the (considerable) uncertainty ranges of their individual components (Wild et 34 
al., 2013, 2015; L’Ecuyer et al., 2015). However, on regional scales, the closure of the surface energy 35 
budgets remains a challenge with currently available satellite-derived datasets (Loeb et al., 2014; L’Ecuyer et 36 
al., 2015; Kato et al., 2016). Nevertheless, attempts have been made to derive reference estimates for the 37 
energy budgets separated into land and oceans (Wild et al., 2015) as well as for individual continents and 38 
ocean basins (L’Ecuyer et al., 2015). 39 
 40 
Since the AR5, quantification of the uncertainties inherent in the different surface energy flux datasets has 41 
improved. Uncertainties in global monthly mean downward solar and thermal fluxes in the CERES-EBAF 42 
surface dataset are, respectively, 10 W m-2 and 8 W m-2 (converted to 5% to 95% confidence level) (Kato et 43 
al., 2018). The uncertainties in latent and sensible heat fluxes averaged over global oceans are approximately 44 
11 W m-2 and 5 W m-2 (converted to 5% to 95% confidence level), respectively (L’Ecuyer et al., 2015). A 45 
recent review of the latent and sensible heat flux accuracies over the period 2000 to 2007 highlights 46 
significant differences between several gridded products over oceans, where root mean squared differences 47 
between the multi-product ensemble and data at more than 200 moorings reached up to 25 W m-2 for latent 48 
heat and 5 W m-2 for sensible heat (Bentamy et al., 2017). The uncertainty stems from the retrieval of flux-49 
relevant meteorological variables, as well as from differences in the flux parameterizations (Yu, 2019). 50 
Estimating the uncertainty in sensible and latent heat fluxes over land is difficult because of their large 51 
temporal and spatial variabilities. The spread of these fluxes over land computed with three global datasets is 52 
between 10% to 20% (L’Ecuyer et al., 2015). The uncertainty in the surface energy budget in polar regions is 53 
larger than the uncertainty of other regions (e.g. Kato et al., 2018), due to the limited number of surface sites 54 
and larger uncertainty in surface observations (Previdi et al., 2015).  55 



Second Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-15 Total pages: 206 

Climate models also show larger discrepancies in their energy budgets at the surface than at the TOA due to 1 
weaker observational constraints, with a spread of 10-20 W m-2 in their surface energy budget components 2 
averaged globally, and an even greater spread on more regional scales (Li et al., 2013b; Wild et al., 2013; 3 
Boeke and Taylor, 2016; Wild, 2017; Zhang et al., 2018a). The downward thermal and solar radiation in the 4 
CMIP5 climate models when averaged over all land surfaces varies by more than 30 and 40 W m-2, 5 
respectively (Wild et al., 2015). 6 
 7 
In summary, since AR5, the magnitudes of the global mean energy budget components have been quantified 8 
more accurately, not only at the TOA, but also at the Earth’s surface, where independent estimates of the 9 
radiative components have converged (high confidence). Considerable uncertainties remain in regional 10 
surface energy budget estimates, particularly from climate models. 11 
 12 
 13 
7.2.2 Changes in Earth’s energy budget 14 
 15 
7.2.2.1 Changes in TOA radiative fluxes 16 
 17 
Since 2000, changes in the TOA energy fluxes can be tracked from space due to the CERES program (Figure 18 
7.4). The variations noted in the TOA energy fluxes reflect the influence of internal variations, particularly 19 
that of ENSO, in addition to radiative forcing of the climate system and climate feedbacks (Allan et al., 20 
2014; Loeb et al., 2018a). For example, globally, the reduction in both outgoing thermal and reflected solar 21 
radiation during La Nina conditions in 2008/2009 led to an energy gain for the climate system, whereas 22 
enhanced outgoing thermal and reflected solar radiation led to an energy loss during the El Niños of 23 
2002/2003 and 2009/2010 (Figure 7.4) (Loeb et al., 2018a). Substantial anomalies in the global mean 24 
reflected solar radiation can also be attributed to anomalous sea ice cover in the Arctic and Antarctica (Loeb 25 
et al., 2018a). For the estimation of trends, the period for which CERES data is available (since March 2000) 26 
is still fairly short and dominated by internal variability of the climate system. Some of the climate models 27 
participating in CMIP6 are able to track the variability in the global mean TOA fluxes as observed from 28 
space to a considerable degree, when driven with prescribed sea-surface temperatures (SSTs) and all known 29 
anthropogenic and natural forcings (Figure 7.4, coloured lines) (Loeb et al., submitted). The correlations 30 
between the multimodel means (dotted black lines) and the CERES records (solid black lines) for 12-month 31 
running means are 0.85, 0.73 and 0.81 for the global mean reflected solar, outgoing thermal and net TOA 32 
radiation, respectively (Loeb et al., submitted). A reconstruction back to 1985 suggests that Earth's energy 33 
imbalance increased from 0.27 ± 0.38 W m-2  (1985–1999, 5-95% confidence range) to 0.59 ± 0.14 W m-2 34 
(2000–2015) based on a satellite record that is homogenized using reanalyses and climate model 35 
simulations(Allan et al., 2014; Liu et al., 2017a). The reconstruction is further able to capture the interannual 36 
variability in Earth’s energy imbalance caused by the volcanic eruption of Pinatubo in 1991 and the ENSO 37 
events before 2000. In a similar reconstruction based on a combination of successive satellite missions, 38 
Dewitte and Clerbaux (2018) note a rise in thermal outgoing radiation at the TOA since 1985. 39 
 40 
In summary, variations in the energy exchange between Earth and space can be accurately tracked since the 41 
advent of improved observations in the year 2000 (high confidence), while reconstructions indicate that the 42 
Earth’s energy imbalance was larger in the 2000s than in the 1990s (high confidence). 43 
 44 
[START FIGURE 7.4 HERE] 45 
 46 
Figure 7.4: Anomalies in global mean all-sky TOA fluxes from EBAF Ed4.0 (solid black lines) and various CMIP6 47 

climate models (coloured lines) in terms of reflected solar (upper panel), emitted thermal (middle panel) 48 
and net TOA fluxes (lower panel). The multimodel means are additionally depicted as doted black lines. 49 
Model fluxes stem from simulations driven with prescribed SSTs and all known anthropogenic and 50 
natural forcings.  Shown are anomalies of 12-month running means. Larger reflected shortwave and 51 
emitted thermal flux anomalies are defined as positive in upper and middle panels. Net TOA flux is 52 
defined as incoming shortwave flux minus reflected and emitted fluxes (i.e. downward positive). Adapted 53 
from Loeb et al. (submitted). 54 
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7.2.2.2 Changes in total Earth system warming 1 
 2 
Total earth system warming represents the integrated energy gain of the climate system associated with 3 
global ocean heat uptake, warming of the atmosphere, warming of the land surface and melting of ice. Due 4 
to conservation of energy, and assuming negligible geothermal heat flux, the rate of total Earth system 5 
warming (Section 7.1) is equivalent to the Earth’s energy imbalance (ΔN in Box 7.1, Equation 7.1). On 6 
annual and longer timescales, changes in total Earth system warming are dominated by changes in global 7 
OHC (Palmer et al., 2011; Palmer and McNeall, 2014; Johnson et al., 2016; Wijffels et al., 2016). Thus, 8 
observational estimates and climate model simulations of OHC change are critical to the understanding of 9 
both past and future climate change.  10 
 11 
Recent studies have compared observation-based estimates of multi-decadal global OHC change with those 12 
simulated by CMIP5 climate models (Cheng et al., 2016, 2019; Gleckler et al., 2016). In general, there is 13 
good agreement in both total ocean heat uptake and its vertical structure between the observations and the 14 
CMIP5 multi-model mean (Chapter 3, Section 3.5). However, there is a large spread among CMIP5 models 15 
compared to the observations and the spatial patterns of historical climate change may not have evolved in 16 
the same way as reality for many climate models. This implies a broad range of net radiative forcings and/or 17 
spread in climate feedbacks over the 20th Century among climate models. In addition, the magnitude of 18 
internal variability in OHC and Earth’s energy imbalance simulated by each model varies substantially 19 
across the ensemble (Palmer and McNeall, 2014; Gleckler et al., 2016).  20 
 21 
Smith et al. (2015) presented a comparison of the evolution of Earth’s energy imbalance between CMIP5 22 
climate models and observation-based estimates of Earth’s energy imbalance and global OHC change. Both 23 
models and observations exhibited a general tendency towards an increase in Earth’s energy imbalance that 24 
was punctuated by short-lived cooling episodes associated with major volcanic eruptions. The CMIP5 25 
ensemble mean generally showed good agreement in both the timing and magnitude of the main signals seen 26 
in the observations, with a close correspondence between the time-evolution of Earth’s energy imbalance 27 
and global OHC change.  28 
 29 
Since the AR5, novel approaches have been developed that use estimates of time-averaged ocean circulation 30 
to propagate observed or reconstructed surface temperature anomalies into the ocean interior in order to 31 
estimate the OHC changes (Gebbie and Huybers, 2019; Zanna et al., 2019). These studies are able to offer 32 
insights much further back in time than the more conventional in situ-based methods, but with a lower 33 
degree of confidence due to the limited number of studies and additional methodological assumptions. 34 
Confidence in the ability to track changes in Earth’s energy imbalance since 2006 has increased based on 35 
comparisons of satellite radiative fluxes and both in situ and satellite-based estimates of global OHC change 36 
(Johnson et al., 2016; Meyssignac et al., 2019). These independent methods show strong correlations and 37 
form a useful cross-validation of the current observing capabilities. Based on the current observational 38 
evidence there is very high confidence that global OHC has increased from 1971 to 2018, and there is 39 
medium confidence that it has increased from the 1870s to 1971. 40 
 41 
The total Earth system warming for the periods 1971-2018 and 2006-2018 is assessed following the 42 
approach of AR5 (Rhein et al., 2013) using the latest observational estimates (Table 7.1; Box 7.2; Cross-43 
Chapter Box 9.2). Global OHC is assessed by combining a number of estimates for different depth layers 44 
based on in situ ocean temperature measurements (Domingues et al., 2008; Purkey and Johnson, 2010; 45 
Levitus et al., 2012; Desbruyères et al., 2016) (Chapter 2, Section 2.3.3.1; Chapter 9, Section 9.2.2.1). The 46 
estimated heating of the atmosphere is based on satellite measurements of the temperature of the lower 47 
troposphere and lower stratosphere (Mears and Wentz, 2009, 2017), accounting for the effect of increasing 48 
water vapour content (Held and Soden, 2006) (Chapter 2, Section 2.3.1.3). Heat fluxes into the land surface 49 
are estimated through analysis of borehole temperature profiles (Gentine et al., submitted). Estimated mass 50 
loss rates for glaciers (Marzeion et al., 2015; Zemp et al., 2019) (Chapter 2, Section 2.3.2.3; Chapter 9, 51 
Section 9.5.1), ice sheets (Shepherd et al., 2018; Mouginot et al., 2019) (Chapter 2, Section 2.3.2.4; Chapter 52 
9, Section 9.4.1), and sea-ice (Schweiger et al., 2011) (Chapter 2, Section 2.3.2.1; Chapter 9, Section 9.3) are 53 
converted to energy change using reference values for the heat of fusion and ice density. Full details of these 54 
calculations are provided in the Chapter 7 Appendix 7.A.  55 
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[START TABLE 7.1 HERE] 1 
 2 

Table 7.1: Contributions of the different components of total Earth system warming for the periods 1971 to 2018 3 
and 2006 to 2018 (Box 7.2, Cross-chapter box 9.2). Values are based on analysis of the 1971 to 2015 4 
period with 2006 to 2015 rates extrapolated to 2018. 5 

 6 
Component 1971 to 2018 2006 to 2018 

 
References 

Heat Gain 
(Zetta  Joules) 

Heating Rate 
(W m-2) 

Heat Gain 
(Zetta  Joules) 

Heating Rate 
(W m-2) 

Global Ocean 
 
0–700 m  
700–2000 m  
> 2000 m  
 

373 ± 84    (92%)  
 
239 ± 76    (59%) 
99   ± 7.2   (24%) 
34   ± 15   (8.5%) 

0.49 ± 0.11  
 
0.32 ± 0.10  
0.13 ± 0.01  
0.05 ± 0.02  
 

133 ± 24    (92%) 
 
72  ± 22     (50%) 
48  ± 1.7    (33%) 
13  ± 4.6   (8.8%) 

0.75 ± 0.14  
 
0.41 ± 0.13  
0.27 ± 0.01  
0.07 ± 0.03  
 

(Domingues et 
al., 2008; Purkey 
and Johnson, 
2010; Levitus et 
al., 2012; 
Desbruyères et 
al., 2016) 

Ice melt 8.9  ± 3.3  (2.2%) 0.012 ± 0.004  
 

3.8  ± 0.6  (2.6%) 0.021 ± 0.003     (Schweiger et al., 
2011; Marzeion 
et al., 2015; 
Shepherd et al., 
2018; Mouginot 
et al., 2019; 
Zemp et al., 
2019) 

Atmosphere 2.4  ± 0.7  (0.6%) 0.003 ± 0.001  
 

0.7  ± 0.2  (0.5%) 0.004 ± 0.001     (Held and Soden, 
2006; Mears and 
Wentz, 2009, 
2017) 

Land surface  21  ± 2.9   (5.2%) 0.028 ± 0.004  
 

6.5  ± 0.4  (4.5%) 0.037 ± 0.002     (Cuesta-Valero 
et al.,submitted; 
Gentine et al., 
submitted) 

TOTAL 406 ± 84  (100%) 0.54 ± 0.11 144 ± 24  (100%)  0.81 ± 0.14  
 7 
[END TABLE 7.1 HERE] 8 
 9 
 10 
The assessment of total Earth system warming (Box 7.2, Figure 1a; Table 7.1) yields an average value for 11 
Earth’s energy imbalance (ΔN, Box 7.1, Equation 7.1) of 0.54± 0.11 W m-2 for the period 1971 to 2018, 12 
expressed relative to Earth’s surface area(high confidence). The estimate for the period 2006 to 2018 is 13 
substantially higher (0.81± 0.14 W m-2), consistent with the increased radiative forcing from greenhouse 14 
gases(high confidence). Ocean warming dominates the changes in the total energy inventory, accounting for 15 
> 90% of the observed change for the period 1971 to 2018, and the upper ocean (0 to 700m) accounting for 16 
about 60% (high confidence). Cross-validation of satellite and in situ based observational estimates and 17 
consistent closure of the global sea-level budget (Cross-chapter Box 9.2) promote increased confidence 18 
relative to AR5. 19 
 20 
 21 
7.2.2.3 Changes in Earth’s surface energy budget 22 
 23 
AR5 (Section 2.3.3, Hartmann et al., (2013)) reported pronounced changes in multi-decadal records of in situ 24 
observations of surface solar radiation, including a widespread decline between the 1950s and 1980s, known 25 
as “global dimming”, and a partial recovery thereafter, termed “brightening”. Over the past decades, these 26 
changes may have impacted key elements of climate change, such as global and regional warming rates (Li 27 
et al., 2016b; Wild, 2016; Du et al., 2017),  glacier melt  (Ohmura et al., 2007; Huss et al., 2009), the 28 
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intensity of the global water cycle (Wild, 2012) and terrestrial carbon uptake (Mercado et al., 2009). Further, 1 
these changes have also been used as emergent constraints to quantify aerosol effective radiative forcing (see 2 
Section 7.3.3.3) 3 
 4 
Since AR5, additional evidence for dimming and/or subsequent brightening up to several percent per decade  5 
based on direct surface observations has been documented in previously less explored areas of the globe, 6 
such as in Iran, Bahrain, Tenerife, Hawaii, the Taklaman desert and the Tibetan Plateau (Elagib and Alvi, 7 
2013; You et al., 2013; Garcia et al., 2014; Longman et al., 2014; Rahimzadeh et al., 2015; Wild, 2016). 8 
Strong decadal trends in surface solar radiation remain evident after careful data quality assessment and 9 
homogenization of long-term records (Sanchez-Lorenzo et al., 2013, 2015; Manara et al., 2015, 2016; Wang 10 
et al., 2015a; Li et al., 2016b; Wang and Wild, 2016; He et al., 2018; Yang et al., 2018). Since AR5, further 11 
investigations on the potential impacts of urbanization on solar radiation trends were carried out, indicating 12 
that these impacts are generally small, with the exception of some specific sites in Russia and China  (Wang 13 
et al., 2014; Imamovic et al., 2016; Tanaka et al., 2016). Thus, there is high confidence that the observed 14 
variations outlined in AR5 of dimming between the 1950s and 1980s and brightening thereafter are not 15 
measurement artefacts or localised phenomena.  16 
 17 
As noted in the AR5 (Hartmann et al., 2013) and substantiated in more recent studies, the tendencies in 18 
surface solar radiation are less coherent since the beginning of the 21st century, with evidence for continued 19 
brightening in different parts of Europe and in the US, some stabilization in China and India, and dimming in 20 
some other areas (Augustine and Dutton, 2013; Sanchez-Lorenzo et al., 2015; Manara et al., 2016; Soni et 21 
al., 2016; Wang and Wild, 2016; Wild, 2016; Jahani et al., 2018; Pfeifroth et al., 2018; Yang et al., 2018). 22 
The CERES-EBAF satellite-derived dataset of surface solar radiation (Kato et al., 2018) does not indicate a 23 
globally significant trend over the short period 2001–2012 (Zhang et al., 2015), whereas a statistically 24 
significant increase in surface solar radiation of +3.4 W m−2 per decade over the period 1996–2010 has been 25 
determined over the area in view of the geostationary satellite Meteosat in the record of the Satellite 26 
Application Facility on Climate Monitoring (CM SAF) (Posselt et al., 2014).  27 
 28 
Since the AR5 there is additional evidence that strong decadal changes in surface solar radiation occur also 29 
under cloud-free conditions, as shown for long term observational records in Europe, USA, China and India 30 
(Gan et al., 2014; Manara et al., 2016; Soni et al., 2016; Yang et al., 2019). This suggests that changes in the 31 
composition of the cloud-free atmosphere, primarily from aerosols, contribute to these variations, 32 
particularly since the second half of the 20th century (Wild, 2016). For Europe and East Asia, modelling 33 
studies also point to aerosols as an important factor for the variations in surface solar radiation by comparing 34 
simulations including and excluding historical aerosol variations (Golaz et al., 2013; Nabat et al., 2014; 35 
Persad et al., 2014; Folini and Wild, 2015; Turnock et al., 2015). On the other hand, further evidence for the 36 
influence of changes in cloudiness on dimming and brightening is emphasized in some studies (Augustine 37 
and Dutton, 2013; Parding et al., 2014; Stanhill et al., 2014; Pfeifroth et al., 2018). Thus, the relative 38 
contribution of aerosol and clouds to dimming and brightening is still debated. The influence of cloud-39 
mediated aerosol effects and direct aerosol radiative effects on dimming and brightening in a specific region 40 
may depend on the prevailing pollution levels (Wild, 2016) (see also Section 7.3.3).  41 
 42 
Climate models and reanalyses do not reproduce the full extent of observed dimming and brightening (Wild 43 
and Schmucki, 2011; Allen et al., 2013; Zhou et al., 2017a; Storelvmo et al., 2018), potentially pointing to 44 
inadequacies in the representation of aerosol mediated effects or related emission data. The inclusion of 45 
assimilated aerosol optical depth inferred from satellite retrievals in the MERRA2 reanalysis helped to 46 
improve the accuracy of the simulated surface solar radiation changes in China (Feng and Wang, 2019). This 47 
does not rule out the possibility that also non-aerosol related deficiencies in the representation of model-48 
simulated clouds and circulation, as well as an underestimation of natural variability, could further contribute 49 
to the lack of dimming and brightening in the models.  50 
 51 
The AR5 reported indications for an increase in surface downward thermal radiation over recent decades, in 52 
line with expectation from an increased radiative forcing from greenhouse gases. Updates of the longest 53 
observational records from the Baseline Surface Radiation Network continue to show an increase at the 54 
majority of the sites, in line with an overall increase predicted by climate models on the order of 2 W m-2 55 
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decade-1 over the coming decades (Wild, 2016). 1 
 2 
Uncertainties in measurements of surface turbulent fluxes continue to limit the feasibility of determining 3 
their decadal changes. Nevertheless, over the oceans, reanalysis-based estimates of linear trends from 1948 4 
to 2008 indicate high spatial variability and annual seasonality. Increases of 4 to 7 W m-2 decade-1 for latent 5 
heat and 2 to 3 W m-2 decade-1 for sensible heat in the western boundary current regions are mostly balanced 6 
by decreasing trends in other regions (Gulev and Belyaev, 2012). Over land, the terrestrial latent heat flux is 7 
estimated to have increased by 0.09 W m-2 decade-1 from 1989 to 1997, and subsequently decreased by 0.13 8 
W m-2 decade-1 from 1998 to 2005 due to enhanced soil moisture limitation mainly in the SH (derived from 9 
Mueller et al. (2013)). These trends are small in comparison to the uncertainty associated with satellite-10 
derived and in-situ observations, as well as from land surface models forced by observations and 11 
atmospheric reanalyses. Temporal and spatial variability in surface solar radiation and precipitation can 12 
affect the variability in terrestrial latent heat flux (Oliveira et al., 2011; Douville et al., 2013; Greve et al., 13 
2014). Ongoing advances in remote sensing of evapotranspiration from space (Mallick et al., 2016; Fisher et 14 
al., 2017; McCabe et al., 2017b, 2017a), as well as terrestrial water storage (Rodell et al., 2018) may 15 
contribute to constrain changes in latent heat flux. Meanwhile, there was also progress in benchmarking the 16 
terrestrial sensible heat flux (Siemann et al., 2018).  17 
 18 
In summary, since the AR5, multidecadal trends in surface solar radiation up to several percent per decade 19 
have been detected at many more locations also in remote areas. There is high confidence that these trends 20 
are of widespread nature, and not only a local phenomenon or a measurement artefact. The origins of these 21 
trends need further investigation, although there are indications that anthropogenic aerosols might have 22 
substantially contributed to these changes (medium confidence). There is medium confidence that downward 23 
thermal radiation has increased over recent decades, while there remains low confidence in the trends in 24 
surface sensible and latent heat.  25 
 26 
 27 
[START BOX 7.2 HERE] 28 
 29 
BOX 7.2: The Global Energy Budget and its Future Changes 30 
 31 
The global energy budget is a fundamental aspect of Earth’s climate system and its future evolution under 32 
climate change. It represents the balance between radiative forcing, Earth’s radiative response and the excess 33 
heat taken up by the climate system (i.e. total Earth system warming, Box 7.2, Figure 1d).This box assesses 34 
the global energy budget for the period 1971–2018 and the future evolution of total Earth System warming.  35 
 36 
The net ERF of the Earth system since 1971 has been positive (Box 7.2, Figure 1b, e; Section 7.3), mainly as 37 
a result of increases in atmospheric greenhouse gas concentrations (Chapter 2, Section 2.2.8 and Section 38 
7.3.2). These positive forcing agents have been partly offset by negative radiative ERFs, primarily due to 39 
anthropogenic aerosols (Section 7.3.3), which dominate the overall uncertainty. The net energy inflow to the 40 
Earth system from ERF since 1971 is estimated to be 825 ZJ (1 ZJ = 1021 J) with a 5% to 95%range of 44 to 41 
1453 ZJ (Box 7.2, Figure 1b). 42 
 43 
The ERF-induced warming of the climate system results in increased thermal radiation to space via the 44 
Planck response, but the picture is complicated by the variety of other climate and Earth system feedbacks 45 
(Section 7.4.2) that also influence Earth’s radiative response (Box 7.2, Figure 1c). The combined effects of 46 
these feedbacks can be estimated using atmospheric model simulations with prescribed historical sea-surface 47 
temperatures (SSTs) and sea-ice concentrations, resulting in a net feedback parameter, α, that varies as the 48 
SST pattern evolves over the historical record (Box 7.1, Section 7.4.3). Combining these model-based 49 
estimates of time-evolving α with the observed near-surface temperature change provides an estimate of the 50 
Earth radiative response (Box 7.2, Figure 1c). The net energy outflow from the Earth system associated with 51 
the radiative response since 1971 is estimated to be 838 ZJ with a 5% to 95% range of 605 to 1187 ZJ.  52 
 53 
The addition of the estimated ERF-induced changes and those associated with the radiative response lead to 54 
an implied energy change of –75 ZJ over the period 1971 to 2018, with a 5% to 95% range of –879 to 605 ZJ 55 
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(Box 7.2, Figure 1f). Within these large uncertainties, this estimate is consistent with an independent 1 
observation-based assessment of Earth’s energy storage change of 406 ZJ (5% to 95% range of 322 to 490 2 
ZJ) for the period 1971 to 2018, which is dominated by the increase in ocean heat storage (Box 7.2, Figure 3 
1d). Confidence in the observed total earth system warming is strengthened by a consistent analysis and 4 
closure of the observed global sea level budget (Chapter 9, Box 9.2). Overall, there is high confidence that 5 
the Earth’s energy budget is closed within the estimated uncertainties. However, the large uncertainties 6 
associated with historical anthropogenic aerosol forcing limits our ability to constrain future climate 7 
sensitivity from the historical record (Section 7.5).  8 
 9 
Future projections show that the Earth’s energy imbalance remains positive under all RCP scenarios 10 
analysed for CMIP5 for several centuries, contributing directly to long-term committed sea-level rise through 11 
the associated thermal expansion of the global oceans (Box 7.2, Figure 2, e.g. Nauels et al. (2017); Palmer et 12 
al. (2018)).The behaviour of total Earth system warming is in contrast to that of GSAT change in two 13 
fundamental ways. The first is the long-term commitment, with the total warming continuing for centuries 14 
even under strong mitigation scenarios, in contrast to GSAT that stabilises or even reduces (Chapter 4, 15 
Section 4.3.1.1). The second is that GSAT is much more prone to inter-annual-to-multi-decadal variability 16 
than total Earth system warming, making the latter a more suitable basis for monitoring the rate of 17 
anthropogenic global warming on decadal-to-interannual timescales (Palmer et al., 2011; Palmer and 18 
McNeall, 2014; Wijffels et al., 2016).  19 
 20 
[START BOX 7.2, FIGURE 1 HERE] 21 
 22 
Box 7.2, Figure 1:  Estimates of the net cumulative energy change (ZJ = 1021 Joules) for the period 1971–2018 23 

associated with: (a) Total Earth System Warming; (b) Effective Radiative Forcing; (c) Earth 24 
System Radiative Response. Shaded regions indicate the 5th to 95th percentile uncertainty range. 25 
The grey lines indicate equivalent heating rates in W m-2, expressed relative to Earth’s surface 26 
area. Panels (d) and (e) show the breakdown of components, as indicated in the legend, for Total 27 
Earth System Warming and Effective Radiative Forcing, respectively. Panel (f) shows the Earth 28 
Energy Budget assessed for the period 1971–2018, i.e. the consistency between Total Earth 29 
System Warming and the implied heat storage from Effective Radiative Forcing plus Earth 30 
System Radiative Response. Shading represents the 5% to 95% uncertainty range. Forcing and 31 
Response timeseries are computed using a baseline period of 1850–1900. [placeholder: Total 32 
Earth System Warming components to be updated to 2018 for final draft. Reported values for 33 
sum of components in main text are based on extrapolation of 2006–2015 rate to 2018. The 34 
aerosol ERF estimate is based on AR5 and will be updated for the final draft.]    35 

 36 
[END BOX 7.2, FIGURE 1 HERE] 37 
 38 
[START BOX 7.2, FIGURE 2 HERE] 39 
 40 
Box 7.2, Figure 2:  Two-layer model simulations of global mean surface temperature (left) and ocean thermal 41 

expansion (right) under the RCP2.6 and RCP4.5 scenarios, following Palmer et al. (2018). 42 
Shaded regions indicate the 90% confidence interval based on the ensemble standard deviation. 43 
Dotted lines indicate the ensemble mean response. Solid lines show a single CMIP5 model 44 
simulation to illustrate the characteristics of variability in each variable.  Projections are shown 45 
relative to a 1986–2005 baseline period.  46 

 47 
[END BOX 7.2, FIGURE 2 HERE] 48 
 49 
[END BOX 7.2 HERE] 50 
 51 
 52 
7.2.2.4 Poleward energy transports and their changes 53 
 54 
Satellite observations show a hemispheric contrast in the present-day TOA radiation budget, namely a net 55 
gain of radiative energy of 1.4 W m-2 in the Southern Hemisphere (SH) and a net loss in the Northern 56 
Hemisphere (NH) of 0.2 W m-2. This hemispheric contrast is due to more outgoing thermal radiation in the 57 
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warmer NH than the colder SH, whereas the absorption of solar radiation is approximately equal in both 1 
hemispheres (Voigt et al., 2013; Marshall et al., 2014; Loeb et al., 2016; Stephens et al., 2016; Liu et al., 2 
2017a). This hemispheric contrast gives rise to a net (atmosphere + ocean) cross-equatorial heat-transport of 3 
0.2 ± 0.08 PW (5% to 95% confidence level) from the SH to the NH associated with atmosphere and ocean 4 
circulations. From satellite-derived TOA and surface radiation budget observations combined with vertically 5 
integrated atmospheric energy divergence estimated from atmospheric reanalyses, Loeb et al. (2016) find 6 
that the oceans provide 0.44 ± 0.11 PW of northward cross-equatorial heat transport while the atmosphere 7 
transports 0.24 ± 0.07 PW in the opposite (southward) direction (Stephens et al., 2016). Using similar 8 
methods, Liu et al. (2015, 2017a) estimate the northward cross-equatorial ocean heat transport to be 0.32 ± 9 
0.13 PW, which is somewhat smaller than estimated by Loeb et al. (2016) due to the consideration of 10 
differential rates of heat storage in the NH and SH oceans. Forget and Ferreira (2019) estimate the northward 11 
cross-equatorial ocean heat transport to be 0.48 ± 0.3 PW based on eight air-sea heat flux products and 0.08 12 
± 0.5 PW based on an ocean reanalysis, with northward cross-equatorial heat transport in the Atlantic Ocean 13 
partially compensated by southward cross-equatorial heat transport in the Indian Ocean. 14 
 15 
To accomplish the southward cross-equatorial atmospheric heat transport, the location of the tropical rainfall 16 
peak in the Intertropical Convergence Zone (ITCZ) must be located in the NH in the annual mean (Kang et 17 
al., 2008; Frierson and Hwang, 2012; Donohoe et al., 2013; Bischoff and Schneider, 2014). There is high 18 
confidence that the northward cross-equatorial oceanic heat transport, owing to meridional overturning in the 19 
Atlantic Ocean (Chapter 9, Section 9.2.3.1), is a primary reason that the annual mean rainfall peak is located 20 
to the north of the equator (Frierson et al., 2013; Marshall et al., 2014), although other factors such as 21 
tropical processes and continental features may contribute as well (Xie and Philander, 1994; Takahashi and 22 
Battisti, 2007; Zhang and Song, 2010). 23 
 24 
The connection to tropical precipitation is one reason that atmospheric cross-equatorial heat transport 25 
derived from data products provides a key metric for the evaluation of energy budgets in climate models 26 
(Loeb et al., 2016; Lembo et al., 2019). The net cross-equatorial heat transport in the CMIP5 models is on 27 
average twice as large as observed, outside the range of observational uncertainties, because they absorb 28 
more solar radiation in the SH than the NH, while also emit more outgoing LW radiation in the NH 29 
compared to observations (Voigt et al., 2013; Loeb et al., 2016; Lembo et al., 2019). With cross-equatorial 30 
ocean heat transport that is near observational estimates (Loeb et al., 2016), this corresponds to too little 31 
simulated southward cross-equatorial atmospheric heat transport. This is reflected in a double ITCZ bias 32 
with too much rainfall to the south of the equator in the annual mean, which has been a persistent problem in 33 
multiple generations of climate models (Hwang and Frierson, 2013; Adam et al., 2016; Loeb et al., 2016; 34 
Stephens et al., 2016; Hawcroft et al., 2017). 35 
 36 
CMIP5 models capture the overall structure of the observed net heat transport, with peak poleward heat 37 
transport of about 6 PW in both hemispheres (Trenberth and Stepaniak, 2003), as well as the structure of 38 
atmospheric and oceanic heat transports separately (Figure 7.5). However, as for CMIP3 (Lucarini and 39 
Ragone, 2011; Donohoe and Battisti, 2012), many CMIP5 models show large (~1 to 2 PW) errors in the 40 
mid-latitudes where the magnitude of net heat transport peaks (Figure 7.5a; Donohoe et al., submitted; 41 
Lucarini et al., 2014). Model errors in the net heat transport arise from errors in both atmospheric and 42 
oceanic heat transport components, with the majority of models showing too little poleward ocean heat 43 
transport in mid-latitudes (Figure 7.5c). The differences in peak net heat transport between models have been 44 
linked to differences in their latitudinal structure of absorbed shortwave radiation, suggesting that the heat 45 
transport errors arise from cloud biases (Donohoe and Battisti, 2012).  46 
 47 
Changes in poleward (meridional) heat transport have important consequences for the large-scale patterns of 48 
surface warming in response to greenhouse gas forcing (Section 7.4.4). Figure 7.5 illustrates heat transport 49 
changes within CMIP5 models at a century after an idealized abrupt CO2 quadrupling. Models simulate 50 
several consistent features including increased poleward atmospheric heat transport and decreased ocean heat 51 
transport in both hemispheres (Figure 7.5e, f), except near 70N where the majority of models show 52 
increased poleward oceanic heat transport (Chapter 9, Section 9.2) and decreased poleward atmospheric heat 53 
transport (Hwang et al., 2011). Models do not agree on the sign of the net heat transport changes, which are 54 
generally small owing to strong compensations between atmospheric and oceanic heat transport changes at 55 
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all latitudes (Armour et al., 2019; Donohoe et al., submitted; He et al., 2019; Huang and Zhang, 2014), often 1 
referred to as Bjerknes compensation (Bjerknes, 1964). Chapter 9 describes improved process understanding 2 
of ocean heat transport since AR5, thereby providing high confidence in several key aspects of oceanic heat 3 
transport changes under global warming. 4 
 5 
 6 
[START FIGURE 7.5 HERE] 7 
 8 
Figure 7.5: Observation-based and CMIP5 climatological northward energy transports in the atmosphere and ocean 9 

(top) and projected heat transport changes at year 100 following CO2 quadrupling (bottom). (a) 10 
Climatological net heat transport inferred from CERES TOA (Armour et al., 2019; Donohoe et al., 11 
submitted) and simulated by CMIP5 models. (b) Climatological atmospheric heat transport calculated 12 
from the NCEP Reanalysis (Trenberth and Stepaniak, 2003) and simulated by CMIP5 models. (c) 13 
Climatological oceanic heat transport inferred from surface energy budgets (calculated as a residual 14 
between atmospheric heat transport divergence and TOA radiation fluxes). Grey shading shows 5% to 15 
95% range on observational estimates. For net meridional heat transport the range is estimated from inter-16 
annual variability and total CERES calibration error added in quadrature at each latitude. For atmospheric 17 
heat transport the range is estimated from inter-annual variability and for oceanic heat transport the range 18 
is estimated as a residual from the net and atmospheric heat transports with errors propagated in 19 
quadrature. (d-f) Anomalies in net, atmospheric, and implied oceanic heat transports simulated by CMIP5 20 
models under abrupt CO2 quadrupling relative to the pre-industrial control simulations which define their 21 
climatologies in (a)-(c) (following Donohoe et al., submitted). Implied ocean heat transport is derived 22 
from net sea-surface heat fluxes and thus does not account for the pattern of ocean heat storage. 23 

 24 
[END FIGURE 7.5 HERE] 25 
 26 
 27 
Since the AR5 there is also improved understanding of the causes of atmospheric heat transport changes 28 
under global warming. Atmospheric heat transport changes are commonly understood in terms of the heat 29 
flux divergence required to balance the anomalous energy input into the atmosphere at each latitude by 30 
radiative forcing, the radiative response to surface warming (i.e., radiative feedbacks), and local ocean heat 31 
uptake (Armour et al., 2019; Donohoe et al., submitted; Feldl and Roe, 2013; Huang et al., 2017; Huang and 32 
Zhang, 2014; Trenberth et al., 2014; Zelinka and Hartmann, 2012). ERF from CO2 peaks in the tropics, 33 
contributing to increased poleward atmospheric heat transport in both hemispheres. Those radiative 34 
feedbacks that preferentially add energy at the TOA to the tropical atmosphere (i.e. water-vapour and cloud 35 
feedbacks) contribute to increased mid-latitude poleward atmospheric heat transport, while those that 36 
preferentially remove energy at the TOA from the tropical atmosphere (lapse-rate feedback) oppose that 37 
increase. CMIP5 models project that net TOA radiation changes are relatively uniform with latitude under a 38 
wide range of climate forcings (Donohoe et al., submitted) owing to weak latitudinal structure in both the 39 
ERF and the radiative response to warming (Armour et al., 2019). This results in a near-invariance of net 40 
meridional heat transport where it peaks in mid-latitudes (Figure 7.5d) and requires strong compensation 41 
between atmospheric heat transport changes and patterns of surface ocean heat uptake, which are set by 42 
regional oceans circulations (Figure 7.5e,f; Armour et al., 2019). Models show that the TOA radiation 43 
changes relatively little with surface warming in the Arctic (owing to the local net radiative feedback being 44 
close to zero; Section 7.4.4). Consequently, a reduction in atmospheric heat transport into the Arctic is 45 
required to balance the local energy input by greenhouse gas forcing and ocean heat transport changes. The 46 
degree of compensation between atmospheric and oceanic heat transport depends on the latitudinal structure 47 
of radiative feedbacks (Rose and Ferreira, 2013; Dai et al., 2017; Yang et al., 2017) and thus varies across 48 
models.  49 
 50 
Atmospheric heat transport changes under global warming also reflect compensations between large changes 51 
in the poleward transport of latent energy and dry-static energy (sum of sensible and potential energy) 52 
(Alexeev et al., 2005; Donohoe et al., submitted; Held and Soden, 2006; Hwang et al., 2011; Hwang and 53 
Frierson, 2010). Models show that within the mid-latitudes, where eddies dominate the heat transport, a large 54 
increase in poleward latent energy transport arises from an increase in the equator-to-pole gradient in 55 
atmospheric moisture with global warming, as moisture in the tropics increases more than at the poles 56 
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(Chapter 8, Section 8.2). However, this change is compensated by a large decrease in dry-static energy 1 
transport arising from a weakening of the equator-to-pole temperature gradient with global warming as high 2 
latitudes warm more than the tropics. Models show that within the tropics, where the meridional overturning 3 
circulation dominates the heat transport, a large increase in equatorward latent energy transport arises from 4 
increased moisture in the equatorward branch of the Hadley Cell. However, this is compensated by large 5 
increases in poleward dry-static energy in the Hadley Cell. Energy balance models that approximate 6 
atmospheric heat transport in terms of a diffusive flux down the near-surface moist static energy (sum of dry-7 
static and latent energy) gradient are able to replicate the atmospheric heat transport changes seen within 8 
climate models (Flannery, 1984; Hwang and Frierson, 2010; Hwang et al., 2011; Rose et al., 2014; Roe et 9 
al., 2015; Merlis and Henry, 2018), including the partitioning of latent and dry-static energy transports (Siler 10 
et al., 2018b; Armour et al., 2019). 11 
 12 
There remain open questions regarding how atmospheric heat transport changes can be understood in terms 13 
of the changes in atmospheric circulation projected to occur under greenhouse gas forcing – such as a 14 
narrowing and shifting of the ITCZ (e.g., Huang et al., 2013; Neelin et al., 2003), a slowdown and poleward 15 
expansion of the Hadley Cell (Held and Soden, 2006; Lu et al., 2007), poleward shifts of mid-latitude jets 16 
and storm tracks (e.g., Barnes and Polvani, 2013; Yin, 2005), or changing planetary wave activity (e.g., 17 
Graversen and Burtu, 2016; Lee, 2014; Liu and Barnes, 2015). Much research since the AR5 has focused on 18 
establishing causal links between changes in regional atmospheric energy budgets and the response of 19 
atmospheric circulation (e.g., Ceppi and Hartmann, 2015; Ceppi and Shepherd, 2017; Donohoe et al., 2013, 20 
2014; Feldl and Bordoni, 2016; Mbengue and Schneider, 2018; Merlis, 2015; Voigt and Shaw, 2015, 2016), 21 
but these changes have yet to be reconciled with energetic and diffusive perspectives on atmospheric heat 22 
transport described above (Armour et al., 2019). 23 
 24 
These atmospheric heat transport changes strongly reflect the energetic demands set by the spatial patterns of 25 
radiative feedbacks and surface ocean heat uptake. They also reflect strong compensations between latent 26 
and dry-static energy transport changes. Latent energy transport changes shape the meridional pattern of 27 
global warming (Section 7.4.4). They also correspond to changes in the meridional pattern of moisture 28 
convergence and thus shape the patterns of rainfall under global warming (Held and Soden, 2006; Siler et al., 29 
2018b) (Chapter 8, Sections 8.2 and 8.4). Based on a high level of agreement across models and mature 30 
process understanding, there is high confidence in several features of projected poleward atmospheric heat 31 
transport changes under transient global warming. These include increased poleward atmospheric heat 32 
transport in mid-latitudes and small changes in (or even decreased) poleward heat transport into polar 33 
regions. 34 
 35 
 36 
7.3 Effective radiative forcing 37 
 38 
The effective radiative forcing (ERF) is the fundamental driver of climate change. It quantifies the energy 39 
gained or lost by the Earth system following an imposed perturbation. It is determined by the change in the 40 
net downward radiative flux at the top of the atmosphere (see Box 7.1) after allowing the system to adjust to 41 
the perturbation, but excluding changes in surface temperature. This section outlines the methodology behind 42 
ERF calculations in Section 7.3.1 and then assesses the ERF due to greenhouse gases (long-lived and short-43 
lived) in Section 7.3.2, aerosols in Section 7.3.3 and other natural and anthropogenic forcing agents in 44 
Section 7.3.4. These are brought together in an overall assessment of the present-day ERF and its evolution 45 
over the historical time period since 1750 until the present day, taken to be 2018 in this chapter. 46 
 47 
 48 
7.3.1 Methodologies and representation in models; overview of adjustments 49 
 50 
As introduced in Box 7.1, the IPCC AR5 report (Boucher et al., 2013; Myhre et al., 2013b) recommended 51 
ERF as a more useful measure of the climate effects of a physical driver than the stratospheric-temperature-52 
adjusted radiative forcing (SARF) adopted in earlier assessments. ERF extended the SARF concept to 53 
account for not only adjustments to stratospheric temperatures, but also responses in the troposphere arising 54 
from the forcing heating profile and effects on clouds, referred to as “adjustments”. These adjustments 55 
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include changes in the atmospheric temperature profile, as well as the consequences of these temperature 1 
changes on clouds and water vapour (Sherwood et al., 2015). For example, absorbing gases and aerosols 2 
directly heat the atmosphere, promoting decreased cloud fraction at the altitude of the heating and increased 3 
cloud fraction below. Effects of aerosols on clouds spatial or temporal extent are also included in the ERF, as 4 
are chemical and biospheric responses, e.g. to changes in CO2 concentration. This chapter defines 5 
“adjustments” as those changes caused by the forcing agent that are independent of changes in globally 6 
averaged surface temperature (magnitude or pattern), rather than defining a specific timescale. AR5 used the 7 
terminology “rapid adjustment”, but in this assessment it is the independence from surface temperature that 8 
is important rather than the rapidity. This means that changes in land or ocean surface temperature patterns 9 
(for instance as identified by Rugenstein et al. (2016)) are not included as adjustments even if they lead to 10 
zero global mean change. As in previous assessments (Forster et al., 2007; Myhre et al., 2013b) ERFs can be 11 
attributed simply to changes in the concentrations of the forcing agent or attributed to components of emitted 12 
gases or activities that are more closely related to human activity and factors we can control (see Figure 13 
7.10). These attributed ERFs can include chemical and biospheric responses to emitted gases, so that ERFs 14 
can be attributed to precursor gases even if they do not have a direct radiative effect themselves. 15 
 16 
The assessment of ERFs in the AR5 was preliminary as there was no agreed standard for estimating ERF and 17 
ERFs were only available for a few forcing agents, so for many forcing agents the report made the 18 
assumption that ERF and SARF were equivalent. A body of work since AR5 has computed ERFs across 19 
many more forcing agents and models, closely examined the methods of computation, quantified the 20 
processes involved in delivering adjustments and examined how well ERFs predict the ultimate temperature 21 
response. This work has led to a much-improved understanding and gives increased confidence in the 22 
quantification of radiative forcing across the report. These same techniques allow for an evaluation of 23 
radiative forcing within climate models as a key test of their ability to represent both historical and future 24 
temperature changes (Chapter 3, Section 3.3 and Chapter 4, Section 4.3).  25 
 26 
The ERF is the sum of the Instantaneous Radiative Forcing (IRF) plus the adjustments, so theoretically this 27 
could be constructed bottom-up by calculating the IRF and adding in the adjustments one-by-one or together. 28 
However, there is no simple way to derive the tropospheric adjustment terms without using a comprehensive 29 
climate model (e.g. CMIP5/6). There have been two main modelling approaches used to estimate ERF. The 30 
first approach is to perform a linear regression (Box 7.1, Equation 7.1) of the net change in the TOA 31 
radiation budget (ΔN) against change in global surface temperature (ΔT) following a step change in the 32 
concentration of the forcing agent (Gregory et al., 2004). The ERF (ΔF) is then derived from ΔN when 33 
ΔT=0. Regression-based estimates of ERF depend on the temporal resolution of the data used (Modak et al., 34 
2016, 2018). For the first few months of a simulation both surface temperature change and stratospheric 35 
temperature adjustment occur at the same time, leading to misattribution of the stratospheric temperature 36 
adjustment to the surface temperature feedback. Patterns of sea-surface temperature change also affect the 37 
forcing (Andrews et al., 2015). At multidecadal timescales the curvature of the relationship between net 38 
TOA radiation and surface temperature can also lead to biases in the ERF estimated from the regression 39 
method (Armour et al., 2013; Andrews et al., 2015; Knutti et al., 2017) (Section 7.4). A second modelling 40 
approach to estimating ERF is to approximately remove the climate feedback by constraining ΔT through  41 
prescribing the SSTs and sea-ice in a pair of “fixed-SST” simulations with and without the change in forcing 42 
agent (Hansen et al., 2005b). ΔFfsst is then given by the difference in ΔNfsst between the simulations. The 43 
fixed-SST method is found to yield less uncertainty than the regression method. Nevertheless a 30-year 44 
integration needs to be conducted in order to reduce the 5–95% confidence range to 0.1 W m-2 (Forster et al., 45 
2016), thus neither method is useful for quantifying the ERF of agents with forcing magnitudes of order 0.1 46 
W m-2 or smaller. The internal variability in the fixed-SST method can be further constrained by nudging 47 
winds towards a prescribed climatology (Kooperman et al., 2012). This allows the determination of the ERF 48 
of forcing agents with smaller magnitudes (Schmidt et al., 2018). 49 
 50 
Since the land surface temperature change ΔTland is not constrained in the fixed-SST method, this response 51 
needs to be removed for consistency with the Section 7.1 definition. The radiative response to ΔTland can be 52 
estimated through radiative transfer modelling in which a kernel, k, representing the change in radiative flux 53 
per change in unit land surface temperature change, is precomputed (Stjern et al., 2017; Smith et al., 2018b; 54 
Richardson et al., 2019; Tang et al., 2019). Thus ERF ≈ ΔFfsst - k ΔTland. Since k is negative this correction 55 
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increases the ERF (i.e. ΔFfsst underestimates the ERF). For 2×CO2 this term is around 0.2 Wm-2. Changing 1 
the land surface temperature will also induce changes in the tropospheric temperature and water vapour. 2 
These were estimated in Tang et al. (2019) to cause radiative responses of comparable magnitude to those 3 
directly from ΔTland. However, there is currently insufficient corroborating evidence to recommend including 4 
these corrections in this assessment. An alternative to computing the response terms directly is to use the 5 
climate feedback parameter α (Hansen et al., 2005b; Sherwood et al., 2015; Tang et al., 2019). Since the 6 
response to land surface temperature change is not expected to be the same as α for global mean temperature 7 
change (Section 7.4) the kernel approach will be used to correct for ΔTland in this assessment. 8 
 9 
The definition of ERF in Box 7.1 aims to have the cleanest separation between forcing (energy budget 10 
changes that are not mediated by surface temperature) and feedbacks (as energy budget changes that are 11 
mediated by surface temperature). The definition is also found below (see also Figure 7.6) to have the most 12 
constant feedback parameter across forcing agents.  13 
 14 
The individual adjustments can be calculated from fixed-SST simulations using radiative kernels (Vial et al., 15 
2013; Zelinka et al., 2014; Zhang and Huang, 2014; Smith et al., 2018b) or a partial radiative perturbation 16 
approach (Colman, 2015; Mülmenstädt et al., 2019). The radiative kernel approach is easier to implement 17 
through post-processing of output from multiple climate models, whereas it is recognized that the partial 18 
radiation perturbation approach gives a more accurate estimate of the adjustments within the setup of a single 19 
model and its own radiative transfer code.  20 
 21 
Instantaneous Radiative Forcings (IRFs) provide a useful test of climate model radiative transfer codes, but 22 
few recent experiments have tested IRFs computed within climate models (Pincus et al., 2016). The IRFs can 23 
be estimated from the ERFs by removing the adjustment terms using radiative kernels to quantify the 24 
adjustment for each meteorological variable. Kernel analysis by Chung and Soden (2015b) suggested a large 25 
spread in CO2 IRF and SARF across climate models, but their analysis was based on regressing variables in 26 
a coupled-ocean experiment rather than fixed-SST, and had low vertical resolution in the stratospheric 27 
kernels, which is shown to be problematic for IRF calculations (Smith et al., submitted, a). Smith et al. 28 
(2018b) find a similar spread in IRF for instantaneous doubling of atmospheric CO2 (2xCO2) and show that 29 
kernel methodological errors are typically smaller than 10%. This suggests the kernel method is a useful but 30 
not perfect way of estimating IRF. IRFs and adjustments computed from radiative kernels are shown for five 31 
forcing experiments across nine models in Figure 7.6 (Smith et al., 2018b). Table 7.2 shows the estimates of 32 
IRF, SARF and ERF for 2×CO2 from the nine climate models analysed in Smith et al. (2018b). The larger 33 
spread in IRF in climate models (±16% 5–95% confidence) compared to line-by-line models suggests there 34 
is still room from improvement in climate model radiative transfer codes (Pincus et al., 2016; Soden et al., 35 
2018). However the SARF shows improved agreement over previous studies (Pincus et al., 2016 and 36 
references therein) and are within 10% (except MPI-ESM) of the multi-model mean and the line-by-line 37 
assessment of 2×CO2 SARF in Section 7.3.2 (3.80 W m-2). The level of agreement in this and earlier 38 
intercomparisons gives high confidence in climate model representation of radiative forcing from greenhouse 39 
gases.  The 4×CO2 CMIP6 experiments (Smith et al., submitted, b) in Table 7.2 come from Earth system 40 
models with varying levels of complexity in aerosols and reactive gas chemistry. In the CMIP6 experimental 41 
setup, impacts of CO2 changes on aerosols and ozone cannot be separated and hence are included within the 42 
SARF diagnosis. In these particular models this leads to higher SARF than when only CO2 varies, however 43 
there are insufficient studies to make a formal assessment of composition adjustments to CO2. 44 
 45 
 46 
[START TABLE 7.2 HERE] 47 

 48 
Table 7.2: IRF, SARF, ΔFfsst, and ERF diagnosed from climate models for CO2 experiments. 2×CO2 data taken from 49 

fixed composition experiments (Smith et al., 2018b). 4×CO2 data taken from CMIP6 Earth system model 50 
experiments with interactive aerosols (and interactive gas phase chemistry in some)  (Smith et al., 51 
submitted, b).The radiative forcings from the 4xCO2 experiments are scaled by 0.5 for comparison with 52 
2xCO2. The bracketed numbers refer to only the subset of models for which the full kernel analysis was 53 
available. 54 

 55 
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2×CO2 (W m-2) 
(Smith et al., 2018b) 

IRF  SARF ΔFfsst ERF 

HadGEM2 2.13 3.45 3.37 3.58 
NorESM 2.19 3.67 3.50 3.70 
GISS 2.80 3.98 4.06 4.27 
CanESM2 2.52 3.68 3.57 3.77 
MIROC-SPRINTARS 2.70 3.89 3.62 3.82 
CESM1-CAM5 2.79 3.89 4.08 4.39 
HadGEM3 2.39 3.48 3.64 3.90 
IPSL-CM5A 2.39 3.50 3.39 3.61 
MPI-ESM 3.09 4.27 4.14 4.38 
CESM1-CAM4 2.50 3.50 3.62 3.86 
Multi-model Mean and  
5-95% confidence range 

2.60 ± 0.43 3.73 ± 0.44 3.70 ± 0.44 3.93 ± 0.48 

0.5×4xCO2 (W m-2) 
(Smith et al., submitted, b) 

    

CanESM5 2.42 3.85 3.80 4.02 
CESM2 2.30 3.71 4.46 4.71 
CNRM-CM6-1 3.00 4.20 4.00 4.22 
CNRM-ESM2-1 3.02 4.20 3.96 4.14 
GFDL-CM4 2.82 3.84 4.12 4.31 
GISS-E2-1-G 2.61 3.96 3.45 3.59 
HadGEM3-GC31-LL 2.40 3.82 4.04 4.28 
IPSL-CM6A-LR 2.64 4.02 4.00 4.24 
MIROC6 2.40 3.80 3.66 3.88 
MPI-ESM1-2-LR 2.48 3.94 4.18 4.41 
MRI-ESM2-0 2.66 4.00 3.82 4.00 
NorESM2-LM 2.34 3.75 4.08 4.31 
UKESM1-0-LL 2.48 3.67 3.97 4.21 
Multi-model Mean and  
5-95% confidence range 

2.58 ± 0.38 3.90 ± 0.27 3.97 ± 0.39 4.18 ± 0.43  

 1 
[END TABLE 7.2 HERE] 2 
 3 
 4 
[START FIGURE 7.6 HERE] 5 
 6 
Figure 7.6: The effective radiative forcing (ERF), instantaneous radiative forcing (IRF) and adjustment (a) and 7 

breakdown of the adjustment using radiative kernels (b) for five idealised forcing experiments across nine 8 
models. The 90% confidence range is shown. Note that the land-surface response is included in ERF.  9 
Data modified from Smith et al. (2018b). Separation of temperature adjustments into tropospheric and 10 
stratospheric contributions is approximate based on a fixed tropopause of 100 hPa at the equator, varying 11 
linearly in latitude to 300 hPa at the poles. The results are computed from idealized single forcing 12 
experiments with the following abrupt perturbations from present day conditions; doubling CO2 13 
concentration (2×CO2), tripling methane concentration (3×CH4), two percent increase in insolation 14 
(+2%Sol), ten times black carbon concentrations or emissions (10×BC), five times sulphate 15 
concentrations or emissions (5×Sul). 16 

 17 
[END FIGURE 7.6 HERE] 18 
 19 
 20 
ERFs have been found to yield more consistent values of global temperature change per unit forcing 21 
(“efficacy”) than SARF, i.e. 𝛼 shows less variation across different forcing agents (Hansen et al., 2005b; 22 
Marvel et al., 2016; Richardson et al., 2019). The definition of ERF used in this assessment, which excludes 23 
the land surface temperature response, brings the α values into the closest agreement (Richardson et al., 24 
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2019), although for individual models there are still variations particularly for more localised forcings. 1 
Figure 7.7 shows a comparison of climate sensitivity for different forcing agents using either SARF or ERF 2 
as the forcing. This figure contrasts the relatively constant (within 10%) ERF-based 1/𝛼 values with the 3 
variability in the SARF-based 1/𝛼(up to 40% lower sensitivity than for CO2). However, even for ERF, 4 
studies find that 𝛼 is not indentical across all forcing agents (Shindell, 2014; Shindell et al., 2015; Modak et 5 
al., 2018; Richardson et al., 2019). Analysis of the climate feedbacks (Kang and Xie, 2014; Duan et al., 6 
2018; Persad and Caldeira, 2018; Krishna-Pillai Sukumara-Pillai et al., 2019) suggests a weaker feedback 7 
(i.e. less negative 𝛼) and hence larger sensitivity for forcing of the higher latitudes (particularly the northern 8 
hemisphere). Nonetheless, as none of these variations are robust across models, climate sensitivities derived 9 
from 2xCO2 ERFs can be applied to ERFs from other forcing agents with approximately global distributions 10 
within a 10% range (medium confidence).  11 
 12 
In summary, this report adopts an estimate of ERF based on the change in TOA radiative fluxes in the 13 
absence of surface temperature change. This allows for a theoretically cleaner separation between forcing 14 
and feedbacks in terms of factors respectively unrelated and related to surface temperature change (Box 7.1). 15 
ERF can be computed from prescribed SST and sea-ice experiments after removing the TOA energy budget 16 
change associated with the land surface temperature response. To compare these results with line-by-line 17 
models the individual tropospheric adjustment terms can be removed to leave the SARF. SARFs for 2×CO2 18 
calculated by Earth System Models (ESMs) from this method agree within 10% with the line-by-line models.  19 
The new studies highlighted above suggest that climate feedback parameters computed within this 20 
framework have less variation across forcing agents. From high agreement and medium evidence, there is 21 
high confidence that an 𝛼 based on ERF as defined here varies by less than 10% across a range of typical 22 
forcing agents. For localised forcing patterns there are fewer studies and less agreement between them, 23 
resulting in low confidence that ERF is a suitable estimator of the resulting surface temperature response. 24 
 25 
 26 
[START FIGURE 7.7 HERE] 27 
 28 
Figure 7.7: Values of climate sensitivity (−1/𝛼) derived from ERF and SARF for twelve forcing experiments. Multi-29 

model means and full model ranges are shown. ERF is derived from prescribed SST and sea-ice 30 
experiments. The number of models analysed differs between experiments as indicated on the bars. Data 31 
from Richardson et al. (2019).The results are computed from idealized single forcing experiments with 32 
the following abrupt perturbations from present day conditions; doubling CO2 concentration (2xCO2), 33 
tripling methane concentration (3xCH4), two percent increase in insolation (2%Sol), ten times black 34 
carbon concentrations or emissions (10xBC), five times sulphate concentrations or emissions (5xSul), ten 35 
times sulphate concentrations or emissions over Asia only (10xSulAsia), ten times sulphate 36 
concentrations or emissions over Europe only (10xSulEur), change in CFC-12 mixing ratio to 5ppb 37 
(CFC-12), change in CFC-11 mixing to 5ppb (CFC-11), change in N2O mixing ratio to 1ppm (N2O), five 38 
times tropospheric ozone concentration (ozone), change in vegetation to pre-industrial conditions (land 39 
use). Black bars represent 90% range of model spread for 2xCO2, 3xCH4, +2%Sol, 10xBC and 5xSul and 40 
the full model range for other experiments. 41 

 42 
[END FIGURE 7.7 HERE] 43 
 44 
 45 
7.3.2 Well-Mixed Greenhouse Gases, ozone and stratospheric water vapour 46 
 47 
Line-by-line (LBL) models provide the most accurate calculations of the radiative perturbations due to well 48 
mixed greenhouse gases (WMGHGs) with errors in the IRF of less than 1% (Mlynczak et al., 2016; Pincus et 49 
al., submitted). They can calculate IRFs with no adjustments, or SARFs by accounting for the adjustment of 50 
stratospheric temperatures using a fixed dynamical heating. It is not possible with offline radiation models 51 
such as LBL models to account for other adjustments, so such models cannot currently calculate ERFs. The 52 
LBL model calculations of SARF for carbon dioxide, methane and nitrous oxide have been updated since 53 
AR5, which were based on Myhre et al. (1998). The new calculations (Etminan et al., 2016) include the 54 
shortwave forcing from methane and updates to the water vapour continuum (increasing the total SARF of 55 
methane by 25%) and account for the overlaps between carbon dioxide and nitrous oxide. The associated 56 
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simplified expressions are given in Supplementary Table SM7.1. The shortwave contribution to the 1 
instantaneous radiative forcing of methane has been confirmed independently (Collins et al., 2018). Since 2 
they incorporate known missing effects we assess the new calculations as being a more appropriate 3 
representation than Myhre et al. (1998). 4 
 5 
As described in Section 7.3.1, ERFs can be estimated solely using climate models, however the radiation 6 
schemes in climate models are approximations to LBL models with variations and biases in results between 7 
the schemes (Soden et al., 2018). Hence climate models alone should not be used to the make best estimates 8 
of the ERFs for the WMGHGs. This assessment therefore estimates ERFs from a combined approach that 9 
uses the SARF from LBL models and adds the tropospheric adjustments derived from climate models.  10 
 11 
In the AR5, the main information used to assess components of ERFs beyond SARF was from Vial et al. 12 
(2013) who found a near-zero non-stratospheric adjustment in 4×CO2 CMIP5 model experiments, with an 13 
uncertainty of ±10% of the total CO2 ERF. The near-zero adjustment came from an approximate balance 14 
between an increase due to water vapour and clouds and a decrease due to increased tropospheric and land 15 
surface temperatures. The different adjustment components comprising the ERF for 2×CO2 were broken 16 
down by Smith et al. (2018b) where the temperature adjustment was split into land-surface temperature and 17 
tropospheric temperature (Table 7.3). Explicit calculation of the land-surface temperature response allows 18 
determination of the ERF following the definition in Box 7.1 and section 7.3.1. This gives a tropospheric 19 
adjustment of +5% which we add to the Etminan et al. (2016) formula for SARF. Due to the agreement 20 
between the studies and the understanding of the physical mechanisms there is high confidence in the 21 
mechanisms underpinning the tropospheric adjustment. However, due to adjustments of different signs there 22 
is only medium confidence that the overall tropospheric adjustment is positive. 23 
 24 
The impact of WMGHGs in Earth system models can extend beyond their direct radiative effects to include 25 
impacts on ozone and aerosol chemistry and natural emissions of ozone and aerosol precursors. In some 26 
cases these can have a significant impacts on the overall radiative budget changes from perturbing 27 
WMGHGs within Earth system models (O’Connor et al., submitted; Thornhill et al., submitted). These 28 
composition adjustments are very model dependent and are not comparable with offline radiation 29 
calculations, so are not considered further here. 30 
 31 
All uncertainties in this section are given as 5-95% confidence range. 32 
 33 
 34 
[START TABLE 7.3 HERE] 35 
 36 
Table 7.3: Adjustments to CO2 forcing due to changes in stratospheric temperature, surface and tropospheric 37 

temperatures, water vapour, clouds and surface albedo, as a fraction of the SARF. Note that surface 38 
temperature changes are excluded from the forcing in our definition. 39 

 40 
Percentage of 
SARF 

Surface 
temperature 
response 

Tropospheric 
temperature 
adjustment 

Stratospheric 
Adjustment 

Surface 
albedo 
adjustment 

Water 
vapour 
adjustment 

Cloud 
adjustment 

Vial et al. 
(2013) 

-20%  2% 6% 11% 

Zhang and 
Huang (2014) 

-23% 26%  6% 16% 

Smith et al. 
(2018b) 

-6% -16% 30% 3% 6% 12% 

 41 
[END TABLE 7.3 HERE] 42 
 43 
 44 
 45 
 46 
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7.3.2.1 Carbon Dioxide 1 
 2 
The 2xCO2 ERF is assessed to be 4.0 ± 0.5 W m-2 (high confidence). Its assessed components are given in 3 
Table 7.4. The combined spectroscopic and radiative transfer modelling uncertainties give an uncertainty in 4 
the CO2 SARF of around 10% or less (Etminan et al., 2016; Mlynczak et al., 2016). The overall uncertainty 5 
in CO2 ERF is assessed as ±12%, as the more uncertain adjustments only account for a small fraction of the 6 
ERF (Table 7.3). The ERF estimate has increased by 0.3 W m-2 since the AR5 partly due to revised LBL 7 
model calculations, but mostly due to the combined effects of adjustments. The historical ERF estimate from 8 
CO2 is revised upwards from 1.82 ± 0.38 W m-2 in AR5 to 2.15 ±0.26 W m-2 in this assessment, from a 9 
combination of these revisions and the 4% rise in atmospheric concentrations between 2011 and 2018. These 10 
ERFs include any impacts on tropospheric adjustments due to changes in evapotranspiration from the CO2-11 
biophysical effects (Doutriaux-Boucher et al., 2009; Cao et al., 2010; Richardson et al., 2018b). The climate 12 
model estimates of 2xCO2 ERF (Table 7.2) lie within 11% of the assessed value. The definition of ERF can 13 
also include further biophysical effects for instance on dust and biogenic emissions from the land and ocean, 14 
but these are not typically included in the modelling set up for 2xCO2 ERF and would make comparison with 15 
LBL calculations difficult.  16 
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 1 
[START TABLE 7.4 HERE] 2 
 3 
Table 7.4: Assessed ERF, SARF and tropospheric adjustments to 2xCO2 change since preindustrial times compared to the AR5 assessed range (Myhre et al., 2013b). Adjustments 4 

are due to changes in tropospheric temperatures, water vapour, clouds and surface albedo and land cover. Uncertainties based on multi-model spread in Smith et al. 5 
(2018b). Note some of the uncertainties are anticorrelated. 6 

 7 
 8 

2xCO2  
forcing 

AR5 
SARF/ERF 

SARF 
(W m-2) 

Tropospheric 
temperature 
adjustment  
(W m-2) 

Water vapour 
adjustment  
(W m-2) 

Cloud 
adjustment 
(W m-2) 

Surface albedo and 
land cover adjustment 
(W m-2) 

Total tropospheric 
adjustment (W m-2) 

ERF  
(W m-2) 

2xCO2 ERF 
components  

3.7 3.80 -0.59 0.24 0.43 0.12 0.20 4.00 

5%-95% 
uncertainty 
ranges as 
percentage 
of ERF 

10% 
(SARF) 

20%  
(ERF) 

<10% ±6% ±4% ±7% ±2% ±7% ±12% 

 9 
[END TABLE 7.4 HERE] 10 
 11 
 12 
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7.3.2.2 Methane 1 
 2 
CH4 adjustments have been calculated in nine climate models by Smith et al. (2018b). Since CH4 is known to 3 
absorb in the shortwave near infrared, only adjustments from those models including this absorption are 4 
taken into account. For these models the adjustments are robustly acting as a negative forcing because the 5 
shortwave absorption leads to tropospheric heating and changes in clouds. The adjustment is –14% ± 15% 6 
which counteracts much of the increase in SARF identified by Etminan et al. (2016). Modak et al. (2018) 7 
also found negative forcing adjustments from a methane perturbation including shortwave absorption in the 8 
NCAR CAM5 model, in agreement with the above assessment. The uncertainty in the shortwave component 9 
leads to a higher spectroscopic uncertainty (14%) than for CO2 (Etminan et al., 2016). When combined with 10 
the uncertainty in the adjustment, this gives an overall uncertainty of 20% (5% – 95% range. There is high 11 
confidence in the spectroscopic revision but only medium confidence in the adjustment modification. The 12 
historical ERF estimate from CH4 is revised upwards from 0.48 ± 0.10 W m-2 in AR5 to 0.54 ± 0.11 W m-2 in 13 
this assessment 14 
 15 
 16 
7.3.2.3 Nitrous oxide 17 
 18 
There have been no studies of the adjustments to N2O at the time of this assessment. Nevertheless, the 19 
adjustments might be expected to be similar to those from CO2, without the physiological effects. The 20 
tropospheric adjustments to N2O are therefore assessed to be 0 ± 10% with low confidence. The 21 
spectroscopic uncertainty is ± 10%  (Etminan et al., 2016), giving an overall uncertainty of ± 14%. The 22 
historical ERF estimate from N2O is revised upwards from 0.17 ± 0.06 W m-2 in AR5 to 0.19 ± 0.03 W m-2 23 
in this assessment. 24 
 25 
 26 
7.3.2.4 Halogenated species 27 
 28 
The stratospheric-temperature adjusted radiative efficiencies for halogenated species were reviewed 29 
extensively using LBL models in (Hodnebrog et al., 2013) as used in AR5. Many halogenated species have 30 
lifetimes short enough that they can be considered short-lived climate forcers (Box 6.1). As such, although 31 
they are considered here as WMGHGs, they are not completely “well-mixed” and their vertical distributions 32 
are taken into account when determining their radiative efficiencies. The WMO (World Meteorological 33 
Organization, 2018) included more recent spectroscopic studies and updated the species lifetimes. They are 34 
therefore used for radiative efficiencies in this assessment.  35 
 36 
As with N2O there have been no studies of the adjustments to halogenated species at the time of this 37 
assessment. The tropospheric adjustments are therefore assessed to be 0 ± 10% with low confidence. The 38 
spectroscopic uncertainties are 13% and 23% for species with lifetimes greater than and less than 5 years 39 
respectively (Hodnebrog et al., 2013). The overall uncertainty in the ERFs of halogenated species is 40 
therefore assessed to be 16% and 25% depending on the lifetime. The ERF from CFCs is slowly decreasing, 41 
but this is more than compensated for by the increased forcing from the replacement species (HCFCs and 42 
HFCs). The ERF from HFCs (which will be controlled under the Kigali Amendment to the Montreal 43 
Protocol) has increased by 0.012 ± 0.03 W m-2. Thus, the concentration changes mean that the total ERF 44 
from halogenated species has increased since AR5 from 0.360 ± 0.036 W m-2 to 0.376 ± 0.058 W m-2 (Table 45 
7.5). 46 
 47 
 48 
7.3.2.5 Ozone 49 
 50 
Estimates of the pre-industrial to present-day tropospheric ozone radiative forcing are based entirely on 51 
models. The lack of pre-industrial ozone measurements prevents an observational determination. There have 52 
been two studies of ozone ERFs, each based on a single model (MacIntosh et al., 2016; Xie et al., 2016). 53 
These did not report corresponding IRFs or SARFs, so it is not possible to quantify the effects of 54 
tropospheric adjustments. MacIntosh et al. (2016) presented associated changes in cloud cover, suggesting 55 
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that increases in stratospheric or upper tropospheric ozone would decrease high clouds and increase low 1 
clouds (giving a negative forcing from adjustment), whereas an increase in lower tropospheric ozone 2 
decreases low cloud (a positive adjustment).  Changes in circulation due to decreases in stratospheric ozone 3 
are found to affect southern hemisphere clouds and the atmospheric levels of sea salt aerosol which would 4 
contribute additional adjustments, possibly of comparable magnitude to the SARF from stratospheric ozone 5 
depletion (Grise et al., 2013, 2014). 6 
 7 
Without sufficient information yet to assess the ERFs, this assessment relies on offline radiative transfer 8 
calculations of SARF for both tropospheric and stratospheric ozone. Since the AR5, the Coupled Chemistry 9 
Model Initiative (CCMI) project has used coupled chemistry-climate models to simulate historical trends in 10 
tropospheric and stratospheric ozone (Morgenstern et al., 2017). Two of these models were used to generate 11 
the ozone forcing data for CMIP6. The SARFs from the CMIP6 ozone forcing were calculated with an 12 
offline radiative transfer model (Checa-Garcia et al., 2018). The values for the 1850–1860 to 2009–2014 13 
SARF were 0.33 W m-2 for changes in tropospheric ozone, and –0.03 W m-2 for changes in stratospheric 14 
ozone. These are in agreement with the AR5 values of 0.36 W m-2 (0.18 to 0.54 W m-2 5% to 95% range) and 15 
–0.05 (–0.15 to 0.05) W m-2 for the period 1850 to 2011 (Myhre et al., 2013b). For tropospheric ozone the 16 
assessed central estimate follows Checa-Garcia et al. (2018) and maintains the 50% uncertainty (5%–95% 17 
range) from AR5 to give 0.33 (0.16 to 0.50) W m-2. AR5 used a 1750 to 1850 SARF of 0.04 W m-2 following 18 
Skeie et al.  (2011), however this study assumed larger changes in emissions over this period than in CMIP6 19 
(Van Marle et al., 2017; Hoesly et al., 2018). For reference to 1750 the FaIR model (Smith et al., 2018a) is 20 
used to scale the forcing back using the CMIP6 emissions, giving an additional 0.02 W m-2. There is 21 
insufficient evidence of any tropospheric ozone trend since 2014, so this is assumed to be flat. The overall 22 
assessed estimate is 0.35 (0.18 to 0.52, 5%–95% range) W m-2 for the change in tropospheric ozone 1750 to 23 
2018. 24 
 25 
Stratospheric ozone has been observed by satellite since 1979 (Stolarski and Frith, 2006), covering the 26 
period over which much of the stratospheric ozone changes have occurred, see Chapter 2, Section 2.2.5.2. 27 
However, these measurements are not able to constrain the forcing (Chapter 6, Section 6.2.2.5.2). In the 28 
absence of further evidence, we maintain the AR5 central estimate, but reduce the upper bound to zero as 29 
there is no evidence to support a positive SARF. This gives an assessed SARF of –0.05 (–0.15 to 0.0) W m-2 30 
for 1850 to 2014 ERF. As the changes in stratospheric ozone since 2014 are small (Chapter 6, Section 31 
6.2.2.5.2), the same estimate is adopted for 1750–2018. There are currently no estimates of the adjustments 32 
to stratospheric ozone beyond stratospheric temperature. Hence the assessed value for ERF is the same as 33 
SARF. 34 
 35 
 36 
7.3.2.6 Stratospheric water vapour 37 
 38 
This assessment considers direct anthropogenic impacts on stratospheric water vapour by oxidation of 39 
methane. Stratospheric water vapour may also change as an adjustment to species that warm or cool the 40 
upper troposphere-lower stratosphere region, in which case it should be included as part of the ERF for that 41 
species. Changes in global surface temperature are also associated with changes in stratospheric water 42 
vapour as part of the water vapour climate feedback (section 7.4.2.2). There have been no updates to the 43 
SARF estimate of 0.07 W m-2 of water vapour from methane oxidation by Myhre et al. (2007), and no 44 
estimate of associated tropospheric adjustments. The AR5 SARF estimate (Myhre et al., 2013b) is retained 45 
as an estimate of the ERF. 46 
 47 
 48 
7.3.2.7 Synthesis 49 
 50 
The WMGHG ERF over 1750 to 2018 is assessed to be 3.26±0.29 W m-2. It has increased by 0.30 W m-2 51 
from 2011 (the time period for AR5) to 2018. Most of this has been due to an increase in CO2 concentration 52 
(0.25 ± 0.03 W m-2), with increases in CH4, N2O and halogens adding 0.02, 0.02 and 0.01 W m-2 respectively 53 
(Table 7.5). Changes in the radiative efficiencies (including adjustments) of CO2 and CH4 have increased the 54 
ERF by an additional 0.13 W m-2 compared to the AR5 values. Note that the ERFs in this section do not 55 
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include chemical impacts of WMGHGs on production or destruction of ozone or aerosol formation. The 1 
ERFs for tropospheric ozone are slightly decreased compared to the AR5 due to a slight reduction in the 2 
assumed ozone precursor emissions in CMIP6 compared to CMIP5. The ERFs for stratospheric ozone and 3 
water vapour are unchanged. 4 
 5 
 6 
[START TABLE 7.5 HERE] 7 
 8 
Table 7.5: Present-day mole fractions in ppt (pmol mol–1) (except where specified) and ERF (in W m–2) for the 9 

WMGHGs. Data taken from Chapter 2, Section 2.2. The data for 2011 (the time of the AR5 estimates) 10 
are also shown. Some of the concentrations vary slightly from those reported in AR5 owing to averaging 11 
different data sources. For some of the halogenated species the ERF is less than 0.5 mW m-2. Radiative 12 
efficiencies for the minor gases are given in the appendix. Uncertainties in the RF for all gases are 13 
dominated by the uncertainties in the radiative efficiencies. Tabulated global mixing ratios of all well 14 
mixed GHGs and ERFs from 1750-2018 are provided in Annex V. 15 

 16 
 Concentration ERF with respect to 1850 ERF with respect to 1750 
 2018 2011 2018 2011 2018 2011 

       CO2 (ppm) 407 390 1.99±0.24 1.74 2.15±0.26 1.90 
       CH4 (ppb) 1859 1803 0.49±0.10 0.47 0.54±0.11 0.52 
       N2O (ppb) 331 324 0.18±0.03 0.16 0.19±0.03 0.17 
     CFC-11 228 237 0.059 0.062 0.059 0.062 
     CFC-12 508 528 0.163 0.169 0.163 0.169 
     CFC-13 3.21 3.04 0.001 0.001 0.001 0.001 
    CFC-113 70.4 74.6 0.021 0.022 0.021 0.022 
    CFC-115 8.62 8.39 0.002 0.002 0.002 0.002 
    HCFC-22 244 213 0.051 0.045 0.051 0.045 
  HCFC-141b 24.4 21.4 0.004 0.003 0.004 0.003 
  HCFC-142b 22.3 20.8 0.004 0.004 0.004 0.004 
     HFC-23 31.2 24.1 0.006 0.004 0.006 0.004 
     HFC-32 16.5 5.15 0.002 0.001 0.002 0.001 
    HFC-125 26.3 10.3 0.006 0.002 0.006 0.002 
   HFC-134a 102 62.7 0.016 0.010 0.016 0.010 
   HFC-143a 22.4 12.0 0.004 0.002 0.004 0.002 
   HFC-152a 7.01 6.55 0.001 0.001 0.001 0.001 
       SF6 9.59 7.30 0.005 0.004 0.005 0.004 
     SO2F2 2.41 1.71 0.000 0.000 0.000 0.000 
       NF3 1.83 0.83 0.000 0.000 0.000 0.000 
       CF4 84.6 79.0 0.005 0.004 0.005 0.004 
      C2F6 4.76 4.17 0.001 0.001 0.001 0.001 
   CH3CCl3 1.90 6.29 0.000 0.000 0.000 0.000 
      CCl4 78.8 86.1 0.013 0.015 0.013 0.015 

      CFCs1   0.253 0.263 0.253 0.263 
     HCFCs   0.059 0.052 0.059 0.052 
HFCs   0.036 0.021 0.036 0.021 
  Halogens   0.376±0.075 0.363 0.376±0.058 0.363 

     Total   3.04±0.27 2.74 3.26±0.29 2.96 
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1 Includes CFC-114, Halon-1211, Halon-1301 and Halon-2401 1 
 2 
[END TABLE 7.5 HERE] 3 
 4 
 5 
7.3.3 Aerosols 6 
 7 
Anthropogenic activity, and particularly burning of biomass and fossil fuel, has led to a substantial increase 8 
in aerosol emissions and atmospheric aerosol concentrations since pre-industrial times (Chapter 6, Figure 9 
6.3). This is particularly true for sulphate and carbonaceous aerosols (Chapter 6, Section 6.2.1). This has in 10 
turn led to changes in the scattering and absorption of incoming solar radiation, and also affected cloud 11 
micro- and macro-physics and thus cloud radiative properties. The aerosol changes have been strongly 12 
heterogeneous in both space and time and have impacted not just Earth’s radiative energy budget but also air 13 
quality (Chapter 6, Section 6.1). Here, the assessment is focused exclusively on the global mean impacts of 14 
aerosols on Earth’s energy budget, while regional changes are assessed in Chapter 6. 15 
 16 
Consistent with the terminology introduced in Box 7.1, the effective radiative forcing due to changes from 17 
direct aerosol-radiation interactions (ERFari) is equal to the sum of the instantaneous TOA radiation change 18 
(IRFari) and the subsequent rapid adjustments. Likewise, the effective radiative forcing following 19 
interactions between anthropogenic aerosols and clouds (ERFaci, previously referred to as “indirect aerosol 20 
effects”) can be divided into an instantaneous forcing component (IRFaci) due to smaller but more numerous 21 
cloud droplets and subsequent adjustments to cloud water content or extent (spatial and/or temporal). The 22 
same way these changes are induced by an increase in the abundance of cloud condensation nuclei (CCN), a 23 
change in the abundance of ice nucleating particles (INPs), and thus ice crystal number concentration, could 24 
also have occurred since pre-industrial times. If so, this would have impacted the properties of mixed-phase 25 
and cirrus (ice) clouds, and thus contributed to ERFaci. In the following, an assessment of IRFari and ERFari 26 
(Section 7.3.3.1) focusing on satellite-based evidence (Section 7.3.3.1.1) as well as model-based evidence 27 
(Section 7.3.3.1.2) is presented. The same lines of evidence are presented for IRFaci and ERFaci in Section 28 
7.3.3.2. The above lines of evidence are thereafter compared with TOA energy budget constraints on the 29 
total aerosol ERF (Section 7.3.3.3) before an overall assessment of the total aerosol ERF is given in 7.3.3.4. 30 
For the model-based evidence, all estimates are generally valid for the time period 1750 to 2014 (when 31 
CMIP6 historical simulations end), while for satellite-based evidence estimates are valid for 1750 to present-32 
day, where present-day is equivalent to the 2010s. For the overall assessment of total aerosol ERF, these 33 
estimates are converted to 1750-2018 values. 34 
 35 
 36 
7.3.3.1 Aerosol-radiation interactions 37 
 38 
Since the AR5, deeper understanding of the processes that govern aerosol radiative properties, and thus 39 
IRFari, has emerged. Combined with new insights into adjustments to aerosol forcing, this progress has 40 
informed new satellite- and model-based estimates of IRFari and ERFari and associated uncertainties. 41 
 42 
 43 
7.3.3.1.1 Satellite-based lines of evidence 44 
The total effect of aerosols on present-day radiative fluxes, REari, is easier to estimate from observations 45 
than IRFari, because the latter requires knowledge of pre-industrial aerosol distributions. Since the AR5, 46 
estimates of REari have progressed by including aerosols above land surfaces and clouds. Using passive and 47 
active aerosol remote sensing retrievals, Lacagnina et al. (2017) and Oikawa et al. (2018) both estimate a 48 
globally-averaged, all-sky REari of −2.1 W m−2 (likely ranges of –3.2 to –1.0 and –1.8 to –2.4 W m−2, 49 
respectively). That estimate is smaller in magnitude than the average over ocean-only of −4 to −6 W m−2 50 
assessed in AR5 (Boucher et al., 2013) because REari is less negative over more reflective surfaces. 51 
 52 
Estimating IRFari requires an estimate of industrial-era changes in Aerosol Optical Depth (AOD) and 53 
absorption AOD, which are often taken from global aerosol model simulations. Since the AR5, updates to 54 
methods of estimating IRFari based on aerosol remote sensing or data-assimilated reanalyses of atmospheric 55 
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composition have been published. Ma et al. (2014) applied the method of Quaas et al. (2008) to updated 1 
broadband radiative flux measurements from CERES, MODIS-retrieved AODs, and modelled anthropogenic 2 
aerosol fractions to find a clear-sky IRFari of −0.6 W m−2. This would translate into an all-sky estimate of 3 
about −0.3 W m−2 based on the clear-to-all-sky ratio implied by Kinne (2019). Rémy et al. (2018) applied the 4 
methods of Bellouin et al. (2013b) to the reanalysis by the Copernicus Atmosphere Monitoring Service 5 
(CAMS), which assimilates MODIS total AOD. Their estimate of IRFari varies between −0.5 W m-2and −0.6 6 
W m−2 over the period 2003–2018, and they attribute those relatively small variations to variability in 7 
biomass-burning activity. The finding that clear-sky IRFari remains constant over 2000–2012 despite the 8 
redistribution of aerosols from high latitudes towards the Equator (Chapter 2, Section 2.2.6 and Chapter 6, 9 
Section 6.2.1) was also found by Murphy (2013). Kinne (2019) updated his monthly total AOD and 10 
absorbing AOD climatologies, obtained by blending multi-model averages with ground-based sun-11 
photometer retrievals, to find a best estimate of IRFari of −0.4 W m−2. The updated IRFari estimates are all 12 
scattered around the midpoint of the IRFari range of −0.35 ± 0.5 W m−2 assessed by AR5 (Boucher et al., 13 
2013).  14 
 15 
The more negative estimate of Rémy et al. (2018) is due to neglecting a small positive contribution from 16 
absorbing anthropogenic aerosols above clouds and obtaining a larger anthropogenic fraction than Kinne 17 
(2019). However, Rémy et al. (2018) did not update their assumptions on black carbon anthropogenic 18 
fraction and contribution to anthropogenic absorption to reflect recent downward revisions (Section 19 
7.3.3.1.2). Kinne (2019) made those revisions, so more weight is given to that study to re-assess the best 20 
estimate of satellite-based IRFari to be only slightly stronger than reported in the AR5 at –0.4 W m-2. The 21 
very likely 5% to 95% range given by the AR5 was ±0.5 W m-2 (Boucher et al., 2013). Continuing 22 
uncertainties in the anthropogenic fraction of total AOD and challenges to the basis of satellite-based 23 
approaches, combined with improved knowledge of anthropogenic absorption result in a slightly narrower 24 
5% to 95% range here of ±0.4 W m-2. The assessed best estimate and likely IRFari range from satellite-based 25 
evidence is therefore –0.4 ± 0.4 W m-2(medium confidence). 26 
 27 
 28 
7.3.3.1.2 Model-based lines of evidence 29 
While satellite-based evidence can be used to estimate IRFari, global climate models are needed to calculate 30 
the associated adjustments and the resulting ERFari, using the methods described in Section 7.3.1. This 31 
calculation is complicated by the fact that the adjustments of clouds caused by absorbing aerosols through 32 
changes in the thermal structure of the atmosphere (termed the semidirect effect in AR5) are not easily 33 
distinguished from cloud adjustments in ERFaci.  34 
 35 
Model-based estimates of IRFari 36 
 37 
A range of developments since AR5 affect model-based estimates of IRFari. Global emissions of most major 38 
species are found to be higher in the current inventories, and with increasing trends. Emissions of the 39 
sulphate precursor SO2 are a notable exception; they are similar to those used in the AR5 and approximately 40 
time-constant over the last couple of decades (Hoesly et al., 2018). Myhre et al. (2017) showed, in a multi-41 
model experiment, that the net result of these revised emissions is an IRFari trend that is flat in recent years 42 
(post-2000), a finding confirmed by a single-model study by Paulot et al. (2018). Another recent 43 
development is that the positive forcing from the absorbing component of organic aerosols has been found to 44 
be somewhat stronger than that assessed in the AR5.  45 
 46 
In the AR5 assessment of black carbon IRFari was markedly strengthened in confidence by the review 47 
provided by Bond et al. (2013), where a key factor was a perceived underestimate of modelled atmospheric 48 
absorption when compared to Aeronet observations (Boucher et al., 2013). This assessment has since been 49 
revised considering new knowledge of the impact of the temporal resolution of emission inventories (Wang 50 
et al., 2016), the representativeness of Aeronet sites (Wang et al., 2018), issues with comparing their 51 
absorption retrieval to models (Andrews et al., 2017a), and the ageing (Peng et al., 2016), lifetime (Lund et 52 
al., 2018b) and average optical parameters (Zanatta et al., 2016) of black carbon.  53 
 54 
Consistent with the above updates, Lund et al. (2018a) estimated the net IRFari between 1750 and 2014 to be 55 
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–0.17 W m-2, using CEDS emissions (Hoesly et al., 2018) as input to the chemical transport model 1 
OsloCTM3. They attributed the weaker estimate relative to AR5 numbers (–0.35 ± 0.5 W m-2; Myhre et al., 2 
2013a) to stronger absorption by organic aerosol, updated parameterization of black carbon absorption, and 3 
slightly reduced sulphate cooling. Broadly consistent with Lund et al. (2018a), Petersik et al. (2018) found an 4 
IRFari simulated by ECHAM6-HAM2 of –0.19 W m-2, while Zhou et al. (2017b) estimated an IRFari 5 
between 1850 and 2000 of –0.23 W m-2 using the BCC_AGCM2.0_CUACE/Aero model. These model 6 
estimates can be compared to the IRFari (5 to 95% confidence) range of -0.45to -0.05 W m-2 that emerged 7 
from a comprehensive review in which an observation-based estimate of anthropogenic AOD was combined 8 
with model-derived ranges for all relevant aerosol radiative properties (Bellouin et al., 2019). 9 
 10 
Based on the above studies, the assessed best estimate and very likely RFari range from model-based 11 
evidence alone is therefore –0.2 ±0.2 W m-2 (medium confidence). This represents a significant decrease 12 
compared to the AR5 due to stronger organic aerosol absorption, further developed black carbon 13 
parameterizations and a somewhat reduced sulphate cooling in recent years.  14 
 15 
Model-based estimates of ERFari  16 
 17 
Since AR5 considerable progress has been made in the understanding of rapid adjustments in response to a 18 
wide range of climate forcings, as discussed in Section 7.3.1. The adjustments in ERFari are principally 19 
caused by cloud changes, but also by lapse rate and atmospheric water vapour changes, all mainly associated 20 
with absorbing aerosols (e.g., black carbon). Stjern et al. (2017) found that for black carbon, about 30% of 21 
the (positive) IRFari is offset by adjustments of clouds (specifically, an increase in low clouds and decrease 22 
in high clouds) and lapse rate, by analysing simulations by five Precipitation Driver Response Model 23 
Intercomparison Project (PDRMIP) models. Similar results have been reported from idealized experiments 24 
using modified black carbon wet removal and offline radiative transfer (Hodnebrog et al., 2014;  Samset and 25 
Myhre, 2015). Smith et al. (2018b) considered more models participating in PDRMIP and suggested that half 26 
the IRFari was offset by rapid adjustments for black carbon. Using the MIROC-SPRINTARS model, Zhao 27 
and Suzuki (2019) and Takemura and Suzuki (2019)also found that the IRFari of black carbon is largely 28 
offset by rapid adjustments. However, Allen et al. (2019) found a positive rapid adjustment for black carbon 29 
and suggested that most models simulate negative rapid adjustment for black carbon because the 30 
corresponding aerosol atmospheric heating profiles are too vertically uniform in the mid- and low 31 
troposphere. 32 
 33 
Zelinka et al. (2014) used the Approximate Partial Radiation Perturbation technique to quantify the ERFari 34 
between 1860 and 2000 in nine CMIP5 models; they estimated the ERFari (accounting for a small 35 
contribution from longwave radiation) to be –0.25 ± 0.22 W m-2 (Table 7.6). However, it should be noted 36 
that in Zelinka et al. (2014) the semidirect effect of aerosols is not included in ERFari but in ERFaci. The 37 
corresponding estimate emerging from the CMIP6 RFMIP (Radiative Forcing Model Intercomparison 38 
Project) simulations is –0.21 ± 0.18 W m-2(Smith et al., submitted, b), which is generally supported by 39 
single-model studies published post-AR5 (Zhang et al., 2016; Fiedler et al., 2017; Nazarenko et al., 2017; 40 
Zhou et al., 2017c, 2018; Grandey et al., 2018). Combining CMIP5 and CMIP6 results using expert 41 
judgement, ERFari based on model-based evidence is assessed to be –0.25 ± 0.25 W m-2 42 
 43 
 44 
7.3.3.1.3 Overall assessment of IRFari and ERFari 45 
Combining the observation-based estimate and 5% to 95% range of IRFari of –0.4 ± 0.4 W m-2 with the 46 
corresponding model-based estimate and range of –0.2 ± 0.2 W m-2, emphasizing the extensive work 47 
presented in Bellouin et al. (2019), expert judgement is used to assess IRFari to –0.25 ± 0.25 W m-2 (medium 48 
confidence). ERFari from model-based evidence is –0.25 ± 0.2 W m-2, which suggests a small negative 49 
adjustment of –0.05 W m-2, consistent with recent literature on the topic. Adding this small adjustment to our 50 
assessed IRFari estimate of –0.25 W m-2 we arrive at an assessment of the best estimate and 5% to 95% 51 
confidence range for ERFari of –0.3 ± 0.3 (medium confidence). This assessment is consistent with the 5% to 52 
95 % confidence range that emerged from Bellouin et al. (2019) of –0.45 to –0.05 W m-2. The larger range 53 
for ERFari relative to IRFari reflects uncertainty in the magnitude of the adjustments. 54 
 55 
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[START TABLE 7.6 HERE] 1 
 2 
Table 7.6: ERF due to changes in aerosol-radiation interactions (ERFari) and changes in aerosol-cloud interactions 3 

(ERFaci), and total aerosol ERF (ERFari+aci) from GCM CMIP6 (years 1850–2014) (Smith et al., 4 
submitted, b) and CMIP5 (years 1850-2000) (Zelinka et al. (2014)). CMIP6 results are simulated as part 5 
of RFMIP (Pincus et al., 2016). 6 

 7 
Models ERFari 

(W m-2) 
ERFaci 
(W m-2) 

ERFari+aci 
(W m-2) 

CanESM5 –0.02 –1.04 –1.06 
CESM2 +0.15 –1.57 –1.43 
CNRM-CM6-1 –0.26 –0.82 –1.08 
CNRM-ESM2-1 –0.14 –0.61 –0.75 
GFDL-CM4 –0.11 –0.68 –0.80 
GISS-E2-1-G –0.52 –0.78 –1.30 
HadGEM3-GC31-LL –0.28 –0.83 –1.11 
IPSL-CM6A-LR –0.37 –0.28 –0.65 
MIROC6 –0.22 –0.75 –0.96 
MRI-ESM2-0 –0.46 –0.71 –1.17 
NorESM2-LM –0.14 –1.03 –1.17 
UKESM1-0-LL –0.20 –0.97 –1.16 
CMIP6 average ± std. dev. (1850-2014) –0.21 ± 0.18 –0.84 ± 0.30 –1.05 ± 0.22 
CMIP5 average ± std. dev. (1850-2000) 
 

–0.25 ± 0.22 –0.92±0.34 –1.17±0.30 

 8 
[END TABLE 7.6 HERE] 9 
 10 
 11 
7.3.3.2 Aerosol-cloud interactions 12 
 13 
Anthropogenic aerosol particles primarily affect water clouds by serving as additional cloud condensation 14 
nuclei (CCN) and thus increasing cloud drop number concentration (Nd) (Twomey, 1959). Increasing Nd 15 
while holding liquid water path (LWP, i.e., the vertically integrated cloud water) constant reduces cloud drop 16 
effective radius (re), increases the clouds’ albedo, and induces an instantaneous negative radiative forcing 17 
(IRFari). The clouds are thought to subsequently adjust by slowing the drop coalescence rate, thereby 18 
delaying or suppressing rainfall. Rain generally reduces LWP and reduces cloud lifetime and/or cloud 19 
fractional coverage (Cf) (Albrecht, 1989), thus any aerosol-induced rain delay or suppression would be 20 
expected to increase LWP and/or Cf. Such rapid adjustments could potentially lead to an ERFaci 21 
considerably larger in magnitude than the IRFaci alone. However, adding aerosols to non-precipitating 22 
clouds has been observed to have the opposite effect on LWP (i.e., a reduction) (Lebsock et al., 2008; 23 
Christensen and Stephens, 2011). These findings have been explained by enhanced evaporation of the 24 
smaller droplets in the aerosol-enriched environments, and resultant enhanced mixing with ambient air. 25 
 26 
A small subset of aerosols can also serve as ice nucleating particles (INPs) that initiate the ice phase in 27 
supercooled water clouds and influence ice crystal number in ice (cirrus) clouds. However, the ability of 28 
anthropogenic aerosols (specifically black carbon) to serve as INPs in mixed-phase clouds has been found to 29 
be negligible in laboratory studies (e.g., Vergara-Temprado et al. (2018)). No assessment of the contribution 30 
to ERFaci from cloud phase changes induced by anthropogenic INPs will therefore be presented. 31 
 32 
In ice (cirrus) clouds (cloud temperatures <–40° C), INPs can initiate ice crystal formation at relative 33 
humidity much lower than that required for droplets to freeze spontaneously. Anthropogenic INPs can 34 
thereby influence ice crystal numbers and thus cirrus cloud radiative properties. At cirrus temperatures, 35 
certain types of black carbon have in fact been demonstrated to act as INPs in laboratory studies, suggesting 36 
a non-negligible anthropogenic contribution to INPs in cirrus clouds. The associated contribution to ERFaci 37 
has recently been investigated in global modelling studies and will be assessed in Section 7.3.3.2.2.  38 
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7.3.3.2.1 Satellite-based evidence 1 
Since the AR5, the analysis of satellite observations to investigate aerosol-cloud interactions has progressed 2 
along several axes: (i) The framework of forcing and adjustments introduced rigorously in the AR5 has 3 
helped better categorize studies; (ii) the literature assessing statistical relationships between aerosol- and 4 
cloud retrievals has grown, and retrieval uncertainties are better characterized, (iii) advances have been made 5 
to infer causality in aerosol-cloud relationships. 6 
 7 
Progress in satellite-based investigations of aerosol-cloud interactions.  8 
 9 
In AR5 studies exploiting the statistical relationship between cloud microphysical properties and aerosol 10 
index (AI; AOD multiplied by Ångström exponent) to make inferences about IRFaci were assessed 11 
alongside other studies which related cloud quantities to AOD. However, it is now well-documented that the 12 
latter approach leads to low estimates of IRFaci since AOD is a poor proxy for cloud-base CCN (Penner et 13 
al., 2011; Stier, 2016). Gryspeerdt et al. (2017) demonstrated that the statistical relationship between droplet 14 
concentration and AOD leads to an inferred IRFaci that is underestimated by at least 30%, while the use of 15 
AI leads to estimates of IRFaci to within ±20%, if the anthropogenic perturbation of AI is known.  16 
 17 
Further, studies assessed in the AR5 mostly investigated linear relationships between cloud droplet 18 
concentration and aerosol (Boucher et al., 2013). Since in most cases the relationships are not linear over the 19 
entire spatio-temporal distribution, this leads to a bias (Gryspeerdt et al., 2016). Several studies did not relate 20 
cloud droplet concentration, but cloud droplet effective radius to the aerosol (Brenguier et al., 2000). This is 21 
problematic since then, in order to infer IRFaci, stratification by cloud LWP is required (McComiskey and 22 
Feingold, 2012). Where LWP positively co-varies with aerosol retrievals (which is often the case), IRFaci 23 
inferred from such relationships is biased towards low values. Also, it is increasingly evident that different 24 
cloud regimes show different sensitivities to aerosols (Stevens and Feingold, 2009). Averaging statistics over 25 
regimes thus bias the inferred IRFaci (Gryspeerdt et al., 2014b). The AR5 concluded that IRFaci estimates 26 
tied to satellite studies generally show weak IRFaci (Boucher et al., 2013). However, when correcting for the 27 
biases identified in these earlier studies, this is no longer the case. 28 
 29 
Multiple studies have found a positive relationship between cloud fraction and/or cloud LWP and aerosols 30 
(e.g., Nakajima et al., 2001; Kaufman and Koren, 2006; Quaas et al., 2009). Since the AR5, however, it has 31 
been documented that factors independent of causal aerosol-cloud interactions heavily influence such 32 
statistical relationships. These include the swelling of aerosol in the high relative humidity in the vicinity of 33 
clouds (Grandey et al., 2013) and the contamination of aerosol retrievals next to clouds by cloud remnants 34 
and cloud-side scattering (Várnai and Marshak, 2015; Christensen et al., 2017). Stratifying relationships by 35 
possible influencing factors such as relative humidity (Koren et al., 2010) does not yield satisfying results 36 
since observations of the relevant quantities are not available at the resolution and quality required. Another 37 
solution to this problem was to assess the relationship of cloud fraction with droplet concentration 38 
(Gryspeerdt et al., 2016; Michibata et al., 2016; Sato et al., 2018). The relationship between satellite-39 
retrieved cloud fraction and Nd was found to be positive (Gryspeerdt et al., 2016, Christensen et al., 2016, 40 
2017), implying an overall adjustment that leads to a more negative ERFaci. However, Nd is biased low for 41 
broken clouds and this result has therefore been called into question (Grosvenor et al., 2018).  Zhu et al. 42 
(2018) proposed to circumvent this problem by considering Nd of only the brightest 10% of the clouds, on 43 
the basis of which Rosenfeld et al. (2019) obtained a positive cloud fraction – Nd relationship and thus larger 44 
indicated Cf susceptibility to Nd. 45 
 46 
The relationship between LWP and cloud droplet number is debated. Most recent studies (which are 47 
primarily based on MODIS data) find negative statistical relationships (Gryspeerdt et al., 2018a; Michibata 48 
et al., 2016; Toll et al., 2017; Sato et al., 2018), while Rosenfeld et al. (2019), in contrast, obtain a modest 49 
positive relationship between LWP and Nd. To increase confidence that observed relationships between 50 
aerosol emissions and cloud adjustments are causal, known emissions of aerosols and aerosol precursor 51 
gases into otherwise pristine conditions have been exploited. Ship exhaust is one such source. Goren and 52 
Rosenfeld (2014) suggested that both LWP and Cf increase in response to the ship emissions, contributing 53 
approximately 3/4 to the total ERFaci for a case of mid-latitude stratocumulus. Christensen and Stephens 54 
(2011) found that such strong adjustments occur for open-cell regimes, while adjustments are comparatively 55 
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small in closed-cell regimes. Volcanic emissions have been identified as another important source of 1 
information (Gassó, 2008). From satellite observations, Yuan et al. (2011) documented substantially larger 2 
Cf, higher cloud tops, reduced precipitation likelihood, and increased albedo in the plume of the Kilauea 3 
volcano in cumulus cloud fields. Ebmeier et al. (2014) confirmed the increased LWP and albedo for other 4 
volcanoes. In contrast, for the very large eruption of the Holuhraun (Iceland) volcano, Malavelle et al. (2017) 5 
did find a strong decrease in cloud droplet effective radius in satellite observations, but no large-scale change 6 
in LWP. However, when accounting for meteorological conditions, McCoy et al. (2018) concluded that for 7 
cyclonic conditions, the extra Holuhraun aerosol did enhance LWP. Toll et al. (2017) examined a large 8 
sample of volcanoes and also found a distinct albedo effect, but small LWP changes on average. Gryspeerdt 9 
et al. (2018a) demonstrated that the negative LWP – Nd relationship becomes very small when conditioned 10 
on a volcanic eruption, and therefore concluded that LWP adjustments are small in most regions. Similarly, 11 
Toll et al. (2019) studied clouds downwind of various anthropogenic aerosol sources using satellite 12 
observations and inferred an albedo effect (IRFaci) of –0.52 W m-2 that was partly offset by 23% due to 13 
aerosol-induced LWP decreases. However, the study did not consider potential aerosol-induced changes to 14 
Cf.  15 
 16 
Apart from adjustments involving LWP and Cf, several studies have also documented a negative relationship 17 
between cloud-top temperature and AOD/AI in satellite observations (e.g. Koren et al., 2005). Wilcox et al. 18 
(2016) proposed a mechanism that could be responsible for such a relationship based on measurements from 19 
unmanned aerial vehicles; absorption by black carbon reduces boundary layer turbulence, which in turn leads 20 
to taller clouds. However, it has been demonstrated that the satellite-derived relationships are affected by 21 
spurious co-variation (Gryspeerdt et al., 2014a), and it therefore remains unclear whether a systematic causal 22 
effect exists. 23 
 24 
Identifying relationships between INP concentrations and cloud properties from satellites is intractable 25 
because the INPs generally represent a very small subset of the overall aerosol population at any given time 26 
or location. Nevertheless, there has been some advancement since the AR5. Adding anthropogenic aerosols 27 
from ship stacks to supercooled cloud decks of Arctic marine stratocumulus was observed to enhance mixed-28 
phase precipitation, which led to a slight decrease in LWP and albedo compared to the effect of ship tracks in 29 
warmer clouds (Christensen et al., 2014). No global observational estimates of the ERFaci associated with 30 
mixed-phase clouds exist at present. For ice clouds, only few satellite studies have investigated responses to 31 
aerosol perturbations so far. Gryspeerdt et al. (2018b) find a positive relationship between aerosol and ice 32 
crystal number for cold cirrus under strong dynamical forcing, which could be explained by an overall larger 33 
number of solution droplets available for homogeneous freezing in polluted regions. Zhao et al. (2018) 34 
conclude that the sign of the ice crystal size – aerosol relationship depends on humidity. While these studies 35 
support modelling results finding that ice clouds do respond to anthropogenic aerosols (Section 7.3.3.2.2), no 36 
quantitative conclusions about IRFaci or ERFaci for ice clouds can be drawn based on satellite observations 37 
at this point. 38 
 39 
Summarising the above findings related to statistical relationships and causal aerosol effects on cloud 40 
properties, there is high confidence that anthropogenic aerosols lead to an increase in cloud droplet 41 
concentrations. In terms of the adjustments, multiple studies support the assessment that on average, no 42 
large, systematic aerosol-induced changes in LWP occur (high confidence). There is medium confidence that 43 
liquid-cloud fraction increases in response to aerosol increases. There is no observational evidence at present 44 
for a significant response of ice clouds to aerosol perturbations. 45 
 46 
 47 
[START TABLE 7.7 HERE] 48 
 49 
Table 7.7: Studies quantifying aspects of the global ERFaci that are mainly based on satellite retrievals and were 50 

published since AR5. All forcings/adjustments as global annual mean values in W m-2. Most studies split 51 
the ERFaci into IRFaci and adjustments in LWP and cloud fraction separately. All published studies only 52 
considered liquid-water clouds. Some studies assessed the IRFaci and the LWP adjustment together and 53 
called this “intrinsic forcing”(Christensen et al., 2017) and the cloud fraction adjustment “extrinsic 54 
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forcing”. Published uncertainty ranges are converted to 5%–95 % confidence intervals, and “n/a” 1 
indicates that the study did not provide an estimate for the relevant IRF/ERF. 2 

 3 
IRFaci LWP adjustment Cloud fraction adjustment Reference 

–0.6±0.6 n/a n/a Bellouin et al. (2013a) 

–0.4 (–0.2 to –1.0) n/a n/a Gryspeerdt et al. (2017) 

–1.0±0.4 n/a n/a McCoy et al. (2017a) 

n/a n/a –0.5 (–0.1 to –0.6) Gryspeerdt et al. (2016) 

n/a +0.3 to 0 n/a Gryspeerdt et al. (2018b) 
(0 to –60% of IRFaci) 

–0.8±0.7 n/a n/a Rémy et al. (2018) 

–0.53 +0.12 n/a Toll et al. (2019) 

“intrinsic forcing”    

–0.5±0.5 –0.5±0.5 Chen et al. (2014) 

–0.4±0.3 n/a Christensen et al. (2016) 

–0.3±0.4 –0.4±0.5 Christensen et al. (2017) 
 4 
[END TABLE 7.7 HERE] 5 
 6 
 7 
Satellite-based estimates of IRFaci. 8 
 9 
Since the AR5, several studies assessed the global IRFaci from satellite observations using different methods 10 
(Table 7.7). All studies relied on statistical relationships between aerosol- and cloud quantities to infer 11 
sensitivities. Four studies inferred IRFaci by estimating the anthropogenic perturbation of Nd. For this, 12 
Bellouin et al. (2013a) and Rémy et al. (2018) made use of regional-seasonal regressions between satellite-13 
derived Nd and AOD following Quaas et al. (2008). Gryspeerdt et al. (2017) demonstrated that aerosol index 14 
(AI) is a better proxy to infer IRFaci, corroborating earlier results by Penner et al. (2011) and Stier (2016), 15 
and used this in the regression. McCoy et al. (2017) instead used the sulphate specific mass derived in the 16 
MERRA aerosol reanalysis that assimilated MODIS AOD (Rienecker et al., 2011). Studies further need to 17 
identify the anthropogenic perturbation of the aerosol to assess IRFaci. Gryspeerdt et al. (2017) and Rémy et 18 
al. (2018) used the same approach as Bellouin et al. (2013a) that define anthropogenic fraction using a 19 
method adapted from Bellouin et al. (2005). In turn, McCoy et al. (2017) used an anthropogenic fraction 20 
from the AEROCOM multi-model ensemble (Schulz et al., 2006). Chen et al. (2014), Christensen et al. 21 
(2016) and Christensen et al. (2017) derived the combination of IRFaci and the LWP adjustment to IRFaci 22 
(“intrinsic forcing” in their terminology).  They relate AI and cloud albedo statistically and use the 23 
anthropogenic aerosol fraction from Bellouin et al. (2013a). The variant by Christensen et al. (2017) is an 24 
update compared to the Chen et al. (2014) and Christensen et al. (2016) studies in that it better accounts for 25 
ancillary influences on the aerosol retrievals such as aerosol swelling and 3D radiative effects.  26 
 27 
On average across the published studies based on satellite observations and using expert judgement to assess 28 
uncertainty (Table 7.7), IRFaci is assessed to be –0.6 W m-2, with a 5% to 95% confidence range of 29 
± 0.5 W m-2 (high confidence). This range is broadly consistent with the IRFaci 5% to 95% confidence range 30 
reported from a comprehensive review paper of –1.6 to –0.2 W m-2 (Bellouin et al., 2019). 31 
 32 
Satellite-based estimates of ERFaci. 33 
 34 
Only a handful of studies have estimated the LWP and Cf adjustments that are needed for satellite-based 35 
estimates of ERFaci. Chen et al. (2014) and Christensen et al. (2017) used the relationship between cloud 36 
fraction and AI to infer the cloud fraction adjustment. Gryspeerdt et al. (2017) used a similar approach but 37 
tried to account for non-causal aerosol – cloud fraction correlations by using Nd as a mediating factor. The 38 
three studies held together suggest a global cloud fraction adjustment that augments ERFaci relative to 39 



Second Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-41 Total pages: 206 

IRFaci by –0.5 ± 0.5 W m–2. 1 
 2 
For global estimates of the LWP adjustment, evidence is even scarcer. Gryspeerdt et al. (2018a) derived an 3 
estimate of the LWP adjustment using a method similar to Gryspeerdt et al. (2016). They estimated that the 4 
LWP adjustment offsets 0 to 60% of the (negative) IRFaci. Supporting an offsetting LWP adjustment, Toll et 5 
al. (2019) estimated a moderate LWP adjustment of 23% (+0.13 W m-2). The adjustment due to LWP is 6 
assessed to be small, with a best estimate of 0.2 W m–2 and a likely range of ± 0.2 W m–2 (medium 7 
confidence). From the above assessments of IRFaci and the associated adjustments, considering only liquid-8 
water clouds and evidence from satellite observations alone, ERFaci is assessed to be –0.9 W m–2 with a 5% 9 
to 95% confidence range of ± 0.6 W m–2 (medium confidence). 10 
 11 
 12 
7.3.3.2.2 Model-based evidence 13 
As in the AR5, the representation of aerosol-cloud interactions in large-scale model studies remain a 14 
challenge, due to the multiple subgrid-scale processes involved, from the emissions of aerosols and/or their 15 
precursors to precipitation formation. Large-scale models that simulate ERFaci typically include aerosol-16 
cloud interactions in liquid stratiform clouds only, while very few include aerosol interactions with mixed-17 
phase-, convective-, and ice clouds. Adding to the spread in model-derived estimates of ERFaci is the fact 18 
that model set-ups and assumptions vary across studies, for example when it comes to the treatment of 19 
oxidants (that influence aerosol formation) and their changes through time (Karset et al., 2018). 20 
 21 
In the AR5, ERFaci was assessed as the residual of the total aerosol ERF and ERFari, as the total aerosol 22 
ERF was easier to calculate based on available model simulations (Boucher et al., 2013). The best estimates 23 
of total aerosol ERF and ERFari in AR5 were –0.9 W m-2 and –0.45 W m-2, respectively, yielding an ERFaci 24 
estimate of –0.45 W m-2. This value is much less negative than the bottom-up estimate of ERFaci from 25 
GCMs presented in the AR5. Since the AR5, efforts have been made continually to reconcile this difference. 26 
Zelinka et al. (2014) estimated ERFaci to be –0.9 W m-2with a standard deviation of 0.34 W m-2 (including 27 
semi-direct effects) based on nine CMIP5 models (Table 7.6). The corresponding ERFaci estimate based on 28 
twelve RFMIP models from CMIP6 is slightly less negative at –0.84 W m-2 (standard deviation of 29 
0.30 W m-2) (see Table 7.6). Other post-AR5 estimates of ERFaci based on single model studies are either in 30 
agreement with or slightly larger in magnitude than the CMIP6 estimate (Gordon et al., 2016; Fiedler et al., 31 
2017; Neubauer et al., 2017; Karset et al., 2018; Regayre et al., 2018; Zhou et al., 2018; Diamond et al., 32 
2019).  33 
 34 
The adjustment contribution to the CMIP6 ensemble mean ERFaci is –0.20 W m-2, though with considerable 35 
differences between the models (standard deviation of 0.30 W m-2). Generally, this adjustment in GCMs 36 
arises mainly from LWP changes (e.g., Ghan et al., (2016)), while satellite observations suggest that cloud 37 
cover adjustments should dominate and that aerosol effects on LWP are exaggerated in GCMs (Bender et al., 38 
2019). Large-eddy-simulations also tend to suggest an exaggerated aerosol effect on cloud lifetime in GCMs, 39 
but some report an aerosol-induced decrease in cloud cover that is at odds with satellite observations (Seifert 40 
et al., 2015). Despite this potential disagreement when it comes to the dominant adjustment mechanism, a 41 
non-negligible negative contribution to ERFaci from adjustments is supported both by observational and 42 
modeling studies.  43 
 44 
Contributions to ERFaci from anthropogenic aerosols acting as INPs are generally not included in CMIP6 45 
models. While laboratory measurements do not support anthropogenic perturbations to INPs active in mixed-46 
phase clouds, they do suggest that certain black carbon particles may contribute for colder temperatures 47 
(< –40 °C) (Ullrich et al., 2017; Mahrt et al., 2018). A global modelling study incorporating 48 
parameterizations based on recent laboratory studies found a small negative contribution to ERFaci (Penner 49 
et al., 2018), with a central estimate of –0.3 W m-2. However, previous studies have produced model 50 
estimates of opposing signs (see review in Storelvmo (2017)). There is thus limited evidence and medium 51 
agreement for a small negative contribution to ERFaci from anthropogenic INP-induced cirrus modifications 52 
(low confidence). 53 
 54 
Based on the above model-based evidence alone, the best estimate and 5% to 95% confidence range for 55 
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ERFaci is assessed to –0.9 ± 0.5 W m-2 (medium confidence) 1 
 2 
 3 
7.3.3.2.3 Overall assessment of ERFaci 4 
The assessment of ERFaci based on satellite evidence alone (–0.9 ± 0.6 W m-2, 5% to 95% confidence range) 5 
is consistent with the one based on model-evidence alone (–0.9 ± 0.5 W m-2, 5% to 95% confidence range), 6 
in strong contrast to what was reported in the AR5. This reconciliation of satellite-based and model-based 7 
estimates is the result of considerable scientific progress and increases confidence in the overall assessment 8 
of the best estimate and likely range for ERFaci of –0.9 ± 0.5 W m-2 (high confidence). The assessed 5% to 9 
95% confidence range is consistent with but narrower than that reported by the review of Bellouin et al. 10 
(2019) of –3.1 to –0.1 W m-2. 11 
 12 
 13 
7.3.3.3 Energy budget constraints on the total aerosol ERF 14 
 15 
Energy balance models of reduced complexity have in recent years increasingly been combined with Monte 16 
Carlo approaches to provide valuable “top-down” (also called inverse) observational constraints on the total 17 
aerosol ERF. These top-down approaches report ranges of aerosol ERF that are found to be consistent with 18 
the global mean temperature record. However, the total aerosol ERF is also used together with the historical 19 
temperature record in Section 7.5 to constrain ECS and TCR. Using top-down estimates as a separate line of 20 
evidence also for the total aerosol ERF would therefore be circular. Nevertheless, it is useful to examine the 21 
development of these estimates since AR5 and the degree to which these estimates are consistent with the 22 
assessments of ERFari and ERFaci.  23 
 24 
When the first top-down estimates emerged (Knutti et al., 2002), it became clear that some of the early 25 
(“bottom-up”) GCM estimates of total aerosol ERF were inconsistent with the plausible top-down ranges. 26 
However, as more inverse estimates have been published, it has increasingly become clear that they too are 27 
model-dependent and span a wide range of ERF estimates, with confidence intervals that in some cases do 28 
not overlap (Forest, 2018). It has also become evident that these methods are very sensitive to revised 29 
estimates of other forcings and/or updates to observational data sets. A recent review of 19 such estimates 30 
reported a mean of –0.77 W m-2 for the total aerosol ERF, and a 95% confidence interval of –1.15 W m-2  to 31 
–0.31 W m-2 (Forest, 2018). Adding to that review, a more recent study using the same approach reported an 32 
estimate of total aerosol ERF of –0.89 W m-2 and a 90% confidence interval of –1.82 to –0.01 W m-2 (Skeie 33 
et al., 2018). However, in the same study, an alternative way of incorporating ocean heat content in the 34 
analysis produced a best total aerosol ERF estimate of –1.34 W m-2 (90% confidence interval –2.20 to 35 
–0.46), illustrating how these methods are very sensitive to the manner in which observations are included. 36 
However, a new approach to inverse estimates took advantage of independent climate radiative response 37 
estimates from eight prescribed sea surface temperature and sea-ice simulations over the historical period to 38 
estimate the total anthropogenic ERF. From this a total aerosol ERF of –0.8 W m-2 with a –1.6 to +0.1 5% to 39 
95% range from 1861–1880 until near-present was derived. This range was found to be more invariant to 40 
parameter choices than earlier inverse approaches (Andrews and Forster, in press).  41 
 42 
Beyond the inverse estimates described above, other efforts have been made since the AR5 to constrain the 43 
total aerosol ERF. For example, Stevens (2015) used the global mean temperature record from the early 20th 44 
century to argue for a lower bound of –1.0 W m-2. This study also used a simplified (1-dimensional) model to 45 
simulate the historical total aerosol ERF evolution consistent with the observed temperature record. Given 46 
the lack of temporally extensive cooling trends in the temperature record of the 20th century and the fact that 47 
the historical evolution of greenhouse gas forcing is relatively well constrained, the study concluded that a 48 
more negative total aerosol ERF than –1.0 W m-2 was incompatible with the historical temperature record. 49 
This was countered by Kretzschmar et al. (2017), who argued that the model employed in Stevens (2015) 50 
was too simplistic, and could therefore not account for the impact of geographical redistributions of aerosol 51 
emissions over time. Following the logic of Stevens (2015) but basing their estimates on a subset of CMIP5 52 
models as opposed to a simplified modelling framework, they argued that a total aerosol ERF as negative as 53 
–1.6 W m-2 was consistent with the observed temperature record. Similar arguments were put forward by 54 
Booth et al. (2018), who emphasized that the degree of non-linearity of the total aerosol ERF with aerosol 55 
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emission is a central assumption in Stevens (2015). 1 
 2 
The historical temperature record was also the key observational constraint applied in two additional post-3 
AR5 studies (Rotstayn et al., 2015; Shindell et al., 2015) based on a subset of CMIP5 models. Rotstayn et al. 4 
(2015) found a strong temporal correlation (> 0.9) between the total aerosol ERF and the global mean 5 
surface temperature. They used this relationship to produce a best estimate for the total aerosol ERF of 6 
–0.97 W m-2, but with considerable unquantified uncertainty, in part due to uncertainties in the TCR. 7 
Shindell et al. (2015) came to a similar best estimate for the total aerosol ERF of –1.0 W m-2 and a 95% 8 
confidence interval of –1.4 to –0.6 W m-2 but based this on spatial temperature and ERF patterns in the 9 
models in comparison with observed spatial temperature patterns. 10 
 11 
A separate observational constraint on the total ERF was proposed by Cherian et al. (2014), who compared 12 
trends in downward fluxes of solar radiation observed at surface stations across Europe (described in Section 13 
7.2.2.3) to those simulated by a subset of CMIP5 models. Based on the relationship between solar radiation 14 
trends and the total aerosol ERF in the models, they inferred a relatively strong total aerosol ERF of –1.3 15 
W m-2 and a standard deviation of ± 0.4 W m-2. Related to Cherian et al. (2014), Storelvmo et al. (2018) 16 
found that the reduction in downward solar radiation fluxes measured at surface stations worldwide since the 17 
middle of the last century (Section 7.2.) was severely underestimated by the CMIP5 model ensemble mean. 18 
The dimming has been attributed to, and is anticorrelated with, global aerosol emissions (Storelvmo et al., 19 
2016), and an underestimation of the dimming trend therefore may imply a too weak aerosol radiative effect. 20 
 21 
Based solely on energy balance considerations or other observational constraints, it is virtually certain that 22 
the total aerosol ERF is negative (high confidence), but very unlikely that the total aerosol ERF is more 23 
negative than –1.8 W m-2 (medium confidence).  24 
 25 
 26 
7.3.3.4 Overall assessment of total aerosol ERF 27 
 28 
In the AR5 (Boucher et al., 2013), the overall assessment of total aerosol ERF (ERFari+aci) used the median 29 
of all GCM estimates published prior to AR5 of –1.5 W m-2 (5% to 95%  range of –2.4 W m-2 to –0.6 W m-2) 30 
as a starting point, but reduced the magnitude of that estimate based on the following arguments: (i) Models 31 
that accounted for aerosol effects on liquid, mixed-phase and ice clouds tended to produce overall smaller 32 
ERFari+aci estimates and were deemed more complete in their representation of aerosol-cloud interactions. 33 
This subset of models produced a smaller estimate of –1.38 W m-2 for the ERFari+aci and consisted of seven 34 
semi-independent models. (ii) Studies that constrained models with satellite observations (five in total) were 35 
given extra weight. They produced a median estimate of –0.85 W m-2. For studies that only reported ERFaci, 36 
an ERFari of –0.45 W m-2 was added to produce an ERFari+aci estimate. Furthermore, a longwave ERFaci 37 
of +0.2 W m-2 was added to studies that only reported shortwave ERFaci values. (iii) Based on higher 38 
resolution models, doubt was raised regarding the ability of GCMs to represent the cloud adjustment 39 
component of ERFaci with fidelity, and particularly the way in which aerosol effects on warm-rain formation 40 
were parameterized. The expert judgement was therefore that aerosol effects on cloud lifetime were too 41 
strong in the models, reducing the overall ERF estimate. The above lines of argument, combined with the 42 
GCM estimate quoted above, resulted in an overall assessment of ERFari+aci of –0.9 W m-2 and a 5% to 43 
95% (90%) confidence range of –1.9 W m-2 to –0.1 W m-2. 44 
 45 
Here, the best estimate and range is revised relative to the AR5 (Boucher et al., 2013), partly based on 46 
updates to the above lines of argument in post-AR5 publications. Firstly, the studies that included aerosol 47 
effects on mixed-phase and ice clouds (argument (i) above) in AR5 relied on the assumption that 48 
anthropogenic black carbon could act as INPs in mixed-phase clouds, which has since been challenged by 49 
laboratory experiments (Kanji et al., 2017; Vergara-Temprado et al., 2018). There is also no observational 50 
evidence of appreciable ERFs associated with these effects (Section 7.3.3.2.2), and modelling studies 51 
disagree when it comes to both their magnitude and sign (Storelvmo, 2017). Likewise, very few GCMs 52 
incorporate aerosol effects on deep convective clouds, and cloud-resolving modelling studies report different 53 
impacts on cloud radiative properties depending on cloud environmental conditions (Tao et al., 2012). Thus, 54 
it is not clear whether omitting such effects in GCMs would lead to any appreciable ERF biases, or if so, 55 
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what the sign of such biases would be. As a result, all models are given equal weight in this assessment 1 
whether they include aerosol impacts on convective, ice and mixed-phase cloud processes or not.  2 
 3 
In relation to argument (ii), there is now a considerably expanded body of literature which suggests that early 4 
modelling studies that incorporated satellite observations may have resulted in overly conservative estimates 5 
of the magnitude of ERFaci (Section 7.3.3.2.1). Furthermore, based on an assessment of the longwave 6 
ERFaci in the CMIP5 models, the offset of +0.2 W m-2 used to account for the longwave contribution to 7 
some model’s ERF estimate also appears to be too large (Heyn et al., 2017).  8 
 9 
Argument (iii) is still valid when it comes to general limitations in the ability of GCMs to simulate 10 
adjustments in LWP and cloud cover in response to aerosol perturbation, but as discussed in Section 11 
7.3.3.2.2 it is not clear that this will result in biases that exclusively reduce the magnitude of the total aerosol 12 
ERF. 13 
 14 
The assessment of total aerosol ERF here uses the following lines of evidence: satellite-based evidence for 15 
IRFari, model-based evidence for IRFari and ERFari, satellite-based evidence of IRF/ERFaci, and finally 16 
model-based evidence for IRF/ERFaci. Based on this, the central estimate and 90% confidence range for 17 
ERFari and ERFaci are assessed to –0.3± 0.3 W m-2 and –0.9 ± 0.5 W m-2, respectively. There is thus strong 18 
evidence for a substantive negative total aerosol ERF, which is supported by broad agreement between 19 
satellite-based and model-based lines of evidence for both ERFari and ERFaci. This leads to an overall high 20 
confidence in the estimate of ERFari+aci and a narrowing of the uncertainty range. Because the estimates 21 
informing the different lines of evidence are generally valid for approximately 2014 conditions, a small 22 
adjustment of +0.1 W m-2 is added to the ERFari+aci central estimate to make it representative of 2018 23 
conditions. This adjustment reflects recent changes in global aerosol emissions supported by satellite 24 
observations and global aerosol reanalyses (Paulot et al., 2018; Bellouin et al., 2019). Accounting for this, 25 
and combining the lines of evidence using expert judgement, the ERFari+aci is assessed to be –1.1 W m-2 26 
(1750–2018), with a very likely range of –2.0 W m-2 to –0.4 W m-2 and a likely range of –1.6 W m-2 to 27 
–0.7 W m-2. These ranges are identical to the corresponding confidence ranges in Bellouin et al. (2019) and 28 
consistent with the 5% to 95% confidence ranges reported for ERFari and ERFaci above. There is high 29 
confidence that ERFaci contributes most (about 3/4) to ERFari+aci, with the remainder due to contributions 30 
from ERFari. In contrast to AR5 (Boucher et al., 2013), it is now virtually certain that the total aerosol ERF 31 
is negative.  Figure 7.8 depicts the aerosol ERFs from the different lines of evidence along with the overall 32 
assessments. 33 
 34 
 35 
[START FIGURE 7.8 HERE] 36 
 37 
Figure 7.8: Net aerosol ERFari+aci from different lines of evidence. Green bars show the assessment based on 38 

satellite observations. Blue bars show the assessment based on climate models, with individual models 39 
from CMIP5 (Zelinka et al., 2014) and CMIP6 (Smith et al., submitted, b) depicted. Individual assessed 40 
best-estimate contributions from ERFari and ERFaci are shown with darker and paler shading 41 
respectively. Overlaid black diamond and black lines shows the best estimate and very likely range of 42 
satellite- and model-derived ERFari+aci.  Grey shading shows the very likely range consistent with 43 
energy budget constraints. Purple bars show the assessed very likely range (thin), likely range (thick), and 44 
best estimate (black diamond) from all lines of evidence in this assessment. 45 

 46 
[END FIGURE 7.8 HERE] 47 
 48 
 49 
7.3.4 Other agents 50 
 51 
In addition to the large anthropogenic ERFs associated with WMGHGs and atmospheric aerosols assessed in 52 
Sections 7.3.2 and 7.3.3, land use change, contrails and aviation-induced cirrus and light absorbing particles 53 
deposited on snow and ice have also contributed to the overall anthropogenic ERF and are assessed in 54 
Sections 7.3.4.1, 7.3.4.2 and 7.3.4.3. Changes in solar irradiance, galactic cosmic rays and volcanic eruptions 55 
since pre-industrial times combined represent the natural contribution to the total (anthropogenic + natural) 56 
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ERF and are discussed in Sections 7.3.4.4, 7.3.4.5 and 7.3.4.6. 1 
 2 
7.3.4.1 Land use 3 
 4 
Land use forcing is defined as those changes directly caused by human activity rather than by climate 5 
response. Land use change affects the surface albedo. Deforestation replaces darker forested areas with 6 
brighter cropland, and thus imposes a negative radiative forcing on climate, while afforestation and 7 
reforestation have the opposite effect. Land use change also affects the amount of water transpired by 8 
vegetation (Devaraju et al., 2015). Irrigation of land directly affects the evaporation (Sherwood et al., 2018) 9 
causing a global increase of 32 500 m3 s−1 due to human activity (Boucher et al., 2004). Changes in 10 
evaporation and transpiration affect the latent heat budget, but do not directly affect the top-of-atmosphere 11 
radiative fluxes. The lifetime of water vapour is so short that the impact of changes in evaporation on the 12 
greenhouse contribution of water vapour are negligible (Sherwood et al., 2018). However, evaporation can 13 
affect the ERF through adjustments, particularly through changes in low cloud amounts. Land use change 14 
affects the emissions or removal of greenhouse gases from the atmosphere (such as CO2, CH4, N2O). These 15 
emission changes have the greatest impact on climate (Ward et al., 2014), however they are already included 16 
in greenhouse gas inventories. Land use change also affects the emissions of dust and biogenic volatile 17 
organic compounds (BVOCs), which form aerosols and affect the atmospheric concentrations of ozone and 18 
methane (Chapter 6, Section 6.2). The impacts of land use on surface temperature and hydrology were 19 
recently assessed in the Special Report on Climate Change and Land (Jia et al., 2019). 20 
 21 
Using the definition of ERF from Section 7.1, the adjustment in land surface temperature is excluded from 22 
the definition of ERF, but changes in vegetation and snow cover are included. Land use change in the mid-23 
latitudes induces a substantial amplifying adjustment in snow cover. Few studies have attempted to quantify 24 
the ERF of land use change. Andrews et al. (2017) calculated a very large surface albedo ERF (–0.47 W m–2) 25 
from 1860 to 2005 in the HadGEM2-ES model although they did not separate out the surface albedo change 26 
from snow cover change. HadGEM2-ES is known to overestimate the amount of boreal trees and shrubs in 27 
the unperturbed state (Collins et al., 2011) so will tend to overestimate the ERF associated with land use 28 
change. The increases in dust in HadGEM2-ES contributed an extra –0.25 W m–2, whereas cloud cover 29 
changes added a small positive adjustment (0.15 W m–2) consistent with a reduction in transpiration. An 30 
assessment of radiative adjustments in CMIP6 models (Smith et al., submitted, b) also found a reduction in 31 
cloud cover that offset around half of the albedo IRF, with a large model spread that could potentially cancel 32 
out the IRF forcing or even change its sign.  33 
 34 
One estimate of the indirect SARF from land use change due to reduced BVOCs leads to a negative 35 
contribution of –0.11 W m–2 over the historical period (Unger, 2014) through decreases in ozone and 36 
methane, whereas Scott et al. (2017) find that the decrease in aerosols from BVOCs outweighs the forcing 37 
contribution from ozone and methane. This disagreement illustrates that adjustments through changes in 38 
aerosols and chemistry are very model dependent, and it is not possible to make an assessment based on such 39 
a limited number of studies. 40 
 41 
The contribution of land use change to albedo changes has recently been investigated using MODIS and 42 
AVHRR to attribute surface albedo to geographically-specific land cover types (Ghimire et al., 2014). When 43 
combined with a historical land use map (Hurtt et al., 2011) this gives a 1700 to 2005 SARF of 44 
–0.15 ± 0.01 W m-2, of which –0.12 W m–2 is from 1850. This study accounted for correlations between 45 
vegetation type and snow cover, but not the adjustment in snow cover identified in (Andrews et al., 2017b). 46 
The cloud adjustment is assessed at half of this (0.075 ± 0.075 W m-2). The contribution of irrigation (mainly 47 
to low cloud amount) is assessed as -0.05 W m-2(–0.1 to 0.05 W m-2,5% to 95%range) for the historical 48 
period (Sherwood et al., 2018). Thus, the overall assessment of the ERF from land use change is –0.12 W m-49 
2 (–0.21 to –0.03 W m-2, 5% to 95%range) (medium confidence). This does not include the effects of snow-50 
albedo which have not been confirmed by multiple studies.  51 
 52 
 53 
 54 
 55 
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7.3.4.2 Contrails and aviation-induced cirrus 1 
 2 
Aviation-induced cirrus can form in the wake of aircraft exhausts. It can be short-lived or persist for hours 3 
and spread, depending on the prevailing atmospheric conditions. It is principally affected by emissions of 4 
water vapour, but emissions of aerosols in the aircraft exhaust can also influence contrail formation and 5 
properties. These aerosol emissions can also potentially affect low level clouds (Section 7.3.3). 6 
 7 
In AR5 the SARF due to contrails and aviation-induced cirrus was assessed to 0.05 (0.02–0.15) W m–2, but a 8 
low confidence was assigned to that estimate (Myhre et al., 2013b). This positive SARF is the net result of a 9 
positive longwave ERF and a smaller negative shortwave ERF, as expected for thin cirrus clouds (Section 10 
7.4). There was also climate modelling evidence that this forcing was between 30% and 60% as effective at 11 
changing surface temperature as an equivalent forcing from CO2, i.e. the SARF efficacy was 60% or smaller 12 
(see Section 7.3.1). Since the AR5, a comprehensive review on the topic (Kaercher, 2018) reported post-AR5 13 
SARF estimates ranging from 0.01–0.06 W m–2, based on new studies that all used 2006 as their reference 14 
period (Chen and Gettelman, 2013; Schumann and Graf, 2013; Schumann et al., 2015; Bock and Burkhardt, 15 
2016). The first published estimate of contrail and aviation induced cirrus ERF accounts for the efficacy of 16 
the contrail forcing and found that ERF was at least 50% smaller than SARF with a best estimate of 35% 17 
(Bickel et al. 2019), in good agreement with the efficacy studies presented in the AR5 (Myhre et al., 2013b).  18 
The Lee et al. (submitted) assessment carefully compares the above referenced studies, updates them to 2018 19 
based on air traffic growth and uses estimates of contrails to estimate an aviation induced cirrus ERF of 0.04 20 
W m-2 with a 5% to 95% confidence interval of 0.01 to 0.07 W m-2. This range is adopted as the assessment within this 21 
report. Compared to the AR5, there is better process modelling of aviation-induced cirrus within climate models and 22 
also a better understanding of how adjustments reduce the contrail induced cirrus, therefore a medium 23 
confidence is assigned. 24 
 25 
 26 
7.3.4.3 Light absorbing particles on snow and ice 27 
 28 
Light-absorbing particles deposited on snow and ice decrease surface albedo from the cryosphere, 29 
contributing a positive radiative forcing (Bond et al., 2013). Most previous research has focused on black 30 
carbon, although organic carbon and mineral dust can also contribute to the ERF (Skiles et al., 2018). The 31 
majority of present-day carbonaceous aerosol loading, and around half of present-day atmospheric dust 32 
loading, is due to anthropogenic activities (McConnell et al., 2007; Mahowald et al., 2010). 33 
 34 
The AR5 assessed the forcing due to deposition of anthropogenic black carbon on snow to 0.04 (0.02 to 35 
0.09) W m–2 (Myhre et al., 2013b), with the review from Bond et al. (2013) informing this assessment. Since 36 
the AR5, one further study of global radiative forcing from black carbon on snow deposition agrees with the 37 
AR5 best estimate of 0.04 W m–2(Namazi et al., 2015). Organic carbon deposition on snow and ice has been 38 
estimated to contribute a small positive radiative forcing of 0.001–0.003 W m–2 (Lin et al., 2014). No 39 
comprehensive global assessments of mineral dust deposition on snow are available. Most radiative forcing 40 
estimates have a regional emphasis, focusing on the Arctic (Jiao et al., 2014), Himalayas (Wang et al., 41 
2015b), and to a lesser extent North America, Europe and northern China (Skiles et al., 2018). Black carbon 42 
deposition and associated snow-albedo change over the Antarctic continent is considered to be negligible 43 
(Bisiaux et al., 2012; Bauer et al., 2013). The regional focus of most studies makes estimating a global mean 44 
radiative forcing from aggregating different studies problematic, but the relative importance of each region is 45 
likely to change if the global pattern of emission sources changes (Bauer et al., 2013). Changes to surface 46 
albedo in the cryosphere are difficult to observe with satellites (Warren, 2013), and so modelling studies are 47 
often validated using field measurements (e.g. Jiao et al. (2014)). 48 
 49 
Owing to the small effect of organic carbon, and no significant revisions to the radiative forcing from black 50 
carbon on snow and ice, the best estimate and uncertainty range of radiative forcing from absorbing aerosol 51 
on snow and ice is unchanged since the AR5, remaining at 0.04 (0.02–0.09) W m–2. The efficacy of black 52 
carbon on snow forcing was estimated to be 2 to 4 times as large as for an equivalent CO2 forcing as the 53 
effects are concentrated at high latitudes in the cryosphere (Bond et al., 2013). However, it is unclear how 54 
much of this effect would be accounted for if ERF was calculated, and how much comes from the high 55 
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latitude nature of the forcing. For the overall ERF the radiative forcing is doubled to partly take the efficacy 1 
effects into account, giving an overall assessment of 0.08 (0.04–0.18) W m–2, with low confidence.  2 
 3 
 4 
7.3.4.4 Solar 5 
 6 
Variations in the total solar irradiance (TSI) represent a natural external forcing agent. The dominant cycle is 7 
the solar 11-year activity cycle, which is superimposed on longer cycles (Chapter 2, Section 2.2). Over the 8 
last three 11-year cycles, the peak-to-trough amplitude in TSI has differed by about 1 W m–2 between solar 9 
maxima and minima (Chapter 2, Figure 2.1). 10 
 11 
Much of the variance in the solar irradiance, over the solar cycle and between solar cycles, occurs at short 12 
wavelengths in the 200–400 nm band (Lean et al., 1997, 2005). The IRF can be derived simply by ΔTSI × 13 
(1 – albedo)/4 irrespective of wavelength, where the planetary albedo is taken to be 0.29 and ΔTSI represents 14 
the change in total solar irradiance (Stephens et al., 2015). The adjustments are expected to be wavelength 15 
dependent. Gray et al. (2009) determined a stratospheric temperature adjustment of –22% to spectrally 16 
resolved changes in the solar radiance over one solar cycle. This negative adjustment is due to stratospheric 17 
heating from increased absorption by ozone at the short wavelengths, increasing the outgoing longwave 18 
radiation to space. A multi-model comparison (Smith et al., 2018b) calculated adjustments of –4% due to 19 
stratospheric temperatures and –6% due to tropospheric processes (mostly clouds), for a change in TSI 20 
across the spectrum. The smaller magnitude of the stratospheric-temperature adjustment is consistent with 21 
the broad spectral change rather than the shorter wavelengths characteristic of solar variation. A single model 22 
study also found an adjustment that acts to reduce the forcing (Modak et al., 2016). While there has not yet 23 
been a calculation based on the appropriate spectral change, the –6% tropospheric adjustment from Smith et 24 
al. (2018b) is adopted along with the Gray et al. (2009) stratospheric temperature adjustment. The ERF due 25 
to solar variability over the historical period is therefore represented by 0.72 × ΔTSI × (1 – albedo)/4 using 26 
the TSI timeseries from Chapter 2, Section 2.2.2. 27 
 28 
The AR5 (Myhre et al., 2013b) assessed solar SARF from around 1750 to around 2011 to be 0.05 (0.00–29 
0.10) W m–2 which was computed from the 7-year mean around the solar minima in 1745 (being closest to 30 
1750) and 2008 (being the most recent solar minimum). Solar minima are used because they are less variable 31 
between cycles and more appropriate to measure changes in activity (Myhre et al., 2013b). The inclusion of 32 
tropospheric adjustments that reduce ERF (compared to SARF in AR5) has a negligible impact on the 33 
overall forcing. Prior to the satellite era, proxy records are used to reconstruct historical solar activity. In the 34 
AR5, historical records were constructed using observations of solar magnetic features. In this assessment 35 
historical time series are constructed from radiogenic compounds in the biosphere and in ice cores that are 36 
formed from cosmic rays (Steinhilber et al., 2012). 37 
 38 
In this assessment the TSI from the Paleoclimate Model Intercomparison Project Phase 4 (PMIP4) 39 
reconstruction is used (Jungclaus et al., 2017, Chapter 2, Section 2.2). Proxies constructed from the 14C and 40 
10Be radiogenic records for the SATIRE-M model (Vieira et al., 2011) and 14C record for the PMOD model 41 
(Shapiro et al., 2011) for the 1745 solar minimum provide 1745 to 2008 ERFs of –0.01, –0.02 and 42 
0.00 W m-2 respectively. Several other proxy reconstructions of TSI have become available since the AR5 43 
(Egorova et al., 2018; Lean, 2018; Wu et al., 2018), resulting in 1745 to 2008 ERFs ranging from –0.05 to 44 
+0.10 W m-2. One substantially higher ERF estimate of +0.35 W m-2 derived from TSI reconstructions in 45 
Egorova et al. (2018) is based on a later recovery in solar modulation potential from the Maunder Minimum 46 
(Muscheler et al., 2016). However, the estimate from Egorova et al. (2018) hinges on assumptions about 47 
long-term changes in the quiet Sun for which there is no observed evidence, so this estimate is not explicitly 48 
taken into account in the assessment presented in this section.  49 
 50 
The best estimate solar ERF is assessed to be –0.01 W m-2, being the mean of the PMIP4 datasets, with a 51 
likely range of –0.05 to +0.10 W m-2 (low confidence). The likely range is wider than in AR5 and asymmetric 52 
due to the increased diversity in TSI reconstructions prior to 1750, notably those that show a negative forcing 53 
due to an upward revision of TSI in the 1740s.  54 
 55 
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7.3.4.5 Galactic Cosmic Rays 1 
 2 
Variations in the flux of galactic cosmic rays (GCR) reaching the atmosphere is modulated by solar activity 3 
and affect new particle formation in the atmosphere through its link to ionization of the troposphere (Lee et 4 
al., 2019). It has been suggested that periods of high GCR flux correlate with increased aerosol and CCN 5 
concentrations and therefore also with cloud properties (e.g. Dickinson, 1975; Kirkby, 2007), particularly for 6 
low altitude clouds (Svensmark and Friis-Christensen, 1997; Marsh and Svensmark, 2000).  7 
 8 
Since the AR5, considerable progress has been made connecting GCR to new particle formation, particularly 9 
by work performed at the CERN CLOUD chamber (Cosmics Leaving OUtdoor Droplets) (e.g. Dunne et al., 10 
2016; Gordon et al., 2016, 2017; Kirkby et al., 2016), but also by others (e.g. Yu and Luo, 2014). Several 11 
studies found that a considerable fraction (up to 50 %) of atmospheric particle nucleation involves ions 12 
(Kirkby et al., 2016; Gordon et al., 2017), yet the dependence on ion concentration is relatively weak (Dunne 13 
et al., 2016). Combined with small variations in the atmospheric ion concentration over centennial time 14 
scales (Usoskin, 2017), it is therefore unlikely that cosmic ray intensity impact present day climate via 15 
nucleation (Yu and Luo, 2014; Dunne et al., 2016; Pierce, 2017; Lee et al., 2019). This is supported by 16 
Gordon et al. (2017), who linked the GCR-induced new particle formation found from CLOUD experiments 17 
to CCN and found the CCN concentration for low clouds to differ by 0.2% to 0.3 % between solar maximum 18 
and solar minimum of the solar cycle and concluded that the effect of changes in GCR intensity on CCN is 19 
small. 20 
 21 
Studies also seek to establish a causal relationship between GCR and properties of the climate system based 22 
on correlations and theory. Svensmark et al. (2016) used a Monte Carlo bootstrap-based statistical test to find 23 
correlations between Forbush decreases and aerosol and cloud properties in satellite (MODIS and ISCCP) 24 
and ground based (Aeronet) data. While this supports the findings of Svensmark et al. (2009), multiple 25 
studies investigating this link have challenged such correlations (Kristjánsson et al., 2008; Calogovic et al., 26 
2010; Laken, 2016). No study has corroborated the new findings of Svensmark et al. (2016) to date.  27 
 28 
AR5 concluded that while GCR enhance new particle formation, the effect on CCN is too weak to have any 29 
detectable impact on climate and no robust association was found between GCR and cloudiness  30 
(Boucher et al., 2013). Published literature since then robustly support these conclusions with key laboratory, 31 
theoretical and observational evidence. An assessment can now be made with high confidence that GCRs 32 
contribute a negligible ERF.   33 
 34 
 35 
7.3.4.6 Volcanic 36 
 37 
There is large episodic negative radiative forcing associated with aerosols being ejected into the stratosphere 38 
from explosive volcanic eruptions, accompanied by smaller eruptions, where only a small amount of aerosol 39 
reaches the upper troposphere/stratosphere. The volcanic SARF in the AR5 (Myhre et al., 2013b) was 40 
derived by scaling the stratospheric aerosol optical depth (SAOD) by a factor of –25 W m–2 per SAOD from 41 
Hansen et al. (2005). Quantification of the adjustments to SAOD perturbations from climate model 42 
simulations have determined a significant positive rapid adjustment driven by shortwave clouds (Marshall et 43 
al., submitted), leading to estimates of –17 and –20 W m-2 per SAOD (Gregory et al., 2016; Larson and 44 
Portmann, 2016), with some evidence that ERF may be non-linear with SAOD for large eruptions (Marshall 45 
et al., submitted). A study where volcanic SO2 emissions were prescribed found a positive forcing through 46 
effects on upper tropospheric ice clouds, due to additional ice nucleation on the volcanic sulphate particles 47 
(Schmidt et al., 2018). With only one study so far, the contribution to volcanic ERF due to sulphate aerosol 48 
impacts on ice clouds is not included in the overall assessment.  49 
 50 
Non-explosive volcanic eruptions generally yield negligible global ERFs due to the short atmospheric 51 
lifetimes (a few weeks) of volcanic aerosols in the troposphere. However, as discussed in Section 7.3.3.2, the 52 
massive fissure eruption in Holuhraun, Iceland persisted for months in 2014 and 2015 and did in fact result 53 
in a marked and persistent reduction in cloud droplet radii and a corresponding increase in cloud albedo 54 
regionally (Malavelle et al., 2017). This shows that also non-explosive fissure eruptions can lead to strong 55 
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regional and even global ERFs, but because the Holuhraun eruption occurred in NH winter, solar insolation 1 
was weak and the observed albedo changes therefore did not result in an appreciable global ERF.  2 
 3 
The adjustment component of ERF for volcanic stratospheric aerosols is assessed to be an average of the 4 
three climate model based SAOD efficiency calculations, with a 5% to 95% range estimated from the spread 5 
in these results to give a total ERF assessed scaling of –18 ± 3 W m–2 per SAOD (medium confidence). This 6 
is applied to the SAOD timeseries from Chapter 2, Section 2.2 to generate a timeseries of temperature 7 
response in Figure 7.12. 8 
 9 
 10 
7.3.5 Synthesis of Global Mean Radiative Forcing, Past and Future 11 
 12 
7.3.5.1 Summary of major changes in forcing since IPCC AR5 13 
 14 
The AR5 introduced the concept of ERF and adjustments and made a preliminary assessment that the 15 
tropospheric adjustments were zero for all species other than the effects of aerosol-cloud interaction and 16 
black carbon. Since the AR5, new studies have allowed for a tentative assessment of values for tropospheric 17 
adjustments to CO2, CH4, and stratospheric aerosols, to place a tighter constraint on adjustments from 18 
aerosol-cloud interaction and to assess a likely sign of the tropospheric adjustments for other forcing agents 19 
(section 7.3.2, 7.3.4).  20 
 21 
The radiative efficiencies for CO2, CH4 and N2O have been updated since the AR5 (Etminan et al., 2016). 22 
The differences for CO2, and N2O are small at present day concentrations, but the radiative efficiency for 23 
CH4 is increased by 25% (see section 7.3.2) (high confidence) although the tropospheric adjustment is 24 
tentatively assessed to offset that by 14% (medium confidence). 25 
 26 
 27 
7.3.5.2 Summary ERF assessment 28 
 29 
Figure 7.9 shows the industrial-era ERF estimates for 1750 to 2018 for the different forcing agents. The 30 
assessed uncertainty distributions for each individual component are combined with a 200,000-member 31 
Monte Carlo simulation that samples the different distributions, assuming they are independent, to obtain the 32 
overall assessment of total present-day ERF. 33 
 34 
 35 
[START FIGURE 7.9 HERE] 36 
 37 
Figure 7.9: Effective radiative forcing from 1750 to 2018 by contributing forcing agents. 38 
 39 
[END FIGURE 7.9 HERE] 40 
 41 
 42 
[START TABLE 7.8 HERE] 43 
 44 
Table 7.8: Summary table of ERF estimates for AR6 and comparison with the four previous IPCC assessment 45 

reports. For AR5 and AR6 these include tropospheric adjustments where known. 5% to 95% ranges are 46 
shown. Volcanic ERF is not added to the table due to the episodic nature of volcanic eruptions which 47 
makes it difficult to compare to the other forcing mechanisms. Solar ERF is based on TSI and not spectral 48 
variation. 49 

 50 
 Global Mean Effective Radiative Forcing (W m–2) 

 SAR 
(1750–
1993) 

TAR 
(1750–
1998) 

AR4 
(1750–
2005) 

AR5 
(1750–
2011) 

AR6 
(1750–
2018) 

Comment 

CO2 1.56 [1.33, 1.46 [1.31 1.66 [1.49, 1.82 [1.63, 2.15 [1.89 Increases in concentrations. 
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1.79] to 1.61] 1.83] 2.01] to 2.41] Changes to radiative 
efficiencies. 
Inclusion of tropospheric 
adjustments. 

CH4 0.47 [0.40, 
0.54] 

0.48 [0.41, 
0.55] 

0.48 [0.43, 
0.53] 

0.48 [0.43, 
0.53] 

0.54 [0.43, 
0.65] 

N2O 0.14 [0.12, 
0.16] 

0.15 [0.14, 
0.16] 

0.16 [0.14, 
0.18] 

0.17 [0.14, 
0.20] 

0.19 [0.16, 
0.22] 

Halogens 0.26 [0.22, 
0.30] 

0.36 [0.31, 
0.41] 

0.33 [0.30, 
0.36] 

0.36 [0.32, 
0.40] 

0.38 [0.32, 
0.43] 

Tropospheric ozone +0.40 
[0.20, 
0.60] 

+0.35 
[0.20, 
0.50] 

+0.35 
[0.25, 
0.65] 

+0.40 
[0.20, 
0.60] 

+0.35 [0.18, 
0.52] 

Most recent model estimates. 
No tropospheric adjustment 
assessed. 

Stratospheric ozone –0.1 [–0.2, 
–0.05] 

–0.15 
[–0.25, 
–0.05] 

–0.05 
[–0.15, 
+0.05] 

–0.05 
[–0.15, 
+0.05] 

–0.05 
[–0.15, 0.0] 

No tropospheric adjustment 
assessed 

Stratospheric water 
vapour from CH4 

Not 
estimated 

[0.01, 
0.03] 

+0.07 
[+0.02, 
+0.12] 

+0.07 
[+0.02, 
+0.12] 

+0.07 
[+0.02, 
+0.12] 

Estimate unchanged. 

Aerosol–radiation 
interactions 

Not 
estimated 

Not 
estimated 

–0.50 
[–0.90, 
–0.10] 

–0.45 
[–0.95, 
+0.05] 

–1.1 [–2.0, 
–0.4] 

Ari Reduced by about 55% 
compared to AR5 
Aci Increased by 100% 
compared to AR5 Aerosol–cloud 

interactions 
[0, –1.5] 
(sulphate 
only) 

[0. –2.0] 
(all 
aerosols) 

–0.70 
[–1.80, 
–0.30] 
(all 
aerosols) 

 –0.45 
[–1.2, 0] 

 Land use Not 
estimated 

–0.20 
[–0.40, 
0.0] 

–0.20 
[–0.40, 
0.0] 

–0.15 
[–0.25, 
–0.05] 

–0.12 
[–0.21, 
–0.03] 

Includes irrigation, and cloud 
adjustments. 

Surface albedo 
(black+organic carbon 
aerosol on snow and 
ice) 

Not 
estimated 

Not 
estimated 

+0.10 [0.0 
to +0.20] 

+0.04 
[+0.02 to 
+0.09] 

+0.08 
[+0.04 to 
+0.18] 

Increased since AR5 to better 
account for temperature effects 

Combined contrails and 
contrail-induced cirrus 

Not 
estimated 

0 to +0.04 Not 
estimated 

+0.05 
[+0.02 to 
+0.15] 

+0.04 
[+0.01 to 
+0.07] 

Narrower range since AR5 

       

Total anthropogenic Not 
estimated 

Not 
estimated 

1.6 [0.6 to 
2.4] 

2.3 [1.1 to 
3.3]  

2.53 [1.56 
to 3.32] 

Slight increase due to 
compensating effects of 
greenhouse gases and aerosol 

Solar irradiance +0.30 
[+0.10 to 
+0.50] 

+0.30 
[+0.10 to 
+0.50] 

+0.12 
[+0.06 to 
+0.30] 

+0.05 [0.0 
to +0.10] 

–0.01 
(–0.05 to 
+0.10) 

Revised historical TSI estimates 

 1 
[END TABLE 7.8 HERE] 2 
 3 
 4 
The total anthropogenic ERF over the industrial era (1750–2018) is estimated as 2.53 (1.58 to 3.34, 5% to 5 
95% range) W m–2 (Table 7.8) (high confidence). This represents an 11% increase over the assessment made 6 
in AR5 (Myhre et al., 2013b) for the period 1750–2011. This increase is a result of compensating effects. 7 
Atmospheric concentrations of well-mixed greenhouse gases since 2011 and upwards revisions of their 8 
forcing estimates have led to a 15% increase in their ERF. Whereas, the total aerosol ERF is assessed to be 9 
22% more negative compared to AR5, due to revised estimates rather than trends (high confidence). This 10 
estimate is very similar to an up-to-date inverse estimate of total ERF based on using Box 7.1, Equation 7.1 11 
with estimates of climate response, surface temperature change and energy imbalance over the shorter 1861–12 
1880 to present day of 2.3 W m–2 (1.7 to 3.0 W m–2, 5% to 95% range) (Andrews and Forster, in press). 13 
Anthropogenic ERF from 1750 to the 1850-1900 period, sometimes used as a proxy for pre-industrial 14 
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temperature observations (Chapter 1, Cross-Chapter Box 1.2), is 0.22 (0.11–0.32) W m–2, driven by an 1 
increase in greenhouse gas concentrations that were partially offset by aerosols over this time period. 2 
 3 
Greenhouse gases, including ozone and stratospheric water vapour from methane oxidation, are estimated to 4 
contribute an ERF of 3.63 W m–2 (3.27 to 3.97 W m–2, 5% to 95% range). 3.26 W m–2 (2.97 to 3.55 W m–2, 5 
5% to 95% range) of this ERF comes from the well-mixed greenhouse gases, with ozone and stratospheric 6 
water vapour changes contributing the remainder. Carbon dioxide continues to contribute the largest part of 7 
this ERF (high confidence). There has been a significant increase in the estimated shortwave forcing from 8 
methane (high confidence), somewhat countered by a negative adjustment (medium confidence). There is 9 
also a 5% upwards revision due to inclusion of tropospheric adjustments for CO2 (medium confidence) and 10 
3% increase in the SARF from LBL calculations (medium confidence). 11 
 12 
Aerosols have in total contributed an ERF of –1.1 W m–2 (–2.0 to –0.4 W m–2, 5% to 95% range). Aerosol-13 
cloud interactions contribute approximately ¾ to this ERF, with the remainder due to aerosol radiation 14 
interaction (high confidence). 15 
 16 
For the purpose of comparing forcing changes with historical temperature change, longer averaging periods 17 
are useful. The change in ERF from the second half of the 19th century (1850–1900) compared with a recent 18 
period (2006–2018) is 1.97 W m–2 (1.00 to 2.77 W m–2, 5% to 95% range), of which 1.70 W m–2 (1.50 to 19 
1.90 W m–2, 5% to 95% range) is due to CO2. 20 
 21 
 22 
7.3.5.3 Forcing contribution by emitted species 23 
 24 
Figure 7.10 shows the ERF estimates for 1850 to 2014 for reactive gases and aerosols attributed to emitted 25 
species. These estimates are based on CMIP6 models with interactive atmospheric chemistry and aerosols 26 
(Thornhill et al. submitted). The diagnosed changes in methane lifetime are used to infer changes in methane 27 
concentration and hence ERF, see Chapter 6, Section 6.3.1.1. Diagnosed changes in radiative fluxes for 28 
clear-sky and aerosol-free conditions are used to separate the direct aerosol IRFari and cloud effects (Ghan, 29 
2013; Thornhill et al. submitted), where the cloud effects include cloud adjustments (semi-direct effect) and 30 
ERFaci. The ERF attributed to methane emissions (0.99±0.18 W m-2) is much larger than the ERF from 31 
changes in methane concentrations (0.54±0.11 W m-2) due mostly to the production of ozone and 32 
stratospheric water vapour, but also because methane concentrations would have been higher in the absence 33 
of NOX emissions. This means that the methane ERF from chemical adjustments is 0.45 ± 0.11 W m-2 ,which 34 
is consistent with AR5 (Myhre et al., 2013b) and there is high confidence in this statement. 35 
 36 
Halocarbons were assessed as very likely causing a net positive ERF in the AR5, however the more recent 37 
studies (O’Connor et al., submitted; Thornhill et al. submitted) find stronger ozone depletion such that the 38 
5% to 95% confidence range in net halocarbon ERF extends to zero (0.0 to 0.16 W m-2) (high confidence). 39 
The WMGHGs (CH4, N2O, halocarbons) are found to induce negative cloud forcings, which in one study are 40 
found to be due to increases in oxidation of aerosol precursors and increased natural aerosol emission 41 
(O’Connor et al., submitted). There is low confidence in this cloud attribution due to the limited number of 42 
models studied. Historical NOX and volatile organic compound (VOC) emissions have both contributed to 43 
the ozone ERF, but NOX emissions have decreased the methane lifetime giving a net negative ERF whereas 44 
VOC emissions have increased the methane lifetime adding to the positive ERF. There is high confidence in 45 
the signs of both the NOX and VOC ERFs, and they agree with the AR5 assessment (Myhre et al., 2013b).  46 
SO2 emissions make the dominant contribution to the ERFaci (high confidence). Black carbon emissions 47 
offset a significant fraction of the negative IRFari from scattering aerosols (Chapter 6, Section 6.3.1), but 48 
there is low confidence in this due to the limited number of models. 49 
 50 
 51 
 52 
 53 
 54 
 55 
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[START FIGURE 7.10 HERE] 1 
 2 
Figure 7.10: Components of radiative forcing from 1850 to 2014 by emitted species based on CMIP6 models 3 

(Thornhill et al. submitted). “VOC” includes CO as well as other non-methane hydrocarbons. WMGHGs 4 
are from the analytical formulae in Section 7.3.2, H2O (strat) is from Table 7.8. Other components are 5 
multi-model means from Thornhill et al. (submitted), see Chapter 6, Section 6.3.1.1, and are based on 6 
model simulations where one species at a time is increased from 1850 levels to 2014. Error bars are 5-7 
95% and account for uncertainty in radiative efficiencies and multi-model error in the means. IRFari and 8 
cloud effects are calculated from separate radiation calls for clear-sky and aerosol free conditions (Ghan, 9 
2013; Thornhill et al. submitted). “Cloud” includes cloud adjustments (semi-direct effect) and ERFaci. 10 
The aerosols (SO2, organic carbon, black carbon) components are scaled to sum to -0.25 W m-2 for IRFari 11 
and -0.95 W m-2 for “cloud” (Section 7.3.3). 12 
 13 

[END FIGURE 7.10 HERE] 14 
 15 
 16 
7.3.5.4 Temperature Contribution of forcing agents 17 
 18 
The estimated contribution of forcing agents to 2018 temperature change relative to 1750 is shown in Figure 19 
7.11. These estimates were produced using the two-layer energy balance model (Cross-Chapter Box 7.1, 20 
Appendix 7.A.2) using a 20,000-member Monte Carlo sample of both forcing uncertainty (by sampling ERF 21 
ranges) and climate response (by sampling ECS ranges). The distribution of ECS was informed by Section 22 
7.5.5 and chosen to approximately maintain the best estimate and likely/very likely ranges assessed in that 23 
section. The TCR, which is an emergent property and not prescribed in this model, has an ensemble median 24 
value of 1.73°C, in good agreement with Section 7.5.5. Two error bars are shown in Figure 7.11. The dashed 25 
error bar shows the contribution of ERF uncertainty employing the best estimate of climate response with an 26 
ECS of 3.0 °C. The solid bar is the total response uncertainty using the Section 7.5.5 assessment of ECS. 27 
Overall the temperature response in Figure 7.11 is dominated by the uncertainty in ERF, yet for the 28 
WMGHG contribution to warming the uncertainty is dominated by the climate response.  29 
 30 
These results show that it is clear that anthropogenic activity has had a warming effect on the planet since 31 
1750. Analyses of radiative forcing and climate sensitivity presented in this chapter give an estimated human 32 
induced warming of 1.1°C (0.4 to 1.9°C, 5% to 95% range, high confidence). Changes in solar and volcanic 33 
activity are assessed to have had a small effect (medium confidence) with a best estimate of 0.04°C (0.03 to 34 
0.07 °C, 5% to 95% range). The anthropogenic warming is comprised of a greenhouse warming of 1.7°C 35 
(1.3–2.3°C) that has an increasing trend and an aerosol cooling of 0.6°C (0.1–1.5°C) that has remained 36 
relatively constant over the last 20 years (Figure 7.11) (high confidence). This bottom up forced estimate of 37 
human induced warming is compared to the attributable warming from comparisons of simulations with the 38 
historic warming record in Chapter 3, Section 3.1. Note that the estimates here do not make use of the 39 
historic temperature record so can be considered more or less independent of those from Chapter 3.  40 
 41 
 42 
[START FIGURE 7.11 HERE] 43 
 44 
Figure 7.11: The contribution of forcing agents to 2018 temperature change relative to 1750 produced using the two-45 

layer energy balance model (Cross-Chapter Box 7.1) where ranges for ERF were taken from Section 7.3 46 
and ranges for ECS were taken from Section 7.5. Dashed error bars show the contribution of forcing 47 
uncertainty and solid error bars show the combined forcing and climate response uncertainty. 48 

 49 
 50 

[END FIGURE 7.11 HERE] 51 
 52 
 53 
 54 
 55 
 56 
 57 
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7.3.5.5 Historical timeseries from models and observations 1 
 2 
Historical timeseries of the assessed ERF and the resulting near surface global temperature changes are 3 
shown in Chapter 2, Figure 2.10 and Figure 7.12 respectively. The historical timeseries of ERFs for the 4 
WMGHGs can be derived by applying the ERF calculations of Section 7.3.2 to the observed timeseries of 5 
WMGHG concentrations in Chapter 2, Section 2.2. Stratospheric ozone ERF is scaled using the present day 6 
value in Section 7.3.2 to the observed levels of equivalent effective stratospheric chlorine using values from 7 
Daniel et al. (2010) up to 1980 and Engel et al. (2018) after 1980. Changes in solar forcing are derived by 8 
scaling observed total solar irradiance (TSI, Chapter 2, Section 2.2.2), changes in volcanic forcing are 9 
derived by scaling observed stratospheric aerosol optical depth (SAOD, Chapter 2, Section 2.2.3). 10 
Tropospheric ozone ERF follows Checa-Garcia (2018). Aerosol ERF uses historical ERFari and ERFaci 11 
determined from five models participating in the Radiative Forcing Model Intercomparison Project (Pincus 12 
et al., 2016), scaled to the assessed forcing in 7.3.3. The land use ERF timeseries is based on historical land 13 
use reconstructions (Ghimire et al., 2014).  14 
 15 
These results show that for most of the historic period the overall multi-decadal trends closely follow the 16 
CO2 contribution, as non-CO2 greenhouse gas forcing (from other WMGHGs and ozone) was approximately 17 
compensated for by the aerosol cooling. However, the aerosol cooling is no longer increasing at the same 18 
rate if at all (Gettelman et al., 2015) so over the last few decades the long-term warming has been occurring 19 
at a faster rate than that expected by CO2 alone (high confidence, see also Chapter 2, Section 2.2). These 20 
estimates of the bottom up forced response are compared with model simulations and attributable warming 21 
estimates in Chapter 3, Section 3.1. 22 
 23 
 24 
[START FIGURE 7.12 HERE] 25 
 26 
Figure 7.12: Timeseries of near surface global temperature changes, using the time series of ERFs assessed in Chapter 27 

2 and calculated using the two-layer energy balance model (Cross-Chapter Box 7.1) with the best 28 
estimate of ECS assessed in Section 7.5. 29 

 30 
[END FIGURE 7.12 HERE] 31 
 32 
 33 
[START CROSS-CHAPTER BOX 7.1 HERE] 34 
 35 
 36 
Cross-Chapter Box 7.1: Physical emulation of Earth System Models for scenario classification and 37 

knowledge integration in AR6 38 
 39 
Authors: Malte Meinshausen, Zebedee Nicholls, Piers Forster 40 
 41 
What is the purpose of simple climate models and emulators? 42 
Since the early days of climate change research, various simple models have been developed, ranging from 43 
simple energy balance equations requiring only a few lines of computer code to models with 50 layers and 44 
upwelling diffusive entrainment in the ocean (Table 1.3 in Chapter 1, Section 1.5), to Earth System Models 45 
of Intermediate Complexity (EMICs), creating a continuum in the model hierarchy in between simple 46 
climate models and the existing Earth System Models (ESMs). While in the early days of climate research, 47 
simple models were used as stand-alone models in their own right, recent applications have focussed on 48 
using simple models as elaborate inter- and extrapolation tools to reflect and combine knowledge from 49 
ESMs and many other lines of evidence. Hence, this AR6 report emphasises the term ‘emulators’ to 50 
reinforce the focus on this specific usage of simple climate models. 51 
 52 
Past use of emulators in IPCC 53 
Simple climate models and emulators have a long history of use in previous IPCC reports (see Chapter 1, 54 
Section 1.5). The AR5 placed more emphasis on the EMICs than emulation, although the long-term 55 
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projection chapter (Collins et al., 2013a) featured the MAGICC simple model in an AOGCM-calibrated and 1 
probabilistic version (Meinshausen et al., 2011a; Rogelj et al., 2012) as well as a step-approach simple model 2 
by Good et al. (2013). The simple models were mainly used for cases where AOGCM results were not 3 
available, to provide greenhouse gas projections as input to the AOGCM experiments (Meinshausen et al., 4 
2011b) and to provide evidence in relation to chosen uncertainty range representations. In SR15, two simple 5 
models were used to provide temperature projections for the lower new emission pathways, as Earth System 6 
Model or AOGCM results were not yet available given the short timeframe. The two models were the FaIR 7 
model (Smith et al., 2018a) and MAGICC model (Meinshausen et al., 2011a).  8 
 9 
Across this AR6 WGI report, emulators are employed in various Chapters: 10 

 Investigating the temperature response to individual forcings in a bottom up approach, and comparing to 11 
top-down detection and attribution results and models (Chapters 3, Section 3.3 and Chapter 7, Section 12 
7.3). 13 

 Deriving emission metrics, based on impulse response functions (Chapter 7, Section 7.6). 14 

 Compiling the state of our understanding of equilibrium climate sensitivity (ECS) and transient climate 15 
response (TCR) from multiple lines of evidence, with one important line being derived from constraining 16 
simple models with historical observational data (e.g. Skeie et al., 2018) (Chapter 7, Section 7.5). 17 

 Deriving estimates of TCR from ECS values using a two-layer model outlined in Chapter 7 of the 18 
Appendix 7.A.2 (Chapter 7, Section 7.5). 19 

 Understanding the spread of CMIP6 models and compare them to independent assessments of key 20 
climate system properties like ECS, TCR and effective radiative forcings (ERF), and assess contributions 21 
to projected temperature uncertainty (Chapter 4, Box 4.1). 22 

 Assessing the remaining carbon budget, in particular the estimated non-CO2 warming contributions at the 23 
time of peak warming (Chapter 5, Section 5.5). 24 

 Combining multiple contributions to global-mean and regional sea level rise (Chapter 9, Section 9.6). 25 
 26 
One example of how emulators can be used is to aid understanding of differences between CMIP5 and 27 
CMIP6 models (Chapter 4, Box 4.1 and Section 4.3). As CMIP5 and CMIP6 employed different scenario 28 
sets (RCPs and SSPs, respectively), it is useful to know how much of the differences in projected 29 
temperature are due to the scenario change and how much due to model changes. To test this the emulators 30 
have been run with the same model version and configuration for both the RCP and SSP scenarios. 31 
Preliminary investigations performed with the FaIR and MAGICC emulators suggest that scenario 32 
differences had a minor effect across the scenario sets, and most of the differences between CMIP5 and 33 
CMIP6 are caused by ECS and TCR differences in the two generations of models (Forster et al., 2019; 34 
Meinshausen et al., 2019).   35 
 36 
The main functionality of emulators across the Working Groups is that they play a key role in 37 
‘communicating’ WGI physical climate science knowledge to the research community associated with 38 
Working Group II and III. Some individual studies associated with WGIII, for example, investigate whether 39 
current infrastructure, accounting for its technical lifetime, commits the world to 1.5°C global warming or 40 
not (Smith et al., 2019). The more overarching application of emulators is, however, related to scenario 41 
classifications in WGIII. Analysing various features of the broad scenario database, like the point of peak 42 
emissions, or the 2030 emission levels in line with 1.5°C or 2.0oC global mean temperature goals, requires a 43 
large amount of multi-gas scenarios to be analysed regarding their global mean temperature implications. 44 
This service has been provided in the past by calibrated physical emulators and this practice continues today. 45 
 46 
Key characteristics and sampling strategies of emulators  47 
Depending on their complexity, simple climate models can provide good approximations, on the 48 
hemispheric-scale and land-/ocean-scale, of surface air temperatures, sea level rise contributions, and global 49 
carbon cycle responses from ESMs. Calibrated to a specific ESM, simple climate models are able to 50 
reproduce broad scale responses for key variables across a wide range of scenarios, including idealised CO2-51 
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only scenarios with quadrupled or halved CO2 concentrations (Cross-Chapter Box 7.1, Figure 1). A key 1 
functional difference between the simple climate model types is how the ocean and its heat uptake are 2 
characterised. In its simplest form, a simple 1-dimensional box is used, however this often leads to an 3 
overestimated heat uptake in the near-term compared to centennial timescales (Harvey et al., 1997). These 4 
days, there are three basic approaches to address this shortcoming of the “too-simple” ocean formulation: an 5 
approach that dates back to Schlesinger and Jiang (1990) is to use an upwelling-diffusion modelling 6 
approach. Both MAGICC and the CICERO-SCM (Aldrin et al., 2012; Skeie et al., 2018) maintain this basic 7 
model structure. The second approach is the 2-layer model formulation by Held et al., (2010) with or without 8 
an efficacy term to account for time evolution in the forcing-response relationship (Geoffroy et al., 2013a) 9 
(see e.g. one Held two-layer model implementation in Cross-Chapter Box 7.1, Figure 1 below). The third 10 
approach makes more direct use of abrupt perturbation simulations in the AOGCMs. Fitting a response curve 11 
to the surface temperature change in abrupt-4xCO2 or similar simulations, the response of a given GCM to 12 
multiple emission scenarios can be gauged from summing multiple impulse functions (e.g. Boucher and 13 
Reddy, 2008; Good et al., 2013). Within the set of currently used models both the MCE (Tsutsui, 2017) and 14 
FaIR models employ this third technique.  15 
 16 
To perform projections that reflect future uncertainty, emulators can use different strategies. One approach is 17 
to calibrate model parameters to individual ESMs and use those ensembles to project climate (e.g. sea-level 18 
projections in Palmer et al., 2018). Another approach is to derive parameter likelihood distributions using 19 
statistical techniques in comparison with historical observations (e.g. Skeie et al., 2018b; Knutti et al., 2003; 20 
Meinshausen et al., 2009; Smith et al., 2018). A third approach is to formally combine multiple lines of 21 
evidence, such as radiative forcing ranges, TCR and ECS ranges that have been derived independently (see 22 
Chapter 7 Appendix 7.A.2).  23 
 24 
 25 
[START CROSS-CHAPTER BOX 7.1, Figure 1 HERE] 26 
 27 
Cross-Chapter Box 7.1 Figure 1: A comparison between the global-mean surface air temperature response of various 28 

calibrated simple climate model types and one CMIP6 Earth System models, IPSL 29 
CM6A-LR. Most of the latest generation emulators incorporate a non-linearity or 30 
state-dependency of the climate sensitivity in order to match ESMs results across the 31 
wide response space of SSP scenarios (panel a), quadrupled, doubled and halved 32 
CO2 concentrations (panel b). This is an advancement over simple climate model as 33 
used in the IPCC Second Assessment Report (cf. Figure 17 in Harvey et al., 1997). 34 
Figure adapted from Nicholls et al. (submitted).  35 

 36 
[END CROSS-CHAPTER BOX 7.1, Figure 1 HERE] 37 
 38 
 39 
Comparison of emulators with CMIP6 scenario results 40 
The divergence of two simple climate models found in SR1.5 (specifically their projected non-CO2 forcing 41 
(Forster et al., 2018) created interest in a renewed effort to transparently test the skill of various emulators. 42 
To address this limitation, it is instructive to compare emulators directly to ESMs. The RCMIP comparison 43 
builds on previous efforts to undertake intercomparisons of emulators and simple climate models. Schwarber 44 
et al. (2019) compared HECTOR, MAGICC, FaIR and the AR5 impulse response functions. In another 45 
carbon-cycle focussed comparison, four simple models (ACC2, BernSAR, MAGICC, TOTEM) were 46 
compared with ESMs and EMICs (Joos et al., 2013) with three found to represent the range relatively well, 47 
and MAGICC being within the ESM and EMIC range across the full 1000 year time horizon. Earlier 48 
comparisons among simple climate modules in DICE, MERGE, FUND, PAGE and IMAGE (which uses 49 
MAGICC) are shown in van Vuuren et al. (2011). 50 
  51 
RCMIP (Nicholls et al., submitted) found that the simple climate models can reproduce key characteristics of 52 
the observed changes in global-mean surface air temperature (GSAT) and other key responses of ESMs over 53 
time. In particular, despite their reduced structural complexity they replicate the non-linear aspects of ESMs 54 
GSAT response over a range of scenarios. However, they also find that simple climate models tend to 55 
underestimate mid-century warming and overestimate recent warming trends, potentially as a result of their 56 
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lack of natural variability or over-estimation of aerosol-induced cooling (see Cross-Chapter Box 7.1, Figure 1 
1a). This would affect their representation of the remaining carbon budget. 2 
 3 
In summary, there is high confidence that several simple climate models can emulate the forced GSAT 4 
trends simulated by ESMs, across a wide range of scenarios to within the uncertainty of the natural 5 
variability in the ESMs, which simple climate models do not reproduce. The two layer model is chosen as 6 
the main emulation tool in the report (Chapter 7,Appendix 7.A.2) as 1) it has an established pedigree in the 7 
literature; 2) it can be setup to directly take probabilistic ECS ranges as an input; 3) it is of the simplest form 8 
that represents both the non-linear behaviour of the ESMs an provides information on both GSAT and the 9 
ocean heat contest change necessary to represent sea level rise. 10 
 11 
[END CROSS-CHAPTER BOX 7.1 HERE] 12 
 13 
 14 
7.4 Climate and Earth system feedbacks 15 
 16 
The magnitude of global temperature change primarily depends on the strength of the radiative forcings and 17 
feedbacks (Box 7.1, Equation 7.1). Earth system feedbacks are numerous, and it can be helpful to loosely 18 
categorise them into three groups: the physical, biophysical/biogeochemical, and long-term feedbacks 19 
associated with ice sheets. The physical feedbacks (for example, associated with lapse-rate, water vapour, or 20 
clouds; Section 7.4.2.1-7.4.2.4) and biophysical/biogeochemical feedbacks (for example, associated with 21 
methane, stratospheric ozone, or vegetation; Section 7.4.2.5) act both on time scales that are used in practice 22 
to estimate the ECS in models (typically 150 years) and on longer time scales required to reach equilibrium. 23 
Long-term feedbacks associated with ice sheets (Section 7.4.2.6) are relevant primarily after several 24 
centuries or more. The feedbacks associated with biophysical/biogeochemical processes and ice sheets are 25 
not included in the conventional definition of the climate system (e.g., Hansen et al., 1984), so they are often 26 
collectively referred to as Earth system feedbacks. The feedback framework used here, and an overview of 27 
model-based estimates of feedbacks, are presented in Section 7.4.1. For each feedback, the basic underlying 28 
mechanisms and their assessment are presented in Section 7.4.2.  29 
 30 
Up until the AR5, process understanding and quantification of feedback mechanisms were based primarily 31 
on global climate models. However, after several decades of model development little progress had been 32 
achieved in narrowing down climate feedbacks, and hence ECS, based on global climate models. To address 33 
this, the scientific community has undertaken a wealth of different alternative approaches to move the field 34 
forward, including observational and fine-scale modelling approaches. This has in some cases led to more 35 
constrained feedbacks and, on the other hand, uncovered several shortcomings in global climate models. 36 
Consequently, for the AR6 it is possible to achieve a better-founded assessment of feedbacks acting in the 37 
climate system which is less reliant on global climate models than in earlier assessment reports. 38 
 39 
It has long been recognized that the magnitude of climate feedbacks can change as the climate state evolves 40 
(Manabe and Bryan, 1985; Murphy, 1995; Section 7.4.3; Section 7.4.4), but the implications for projected 41 
future warming have been clarified only recently. Since the AR5, progress has been made in understanding 42 
the key mechanisms behind this time- and state-dependence. Specifically, the state-dependence is assessed 43 
by comparing climate feedbacks between warmer and colder climate states inferred from paleoclimate 44 
proxies and model simulations (Section 7.4.3). The time-dependence of the feedbacks is evident between the 45 
historical period and future projections and is assessed to arise from the evolution of the surface warming 46 
pattern related to changes in zonal and meridional temperature gradients (Section 7.4.4).  47 
 48 
 49 
7.4.1 Framework and methodology 50 
 51 
7.4.1.1 Standard framework 52 
 53 
The global temperature changes of the climate system are generally analysed with the classical forcing-54 
feedback theory as described in Box 7.1 (Equation 7.1). In this equation is the net climate feedback 55 
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parameter (W m-2 °C–1). As surface temperature changes in response to the TOA energy imbalance, many 1 
other climate variables also change, thus affecting the radiative flux at the TOA. The aggregate feedback 2 
parameter can then be decomposed into an approximate sum of terms 𝛼 = ∑ 𝛼௫௫ , where x are vectors 3 

representing variables that have a direct impact on the flux at the TOA and 𝛼௫ =
డே

డ௫

ௗ௫

ௗ்
. Conventionally, the 4 

climate feedbacks are decomposed into components associated with a vertically uniform temperature change 5 
(Planck response, P), the water vapour specific humidity (WV), the temperature lapse rate (LR), the surface 6 
albedo (A), clouds (C), and biogeochemical/biophysical and long-term feedbacks. An alternative and 7 
physically meaningful decomposition is to replace the specific humidity with relative humidity (RH) as a 8 
feedback variable (Held and Shell, 2012; Ingram, 2013). In this RH-based feedback framework, specific 9 
humidity changes required to maintain fixed relative humidity at a perturbed temperature are included in the 10 
Planck response (denoted as P*), and the RH feedback isolates the contribution from changes in relative 11 
humidity. Since a large cancellation between the WV and LR feedbacks disappears in this decomposition, 12 
the inter-model spread of individual feedbacks is reduced (Boucher et al., 2013). While the aggregate 13 
feedback parameter is identical between the two frameworks, the assessment in Section 7.4.2 adopts the RH-14 
based decomposition for simplicity. Biogeochemical feedbacks arise due to changes in aerosols and 15 
atmospheric chemical composition in response to changes in surface temperature, and Gregory et al. (2009) 16 
show that they can be analysed using the same framework (see Chapter 5, Section 5.4 and Chapter 6, Section 17 
6.4). Similarly, longer-term feedbacks associated with vegetation and ice sheet changes can also be 18 
incorporated. 19 
 20 
 21 
7.4.1.2 Updates of climate feedbacks in GCMs and ESMs 22 
 23 
Since the AR5, many modelling groups have newly participated in CMIP experiments with updated climate 24 
and Earth system models, leading to an increase in the number of models in CMIP6 (Chapter 1, Section 25 
1.5.4). While some of the CMIP6 models share components and are therefore not independent, they are 26 
analysed independently when calculating climate feedbacks. This, and more subtle forms of model inter-27 
dependence, creates challenges when determining appropriate model weighting schemes (Chapter 1, Section 28 
1.5.4). Additionally, it must be kept in mind that the ensemble sizes of the CMIP5 and CMIP6 models are 29 
not sufficiently large to sample the full range of model uncertainty.  30 
 31 
In GCMs and ESMs, the feedback parameters 𝛼௫are estimated as the mean differences in the radiative fluxes 32 
between atmosphere-only simulations in which the change in SST is prescribed (Cess et al., 1990), or as the 33 
regression slope of change in radiation flux against change in global-mean surface air temperature using 34 
atmosphere-ocean coupled simulations with abrupt CO2 changes (abrupt4×CO2) (Andrews et al., 2012; 35 
Gregory et al., 2004; Caldwell et al., 2016). The linear regression for abrupt4×CO2 simulations also provides 36 
an estimate of ERF (see Section 7.3.1). In atmosphere-only simulations, the estimate of 𝛼௫  depends on the 37 
prescribed pattern of SST increase, whereas in coupled simulations the estimate varies with the choice of 38 
time period after an abrupt CO2 increase that is included in the regression. Neither method is perfect, but 39 
both are useful and the two approaches yield consistent results (Ringer et al., 2014). Consequently, 40 
individual feedback terms in the CMIP5 and CMIP6 climate model ensembles are calculated using the linear 41 
regression for 150 years in abrupt4xCO2 experiments (Figure 7.13, see Box 7.1). There is an inconsistency 42 
between the regression over years 1-150 and the definition of ERF and feedback in Box 7.1. That is, the 43 
radiative effects of land warming are excluded from the ERF due to doubling of CO2, which gives a feedback 44 
value too positive by about 10% in the regression framework. However, the feedback calculated using the 45 
regression over years 1-150 that lacks multi-centennial scale warming probably gives an underestimate of 𝛼 46 
by about 10% (Rugenstein et al., 2019a). These effects are both small and may partially cancel, justifying the 47 
use of regression over 150 years as an approximation to feedbacks and hence ECS (see Box 7.1). 48 
 49 
In order to estimate the feedbacks in a consistent way across models, a ‘radiative kernel’ method has been 50 
used (Soden et al., 2008). In this method, 𝜕𝑁/𝜕𝑥 (called the kernel, where x is a climate variable such as 51 
water vapour) is evaluated by perturbing x within the radiation code of a GCM; multiplying by dx/dT 52 
simulated by coupled GCMs then produces a value of 𝛼௫. Care must be taken for accurate calculation of 53 
𝛼௫  (Jonko et al., 2013), but the radiative kernel has been shown to successfully decompose the net climate 54 
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feedback in GCMs (Zelinka et al., 2016). The kernel method can also be applied to atmospheric reanalysis 1 
data in order to directly compare the climate feedbacks at interannual time scales between observations and 2 
GCMs (Colman and Hanson, 2017). There is a small discrepancy between the aggregate climate feedback 3 
calculated directly using the time evolutions of T and   in each model and the accumulation of individual 4 
feedbacks (shown at the right of Figure 7.13a) owing to biogeochemical processes included in some models 5 
and neglected in this analysis (e.g. methane, ozone or aerosol feedbacks, Section 7.4.2.5) as well as errors in 6 
the radiative kernel method (nonlinearities, differences in mean state or in radiative codes, etc.) and 7 
correlation among feedbacks.  8 
 9 
The multi-model mean values of the Planck feedback, the lapse rate feedback at constant relative humidity 10 
(LR*), the relative humidity feedback (RH) and the surface albedo feedback are very consistent between 11 
CMIP5 and CMIP6 models (see Table 7.10 for the values). These values, where possible supported by other 12 
lines of evidence, are used for assessing feedbacks in Sections 7.4.2.1–7.4.2.3. A difference found between 13 
CMIP5 and CMIP6 models is the cloud feedback, especially its shortwave (SW) component; the net cloud 14 
feedback is larger in CMIP6 by more than 20% (Table 7.10). This change is the major cause of less negative 15 
values of the net climate feedback and hence an increase in modelled ECS (Section 7.5.7). However, the 16 
inter-model spread of the cloud feedback remains large, reflecting that uncertainty in cloud feedbacks has not 17 
been reduced in CMIP6. When the cloud SW feedback is decomposed into its various components, it is 18 
evident that low clouds (below 670 hPa) contribute the most to the enhanced positive feedback in CMIP6 19 
models, through reduction in cloud amount and cloud albedo over the extratropics (Figure 7.13b). In some 20 
models, the change in the extratropical cloud feedback has been related to improved representation of mixed-21 
phase clouds (Bodas-Salcedo et al., 2019; Gettelman et al., 2019), which is taken into account when 22 
assessing cloud feedbacks in Section 7.4.2.4.  23 
 24 
 25 
[START FIGURE 7.13 HERE] 26 
 27 
Figure 7.13: (a) Estimates of global-mean climate feedbacks in 28 CMIP5 (blue) and 27 CMIP6 (orange) 28 

abrupt4xCO2 simulations. The open circle represents individual models and the black circle with an error 29 
bar indicates the multi-model mean and the inter-model standard deviation. Decomposition of 30 
temperature and moisture feedbacks follows (Held and Shell, 2012), which divide them into Planck 31 
response with fixed relative humidity (P*, denoted as ‘Held & Shell’ in the figure), Lapse Rate (LR*) and 32 
Relative Humidity (RH) feedbacks. The P* term is further separated to the conventional Planck response 33 
and a water vapour feedback with fixed RH (represented as ‘Conventional’ and ‘Clausius-Clapeyron’; see 34 
Section 7.4.2.2). The net cloud feedback is the sum of cloud shortwave (Cloud SW) and longwave (Cloud 35 
LW) feedbacks. The residual between the summed feedback and the net climate feedback (left), the latter 36 
directly derived from the models, includes feedbacks neglected in this analysis but considered in some 37 
models (e.g.  non-biogeochemical feedbacks) and above all errors in the radiative kernel. (b) 38 
Decomposition of the global cloud SW feedback into contributions from non-low and low clouds (left), 39 
the latter further broken down to the low cloud amount (middle) and albedo (right) feedbacks. Their 40 
global means are equal to the average of tropical (30°S–30°N) and extratropical (poleward of 30°S/N) 41 
components. All the values are based on six radiative kernels by Zelinka et al. (2019). 42 

 43 
[END FIGURE 7.13 HERE] 44 
 45 
 46 
As with past CMIP cycles, CMIP6 models have improved compared to CMIP5 models, even though the 47 
improvements are in some respects incremental. For climate feedbacks except for clouds, the mean value is 48 
similar between the two ensembles and the inter-model spread was reduced in CMIP6, indicating that 49 
improved representation of the relevant physics leads to better model agreement. The inter-model spread for 50 
the cloud feedback was increased in CMIP6, indicating that an improved representation of cloud processes 51 
does not necessarily reduce uncertainty in the simulated net cloud feedback. This happens because physical 52 
processes parameterized in models may have been tuned to compensate errors in order to simulate realistic 53 
radiation budgets and mean climate states. An improved parameterization of a particular process may not 54 
reduce errors in other processes, which could result in a diverging response of clouds to global warming. 55 
However, the large inter-model spread of the cloud feedback in CMIP6 models can be useful for the 56 
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assessment of feedbacks in individual cloud regimes, which can be verified by the use of observations, 1 
process modelling, and emergent constraints (Section 7.4.2.4). 2 
 3 
 4 
7.4.2 Assessing climate feedbacks 5 
 6 
The goal of this section is to provide an overall assessment of individual feedback parameters, αx, by 7 
combining different lines of evidence from observations, theory, process models and GCMs. To achieve this, 8 
we review the understanding of the key processes governing the feedbacks, why the feedback 9 
estimates differ among models, studies or approaches, and the extent to which these approaches yield 10 
consistent results. The individual feedback assessed are the Planck (Section 7.4.2.1), water vapour and lapse 11 
rate (Section 7.4.2.2), surface albedo (Section 7.4.2.3), cloud (Section 7.4.2.4), biophysical and non-CO2 12 
biogeochemical (Section 7.4.2.5) and long term (Section 7.4.2.6) feedbacks. A synthesis is provided Section 13 
7.4.2.7. 14 
 15 
 16 
7.4.2.1 Planck response 17 
 18 
The Planck response represents the additional LW emission to space arising from vertically uniform 19 
warming of the surface and the atmosphere. The Planck response, often called the Planck feedback, plays a 20 
fundamental stabilizing role in Earth’s climate and has a feedback value that is strongly negative. This 21 
parameter has been estimated using climate simulation output and meteorological reanalysis (Caldwell et al., 22 
2016; Colman and Hanson, 2017; Dessler, 2013b; Soden and Held, 2006; Vial et al., 2013; Zelinka et al., 23 
2019) and the values are generally consistent with theoretical estimates based on Planck radiation. The 24 
standard deviation of this feedback parameter across GCMs is approximately 0.04 W m-2 °C–1. This spread is 25 
small and mainly due to differences in climatological cloud and water vapour distributions and the pattern of 26 
surface temperature changes. The physical processes that control this response are very well understood and 27 
the estimates from observations and climate models are consistent on interannual time scales (Dessler, 2013). 28 
However, structural uncertainty arises from the radiative temperature kernel, introducing an additional 29 
uncertainty of ±0.1 W m–2 °C–1 (Soden and Held, 2006; Dessler, 2013; Vial et al., 2013; Caldwell et al., 30 
2016; Colman and Hanson, 2017; Zelinka et al., 2020). Overall, there is high confidence in the estimate of 31 
the Planck response, which is assessed to be 𝛼 = –3.2 W m-2 °C–1 with a very likely range of –3.4 to –3.0 W 32 
m–2 °C–1 and a likely range of –3.3 to –3.1 W m–2 °C–1.  33 
 34 
 35 
7.4.2.2 Water vapour and lapse rate feedbacks 36 
 37 
The water vapour (WV) feedback quantifies the change in radiative flux at the TOA due to changes in 38 
atmospheric water vapour concentration associated with a change in global mean surface temperature. Since 39 
relative humidity (RH) stays nearly constant as the climate warms (Soden and Held, 2006; Held and Shell, 40 
2012), specific humidity increases with temperature approximately following the Clausius-Clapeyron (CC) 41 
relationship. Greater atmospheric WV content, particularly in the upper troposphere, results in enhanced 42 
absorption of LW and SW radiation and reduced outgoing radiation. These processes represent the water 43 
vapor feedback, the largest positive feedback in the climate system. Atmospheric moistening has been 44 
detected in satellite records, is simulated by climate models, and the estimates agree within model and 45 
observational uncertainty (Soden et al., 2005; Dessler, 2013; Gordon et al., 2013; Chung et al., 2014). The 46 
mean and standard deviation of this feedback based on the cited multi-model studies and including structural 47 
uncertainty arising from the radiative kernel, are αWV = 1.75 ± 0.20 W m–2 °C–1, consistent with recent 48 
estimates inferred from satellite observations of αWV = 1.85 ± 0.32 W m–2 °C–1(Liu et al., 2018). 49 
 50 
The lapse rate feedback quantifies the change in radiative flux at the TOA due to a non-uniform change in 51 
the vertical temperature profile. In the tropics, the vertical temperature profile is mainly driven by moist 52 
convection and is close to a moist adiabat. The warming is larger in the upper troposphere than in the lower 53 
troposphere (Manabe and Wetherald, 1975; Santer et al., 2005; Bony et al., 2006), leading to a larger 54 
radiative emission to space and therefore a negative feedback. In the extra-tropics, the vertical temperature 55 
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profile is mainly driven by a balance between radiation, meridional heat transport and ocean heat uptake 1 
(Rose et al., 2014). This leads to strong wintertime temperature inversions (Payne et al., 2015; Feldl et al., 2 
2017) and a positive lapse rate feedback in polar regions (Manabe and Wetherald, 1975; Pithan and 3 
Mauritsen, 2014). However, the tropical contribution strongly dominates, leading to a large negative global 4 
mean lapse rate feedback (Soden and Held, 2006; Dessler, 2013; Vial et al., 2013; Caldwell et al., 2016). 5 
Estimates of the LR feedback from climate variability are consistent between GCMs and observations 6 
(Dessler, 2013; Colman and Hanson, 2017). The mean and standard deviation of this feedback based on the 7 
cited multi-model studies including structural uncertainty are αLR = -0.55 ± 0.20 W m–2 °C–1 (Dessler, 2013; 8 
Caldwell et al., 2016; Colman and Hanson, 2017; Zelinka et al., 2020).  9 
 10 
Given the coupling between the LR and the WV feedbacks, they are frequently summed into a WV+LR 11 
feedback. This combined feedback reduces the inter-model spread compared to the individual LR and WV 12 
feedbacks (Colman, 2003; Soden and Held, 2006) for reasons that are better understood since the AR5 (Po-13 
Chedley et al., 2018a). To better quantify sources of uncertainty in the WV+LR feedback, an alternative 14 
feedback decomposition has been proposed by Held and Shell (2012) where the feedback is decomposed into 15 
three terms: (1) impact of water vapour changes due to an identical temperature increase at the surface and 16 
throughout the troposphere assuming constant relative humidity, which will be called the 17 
Clausius-Clapeyron (CC) feedback here; (2) the impact of the changes in lapse rate assuming constant 18 
relative humidity (LR*); (3) the impact of the change in relative humidity (RH). This feedback 19 
decomposition distinguishes model feedback spread due to changes in relative humidity from inter-model 20 
spread that results from the pattern of surface warming modulating the lapse rate and associated humidity 21 
changes (Po-Chedley et al., 2018a). 22 
 23 
These three feedbacks are shown Figure 7.13a. The CC feedback has large positive values due to well 24 
understood thermodynamic and radiative processes, and the spread among models is small (Zelinka et al., 25 
2020). The lapse rate feedback LR* has small absolute values, as expected from theoretical arguments 26 
(Ingram, 2010, 2013). The relative humidity feedback is also close to zero and the spread among models is 27 
confined to the tropics (Sherwood et al., 2010; Vial et al., 2013; Takahashi et al., 2016; Po-Chedley et al., 28 
2018a). At inter-annual time scales, it has been shown that the change in RH in the tropics is related to the 29 
change of the spatial organisation of deep convection (Bony et al., submitted). Romps (2014) found that 30 
tropical RH is closely tied to the temperature in the free troposphere and recent research shows that the 31 
change in upper tropospheric RH is closely related to model representation of current climate (Sherwood et 32 
al., 2010; Po‐Chedley et al., 2019). Therefore, a reduction in model RH biases is expected to reduce the 33 
inter-model spread of the RH feedback.  34 
 35 
Models simulate a water vapour increase in the stratosphere with global warming. This increase produces a 36 
positive feedback of 0.1–0.3 W m–2 °C–1 if the stratospheric radiative response is computed assuming 37 
temperatures that are adjusted with fixed dynamical heating (Banerjee et al., 2019; Dessler et al., 2013). 38 
However, various feedbacks reduce this temperature adjustment and the overall physical (water vapour + 39 
temperature + dynamical) stratospheric feedback becomes very small (0.02 ± 0.01 W m–2 °C–1) (Huang et al., 40 
2016). Because of uncertainties in simulating stratospheric processes in current GCMs, we increase the 41 
uncertainty range. The assessed total stratospheric feedback is 0.0 ± 0.1 W m–2 °C–1. 42 
 43 
The combined water vapour plus lapse rate feedback is positive. The main physical processes that drive these 44 
feedbacks are well understood and supported by multiple lines of evidence including models, theory and 45 
observations. The combined water vapour plus lapse rate feedback is assessed to be αLR+WV = 1.2 W m–2 °C–1, 46 
with a very likely range of 0.95 to 1.45 W m–2 °C–1 and a likely range of 1.1 to 1.43 W m–2 °C–1.  47 
 48 
 49 
7.4.2.3 Surface albedo feedback 50 
 51 
Surface albedo is determined primarily by surface reflectance, but also by the spectral and angular 52 
distribution of incident solar radiation. Changes in planetary albedo are roughly one-third the magnitude of 53 
surface albedo changes, owing to atmospheric absorption and scattering, with variability and uncertainty 54 
arising primarily from clouds (Donohoe and Battisti, 2011). Temperature change induces surface albedo 55 
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change through several direct and indirect means. In the present climate, the largest contributions by far are 1 
changes in the extent of sea ice and seasonal snow cover, as these media are highly reflective and there are 2 
large regions that are typically close to the melting temperature. Vegetation changes also make a small 3 
contribution, and are considered separately in section 7.4.2.5. Reduced snow cover on sea ice may contribute 4 
as much to albedo feedback as reduced extent of sea ice (Zhang et al., 2019). Changes in the snow 5 
metamorphic rate, which generally reduces snow albedo with warmer temperature, and warming-induced 6 
consolidation of light absorbing impurities near the surface, also contribute secondarily to the albedo 7 
feedback (Flanner and Zender, 2006; Qu and Hall, 2007; Doherty et al., 2013; Tuzet et al., 2017). Other 8 
contributors to albedo change that are modulated indirectly by global temperature include vegetation state 9 
(Section 7.4.2.5), soil wetness, and ocean roughness. 10 
 11 
CMIP5 and CMIP6 models show moderate spread in αA (Qu and Hall, 2014; Schneider et al., 2018; 12 
Thackeray and Hall, 2019; Zelinka et al., 2020), owing to variations in modelled sea-ice loss and snow cover 13 
response in boreal forest regions, motivating attempts to quantify αA from global observations. Flanner et al. 14 
(2011) applied satellite observations to determine that the northern hemisphere (NH) cryosphere contribution 15 
to αA over 1979–2008 was 0.48 (0.29–0.78) W m-2 °C-1, with roughly equal contributions from changes in 16 
seasonal snow cover and sea ice. Since the AR5, and over similar periods of observation, Crook and Forster 17 
(2014) found an estimate of 0.8 ± 0.3 W m-2 °C-1 for the total NH extratropical surface albedo feedback, 18 
when averaged over global temperature change. Pistone et al. (2014) and Cao et al. (2015) estimated the 19 
Arctic sea ice contribution alone to be 0.31 ± 0.04 W m–2 °C–1 and 0.31 ± 0.08 W m–2 °C–1, respectively, 20 
larger than the estimate from Flanner et al. (2011). Much of this NH discrepancy can be traced to different 21 
estimates of attenuation by Arctic clouds between model-derived radiative kernels and direct measurements 22 
of TOA irradiance, with the latter indicating much less attenuation and therefore suggesting that the two 23 
more recent studies showing larger αA are more realistic. All four studies show larger observational estimates 24 
of Arctic albedo change than exhibited by most CMIP3 and CMIP5 models over similar time periods, which 25 
can be traced to models generally underestimating the rate of Arctic sea ice loss during recent decades (Flato 26 
et al., 2013; Stroeve et al., 2012; Chapter 9, Section 9.3.1). However, this may be an expression of internal 27 
variability, since the observed behaviour is captured within large ensemble simulations (Notz, 2015). 28 
 29 
Since the AR5, Chen et al. (2016b) estimated that NH land snow changes during 1982–2013 contributed 30 
(after converting from NH temperature change to global mean temperature change) 0.1 W m–2 °C–1 to global 31 
αA, smaller than the estimate from Flanner et al. (2011). Qu and Hall (2014) report a CMIP5 multi-model 32 
mean NH land snow contribution to αA of 0.08 W m–2°C–1, about the same as the average of only the 8 33 
models (ranging from 0.05–0.10 W m–2 °C–1) whose seasonal cycle of albedo feedback falls within the 34 
observational range of uncertainty determined from satellite measurements. Thackeray and Hall (2019) show 35 
that the seasonal cycle of Arctic sea-ice αA also provides an emergent constraint on modelled climate change 36 
αA, at least until mid-century when the relationship degrades. They find that the Arctic sea-ice contribution to 37 
αA is 0.13 W m–2 °C–1 in both the CMIP5 model mean and averaged over only those models that best 38 
reproduce the observed seasonal cycle of αA. 39 
 40 
These studies all focus on the northern hemisphere, though exclusion of the southern hemisphere (SH) only 41 
slightly biases estimates of global αA because seasonal snow cover extent in the SH is small, and trends in 42 
SH sea ice extent are relatively flat over the satellite record (Comiso et al., 2017; see also Chapter 2, Section 43 
2.3). The multi-model mean global-scale αA (from all contributions) over the 21st century in CMIP5 models 44 
under the RCP8.5 scenario is 0.40 W m–2 °C–1 with a standard deviation of 0.10 W m–2 °C–1 (Schneider et al., 45 
2018), closely matching the summed observational contributions from NH sea ice and land snow over the 46 
satellite era. Moreover, Schneider et al. (2018) found that modelled αA does not decline over the 21st century, 47 
despite large losses of snow and sea ice, though a weakened feedback is apparent after 2100. Using the 48 
idealized abrupt4×CO2 as for the other feedbacks, the estimate of the global-scale albedo feedback in the 49 
CMIP5 models is 0.35 W m–2°C–1 with a standard deviation of 0.08 W m–2 °C–1(Vial et al., 2013; Caldwell et 50 
al., 2016). 51 
 52 
This leads to an overall high confidence in the estimate of the surface albedo feedback based on multiple 53 
lines of evidence including observations, models and theory. The basic phenomena that drive this feedback 54 
are well understood and the different studies cover a large variety of hypotheses or behaviours, including 55 
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how the evolution of clouds affects this feedback. The global albedo feedback is therefore positive and 1 
assessed to be αA = 0.35 W m-2 °C-1, with a very likely range of 0.10–0.60 W m–2 °C–1 and a likely range of 2 
0.25–0.45 W m–2 °C–1.  3 
 4 
 5 
7.4.2.4 Cloud feedbacks 6 
 7 
Clouds can be formed almost anywhere when moist air parcels rise and cool, enabling the water vapour to 8 
condensate or small water droplets to freeze. The cloud droplets, ice crystals, and their mixture interact with 9 
each other to grow into large particles of rain, snow, or drizzle. These microphysical processes interact with 10 
aerosols, radiation and atmospheric circulation, resulting in a highly complex set of processes governing 11 
cloud formation and lifecycles that operate and interact across a wide range of spatial and temporal scales.  12 
 13 
Clouds have various types, from thick convective clouds to thin stratus and cirrus clouds, depending upon 14 
thermodynamic conditions and large-scale circulation (Figure 7.14). Over the equatorial warm pool and 15 
inter-tropical convergence zone (ITCZ) regions, high SSTs stimulate the development of deep convective 16 
systems, which are accompanied by anvil and cirrus clouds near the tropopause where the convective air 17 
outflows. The large-scale circulation associated with these convective clouds leads to subsidence over the 18 
subtropical cool oceans, where deep convection is suppressed by a lower tropospheric inversion layer 19 
maintained by the subsidence and promoting the formation of shallow cumulus and stratocumulus clouds. In 20 
the extratropics, mid-latitude storm tracks control cloud formation, which occurs primarily in the frontal 21 
bands of the extratropical cyclones. Since liquid droplets cannot freeze spontaneously at temperatures above 22 
approximately –40°C and ice nucleating particles that can aid freezing at warmer temperatures are rare, 23 
extratropical clouds often consist both of super-cooled liquid and ice crystals, resulting in mixed-phase 24 
clouds.  25 
 26 
A challenge in understanding cloud feedbacks is to assess separately a thermodynamically driven component 27 
of cloud response and a dynamically driven cloud response. The latter is associated with changes in the 28 
large-scale atmospheric circulation, for which there is some observational evidence (Chapter 2, Section 29 
2.3.1; Chapter 3, Section 3.3.3), but the associated feedbacks remain highly uncertain. While past cloud 30 
change patterns derived from satellite records are largely consistent with the projected changes in GCMs 31 
(Norris et al., 2016), this is not sufficient to quantify the net cloud feedback. 32 
 33 
 34 
7.4.2.4.1 Evaluation of clouds in climate models 35 
In the global energy budget, clouds affect SW radiation by reflecting solar insolation due to their high albedo 36 
(cooling the climate system) and also LW radiation by absorbing the energy emitted from the surface and re-37 
emitting at a lower temperature (i.e., contributing to the greenhouse effect, warming the climate system). 38 
These effects of clouds on radiation are measured by the cloud radiative effect (CRE), which is the 39 
difference in the TOA radiative energy budget between clear and cloudy skies (see Section 7.2.1). Over the 40 
equatorial warm pool, the SW CRE tends to be compensated by the LW CRE, leading to a near-zero net 41 
CRE. The net CRE shows large negative values over the eastern part of the subtropical oceans and the 42 
extratropical oceans due to the dominant influence of highly reflective marine low clouds. Although current 43 
GCMs lack the ability to reproduce some cloud regimes correctly, the overall distribution, as well as the 44 
global mean of the net CRE derived from the CMIP5 multi-model mean, is similar to the satellite 45 
observations (Wild et al., 2019). However, the large cancellation between the SW and LW CREs in nature 46 
has hampered an accurate estimation of cloud-radiative feedbacks. 47 
 48 
The ability of GCMs to simulate clouds has been evaluated both for the cloud cover and CRE, and also for 49 
cloud properties directly associated with processes of cloud-radiative feedbacks, by means of the satellite 50 
observations and the so-called satellite simulators implemented in climate models (Bodas-Salcedo et al., 51 
2011; Tsushima et al., 2017). Recent satellite measurements resolve the vertical distribution of clouds, which 52 
can be directly compared with GCMs in which satellite retrieval algorithms are applied to the instantaneous 53 
cloud fields. Consequently, a thorough evaluation of the vertical profile of simulated clouds has revealed 54 
model errors in the fraction, liquid and ice contents, optical depth, and resultant CRE (Konsta et al., 2015; 55 
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Suzuki et al., 2015). A well-known common error in CMIP5 models was the weak negative SW CRE over 1 
the Southern Ocean due to insufficient amounts of supercooled liquid droplets and associated cloud optical 2 
depths that are biased low (McCoy et al. 2014a; 2014b). This error in representing mixed-phase clouds has 3 
been reduced in some CMIP6 models (Bodas-Salcedo et al., 2019), but there still remain other common 4 
model errors such as in the subtropical low clouds (Calisto et al., 2014).  5 
 6 
 7 
[START FIGURE 7.14 HERE] 8 
 9 
Figure 7.14: Schematic cross section of diverse cloud regimes between the tropics and polar regions. Thick solid and 10 

dashed curves indicate the tropopause and the subtropical inversion layer in the current climate. Thin grey 11 
text and arrows represent robust responses in the thermodynamic structure to greenhouse warming, of 12 
relevance to cloud changes. Text and arrows in red show the major cloud responses and the sign of their 13 
feedbacks to the surface warming assessed in this chapter. 14 

 15 
[END FIGURE 7.14 HERE] 16 
 17 
 18 
7.4.2.4.2 Assessment of feedbacks for individual cloud regimes 19 
In a first attempt to systematically evaluate ECS based on fully coupled GCMs in AR4, diverging cloud 20 
feedbacks were recognized as a dominant source of uncertainty. A thorough assessment of cloud feedbacks 21 
in different cloud regimes was then carried out in the AR5 (Boucher et al., 2013), which assigned high or 22 
medium confidence for some cloud feedbacks but low or no confidence for others (Table 7.9). Many studies 23 
that estimate the net cloud feedback using CMIP5 simulations (Vial et al., 2013; Caldwell et al., 2016; 24 
Zelinka et al., 2016; Colman and Hanson, 2017) show slightly different values depending on the 25 
methodology and the set of models used, but often report a large inter-model spread of the feedback, with the 26 
90% confidence interval spanning both weak negative and strong positive net feedbacks (Figure 7.13).  Part 27 
of this diversity arises from the dependence of the model cloud feedbacks on the parameterization of clouds 28 
and their coupling to other sub-grid scale processes (Zhao et al., 2015). 29 
 30 
Since the AR5, community efforts have been made to understand and quantify the cloud feedbacks in 31 
various cloud regimes coupled with large-scale atmospheric circulation (Bony et al., 2015). For some cloud 32 
regimes, alternative tools to GCMs, such as observations, theory, high-resolution cloud resolving models 33 
(CRMs), and Large Eddy Simulations (LES), help quantify the feedbacks. Consequently, the net cloud 34 
feedback derived from GCMs has been revised by assessing the regional cloud feedbacks separately and 35 
summing them with weighting by the ratio of fractional coverage of those clouds over the globe to give the 36 
global feedback, following an approach adopted in Sherwood et al. (submitted). This bottom-up assessment 37 
is explained below with a summary of updated confidence of individual cloud feedback components in Table 38 
7.9. Dependence of cloud feedbacks on evolving patterns of surface warming will be discussed in Section 39 
7.4.3 and is not explicitly taken into account in the assessment presented in this section. 40 
 41 
High-cloud altitude feedback. 42 
The cloud top altitude increases under global warming, concurrent with the rising of the tropopause at all 43 
latitudes (Marvel et al., 2015; Thompson et al., 2017). This increasing altitude of high clouds was identified 44 
in early generation GCMs and the tropical high-cloud altitude feedback was assessed to be positive with high 45 
confidence in the AR5 (Boucher et al., 2013). This is supported by a theoretical argument called the fixed 46 
anvil temperature mechanism, which ensures that the temperature of the convective detrainment layer does 47 
not change when the altitude of high-cloud tops increases with the rising tropopause (Hartmann and Larson, 48 
2002). Because the cloud top temperature does not change significantly with global warming, cloud 49 
longwave emission does not increase even though the surface warms, resulting in an enhancement of the 50 
high-cloud greenhouse effect (a positive feedback; Yoshimori et al. (2019)). The upward shift of high clouds 51 
with surface warming is detected in observed interannual variability and trends in satellite records for 1983-52 
2009 (Chepfer et al., 2014; Norris et al., 2016), and in CRMs (Khairoutdinov and Emanuel, 2013; 53 
Narenpitak et al., 2017; Tsushima et al., 2014). The high-cloud altitude feedback was estimated to be +0.5 W 54 
m–2°C–1 based on GCMs in the AR5, but is revised, using a recent re-evaluation that excludes aliasing effects 55 



Second Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-64 Total pages: 206 

by reduced low-cloud amounts, downward to 0.22 ± 0.12 W m–2°C–1 (Zelinka et al., 2020). The positive 1 
high-cloud altitude feedback simulated in GCMs is supported by theoretical, observational, and process 2 
modelling studies, and is assigned high confidence.  3 
 4 
Tropical high-cloud amount feedback. 5 
Updrafts in convective plumes lead to detrainment of moisture at a level where the buoyancy diminishes, and 6 
thus deep convective clouds over high SSTs in the tropics are accompanied by anvil clouds in the upper 7 
troposphere. The anvil clouds occupy a much larger area than the convective plumes themselves, and thereby 8 
contribute substantially to the positive LW CRE in the present climate, so that they would exert a negative 9 
feedback if their area was reduced (Figure 7.14). A hypothesis known as the ‘iris effect’ that suggests a 10 
reduction of anvil clouds due to global warming was first proposed by Lindzen et al. (2001), who advocated 11 
that an increased precipitation efficiency with warming results in less cloud condensate in the detrained air 12 
mass and consequently a strong negative feedback. This hypothetical microphysical process has not been 13 
substantiated to date, but a thermodynamic mechanism referred to as the ‘stability iris effect’ has recently 14 
been proposed to explain how the anvil cloud amount decreases with surface warming (Bony et al., 2016). In 15 
this mechanism, a temperature-mediated increase of static stability in the upper troposphere, where 16 
convective detrainment occurs, acts to balance a weakened mass outflow from convective clouds, and 17 
thereby reduce anvil cloud areal coverage. Another mechanism that could support an iris-effect is enhanced 18 
convective aggregation with increasing SST (Mauritsen and Stevens, 2015). This phenomenon is found in 19 
CRM simulations (Emanuel et al., 2014; Wing and Emanuel, 2014; Cronin and Wing, 2017)) and has been 20 
identified in observed interannual variability (Stein et al., 2016; Saint-Lu et al., 2019 submitted; Bony et al. 21 
2019 submitted), which may partly reflect the high-cloud response to large-scale circulation change (Su et 22 
al., 2017). Consistently, a combined analysis of TOA radiation and cloud data from multiple satellites shows 23 
that the local cloud feedback at interannual time scale is negative up to –5 W m-2°C–1 for the net (Williams 24 
and Pierrehumbert, 2017) and –3.0 ± 0.39 W m-2°C–1 for the cloud LW (Vaillant de Guélis et al., 2018).  25 
Since the tropical high-cloud regime occupies about 7% of the globe, the latter estimate leads to a global 26 
contribution of –0.21 W m-2°C–1. The negative cloud LW feedback, which is partly compensated by the 27 
cloud SW feedback (Mauritsen and Stevens, 2015; Li et al., 2019), is considerably underestimated in GCMs 28 
(Mauritsen and Stevens, 2015). Current high-resolution convective-permitting simulations cannot reduce 29 
uncertainty because the results depend on parametrized cloud microphysics and turbulence (Bretherton et al., 30 
2014; Ohno et al., 2019).  Therefore, the tropical high-cloud amount feedback is assessed as negative with 31 
medium confidence. Taking a partial compensation between LW and SW feedbacks into account, the global 32 
contribution of the high-cloud amount feedback is assessed to –0.15 ± 0.2 W m–2°C–1. 33 
 34 
Tropical marine low-cloud feedback. 35 
It has long been argued that the response of low-latitude marine boundary layer clouds to surface warming 36 
was the largest contributor to the spread among GCMs in the net cloud feedback (Boucher et al., 2013). 37 
However, uncertainty of the marine low-cloud feedback has been considerably narrowed since AR5 by 38 
accumulating theoretical, modelling, and observational studies (Klein et al., 2017). Processes that control the 39 
low clouds are complex and involve coupling with atmospheric motions on multiple scales, from the 40 
boundary layer turbulence to the large-scale subsidence, which may be represented by a combination of 41 
shallow and deep convective mixing (Sherwood et al., 2014). 42 
 43 
In order to disentangle the large-scale processes that cause the cloud amount either to increase or decrease in 44 
response to the surface warming, the cloud feedback has been expressed in terms of several ‘cloud 45 
controlling factors’ (Qu et al., 2014, 2015; Zhai et al., 2015; Brient and Schneider, 2016; Myers and Norris, 46 
2016; McCoy et al., 2017b). The advantage of this approach over conventional calculation of cloud 47 
feedbacks is that the temperature-mediated cloud response can be estimated without using information of the 48 
simulated cloud responses that are less well-constrained than the changes in the environmental conditions. 49 
Two dominant factors are identified for the tropical low clouds: a thermodynamic effect due to rising SST 50 
that acts to reduce low cloud by enhancing cloud-top entrainment of dry air, and a stability effect 51 
accompanied by an enhanced inversion strength that acts to increase low cloud. These controlling factors 52 
compensate with a varying degree in different GCMs, but can be constrained by referring to the observed 53 
seasonal or interannual relationship between the low-cloud amount and the controlling factors in the 54 
environment as a surrogate. The analysis leads to a positive local feedback of +1.2 W m–2°C–1 for the 55 
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stratocumulus regime and a near-zero feedback for the trade cumulus regime (Cesana et al., 2019; Myers et 1 
al., submitted), but the stratocumulus feedback may be underestimated because explicit simulations using 2 
LES show a larger local feedback exceeding +2 W m–2 °C–1 (Bretherton, 2015; Klein et al. 2017). Supported 3 
by different lines of evidence, the subtropical marine low-cloud feedback is assessed as positive with high 4 
confidence. Based on the combined estimate using LESs and the cloud controlling factor analysis, the global 5 
contribution of the feedback due to marine stratocumulus clouds equatorward of 30° (about 8% of the globe) 6 
is assessed to be 0.16 ± 0.16 W m–2°C–1, for which the standard deviation considers methodological 7 
uncertainties (Sherwood et al., submitted). 8 
 9 
Land cloud feedback. 10 
Intensification of the global hydrological cycle is a robust feature of global warming, but at the same time, 11 
many land areas in the subtropics will experience drying at the surface and in the atmosphere (Chapter 8, 12 
Section 8.1). This occurs due to a limited water availability in these regions and consequently the cloudiness 13 
is also expected to decrease over subtropical land areas. Reduction in clouds over land are consistently 14 
identified in the CMIP5 models and also in a super-parameterized GCM (Bretherton et al., 2014; Kamae et 15 
al., 2016). Because low clouds make up the majority of subtropical land clouds, this reduced amount of low 16 
clouds reflects less solar insolation and leads to a positive feedback similar to the marine low clouds. The 17 
mean estimate of the global land cloud feedback in CMIP5 models is much smaller than the marine low 18 
cloud feedback, 0.08±0.08 W m–2°C–1 (Zelinka et al., 2016). These values are nearly unchanged in CMIP6 19 
(Zelinka et al., 2020). However, GCMs still have considerable biases in the mean temperature and cloud 20 
fraction over land and the magnitude of this feedback has not yet been supported by other lines of evidence. 21 
Therefore, the feedback due to decreasing land clouds is assessed to be 0.08 ± 0.08 W m–2°C–1with medium 22 
confidence. 23 
 24 
Middle latitude cloud amount feedback. 25 
Poleward shifts in the mid-latitude jets are evident since the 1980s (Chapter 2, Section 2.3.1.3) and are a 26 
feature of the large-scale circulation change in future projections (Chapter 4, Section 4.5.1.6). Because mid-27 
latitude clouds over the North Pacific, North Atlantic, and Southern Ocean are induced mainly by 28 
extratropical cyclones in the storm tracks along the jets, it has been suggested that the jet shifts should be 29 
accompanied by poleward shifts in the extratropical clouds, which would result in a positive feedback 30 
through the reduced reflection of insolation (Boucher et al., 2013). However, studies since the AR5 have 31 
revealed that this proposed mechanism does not apply in practice (Ceppi and Hartmann, 2015). While a 32 
poleward shift of mid-latitude cloud maxima in the free troposphere has been identified in satellite and 33 
ground-based observations (Bender et al., 2012; Eastman and Warren, 2013), associated changes in net CRE 34 
are found to be small because the warming effect due to high clouds shifted poleward tends to be cancelled 35 
by the cooling effect due to low clouds increasing beneath (Grise and Medeiros, 2016; Tselioudis et al., 36 
2016; Zelinka et al., 2018). This compensation is not well captured in GCMs (Lipat et al., 2017), but the 37 
above findings show that the middle latitude cloud feedback is not predominantly driven by the poleward jet 38 
shifts, which are rather suggested to occur partly in response to high cloud changes (Li et al., 2018). An 39 
important process is a thermodynamic control of the extratropical cloud amount equatorward of about 50°. 40 
 41 
Recent studies showed using observed cloud controlling factors that the middle latitude low cloud fractions 42 
decrease with rising SST, which also acts to weaken stability of the atmosphere unlike the subtropics 43 
(McCoy et al., 2017; Myers et al., submitted). GCMs consistently show a decrease of cloud amounts and a 44 
resultant positive shortwave feedback in the 30°–40° latitudinal bands, which can be constrained by using 45 
seasonal migration of observed cloud amount (Zhai et al., 2015). Based on the qualitative agreement between 46 
observations and GCMs, the middle latitude cloud amount feedback is assessed as small positive, but the 47 
lack of quantitative observational estimates leads to only medium confidence for this assessment, as in the 48 
AR5. Following CMIP6 models and emergent constraint studies, the global contribution of net cloud amount 49 
feedback over 30°–60° ocean areas, covering 27% of the globe, is assigned +0.09 ± 0.1 W m–2°C–1, in which 50 
the standard deviation is inflated by 50% reflecting potential errors in models’ low cloud response to changes 51 
in thermodynamic conditions.  52 
 53 
Extratropical cloud optical depth feedback. 54 
It has been argued that the cloud optical depth (opacity) will increase with surface warming over the 55 
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Southern Ocean (50°–80°S) and hence result in a negative feedback (Boucher et al., 2013). The most 1 
plausible explanation for this cloud ‘brightening’ is a phase change from ice-dominated to liquid-dominated 2 
clouds with atmospheric temperature rise. Liquid clouds generally consist of many small cloud droplets, 3 
while the ice crystals in ice clouds are orders of magnitudes fewer in number and much larger, causing the 4 
liquid clouds to be optically thicker. However, the phase change feedback works effectively only below 5 
freezing temperature (Lohmann and Neubauer, 2018; Terai et al., 2019) and other processes that increase or 6 
decrease liquid water path (LWP) may also affect the optical depth feedback (McCoy et al., 2019). Due to 7 
insufficient amounts of super-cooled liquid water in the atmosphere mean state, many CMIP5 models 8 
overestimated the negative phase change feedback (Tan et al., 2016), which can be constrained using 9 
interannual relationship of LWP against temperature obtained from satellite observations (Gordon and Klein, 10 
2014; Ceppi et al., 2016). The observationally constrained SW feedback is  –0.46 W m–2°C–1 over the 11 
Southern Ocean (Terai et al., 2016). In some CMIP6 models, representation of super-cooled liquid water 12 
content has been improved, bringing the simulated negative optical depth feedback over the Southern Ocean 13 
closer to observational estimates (Bodas-Salcedo et al., 2019). The weakening of the phase change feedback 14 
in GCMs at the same time resulted in a positive optical depth feedback over other extratropical oceans where 15 
LWP decreased in response to surface warming (Zelinka et al., 2020). Because the Southern Ocean phase-16 
change contribution is small when the low clouds are occupied mostly by liquid (Bjordal et al., submitted), 17 
the extratropical optical depth feedback is assessed as neutral with low confidence given that the sign is 18 
determined as a residual between the local negative and positive feedbacks. Quantitatively, the global 19 
contribution of this feedback is assessed to have a value of 0 ± 0.05 W m–2°C–1 by combining estimates using 20 
the cloud controlling factor over 30°–60° (Myers et al., submitted) and an emergent constraint over 60°–21 
80°S (Terai et al., 2016). 22 
 23 
Arctic cloud feedback.  24 
Clouds in polar regions, especially over the Arctic, form at low altitude above a stable boundary layer and 25 
are known to co-vary with sea-ice variability beneath. Because the clouds reflect sunlight during summer but 26 
trap longwave radiation throughout the year, seasonality plays an important role for cloud effects on Arctic 27 
climate (Kay et al., 2016). The AR5 assessed that Arctic low cloud amount will increase in boreal autumn 28 
and winter in response to declining sea ice in a warming climate, due primarily to an enhanced upward 29 
moisture flux over open water. The cloudier conditions during these seasons result in more downwelling 30 
longwave radiation, acting as a positive feedback on surface warming (Kay and Gettelman, 2009). Over 31 
recent years, further evidence of the cloud contribution to the Arctic amplification has been obtained (Goosse 32 
et al., 2018; Section 7.4.4.1). Space-borne lidar observations show that the cloud response to summer sea-ice 33 
loss is small and cannot overcome the cloud effect in autumn (Taylor et al., 2015; Morrison et al., 2018). 34 
Such a seasonality of the cloud response to sea-ice variability is captured by GCMs (Laîné et al., 2016; 35 
Yoshimori et al., 2017). The agreement between observations and models supported by theory indicates that 36 
the Arctic cloud feedback is positive at the surface. This leads to a cloud feedback at TOA that is also likely 37 
positive, but small in magnitude (less than +0.1 W m–2°C–1) as found in some climate models (Pithan and 38 
Mauritsen, 2014; Morrison et al., 2018). Furthermore, CMIP6 models show a large inter-model spread of 39 
0.44 W m–2°C–1 over the Arctic covering 3% of the globe which currently cannot be narrowed due to the lack 40 
of observational evidence. The Arctic cloud feedback at the TOA is therefore assessed to have the value of 0 41 
± 0.05 W m–2°C–1 with low confidence. 42 
 43 
 44 
7.4.2.4.3 Synthesis for the net cloud feedback 45 
The understanding of the response of clouds to greenhouse warming and associated radiative feedback has 46 
deepened since the AR5. Particular progress has been made in the assessment of marine low cloud feedback, 47 
which has historically been a major contributor to the cloud feedback uncertainty. Multiple lines of evidence 48 
(theory, observations, emergent constraints and process modelling) are now available in addition to GCM 49 
simulations, and the positive low-cloud feedback is consequently assessed with high confidence. However, it 50 
is challenging to estimate the net cloud feedback by summing known feedbacks associated with individual 51 
cloud regimes because the processes involved in some feedback mechanisms remain poorly understood 52 
(Table 7.9). 53 
 54 
Using CMIP5 GCMs, broad agreement has been obtained in estimates of net cloud feedback based on 55 
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interannual variability and longer (decadal to centennial) climate change timescales (Zhou et al., 2015; 1 
Colman and Hanson, 2017). This means that the cloud feedback on the interannual time scale, due mostly to 2 
natural climate variability, can be a surrogate of the feedback to CO2-induced warming and can be estimated 3 
using observations. For the years 2000–2010, the net cloud feedback calculated using two atmospheric 4 
reanalyses (ERA-Interim and MERRA) and TOA radiation budgets derived from the CERES satellite 5 
observations is +0.54 ± 0.35 W m–2 °C–1 (Dessler, 2013). However, this estimate would be sensitive to the 6 
period used (see Section 7.4.3).  7 
 8 
In summary, research since the AR5 leads to an overall high confidence in the estimate of the feedback sign. 9 
The sum of all cloud feedbacks leads to the assessment of a net cloud feedback of αC = 0.4W m–2 °C–1. By 10 
assuming that uncertainty of individual cloud feedbacks is independent of each other, their standard 11 
deviations are added in quadrature. This leads to the likely range of 0.1 to 0.7 W m–2 °C–1 and the very likely 12 
range of –0.12 to 0.92 W m–2 °C–1 (Table 7.10). A small probability (10%) of a net negative cloud feedback 13 
cannot be ruled out, but this would require an extremely large negative feedback due to decreases in the 14 
amount of tropical high clouds or increases in cloud optical depth over the Southern Ocean; neither is 15 
supported by current evidence.  16 
 17 
 18 
[START TABLE 7.9 HERE] 19 
 20 
Table 7.9: Assessed sign and confidence level of cloud feedbacks in difference regimes, compared between AR5 21 

and AR6. For some cloud regimes, the feedback was not assessed in AR5, indicated by N/A. 22 
 23 
Feedback AR5  AR6 

High-cloud altitude feedback Positive (high confidence) Positive (high confidence) 

Tropical high-cloud amount feedback N/A Negative (medium confidence) 

Tropical marine low-cloud feedback N/A (low confidence) Positive (high confidence) 

Land cloud feedback N/A Small positive (medium confidence) 

Middle latitude cloud amount feedback Positive (medium confidence) Small positive (medium confidence) 

Extratropical cloud optical depth feedback N/A Neutral (low confidence) 

Arctic cloud feedback Small positive (very low confidence) Neutral (low confidence) 

Net cloud feedback Positive (medium confidence) Positive (high confidence) 

 24 
[END TABLE 7.9 HERE] 25 
 26 
 27 
7.4.2.5 Biophysical and non-CO2 biogeochemical feedbacks 28 
 29 
The feedbacks presented in the previous sections (7.4.2.1–7.4.2.4) were directly linked to physical climate 30 
variables (for example temperature, water vapour, clouds, or sea ice). The central role of these phenomena 31 
has been recognised since the very first studies on past and future climate change. However, in addition to 32 
these physical climate feedbacks, the Earth system includes feedbacks for which the impact of the global 33 
mean surface temperature on the radiative budget is mediated by changes in the chemical composition of the 34 
atmosphere, or by vegetation. Among those feedbacks, the most important is the CO2 feedback that describes 35 
how a change of the global mean surface temperature affects the carbon cycle, the CO2 concentration in the 36 
atmosphere, the TOA radiative energy budget, and eventually the global mean surface temperature. This 37 
feedback is assessed in Chapter 5, Section 5.4. It is explicitly excluded from our concentration-driven 38 
framework (Section 7.1; Box 7.1) and is, therefore, not considered here. 39 
 40 
The chemical composition of the atmosphere (beyond CO2 and H2O changes) is also expected to change in 41 
response to a warming climate. These changes in greenhouse gases (CH4, N2O, and ozone) and aerosol 42 
amount have the potential to alter the TOA energy budget and are collectively referred to as non-CO2 43 
biogeochemical feedbacks. The non-CO2 biogeochemical feedbacks which are relevant to the aggregated 44 
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feedback parameter are assessed in Chapter 6, Section 6.3.6, to –0.2 ± 0.1 W m–2 °C–1.  However, there is low 1 
confidence in the estimates of both the individual non-CO2 biogeochemical feedbacks as well as their total 2 
effect, as evident from the large range in the magnitude of α which can be attributed to diversity in how 3 
models account for these feedbacks based on limited process-level understanding.  4 
 5 
Biophysical feedbacks are associated with changes in the spatial distribution and/or biophysical properties of 6 
vegetation induced by climate, altering radiative fluxes via albedo or water vapour changes. These feedbacks 7 
act on timescales of decades to centuries (Willeit et al., 2014), longer than non-CO2 biogeochemical 8 
feedbacks. Biophysical feedbacks manifest themselves in terms of changes in vegetation distributions and 9 
properties in response to temperature change. Vegetation changes induce changes in surface albedo altering 10 
the TOA radiation balance. Furthermore, changes in vegetation characteristics alter water fluxes to the 11 
atmosphere (evapotranspiration) which can also influence radiation (Bonan, 2008). The timescale of 12 
response of vegetation to climate change is relatively uncertain but can be from decades to hundreds of 13 
years; equilibrium only occurs when the soil system and associated carbon pools equilibrate, which can take 14 
millennia (Brantley, 2008; Sitch et al., 2008). The overall effects of climate-induced vegetation changes may 15 
be comparable in magnitude to those from anthropogenic land-use and land cover change (Davies-Barnard et 16 
al., 2015). 17 
Climate models that include a dynamical representation of vegetation (e.g. Harper et al., 2018; Reick et al., 18 
2013) are used to explore the importance of biophysical feedbacks (Notaro et al., 2007; Brovkin et al., 2009; 19 
O’ishi et al., 2009; Port et al., 2012; Willeit et al., 2014; Alo and Anagnostou, 2017; Zhang et al., 2018b; 20 
Armstrong et al., 2019). In the AR5, it was discussed that such model experiments predicted that expansion 21 
of vegetation in the high latitudes of the NH would enhance warming due to the associated surface albedo 22 
change (Boucher et al., 2013), and that reduction of tropical forests in response to climate change would also 23 
lead to warming, due to reduced evapotranspiration.  24 
 25 
Since the AR5, several studies have confirmed that biophysical vegetation feedbacks lead to enhanced 26 
warming in NH high latitudes (high confidence), associated with a shift from tundra to boreal forests and the 27 
associated albedo change (Willeit et al., 2014; Zhang et al., 2018b; Armstrong et al., 2019). Although 28 
regional modelling indicates that vegetation feedbacks may act to cool climate in the Mediterranean (Alo and 29 
Anagnostou, 2017), in the tropics and subtropics the regional response is in general not consistent across 30 
models. On a global scale, modelling studies indicate that biophysical vegetation feedbacks are either 31 
positive (Armstrong et al., 2019; Notaro et al., 2007; O’ishi et al., 2009) or close to zero (Port et al., 2012; 32 
Willeit et al., 2014). Overall, the feedback parameter, αx, for biophysical-vegetation feedbacks is assessed to 33 
be likely positive, with medium confidence, but there is insufficient evidence at this time to give an 34 
assessment of its likely range. Higher confidence in the results from coupled climate-vegetation models will 35 
be obtained if they are able to better simulate past observed changes in vegetation, such as under orbital 36 
forcing in the mid-Holocene. For this period data indicates extensive vegetation in the Sahara that models are 37 
currently unable to capture (Braconnot et al., 2012; Brierley et al., submitted), although some progress has 38 
recently been made in this regard (Brovkin et al., 2019). 39 
 40 
Assessed feedback parameters, αx, for the non-CO2 biogeochemical processes described above, are 41 
summarised in Chapter 6, Section 6.3.6 (Table 6.5). In addition, the CMIP6 ensemble provides a number of 42 
pairs of instantaneous 4×CO2 simulations carried out with models with and without biophysical and non-CO2 43 
biogeochemical feedbacks. The comparison is not always completely clean because these pairs of models 44 
may differ by more than just their inclusion of these processes; furthermore, the models in general do not 45 
include all non-CO2 biogeochemical feedbacks. However, a comparison of the pairs of simulations provides 46 
a first-order estimate of the magnitude of the combination of these biophysical and non-CO2 biogeochemical 47 
feedbacks. Séférian et al. (2019), examining the difference between CNRM-CM6-1 and CNRM-ESM2-1, 48 
find a more negative feedback parameter when these additional feedbacks are included (a decrease of 0.02 W 49 
m-2○C-1, using the linear regression method from years 10-150). Sellar et al. (2019) find an ECS for 50 
UKESM1 of 5.4○C, for comparison with an ECS for HadGEM3-GC3.1 of 5.5○C. Assuming an identical CO2 51 
forcing in UKESM and HadGEM3, both of these studies suggest a slightly negative feedback parameter, αx, 52 
for the combination of biophysical and non-CO2 biogeochemical feedbacks. However, the relatively long 53 
timescales associated with vegetation processes compared with the 150 years of the underlying model 54 
simulations, combined with the small numbers of studies and the relatively small signals, means that a 55 
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formal assessment cannot be made at this time. Furthermore, the feedback diagram based on CMIP5/6 1 
models (Figure 7.13) shows that the residual term that should have included the biophysical and non-CO2 2 
biogeochemical feedbacks is nearly zero. Because of insufficient evidence to support a central estimate, the 3 
sum of these feedbacks is assessed to have a zero-mean value with low confidence and a likely range from –4 
0.1 to +0.1 W m–2 °C–1. 5 
 6 
 7 
7.4.2.6 Long term feedbacks associated with ice sheets. 8 
 9 
Earth’s ice sheets (Greenland and Antarctica) are sensitive to climate change (Chapter 9, Section 9.4; Pattyn 10 
et al., 2018). Their time-evolution is determined by both their surface mass balance and ice dynamic 11 
processes, which are particularly important for the west Antarctic ice sheet. Surface mass balance depends 12 
on the net energy and hydrological fluxes at their surface, expressing the net effect of snow accumulation 13 
and ice melt. The dynamic ice flows of the Antarctic ice shelves are observed to be accelerating and there are 14 
known mechanisms of ice sheet instability that depend on ocean temperatures and basal melt rates (Chapter 15 
9, Section 9.4.1.1).  The presence of ice sheets affects Earth’s radiative budget, hydrology, and atmospheric 16 
circulation due to their characteristic high albedo, low roughness length, and high altitude, and they influence 17 
ocean circulation through freshwater input from calving and melt (e.g. Fyke et al., 2018). There is also some 18 
evidence that melting ice sheets may affect levels of volcanic activity, through effects of changing surface 19 
loading on mantle melt (Swindles et al., 2018). The timescale of response of ice sheets is on the order of 20 
thousands of years (Clark et al., 2016). Due to the long timescales involved, it is a major challenge to run 21 
fully coupled climate-ice sheet simulations with full complexity models to equilibrium, and as a result, long-22 
term simulations are often carried out with lower complexity models, and/or are asynchronously coupled.  23 
 24 
In the AR5, it was described that both the Greenland and Antarctic ice sheets would continue to melt in a 25 
warming world (Collins et al., 2013a), with a continuation in sea level rise beyond the year 2500 being 26 
assessed as virtually certain. However, there was low confidence in the associated feedback mechanisms, 27 
and as such, there was no assessment of the magnitude of long-term feedbacks associated with ice sheets.  28 
This assessment is consistent with SROCC, wherein it was stated that ‘with limited published studies to draw 29 
from and no simulations run beyond 2100, firm conclusions regarding the net importance of atmospheric 30 
versus ocean melt feedbacks on the long-term future of Antarctica cannot be made.’ 31 
 32 
The magnitude of the feedback associated with changes to ice sheets can be quantified by comparing the 33 
global mean long-term equilibrium temperature response to increased CO2 concentrations in simulations that 34 
include interactive ice sheets with that of simulations that do not include the associated ice-sheet climate 35 
interactions (Swingedouw et al., 2008; Vizcaíno et al., 2010; Goelzer et al., 2011; Bronselaer et al., 2018; 36 
Golledge et al., 2019). These simulations indicate that on multi-centennial timescales, fresh water fluxes 37 
from melting ice sheets modify ocean circulation (Swingedouw et al., 2008; Goelzer et al., 2011; Bronselaer 38 
et al., 2018; Golledge et al., 2019), leading to reduced warming, although other work suggests no net global 39 
temperature effect of ice sheet melting (Vizcaíno et al., 2010). However, model simulations in which the 40 
Antarctic ice sheet is removed completely in a paleoclimate context indicate a positive global mean feedback 41 
on multi-millennial timescales due primarily to the surface albedo change (Goldner et al., 2014; Kennedy-42 
Asser et al., 2019). This net positive feedback due to ice sheets on long timescales is also supported by 43 
model simulations of the mid-Pliocene warm period (MPWP, Chapter 2 Box 2.1) in which the volume and 44 
area of the Greenland and West Antarctic ice sheets are reduced in model simulations in agreement with 45 
geological data (Chandan and Peltier, 2018). As such, overall, on multi-centennial timescales the feedback 46 
parameter, αx, associated with ice sheets is likely negative (medium confidence), but on multi-millennial 47 
timescales by the time the ice sheets reach equilibrium (or completely melt) and freshwater fluxes reduce (or 48 
stop), the feedback parameter is likely positive (high confidence). However, there is currently not enough 49 
evidence to quantify the magnitude of these feedbacks, or the timescales on which they act.   50 
 51 
In the AR5 (Masson-Delmotte et al., 2013), the only overall quantitative assessment of long-term feedbacks 52 
was in the context of paleoclimates, wherein it was assessed that evidence from the mid-Pliocene warm 53 
period (MPWP) implied that, with medium confidence, long-term Earth sensitivity may be up to two times 54 
greater than ECS as defined in Box 7.1 (“Charney climate sensitivity”). This implies a positive value of the 55 
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individual feedback parameter, αx, for the combination of biophysical and ice sheet feedbacks, which has 1 
been further supported by more recent work on the MPWP (Haywood et al, submitted, see also Chapter 2 2 
Box 2.4). Results from a combination of models of intermediate complexity and ESMs suggest that 3 
including all biophysical, ice sheet and non-CO2 biogeochemical feedbacks may decrease the magnitude of 4 
the net feedback parameter, α, by as much as half (Fischer et al., 2018).    5 
 6 
 7 
7.4.2.7 Synthesis 8 
 9 
Table 7.10 summarises the estimates and the assessment of the individual and the total feedbacks presented 10 
in the above sections. The CMIP GCM estimates are computed using a single method whereas the assessed 11 
interval also includes uncertainties due to the calculation method. The medium confidence in the cloud 12 
feedback limits the level of confidence in the total feedback and prevents us from defining a very likely range 13 
of the total feedback. However, as the net cloud feedback is assessed positive with high confidence, the total 14 
climate feedback is assessed to be –1.25 ± 0.37 W m–2°C–1 and very likely more positive than –1.9 W 15 
m–2°C–1.  16 
 17 
Feedback parameters in climate models are calculated assuming that they are independent of each other, 18 
except for a well-known co-dependency between the WV and LR feedbacks. When the inter-model spread of 19 
the total climate feedback is computed by adding in quadrature the inter-model spread of individual 20 
feedbacks, it is 17% wider than the spread of the net climate feedback directly derived from the ensemble. 21 
This indicates that the feedbacks in climate models are partly co-dependent. Two possible co-dependencies 22 
have been suggested (Huybers, 2010; Caldwell et al., 2016). One is a negative covariance between the LR 23 
and longwave cloud feedbacks, which may be accompanied by a deepening of the troposphere (O’Gorman 24 
and Singh, 2013) leading both to greater rising of high clouds and a larger upper-tropospheric warming. The 25 
other is a negative covariance between albedo and shortwave cloud feedbacks, which may originate from the 26 
Arctic regions: a reduction in sea ice enhances the shortwave cloud radiative effect because the ocean surface 27 
is darker than sea ice (Gilgen et al., 2018). This covariance is reinforced as the decrease of sea-ice leads to an 28 
increase in low-level clouds (Mauritsen et al., 2013). However, the covariance between these feedbacks is 29 
not strong in the CMIP5 ensemble and furthermore not robustly supported by the available observations. 30 
Therefore, the synthesis assessment has not considered any co-dependency across individual feedbacks. 31 
 32 
 33 
[START TABLE 7.10 HERE] 34 
 35 
Table 7.10: Synthesis assessment of climate feedbacks (central estimate shown by boldface). The mean values and 36 

their ranges in CMIP5/6 models, derived using multiple radiative kernels (Zelinka et al., 2020), are also 37 
presented for comparison. 38 

 39 
 40 
 41 

Feedback 
parameter 𝛼௫ 
(W m-2 °C-1) 

CMIP5 GCMs CMIP6 GCMs AR6  

Mean and the 
5-95% interval 

Mean and the  
5-95% interval 

Central 
estimate 

Very likely  
interval 

Likely 
interval 

Level of 
confidence 

Planck –3.2 (–3.3 to –3.1) –3.2 (–3.3 to –3.1) –3.2 –3.4 to –3.0 –3.3 to –3.1 high 

WV+LR 1.2 (1.1 to 1.4) 1.2 (1.1 to 1.4) 1.2 0.95 to 1.5 1.1 to 1.3 high 

Surface albedo 0.41 (0.25 to 0.57) 0.41 (0.28 to 0.53) 0.35 0.10 to 0.60 0.25 to 0.45 high 

Clouds 0.44 (–0.15 to 
0.97) 

0.56 (–0.11 to 1.1) 0.4 –0.12 to 0.92 0.10 to 0.70 high 

non-CO2 
biogeochemistry 

Not evaluated Not evaluated 0 –0.17 to 0.17 –0.10 to 0.10 low 

Biophysical Not evaluated Not evaluated   > 0.0 medium 

Total (i.e., 
 relevant for 

–1.1 (–1.6 to –
0.61) 

–1.0 (–1.6 to –
0.44) 

–1.25 –1.9 to –0.6 –1.6 to –0.9 medium 
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ECS) 

Long-term ice 
sheet feedbacks 
(millennial scale) 

   > 0.0 > 0.0 high 

 1 
[END TABLE 7.10 HERE] 2 
 3 
 4 
7.4.3 Dependence of feedbacks on climate mean state 5 
 6 
In the standard framework of forcings and feedbacks (Section 7.4.1; Box 7.1), the strength of climate 7 
feedbacks is assumed to be independent of the background global mean temperature. More generally, the 8 
individual feedback parameters, αx, are assumed to be constant over a range of climate states, including those 9 
reconstructed from the past (encompassing a range of states warmer and colder than today, with varying 10 
continental geographies) or predicted for the future. If this approximation holds, then the equilibrium global 11 
mean temperature response to a unit forcing will be constant, regardless of the climate state to which that 12 
forcing is applied. 13 
 14 
In reality, this approximation will break down if climate feedbacks behave sufficiently non-linearly, varying 15 
as a function of, for example, background temperature (Roe and Baker, 2007; Zaliapin and Ghil, 2010; Roe 16 
and Armour, 2011; Bloch-Johnson et al., 2015).  If the real climate system exhibits this state-dependence, 17 
then future temperature change in response to large forcings may be different from that inferred using the 18 
standard framework, and/or different to that inferred from paleoclimates or the observational record. Climate 19 
models generally include representations of feedbacks that allow non-linear behaviour, and so model results 20 
may also differ from the predictions from the standard framework.     21 
 22 
In the AR5 (Boucher et al., 2013), there was a recognition that climate feedbacks could be state-dependent 23 
(Colman and McAvaney, 2009), but modelling studies that explored this (e.g. Manabe and Bryan, 1985; 24 
Voss and Mikolajewicz, 2001; Stouffer and Manabe, 2003; Hansen, 2005) were not assessed in detail. 25 
However, in the AR5 (Masson-Delmotte et al., 2013), paleoclimate evidence was used to assess that climate 26 
sensitivity in simulations of the Last Glacial Maximum (LGM, ~19,000 to 21,00 years ago; Table 2.A.1; 27 
Cross-Chapter Box 1.4) was less than that in simulations of warm climates (CO2 quadrupling), due to a state 28 
dependency in shortwave cloud feedbacks.   29 
 30 
Here, recent evidence for state-dependence in feedbacks from modelling studies (Section 7.4.3.1) and from 31 
the paleoclimate record (Section 7.4.3.2) are assessed, with an overall assessment in Section 7.4.3.3.  32 
Evidence for the dependence of feedbacks on the spatial pattern of warming, independent of global mean 33 
temperature change, is assessed separately in Section 7.4.4. 34 
 35 
 36 
7.4.3.1 Evidence for state-dependence in feedbacks from modelling studies 37 
 38 
There are several modelling studies since the AR5 in which GCMs of varying complexity have been used to 39 
explore state-dependency (Caballero and Huber, 2013; Hansen et al., 2013; Jonko et al., 2013; Meraner et 40 
al., 2013; Good et al., 2015; Mauritsen et al., 2019; Rugenstein et al., 2019b; Stolpe et al., 2019; Zhu et al., 41 
2019), typically by carrying out multiple simulations across successive CO2 doublings. A non-linear 42 
temperature response to these successive doublings may be partly due to forcing that increases more or less 43 
than expected from a purely logarithmic dependence (Etminan et al., 2016), and partly due to state-44 
dependence in feedbacks; however, not all modelling studies have partitioned the non-linearities in 45 
temperature response between these two effects. Nonetheless, there is general agreement amongst GCMs 46 
that the feedback parameter, α, becomes less negative as temperature increases from preindustrial (i.e. 47 
climate sensitivity increases as temperature increases; e.g. Meraner et al., 2013; see Figure 7.15). This 48 
increase in climate sensitivity is in most models due to the water vapour (Section 7.4.2.2) and cloud (Section 49 
7.4.2.5) feedback parameters increasing with warming (Caballero and Huber, 2013; Meraner et al., 2013; 50 
Zhu et al., 2019). These changes are offset partially but not completely by the surface albedo feedback 51 
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parameter decreasing with warming (Jonko et al., 2013; Meraner et al., 2013), which is a consequence of 1 
reduced snow and sea ice cover in a warmer climate. At the same time there is little change in the Planck 2 
feedback parameter (Section 7.4.2.1), which is due to competing effects from increasing Planck emission at 3 
warmer temperatures and decreasing planetary emissivity due to increased CO2 and water vapour (Mauritsen 4 
et al., 2019). Analysis of the spatial patterns of the non-linearities in temperature response (Good et al., 5 
2015) suggests that these patterns are linked to a reduced weakening of the AMOC, and changes to 6 
evapotranspiration. The state-dependence of α is also found in model simulations of high-CO2 paleoclimates 7 
(Caballero and Huber, 2013; Zhu et al., 2019; Figure 7.15). The state-dependence is not only evident at very 8 
high CO2 concentrations in excess of 4×CO2, but also apparent in the difference in temperature response to a 9 
2×CO2 forcing compared with a 4×CO2 forcing (Mauritsen et al., 2019; Figure 7.15), and as such relevant 10 
for interpreting century-scale climate predictions.  11 
 12 
Despite the general agreement that α becomes less negative (i.e. climate sensitivity increases) as temperature 13 
increases (Figure 7.15), one modelling study has found that α becomes more negative as temperature 14 
increases from preindustrial times (Stolpe et al., 2019), and there is limited evidence from some models that 15 
α may become more negative at extremely high CO2 concentrations (> 4000ppmv) (Caballero and Huber, 16 
2013; Hansen et al., 2013; Popp et al., 2016). Modelling studies exploring state-dependence in climates 17 
colder than today, including in cold paleoclimates such as the LGM, support both decreased (Yoshimori et 18 
al., 2011) and increased (Kutzbach et al., 2013; Stolpe et al., 2019) temperature response to unit forcing 19 
during cold climates compared to the modern era.    20 
 21 
In contrast to most ESMs, the majority of EMICs do not exhibit state-dependence, or have a feedback 22 
parameter that becomes more negative with increasing temperature (i.e. climate sensitivity decreases as 23 
temperature increases) (Pfister and Stocker, 2017). This is perhaps unsurprising since EMICs usually do not 24 
represent the water vapour and cloud feedbacks mechanistically. One exception is the FAMOUS model, in 25 
which α becomes less negative with increasing CO2 forcing, and which, in contrast to many other EMICs, is 26 
more akin to a low-resolution GCM (essentially a low-resolution version of HadCM3). Although Pfister and 27 
Stocker (2017) showed that care must be taken when interpreting results from current generation EMICs, 28 
they suggested that non-linearities in feedbacks can take a long time to emerge in model simulations, 29 
implying that millennial-scale simulations are required to increase confidence in GCM studies examining 30 
state-dependence (Rugenstein et al., 2019b). 31 
 32 
The possibility of more substantial changes in state has also been suggested from theoretical and modelling 33 
studies. Such changes in state, which may occur abruptly (Chapter 4; Section 4.7.3), could lead to substantial 34 
changes in climate feedbacks across relatively narrow CO2 increases (Bjordal et al., submitted; Popp et al., 35 
2016; Schneider et al., 2019; Steffen et al., 2018; von der Heydt and Ashwin, 2016). However, even if such 36 
behaviour does exist, the threshold at which any such change might occur is highly uncertain.   37 
 38 
Overall, the modelling evidence indicates that there is medium confidence that the feedback parameter, α,  39 
becomes less negative (i.e. climate sensitivity increases) with increasing temperature, at least up to 40 
atmospheric CO2 concentrations of about 4000 ppmv, and medium confidence that this state-dependence 41 
primarily derives from increases in the water vapour and shortwave cloud feedbacks. This state-dependence 42 
should be considered when estimating ECS from ESM simulations in which CO2 is quadrupled (Section 43 
7.5.5) or from paleoclimate observations from past time periods colder or warmer than today (Section 7.5.4). 44 
However, there is insufficient evidence at this time to provide a quantification of nonlinearities in the 45 
feedback parameter, α.   46 
 47 
 48 
7.4.3.2 Evidence for state-dependence in feedbacks from the paleoclimate proxy record 49 
 50 
Several studies have estimated ECS from observations of the glacial-interglacial cycles of the last ~2 million 51 
years, and found a state dependence, with more negative α (i.e. lower climate sensitivity) during colder 52 
periods of the cycles and less negative α (i.e. higher climate sensitivity) during warmer periods (von der 53 
Heydt et al., 2014; Köhler et al., 2015, 2017; Friedrich et al., 2016; Royer, 2016); see summaries in Skinner 54 
(2012) and von der Heydt et al. (2016). However, the nature of the state-dependence derived from these 55 
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observations is dependent on the assumed ice sheet forcing (Köhler et al., 2015; Stap et al., 2019), which is 1 
not well known, due to a relative lack of observations of ice sheet extent and distribution prior to the LGM, 2 
21,000 years ago. Additionally, if the analysis excludes time periods where the temperature and CO2 data are 3 
not well correlated, which occurs in general at times when sea level is falling and obliquity is decreasing, the 4 
state-dependence reduces (Köhler et al., 2018). Despite these uncertainties, overall, there is medium 5 
confidence from the paleoclimate proxy record that the feedback parameter, α, is less negative (i.e. climate 6 
sensitivity is greater) in the warm periods than in the cold periods of the glacial-interglacial cycles.   7 
 8 
There is paleoclimate proxy evidence that during past high-CO2 time periods warmer than present 9 
(specifically, the early Eocene and PETM; Chapter 2 Box 2.1), the feedback parameter becomes less 10 
negative (i.e. climate sensitivity increases) with increasing temperature (Anagnostou et al., 2016; Shaffer et 11 
al., 2016).  However, the uncertainties in reconstructing global mean temperature and forcing for these times 12 
periods are relatively large; as such, there is only low confidence in the existence of state dependence based 13 
on the proxy evidence from these past warm periods. 14 
 15 
 16 
7.4.3.3 Synthesis of state dependence of feedbacks from modelling and paleoclimate records  17 
 18 
Overall, independent lines of evidence from models (Section 7.4.3.1) and from the paleoclimate proxy record 19 
(Section 7.4.3.2) indicate that the feedback parameter, α, becomes less negative (i.e. climate sensitivity 20 
increases) as temperatures increase (high confidence); see Figure 7.15. Although individual lines of evidence 21 
have only medium or low confidence, the overall high confidence comes from the multiple models that show 22 
this behaviour, the general agreement in evidence from the paleo proxy and modelling lines of evidence, and 23 
the agreement between proxy evidence from both cold and warm past climates. Given the time-varying 24 
nature of the feedbacks (Section 7.4.4), greater confidence in the modelling lines of evidence would be 25 
obtained from simulations carried out for several hundreds of years or millennia (Rugenstein et al., 2019b), 26 
substantially longer than in many studies. Greater confidence in the paleoclimate lines of evidence would be 27 
obtained from stronger constraints on atmospheric CO2 concentrations during past warm climates.  28 

 29 
 30 

[START FIGURE 7.15 HERE] 31 
 32 

Figure 7.15: Feedback parameter, α (W m–2 °C–1), as a function of global mean surface air temperature anomaly 33 
relative to preindustrial, for model simulations (coloured circles and lines; Caballero and Huber, 2013; 34 
Good et al., 2015; Jonko et al., 2013; Mauritsen et al., 2019; Meraner et al., 2013; Stolpe et al., 2019; Zhu 35 
et al., 2019), and from paleoclimate data (grey circles and associated uncertainties; Anagnostou et al., 36 
2016; Shaffer et al., 2016).  For the model simulations, the value on the x-axis refers to the mean of the 37 
temperature before and after the system has equilibrated to a forcing (in most cases a CO2 doubling), and 38 
is expressed as an anomaly relative to an associated pre-industrial global mean temperature from that 39 
model.  The values of α from proxies assume a radiative forcing of 3.7 W m-2 for CO2 doubling. 40 

 41 
[END FIGURE 7.15 HERE] 42 
 43 
 44 
7.4.4 Relationship between feedbacks and temperature patterns 45 
 46 
The large-scale patterns of surface warming in observations since the 19th century (Chapter 2, Section 2.3) 47 
and climate model simulations (Chapter 4, Section 4.3; Figure 7.16a) share several common features. In 48 
particular, surface warming is greater in the Arctic than in the global average or even southern hemisphere 49 
high latitudes; and surface warming is generally greater over land than over nearby oceans. GCMs generally 50 
simulate a weakening of the equatorial Pacific Ocean SST gradient on multi-decadal to centennial 51 
timescales, with greater warming in the east than the west, although this feature has not yet emerged in 52 
observations (Figures7.18, 7.19, Chapter 9, Section 9.2). This section assesses process understanding of 53 
these large-scale patterns of surface temperature response from the perspective of a regional energy budget. 54 
It then assesses evidence from the paleoclimate proxy record for long-term patterns of surface warming 55 
during deep past time periods of high atmospheric CO2 concentration. Finally, it assesses how radiative 56 
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feedbacks depend on the spatial pattern of surface temperature, and thus that they can change in magnitude 1 
as that pattern evolves over time, with important implications for the assessment of ECS based on historical 2 
warming (Section 7.4.5.2). 3 
 4 
Chapter 4, Section 4.5 discusses patterns of surface warming for 21st century forcing scenarios. Chapter 9, 5 
Section 9.2 assesses historical SST trends and the ability of coupled GCMs to replicate the observed 6 
changes. Chapter 4, Section 4.5.1 discusses the processes causing the land to warm more than the oceans. 7 
 8 
 9 
7.4.4.1 Polar amplification 10 
 11 
Polar amplification describes the phenomenon that surface temperature changes tend to be amplified at the 12 
poles relative to the global mean in response to radiative forcing of the climate system. Arctic amplification, 13 
often defined as the ratio of Arctic to global surface warming, is a ubiquitous emergent feature of climate 14 
model simulations (Holland and Bitz, 2003; Pithan and Mauritsen, 2014) (Chapter 4, Section 4.5; Figure 15 
7.16a) and is also seen in observations (Chapter 2, Section 2.3). However, both climate models and 16 
observations show relatively less warming of the southern hemisphere (SH) high latitudes over the historical 17 
record (Chapter 2, Section 2.3) and over the 21st century (Chapter 4, Section 4.5). Since the AR5 there is a 18 
much-improved understanding of the processes that drive polar amplification in the northern hemisphere 19 
(NH) and delay its emergence in the SH. 20 
 21 
 22 
[START FIGURE 7.16 HERE] 23 
 24 
Figure 7.16: Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to regional surface 25 

temperature changes at year 100 of abrupt CO2 quadrupling simulations of CMIP5 models. (a) Pattern of 26 
near-surface air temperature change. (b-d) Contributions to net Arctic (>60N), tropical (30S-30N), and 27 
Antarctic (<60S) warming calculated by dividing regional-average energy inputs by the regional-average 28 
Planck response, with the contributions from radiative forcing, changes in atmospheric heat transport, 29 
ocean heat uptake, and radiative feedbacks summing to the value of net warming; inset shows regional 30 
warming contributions associated with individual feedbacks, summing to the total feedback contribution. 31 
Uncertainties show 25% and 75% percentiles across models. The warming contributions (units of C) for 32 
each process are diagnosed by calculating the energy flux (units of W m-2) that each process contributes 33 
to the atmosphere over a given region, either at the TOA or surface, then dividing that energy flux by the 34 
regional Planck response (around 3.2 W m-2C-1 but varying with latitude). By construction, the 35 
individual warming contributions sum to the total warming in each region. Radiative kernel methods (see 36 
Section 7.4.1) are used to decompose the net energy input from radiative feedbacks into contributions 37 
from changes in atmospheric water vapour, lapse-rate, clouds and surface albedo, leaving a small residual 38 
(Shell et al., 2008) and the analysis is based on that of Goosse et al., (2018). 39 

 40 
[END FIGURE 7.16 HERE] 41 
 42 
 43 
7.4.4.1.1 Critical processes driving polar amplification 44 
Feedbacks associated with the loss of sea ice and snow are central to polar amplification (Dai et al., 2019), 45 
but other feedbacks and changes in atmospheric and oceanic heat transport contribute as well. Regional 46 
energy budget analyses are commonly used to diagnose the relative contributions of the different factors to 47 
regional warming as projected by climate models under increased CO2 concentrations (Figure 7.16) (Feldl 48 
and Roe, 2013; Pithan and Mauritsen, 2014; Goosse et al., 2018; Stuecker et al., 2018). These suggest that 49 
the primary cause of amplified Arctic warming is the latitudinal structure of radiative feedbacks, which 50 
warm the Arctic more than the tropics (Figure 7.16b). In turn, this latitudinal structure reflects that of the 51 
surface-albedo and lapse-rate feedbacks, which preferentially warm the Arctic (Graversen et al., 2014; Pithan 52 
and Mauritsen, 2014; Goosse et al., 2018). Latitudinal structure in the lapse-rate feedback reflects weak 53 
radiative damping to space with surface warming in polar regions, where atmospheric warming is 54 
constrained to the lower troposphere owing to stably stratified conditions, and strong radiative damping in 55 
the tropics, where warming is enhanced in the upper troposphere owing to moist convective processes. This 56 
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is only partially compensated by latitudinal structure in the water vapour (Taylor et al., 2013) and cloud 1 
feedbacks, which favour tropical warming (Pithan and Mauritsen, 2014). A weaker Planck response at high 2 
latitudes, owing to less efficient radiative damping where surface and atmospheric temperatures are colder, 3 
also contributes to polar amplification (Pithan and Mauritsen, 2014). Since the ERF of CO2 is larger in the 4 
tropics than at high latitudes, it contributes more to tropical warming than to polar warming (Figure 7.16b-d). 5 
 6 
While asymmetries in radiative feedbacks between the poles contribute to greater warming in the Arctic than 7 
the Antarctic (Yoshimori et al., 2017; Goosse et al., 2018), the primary driver of reduced Antarctic warming 8 
in transient simulations is the large heat uptake in the Southern Ocean (Marshall et al., 2015; Armour et al., 9 
2016) (Figure 7.16c; Chapter 9). Strong heat uptake also occurs in the subpolar North Atlantic Ocean 10 
(Chapter 9). However, this is partially compensated by increased northward heat transport into the Arctic 11 
under global warming which leads to increased heat fluxes into the Arctic atmosphere (Rugenstein et al., 12 
2013; Jungclaus et al., 2014; Koenigk and Brodeau, 2014; Marshall et al., 2015; Nummelin et al., 2017; 13 
Singh et al., 2017; Oldenburg et al., 2018) (Figures 7.5 and 7.16b). Climate model simulations of the 14 
equilibrium response to CO2 forcing project polar amplification in both hemispheres, but generally with less 15 
warming in the Antarctic than the Arctic (Li et al., 2013a; Yoshimori et al., 2017). 16 
While energy budget analyses (Figure 7.16) are useful for diagnosing contributions to regional warming, 17 
their value for assessing the underlying role of individual factors is limited by interactions inherent to the 18 
coupled climate system. For example, the net atmospheric poleward heat transport into the Arctic does not 19 
change substantially under CO2 forcing (Figure 7.5), suggesting little to no role for changes in atmospheric 20 
heat transport in Arctic amplification (Figure 7.16b). However, this occurs because increases in poleward 21 
latent energy transport with warming is compensated by a decrease in poleward dry-static energy (sensible + 22 
potential energy) transport (Armour et al., 2019; Donohoe et al., submitted; Huang and Zhang, 2014; Hwang 23 
et al., 2011; Kay et al., 2012; Roe et al., 2015) (Section 7.2.3). Episodic increases in latent heat transport into 24 
the Arctic enhance the water-vapour feedback and may drive sea-ice loss, at least on sub-seasonal timescales 25 
(Woods and Caballero, 2016; Gong et al., 2017; Lee et al., 2017; Luo et al., 2017a), however this may be a 26 
smaller driver of sea-ice variability than atmospheric temperature fluctuations (Olonscheck et al., 2019). If 27 
Arctic long-term warming also depends on the relative partitioning of atmospheric latent and sensible heat 28 
transport, then heat transport changes could play a more prominent role in polar amplification than implied 29 
by regional energy budget analyses (Lee, 2014; Graversen and Burtu, 2016; Yoshimori et al., 2017; Armour 30 
et al., 2019). Moreover, polar feedback processes are coupled and influenced by warming at lower latitudes 31 
through heat transport changes (Screen et al., 2012; Alexeev and Jackson, 2013; Graversen et al., 2014; 32 
Graversen and Burtu, 2016; Rose and Rencurrel, 2016; Yoshimori et al., 2017; Feldl et al., 2017; Garuba et 33 
al., 2018; Po-Chedley et al., 2018a; Stuecker et al., 2018; Dai et al., 2019) while poleward atmospheric heat 34 
transport changes are influenced by the latitudinal structure of regional feedbacks, radiative forcing, and 35 
ocean heat uptake (Hwang et al., 2011; Zelinka and Hartmann, 2012; Feldl and Roe, 2013; Huang and 36 
Zhang, 2014; Merlis, 2014; Rose et al., 2014; Roe et al., 2015; Stuecker et al., 2018; Armour et al., 2019). 37 
 38 
While these various factors are thus not cleanly separable, they work in concert to favour polar amplification. 39 
Polar amplification still occurs within GCMs when the surface-albedo feedback (Hall, 2004; Alexeev et al., 40 
2005; Graversen and Wang, 2009) or the lapse-rate feedback (Graversen et al., 2014) are suppressed. It also 41 
occurs in models without any sea ice (Feldl and Roe, 2013; Rose et al., 2014; Kim et al., 2018). Moist 42 
diffusive energy balance models suggest that polar amplification would occur even in the absence of any 43 
latitudinal structure in climate feedbacks owing to increased poleward latent heat transport with warming 44 
(Alexeev and Jackson, 2013; Rose et al., 2014; Roe et al., 2015; Merlis and Henry, 2018; Armour et al., 45 
2019). Poleward latent heat transport changes act to favour polar amplification and prevent tropical 46 
amplification within climate models (Armour et al., 2019), resulting in strongly polar-amplified warming in 47 
response to polar forcing and a more latitudinally-uniform warming in response to tropical forcing (Alexeev 48 
et al., 2005; Rose et al., 2014; Stuecker et al., 2018). 49 
 50 
Because many factors contribute to polar amplification, projections of polar warming are inherently more 51 
uncertain than global mean warming (Holland and Bitz, 2003; Roe et al., 2015; Bonan et al., 2018; Stuecker 52 
et al., 2018). The magnitude of Arctic amplification ranges from a factor of two to four in projections of 21st 53 
century warming (Chapter 4, Section 4.5). While uncertainty in both global and tropical warming is 54 
dominated by cloud feedbacks (Vial et al., 2013), uncertainty in polar warming arises primarily from polar 55 
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surface-albedo and lapse-rate feedbacks, changes in atmospheric and oceanic poleward heat transport, and 1 
ocean heat uptake (Hwang et al., 2011; Mahlstein and Knutti, 2011; Pithan and Mauritsen, 2014; Bonan et 2 
al., 2018). 3 
 4 
Arctic amplification has a distinct seasonality with a peak in early winter (Nov–Jan) owing to sea-ice loss 5 
and associated increases in heat fluxes from the ocean to the atmosphere resulting in strong near-surface 6 
warming (Pithan and Mauritsen, 2014; Dai et al., 2019). Surface warming may be further amplified by cloud 7 
and lapse-rate feedbacks in autumn and winter (Burt et al., 2016; Morrison et al., 2018). Arctic amplification 8 
is weak in summer owing to surface temperatures remaining stable as excess energy goes into thinning the 9 
summertime sea-ice cover (which remains at the freezing point) or into the ocean mixed layer. Arctic 10 
amplification can also been interpreted through changes in the surface energy budget (Burt et al., 2016; 11 
Woods and Caballero, 2016; Boeke and Taylor, 2018; Kim et al., 2019), however such analyses are 12 
complicated by the finding that a large portion of the changes in downward longwave radiation can be 13 
attributed to surface warming itself (Vargas Zeppetello et al., 2019). 14 
 15 
Based on mature process understanding, observational evidence, and a high degree of agreement across a 16 
hierarchy of climate models, there is very high confidence that polar amplification is a robust feature of the 17 
long-term response to greenhouse gas forcing in both hemispheres. There is high confidence that the rate of 18 
Arctic surface warming will continue to exceed the global average over the 21st century and that polar 19 
amplification will eventually emerge in the SH on centennial timescales as the climate equilibrates with 20 
radiative forcing and Southern Ocean heat uptake is reduced. However, the timing of the emergence of SH 21 
polar amplification remains uncertain due to insufficient knowledge of the timescales associated with 22 
Southern Ocean warming and the response to surface wind and freshwater forcing (Bintanja et al., 2013; 23 
Kostov et al., 2017, 2018; Pauling et al., 2017; Purich et al., 2018). GCM simulations indicate that large 24 
freshwater input to the Southern Ocean from melting ice shelves could substantially delay the emergence of 25 
polar amplified warming by stratifying and cooling the surface ocean around Antarctica (Bronselaer et al., 26 
2018; Golledge et al., 2019) (low confidence due to medium agreement but limited evidence). However, 27 
even a large reduction in the Atlantic meridional overturning circulation (AMOC) due, for instance, to 28 
greatly increased freshwater runoff from Greenland would be insufficient to eliminate Arctic amplification 29 
(Liu et al., 2017b, 2017c; Wen et al., 2018) (medium confidence based on to medium agreement and medium 30 
evidence). 31 
 32 
 33 
7.4.4.1.2 Polar amplification in past high-CO2 climates 34 
Paleoclimate data from the geological record provides observational evidence of large-scale patterns of 35 
surface warming during past time periods of high atmospheric CO2 concentration (Foley and Dowsett, 2019; 36 
Hollis et al., 2019; McClymont et al., submitted; Tierney et al., 2019). Furthermore, comparison of these data 37 
with paleoclimate model simulations of the same time periods (Haywood et al., submitted; Kageyama et al., 38 
submitted; Lunt et al., submitted) allows an evaluation of modelled patterns of surface warming in response 39 
to high CO2 and other forcings, and provides insights into the mechanisms that led to these patterns of 40 
warming. In particular, these deep past time periods provide paleo evidence for long-term changes in polar 41 
amplification, and longitudinal temperature gradients in the tropics. In this context, there has been a 42 
community modelling and data focus on the mid-Pliocene warm period (MPWP) (Chapter 2, Table 2.1; Box 43 
2.4; Chapter 5, Section 5.1.3.1, about 3 million years ago, CO2 concentrations of 300 to 450 ppmv, global 44 
mean surface temperature 3.0 to 4.5oC above preindustrial, reduced Greenland and Antarctic ice sheets 45 
compared with preindustrial; Haywood et al., 2016b), and the early Eocene climatic optimum (EECO; 46 
Chapter 2, Table 2.1, about 50 million years ago, CO2 concentrations >1100 ppmv, global mean surface 47 
temperatures about 13oC above preindustrial, absence of continental ice sheets; Lunt et al., 2017). For both 48 
these time periods, in particular the early Eocene, there is a non-CO2 forcing associated with 49 
paleogeographic change (Farnsworth et al., 2019), and long-term feedbacks associated with ice sheets play a 50 
substantial role (Section 7.4.2.6); as such, the response of the system cannot be interpreted as representative 51 
of an ECS as defined in Section 7.1.  However, because these non-CO2 forcings can be included in model 52 
experimental designs, these time periods allow an assessment of the patterns of modelled response to known 53 
forcings (albeit with greater uncertainty in forcing than in more recent time periods). 54 
 55 
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At the time of the AR5, polar amplification was evident in observations of paleoclimate SST and land 1 
temperature from both the MPWP and the early Eocene, but uncertainties associated with proxy calibrations 2 
(MPWP and early Eocene; Dowsett et al., 2012; Lunt et al., 2012; Salzmann et al., 2013) and the role of 3 
orbital forcing (MPWP; Lisiecki and Raymo, 2005) meant that the degree of polar amplification during these 4 
time periods was not accurately known. Furthermore, although some models (CCSM3; Winguth et al., 2010; 5 
Huber and Caballero, 2011) at that time were able to reproduce the strong polar amplification implied by 6 
temperature proxies of the early Eocene, this was achieved at substantially higher CO2 concentrations than 7 
those indicated by CO2 proxies (Beerling and Royer, 2011). 8 
 9 
Since the AR5 there has been progress in improving the accuracy of temperature reconstructions of the 10 
MPWP and early Eocene time periods (Foley and Dowsett, 2019; Hollis et al., 2019; McClymont et al., 11 
submitted; Tierney et al., 2019). In addition, reconstructions of the MPWP have been focused on a short time 12 
slice with an orbit similar to modern-day (isotopic stage KM5C; Haywood et al., 2013, 2016).  Furthermore, 13 
there are more robust constraints on CO2 concentrations from both of these time periods (Martínez-Botí et 14 
al., 2015; Anagnostou et al., 2016). Consequently, the degree of polar amplification during these high-CO2 15 
time periods can now be better quantified, and the ability of models to reproduce this pattern can be better 16 
assessed (Figure 7.17a,b,d,e,g,h). 17 
 18 
 19 
[START FIGURE 7.17 HERE] 20 
 21 
Figure 7.17: Temperature anomalies compared with pre-industrial for the high-CO2 EECO and MPWP time periods, 22 

and for the Last Glacial Maximum (expressed as LGM minus preindustrial), from paleoclimate proxies 23 
and models. (a,b,c) Modelled near-surface air temperature anomalies for ensemble-mean simulations of 24 
the (a) EECO (Lunt et al, submitted), (b) Pliocene (Haywood et al, submitted), and (c) Last Glacial 25 
Maximum (Kageyama et al, submitted).  (d,e,f) Proxy sea surface temperature anomalies (black circles), 26 
including published uncertainties (vertical bars), black lines show model ensemble mean SST anomaly 27 
(solid back line) and near-surface air temperature anomaly (dashed black line) for the same ensembles as 28 
in (a,b,c), coloured lines show the modelled SST anomaly for the individual models that make up each 29 
ensemble (LGM, N=1; MPWP, N=15; EECO, N=5). Proxy datasets are (d) (Hollis et al., 2019), (e) 30 
(Foley and Dowsett, 2019), and (f) Tierney et al (submitted). (g,h,i) As (a,b,c) but for SST anomalies, and 31 
with the proxy SST anomalies from (d,e,f) also shown (coloured circles).  For the Eocene maps (c,i), the 32 
anomalies are relative to the zonal mean of the preindustrial. 33 

 34 
[END FIGURE 7.17 HERE] 35 
 36 
 37 
Since the AR5, there has also been a change in the degree of polar amplification simulated by paleoclimate 38 
models of the early Eocene and MPWP. For the early Eocene, initial work indicated that changes to model 39 
parameters associated with aerosols and/or clouds could increase simulated polar amplification and improve 40 
agreement between models and paleoclimate data (Kiehl and Shields, 2013; Sagoo et al., 2013), but such 41 
parameter changes were prescribed and not mechanistically based. In support of these initial findings, a more 42 
recent (CMIP5 generation) model, that includes a process-based representation of cloud microphysics, also 43 
exhibits increased polar amplification compared to the models assessed in AR5. This model also agrees 44 
better with the proxy-based estimates of SST than previous simulations, and obtains this good agreement 45 
when forced with CO2 concentrations that are in agreement with the proxy CO2 records (Zhu et al., 2019; 46 
Figure 7.17a,d,g). For the MPWP, model simulations are now in better agreement with proxies than at the 47 
time of the AR5 (Haywood et al., submitted). In particular, in the tropics new proxy reconstructions of SSTs 48 
are warmer and in better agreement with the models, due in part to the narrower time window in the proxy 49 
reconstructions. There is also better agreement at higher latitudes, due in part to the absence of some very 50 
warm proxy SSTs due to the narrower time window, and in part to a better representation of Arctic gateways 51 
in the most recent Pliocene model simulations, which have resulted in warmer SSTs in the North Atlantic 52 
(Haywood et al, submitted; Figure 7.17b,e,h). However, few of these simulations are carried out by the latest 53 
CMIP6 generation models There is some indication that CMIP6 models with high climate sensitivity may 54 
simulate an EECO climate that is too warm compared with proxies (Zhu et al., submitted), but this needs to 55 
be confirmed by other models. 56 
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 1 
The Last Glacial Maximum (LGM) also gives an opportunity to evaluate model simulation of polar 2 
amplification under CO2 forcing, albeit under colder conditions than today. As with the EECO, there are 3 
substantial regional ice sheet forcings in addition to CO2, but these are also implemented in the model 4 
simulations, allowing a like-for-like comparison with the proxies. Both the proxies and models indicate polar 5 
amplification when considering a transition from the LGM to preindustrial (Figure 7.17c,f,i), but the more 6 
regional SST changes apparent in the proxies are not well simulated by the models (Kageyama et al. 7 
(submitted); Chapter 3, Section 3.3.1). 8 
 9 
Overall, the proxy reconstructions give high confidence that there was polar amplification in both 10 
hemispheres in the MPWP and EECO, and this is further supported by model simulations of these time 11 
periods (Haywood et al., submitted; Lunt et al., submitted; Zhu et al., 2019), which are more consistent with 12 
the proxies than at the time of the AR5. Polar amplification is further supported by models and proxies of the 13 
LGM. Overall, the confidence in the ability of models to accurately simulate polar amplification is higher 14 
than at the time of the AR5. Further confidence could be obtained if more of the latest generation models 15 
(CMIP6) were applied to high-CO2 periods of the past. 16 
7.4.4.1.3 Overall assessment of polar amplification 17 
The paleoclimate proxy record of past warm climates, GCM simulations of those past climates, and GCM 18 
projections of climate response to CO2 forcing provide robust evidence, a high degree of agreement and thus 19 
very high confidence that equilibrium warming will be polar amplified in both hemispheres. Arctic 20 
amplification has already been observed (Chapter 2, Section 2.3) and its causes are well understood. Polar 21 
amplification in the SH has yet to emerge over the historical record (Chapter 2, Section 2.3) owing to 22 
delayed warming of the Southern Ocean surface and associated heat uptake. 23 
 24 
Southern Ocean SSTs have also been slow to warm over the instrumental period (Figure 7.19a), with cooling 25 
since 1980 owing to a combination of upper-ocean freshening from ice-shelf melt, intensification of surface 26 
westerly winds from ozone depletion, and variability in ocean convection (Chapter 9, Section 9.2). This 27 
stands in contrast to the equilibrium warming pattern either inferred from the proxy record or simulated by 28 
GCMs under CO2 forcing. There is high confidence that the SH high latitudes will warm by more than the 29 
tropics on centennial timescales. However, there is only low confidence that this feature will emerge this 30 
century. 31 
 32 
Since the AR5, there has been an improvement in model simulations of polar amplification in past high-CO2 33 
time periods when compared with proxy reconstructions, in particular the MPWP and the early Eocene (high 34 
confidence).  However, many CMIP6 models are yet to be applied to these time periods and so cannot 35 
currently be assessed in this way. 36 
 37 
 38 
7.4.4.2 Tropical sea-surface temperature gradients 39 
 40 
7.4.4.2.1 Critical processes determining changes in tropical sea-surface temperature gradients 41 
A weakening of the equatorial Pacific Ocean east-west SST gradient, with greater warming in the east than 42 
the west, is a common feature of the equilibrium climate response to CO2 forcing as projected by GCMs 43 
(e.g., Figure 7.19b). There are thought to be several factors contributing to this pattern. In the absence of any 44 
changes in atmospheric or oceanic circulations, the east-west surface temperature difference is theorized to 45 
decrease owing to weaker evaporative damping, and thus greater warming in response to forcing, where 46 
climatological temperatures are colder in the eastern Pacific cold tongue (Xie et al., 2010; Luo et al., 2015). 47 
Within atmospheric GCMs coupled to mixed-layer oceans, this gradient in damping has been linked to the 48 
rate of change with warming of the saturation specific humidity, which is set by the Clausius-Clapeyron 49 
relation (Merlis and Schneider, 2011). Gradients in low-cloud feedbacks may also favour eastern equatorial 50 
Pacific warming (DiNezio et al., 2009). 51 
 52 
In the coupled climate system, changes in atmospheric and oceanic circulations will influence the east-west 53 
temperature gradient as well. It is expected that as global temperature increases and as the east-west 54 
temperature gradient weakens, east-west sea-level pressure gradients and easterly trade winds (characterizing 55 
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the Walker circulation) will weaken as well (Vecchi et al., 2006, 2008; Figure 7.18b). This would, in turn, 1 
weaken the east-west temperature gradient through a reduction of equatorial upwelling of cold water in the 2 
east Pacific and a reduction in the transport of warmer water to the western equatorial Pacific and Indian 3 
Ocean (England et al., 2014; Dong and McPhaden, 2017; Li et al., 2017; Maher et al., 2018). 4 
 5 
Research since the AR5 (Burls and Fedorov, 2014a; Fedorov et al., 2015; Erfani and Burls, 2019) has built 6 
on an earlier theory (Liu and Huang, 1997; Barreiro and Philander, 2008) linking the east-west temperature 7 
gradient to the north-south temperature gradient. In particular, model simulations suggest that a reduction in 8 
the equator-to-pole temperature gradient (polar amplification) increases the temperature of water subducted 9 
in the extra-tropics, which in turn is upwelled in the eastern Pacific. Thus, polar amplified warming, with 10 
greater warming in the mid-latitudes and subtropics than in the deep tropics, is expected to contribute to the 11 
weakening of the east-west equatorial Pacific SST gradient on decadal to centennial timescales. For all of 12 
these reasons, GCMs generally project an El Niño–like pattern of Pacific warming on centennial timescales. 13 
 14 
The transient adjustment of the equatorial Pacific SST gradient is influenced by the fact that upwelling 15 
waters delay surface warming in the east since they have not been at the surface for years-to-decades to 16 
experience the greenhouse gas forcing. This ‘thermostat mechanism’ (Clement et al., 1996; Cane et al., 17 
1997) is not thought to persist to equilibrium since it does not account for the eventual increase in 18 
temperatures of upwelled waters (Liu et al., 2005; Xie et al., 2010; Luo et al., 2017b) which will occur as 19 
surface warming becomes polar amplified. An individual CMIP5 GCM (GFDL’s ESM2M) has been found 20 
to transiently warm with a La Niña–like pattern of Pacific temperature change, more similar to the SST 21 
trends seen over the historical record (Chapter 9, Section 9.2; Figure 7.19a), owing to a weakening nonlinear 22 
ENSO amplitude (Kohyama et al., 2017), but this pattern does not appear to persist to equilibrium (Paynter 23 
et al., 2018). 24 
 25 
Since 1870, observed SSTs in the tropical western Pacific Ocean have increased while those in the tropical 26 
eastern Pacific Ocean have changed less (Figure 7.19a; Chapter 9, Section 9.2). Much of this strengthening 27 
of the equatorial Pacific temperature gradient has occurred since about 1980 due to strong warming in the 28 
west and cooling in the east concurrent with an intensification of the surface equatorial easterly trade winds 29 
and Walker Circulation (Chapter 9, Section 9.2) (England et al., 2014). This temperature pattern is also 30 
reflected in regional ocean heat content trends and sea level changes observed from satellite altimetry since 31 
1993 (Bilbao et al., 2015). With medium confidence, the observed Walker circulation strengthening appears 32 
to have resulted from a combination of transient factors including sulphate aerosol forcing (Takahashi and 33 
Watanabe, 2016; Hua et al., 2018), multi-decadal tropical Atlantic SST trends (Kucharski et al., 2011, 2014, 34 
2015; McGregor et al., 2014; Chafik et al., 2016; Li et al., 2016a; Kajtar et al., 2017; Sun et al., 2017), and 35 
coupled ocean–atmosphere dynamics which slow warming in the equatorial eastern Pacific (Clement et al., 36 
1996; Cane et al., 1997; Seager et al., 2019). Coupled GCMs are generally unable to replicate observed 37 
trends in the Walker Circulation and Pacific Ocean SSTs over the historical record (Zhou et al., 2016; Coats 38 
and Karnauskas, 2017), possibly due to model deficiencies including insufficient multi-decadal Pacific 39 
Ocean SST variability (Laepple and Huybers, 2014; Bilbao et al., 2015), mean state biases affecting the 40 
forced response or the connection between Atlantic and Pacific basins (Kucharski et al., 2014; Kajtar et al., 41 
2018; Luo et al., 2018; McGregor et al., 2018; Seager et al., 2019), and/or a misrepresentation of radiative 42 
forcing (Chapter 9, Section 9.2 and Chapter 3, Section 3.7.6). 43 
 44 
Based on medium evidence and a high degree of agreement, GCM simulations and process understanding 45 
provides medium confidence that the La Niña–like warming pattern seen over the historical record is 46 
transient in nature and that SSTs in the eastern tropical Pacific Ocean will increase more than SSTs in the 47 
western tropical Pacific Ocean on multi-centennial timescales under greenhouse gas forcing. These trends in 48 
tropical Pacific SST gradients reflect changes in the climatology, rather than changes in ENSO amplitude or 49 
variability, which is assessed in Chapter 4, Section 4.3.3. There is emerging evidence that the Walker 50 
circulation has weakened again since around 2011, suggesting that a transition to an El Niño–like warming 51 
pattern may currently be underway (Cha et al., 2018) with low confidence due to the possibility that this 52 
could be a reflection of natural variability.  53 
 54 
 55 
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7.4.4.2.2 Tropical longitudinal temperature gradients in past high-CO2 climates 1 
The AR5 stated that paleoclimate proxies indicate a reduction in the longitudinal SST gradient across the 2 
equatorial Pacific during the mid-Pliocene warm period (MPWP) (Masson-Delmotte et al., 2013). This 3 
assessment was based on SST reconstructions between two sites situated very close to the equator in the 4 
heart of the western Pacific warm pool (ODP 806) and eastern Pacific cold tongue (ODP 847), respectively. 5 
SST reconstructions based on the magnesium to calcium ratio (Mg/Ca) in foraminifera and the alkenone 6 
unsaturation index (𝑈ଷ

ᇱ) generally agree that during the Pliocene the SST gradient between these two sites 7 
was reduced compared with the long-term mean of the modern (Wara et al., 2005; Dekens et al., 2008; 8 
Fedorov et al., 2013).  9 
 10 
Since the AR5, the generation of a new SST records from the ODP 806 warm pool site based on the 11 
𝑇𝐸𝑋଼

ு proxy (Zhang et al., 2014), the inclusion of  𝑈ଷ
ᇱ and  𝑇𝐸𝑋଼

ு  SST reconstructions from sites in the 12 
South China Sea as warm pool estimates (O’Brien et al., 2014; Zhang et al., 2014), and the inclusion of 13 
several new sites from the eastern Pacific as cold tongue estimates (Zhang et al., 2014; Fedorov et al., 2015), 14 
has led to a variety of revised gradient estimates. Published estimates of the reduction in the longitudinal 15 
gradient for the Pliocene, relative to either Late Quaternary (0-0.5Ma) or preindustrial values, include 1 to 16 
1.5°C (Zhang et al., 2014), 0.1– 1.9°C (Tierney et al., 2019), and about 3°C (Fedorov et al., 2015). All of 17 
these studies report a further weakening of the zonal gradient further back in time based on records 18 
extending into the Early Pliocene. While these revised estimates differ in magnitude due to differences in the 19 
sites and SST proxies used to evaluate the longitudinal SST gradient, and while there are uncertainties 20 
associated with the calibrations of the proxies (Haywood et al., 2016a), there is medium confidence that the 21 
average longitudinal gradient in the tropical Pacific was weaker during the Pliocene than during the Late 22 
Quaternary.  23 
 24 
To avoid the influence of local biases, changes in the zonal gradient within Pliocene simulations are typically 25 
evaluated using domain-averaged SSTs within chosen east and west Pacific regions and as such there is 26 
sensitivity to methodology; gradient changes simulated by PlioMIP1 models are reported as spanning 27 
approximately –0.5 to 0.5 °C by Brierley et al. (2015) and approximately –1 to 1 °C by Tierney et al. (2019). 28 
Simulations with hypothetical modifications to cloud albedo or ocean mixing can simulate substantially 29 
weaker zonal gradients (Fedorov et al., 2013; Burls and Fedorov, 2014b), as is required to simulate 30 
reconstructed Early Pliocene gradient reductions.   31 
 32 
While more western Pacific warm pool temperature reconstructions are needed to refine estimates of the 33 
longitudinal gradient, the availability of several sea surface temperature reconstructions from the east Pacific 34 
indicates enhanced equatorial warming in the centre of the eastern equatorial cold tongue upwelling region 35 
(Liu et al., 2019). This enhanced warming in the east Pacific cold tongue appears to be dynamically 36 
consistent with reconstruction of enhanced subsurface warming (Ford et al., 2015) and enhanced warming in 37 
coastal upwelling regions, suggesting that the tropical thermocline was either deeper or less stratified during 38 
the Pliocene. The Pliocene data therefore suggests that the observed cooling trend over the last 60 years in 39 
the eastern equatorial Pacific (Seager et al., 2019), whether forced or due to internal-variability, involves 40 
transient processes likely distinct from the longer-timescale process (Burls and Fedorov, 2014b, 2014a; 41 
Heede et al., submitted; Luo et al., 2015) that may have maintained warmer eastern Pacific SST during the 42 
Pliocene.  43 
 44 
 45 
7.4.4.2.3 Overall assessment of tropical sea-surface temperature gradients under CO2 forcing 46 
The paleoclimate proxy record of past warm climates, GCM simulations of those past climates, and GCM 47 
projections of climate response to CO2 forcing provide medium evidence and a medium degree of agreement 48 
and thus medium confidence that equilibrium warming will be characterized by a weakening of the east-west 49 
tropical Pacific SST gradient. 50 
 51 
Overall the observed pattern of warming over the instrumental period, with a warming minimum in the 52 
eastern tropical Pacific Ocean (Figure 7.19a), stands in contrast to the equilibrium warming pattern either 53 
inferred from the proxy record or simulated by GCMs under CO2 forcing. There is medium confidence that 54 
the observed strengthening of the east-west SST gradient, which has been associated with increased easterly 55 
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winds over the tropical Pacific in recent decades, is transient in nature and will eventually transition to a 1 
weakening of the SST gradient on centennial timescales. 2 
 3 
 4 
7.4.4.3 Dependence of feedbacks on temperature patterns 5 
 6 
The expected time-evolution of the spatial pattern of surface warming in the future has important 7 
implications for values of ECS inferred from the historical record of observed warming. In particular, 8 
changes in the global TOA radiative energy budget can be induced by changes in the spatial pattern of 9 
surface temperature, even without a change in the global mean temperature (Zhou et al., 2016; Ceppi and 10 
Gregory, 2019). Consequently, the global radiative feedback, characterizing the net TOA radiative response 11 
to global surface warming, depends on the spatial pattern of that warming. Therefore, if the equilibrium 12 
warming pattern is distinct from that observed over the historical record (Sections 7.4.4.1 and 7.4.4.2), then 13 
ECS will be distinct from effective ECS inferred from historical warming. This “pattern effect” (Stevens et 14 
al., 2016) can result from both internal variability and climate forcing. Importantly, it is distinct from 15 
potential radiative feedback dependencies on the global mean surface warming, which are assessed in 16 
Section 7.4.3. While changes in global radiative feedbacks under transient warming have been documented 17 
in multiple generations of climate models (Andrews et al., 2015; Ceppi and Gregory, 2017; Dong et al., 18 
submitted; Williams et al., 2008), research since the AR5 has developed a much-improved understanding of 19 
the role of evolving SST patterns in driving feedback changes (Andrews et al., 2015, 2018; Andrews and 20 
Webb, 2018; Armour et al., 2013; Ceppi and Gregory, 2017; Dong et al., 2019, submitted; Gregory and 21 
Andrews, 2016; Haugstad et al., 2017; Marvel et al., 2018; Proistosescu and Huybers, 2017; Silvers et al., 22 
2018; Zhou et al., 2016, 2017). This section assesses process understanding of the pattern effect, which is 23 
dominated by the evolution of SSTs. Section 7.5.3 describes how potential feedback changes affect estimates 24 
of ECS based on historical warming. 25 
 26 
The radiation changes most sensitive to warming patterns are thought to be those associated with the low-27 
cloud cover (affecting global albedo) and the tropospheric temperature profile (affecting infrared emission to 28 
space) (Ceppi and Gregory, 2017; Zhou et al., 2017b; Andrews et al., 2018; Dong et al., 2019). The 29 
mechanisms and radiative impacts of these changes are illustrated in Figure 7.18a,b. SSTs in regions of deep 30 
convective ascent (e.g., in the western Pacific warm pool) govern the temperature of the tropical free 31 
troposphere and, in turn, affect low clouds through the strength of the inversion that caps the boundary layer 32 
(i.e., the lower-tropospheric stability) in subsidence regions (Wood and Bretherton, 2006; Klein et al., 2017). 33 
Surface warming within ascent regions thus warms the free troposphere and increases low-cloud cover, 34 
causing an increase in infrared emission to space and a reduction in absorbed solar radiation. In contrast, sea-35 
surface warming in regions of overall descent preferentially warms the boundary layer and enhances 36 
convective mixing with the dry free troposphere, decreasing low-cloud cover (Bretherton et al., 2013; Qu et 37 
al., 2014; Zhou et al., 2015) and causing an increase in absorption of solar radiation but little change in 38 
infrared emission to space. Consequently, warming in tropical ascent regions results in negative lapse-rate 39 
and cloud feedbacks while warming in tropical descent regions results in positive lapse-rate and cloud 40 
feedbacks (Figure 7.18; Andrews and Webb, 2018; Dong et al., 2019; Rose and Rayborn, 2016; Zhou et al., 41 
2017b). Surface warming in mid-to-high latitudes causes a weak radiative response owing to compensating 42 
changes in infrared emission (Planck and lapse-rate feedbacks) and absorbed solar radiation (shortwave 43 
cloud and surface-albedo feedbacks) (Rose and Rayborn, 2016; Dong et al., 2019), however this 44 
compensation may weaken due to less-negative shortwave cloud feedbacks at high warming (Bjordal et al., 45 
submitted; Dong et al., submitted). 46 
 47 
 48 
[START FIGURE 7.18 HERE] 49 

 50 
Figure 7.18: Illustration of tropospheric temperature and low-cloud response to observed and projected Pacific Ocean 51 

sea-surface temperature trends; adapted from Mauritsen (2016). (a) Atmospheric response to linear sea-52 
surface temperature trend observed over 1870-2018 (HadISST1 dataset; Rayner et al., 2003). (b) 53 
Atmospheric response to linear sea-surface temperature trend projected over 150 years following CO2 54 
quadrupling by an average of 22 CMIP6 GCMs (Dong et al., submitted). The historical temperature trend 55 
shows relatively large warming in the western tropical Pacific has been communicated aloft (red 56 
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atmospheric temperature profile), remotely warming the tropical free troposphere and increasing the 1 
strength of the inversion in regions of the tropics where warming has been muted, such as the eastern 2 
equatorial Pacific. In turn, an increased inversion strength has increased the low-cloud cover (Zhou et al., 3 
2016) causing an anomalously negative cloud and lapse-rate feedbacks over the historical record 4 
(Andrews et al., 2018; Marvel et al., 2018). The projected temperature trend shows relatively large 5 
warming in the eastern tropical Pacific which is trapped near the surface (red atmospheric temperature 6 
profile), decreasing the strength of the inversion locally. In turn, a decreased inversion strength combined 7 
with surface warming is projected to decrease the low-cloud cover, causing the cloud and lapse-rate 8 
feedbacks to become less-negative in the future. 9 

 10 
[END FIGURE 7.18 HERE] 11 
 12 
 13 
The spatial pattern of SST changes since 1870 shows relatively little warming in key regions of less-negative 14 
radiative feedbacks, including the eastern tropical Pacific Ocean and Southern Ocean (Sections 7.4.4.1 and 15 
7.4.4.2; Figure 7.19a). Cooling in these regions since 1980 has occurred along with an increase in the 16 
strength of the capping inversion in tropical descent regions, resulting in an observed increase in low-cloud 17 
cover over the tropical eastern Pacific (Zhou et al., 2016; Figure 7.18a). Thus, tropical low-cloud cover 18 
increased over recent decades even as global-average surface temperature increased, resulting in a negative 19 
low-cloud feedback which is at odds with the positive low-cloud feedback expected for the pattern of 20 
equilibrium warming under CO2 forcing (Section 7.4.2; Figure 7.18b). 21 
 22 
 23 
[START FIGURE 7.19 HERE] 24 

 25 
Figure 7.19: Sea-surface temperature linear trends (a) observed over 1870-2018 (HadISST dataset; Rayner et al., 26 

2003), and (b) projected over 150 years following CO2 quadrupling by an average of 22 CMIP6 GCMs 27 
(Dong et al., submitted). 28 

 29 
[END FIGURE 7.19 HERE] 30 
 31 
 32 
Feedback changes can be estimated within transient warming simulations of coupled GCMs. Armour (2017) 33 
and Lewis and Curry (2018) considered changes in radiative feedbacks between the transient response to an 34 
idealized 1% yr–1 CO2 increase (1pctCO2) and the long-term response under abrupt4xCO2 in different 35 
CMIP5 models, with the 1pctCO2 simulations serving as an approximate analogue for transient historical 36 
warming since pre-industrial. The majority of models show a less-negative global radiative feedback under 37 
abrupt4xCO2 than under 1pctCO2 (Figure 7.20a,b), with an average radiative feedback change of α’2 = +0.19 38 
W m–2 °C–1(–0.07 to +0.57 W m–2 °C–1range across models) from Armour (2017) and α’ = +0.05 W m–2 °C–39 
1(–0.19 to +0.22 W m–2 °C–1range across models) from Lewis and Curry (2018). Differences in findings 40 
between these two studies can be traced primarily to different methods used to estimate ERF of CO2 41 
doubling and to different assumptions about how that CO2 ERF scales with atmospheric CO2 concentration. 42 
Using the early portion of abrupt4xCO2 simulations of 22 CMIP6 models as an analogue for historical 43 
warming and following the methods of Lewis and Curry (2018), Dong et al. (submitted) find an average 44 
radiative feedback change of α’ = +0.04 W m–2 °C–1(–0.23to +0.32 W m–2 °C–1range across models) (Figure 45 
7.20c). 46 
 47 
The CMIP5 and CMIP6 GCM simulations of strong CO2 forcing described above provide estimates of α’ in 48 
the absence of non-CO2 forcing agents and internal variability. The historical ERF has been quantified 49 
accurately enough for calculations of the effective radiative feedback from historical simulations within only 50 
a few GCMs. Using historical simulations of the latest Hadley Centre Global Environmental Model 51 
(HadGEM3-GC3.1-LL), Andrews et al., (2019) find an average radiative feedback change of α’ = +0.23 W 52 

 
2  
α’ is the change in the radiative feedback parameter between the historical period and the equilibrium response to CO2 
forcing. 
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m–2 °C–1(–0.17 to +0.63 W m–2 °C–1range across four ensemble members). This value is on average larger 1 
than the α’ = +0.06 W m–2 °C–1 estimated using the early portion of the model’s abrupt4xCO2 simulation 2 
(Dong et al., submitted), suggesting that the value of α’ may depend on having a realistic representation of 3 
historical forcing and of volcanic forcing in particular (Gregory et al., 2019). However, there is substantial 4 
spread in the value of α’ across ensemble members. Using the 100-member historical simulation ensemble of 5 
the Max Planck Institute Earth System Model (MPI- ESM1.1), Dessler et al. (2018) similarly find that 6 
internal climate variability alone results in a 0.5 W m–2 °C–1 spread in the historical effective radiative 7 
feedback, and thus also in the value of α’.  8 
 9 
In general, coupled GCMs are not able to reproduce the observed cooling of the eastern tropical Pacific or 10 
Southern Ocean over recent decades, even within historical simulations where non-CO2 forcing agents are 11 
included and even when allowing for different phasing of internal variability (Zhou et al., 2016; Coats and 12 
Karnauskas, 2017; Kostov et al., 2018). This suggests that internal climate variability may have played an 13 
important role in these observed SST trends that GCMs are not able to replicate; or that GCMs may have 14 
errors in either their applied forcing or forced response (Chapter 3, Section 3.7.6; Chapter 9, Section 9.2). 15 
Simulations using prescribed historical warming patterns may thus provide a more realistic representation of 16 
the historical pattern effect (Andrews et al., 2018). Andrews et al. (2018) analysed available CMIP5/6 17 
climate model simulations (six in total) comparing effective radiative feedbacks diagnosed within 18 
atmosphere-only GCMs using prescribed historical SST and sea-ice concentration patterns with equilibrium 19 
radiative feedbacks within coupled GCMs (using identical atmospheres) driven by abrupt4xCO2 forcing. The 20 
atmosphere-only GCMs show pronounced multi-decadal variations in their effective radiative feedbacks 21 
over the last century, with a trend toward strongly negative values in recent decades owing primarily to 22 
negative shortwave cloud feedbacks (Zhou et al., 2016; Andrews et al., 2018; Marvel et al., 2018; Dong et 23 
al., 2019). Yet, all six models show a less-negative global radiative feedback under abrupt4xCO2 than for the 24 
historical period (based on regression since 1870 following Andrews et al., 2018), with an average radiative 25 
feedback change of α’ = 0.6 W m–2 °C–1(0.3–1.0 W m–2 °C–1range across models) (Figure 7.20d). These 26 
feedback changes imply that the value of ECS may be larger than that inferred from the historical record 27 
(Section 7.5.3.1). 28 
 29 
These findings can be understood from the fact that, due to a combination of internal variability and transient 30 
adjustment to forcing (Section 7.4.4.2), historical sea-surface warming has been relatively large in regions of 31 
tropical ascent (Figure 7.18a), leading to enhanced radiation to space per degree of global warming and thus 32 
an anomalously large net negative radiative feedback; however, future warming is expected to be largest in 33 
tropical descent regions, such as the eastern equatorial Pacific, and at high latitudes (Sections 7.4.4.1 and 34 
7.4.4.2) (Figure 7.18b), leading to a reduction in radiation to space per degree of global warming and thus a 35 
less-negative global radiative feedback. The magnitude of the feedback increase found when prescribing 36 
observed warming patterns is generally larger than that found within the coupled models (Andrews et al. 37 
2018; Figure 7.20). This arises from the fact that the spatial pattern of warming within transient simulations 38 
of most coupled GCMs are distinct from that observed over the historical record and more similar to the 39 
pattern simulated under abrupt4xCO2. 40 
 41 
The magnitude of α’, as quantified by GCMs, depends on the accuracy of both the projected patterns of SST 42 
and sea-ice concentration changes in response to CO2 forcing and the radiative response to those patterns 43 
(Andrews et al., 2018). It also depends on the accuracy of the historical SST and sea-ice concentration 44 
conditions prescribed within atmospheric GCMs to quantify the historical radiative feedback (Figure 7.20d). 45 
Historical SSTs are particularly uncertain for the early portion of the historical record (Chapter 2, Section 46 
2.2), and there are few constraints on sea-ice concentration prior to the satellite era. Using alternative SST 47 
datasets, Andrews et al. (2018) found little change in the value of α’ within two models (HadGEM3 and 48 
HadAM3), while Lewis and Mauritsen (submitted) found a smaller value of α’ within two other models 49 
(ECHAM6.3 and CAM5). The sensitivity of results to the choice of dataset represents a major source of 50 
uncertainty in the quantification of the historical pattern effect using atmosphere-only GCMs that has yet to 51 
be systematically explored, but the preliminary findings of Lewis and Mauritsen (submitted) suggest that α’ 52 
could be smaller for some models than the values reported in Andrews et al. (2018). 53 
 54 
 55 
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[START FIGURE 7.20 HERE] 1 
 2 
Figure 7.20: Relationship between effective and equilibrium radiative feedbacks in CMIP5 and CMIP6 models. (a) 3 

CMIP5 effective feedback values estimated by using year 100 of 1%/yr CO2 ramping simulations as an 4 
analogue for historical warming (Armour, 2017). (b) CMIP5 effective feedback values estimated by using 5 
year 100 of 1%/yr CO2 ramping simulations as an analogue for historical warming with updated estimates 6 
of CO2 radiative forcing (Lewis & Curry, 2018). (c) CMIP6 effective feedback values estimated by 7 
regression over the first 50 years of abrupt CO2 quadrupling (abrupt4xCO2) simulations as an analogue 8 
for historical warming with updated estimates of CO2 radiative forcing (Dong et al., submitted). (d) 9 
Effective radiative feedbacks estimated from atmospheric GCMs with prescribed observed sea-surface 10 
temperature and sea-ice concentration changes (Andrews et al., 2018) based on linear regression of global 11 
TOA radiation against global near-surface air temperature over the period 1870-2010 (pattern of warming 12 
similar toFigure 7.19a) and compared with equilibrium feedbacks in abrupt4xCO2 simulations of coupled 13 
versions of the same GCMs (pattern of warming similar to Figure 7.19b). The inset shows the effective 14 
radiative feedback estimated from historical global energy budget constraints (Section 7.5.2.1); vertical 15 
bar shows median value, box shows 17 to 83% range, and horizontal line shows 5% to 95% range. In all 16 
cases, the equilibrium feedback magnitudes are estimated as CO2 ERF divided by ECS where ECS is 17 
derived from linear regression over years 1-150 of abrupt4xCO2 simulations (Box 7.1); similar results are 18 
found if the equilibrium feedback is estimated directly from the regression of global TOA radiation 19 
against global near-surface air temperature over years 1-150 of abrupt4xCO2 simulations. 20 

 21 
[END FIGURE 7.20 HERE] 22 
 23 
While there are not yet direct observational constraints on the magnitude of the pattern effect, satellite 24 
measurements of variations in TOA radiative fluxes show strong co-variation with changing patterns of 25 
SSTs, with a strong dependence on SST changes in regions of deep convective ascent (e.g., in the western 26 
Pacific warm pool) (Loeb et al., 2018b; Fueglistaler, 2019). Cloud and TOA radiation responses to observed 27 
warming patterns in atmospheric models have been found to compare favourably with those observed by 28 
satellite (Loeb et al., submitted; Zhou et al., 2016) (Section 7.2.2.1). This observational and modelling 29 
evidence indicates the potential for a strong pattern effect in nature that will only be negligible if the 30 
observed pattern of warming since pre-industrial persists to equilibrium – an improbable scenario given that 31 
Earth is in a relatively early phase of transient warming and that reaching equilibrium would take multiple 32 
millennia (Li et al., 2013a). Moreover, there is medium evidence and high agreement across paleoclimate 33 
proxies, GCM simulations, and process understanding that strong warming in the eastern equatorial Pacific 34 
Ocean and Southern Ocean, largely absent over the historical record, will eventually emerge as the response 35 
to CO2 forcing dominates temperature changes in these regions (Sections 7.4.4.1; 7.4.4.2; Chapter 9, Section 36 
9.2). This leads to medium confidence that the eastern Pacific SSTs will eventually warm by more than the 37 
western Pacific SSTs and high confidence that SSTs in the Southern Ocean will eventually warm by more 38 
than tropical SSTs. Thus, there is high confidence that radiative feedbacks will eventually become less-39 
negative as the pattern of surface warming evolves (α’ > 0 W m–2 °C–1). However, there is substantial 40 
uncertainty in the magnitude of the net radiative feedback change between the present warming pattern and 41 
the projected equilibrium warming pattern in response to CO2 forcing owing to the fact that its quantification 42 
currently relies solely on GCM results and is subject to uncertainties in historical SST patterns. Thus, α’ is 43 
estimated to be in the range 0.0–1.0 W m–2 °C–1 but with a low confidence in the upper end of this range. 44 
Section 7.5.2 assesses the implications of changing radiative feedbacks for estimates of ECS based on the 45 
historical temperature record. 46 
 47 
 48 
7.5 Estimates of ECS and TCR 49 
 50 
Equilibrium Climate Sensitivity (ECS) and Transient Climate Response (TCR) are metrics of the global-51 
mean surface air temperature (GSAT) response to forcing, as defined in Section 7.1; Box 7.1. The ECS is the 52 
magnitude of GSAT increase to a doubling of atmospheric CO2 concentration in equilibrium, whereas the 53 
TCR is the magnitude of GSAT increase when CO2 concentration is doubled in a 1% yr–1 increase scenario. 54 
Both are idealised quantities, but can be inferred from observational records or estimated directly using 55 
climate simulations, and are strongly correlated with the climate response in realistic future projections 56 
(Section 7.5.7). 57 
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 1 
TCR is always smaller than ECS because ocean heat uptake acts to reduce the rate of surface warming. Yet, 2 
TCR is correlated (r=0.8) with ECS across CMIP5 models (Armour, 2017; Grose et al., 2018), as expected 3 
from the fact that TCR and ECS are inherently related measures of climate response to forcing; both depend 4 
on ERF and α. The relationship between TCR and ECS is in reality non-linear and becomes more so if the 5 
ECS values are higher than those spanned by climate models (Knutti et al., 2005; Millar et al., 2015) owing 6 
to ocean heat uptake processes playing a more important role in setting the rate of warming when α is small 7 
(recall that ECS is related to 1/α). 8 
 9 
Until the AR5, the assessment of ECS relied on either CO2-doubling experiments using atmospheric GCMs 10 
coupled with mixed-layer oceans or standardized CO2-quadrupling (abrupt4xCO2) experiments using fully 11 
coupled GCMs. The TCR has similarly been diagnosed from GCMs in which the CO2 concentration is 12 
increased at 1% yr–1 (1%CO2, an approximately linear increase in ERF over time) and defined as the average 13 
over a 20-year period centred at the time of atmospheric CO2 doubling, i.e., year 70. In the AR6, the 14 
assessments of ECS and TCR are made extensively based on multiple lines of evidence, with some 15 
information still from GCMs. The constraints on these climate metrics are based on radiative forcing and 16 
climate feedbacks assessed from process understanding (Section 7.5.1), climate change and variability seen 17 
within the instrumental record (Section 7.5.2), paleoclimate evidence (Section 7.5.3), emergent constraints 18 
(Section 7.5.4), and a synthesis of all lines of evidence (Section 7.5.5). In the AR5, these lines of evidence 19 
were not explicitly combined in the assessment of climate sensitivity, but as demonstrated by Sherwood et al. 20 
(submitted) their combination narrows the uncertainty ranges of ECS (and hence TCR) compared to the 21 
AR5. Estimates of ECS from CMIP6 models, some of which exhibit values higher than 4.5 °C (Meehl et al., 22 
submitted), are discussed in relation to the AR6 assessment (Section 7.5.6). 23 
 24 
 25 
7.5.1 Process-based estimates 26 
 27 
This section assesses the estimates of ECS and TCR based on process understanding of the ERF to a 28 
doubling of CO2 concentration and the net climate feedback (Sections 7.3.2 and 7.4.2). Those estimates are 29 
used to assess ECS in Section 7.5.1.1, and then the process-based ECS assessment is transferred to TCR in 30 
Section 7.5.1.2.  31 
 32 
 33 
7.5.1.1 ECS using process-based assessments of the forcing and feedbacks 34 
 35 
The process-based assessment is based on the global energy budget equation (Box 7.1, Equation 7.1), where 36 
the ERF (F) is replaced with the effective radiative forcing due to a doubling of CO2 concentration (denoted 37 
as 𝐹ଶ×େଶand the climate state reaches a new equilibrium, i.e., Earth’s energy imbalance, N = 0. ECS is 38 
calculated as the ratio between the effective radiative forcing and the net climate feedback parameter, 39 
–𝐹ଶ×େଶ/α. Estimates of 𝐹ଶ×େଶ and α are obtained separately based on understanding of the key 40 
processes that determine each of these quantities. Specifically, 𝐹ଶ×େଶis estimated based on the SARF that 41 
can be accurately obtained using line-by-line calculations, to which uncertainty due to adjustments are added 42 
(Section 7.3.2). The range of α is derived by aggregating estimates of individual climate feedbacks based not 43 
only on GCMs but also on theory, observations, and high-resolution process modelling (Section 7.4.2).  44 
 45 
In Section 7.3.2.1, the 𝐹ଶ×େଶ was assessed to be 𝐹ଶ×େଶ= 4.0 ± 0.5 W m–2, while the net feedback 46 
parameter was assessed to be α = –1.25 ± 0.37 W m–2 °C–1 (Section 7.4.2.7, Table 7.9). These values are 47 
naturally different from those directly calculated from GCMs because of different approaches to assess them 48 
as explained above. Assuming that each of these two parameters follow an independent normal distribution, 49 
the uncertainty range of ECS can be obtained by substituting the respective probability density function into 50 
the expression of ECS (Figure 7.21). Since α is in the denominator, the normal distribution leads to a long 51 
tail in ECS toward high values, indicating the large impact of uncertainty in α in estimating the likelihood of 52 
a high ECS (Roe and Baker, 2007; Knutti and Hegerl, 2008). Using the values of ∆𝐹ଶ×େଶ and α assessed in 53 
Sections 7.3.2.1 and 7.4.2.6, the ECS is assessed to have a median value of 3.2 °C with a likely range of 2.4–54 
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4.6 °C and very likely range of 2.0–6.4 °C. To this assessed range of ECS, the contribution of uncertainty in 1 
α is approximately three times as large as the contribution of uncertainty in ∆𝐹ଶ×େଶ. Using the process-2 
based estimates here, the lower bound of the ECS is revised to a higher value than AR5, but the possibility of 3 
high ECS remains unchanged. 4 
 5 
The wide range of the process-based ECS is not due solely to different estimates of ∆𝐹ଶ×େଶ and α, but is 6 
partly explained by the assumption that ∆𝐹ଶ×େଶ and α are independent in this approach. In CMIP5 and 7 
CMIP6 ensembles, ∆𝐹ଶ×େଶ and α are negatively correlated when they are calculated using the linear 8 
regression to abrupt4xCO2 simulations (r2 = 0.34) (Andrews et al., 2012; Webb et al., 2013; Zelinka et al., 9 
2020). The negative correlation leads to compensation between the inter-model spreads of these quantities, 10 
thereby reducing the ECS range estimated directly from the models. If the process-based ECS distribution is 11 
reconstructed from probability distributions of ∆𝐹ଶ×େଶ and α assuming that they are not correlated, the 12 
range of ECS will be narrower by 14%. If, however, the covariance between∆𝐹ଶ×େଶ and α is not adopted, 13 
there is no change in the mean, but the wide range still applies (pink curve in Figure 7.21). 14 
 15 
A significant correlation between ∆𝐹ଶ×େଶ and α also occurs when the two parameters are estimated 16 
separately from AGCM experiments with prescribed SST or CO2 concentration. Hence the relationship is not 17 
expected to be an artefact of calculating them using the single linear regression in abrupt4xCO2 simulations. 18 
A possible physical cause may be a compensation between the cloud adjustment and the cloud feedback over 19 
the tropical oceans (Ringer et al., 2014; Chung and Soden, 2018). It has been shown that the change in the 20 
hydrological cycle is a controlling factor for the low-cloud adjustment (Dinh and Fueglistaler, 2019) and for 21 
the low-cloud feedback (Watanabe et al., 2018), and therefore the responses of these clouds to the direct CO2 22 
radiative forcing and to the surface warming may not be independent. However, the robust physical 23 
mechanisms are not yet clear, and furthermore, the process-based assessment of the tropical low-cloud 24 
feedback does not refer to the GCMs given that physical processes which control the low clouds are not 25 
sufficiently well-simulated in models (Section 7.4.2.5). For these reasons, the co-dependency between 26 
∆𝐹ଶ×େଶ and α is assessed to have low confidence and, therefore, the more conservative assumption that they 27 
are independent for the process-based assessment of ECS is retained. 28 
 29 
 30 
[START FIGURE 7.21 HERE] 31 
 32 
Figure 7.21: Probability distributions of ERF to CO2 doubling (∆𝐹ଶ×େଶ, top) and the total climate feedback (α, right), 33 

derived from process-based assessments in Sections 7.3.2 and 7.4.2. Middle panel shows the joint PDF 34 
calculated on a two-dimensional plane of ∆𝐹ଶ×େଶ and α (red), on which the 90% range shown by an 35 
ellipse is imposed to the background theoretical values of ECS (colour shading). The white dot, thick and 36 
thin curves in the ellipse represent the mean, likely and very likely range of ECS. An alternative 37 
estimation of the ECS range (pink) is calculated by assuming that ∆𝐹ଶ×େଶ and α have a covariance. The 38 
assumption about the co-dependence between ∆𝐹ଶ×େଶ and α does not alter the mean estimate of ECS but 39 
affects its uncertainty. 40 

 41 
[END FIGURE 7.21 HERE] 42 
 43 
 44 
7.5.1.2 Emulating process-based ECS to TCR 45 
 46 
In the previous section, ECS was estimated using the effective radiative forcing due to a doubling of CO2 47 
concentration and the net climate feedback parameter as: ECS = –𝐹ଶ×େଶ/α. This section describes how 48 
these estimates of ECS can be translated into the TCR in order to provide consistent information on both 49 
metrics of climate sensitivity. Here a two-layer energy balance model (EBM) is used to transfer the process-50 
based assessment of forcing, feedback, pattern-effects and heat uptake to TCR. The EBM (Appendix 7.A.2), 51 
a type of physical emulator (Cross-Chapter Box 7.1;Chapter 4, Box 4.1), is an extension of the energy 52 
budget equation (Equation 7.1) and allows for heat exchange between the upper- and deep oceans, 53 
mimicking the ocean heat uptake that reduces the rate of surface warming under radiative forcing (Armour, 54 
2017; Gregory, 2000; Held et al., 2010; Mauritsen and Pincus, 2017; Rohrschneider et al., 2019). The use of 55 
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the two-layer EBM is advantageous as it is transparent in terms of processes that connect ECS to TCR. With 1 
a suitable choice of parameters, the model can reproduce well the transient surface temperature evolution in 2 
GCMs under 1%CO2 simulations and other climate change scenarios, despite the very low degrees of 3 
freedom (Held et al., 2010; Geoffroy et al., 2012, 2013a; Palmer et al., 2018).  4 
 5 
In the two-layer EBM, additional parameters are introduced: heat capacities of the upper and deep oceans, 6 
heat uptake coefficient (κ), and the so-called efficacy parameter (ε) that represents the dependence of 7 
radiative feedbacks and heat uptake on the evolving SST pattern under CO2 forcing alone (Section 7.4.3). In 8 
the real world, natural internal variability and aerosol radiative forcing also affect the efficacy parameter, but 9 
these effects are excluded for the current discussion and returned to later.  10 
 11 
The analytical solution of the EBM reveals that the surface temperature change to abrupt increase of the 12 
atmospheric CO2 concentration is expressed by a combination of fast and slow responses having time scales 13 
of several years and centuries. They represent the fast adjustment of the surface components of the climate 14 
system and slow response of the deep ocean, respectively (grey curves in Figure 7.22). The equilibrium 15 
response of upper ocean temperature, approximating SST and hence the surface air temperature response, 16 
depends, by definition, only on the radiative forcing and the climate feedback parameter. In CMIP5 models, 17 
uncertainty in α dominates (80–90%) the corresponding uncertainty range for ECS. For the range of TCR, 18 
the contribution from uncertainty in α is reduced to 50–60% while uncertainty in 𝐹ଶ×େଶ becomes 19 
relatively more important (Geoffroy et al., 2013b). TCR reflects the fast response occurring approximately 20 
during the first 20 years in the abrupt4xCO2 simulation (Held et al., 2010), but the fast response is not 21 
independent of the slow response because there is a nonlinear co-dependence between them (Andrews et al., 22 
2015). The nonlinearity between ECS and TCR is sometimes approximated asTCR~√ECS (Meehl et al., 23 
submitted), which indicates that the probability of high TCR is not very sensitive to changes in the 24 
probability of high ECS. 25 
 26 
Considering an idealized time evolution of ERF assessed in Section 7.3.2.1 (1% increase by the time of 27 
doubling CO2 and held fixed afterwards, see Figure 7.22a), the TCR defined by the surface temperature 28 
response at the year 70 is derived by substituting the process-based ECS into the analytical solution of the 29 
EBM (Figure 7.22b, see also Appendix 7.A.2). When additional parameters in the two-layer EBM are 30 
prescribed by using CMIP5 multi-model mean values of those estimates, this calculation straightforwardly 31 
emulates the range of ECS in Section 7.5.2.1 to the range of TCR, between 1.5 and 2.2 °C. The transient 32 
temperature response, in reality, varies with different estimates of the ocean heat uptake efficiency. A fitting 33 
of the two-layer EBM to the transient responses in CMIP5 models shows that uncertainty in heat capacities 34 
is negligible and differences in κ and ε explain 10–20% of the inter-model spread of TCR among GCMs 35 
(Geoffroy et al., 2013b). Specifically, their product, κε, appearing in a simplified form of the solution, i.e., 36 
TCR ≅ −∆𝐹ଶ×େଶ/(α + κε), gives a single parameter quantifying the damping effects of heat uptake 37 
(Jiménez-de-la-Cuesta and Mauritsen 2019). The ocean heat uptake in nature is controlled by multiple 38 
processes associated with advection and mixing (Exarchou et al., 2014; Kostov et al., 2014; Kuhlbrodt et al., 39 
2015) but is crudely represented by a single term of heat exchange between the upper- and deep-oceans in 40 
the two-layer EBM. Therefore, it is challenging to constrain κ and ε from observations (Section 7.5.2). 41 
Because the estimated values are only weakly correlated across models, the mean value and one standard 42 
deviation of κε are calculated as κε = 0.86 ± 0.29 W m–2°C–1 by ignoring their covariance (the mean value is 43 
very similar to that used for Box 4.1, Figure 1). By incorporating this inter-model spread in κε, the range of 44 
TCR is widened by about 10% (blue bar in Figure 7.22b). Yet, the dominant contribution to the uncertainty 45 
range of TCR arises from the net climate feedback parameter α, and the previous assessment stating that 46 
uncertainty in ocean heat uptake is of secondary importance remains unchanged.  47 
 48 
In summary, the process-based estimate of TCR is assessed to have the central value of 1.9°C with the likely 49 
range of 1.5–2.4°C and the very likely range of 1.2–2.7°C (high confidence). The upper bound of the 50 
assessed range was slightly reduced from the AR5 but can be further constrained using multiple lines of 51 
evidence (Section 7.5.5).  52 
 53 
 54 
 55 
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[START FIGURE 7.22 HERE] 1 
 2 

Figure 7.22: (a) Time evolution of the effective radiative forcing (ERF) to the CO2 concentration increased by 1% per 3 
year until the year 70 (equal to the doubling, grey line) and kept fixed afterword. The range of ERF has 4 
been assessed in Section 7.3.2.1. (b) Range of surface temperature response to the CO2 forcing in the 5 
two-layer EBM calculated with a given range of ECS, considering uncertainty in ∆𝐹ଶ×େଶ,α and an 6 
additional parameter associated with the ocean heat uptake and efficacy (shaded by blue and cyan). For 7 
comparison, the step response to abrupt doubling of the CO2 concentration is displayed by a grey curve. 8 
The mean and ranges of ECS and TCR are shown at the right (the values of TCR also presented in the 9 
panel). 10 

 11 
[END FIGURE 7.22 HERE] 12 
 13 
 14 
7.5.2 Estimates based on the historical temperature record 15 
 16 
This section assesses the estimates of TCR and ECS based on the instrumental record of climate change and 17 
variability with an emphasis on new evidence since AR5. Section 7.5.2.1 considers estimates based on the 18 
global energy budget. Section 7.5.2.2 considers estimates based on the use of simple climate models 19 
evaluated against the historical temperature record. Section 7.5.2.3 considers estimates based on internal 20 
variability in global temperature and TOA radiation. Section 7.5.2.4 provides an overall assessment of TCR 21 
and ECS based on the historical temperature record. 22 
 23 
 24 
7.5.2.1 Estimates based on the global energy budget 25 
 26 
Warming since the pre-industrial period is measured to be around 1°C with small uncertainty (Chapter 2, 27 
Section 2.2). Together with estimates of Earth’s energy imbalance (Section 7.2) and the global ERF that has 28 
driven the observed warming (Section 7.3), the instrumental temperature record enables global energy 29 
budget estimates to be used to make estimates of ECS and TCR. While energy budget estimates use 30 
instrumental data, they are not based purely on observations. A conceptual model typically based on the 31 
global-mean energy budget is needed to relate ECS and TCR to the estimates of global warming, ERF and 32 
energy imbalance (Forster, 2016; Knutti et al., 2017).  Moreover, GCM simulations partly inform estimates 33 
of the historical ERF (Section 7.3) as well as the global energy imbalance in the pre-industrial climate (the 34 
period against which changes are measured) (Forster, 2016; Lewis and Curry, 2018). GCMs are also used to 35 
estimate uncertainty due the internal climate variability that may have contributed to observed changes in 36 
temperature and energy imbalance (e.g. Palmer and McNeall, 2014). Research since the AR5 has shown that 37 
the global-mean energy budget that is traditionally used produces values of ECS that are biased low for 38 
several reasons, primarily because it does not account for the dependence of radiative feedbacks on the 39 
spatial pattern of surface warming (Section 7.4.4.3) and because of improvements in the estimation of global 40 
mean surface temperature trends which take better account of data-sparse regions and are more consistent in 41 
their treatment of surface temperature data (Chapter 2, Section 2.3.1).  42 
 43 
The traditional global-mean energy balance framework employed for global energy budget estimates 44 
(Gregory et al., 2002) (Section 7.4.1; Box 7.1) relates the difference between the ERF (ΔF) and the radiative 45 
response to observed global warming (αΔT) to the global energy imbalance (ΔN): ΔN = αΔT + ΔF, where α 46 
represents the net global radiative feedback parameter (units of W m–2 °C–1). Given the relationship ECS = 47 
ΔF2×CO2/(–α), where ΔF2×CO2 is the ERF from CO2 doubling, ECS can be estimated from historical estimates 48 
of ΔT, ΔF, ΔN and ΔF2×CO2: ECS = ΔF2×CO2 ΔT/(ΔF – ΔN). Since TCR is defined as the temperature change 49 
at the time of CO2 doubling under an idealized 1% yr–1 CO2 increase, it can be inferred from the historical 50 
record as: TCR = ΔF2×CO2 ΔT/ΔF, under the assumption that radiative forcing increases quickly compared to 51 
the adjustment timescales of the deep ocean, but slowly enough and over sufficiently long time that the upper 52 
ocean is adjusted, so that ΔT and ΔN increases approximately in proportion to ΔF. Because ΔN is positive, 53 
TCR is always smaller than ECS, reflecting weaker transient warming than equilibrium warming. TCR is 54 
better constrained than ECS owing to the fact that the denominator of TCR, without the quantity ΔN, is more 55 
certain and further from zero than is the denominator of ECS. The upper bounds of both TCR and ECS 56 
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estimated from historical warming are inherently less certain than their lower bounds because ΔF is uncertain 1 
and in the denominator. 2 
 3 
The traditional global-mean energy balance framework lacks a representation of the radiative feedback 4 
dependence on the spatial pattern of warming. Studies that employ this model framework to infer ECS 5 
(Forster, 2016; Lewis and Curry, 2018) thus implicitly assume that radiative feedbacks will remain constant 6 
between the period of historical transient warming and the equilibrium response to CO2 forcing. However, as 7 
summarized in Section 7.4.4.3, there are now multiple lines of evidence suggesting that radiative feedbacks 8 
will become less negative as the warming pattern evolves in the future (the pattern effect). Extensions to the 9 
traditional energy balance framework can be made to capture the pattern effect by allowing for multiple 10 
radiative feedbacks operating on different timescales (Armour et al., 2013; Geoffroy et al., 2013a; Armour, 11 
2017; Proistosescu and Huybers, 2017; Goodwin, 2018; Rohrschneider et al., 2019), by allowing feedbacks 12 
to vary with the spatial pattern or magnitude of ocean heat uptake (Rose et al., 2014; Rugenstein et al., 13 
2016a), or by allowing feedbacks to vary with the type of radiative forcing agent (Kummer and Dessler, 14 
2014; Shindell, 2014; Marvel et al., 2016). However, a direct way to account for the pattern effect is to use 15 
the relationship ECS = ΔF2×CO2/(-α + α’), where α = (ΔN – ΔF)/ΔT is the effective radiative feedback 16 
estimated from historical global energy budget changes and α’ represents the change in the radiative 17 
feedback parameter between the historical period and the equilibrium response to CO2 forcing, which can be 18 
estimated using GCMs (Andrews et al., 2018; Armour, 2017; Dong et al., submitted; Lewis and Curry, 2018) 19 
(Section 7.4.4.3). There is high confidence that radiative feedbacks will become less-negative in the future 20 
(α’ > 0) owing to the fact that historical warming has shown relatively more warming in key negative 21 
feedback regions (e.g., western tropical Pacific Ocean) and less warming in key positive feedback regions 22 
(eastern tropical Pacific Ocean and Southern Ocean) than is projected in the near-equilibrium response to 23 
abrupt4xCO2 (Section 7.4.4.3) (Held et al., 2010; Proistosescu and Huybers, 2017), implying that the true 24 
ECS will be larger than the effective ECS inferred from historical warming. An alternative approach 25 
estimates feedback changes in response to CO2 forcing alone in terms of the ocean heat uptake efficacy (see 26 
Section 7.5.1.2). 27 
 28 
Energy budget estimates of TCR and ECS have evolved in the literature over recent decades. Prior to the 29 
AR5, the global energy budget provided relatively weak constraints, primarily due to large uncertainty in the 30 
tropospheric aerosol forcing, giving ranges of ECS that typically included values above 10°C (Forster, 2016; 31 
Knutti et al., 2017). Revised estimates of aerosol forcing together with a larger greenhouse-gas forcing by 32 
the time of the AR5 led to an estimate of ΔF that was more positive and better constrained relative to the 33 
AR4. Using energy budget estimates and radiative forcing estimates updated to 2009, Otto et al. (2013) 34 
found that TCR was 0.9–2.0°C (5–95% range) with a median (best estimate) value of 1.3°C, and that the 35 
effective ECS was 2.0°C (1.2–3.9°C). Studies since the AR5 using similar methods have produced similar or 36 
slightly narrower ranges for TCR and ECS (Forster, 2016; Knutti et al., 2017).  37 
 38 
Energy budget estimates of TCR and ECS assessed here are based on improved observations and 39 
understanding of global surface temperature trends (Chapter 2, Section 2.3), revised energy imbalance 40 
estimates (Section 7.2), and revised estimates of radiative forcing (Section 7.3). Accurate, in situ-based 41 
estimates of global energy imbalance can be made from around 2006 based on near-global ocean 42 
temperature observations from autonomous profiling floats (Section 7.2). Over the period 2006 to 2018 the 43 
global energy imbalance is estimated to be 0.81 ± 0.14 W m–2 (90% confidence) (Section 7.2). Anomalies 44 
are taken with respect to the baseline period 1850 to 1900, although other baselines could be chosen to avoid 45 
major volcanic activity (Otto et al., 2013; Lewis and Curry, 2018). Several lines of evidence, including GCM 46 
simulations (Lewis and Curry, 2015), energy balance modelling (Armour, 2017), and inferred ocean 47 
warming given observed SSTs using ocean GCMs (Gebbie and Huybers, 2019; Zanna et al., 2019) suggest 48 
that global energy imbalance for 1850 to 1900 was 0.2 ± 0.2 W m–2. Combined with estimates of internal 49 
variability in global energy imbalance within periods of equivalent lengths derived from unforced GCM 50 
simulations (Palmer and McNeall, 2014; Sherwood et al., submitted), the anomalous energy imbalance is 51 
estimated to be ΔN = 0.61 ± 0.3 W m-2. Global near-surface air temperature change between 1850–1900 and 52 
2006–2018 is estimated to be ΔT = 0.99 ± 0.09°C (based on data from Chapter 2, Section 2.3.1; Box 7.2), 53 
accounting for internal variability derived from unforced GCM simulations (Sherwood et al., submitted). The 54 
ERF change between 1850–1900 and 2006–2018 is estimated to be ΔF = 1.97 ± 0.61 W m–2 and the ERF 55 
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from CO2 is estimated to be ΔF2×CO2 = 4.0 ± 0.5 W m–2 (Section 7.3.2), and correlated uncertainties between 1 
ΔF and ΔF2×CO2 are accounted for. Employing these values within the traditional global-mean energy balance 2 
framework described above (following the methods of Otto et al. (2013)) produces values a TCR of 2.0°C 3 
(1.5–2.9°C; Figure 7.23a). The effective ECS is 2.9°C (1.9–5.6°C; Figure 7.23b). These TCR and effective 4 
ECS ranges are higher than those in the recent literature (Otto et al., 2013; Lewis and Curry, 2015, 2018) but 5 
are comparable to those of Sherwood et al. (submitted) who also used updated estimates of observed 6 
warming, ocean heat uptake, and ERF. 7 
 8 
An important part of the upwards revision of the effective ECS inferred from energy budget studies is the use 9 
of global coverage near-surface air temperature indicators to estimate the surface temperature trends. Most 10 
studies have relied on HadCRUT4 global warming estimates that had incomplete coverage of some regions, 11 
especially the Arctic, and also blended near-surface air temperature observations with temperatures 12 
measured below the surface of the oceans. The HadCRUT4 historical trends are around 16% smaller than 13 
estimates of global surface air temperature warming and as a result ECS and TCR derived from these have  14 
similarly smaller ECS and TCR values (Richardson et al., 2016, 2018a). These surface warming trends are 15 
discussed in Chapter 2, Cross Chapter Box 2.3 but it is important to note here that for a like-to-like 16 
comparison with ECS and TCR estimates derived from models it is necessary to make sure that the same 17 
measure of global surface temperature trends is used. The energy budget studies assessing ECS in the AR5 18 
employed HadCRUT4 or similar measures of surface warming trends. Other lines of evidence assumed 19 
global surface air temperature trends, meaning that AR5-based energy budget estimates of ECS were about 20 
16% lower than other lines of evidence adding to the overall disparity (Collins et al., 2013a).  In this report, 21 
GSAT is chosen as the standard measure of global warming to aid comparison with previous model and 22 
process-based estimates of ECS, TCR and climate feedbacks (see Box 7.1, Cross Chapter Box 2.3). 23 
 24 
 25 
[START FIGURE 7.23 HERE] 26 
 27 
Figure 7.23: (a) Transient climate response (TCR) estimated from global energy budget constraints for the period 28 

2006–2018 relative to 1850–1900; horizontal bar shows median value, box shows 17 to 83% range, and 29 
vertical line shows 5% to 95% range. (b) Effective equilibrium climate sensitivity (ECS) estimated from 30 
global energy budget constraints for the period 2006–2018 relative to 1850–1900 (blue) and ECS 31 
accounting for the pattern effect (orange) (Section 7.4.4.3) based on feedback changes derived from 32 
coupled GCM simulations (middle, using α’ = +0.1 ± 0.3 W m–2 °C–1) or from feedback changes 33 
assessed from multiple lines of evidence including GCM simulations with prescribed historical sea-34 
surface temperature and sea-ice concentrations (right, using α’ = +0.5 ± 0.5 W m–2 °C–1). (c) Relationship 35 
between effective ECS (blue) and actual ECS (orange) in CMIP5 and CMIP6 GCMs where the effective 36 
ECS is derived from coupled GCM simulations ('CMIP5 GCMs' Armour, 2017; 'CMIP6 GCMs' Dong et 37 
al., submitted; 'CMIP5 GCMs with updated CO2 ERF' Lewis & Curry, 2018) or from GCM simulations 38 
with prescribed historical sea-surface temperature and sea-ice concentrations ('GCMs with observed 39 
warming pattern' Andrews et al., 2018). The actual ECS in models is estimated from simulations of 40 
abrupt CO2 quadrupling (Box 7.1). 41 

 42 
[END FIGURE 7.23 HERE] 43 
 44 
 45 
As summarized in Section 7.4.4.3, net radiative feedback change between the present warming pattern and 46 
the projected equilibrium warming pattern in response to CO2 forcing (α’) is estimated to be in the range 47 
0.0–1.0 W m–2 °C–1 (Figure 7.18) based on atmospheric GCMs driven by observed SST patterns (Andrews et 48 
al., 2018; Lewis and Mauritsen, submitted), but with a low confidence in the upper end of this range. Using 49 
the value α’ = 0.5 ± 0.5 W m–2 °C –1 to represent this range illustrates the impact of changing radiative 50 
feedbacks on estimates of ECS. While the effective ECS inferred from historical warming lies in the range 51 
1.9–5.6°C with a median value of 2.9°C, ECS = ΔF2×CO2/(-α + α’) lies in the range 1.9–19.7°C with a median 52 
value of 4.3°C (Figure 7.23b). For comparison, values of α’ derived from idealized CO2 forcing simulations 53 
of coupled climate models (Andrews et al., 2019; Armour, 2017; Dong et al., submitted; Lewis and Curry, 54 
2018) can be approximated as α’ = 0.1 ± 0.3 W m–2 °C–1 (5% to 95% range) (Section 7.4.4.3), corresponding 55 
to a value of ECS that lies in the range 1.9–7.2°C with a median value of 3.1°C (Figure 7.23b). In both cases, 56 
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the low end of the ECS range is similar to that of the effective ECS inferred using the traditional energy 1 
balance model framework that assumes α’ = 0, reflecting a weak dependence on the value of α’ when ECS is 2 
small (Armour, 2017; Andrews et al., 2018). However, the high end of the ECS range is substantially larger 3 
than that of the effective ECS and strongly dependent on the value of α’. 4 
 5 
The values of ECS obtained from the techniques outlined above are all higher than those estimated from both 6 
the AR5 and recently published estimates (Collins et al., 2013a; Otto et al., 2013; Lewis and Curry, 2015, 7 
2018; Forster, 2016). Four revisions made in this report are responsible for this increase: (1) An upwards 8 
revision of historic surface temperature trends from the adoption of GSAT measure and newly published 9 
trend data (Chapter 2, Section 2.3); (2) An 8% increase in the ERF for ΔF2×CO2 (Section 7.3.2); (3) A 22% 10 
more-negative best estimate of aerosol ERF, which acts to reduce estimates of historic ERF trends; and iv) 11 
Accounting for the pattern effect on the net feedback parameter α. The combined effect of all these revisions 12 
has yet to be tested in the published literature and leads to a cautious assessment at this stage. 13 
 14 
Overall, there is high confidence ECS is higher than that inferred from the historical global energy budget, 15 
but there is substantial uncertainty in how much higher because there is substantial uncertainty in how 16 
radiative feedbacks will change in the future. The accuracy of the estimated values of α’ hinges on the 17 
accuracy of projected changes in the warming pattern under CO2 forcing and on the radiative response to 18 
those warming patterns within GCMs. While several lines of evidence indicate that α’ > 0, the quantitative 19 
accuracy of feedback changes is not known at this time (Section 7.4.4.3): GCMs produce a wide range of 20 
results for α’ (Figure 7.20) and there are currently no direct observational constraints on its value. Global 21 
energy budget constraints thus provide very high confidence in the lower bound of ECS which is not 22 
sensitive to the value of α’: it is extremely unlikely to be less than 1.9°C. Estimates of α’ that are informed by 23 
idealized CO2 forcing simulations of coupled GCMs (Andrews et al., 2019; Armour, 2017; Dong et al., 24 
submitted; Lewis and Curry, 2018) indicate a median value of ECS of around 3°C while estimates of α’ that 25 
are informed by observed historical warming patterns (Andrews et al., 2018) indicate a median value of ECS 26 
of around 4°C. Owing to large uncertainties in future feedback changes, the historical energy budget 27 
currently provides little information about the upper bound of ECS.  28 
 29 
 30 
7.5.2.2 Estimates based on simple climate models 31 
 32 
Simple climate models (SCMs) are more complex than global-average energy balance models but far less 33 
complex than comprehensive GCMs (see Chapter 1, Section 1.5 Table 1.3 and Cross-Chapter Box 7.1). The 34 
numerical efficiency of such SCMs means that they can be empirically constrained by observations: a large 35 
number of possible parameter values (e.g., radiative feedback parameter, aerosol radiative forcing and ocean 36 
diffusivity) are randomly drawn from prior distributions; forward integrations of the model are performed 37 
with these parameters and weighted against observations of surface or ocean warming, producing posterior 38 
estimates of quantities of interest such as TCR, ECS and aerosol forcing (see Section 7.3). 39 
 40 
Improved estimates of ocean heat uptake over the past two decades (Section 7.2) have diminished the role of 41 
ocean diffusivity in driving uncertainty in ECS, leaving the main trade-off between posterior ranges in ECS 42 
and aerosol radiative forcing (Forest, 2002; Knutti et al., 2002; Frame et al., 2005). The AR5 (Bindoff et al., 43 
2013) assessed a variety of estimates of ECS based on SCMs and found that they were sensitive to the choice 44 
of prior parameter distributions and temperature datasets used, particularly for the upper end of the ECS 45 
range, though priors can be chosen to minimize the impact on results (e.g., Lewis, 2013). SCMs generally 46 
produced estimates of ECS between 1°C and 5°C and ranges of TCR between 0.9°C and 2.6°C. Padilla et al. 47 
(2011) use a simple global-average model with two timescales (see Section 7.5.2) to derive observationally-48 
constrained estimate of TCR to be 1.6°C (1.3–2.6°C). Using the same model, Schwartz (2012) finds TCR in 49 
the range 0.9–1.9°C while Schwartz (2018) finds an ECS of 1.7°C provides the best fit to the historical 50 
surface temperature record while also finding a median aerosol forcing that is smaller than that assessed in 51 
Section 7.3. Using an 8-box representation of the atmosphere–ocean–terrestrial system constrained by 52 
historical warming, Goodwin (2016) found ECS to be 2.4°C (1.4–4.4°C) while Goodwin (2018) found ECS 53 
to be in the range 2–4.3°C when using a prior for ECS based on paleoclimate constraints. 54 
 55 
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Using a SCM comprised of northern and southern hemispheres and an upwelling-diffusive ocean (Aldrin et 1 
al., 2012), with surface temperature and OHC datasets updated to 2014, Skeie et al. (2018) estimate a TCR 2 
of 1.4°C (0.9–2.0°C) and infer ECS of 1.9°C (1.2°C–3.1°C). The median estimate of ECS increases to 2.9°C 3 
if the model is not constrained by the depth profile of ocean warming, suggesting that the results depend on 4 
the details of vertical heat transport in the ocean. Using a similar SCM comprised of land and ocean regions 5 
and an upwelling-diffusive ocean, with surface temperature and OHC datasets through 2011, Johansson et al. 6 
(2015) infer an ECS of 2.5°C (2.0–3.2°C). The estimate is found to be sensitive to the choice of dataset 7 
endpoint and the representation of internal variability meant to capture the El Niño–Southern Oscillation. 8 
Differences between these two studies arise, in part, from their different surface temperature and OHC 9 
datasets, different radiative forcing uncertainty ranges, different priors for model parameters, and different 10 
representations of internal variability. This leads to different estimates of ECS, with the median estimate of 11 
Skeie et al. (2018) lying below the 5% to 95% range of ECS from Johansson et al. (2015). Neither of these 12 
studies account for the bias introduced by blending SST and near-surface air temperature data or spatial 13 
coverage effects (Richardson et al., 2016, 2018a), suggesting that their derived values of TCR and ECS may 14 
be biased low. The Skeie et al. (2018) SCM has a constant value of the radiative feedback parameter, and 15 
thus should be compared to values of effective ECS inferred from global energy budget constraints (Section 16 
7.5.3.2) that do not account for feedback changes with warming pattern (Skeie et al., 2018). The Johansson 17 
et al. (2015) SCM allows distinct radiative feedbacks for land and ocean, contributing to the different results 18 
and making it unclear whether it can be compared directly with ECS values from global energy budget 19 
constraints. 20 
 21 
The median estimates of effective ECS inferred from SCM studies generally lie within the 5% to 95% range 22 
of the effective ECS inferred from historical global energy budget constraints (1.9–5.6°C), which is 23 
consistent with higher values of ECS when accounting for changes in radiative feedbacks as the spatial 24 
pattern of warming evolves in the future (Section 7.5.2.1). 25 
 26 
 27 
7.5.2.3 Estimates based on climate variability 28 
 29 
Continuous satellite measurements of TOA radiation fluxes, available since 2000, are now long enough to 30 
study inter-annual variations in the global energy budget (Figure 7.4). Although the measurements do not 31 
have sufficient accuracy to determine the absolute global energy imbalance (Section 7.2.1), they provide 32 
accurate estimates of its variations and trends since the year 2002 that agree well with estimates based on 33 
observed changes in global OHC (Loeb et al., 2012; Johnson et al., 2016). When combined with global 34 
surface temperature observations and simple models of global energy balance, satellite measurements of 35 
TOA radiation afford estimates of the radiative feedback parameter associated with recent climate variability 36 
(Tsushima and Manabe, 2013; Donohoe et al., 2014a; Dessler and Forster, 2018). These feedback estimates, 37 
derived from the regression of TOA radiation on surface temperature variability, imply values of ECS that 38 
are broadly consistent with those from other lines of evidence (Forster, 2016; Knutti et al., 2017) (Figure 39 
7.23). A history of regression-based feedbacks and their uncertainties is summarized in the AR5 in Bindoff 40 
et al. (2013).  41 
 42 
Since the AR5, it has been noted that regression-based feedback estimates depend on whether annual- or 43 
monthly-mean data are used and on the choice of lag employed in the regression, complicating their 44 
interpretation (Forster, 2016). The observed lead-lag relationship between global TOA radiation and surface 45 
temperature, and its dependence on sampling period, is well replicated within unforced simulations of GCMs 46 
(Dessler, 2011; Proistosescu et al., 2018). These features arise because the regression between global TOA 47 
radiation and surface temperature reflects a blend of different radiative feedback processes associated with 48 
several distinct modes of variability acting on different time scales, such as monthly atmospheric variability 49 
and inter-annual El Niño–Southern Oscillation (ENSO) variability (Lutsko and Takahashi, 2018; 50 
Proistosescu et al., 2018). It thus appears that regression-based feedbacks provide estimates of the radiative 51 
feedbacks that are associated with internal climate variability, and thus do not provide a direct estimate of 52 
ECS. Moreover, variations in global surface temperature that do not directly affect TOA radiation may lead 53 
to a positive bias in regression-based feedback, although this bias appears to be small, particularly when 54 
annual-mean data are used (Murphy and Forster, 2010; Spencer and Braswell, 2010, 2011; Proistosescu et 55 
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al., 2018). When tested within GCMs, regression-based feedbacks have been found to be weakly correlated 1 
with values of ECS (Chung et al., 2010), although cloudy-sky TOA radiation fluxes have been found to be 2 
moderately correlated with ECS at ENSO timescales within CMIP5 models (Lutsko and Takahashi, 2018).  3 
 4 
Finding such correlations within models requires simulations that span multiple centuries, suggesting that the 5 
satellite record may not be of sufficient length to produce robust feedback estimates. However, correlations 6 
between regression-based feedbacks and long-term feedbacks have been found to be higher when focused on 7 
specific processes or regions, such as for cloud or the water vapour feedback (Dessler, 2013; Zhou et al., 8 
2015; Section 7.4.2). Assessing the global radiative feedback in terms of the more stable relationship 9 
between tropospheric temperature and TOA radiation offers another potential avenue for constraining ECS, 10 
suggesting that CMIP5 GCMs with ECS values between 2.0°C and 3.9°C are within uncertainties based on 11 
satellite measurements (Dessler et al., 2018). The so-called ‘emergent constraints’ on ECS based on climate 12 
variability are summarized in Section 7.5.4.1. 13 
 14 
A number of studies consider the observed climate response to volcanic eruptions over the 20th century 15 
(Knutti et al., 2017). However, the constraint on ECS is weak, particularly at the high end, because the 16 
temperature response to short-term forcing depends only weakly on radiative feedbacks and because it can 17 
take decades of a sustained forcing before the magnitude of temperature changes reflects differences in ECS 18 
across models (Geoffroy et al., 2013b; Merlis et al., 2014). Based on the results of GCM simulations, 19 
radiative feedbacks governing the global temperature response to volcanic eruptions are likely different than 20 
those governing long-term global warming (Merlis et al., 2014; Marvel et al., 2016). It is also a challenge to 21 
separate the response to volcanic eruptions from internal climate variability in the years that follow them 22 
(Wigley et al., 2005). Estimates based on the response to volcanic eruptions agree with other lines of 23 
evidence (Knutti et al., 2017), but likely do not constitute a direct constraint on ECS. 24 
 25 
 26 
7.5.2.4 Assessment of TCR and ECS based on the historical temperature record 27 
 28 
Evidence from the historical temperature record, including estimates using global energy budget changes, 29 
simple climate models, and internal climate variability, produce median ECS estimates that range between 30 
3°C and 4°C, but a best estimate value cannot be given owing to a strong dependence on assumptions about 31 
how radiative feedbacks will change in the future. However, there is robust evidence and high agreement 32 
leading to very high confidence that ECS is extremely likely greater than 1.9°C. There is robust evidence and 33 
medium agreement that ECS is likely greater than 2.6°C (high confidence). Historical global energy budget 34 
changes do not provide constraints on the upper bound of ECS, while estimates based on climate variability 35 
are generally consistent with an ECS around 3°C but provide low confidence in its value owing to limited 36 
evidence.  37 
 38 
Global energy budget constraints indicate a best estimate (median) value of TCR of 2.0°C (high confidence). 39 
There is high confidence that TCR is likely in the range 1.7°C to 2.4°C and very likely in the range 1.5°C to 40 
2.9°C. Studies that constrain TCR based on the instrumental temperature record used in conjunction with 41 
GCM simulations are summarized in Section 7.5.4.3. 42 
 43 
 44 
7.5.3 Estimates based on paleoclimates 45 
 46 
Evidence from paleoclimate data can provide information regarding ECS that is complementary to, and 47 
largely independent from, estimates based on process-based studies (Section 7.5.1), and the historical record 48 
(Section 7.5.2). The strengths of using the paleoclimate record to estimate climate sensitivity include: (1) the 49 
estimates are based on observations of a real-world Earth system response to a forcing, in contrast to using 50 
estimates from process-based modelling studies or directly from models; (2) the forcings are often relatively 51 
large (similar in magnitude to a CO2 doubling or more), in contrast to data from the historical record; (3) the 52 
forcing often changes relatively slowly so the system is close to equilibrium; as such, all individual feedback 53 
parameters, αx, are included, and complications associated with accounting for ocean heat uptake are reduced 54 
or eliminated, in contrast to the historical record.  However, there can be relatively large uncertainties on 55 



Second Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-94 Total pages: 206 

estimates of both the paleo forcing and paleo temperature response.  Furthermore, the state-dependence of 1 
feedbacks (Section 7.4.4) means that climate sensitivity during Earth’s past may not be the same as it is 2 
today, which should be accounted for when interpreting paleoclimate estimates of ECS.  3 
 4 
The AR5 stated that data and modelling of the Last Glacial Maximum (LGM, 21,000 to 19,000 years ago) 5 
indicated that it was very unlikely that ECS lays outside the range 1–6°C (Masson-Delmotte et al., 2013). 6 
Furthermore, the AR5 reported that climate records of the last 65 million years indicated a climate sensitivity 7 
range of 1.1–7.0°C, a range to which they assigned a 95% confidence interval.    8 
 9 
Compared with the AR5, there are now improved constraints on estimates of ECS from paleoclimates. The 10 
strengthened understanding and improved lines of evidence come in part from the use of high-resolution 11 
paleoclimate data across multiple glacial-interglacial cycles, taking into account state-dependence (von der 12 
Heydt et al., 2014; Köhler et al., 2015, 2017, 2018; Friedrich et al., 2016; Stap et al., 2019) and better 13 
constrained pre-ice core estimates of atmospheric CO2 concentrations (Martínez-Botí et al., 2015; 14 
Anagnostou et al., 2016). 15 
 16 
Overall, the paleoclimate lines of evidence regarding climate sensitivity can be broadly categorised into two 17 
types: direct estimates of radiative forcing and temperature response resulting in an estimate of the feedback 18 
parameter, α (Equation 7.1, Box 7.1), and emergent constraints on paleoclimate model simulations resulting 19 
in an estimate of ECS. This section focuses on the first type only; the second type (emergent constraints) are 20 
discussed in Section 7.5.4.  21 
 22 
 23 
7.5.3.1 Direct estimates of radiative forcing and temperature response 24 
 25 
In order to provide direct estimates of ECS, evidence from the paleoclimate record can be used to estimate 26 
forcing (ΔF) and global mean temperature response (ΔT) in Equation 7.1, Box 7.1, assuming the system is in 27 
equilibrium (ΔN=0).  However, there are complicating factors with using the paleoclimate record, and these 28 
challenges and uncertainties are somewhat specific to the time period being used.   29 
 30 
The Last Glacial Maximum (LGM) can provide direct constraints on climate sensitivity (Sherwood et al., 31 
submitted; Tierney et al., submitted) (see Table 7.11 for estimates of ECS since AR5). The major forcings 32 
and feedback processes that led to the cold climate at that time (e.g., CO2, non-CO2 greenhouse gases, and 33 
ice sheets) are relatively well-known (Chapter 5, Section 5.1), orbital forcing relative to preindustrial was 34 
negligible, and there are relatively high spatial resolution and well-dated paleoclimate temperature data 35 
available for this time period (Chapter 2, Section 2.3.1). Uncertainties in deriving an ECS from the LGM 36 
data arise partly from uncertainties in the calibration from the paleoclimate data to local annual mean 37 
temperature, and partly from uncertainties in the conversion of the local temperatures to a global annual 38 
mean surface air temperature. As a result of these uncertainties, estimates of global mean LGM cooling 39 
relative to pre-industrial vary from 3–8°C (Chapter 2, Section 2.3.1). The LGM climate is often assumed to 40 
be in full equilibrium with the forcing, such that ΔN in Equation 7.1, Box 7.1, is zero. A calculation of 41 
sensitivity using solely CO2 forcing, and assuming that the LGM ice sheets were in equilibrium with that 42 
forcing, would give an Earth System Sensitivity (ESS) rather than an ECS (see Box 7.1). In order to 43 
calculate an ECS, which in our definition includes all feedback processes except ice sheets, the approach of 44 
Rohling et al. (2012) can be used. This approach introduces an additional forcing term in Equation 7.1, Box 45 
7.1, that quantifies the resulting forcing associated with the ice sheet feedback (primarily an estimate of the 46 
radiative forcing associated with the change in surface albedo). However, differences between studies as to 47 
which processes are considered as forcings (for example, some studies also include vegetation and/or aerosol 48 
feedbacks as forcings), and uncertainties associated with estimating the ice sheet forcing (Stap et al., 2019) 49 
and its interactions with other feedback processes, means that estimates are not always directly comparable.  50 
Furthermore, the ECS at the LGM may differ from that of today due to state-dependence (see Section 7.4.4).  51 
Here, only studies that report values of climate sensitivity that have accounted for the long-term feedbacks 52 
associated with ice sheets, and therefore most closely estimate ECS as defined in this chapter, are assessed 53 
(see Table 7.11).   54 
 55 
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Since the AR5, several studies have extended the Rohling et al. (2012) approach (described above for the 1 
LGM) to the glacial-interglacial cycles of the last ~1 to 2 million years (von der Heydt et al., 2014; Köhler et 2 
al., 2015, 2017, 2018; Friedrich et al., 2016; Stap et al., 2019). Compared to the LGM, uncertainties in the 3 
derived ECS from these periods are in general greater, due to greater uncertainty in: global mean temperature 4 
(due to fewer individual sites with proxy temperature records), ice sheet forcing (due to a lack of detailed ice 5 
sheet reconstructions), and CO2 forcing (for those studies that include the pre-ice core period, where CO2 6 
proxies are more uncertain). Furthermore, accounting for orbital forcing in the traditional framework of 7 
climate sensitivity is challenging (Schmidt et al., 2017), due to seasonal and latitudinal components of the 8 
forcing that can directly result in relatively large responses in global annual mean temperature (Liu et al., 9 
2014) and ice volume (Abe-Ouchi et al., 2013), and potentially other feedback processes such as methane 10 
(Singarayer et al., 2011), despite a close-to-zero orbital forcing in the global annual mean.  In addition, for 11 
time periods in which the forcing relative to the modern era is small (interglacials), the inferred climate 12 
sensitivity has relatively large uncertainties because the temperature signal (ΔT in Equation 7.1 in Box 7.1) is 13 
close to zero. 14 
 15 
In the pre-Quaternary (prior to about 2.5 million years ago), the forcings and response are generally of the 16 
same sign and similar magnitude as future projections of climate change (Burke et al., 2018). Similar 17 
uncertainties as for the LGM apply, but in this case a major uncertainty relates to the forcing, because prior 18 
to the ice core record there are only indirect estimates of CO2 concentration. However, advances in pre-ice-19 
core CO2 reconstruction (e.g. Foster and Rae, 2016; Super et al., 2018; Witkowski et al., 2018) mean that the 20 
estimates of pre-Quaternary CO2 are narrower than they were in the AR5, and these time periods can now 21 
contribute to an assessment of climate sensitivity (see Table 7.11). The mid-Pliocene warm period (MPWP, 22 
3.3 to 3.0 million years ago; Chapter 2, Box 2.1; Box 2.4) has been targeted for constraints on ECS and Earth 23 
system sensitivity (Martínez-Botí et al., 2015; Royer, 2016; Sherwood et al., submitted), due to the fact that 24 
CO2 concentrations were relatively high at this time (300–450 ppmv, Chapter 5, Section 5.1.3.1) and because 25 
the MPWP is sufficiently recent that topography and continental configuration are similar to modern-day. As 26 
such, a comparison of the MPWP with modern provides probably the closest natural geological analogue to 27 
the definition of climate sensitivity.  Furthermore, the temperatures of the MPWP (between 3.0 and 4.5°C 28 
above pre-industrial; Chapter 2, Box 2.4) were such that non-linearities in feedbacks (Section 7.4.3) were 29 
relatively modest. Within the MPWP, the KM5c interglacial (3.204–3.207 million years ago) has been 30 
identified as a particularly useful time period for assessing ECS (Haywood et al., 2013, 2016b) because 31 
Earth’s orbit during that time was very similar to that of the modern-day.   32 
 33 
Further back in time, in the Eocene (about 50 million years ago), uncertainties in forcing and temperature 34 
change become larger, but the signals are generally larger too (Anagnostou et al., 2016; Lunt et al., 35 
submitted; Shaffer et al., 2016). Caution must be applied when assessing climate sensitivity estimates from 36 
these time periods, due to differing continental position and topography/bathymetry (Farnsworth et al., 37 
2019), and due to state-dependence (Section 7.4.4). Furthermore, on even longer timescales of the last 500 38 
million years (Royer, 2016) the temperature and CO2 measurements are generally asynchronous, presenting 39 
challenges in using this information for assessments of ECS.   40 
 41 
 42 
7.5.3.2 Summary 43 
 44 
This section provides an overall assessment of lines of evidence constraining ECS from paleoclimates 45 
(summarised in Table 7.11). Although some of the estimates in Table 7.11 are not independent because they 46 
use similar proxy records to each other (e.g. Köhler et al., 2015, 2017; Stap et al., 2019; von der Heydt et al., 47 
2014), there are still multiple independent lines of paleoclimate evidence regarding climate sensitivity, from 48 
differing past time periods (LGM (Sherwood et al., submitted; Tierney et al., submitted); glacial-interglacial 49 
(Friedrich et al., 2016; Köhler et al., 2017), Pliocene (Martínez-Botí et al., 2015; Sherwood et al., submitted) 50 
and Eocene (Anagnostou et al., 2016; Shaffer et al., 2016)), with differing proxies for estimating forcing 51 
(e.g. CO2 from ice cores or boron isotopes) and response (e.g. temperature from δ18O, Mg/Ca or Antarctic 52 
δD). Furthermore, although different studies have uncertainty estimates that account for differing sources of 53 
uncertainty, some studies (Friedrich et al., 2016; Martínez-Botí et al., 2015; Sherwood et al., submitted) do 54 
consider many of the uncertainties discussed in Section 7.5.3.1. All the studies based on glacial-interglacial 55 
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cycles explicitly account for state-dependence of climate sensitivity (Section 7.4.4) by considering only the 1 
warm phases of the Pleistocene, although what constitutes a warm phase is defined differently across the 2 
studies. 3 
 4 
 5 
[START TABLE 7.11 HERE] 6 
 7 
Table 7.11: Estimates of ECS derived from paleoclimates; from AR5 (above double lines) and from post-AR5 studies 8 

(below double lines).  Many studies provide an estimate of ECS that includes only CO2 and the ice sheet 9 
feedback as forcings, providing an estimate of S[CO2, LI] using the nomenclature of Rohling et al. (2012), 10 
which is equivalent to our definition of ECS (Box 7.1).  However, some studies provide estimates of 11 
other types of sensitivity (column 4).  Different studies (column 1) focus on different time periods 12 
(column 2) and use a variety of different paleoclimate proxies and models (column 3) to give a best 13 
estimate (column 5) and/or a range (column 5).  The ranges given account for varying sources of 14 
uncertainty (column 6). 15 
 16 

(1) Study  
(* = 
contributes 
to assessed 
range) 

(2) Time period (3) Proxies/models used 
for CO2, temperature (T), 
and global scaling (S). 

(4) Climate 
sensitivity 
classification 
according to 
Rohling et 
al. (2012). 
 

(5) Published 
best estimate 
of ECS 
[and/or range]  

(6) Range 
accounts for 
uncertainty in: 

AR5 
(Masson-
Delmotte et 
al., 2013) 

Last Glacial 
Maximum (21,000 
years ago) 

Assessment of multiple 
lines of evidence 

Sa [very likely > 
1.0 ; very 
unlikely > 6.0 
°C] 

Multiple 
sources of 
uncertainty 

AR5 
(Masson-
Delmotte et 
al., 2013) 

Cenozoic (last 65 
million years) 

Assessment of multiple 
lines of evidence 

S[CO2,LI] [95% range: 
1.1 – 7.0 °C] 

Multiple 
sources of 
uncertainty 

Tierney et al. 
(submitted)  

LGM CO2: ice core 
T: multiproxy 

S[CO2,LI] [95% range: 
2.6 – 4.5 °C] 

Multiple 
sources of 
uncertainty 

Sherwood et 
al 
(submitted)  

LGM CO2: ice core 
T: multiple lines of 
evidence 

S[CO2, LI, CH4, 

N2O, dust] 
3.4°C  
[17% - 83% 
likelihood: 2.0 
– 6.3 °C] 

Multiple 
sources of 
uncertainty 

von der 
Heydt et al. 
(2014) 

Warm states of 
glacial-interglacial 
cycles of last 800 
kyrs. 

CO2: ice core  
T: ice core δD, benthic 
δ18O. 
S: Annan and 
Hargreaves, Schneider 
von Deimling  

S[CO2,LI] 3.5°C  
[range: 3.1 – 
5.4 °C]a 

 

Range of 
LGM global 
mean 
temperatures 
used for 
scaling. 

Köhler et al. 
(2015) 

Warm states of 
glacial-interglacial 
cycles of last 2 Myrs. 

CO2: ice core and boron 
isotopes 
T: benthic δ18O 
S: PMIP LGM and 
PlioMIP MPWP 

S[CO2,LI] 5.7 °C 
[68% range: 
3.7 – 8.1 °C]a 

Temporal 
variability in 
records. 

Köhler et al. 
(2017) 

Warm states of 
glacial-interglacial 
cycles of last 2 Myrs. 

CO2: boron isotopes 
T: benthic δ18O 
S: PMIP LGM and 
PlioMIP MPWP  

S[CO2,LI] 5.6 °C 
[16th to 84th 
percentile: 3.6 
– 8.1 °C]a 

 

Temporal 
variability in 
records. 

Köhler et al. 
(2018) 

Warm states of 
glacial-interglacial 
cycles of last 800 
kyrs, excluding those 
for which CO2 and T 

CO2: ice cores 
T: alkenone, Mg/Ca, 
MAT, and faunal SST 
S: PMIP3 LGM 

S[CO2, LI] [range: 3.0 – 
5.9 °C]a 

Range of 2 
different 
temperature 
reconstruction
s. 



Second Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-97 Total pages: 206 

diverge. 
(Stap et al., 
2019) 

States of glacial-
interglacial cycles of 
last 800 kyrs for 
which forcing is zero 
compared with 
modern, excluding 
those for which CO2 
and T diverge. 

CO2: ice cores 
T: benthic δ18O 
S: PMIP LGM and 
PlioMIP MPWP 

S[CO2, LI] [range: 6.1 - 
11.0 °C]a 

Range of 
efficacy of ice 
sheet forcing  

Friedrich et 
al. (2016) 

Warm states of 
glacial-interglacial 
cycles of last 780 
kyrs. 

CO2: ice cores 
T: alkenone, Mg/Ca, 
MAT, and faunal SST 
S: PMIP3 LGM. 

S[GHG,LI,AE] 4.9 °C 

[Likely range: 
4.3 - 5.4 °C] 

Range of 
LGM global 
mean 
temperatures, 
aerosol 
forcing.  

Martínez-
Botí et al. 
(2015) 

Pliocene CO2: boron isotopes 
T: benthic δ18O  

S[CO2,LI] 3.7 °C 

[68% range: 
3.0 – 4.4 °C]a 

Pliocene sea 
level, temporal 
variability in 
records. 

Anagnostou 
et al. (2016) 

Early Eocene CO2: boron isotopes 
T: various terrestrial 
MAT, Mg/Ca, TEX, 
δ18O SST.  

S[CO2,LI] [66% range: 
2.1 – 4.6 °C] 

Calibrations 
for 
temperature 
and CO2. 

Shaffer et al. 
(2016) 

Pre-PETM CO2: mineralogical, 
carbon cycling, and 
isotope constraints  
T: various terrestrial 
MAT, Mg/Ca, TEX, 
δ18O SST.  

S[GHG,AE,VEG,L

I] 
[range: 3.3 – 
5.6 °C] 

Calibration of 
temperature 
and CO2. 

Royer 
(2016) 

Pliocene CO2: boron isotopes 
T: benthic δ18O  

S[CO2,LI] 7.7 °C  
[range: 3.7 – 
12.2 °C] 

Temporal 
variability in 
records. 

Sherwood et 
al. 
(submitted)  

Pliocene CO2: boron isotopes 
T: multiple lines of 
evidence 

S[CO2, 

LI,N2O,CH4,VEG] 
3.7 °C  
[17% - 83% 
likelihood: 2.2 
– 5.9 °C] 

Multiple 
sources of 
uncertainty 

Notes: Note that Sa in this table denotes a classification of climate sensitivity following (Rohling et al., 1 
2012).  2 
(a) = Best estimate and range calculated from published estimate assuming ERF due to CO2 doubling of 3.7 3 
W m-2.  4 
 5 
[END TABLE 7.11 HERE] 6 
 7 
 8 
None of the post-AR5 studies in Table 7.13 have an estimated lower range for ECS below 2.0°C per CO2 9 
doubling. Although some of the estimates are based on similar time periods to each other and use the same 10 
proxies, there are still multiple independent estimates from multiple time periods over the last 55 million 11 
years, using multiple proxies, all of which confirm this lower bound. As such, based solely on the 12 
paleoclimate record, it is very likely that ECS is greater than 2°C (high confidence). At the upper end there is 13 
more variation amongst the different studies. In general, it is the studies based on the warm periods of the 14 
glacial-interglacial cycles of the last 800,000 years that give the largest values, in particular those based on 15 
temperatures derived from estimates of bottom-water temperature from δ18O (Köhler et al., 2015, 2017; Stap 16 
et al., 2019). Given the large uncertainties associated with estimating the efficacy of the ice sheet forcing 17 
during these intervals (Stap et al., 2019), and uncertainties associated with extrapolating ECS estimates from 18 
cold states to warm states (Köhler et al., 2015, 2017), and with the conversion of a δ18O temperature to a 19 
global mean surface air temperature, there is only low confidence in these upper estimates. Estimates of ECS 20 
from the warmer Pliocene and Eocene that include a quantitative estimate of the underlying uncertainty 21 
distribution (Martínez-Botí et al., 2015; Anagnostou et al., 2016) both indicate likely upper ranges of less 22 
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than 5°C. As such, and accounting for uncertainties discussed in Section 7.5.4, the state-dependence of 1 
feedbacks discussed in Section 7.4.4, and the evidence assessed previously in the AR5, the paleoclimate 2 
record on its own indicates that ECS is likely less than 5°C. Given that there are fewer studies associated 3 
with these past warm time periods, and given the uncertainties associated with quantifying the CO2 forcing, 4 
this upper value has only medium confidence.   5 
 6 
The overall qualitative assessment using paleo constraints alone, of very likely greater than 2°C (high 7 
confidence) and likely less than 5°C (medium confidence), is for comparison with the assessment of 8 
Sherwood et al. (submitted) who, using Bayesian approaches, combined evidence from past cold and warm 9 
climates together to give a best estimate of 3.1°C, and likelihoods characterised by 17% and 83% percentiles 10 
of 2.1 and 4.7°C respectively. At the upper end, their quantitative approach results in a lower probability of 11 
ECS > 5°C than the range assessed here. This may partly be related to the fact that their definition of ECS 12 
explicitly excludes positive feedbacks associated with non-CO2 greenhouse gases (N2O and CH4) and 13 
vegetation (Table 7.13, column 4). It is also consistent with the possibility that ice sheet forcing may have 14 
relatively low efficacy (Stap et al., 2019), a possibility that was not accounted for in the LGM estimates of 15 
Sherwood et al. (submitted). 16 
 17 
 18 
7.5.4 Emergent constraints on ECS 19 
 20 
Global climate models continue to exhibit substantial spread in ECS and TCR (Section 7.5.7) and to leverage 21 
this spread in order to narrow estimates of Earth's climate sensitivity, numerous studies have employed 22 
methods based on “emergent constraints” (Chapter 1, Section 1.5.4). These methods establish a relationship 23 
between an observable and either ECS or TCR based on an ensemble of models, and combine this 24 
information with observations to derive probability distributions. Most studies of this kind are relatively 25 
recent and have clearly benefitted from the international efforts to coordinate the CMIP multi-model 26 
ensembles.  27 
 28 
A number of considerations must be taken into account when assessing the diverse literature on ECS and 29 
TCR emergent constraints. For instance, it is important to have physical and theoretical basis for the 30 
connection between the observable and the target quantity since in model ensembles thousands of 31 
statistically significant relationships can be found simply by chance (Caldwell et al., 2014). Also, correctly 32 
accounting for uncertainties in both observable, which can be of both instrumental origin and due to natural 33 
variability, and statistical relationship, can be challenging, in particular in cases where the latter is not 34 
expected to be linear (Annan et al., submitted). Likewise, there is some methodological ambiguity in 35 
estimating a GCM’s true ECS value. A number of proposed emergent constraints leverage variations in 36 
modelled ECS arising from tropical low clouds, which was the dominant source of inter-model spread in the 37 
CMIP5 ensemble used in most emergent constraint studies. Since ECS is dependent on the sum of individual 38 
feedbacks (Section 7.5.1) these studies implicitly assume that all other feedback processes in models are 39 
unbiased and should therefore rather be thought of as constraints on tropical low-cloud feedback (Klein and 40 
Hall, 2015; Qu et al., 2018). However, also studies that rely on transient warming may make implicit 41 
assumptions that ocean heat uptake, pattern effects and long-term sea ice feedbacks are unbiased. Section 42 
7.5.4.1 goes through the spectrum of emergent constraints, discussing their strengths and limitations in 43 
detail.  44 
 45 
 46 
7.5.4.1 Emergent constraints using global or near-global temperature change 47 
 48 
Perhaps the simplest class of emergent constraints regress past equilibrium paleoclimate temperature change 49 
against modelled ECS to obtain a relationship that can be used to translate a past climate change to ECS. The 50 
advantage is that these are constraints on the sum of all feedbacks, and furthermore unlike constraints on the 51 
instrumental record they are based on climate states that are equilibrated. Thus far these emergent constraints 52 
have been limited to the last glacial maximum (LGM) cooling (Hargreaves et al., 2012; Schmidt et al., 2014) 53 
and warming in the Pliocene epoch (Hargreaves and Annan, 2016) due to the availability of sufficiently large 54 
multi-model ensembles. The paleo-climate emergent constraints are particularly useful in estimating ECS as 55 
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they utilize past climates in equilibrium but are limited by structural uncertainties in the proxy-based 1 
temperature and forcing reconstructions (Section 7.5.4), possible differences in equilibrium patterns between 2 
models and the real world, and a small number of model simulations participating which has led to divergent 3 
results. For example, Hopcroft and Valdes (2015) repeated the study based on the LGM by Hargreaves et al. 4 
(2012) using another model ensemble finding no emergent constraint, whereas studies using multiple 5 
available ensembles retain useful constraints (Renoult et al., submitted; Schmidt et al., 2014). Also, the 6 
results are somewhat dependent on the applied statistical methods (Hargreaves and Annan, 2016). However, 7 
Renoult et al. (submitted) explored this and found 95th percentiles of ECS consistently below 5°C for LGM 8 
and Pliocene individually, regardless of statistical approach, and by combining the two estimates the 95th 9 
percentile dropped to 3.9°C. The consistence between the cold LGM and warm Pliocene emergent constraint 10 
estimates increases confidence.  11 
 12 
Various approaches to using warming over the instrumental record have been proposed. These benefit from 13 
more accurate data compared with paleoclimates, but suffer from the fact that the climate is not in 14 
equilibrium, thereby assuming that GCMs on average accurately depicts the ratio of short term to long term 15 
warming. Centennial historical global warming in models exhibit no correlation with ECS (Forster et al., 16 
2013), which is partly due to models being able to compensate e.g. a high sensitivity with strong aerosol 17 
cooling (Kiehl, 2007). However, the aerosol cooling increased up until the 1970s when air quality 18 
regulations reduced the emissions from Europe and North America whereas other regions saw increases 19 
resulting in a subsequently reduced pace of aerosol ERF increase. Energy balance considerations over the 20 
1970-2010 period gave a best estimate ECS of 2.0°C (Bengtsson and Schwartz, 2013), however this estimate 21 
did not account for pattern effects. To alleviate this problem an emergent constraint on 1970-2005 global 22 
warming was demonstrated to yield a best estimate ECS of 2.83°C (1.72–4.12°C), but if pattern effects are 23 
stronger than in GCMs the upper bound could be higher (Jiménez-de-la-Cuesta and Mauritsen, 2019). 24 
 25 
A study that developed an emergent constraint based on the response to the Mount Pinatubo 1991 eruption 26 
yielded a best estimate of 2.4°C (likely range 1.7–4.1°C) (Bender et al., 2010). When accounting for ENSO 27 
variations they found a somewhat higher best estimate of 2.7°C, which is in line with results of later studies 28 
that suggest ECS inferred from periods with volcanic activity are low-biased due to strong pattern effects 29 
(Gregory et al., 2019).  30 
 31 
Lagged-correlations present in short term variations in the global mean surface temperature can be linked to 32 
climate sensitivity through the fluctuation-dissipation theorem which is derived from a mixed-layer model 33 
(Einstein, 1905; Hasselmann, 1976; Schwartz, 2007; Cox et al., 2018a). From this it follows that the memory 34 
carried by the heat capacity of the oceans results in low-frequency global temperature variability (red noise) 35 
arising from high frequency (white noise) fluctuations in the radiation balance, e.g. caused by weather. Initial 36 
attempts to apply the theorem to observations yielded a fairly low median ECS estimate of 1.1°C (Schwartz, 37 
2007), but recently it was proposed by Cox et al. (2018a) to use variations in the historical experiments of 38 
the CMIP5 climate models as an emergent constraint giving a median ECS estimate of 2.8 (2.2–3.4°C, 17th 39 
to 83rd percentiles). A particular challenge associated with these approaches is to separate short-term from 40 
long-term variability, and slightly arbitrary choices regarding the methodology of separating these in the 41 
global mean temperature from long-term signals in the historical record, omission of the later strongly forced 42 
period, as well as input data choices, can lead to median ECS estimates ranging from 2.5–3.5°C (Brown et 43 
al., 2018; Po-Chedley et al., 2018b; Rypdal et al., 2018). Calibrating the emergent constraint using CMIP5 44 
modelled internal variability as measured in pre-industrial control simulations (Po-Chedley et al., 2018b) 45 
will inevitably lead to an overestimated ECS due to externally forced short term variability present in the 46 
historical record (Cox et al., 2018b). A more problematic issue is raised by Annan et al. (submitted), showing 47 
that the upper bound on ECS estimated this way is less certain when considering deep ocean heat uptake and 48 
pattern effects. 49 
 50 
Short term variations in the Earth’s energy budget, observable from satellites, arising from variations in the 51 
tropical tropospheric temperature has been linked to ECS through models, either as a range of models 52 
consistent with observations (Dessler et al., 2018) or as a formal emergent constraint by deriving further 53 
model-based relationships to yield a median of 3.3°C and a likely range of 2.4-4.5°C (Dessler and Forster, 54 
2018). There are major challenges associated with short term variability in the energy budget, in particular 55 
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how it relates to the long-term forced response of clouds (Colman and Hanson, 2017; Lutsko and Takahashi, 1 
2018), and variations in the surface temperature that are not directly affecting the radiation balance lead to an 2 
overestimated ECS when using linear regression techniques where it appears as noise in the independent 3 
variable (Proistosescu et al., 2018; Gregory et al., 2019). The latter issue is largely overcome when using the 4 
tropospheric mean or mid-tropospheric temperature (Trenberth et al., 2015; Dessler et al., 2018).  5 
 6 
 7 
7.5.4.2 Emergent constraints focussed on cloud feedbacks and present-day climate 8 
 9 
A substantial number of emergent constraint studies focus on observables that are related to tropical low-10 
cloud feedback processes (Volodin, 2008; Sherwood et al., 2014; Zhai et al., 2015; Brient and Schneider, 11 
2016; Brient et al., 2016). These studies yield median ECS estimates of 3.5–4°C and in many cases indicate 12 
low likelihoods of values below 3°C. The approach is attractive since most of the spread in the CMIP5 and 13 
earlier model ensemble climate sensitivity arises from low cloud feedbacks (Bony and Dufresne, 2005; 14 
Wyant et al., 2006; Randall et al., 2007), but nevertheless the approach assumes that all other feedback 15 
processes are unbiased (Klein and Hall, 2015; Qu et al., 2018). For example, accounting for a missing 16 
representation of the anvil cloud area feedback (section 7.4.2.4) with an assessed mean of –0.2 W m–2 °C–1, 17 
shifts the median estimates range of this class of emergent constraints down to 2.9–3.3°C and accordingly 18 
grants substantial probability to values below 3°C. Thus, the subset of emergent constraints that focus on 19 
low-level tropical clouds are not inconsistent with other emergent constraints of ECS, but at the same time an 20 
inter-dependence with the process-based estimates (Section 7.5.2) is introduced. Related emergent 21 
constraints that focus on aspects of the tropical circulation and ECS have led to conflicting results (Su et al., 22 
2014; Tian, 2015; Lipat et al., 2017), probably because these processes are not the dominant factors in 23 
causing the inter-model spread (Caldwell et al., 2018).  24 
 25 
The fidelity of models in reproducing aspects of temperature variability or the radiation budget has also been 26 
proposed as emergent constraints on ECS (Covey et al., 2000; Knutti et al., 2006; Huber et al., 2010; Bender 27 
et al., 2012; Brown and Caldeira, 2017; Siler et al., 2018a). Here indices based on spatial or seasonal 28 
variability are linked to modelled ECS, and overall the group of emergent constraints yields best estimates of 29 
3.3°C to 3.7°C. Some of these emergent constraints are subject to the same issue as identified for the low-30 
level cloud feedbacks-based constraints of implicitly assuming that processes not probed for are unbiased in 31 
the underlying model ensemble and are thus assessed to be less reliable than other emergent constraints. 32 
Further, the physical relevance of present-day biases to the sum of climate change feedbacks is in many 33 
cases unclear. 34 
 35 
 36 
7.5.4.3 Assessed ECS and TCR based on emergent constraints 37 
 38 
The available emergent constraint studies have been divided into two classes: those that deal with global or 39 
near-global temperature change, and those that focus on other aspects, such as the fidelity of processes 40 
related to low-level cloud feedbacks or present-day climate biases. The former class is arguably superior in 41 
representing ECS, being a global temperature change, whereas the latter class is perhaps best thought of as 42 
constraints showing that low-level cloud feedbacks are positive. The latter is consistent with and confirms 43 
process-based estimates of low cloud feedbacks (Section 7.5.1) and is accordingly not taken into account 44 
here. A limiting case here is (Dessler and Forster, 2018) which is focused on monthly co-variability in the 45 
global radiation budget with mid-tropospheric temperature, at which time scale the surface albedo feedback 46 
is unlikely to operate.  47 
 48 
In the first group of emergent constraints there is broad agreement on the best estimate of ECS ranging from 49 
2.4–3.3°C. At the lower end nearly all studies find lower bounds (5th percentiles) around 1.5°C, whereas 50 
several studies indicate 95th percentiles as low as 4°C, with the exception of Cox et al. (2018a), which is 51 
deemed to not produce a reliable upper bound estimate (Annan et al., submitted). Considering both classes of 52 
studies, none of them yield upper bounds above 5°C. Since several of the emergent constraints can be 53 
considered nearly independent one could assume that emergent constraints provide very strong evidence on 54 
ECS by combining them. Nevertheless, this is not done here because there are sufficient cross-dependencies, 55 
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as for instance models are re-used in many of the derived emergent constraints, and furthermore the 1 
methodology has not yet reached a sufficient level of maturity since often systematic biases have not been 2 
accounted for. Uncertainty is therefore conservatively added to reflect these potential issues. This leads to 3 
the assessment that ECS inferred from emergent constraints is very likely 1.5 to 5°C with high confidence.  4 
 5 
Emergent constraints on TCR with a focus on the instrumental temperature record, though less abundant, 6 
have also been proposed. In the simplest form Gillett et al. (2012) regressed the response of one model to 7 
individual historical forcing components to obtain a tight range, but later when an ensemble of models was 8 
used the range was widened (Gillett et al., 2013), and updated by (Schurer et al., 2018). A related data-9 
assimilation based approach that accounted also for uncertainty in response patterns gave similar results 10 
(Ribes et al., submitted), but is dependent on the choice of prior ensemble distribution (CMIP5 or CMIP6). 11 
Another study used the response to the Pinatubo volcanic eruption to obtain a similar range (Bender et al., 12 
2010). A tighter range, notably at the lower end, was found in an emergent constraint focusing on the post-13 
1970s warming exploiting the lower spread in aerosol forcing change over this period (Jiménez-de-la-Cuesta 14 
and Mauritsen, 2019). Their estimate was 1.67 °C (1.17–2.16 °C). Two studies tested this idea: Tokarska et 15 
al. (submitted) found similar best estimates and showed that the results were independent of whether CMIP5, 16 
CMIP6 or both model ensembles were used, whereas Nijsse et al. (submitted) found slightly larger best 17 
estimates but broader uncertainty and a small sensitivity to choice of ensemble. Combining the eight studies 18 
gives a best estimate of 1.7°C and a very likely range of TCR of 1.2–2.2°C with high confidence. 19 
 20 
 21 
[START TABLE 7.12 HERE] 22 
 23 
Table 7.12: Collection of emergent constraint studies estimating ECS. Studies marked with a star (*) are of the type 24 

that rely on global or near-global temperature change.  25 
 26 

Study Emergent constraint description Published best 
estimate and 
uncertainty (°C) 

Uncertainty estimate: 

(Bender et al., 
2010)* 

Pinatubo integrated forcing normalized by 
CMIP3 models own forcing versus 
temperature change regressed against ECS. 

2.4 
[1.7-4.1] 

5% to 95% 

(Brient et al., 
2016) 

Shallowness of low-level tropical clouds [2.4-4.6] Model range consistent 
with observations 

(Brient and 
Schneider, 2016) 

Cloud fraction variability versus SST 
anomalies 

4 
[2.3-5.0] 

5% to 95%  

(Brown and 
Caldeira, 2017) 

Aspects of the representation of the present-
day top-of-atmosphere radiation balance 

3.7 
[3.0-4.2] 

25% to 75% 

(Cox et al., 
2018a)* 

Persistence of variability in global mean 
temperature in instrumental record. Upper 
bound not deemed reliable 

2.8 
[2.2-3.4] 

17% to 83% 

(Dessler and 
Forster, 2018)* 

Emergent constraint on TOA radiation 
variations linked to mid-tropospheric 
temperature  

3.3 
[2.4-4.5] 

17% to 83% 

(Hargreaves et al., 
2012)* 

Last Glacial Maximum tropical SSTs 2.5  
[1.3-4.2] 

5% to 95% 

(Hargreaves and 
Annan, 2016)* 

Pliocene tropical SSTs [1.9-3.7] 5% to 95% 

(Huber et al., 
2014) 

Aspects of the representation of the present-
day top-of-atmosphere radiation balance 

3.4 
[2.9-4.0] 

17% to 83% 

(Jiménez-de-la-
Cuesta and 
Mauritsen, 2019)* 

Post-1970s global warming 2.83 
[1.72-4.12] 

5% to 95% 

(Knutti et al., 
2006) 

Regional seasonal cycle in land surface 
temperature 

3.3 
[2.2-4.4] 

5% to 95% 

(Renoult et al., 
submitted)* 

Combined Last Glacial Maximum and 
Pliocene tropical SSTs 

2.6 [1.1-3.9] 5% to 95% 
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(Sherwood et al., 
2014) 

Indicators of tropical convective mixing Around 4 
[ >3] 

Model range consistent 
with observations 

(Siler et al., 
2018a) 

Spatial distribution of planetary albedo 
(shortwave reflectivity) 

3.68 
[2.38-4.98] 

5% to 95% 

(Volodin, 2008) Variations in tropical cloud fraction and 
humidity 

3.6 
[3.3-3.9] 

5% to 95% 

(Zhai et al., 2015) Subsidence regime tropical low-level cloud 
variations 

3.9 
[3.45-4.35] 

17% to 83% 

 1 
[END TABLE 7.12 HERE] 2 
 3 
 4 
7.5.5 Combined assessment of ECS and TCR 5 
 6 
Substantial quantitative progress has been made in interpreting evidence of Earth's climate sensitivity since 7 
the previous report, through innovation, scrutiny, theoretical advances and a rapidly evolving data base from 8 
current, recent and past climates. Noteworthy is that ECS as derived directly from climate models is not 9 
taken into account, and that focus is on the process-understanding, instrumental record warming, paleo-10 
climate records and emergent constraints in the assessment. GCMs remain essential tools throughout 11 
establishing these lines of evidence. 12 
 13 
A key advance over the AR5 assessment is that across the lines of evidence there is broad agreement that the 14 
central estimates of ECS are close to, or not inconsistent with, 3°C. This advance is foremost following an 15 
improved quantification of Earth's imbalance, instrumental record global temperature change, and the 16 
strength of anthropogenic forcing. Further advances include increased understanding of how pattern-effects 17 
influence ECS inferred from historical warming (Sections 7.4.3 and 7.5.3), improved quantification of paleo 18 
climate change from proxy evidence and a deepened understanding of how feedback mechanisms depend on 19 
the climate mean state such that they increase ECS in warmer climates (Sections 7.4.4 and 7.5.4), and also an 20 
improved quantification of cloud feedback mechanisms (Sections 7.4.2 and 7.5.2). The assessed statements 21 
are summarized in Table 7.13 for ECS and Table 7.14 for TCR. 22 
 23 
Whereas the AR5 chose to embrace the bulk of the evidence available at the time in the then assessed ECS 24 
likely range of 1.5–4.5°C (Collins et al., 2013a), the broader evidence-base presented here and the general 25 
agreement among the lines of evidence encourages the combination of the evidence to yield a tighter range. 26 
This can be done formally using Bayesian statistics (Annan and Hargreaves, 2006; Stevens et al., 2016), 27 
though such a process is fairly complex and involves formulating subjective priors (Sherwood et al., 28 
submitted). However, it is straightforward to understand that if two lines of independent evidence each give a 29 
low probability of an outcome being true, e.g. that ECS is less than 1.5°C, then the combined probability that 30 
ECS is less than 1.5°C is true is lower than that of either line of evidence. On the contrary, if one line of 31 
evidence is unable to rule out an outcome, but another is able to assign a low probability, then there is a low 32 
probability that the outcome is true. This logic applies also when there are slight dependencies between the 33 
lines of evidence, for instance between historical evidence and those emergent constraints that use historical 34 
warming. Even in this case the combined constraint will be closer to the tighter of the individual lines of 35 
evidence.  36 
 37 
In the process of providing a combined and self-consistent ECS assessment of all the evidence, these notions 38 
were kept in mind. Furthermore, a 0.5°C precision was chosen, as in earlier reports. Starting with the very 39 
likely lower bound, there is broad support for a value of 2.0°C, including the instrumental record warming 40 
(Table 7.12). At the upper bound emergent constraints give 5.0°C, bearing in mind that those emergent 41 
constraints that are assessed more reliable all were below this value. Support for an upper bound of this 42 
magnitude is furthermore provided by both process-understanding and paleoclimates. The likely range must 43 
necessarily reside inside the very likely range and is therefore supported by evidence pertaining to both the 44 
likely and very likely ranges. In summary, based on multiple lines of evidence the best estimate of ECS is 45 
close to 3°C, it is likely 2.5 to 4°C and very likely 2 to 5°C. It is virtually certain that ECS is larger than 46 
1.5°C. The assessed ranges are all assigned high confidence due to the agreement among the different lines 47 
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of evidence. It remains challenging to rule out low-probability but high impact upper end ECS, which is 1 
indicated by the notable asymmetry of the assessed ranges.  2 
 3 
It is worthwhile contemplating whether the consensus of the median ECS estimates is an expression of 4 
groupthink, i.e. whether evidence supporting a certain ECS that has long been the consensus (Charney et al., 5 
1979) is being sub-consciously favoured over other values. In this regard it is worth remembering the many 6 
failed attempts to challenge an ECS of this magnitude, starting as early as (Ångström, 1900) criticizing the 7 
results of (Arrhenius, 1896) arguing that the atmosphere was already saturated in infrared absorption such 8 
that adding more CO2 would not lead to warming. The assertion of Ångström was understood half a century 9 
later to be incorrect. History has seen a multitude of challenges, e.g. Lindzen et al., (2001); Schwartz, (2007); 10 
Svensmark (1998), mostly implying lower ECS than the range assessed as very likely here. However, there 11 
are also examples of the opposite such as very large ECS based on the Pleistocene records (Snyder, 2016), as 12 
disproven by Schmidt et al. (2017), or suggestions that global climate instabilities may occur in the near 13 
future (Steffen et al., 2018; Schneider et al., 2019). There is, however, no evidence for such instabilities in 14 
the paleo record temperatures of more than 10°C above present (Zachos et al., 2008). Looking back, the 15 
resulting debates have led to a deeper understanding, strengthened the consensus, and have been 16 
scientifically valuable.  17 
. 18 
In the climate sciences, there are often good reasons to consider representing deep uncertainty, or what is 19 
sometimes referred to as unknown unknowns. This is natural in a field that considers a system that is both 20 
complex and at the same time challenging to observe. For instance, since emergent constraints represent a 21 
relatively new line of evidence, important feedback mechanisms may be biased in the process-level 22 
understanding, pattern effects and aerosol cooling may be large and paleo evidence inherently works with 23 
indirect and incomplete evidence of past climate states, there certainly can be valid reasons to add 24 
uncertainty to the ranges assessed on individual lines of evidence. This has indeed been done throughout 25 
Sections 7.5.1–7.5.4. However, in light of the century-long history of research testing, scrutinizing and 26 
criticizing the understanding broadly represented in this chapter, and since it is improbable that all lines of 27 
evidence represented here are collectively biased, it is not considered necessary to add deep uncertainty to 28 
the combined assessment of ECS.  29 
 30 
 31 
[START TABLE 7.13 HERE] 32 

 33 
Table 7.13: Summary of ECS assessment  34 
 35 

ECS Central value Likely range Very likely range Extremely likely 
Process understanding (7.5.1) 3.2°C 2.4–4.6°C 2.0–6.4°C  
Warming over instrumental 
record (7.5.2) 

 
3–4°C 

 
> 2.6°C 

 
> 1.9°C 

Paleoclimates (7.5.3)  < 5.0°C > 2.0°C  
Emergent constraints (7.5.4) 2.4–3.3°C  1.5–5.0°C  
Combined assessment 3°C 2.5–4.0°C 2.0–5.0°C  

 36 
[END TABLE 7.13 HERE] 37 
 38 
 39 
The evidence for TCR is less abundant than for ECS, and for natural reasons it focuses on the instrumental 40 
temperature record (Sections 7.5.3 and 7.5.6) and process understanding (Section 7.5.2), though substantially 41 
strengthened over the situation in AR5 which assessed a likely range of 1.0–2.5°C. TCR and ECS are not 42 
unrelated, though, and in any case TCR is less than ECS (see section introduction). Furthermore, unlike 43 
ECS, estimates of TCR from the historical record are not strongly influenced by externally forced surface 44 
temperature pattern effects since both historical transient warming and TCR are affected in the same way by 45 
this phenomenon (Section 7.4.3). As a result, uncertainty is substantially lower than in the AR5 and 0.1°C 46 
precision is therefore used here. Also, given the interdependencies of the lines of evidence, a conservative 47 
approach is adopted, in particular at the 95th percentile, to combining them as reflected in the assessment. 48 
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 1 
Based on process understanding, warming over the instrumental record and emergent constraints the best 2 
estimate TCR is 1.8°C, it is likely 1.4–2.2°C and very likely 1.2–2.4°C. The assessed ranges are all assigned 3 
high confidence due to the high level of agreement among the lines of evidence. 4 
 5 
 6 
[START TABLE 7.14 HERE] 7 
 8 
 9 
Table 7.14: Summary of TCR assessment 10 
 11 

TCR Central 
value 

Likely range Very likely 
range 

Process understanding 
(7.5.1) 

1.9°C  1.5–2.4 °C 1.2–2.7 °C 

Warming over 
instrumental record (7.5.2) 

2.0 °C 1.7–2.4 °C 1.5–2.9 °C 

Emergent constraints 
(7.5.4) 

1.7 °C  1.2–2.2 °C 

Combined assessment 1.8 °C 1.4–2.2 °C 1.2–2.4 °C 
 12 
[END TABLE 7.14 HERE] 13 
 14 
 15 
7.5.6 Considerations on the ECS and TCR in global climate models and their role in the assessment 16 
 17 
Coupled climate models, such as those participating in CMIP, have long played a central role in assessments 18 
of ECS and TCR. In reports up until and including the AR4, raw climate sensitivities from GCMs were the 19 
primary line of evidence but in the AR5, historical warming and paleoclimates provided useful additional 20 
lines of evidence. As new lines of evidence have evolved, in the AR6 various numerical models are used 21 
where they are considered accurate evidence, or in some cases the only available source of information, and 22 
thereby support all four lines of evidence (Sections 7.5.1-7.5.4). However, the AR6 differs from previous 23 
reports in not directly using climate model values of ECS and TCR in the assessed ranges of climate 24 
sensitivity (Section 7.5.5). The purpose of this section is to explain why this approach has been taken and to 25 
provide a perspective on the interpretation of the climate sensitivities exhibited in CMIP6 models.  26 
 27 
The ECS of a model is the net result of the model’s effective radiative forcing from a doubling of CO2 and 28 
the sum of the individual feedback parameters. It is well known that among models most of the spread arises 29 
from cloud feedbacks, and is dominated by spread in the response of low-level clouds (Bony and Dufresne, 30 
2005; Zelinka et al., 2020). Since these clouds are small-scale and shallow, the representation of such clouds 31 
is foremost controlled by the parameterizations in the models. It is sometimes assumed that improving such 32 
parameterizations will eventually lead to convergence in model response and therefore a decrease in the 33 
model spread of ECS.  34 
 35 
Nevertheless, over decades of model development there have not been signs of convergence of ECS in 36 
models. In fact, the overall spread in CMIP6 (total range of 1.8–5.5 °C) is larger than that in CMIP5 (total 37 
range of 2.0–4.7 °C) (Flynn and Mauritsen, submitted). ECS and TCR values are given for CMIP5 and 38 
CMIP6 models respectively in Appendix Table 7.A.2. Flynn and Mauritsen (submitted) show that the ECS in 39 
CMIP6 (3.7°C mean) is significantly higher than that in CMIP5 (3.2°C mean). The TCR in CMIP6 is also 40 
higher (2.0°C mean) than in CMIP5 (1.8°C mean). The upward shift does not apply to all models, but a 41 
substantial subset of models have seen an increase in ECS between the two model generations. The increased 42 
ECS values are likely due to shortwave cloud feedbacks (Flynn and Mauritsen, submitted) and it appears that 43 
extra-tropical clouds with mixed ice- and liquid phases are central to the behaviour (Zelinka et al., 2020), 44 
probably borne out of a recent focus on biases in these types of clouds (McCoy et al., 2016; Tan et al., 2016). 45 
These biases have recently been reduced in many models, guided by laboratory experiments, field 46 
measurements and satellite observations (Lohmann and Neubauer, 2018; Bodas-Salcedo et al., 2019; 47 
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Gettelman et al., 2019). However, this and other known model biases are already factored into the process-1 
level assessment of cloud feedback (Section 7.4.2.4), and furthermore the emergent constraints used here 2 
focus on net feedback and so are presumably insensitive to common model biases (Section 7.5.4). The higher 3 
ECS and TCR values in CMIP6 lead to stronger projected GSAT warming in many CMIP6 models 4 
compared to CMIP5 and also compared to what might be expected from the assessed ranges of ECS, TCR 5 
and ERF (Chapter 4 Box 4.1, Forster et al., 2019).  6 
 7 
Models frequently share code components and in some cases entire sub-model systems are shared and 8 
slightly modified. Therefore, models cannot be considered independent developments, but rather families of 9 
models with interdependencies (Knutti et al., 2013). It is therefore difficult to interpret the collection of 10 
models (Knutti, 2010), and it cannot be ruled out that there are common limitations and therefore systematic 11 
biases to model ensembles that are reflected in the distribution of ECS as derived from them.  12 
 13 
It is generally challenging to determine which information enters the formulation and development of 14 
parameterizations used in GCMs. Although GCMs are typically well-documented, in ways that increasingly 15 
also include information on decisions regarding tuning, the full history of development decisions could 16 
involve both process-understanding and sometimes also other information such as historical warming. As 17 
outlier or poorly performing models emerge from the development process, they can become re-tuned, 18 
reconfigured or discarded and so might not see publication (Hourdin et al., 2017). Modelling groups might 19 
for example have perceived a model's ECS as unrealistic, have specific difficulties to reproduce the 20 
instrumental record warming (Mauritsen and Roeckner, submitted), or a model might be prone to entering 21 
run-away warming or cooling for routinely applied forcings. In the process of correcting for such issues, 22 
modelling groups may, whether intentional or not, modify the emerging ECS. Efforts to explain inter-model 23 
differences in ECS would greatly benefit from increased transparency about the tuning choices made by 24 
individual modelling groups. 25 
 26 
It is well-understood that the multi-model ensemble mean provides an inaccurate estimate of an underlying 27 
best estimate ECS coming out of climate modelling in general. The primary source of inter-model spread is 28 
variations in the net feedback parameter, which is inversely proportional to ECS. Thus, a positive error in the 29 
feedback parameter has a larger positive impact on ECS than an equally large negative error, leading to a 30 
distribution with a mean that is skewed towards higher values which results in the mean usually being higher 31 
than the median (Roe and Baker, 2007). Even under ideal conditions, though, one would expect distributions 32 
of ECS from GCMs to be wider than that of the assessment building on multiple lines of evidence presented 33 
in Section 7.5.5. Climate models are built principally on process-understanding, but far from all information 34 
on relevant processes can adequately be represented in sub-grid-scale parameterizations. Examples are 35 
information on low-cloud feedback estimates from large-eddy simulations or variations in cloudiness 36 
observed from satellites that are not easily translated into parameterizations that are used in GCMs. 37 
Likewise, the assessment (Section 7.5.5) includes information from historical warming, paleoclimates and 38 
emergent constraints which is not routinely used to inform GCM evaluation and development. Therefore, the 39 
distributions of ECS and TCR from a model ensemble alone would be expected to have more spread than the 40 
assessed ECS range, which is based on several lines of somewhat independent evidence. 41 
 42 
A final and important consideration is that information from climate models is indirectly incorporated in 43 
several lines of evidence used in the assessment: GCMs are partly used to estimate historical- and 44 
paleoclimate ERFs (Sections 7.5.2 and 7.5.3); how feedbacks change with SST patterns (Section 7.4.4.3); 45 
and to establish emergent constraints on ECS (Section 7.5.4). They are also used as primary evidence in the 46 
process understanding of the temperature and water vapour feedbacks, whereas other lines of evidence are 47 
used exclusively for cloud feedbacks, where the climate model evidence is weak (Section 7.4.2.5).  48 
 49 
Because climate models both inform and are informed by the four lines of evidence for ECS considered in 50 
this chapter, the approach taken here is to not use the raw model ECS range as an independent line of 51 
evidence for ECS. Furthermore, it is problematic and not obviously constructive to provide weights for, or 52 
rule out, individual CMIP6 model ensemble members based solely on their ECS and TCR values. Rather 53 
these models must be tested in a like-with-like way against multiple lines of observational evidence. 54 
Therefore, in this report projections are produced using climate model emulators that are constrained by the 55 
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assessments of ECS, TCR and ERF, and CMIP6 model simulations are provided for context. In reports up to 1 
and including the AR5, GCM values of ECS did not fully span the assessed very likely range of ECS, raising 2 
the possibility that past multi-model ensembles underestimated the uncertainty in climate change projections 3 
that existed at the times of those reports (e.g., Knutti, 2010). However, due to an increase in the modelled 4 
ECS spread and a decrease in the assessed ECS spread based on improved knowledge in multiple lines of 5 
evidence, the CMIP6 ensemble spans the very likely range of ECS (2–5°C) assessed in Section 7.5.5. Models 6 
outside of this range are useful for establishing emergent constraints on ECS and TCR and provide useful 7 
examples of “tail risk” (Sutton, 2018), producing dynamically consistent realisations of future climate 8 
change to inform impacts studies and risk assessments.  9 
 10 
In summary, the distribution of CMIP6 models have higher average ECS and TCR values than the CMIP5 11 
generation of models and the assessed ranges of ECS and TCR within the Chapter (high confidence). Their 12 
high ECS and TCR values can be traced to extra-tropical cloud feedbacks (medium confidence). The ranges 13 
of ECS and TCR from these models are not considered as robust samples of possible values and the models 14 
are not considered as a separate line of evidence for ECS and TCR. Solely based on their ECS or TCR values 15 
an individual CMIP6 model cannot be ruled out as implausible. The high climate sensitivity leads to 16 
generally higher projected warming in CMIP6 compared to CMIP5 (Chapter 4, Box 4.1).  17 
 18 
 19 
7.5.7 Critical processes determining global temperature response to forcing 20 
 21 
The magnitude of long-term global temperature change in response to a given radiative forcing can be 22 
understood in terms of the factors contributing to the global atmospheric energy budget: the effective 23 
radiative forcing (ERF), which drives the global energy imbalance and associated surface temperature 24 
change; the TOA radiative response to this surface warming, as set by radiative feedbacks which govern the 25 
rate and magnitude of warming through radiative energy loss to space; and global ocean heat uptake, which 26 
offsets some of the transient surface warming. 27 
 28 
A variety of studies evaluate the contribution that each of these factors makes to surface warming within 29 
coupled GCM simulations by diagnosing so-called ‘warming contributions’ for each process (Dufresne and 30 
Bony, 2008; Crook et al., 2011; Feldl and Roe, 2013; Vial et al., 2013; Pithan and Mauritsen, 2014; Goosse 31 
et al., 2018). By construction, the individual warming contributions sum to the total global surface warming 32 
(Figure 7.24b). For long-term warming in response to CO2 forcing in CMIP5 models, the energy added to the 33 
climate system by radiative feedbacks is larger than the ERF of CO2 (Figure 7.24a), implying that feedbacks 34 
more than double the magnitude of global warming (Figure 7.24b). Radiative kernel methods (see Section 35 
7.4.1) can be used to decompose the net energy input from radiative feedbacks into its components. The 36 
water-vapour, cloud and surface-albedo feedbacks enhance global warming, while the lapse-rate feedback 37 
reduces global warming. Ocean heat uptake reduces the rate of global surface warming by sequestering heat 38 
at depth away from the ocean surface. Section 7.4.4.1 shows the warming contributions from these factors at 39 
the regional scale. 40 
 41 
[START FIGURE 7.24 HERE] 42 
 43 
Figure 7.24: Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to global 44 

atmospheric energy input and near-surface air temperature change at year 100 of abrupt CO2 quadrupling 45 
simulations of CMIP5 models. (a) The energy flux to the global atmosphere associated with the effective 46 
CO2 forcing, global ocean heat uptake, Planck response, and radiative feedbacks, which together sum to 47 
zero; inset shows energy input from individual feedbacks, summing to the total feedback energy input. (b) 48 
Contributions to net global warming calculated by dividing the energy inputs by the global Planck 49 
response (3.2 W m–2C–1), with the contributions from radiative forcing, ocean heat uptake, and radiative 50 
feedbacks summing to the value of net warming; inset shows warming contributions associated with 51 
individual feedbacks, summing to the total feedback contribution. Uncertainties show 25% and 75% 52 
percentiles across models. Feedbacks are calculated using radiative kernels (Shell et al., 2008) and the 53 
analysis is based on that of Goosse et al. (2018). 54 

 55 
[END FIGURE 7.24 HERE] 56 
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 1 
Differences in projected transient global surface warming across GCMs are dominated by differences in their 2 
radiative feedbacks, while differences in ocean heat uptake and radiative forcing play secondary roles 3 
(Figure 7.24b) (Vial et al., 2013). The uncertainty in projected global surface temperature change associated 4 
with inter-model differences in cloud feedbacks is the largest source of uncertainty in CMIP5 and CMIP6 5 
models (Figure 7.24b), just as they were for CMIP3 models (Dufresne and Bony, 2008). Extending this 6 
energy budget analysis to equilibrium surface warming suggests that about 70% of the inter-model 7 
differences in ECS arises from uncertainty in cloud feedbacks, with the largest contribution to that spread 8 
coming from shortwave low-cloud feedbacks (Vial et al., 2013; Zelinka et al., 2020).  9 
 10 
An important limitation of understanding global warming and its uncertainty based on energy budget 11 
diagnostics within the coupled climate system is that different feedbacks interact (Section 7.4.2). For 12 
example, water-vapour and lapse-rate feedbacks are correlated (Held and Soden, 2006) owing to their joint 13 
dependence on the spatial pattern of warming (Po-Chedley et al., 2018a). Moreover, feedbacks are not 14 
independent of ocean heat uptake because the spatial pattern of heat uptake influences the SST pattern on 15 
which global feedbacks depend (Section 7.4.4.3). However, alternative decompositions of warming 16 
contributions that better account for correlations between feedbacks produce similar results (Caldwell et al., 17 
2016). The key role of radiative feedbacks in governing the magnitude of global warming is also supported 18 
by the high correlation between radiative feedbacks (or ECS) and transient warming within GCMs (Grose et 19 
al., 2018). 20 
 21 
Another approach to evaluating the roles of forcing, feedbacks and ocean heat uptake in projected warming 22 
employs idealized energy balance models that emulate the response of GCMs, and which preserve the 23 
interactions between system components. One such emulator, used in Section 7.5.1.2, resolves the heat 24 
capacity of both the surface components of the climate system and the deep ocean (Held et al., 2010; 25 
Geoffroy et al., 2013a, 2013b; Kostov et al., 2014; Armour, 2017). Using this emulator, Geoffroy et al. 26 
(2012) find that: under an idealized 1% per year increase in atmospheric CO2, radiative feedbacks constitute 27 
the greatest source of uncertainty (about 60% of variance) in transient warming beyond several decades; 28 
ERF uncertainty plays a secondary but important role in warming uncertainty (about 20% of variance) that 29 
diminishes beyond several decades; and ocean heat uptake processes play a minor role in warming 30 
uncertainty (less than 10% of variance) at all timescales.  31 
 32 
More computationally intensive approaches evaluate how the climate response depends on perturbations to 33 
key parameter or structural choices within GCMs. Large ‘perturbed physics ensembles’ wherein a range of 34 
parameters associated with cloud physics are explored within atmospheric GCMs reliably produces a wide 35 
range of ECS due to changes in cloud feedbacks, but often produce unrealistic climate states (Joshi et al., 36 
2010). Rowlands et al. (2012) performed a multi-thousand member perturbed-physics ensemble of coupled 37 
GCMs by perturbing model parameters associated with radiative forcing, cloud feedbacks, and ocean vertical 38 
diffusivity (an important parameter for ocean heat uptake). After constraining the ensemble to have a 39 
reasonable climatology and to match the observed historical warming, they found a wide range of projected 40 
warming by the year 2050 under the SRES A1B scenario (1.4–3C relative to the 1961–1990 average) that is 41 
dominated by differences in radiative feedbacks. By swapping out different versions of the atmospheric or 42 
oceanic components in a coupled GCM, Winton et al. (2013) found that TCR and ECS depend on which 43 
atmospheric component was used (using two versions with different atmospheric physics), but that only TCR 44 
is sensitive to which oceanic component of the model was used (using two versions with different vertical 45 
coordinate systems, among other differences); TCR and ECS changed by 0.4C and 1.4C, respectively, 46 
when the atmospheric model component was changed, while TCR and ECS changed by 0.3C and < 0.05C, 47 
respectively, when the oceanic model component was changed. However, Krasting et al. (2018) found that 48 
perturbing ocean vertical diffusivity over a wide range within the GFDL climate model changed ECS by 49 
about 0.6C, with this difference linked to different radiative feedbacks associated with different spatial 50 
patterns of sea-surface warming (see Section 7.4.4.3). 51 
 52 
There is robust evidence and high agreement across a diverse range of modelling approaches and thus high 53 
confidence that radiative feedbacks are the largest source of uncertainty in projected global warming out to 54 
2100 under increasing or stable emissions scenarios, and that cloud feedbacks in particular are the dominant 55 
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source of that uncertainty. Uncertainty in radiative forcing plays an important but generally secondary role. 1 
Uncertainty in global ocean heat uptake plays a relatively minor role in global warming uncertainty, but 2 
ocean dynamics could play an important role on long timescales through the impact on sea-surface warming 3 
patterns which in turn project onto radiative feedbacks (Section 7.4.4.3). 4 
 5 
The spread in historical surface warming across CMIP5 GCMs shows a weak correlation with inter-model 6 
differences in radiative feedback or ocean heat uptake processes but a high correlation with inter-model 7 
differences in radiative forcing owing to large variations in aerosol forcing across models (Forster et al., 8 
2013). Likewise, the spread in projected 21st century warming across GCMs depends strongly on emissions 9 
scenario (Hawkins and Sutton, 2012; Chapter 4, Section 4.1). Strong emissions reductions would remove 10 
aerosol forcing and this could dominate the uncertainty in near-term warming projections (Armour and Roe, 11 
2011; Mauritsen and Pincus, 2017; Schwartz, 2018; Smith et al., 2019). On post 2100 timescales carbon 12 
cycle uncertainty such as the uncertainty permafrost thawing becomes increasingly important, especially 13 
under high emission scenarios (Chapter 5, Section 5.3) 14 
 15 
In summary, cloud feedbacks are the dominant source of uncertainty in this century’s transient global 16 
warming under increasing or stable emissions scenarios (high confidence), whereas uncertainty is dominated 17 
by aerosol ERF in strong mitigation scenarios. Global ocean heat uptake is a relatively minor source of 18 
uncertainty in long-term surface warming. Carbon cycle feedbacks provide an increasing fraction of 19 
uncertainty on longer timescales (high confidence). 20 
 21 
 22 
7.6 Metrics to evaluate emissions 23 
 24 
7.6.1 Introduction to metrics and innovations since IPCC AR5 25 
 26 
Emission metrics attempt to summarise the contribution emissions of different gases and forcing agents 27 
make to some aspect of climate change (see Section 7.1). They do this by comparing the relative effects of 28 
emissions of different gases on a key climate variable (such as global-mean surface temperature), according 29 
to some formula. These formulae are assessed and updated in Section 7.6.2. Chapter 8 of the AR5 (Myhre et 30 
al., 2013b) comprehensively discussed different physical metrics so this section focuses on key updates since 31 
that report. 32 
 33 
The cause-effect chain from linking emissions to climate forcing, climate response, and climate impacts is 34 
displayed in Figure 7.2 (Fuglestvedt et al., 2003). Each step in the causal chain requires an inference or 35 
modelling framework that maps causes to effects. Emission metrics map from emissions of some species to 36 
somewhere further down the chain, radiative forcing (e.g., Global Warming Potential or GWP) or 37 
temperature (e.g., Global Temperature-change Potential or GTP) or impacts (such as sea-level rise or 38 
socioeconomic impacts). While variables lower in the chain have greater policy relevance, they are also 39 
subject to greater uncertainty because each step in the chain includes more modelling systems, each of which 40 
brings its own uncertainty. Work since the AR5 on multi-metric approaches has continued to consider how 41 
to address fundamental differences between the climate response of short- and long-lived gases. These 42 
aspects and related developments are assessed in Section 7.6.3. Box 7.3 assesses physical aspects of 43 
emission metric use within climate policy. 44 
  45 
 46 
7.6.2 Physical description of metrics 47 
 48 
This section discusses metrics that relate emissions to physical changes in the climate system. One such 49 
metric, the 100-year GWP, has extensively been employed in climate policy to put emissions of different 50 
greenhouse gases on the same scale. Yet other physical metrics exist, which are discussed in this section.  51 
 52 
Emission metrics are a simple way of representing the magnitude of the effect a unit mass emission of a 53 
species has on a key measure of climate change. Examples of these key measures are the radiative forcing, 54 
global average surface temperature, global precipitation and global sea level (Myhre et al., 2013b; Sterner et 55 
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al., 2014; Shine et al., 2015). When used to represent a climate impact, the metrics are referred to as absolute 1 
metrics and expressed in units of impact per kg (e.g. Absolute Global Warming Potential, AGWP or 2 
Absolute Global Temperature-change Potential, AGTP). More commonly, these are compared with a 3 
standard species (almost always CO2 in kg(CO2), although CH4 has been used (Cherubini and Tanaka, 2016; 4 
Tanaka et al., 2019)) to give a dimensionless factor (written as e.g. GWP or GTP). The unit mass is usually 5 
taken as a 1 kg instantaneous “pulse” (Myhre et al., 2013b), but can refer to a “step” in emission rate of 1 kg 6 
yr-1. 7 
 8 
Since the AR5, understanding of the radiative effects of emitted species has continued to evolve and these 9 
changes are assessed in Section 7.6.2.1. Since the AR5, metrics relating to precipitation and sea level have 10 
been quantified (Section 7.6.2.2). Understanding how the carbon-cycle response to temperature affects 11 
emission metrics has improved sufficiently that the carbon cycle response to temperature is more fully 12 
included in the emission metrics presented here (Section 7.6.2.3). There have also been developments in 13 
understanding how to compare short-lived forcers (SLCFs) to CO2 (Section 7.6.2.4).  14 
 15 
 16 
7.6.2.1 Radiative properties 17 
 18 
Since the AR5, there have been advances in the understanding of the radiative properties of various species 19 
(see Sections 7.3.1, 7.3.2, 7.3.3), and hence their effective radiative efficiencies (ERFs per unit change in 20 
concentration). For CO2, CH4 and N2O, better accounting of the spectral properties of these gases has led to 21 
re-evaluation of their SARF radiative efficiencies and their dependence on the background gas 22 
concentrations (Etminan et al., 2016). For CO2 and CH4 the tropospheric rapid adjustments are assessed to be 23 
non-zero. The re-evaluated effective radiative efficiency for CO2 will affect all emission metrics relative to 24 
CO2. 25 
 26 
The effective radiative efficiencies (including rapid adjustments from 7.3.2) for 2018 background 27 
concentrations for CO2, CH4 and N2O are assessed to be 1.35×10–5, 3.78×10–4 and 2.91×10–3 W m–2 ppb–1 28 
respectively (see Table 7.15 for uncertainties), compared to the AR5 assessment of 1.37×10–5, 3.63×10–4 and 29 
3.00×10–3 W m–2 ppb–1. For CO2, increases due to the re-evaluated radiative properties and rapid adjustments 30 
balance the decreases due to the increasing background concentrations. For CH4 increases due to the re-31 
evaluated radiative properties and rapid adjustments more than offset the decreases due to the increasing 32 
background concentration. For N2O both the re-evaluated radiative properties and the increasing background 33 
concentration act to decrease the effective radiative efficiency.  34 
 35 
 36 
7.6.2.2 Physical quantities 37 
 38 
Emission metrics can be derived from simple climate models (Myhre et al., 2013b; Tanaka et al., 2013; 39 
Gasser et al., 2017), but more fundamentally can be built up from analytical expressions. All the emission 40 
metrics are related to the ERF ∆𝐹 following a change in emission, which can be considered an Absolute 41 
Global Forcing Potential AGFP (similar to the Instantaneous Climate Impact of Edwards and Trancik 42 
(2014)). A GTP can be derived by convolving the radiative forcing with a temperature response function 43 
𝑅T(𝑡) (which is the temperature at time t following a unit pulse forcing at t=0) derived from a two-layer 44 
energy balance model (Myhre et al., 2013b). A metric for precipitation, absolute global precipitation 45 
potential AGPP (Shine et al., 2015) combines both the AGTP and the AGFP. Sterner et al. (2014) used an 46 
upwelling-diffusion energy balance model to derive the thermosteric component of sea level rise (SLR) as a 47 
SLR response function to radiative forcing or as a response function to global surface temperature 𝑅SLR(𝑡). 48 
The equations relating these metrics are given in the Appendix 7.A.1. 49 
 50 
Each step from radiative forcing to temperature to SLR includes longer timescales and therefore prolongs 51 
further the contribution of short-lived species. Thus, SLCFs become relatively more important for SLR than 52 
for temperature or radiative forcing. SLR depends on the integrals of radiative imbalance and temperature 53 
rise (Section 7.2), whereas the impacts of pulse emissions of SLCF on temperature decay over time so 54 
become less important. 55 
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 1 
For species perturbations that lead to a strong regional variation in forcing pattern, the regional response can 2 
be different to the global mean. Regional equivalents to the global metrics can be derived by replacing the 3 
global temperature response function with a regional response matrix relating forcing changes in one region 4 
to temperature changes in another (Collins et al., 2013b; Myhre et al., 2013b; Aamaas et al., 2017; Lund et 5 
al., 2017). 6 
 7 
It has been shown that for the physical variables discussed, metrics can be constructed that are linear 8 
functions of radiative forcing. Similar metrics could be devised for other climate variables provided they can 9 
be related by response functions to radiative forcing or temperature change. Global damage potentials that 10 
are more closely aligned with the economic and social costs of pollutant emissions have been designed (e.g. 11 
Sarofim and Giordano, 2018). These are related to powers of the surface temperature change so, being non-12 
linear, they depend on the size of the emission and rely on the assumption of an ideal climate state from 13 
which the perturbations are measured. 14 
 15 
The physical metrics described above are instantaneous or endpoint values defined at a time 𝐻 after the 16 
emission. These are appropriate when the goal is to not exceed a fixed target such as a temperature limit or 17 
sea-level rise limit at a specific time. The above metrics can also be integrated from the time of emission, so 18 
the impact is in degree-years for temperature or metre-years for sea-level rise. These reflect that the impact 19 
depends on how long the change occurs for, not just how large the change is. The integrated version of a 20 

metric iAGxx is given by iAGxx(𝐻) = ∫ AGxx(t)
ு


𝑑𝑡. The metrics relative to CO2 iGxx are given by the 21 

ratio of the iAGxx for the species to that for CO2, e.g. the commonly used GWP metric is the integrated form 22 
of the radiative forcing metric, (GWP=iGFP). Integrated metrics include the effects of a pulse emission from 23 
the shortest timescales up to the time horizon, whereas endpoint metrics only include the effects that persist 24 
out to the time horizon. Because the largest impacts of SLCFs occur shortly after their emission and decline 25 
towards the end of the time period, SLCFs have relatively higher integrated metrics than endpoint metrics 26 
(Levasseur et al., 2016). 27 
 28 
 29 
7.6.2.3 Carbon cycle responses and other indirect contributions 30 
 31 
The AR5 included a contribution to emission metrics from carbon-cycle responses, representing an 32 
adjustment to conventional approaches, which consider more of the causal chain displayed in Figure 7.2. 33 
Any agent that warms the surface perturbs the terrestrial and oceanic carbon fluxes, typically causing a net 34 
flux of CO2 into the atmosphere and hence further warming. This aspect is already included in the carbon 35 
cycle models that are used to generate the radiative effects of a pulse of CO2, but was neglected for non-CO2 36 
species in the conventional metrics so this introduces an inconsistency and bias in the metric values (Gillett 37 
and Matthews, 2010), and also affects calculations of allowable carbon budget (MacDougall et al., 2015; 38 
Tokarska et al., 2018). A simplistic account of the carbon cycle response was tentatively included in the AR5 39 
based on a single study (Collins et al., 2013b). Since the AR5 this understanding has been revised (Gasser et 40 
al., 2017; Sterner and Johansson, 2017) using simple parameterised carbon cycle models to derive the time 41 
evolution of CO2 following a unit pulse emission CO2 flux perturbation following a unit temperature pulse. 42 
In Collins et al. (2013a) the response to a temperature pulse was assumed to be simply a CO2 emission pulse, 43 
whereas the newer studies include a more complete functional form accounting for subsequent re-uptake 44 
after the removal of the temperature increase. This has the effect of reducing the carbon-cycle responses 45 
compared to the AR5, particularly at large time horizons. The increase in any metric due to the carbon cycle 46 
response can be derived from the convolution of the temperature response with the CO2 flux response to 47 
temperature and the equivalent metric for CO2 (equation 7.SM.5 in the Appendix 7.A7.SM.3).  48 
 49 
Including the carbon cycle response for non-CO2 treats CO2 and non-CO2 species consistently. There is high 50 
confidence in the methodology for calculating the carbon cycle response, therefore we assess that its 51 
inclusion more accurately represents the climate effects of non-CO2 species. The OSCAR 2.2 model used in 52 
Gasser et al. (2017) is based on parameters derived from CMIP5 models. The climate-carbon feedback 53 
magnitude is therefore similar to the CMIP5 multi-model mean (Lade et al., 2018). The magnitude of the 54 
carbon cycle response contributions to the emission metrics in Sterner and Johansson (2017) is about twice 55 
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that of Gasser et al (2017). There is medium confidence in the magnitude of the carbon cycle response, but as 1 
values have only been calculated in two simple parameterised carbon cycle models the error is assessed to be 2 
±100%. Carbon cycle responses are included in all the metrics presented in Table 7.15 and Table 7.A.1 using 3 
the response function of Gasser et al. (2017) (their Appendix C3).  4 
 5 
Emissions of non-CO2 species can affect the carbon cycle in other ways: emissions of ozone precursors can 6 
reduce the carbon uptake by plants (Collins et al., 2013b); emissions of reactive nitrogen species can fertilize 7 
plants and hence increase the carbon uptake (Zaehle et al., 2015); and emissions of aerosols or their 8 
precursors can affect the utilisation of light by plants (Cohan et al., 2002; Mercado et al., 2009). There is 9 
robust evidence that these processes occur and are important, but insufficient evidence to determine the 10 
magnitude of their contributions to emission metrics. Ideally emission metrics should include all indirect 11 
effects to be consistent, but limits to our knowledge restrict how much can be included in practice. 12 
 13 
Emissions of chemically reactive species can lead to indirect contributions from chemical production or 14 
destruction of other greenhouse gases (Chapter 6). For methane, the AR5 assessed that the contributions 15 
from effects on ozone and stratospheric water vapour add 50% and 15% respectively. Hence methane 16 
emission metrics are scaled by 1.65. Methane can also affect the oxidation pathways of aerosol formation 17 
(O’Connor et al., submitted; Shindell et al., 2009) but the available literature is insufficient to make a robust 18 
assessment of this. Hydrocarbon and molecular hydrogen oxidation also leads to tropospheric ozone 19 
production and change in methane lifetime (Collins et al., 2002; Hodnebrog et al., 2018). For reactive 20 
species the emission metrics can depend on from where the emissions occur, and the season of emission 21 
(Aamaas et al., 2016; Lund et al., 2017; Persad and Caldeira, 2018). The AR5 included a contribution to the 22 
emission metrics for ozone-depleting substances (ODSs) from the loss of stratospheric ozone. These 23 
contributions are unchanged for the AR6.  24 
 25 
Oxidation of methane and other hydrocarbons leads ultimately to the production of CO2 (Boucher et al., 26 
2009). For hydrocarbons from fossil sources this will lead to new CO2 in the atmosphere in which case a 27 
value 2.75 can be added to all the methane metrics (1 kg of methane generates 2.75 kg CO2). The CO2 can 28 
already be included in carbon emission totals (Muñoz and Schmidt, 2016) so care needs to be taken when 29 
applying the fossil correction. 30 
 31 
Note that although there has been greater understanding since the AR5 of the carbon cycle responses to CO2 32 
emissions (Chapter 5, Section 5.5), there has been no new quantification of the response of the carbon-cycle 33 
to an instantaneous pulse of CO2 emission since Joos et al. (2013). 34 
 35 
 36 
7.6.2.4 Comparing short-lived climate forcers (SLCFs) with CO2 37 
 38 
For climate forcers with lifetimes of over a century, the standard emission metrics such as GTP vary only 39 
slowly with time horizon, so an approximate CO2 equivalence can readily be determined. In contrast, 40 
emission metrics for SLCFs with lifetimes less than twenty years are very sensitive to the choice of time 41 
horizon. GTPs compare the response to a pulse emission of a species with a pulse emission for CO2. GTPs 42 
for 50-year and 100-year time horizons for methane are estimated as 14.6 to 6.7, respectively (Table 7.15 43 
and Table 7.A.1). The time dependence occurs because the temperature changes following a pulse of CO2 (in 44 
kg) emissions are roughly constant in time (the principle behind TCRE, Section 7.1, Figure 7.25b) whereas 45 
the temperature change following a pulse of SLCF emission declines due to the decrease in SLCF 46 
concentration. In contrast a step change in SLCF emissions (in kg yr-1) that is maintained indefinitely causes 47 
a change in temperature (Figure 7.25a) that after a few decades increases only slowly and hence has a more 48 
similar behaviour to a pulse of CO2 (Smith et al., 2012; Allen et al., 2016, 2018b). This is because a step 49 
change in SLCF emissions will lead to a constant change in SLCF abundance (for timescales a few times 50 
longer than the lifetime of the SLCF).  51 
 52 
Metrics for step emission changes (e.g. AGTP

ௌ ) can be derived by integrating the more standard pulse 53 
emission changes up to the time horizon. The response to a step emission change is therefore equivalent to 54 
the integrated response to a pulse emission (AGTP

ௌ = iAGTP). 55 
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 1 
The ratio of the step metric for SLCFs with the pulse metric for CO2 leads to a combined-GTP CGTP =2 
AGTP

ௌ/AGTPCO2(Collins et al., 2019). This has the units of years (the standard GTP is dimensionless). This 3 
combined-GTP shows less variation with time than the standard GTP (comparing Figure 7.25c with d) and 4 
provides a scaling for comparing a change in emission rate (in kg yr-1) of SLCF with a pulse emission or 5 
change in cumulative CO2 emissions (in kg). Allen et al. (2016) show that an approximation (which they 6 
designate GWP* in Allen et al. (2018b)) to the combined-GTP metric can be derived by simply scaling the 7 
GWP by the time horizon 𝐻. While the combined-GTP can be calculated for any species, it is most stable 8 
(i.e., least dependent on time horizon) for short-lived species, i.e. those with lifetimes less than the around 9 
half the time horizon of the metric (Collins et al., 2019). The time variance of metrics can be accounted for 10 
exactly using the CO2 forcing equivalent metric (Wigley, 1998; Allen et al., 2018b). Such metrics provide a 11 
way of effectively comparing emissions of short- and long-lived greenhouse gases on globally averaged 12 
surface temperature. However, they could be challenging to implement into single-basket policy approaches 13 
as discussed in Section 7.6.3.  14 
 15 
 16 
[START FIGURE 7.25 HERE] 17 
 18 
Figure 7.25: Emission metrics for two SLCFs: HFC-32 and CH4, (lifetimes of 5.2 and 12.4) years. The temperature 19 

response function comes from (Geoffroy et al., 2013a) which has a climate sensitivity of 20 
0.885 °C (W m-2)-1.  Values for non-CO2 species include the carbon cycle response (Section 7.6.2.3). 21 
Results for HFC-32 have been divided by 100 to show on the same scale. (a) temperature response to a 22 
step change in SLCF emission. (b) temperature response to a pulse CO2 emission. (c) conventional GTP 23 
metrics (pulse vs pulse). (d) combined-GTP metric (step vs pulse). 24 

 25 
[END FIGURE 7.25 HERE] 26 
 27 
 28 
7.6.2.5 Emission metrics by species 29 
 30 
Emission metrics for selected species are presented in Table 7.15, with further species presented in the 31 
Appendix Table 7.A.2. The evolution of the CO2 concentrations is as in the AR5 (Myhre et al., 2013b), the 32 
perturbation lifetimes for CH4 and N2O are from Chapter 6, Section 6.2.2. The lifetimes and radiative 33 
efficiencies for halogenated species are taken from WMO (2018), except that the lifetime of SF6 is updated 34 
to 1258 years following recent evaluation (Kovács et al., 2017; Ray et al., 2017). GWP(100) values are 35 
included for consistency with previous reports, but this does not imply a recommendation of their use. 36 
GWP(500) values are included as a measure of the long-term energy budget changes. Combined metrics 37 
(CGTPs) comparing step changes in SLCFs with pulse emissions of CO2 are presented for shorter-lived 38 
species. The decrease in radiative efficiency of CO2 at higher concentrations is compensated by the increase 39 
due to rapid adjustments (Section 7.6.2.1) leading to no change in the denominator for the emission metrics. 40 
The emission metrics for methane have increased due to the increase in the methane radiative efficiency 41 
(Etminan et al., 2016) although much of this is offset by the rapid adjustment (Section 7.3.2) leading to an 42 
increase of 4% in the methane radiative efficiency. The radiative efficiency of N2O is decreased following 43 
Etminan et al. (2016) leading to lower emission metrics compared to the AR5. The responses of the carbon 44 
cycle to temperature changes caused by non-CO2 species are assessed to contribute less with the process-45 
based analysis than in the AR5 so that for all halogenated species the emission metrics are slightly smaller 46 
than in AR5. 47 
 48 
 49 
[START TABLE 7.15 HERE] 50 
 51 
Table 7.15: Emission metrics for selected species: Global Warming Potential (GWP), Global Temperature-change 52 

Potential (GTP). All values include carbon cycle responses as described in Section 7.6.2.3. Combined-53 
GTPs (CGTPs) are shown for species with a lifetime less than 20 years (see Section 7.6.2.4). The 54 
radiative efficiencies are as described in Section 7.3.2 and include rapid adjustments where assessed to be 55 
non-zero in Section 7.6.2.1. The climate response function is from Geoffroy et al. (2013). Chemical 56 
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effects of CH4 and N2O are included as in AR5. Contributions from stratospheric ozone depletion are not 1 
included. 2 

 3 
Species Lifetime 

(years) 
Radiative 
efficiency 
(Wm-2 ppb-1) 

GWP 
(100) 

GWP 
(500) 

GTP 
(50) 

GTP 
(100) 

CGTP(50) 
(years) 

CGTP(100) 
(years) 

CO2 Multiple 1.36×10-5 

(1.12 to 1.57) 
×10-5 

1 1 1 1   

CH4 12.4 3.78×10-4 
(3.14 to 4.42) 
×10-4 

32 9.1 14.6 6.7 3100 3800 

N2O 109 2.91×10-3 
(2.62 to 3.2) 
×10-3 

260 124 280 220 
  

HFC-32 5.4 0.11 
(0.9 to 1.2) 

750 210 200 150 76000 90000 

HFC-134a 14 0.16 
(0.14 to 0.18) 

1450 410 750 310 140000 170000 

CFC-11 52 0.26  
(0.23 to 0.29) 

5500 1900 5700 3200 
  

CF4 50000 0.09 
(0.08 to 0.10) 

670 9600 6900 8100 
  

 4 
[END TABLE 7.15 HERE] 5 
 6 
 7 
[START BOX 7.3 HERE] 8 
 9 
 10 
BOX 7.3: Which metric should I use? 11 
 12 
IPCC does not recommend an emission metric because the appropriateness of the choice depends on the 13 
purposes for which gases or forcing agents are being compared. Emission metrics can facilitate the 14 
comparison of effects of emissions of forcing agents in support of policy goals. They cannot define policy 15 
goals or targets but can support the evaluation and implementation of choices within multi-component 16 
policies (e.g., they can help prioritise which emissions to abate). Consideration of what is an appropriate 17 
emission metric involves both scientific aspects and value related choices. It will depend on which aspects of 18 
climate change are most important to a particular application or stakeholder, and different climate policy 19 
goals may lead to different conclusions about what is the most suitable emission metric.  20 
 21 
When emissions are rising, the most commonly used emission metrics can reflect the warming contributions 22 
made by forcing agents. However, some emission metrics can fail to give the correct sign of contributions to 23 
warming under scenarios in which emissions decline, due to limitations in their ability to represent the 24 
combined effects of pollutants with different lifetimes. Emission metrics which preserve the distinction 25 
between long-lived and short-lived climate forcings can better capture the net contribution to warming, at the 26 
expense of more complexity (see Section 7.6.3).  27 
 28 
Environmental science and related disciplines often draw the distinction between stock pollution, in which 29 
pollutants and damages are essentially cumulative, and flow pollution, in which pollutants are short-lived 30 
and damages follow the transients of the pollutant flow. This distinction is highly relevant to climate change: 31 
some forcing agents (CO2, N2O and other GHGs with centennial or longer residence times) behave as stock 32 
pollutants, while methane, HCFC-22, and other short-lived climate forcers (see Chapter 6) behave much 33 
more as flow pollutants. Therefore, the impacts of CO2, N2O and other long-lived gases are usually functions 34 
of cumulative emissions. This is why there is a near-linear relationship between GSAT change and 35 
cumulative CO2 emissions for instance (see Chapter 5, Section 5.5). The climate effects of short-lived 36 
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climate forcers and methane are generally not cumulative: warming from these species more closely follows 1 
the time evolution of emissions themselves (Wigley, 1998; Bowerman et al., 2013). 2 
 3 
The distinction is particularly important when emissions of different species are declining, as in mitigation 4 
scenarios: as emissions decline to zero, the climate effects of CO2 asymptote to a value implied by the total 5 
amount of anthropogenic CO2 emissions emitted since the pre-industrial period, while the climate effects of 6 
methane decline to zero if methane emissions decline to zero. Many of the most commonly discussed metrics 7 
like GWP and fixed time-horizon GTP, fail to capture this difference. GTP(100) is designed to accurately 8 
simulate the warming associated with a single pulse emission of methane in 100 years’ time. Pulse emission 9 
metrics like GWP and GTP compare the effects of pulse emissions of different gases from a single year, and 10 
cannot easily replicate the warming influence of emissions time-series.  11 
 12 
Whether or not the distinction between stock pollution and flow pollution is relevant within a pollution 13 
management regime depends upon the goals of the regime and the considerations (including value 14 
judgements) underpinning it. Pulse emission metrics are well-aligned with some uses of metrics. For 15 
instance, if a policy-maker is concerned primarily with operating in a cost-benefit framework, then GWP 16 
might be an appropriate choice, given its alignment with global damage potential (Tol et al., 2012; Myhre et 17 
al., 2013b). If, on the other hand, a policy-maker is working in a cost-effectiveness framework and is 18 
concerned with the effects of a single year's emissions, then GTP might be an appropriate choice because of 19 
its alignment with global cost potential. Furthermore, metrics that relate emissions to more general “damage” 20 
or “cost” changes may be useful when analysing the economics of mitigation pathways (Johansson, 2012; 21 
Sarofim and Giordano, 2018). These are also discussed in AR5 WG III Chapter 2 (Kunreuther et al., 2014).  22 
 23 
However, the distinction is important in the calculation of the warming implied by a given emissions 24 
portfolio (Allen et al., 2018a; Box 2, 2018b). It is not possible to unambiguously calculate the future 25 
warming trajectory, or compliance with a temperature target, implied by an emissions portfolio containing 26 
substantial short-lived climate pollutants and long-lived gases when emission trajectories of different gases 27 
are not reported individually, unless the emission metric itself preserves the distinction between stock and 28 
flow pollution (Fuglestvedt et al., 2018; Tanaka and O’Neill, 2018; Cain et al., 2019). The scale of this effect 29 
varies with the emissions scenario. For scenarios aiming at limiting warming to 1.5°C above pre-industrial 30 
levels, the ambiguity regarding global warming arising from reporting emissions using GWP(100) is 0.17°C, 31 
or around a third of the remaining warming budget (Denison et al., 2019). 32 
 33 
No single emission metric captures the relative roles of different emissions across all potential climate 34 
change variables of interest. No matter how it is done, the way emissions of different gases are compared is 35 
value-laden. Value judgements are implied or embedded in several choices which underpin emission metrics, 36 
such as the variable against which the comparison between forcing agents is made, as well as the associated 37 
functional form, and timescales across which comparisons are made. If the purposes of the comparison are to 38 
compare the effects of a species emitted in a single year, then pulse emissions may be advisable. If the 39 
purposes of the comparison are to consider the effects of a scenario of emissions over time, then a metric 40 
which captures the fundamental differences between LLCFs and SLCFs may be a better choice.  41 
 42 
While emission metrics can provide a useful way of comparing the effects of different gases, they are not 43 
always required if gases or forcing agents are treated separately (Harvey, 2000, p. 294-295). Although there 44 
is a history of using single-basket approaches, supported by emission metrics, in climate policy via the Kyoto 45 
Protocol, multi-basket approaches also have many precedents in environmental management, including the 46 
Montreal Protocol.  47 
 48 
 49 
[END BOX 7.3 HERE] 50 
 51 
 52 
 53 
 54 
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7.6.3 Applications of emission metrics 1 
 2 
7.6.3.1 Interpretations of emission metrics 3 
 4 
The timescale associated with the comparison is an important choice. Partly to show the effects of timescale 5 
on emission metrics, previous IPCC reports reported 20-year, 100-year, and 500-year values for GWP 6 
(Forster et al., 2007), and 20-year and 100-year values for GWP and GTP, with and without the inclusion of 7 
carbon cycle feedbacks (Myhre et al., 2013b). Time-varying emission metrics also involve the choice of a 8 
time-horizon, though in these cases the time horizon is usually derived from a climate target (most 9 
commonly a temperature target). Time horizon is a choice that, ideally, ought to reflect decision-makers’ 10 
needs, depending on the specific application and the appropriate weighting of different aspects of climate 11 
change for a given situation. The most common approach uses a 100-year timescale, but this is not 12 
universally appropriate (Myhre et al., 2013b; Chapter 8, Section 8.7). In fact, Houghton et al. (1990), 13 
specifically noted that 20, 100, and 500-year timescales they discussed were merely ‘candidates for 14 
discussion [that] should not be considered as having any special significance’.  15 
 16 
One important interpretation of the role of emission metrics lies in seeking cost-effective reductions of GHG 17 
emissions: by comparing the discounted marginal abatement costs and damages associated with one unit 18 
emission of a greenhouse gas against a unit emission of another greenhouse gas (Manne and Richels, 2001). 19 
 20 
Another key role for emission metrics which has received attention since the AR5 is their use in life cycle 21 
analysis (LCA). Life cycle analysis approaches seek ‘to quantitatively assess the environmental impacts of 22 
goods and processes from “cradle to grave.”’ (Hellweg and Milà i Canals, 2014). Several papers have 23 
reviewed the issue of metric choice for LCA, noting that analysts should be aware of the challenges and 24 
value judgements inherent in attempting to aggregate the effects of forcing agents with different timescales 25 
onto a common scale (e.g. Mallapragada and Mignone (2017)) and recommend aligning metric choice with 26 
policy goals as well as testing sensitivities of results to metric choice (Cherubini et al., 2016). Furthermore, 27 
LCA analyses which are sensitive to choice of emission metric should be accompanied by careful 28 
communication of the reasons for the sensitivity (Levasseur et al., 2016). 29 
 30 
One prominent use of emission metrics is for comparison of efforts against climate change targets. The most 31 
commonly discussed climate change targets are the global mean temperature targets established by Article 2 32 
of the Paris Agreement. The Paris Agreement has no other numerical targets, but it does have two other 33 
implicit science targets in Article 4 which articulated in support of the temperature goals in Article 2: these 34 
are an early peaking target, and the aim to “achieve a balance between anthropogenic emissions by sources 35 
and removals by sinks of greenhouse gases in the second half of this century”.  The Article 4 goals also 36 
contain important constraints regarding international equity, sustainable development, and poverty reduction. 37 
The relationship between metric choice, interpretation of the Paris Agreement, and the meaning of “net zero” 38 
emissions is an active area of research. New research shows that there are several possible interpretations of 39 
the Article 4 goals, and these, along with metric choice, have implications for the timing and meaning of “net 40 
zero” emissions (Fuglestvedt et al., 2018). Significantly, net zero greenhouse gas emissions are not 41 
necessarily required to remain below 1.5°C or 2°C, and that a target of net zero CO2 emissions, rather than 42 
net zero CO2-equivalent, is more likely to be consistent with the Paris temperature targets without overshoot 43 
(Tanaka and O’Neill, 2018). Limiting on-going temperature increase at any level requires net zero CO2 44 
emissions, and while stabilising, reducing or eliminating short-lived forcing agents can play a secondary 45 
role, the main requirement for stabilisation of temperature is to limit cumulative emissions of CO2. This is 46 
true whether or not the aims of the Paris Agreement are met (Allen et al., 2009; Pierrehumbert, 2014; Tanaka 47 
and O’Neill, 2018).   48 
 49 
Awareness of the consequences of metric choice has continued to develop, as have critiques of the default 50 
use of GWP(100). Many of these critiques apply to any emission metrics which do not draw the distinction 51 
between short- and long-lived forcing agents. It is clear that the traditional emission metric, GWP(100), 52 
gives the wrong sign of the contribution of SLCFs, including methane, to warming when emissions are 53 
declining, and this is a general property of pulse metrics. Multi-metric techniques or newer emission metrics 54 
which compare a step-change in short-lived forcing with a pulse of long-lived gases more accurately 55 
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correlate with the temperature effects of emissions scenarios. In response to the fact that the GWP does not, 1 
under most scenarios, do a good job of representing the temperature effects of emissions, Myhre et al. (2013) 2 
observed that ‘the name “Global Warming Potential” may be somewhat misleading, and “relative cumulative 3 
forcing index” would be more appropriate.’ 4 
 5 
Since the AR5, alternative methods for comparing the warming effects of greenhouse gases have been 6 
developed. Some of these give a more faithful simulation of the temperature effects of a portfolio of gases, 7 
especially under mitigation scenarios, such as those implied by successful attainment of the temperature 8 
goals set out in Article 2 of the Paris Agreement. As was pointed out in the AR5, ultimately, it is a matter for 9 
policy-makers to decide which emission metric to use, because they have the social licence to make the 10 
normative judgements regarding timescale, variable choice and functional form that underpin emission 11 
metric choice. Physical science can only form a subset of the inputs to those choices.  12 
 13 
In summary, specifying short and long-lived greenhouse gases separately in emission scenarios generally 14 
improves the quantification of surface warming, compared to approaches that aggregate greenhouse gases 15 
using CO2 equivalent emission metrics (high confidence). New metrics comparing pulse emissions of long-16 
lived greenhouse gases with sustained emission changes in short-lived gases can lead to more equivalence in 17 
surface temperature response (high confidence). Global Warming Potentials and Global Temperature change 18 
Potentials are larger compared to the AR5, due to the methodological change of accounting for carbon-cycle 19 
responses (high confidence). 20 
  21 
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Frequently Asked Questions 1 
 2 
FAQ 7.1: Clouds – What have we learned since IPCC AR5? 3 
 4 
One of the biggest challenges for climate science has been predicting how clouds will change in a warming 5 
world and whether those changes will amplify or partially offset the warming caused by increasing 6 
concentrations of greenhouse gases and other human activities. Scientists have made significant progress 7 
over the past few years and can now conclude that it is very likely that clouds will change in ways that will 8 
amplify, rather than offset, global warming in the future.  9 
 10 
On average, clouds cover two thirds of the Earth’s surface. They generally form when water vapour present 11 
in updrafts condenses around small particles known as aerosols (such as salt, dust, or smoke) to form water 12 
droplets. We see the reflections from these little droplets of water as clouds. When the droplets grow large 13 
enough or freeze to make ice crystals, they can fall to the surface as rain, snow, or other forms of 14 
precipitation. Clouds therefore play a key role in Earth’s water cycle. 15 
 16 
Clouds also play a critical role in Earth’s energy budget—the balance between the amount of incoming solar 17 
radiation and the energy radiated back to space. Clouds reflect some of the incoming radiation, which has a 18 
cooling effect. But water vapour is a greenhouse gas, so clouds also trap (i.e., absorb and re-emit) some 19 
outgoing radiation, resulting in a warming effect. Over the last four decades, measurements from satellites 20 
and aircraft-based instruments have shown that high clouds tend to trap more radiation than they reflect, 21 
while low clouds reflect more than they trap. On average, the reflection of incoming radiation currently wins 22 
out, so that, overall, clouds have a cooling influence on the climate.  23 
 24 
Scientists have known for decades that the radiative properties of clouds (that is, how much energy they 25 
reflect and trap) depend on the abundance of the aerosol particles upon which cloud droplets and ice crystals 26 
form. The atmosphere now contains more aerosols than in the pre-industrial period, and this increase has had 27 
two important effects on clouds. First, they are now more reflective because cloud droplets have become 28 
more numerous and smaller. There is broad agreement that the resulting cooling effect has counteracted a 29 
considerable portion of the warming caused by increases in greenhouse gas concentrations over the last 30 
century, though exact quantification has been a challenge. Second, it has also been proposed that the shift 31 
towards more numerous but smaller droplets acts to extend cloud lifetimes by delaying rain formation, 32 
although this effect remains controversial. While quantification is still a challenge, recent evidence suggests 33 
that increases in the lifetime and/or number of cloud droplets have amplified the cooling influence of clouds.  34 
 35 
Clouds are also expected to change as the planet continues to warm as a result of increasing concentrations 36 
of greenhouse gases, and these changes could act to amplify or offset some of the warming by altering the 37 
radiative fluxes, the effect called the cloud feedback. Exactly how various cloud properties, including the 38 
amount, altitude, and reflectivity of clouds will change in a warmer world, and how these changes will affect 39 
the energy budget of the Earth (FAQ7.1, Figure 1) constitutes the largest component of uncertainty in 40 
projections of global warming for a given emission pathway. The key question is whether cloud changes will 41 
have a net warming effect, amplifying the greenhouse warming (a positive cloud feedback) or a net cooling 42 
effect, offsetting some of the warming (a negative cloud feedback). In particular, the response of subtropical 43 
marine boundary layer clouds to surface warming has been the largest source of uncertainty in assessing the 44 
net cloud feedback. 45 
 46 
The problem stems from the fact that clouds can change in many ways and their processes occur on much 47 
smaller scales than can be represented by global climate models. The latest generation of climate models do 48 
a better job of modelling cloud behaviour thanks to increases in spatial resolution and more sophisticated 49 
representations of processes that occur at even finer scales (Section 1.4.3). Yet, this improvement is 50 
incremental, and the representation of cloud processes even in the latest climate models remains a challenge. 51 
 52 
Since the AR5, observational and modelling efforts have been further developed and integrated to build a 53 
more complete understanding of cloud processes. For example, the interaction between aerosols and clouds 54 
are now routinely included in model simulations. Furthermore, extensive analyses of the latest climate model 55 
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simulations have enabled scientists to propose a number of emergent constraints on the magnitude of the 1 
overall cloud feedback. Combined with a coordinated set of fine-scale process modelling for stratocumulus 2 
and trade cumulus clouds, these studies have revealed how low clouds over the subtropical oceans are 3 
reduced and thinned in response to surface warming, providing evidence that this cloud feedback is positive 4 
(Section 7.4.2.4). Namely, the low-cloud feedback is no longer the biggest issue of climate feedback 5 
assessments. While uncertainties in feedbacks associated with other cloud regimes, such as tropical anvil 6 
clouds and extratropical mixed-phase clouds, have emerged instead, this reflects the fact that new problems 7 
arise when old problems are resolved as our understanding of clouds and their feedbacks improves. 8 
 9 
In summary, cloud processes are now better understood and can be simulated more accurately, enabling us to 10 
narrow the range of possible cloud feedback and responses to aerosol changes. Also, the magnitude of the 11 
cooling effect of clouds enhanced by emissions of polluting gases such as sulphur dioxide and particles can 12 
now be better understood (Section 7.3).  13 
 14 
 15 
[START FIGURE FAQ7.1, Figure 1 HERE] 16 
 17 
FAQ7.1, Figure 1: Schematic illustration of different types of clouds in the present climate (grey) and their response 18 

to surface warming (red). From the left to right: high-level thick clouds, low-level thin clouds, and 19 
mixed-phase clouds over the high latitudes. Arrows represent radiative fluxes. Physical processes 20 
associated with the changes in cloud property and the resultant sign of the feedback are described 21 
at the bottom. 22 

 23 
[END FIGURE FAQ7.1, Figure 1 HERE] 24 
 25 
  26 
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FAQ 7.2: How does climate sensitivity relate to climate projections and the latest climate models? 1 
 2 
For a given future emission scenario, climate models give a range of future global surface temperature 3 
projections. This range is strongly related to the models’ equilibrium climate sensitivity, where high climate 4 
sensitivity models give stronger future warming. The new models have higher average climate sensitivity 5 
than the best estimate of climate sensitivity from other lines of evidence. This leads to end of century 6 
temperature changes up to 2°C stronger in some simulations of the latest generation of models, compared to 7 
the earlier model generation. The high warming levels in these high sensitivity models are useful as 8 
representations of high risk, low-probability futures.  9 
 10 
The equilibrium climate sensitivity is an idealised measure of climate response, defined as the equilibrium 11 
globally averaged surface temperature change caused by a doubling of carbon dioxide from its preindustrial 12 
concentration (Box 7.1). Even though an idealised quantity, it is found to strongly relate to future projections 13 
of surface temperature within climate models. Around 90% of the globally averaged projected surface 14 
temperature range in 2100 can be explained by the model range of equilibrium climate sensitivity (Section 15 
7.5.7). 16 
 17 
Equilibrium climate sensitivity estimates have been persistently uncertain across previous IPCC reports. A 18 
primary cause of this uncertainty is the way clouds respond to warming, which is difficult to estimate (see 19 
FAQ 7.1). This report makes considerable progress in quantifying equilibrium climate sensitivity by 20 
examining four different lines of evidence. 1) Process based evidence quantifies how the underlying physical 21 
processes such as how changes in clouds, water vapour, and surface reflectance contribute to climate 22 
sensitivity. 2) Historical evidence infers climate sensitivity from observed changes in the global energy 23 
budget and surface temperature over recent centuries. 3) Paleoclimate evidence infers climate sensitivity 24 
from what we know about ancient climates, particularly from the height of the last ice age (20,000 years 25 
ago). 4) Emergent constraint evidence looks at how a factor in climate models that can be observed (such as 26 
the warming rate in recent decades) varies with equilibrium climate sensitivity, and then uses observations of 27 
this factor to bound plausible sensitivity estimates (Section 7.5.1).  28 
 29 
Simulations from previous and current generations of climate models are employed to some extent in each of 30 
these four lines of evidence but the climate models are not considered as a line of evidence in their own 31 
right. This is because they are already used as part of the other lines of evidence, and treating them again as a 32 
separate line would be circular. Additionally, it is possible to construct a physically plausible model with a 33 
wide variety of climate sensitivity values and the available model range is derived from a limited sample that 34 
is not expected to be statistically representative of the real-world value (Section 7.5.6).  35 
 36 
Chapter 7 uses the four lines of evidence to make a probabilistic estimate of equilibrium climate sensitivity, 37 
giving a best estimate of 3°C. Although this sensitivity is likely between 2.5 °C and 4 °C, there remains a 5% 38 
chance it could be larger than 5°C and a 5% chance it could be smaller than 2°C. Nevertheless, this reduction 39 
of uncertainty represents considerable progress over the broader range of possible values given in the AR5. 40 
 41 
The equilibrium climate sensitivity across the latest climate models is, on average, both higher than that in 42 
the previous generation of models and higher than the best estimate of climate sensitivity estimated within 43 
Chapter 7 (see Figure FAQ7.2, Figure 1 left panel). Around 20% of the models have an equilibrium climate 44 
sensitivity larger than 5°C. Their high climate sensitivity values can be traced to cloud feedbacks. Yet, some 45 
of the cloud feedback changes are directly traceable to improved representations of clouds as compared to 46 
satellite observations. Furthermore, increased understanding of how climate feedbacks may change over time 47 
implies that models could display medium sensitivity in historical simulations, but transition to a higher 48 
sensitivity state under sustained warming. Therefore, an individual model cannot be ruled out as implausible 49 
solely based on their high equilibrium climate sensitivity. The overall shift towards higher sensitivity leads to 50 
generally higher projected warming compared to earlier generations of models, by up to 2°C in some 51 
simulations (see Figure FAQ7.2, Figure 1 right panel). Individual high sensitivity models provide important 52 
insights into low-probability, high-risk futures, but the best estimate of future warming does not rely on the 53 
latest models alone but factors in other lines of evidence that are included in the assessed climate sensitivity 54 
range. (Chapter 4, Box 4.1).  55 
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 1 
[START FIGURE FAQ 7.2, Figure 1 HERE] 2 
 3 
FAQ7.2, Figure 1:  The left panel shows equilibrium climate sensitivity estimated from the latest generation of climate 4 

models (CMIP6), the previous generation used in the AR5 assessment report (CMIP5) and the 5 
assessed very likely range from Chapter 7.  The right panel shows the projected temperature 6 
change for a future high emission scenario over 2090-2100 for CMIP6, CMIP5, and from the 7 
assessed range in Chapter 4.   8 

 9 
[END FIGURE FAQ 7.2, Figure 1 HERE] 10 
  11 
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Appendix 7.A Technical formulae and tables 1 
 2 
 3 
7.A.1 Well-Mixed Greenhouse Gas Radiative Forcing Formulae 4 
 5 
The formulae used to calculate the radiative forcings (RFs) from carbon dioxide (CO2), CH4 and nitrous 6 
oxide (N2O) are taken from Etminan et al.  (2016), their table 1. 7 
 8 
 9 
Table 7.A.1: Simplified Expressions for Radiative Forcing of CO2, CH4, and N2O, Where C Is the CO2 10 

Concentration (in ppm), M Is the CH4 Concentration (in ppb), and N is the N2O Concentration (in 11 
ppb). 12 

 13 
Gas Simplified Expression Coefficients 
CO2 [𝑎ଵ(𝐶 − 𝐶)ଶ + 𝑏ଵ|𝐶 − 𝐶| + 𝑐ଵ𝑁ഥ + 5.36] × ln ቀ𝐶

𝐶
ൗ ቁ 𝑎ଵ = −2.4 × 10ିWm-2 ppm-1 

𝑏ଵ = 7.2 × 10ିସ Wm-2 ppm-1 
𝑐ଵ = −2.1 × 10ିସ Wm-2 ppb-1 

N2O [𝑎ଶ𝐶̅ + 𝑏ଶ𝑁ഥ + 𝑐ଶ𝑀ഥ + 0.117]൫√𝑁 − ඥ𝑁൯ 𝑎ଶ = −8.0 × 10ି Wm-2 ppb-1 
𝑏ଶ = 4.2 × 10ି Wm-2 ppb-1 
𝑐ଶ = −4.9 × 10ି Wm-2 ppb-1 

CH4 [𝑎ଷ𝑀ഥ + 𝑏ଷ𝑁ഥ + 0.043]൫√𝑀 − ඥ𝑀൯ 𝑎ଷ = −1.3 × 10ି Wm-2 ppb-1 
𝑏ଷ = −8.2 × 10ି Wm-2 ppb-1 

 14 
C, M, and N are concentration at the time at which the forcing is required, and Co, Mo, and No are the initial 15 
concentrations. For terms within the square brackets, the gas concentrations are the mean of the initial and final 16 
concentrations (e.g., 𝑀ഥ = 0.5(𝑀 + 𝑀) for methane) when the concentrations of those overlapping gases are also 17 
changing. The expressions are valid in the ranges 180–2000 ppm for CO2, 200–525 ppb for N2O, and 340–3500 ppb for 18 
CH4. 19 
 20 
 21 
7.A.2 Two-layer simple climate energy balance model (EBM) used in Section 7.5.1.2. 22 
 23 
 

𝐶
𝑑

𝑑
∆𝑇 = ∆𝐹(𝑡) + 𝛼∆𝑇 − 𝜀𝜅(∆𝑇 − ∆𝑇ௗ) 

𝐶ௗ

𝑑

𝑑
∆𝑇ௗ = 𝜅(∆𝑇 − ∆𝑇ௗ), 

Equation 7.A.2.1 

 24 
where ∆𝑇ௗ is the temperature change in the deep ocean layer, C and Cd are the heat capacities for the surface 25 
and deep layers, the values adopted from the CMIP5 multi-model mean (C=8.2 and Cd=109 W year m-2 K-1; 26 
Geoffroy et al., 2013). The analytical solution of Eq. (7.A.2.1) is expressed by a combination of fast and 27 
slow modes with the decay time scales of  𝜏 and 𝜏௦, which are approximately 4 and 280 years, respectively. 28 
For a given value of ECS is obtained as 29 
 30 
 31 
 

𝑇𝐶𝑅 = 𝐸𝐶𝑆 ቊ1 − 𝜏𝑎 ቆ1 − 𝑒
ି

బ
ഓቇ − 𝜏௦𝑎௦ ൬1 − 𝑒

ି
బ
ഓೞ൰ቋ. 

Equation 7.A.2.2 

 32 
 33 
The TCR is equal to ∆𝑇 at year 𝑡 = 𝑡=70 in response to the forcing ∆𝐹 increasing at a rate of 1% per year, 34 
and all parameters (𝜏, 𝜏௦, 𝑎, and 𝑎௦) can be calculated using C,Cd, 𝜀𝜅and the net feedback parameter 𝛼 (the 35 
value of 𝜀𝜅 is given in Section 7.5.1.2 and the formulae are presented in Geoffroy et al. (2013). 36 
 37 
 38 
 39 
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7.A.3 Definitions of climate metrics in Section 7.6.2. 1 
 2 
Absolute Global Forcing Potential: 3 
 4 
 𝐴GFP(𝐻) = ∆𝐹(𝐻) Equation 7.A.3.1 

 5 
 6 
 7 
Absolute Global Warming Potential 8 
 

𝐴GWP(𝐻) = න ∆𝐹(𝑡)𝑑𝑡
ு



 
Equation 7.A.3.2 

 9 
 10 
 11 
Absolute Global Temperature-change Potential:  12 
 13 
 

𝐴GTP(𝐻) = ∆𝑇(𝐻) = න 𝐴GFP(𝑡)𝑅T(
ு



𝐻 − 𝑡)𝑑𝑡 Equation 7.A.3.3 

 
 

 
 

Absolute Global Sea-level Rise: 14 
 15 

𝐴GSR(𝐻) = ∆SLR(𝐻) = න 𝐴GTP(𝑡)𝑅SLR(
ு



𝐻 − 𝑡)𝑑𝑡

= න න AGFP(𝑡ᇱ)𝑅T(𝑡 − 𝑡ᇱ)𝑅SLR(𝐻 − 𝑡)𝑑𝑡ᇱ𝑑𝑡
௧



ு



 

 
 
 

Equation 7.A.3.4 

Increase in absolute metric (∆AGxx) due to the carbon cycle response: 16 
 

∆AGxx = න න 𝐴𝐺𝑇𝑃(𝑡ᇱ)𝑅ி(𝑡 − 𝑡ᇱ)AGxxCO2(𝐻 − 𝑡)𝑑𝑡ᇱ𝑑𝑡
௧



ு



 Equation 7.A.3.5 

where 𝑅ி(𝑡) is the CO2 flux perturbation following a unit temperature pulse in kg(CO2) yr-1 K-1 17 
 18 
 19 
 20 
Metrics for step emission changes can be derived by integrating the more standard pulse emission changes 21 
up to the time horizon: 22 
 23 
 

AGTP
ௌ = න AGTP(𝐻 − 𝑡)𝑑𝑡

ு



 Equation 7.A.3.6 
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[START Table7.A.2 HERE] 1 
 2 
Table 7.A.2: Equilibrium Climate Sensitivity (ECS) and Transient Climate Response (TCR) values in CMIP6 and 3 

CMIP5 models, data from Flynn and Mauritsen (submitted). 4 
 5 

CMIP6 CMIP5 

Model ECS (°C) TCR(°C) Model ECS(°C) TCR(°C) 

MIROC6 2.6 1.58 MPI-ESM-LR 3.48 1.94 

IPSL-CM6A-LR 4.5 2.39 MPI-ESM-MR 3.31 1.93 

CNRM-CM6-1 4.81 2.23 MPI-ESM-P 3.31 1.96 

BCC-CSM2-MR 3.07 1.6 MIROC5 2.7 1.49 

MRI-ESM2 3.11 1.67 MIROC-ESM 4.68 2.15 

CanESM5 5.58 2.75 IPSL-CM5B-LR 2.58 1.44 

CESM2 5.15 1.99 IPSL-CM5A-MR 4.03 1.96 

GISS-E2-1-H 2.99 1.81 IPSL-CM5A-LR 3.97 1.94 

GISS-E2-1-G 2.6 1.66 INM-CM4 2.01 1.22 

SAM0-UNICON 3.3 2.08 CSIRO-Mk3.6.0 4.05 1.76 

E3SM-1-0 5.09 2.91 CNRM-CM5 3.21 2.04 

UKESM1-0-LL 5.31 2.79 CNRM-CM5-2 3.4 1.63 

CNRM-ESM2-1 4.75 1.82 BNU 3.98 2.58 

BCC-ESM1 3.29 1.77 BCC-CSM1.1 2.81 1.74 

CESM2-WACCM 4.65 1.92 BCC-CSM1.1(m) 2.77 2 

MIROC-ES2L 2.66 1.51 MRI-CGCM3 2.65 1.58 

EC-EARTH3-VEG 3.93 2.76 NORESM1-M 2.75 1.34 

HADGEM3-GC31-LL 5.46 2.47 ACCESS1.0 3.76 1.72 

NORCPM-1 2.78 1.55 CanESM2 3.71 2.37 

GFDL-CM4 3.79 - GFDL-ESM2M 2.33 1.23 

GFDL-ESM4 2.56 - GFDL-ESM2G 2.3 0.96 

NESM3 4.5 - GFDL-CM3 3.85 1.85 

NORESM2-LM 2.49 1.48 CCSM4 2.9 1.64 

MPI-ESM1-2-HR 2.84 1.57 FGOALS-g2 3.39 1.42 

INM-CM4-8 1.81 1.3 GISS-E2-H 2.33 1.69 
   

GISS-E2-R 2.06 1.41 
   

HADGEM2-ES 3.96 2.38 
      

Mean 3.74 1.98 Mean 3.20 1.75 

95% percentile 5.43 2.79 95% percentile 4.04 2.38 

5% percentile 2.50 1.48 5% percentile 2.13 1.22 

 6 
[END Table 7.A.2 HERE] 7 
 8 
 9 
 10 
 11 
 12 
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[START Table 7.A.3 HERE] 1 
 2 
Table 7.A.3: Radiative efficiencies, lifetimes, AGWP and GWP values for 100 years. AGTP, GTP, iAGTP and CGTP 3 

values for 50 and 100 years (see Section 7.7.2 for definitions). Carbon cycle responses are included for all 4 
species. Radiative efficiencies and lifetimes of halogenated species are from WMO (2018). 5 

 6 
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Figure 7.1: A visual abstract of the Chapter, illustrating why the Earth’s Energy budget matters and how it relates 5 

to the underlying Chapter assessment. The methods used to assess processes and key new findings relative to IPCC 6 
AR5 are highlighted. 7 
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Figure 7.2: A conceptual chain of processes linking human activity to climate impacts, showing where the climate 3 

indicators and emission metrics assessed in this chapter fit within the chain and how they associate with 4 
other IPCC Working Groups. 5 

 6 
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  1 
Box 7.1, Figure 1: Schematics of the forcing-feedback framework adopted within the assessment, 2 
following Equation 7.1. Illustrated is how the Earth’s energy balance might evolve for a 3 
hypothetical doubling of atmospheric CO2 concentration above preindustrial levels, where an initial 4 
positive energy imbalance (energy entering the Earth system, shown on the y-axis) is gradually 5 
restored towards equilibrium as the surface temperature warms (shown on the x-axis). a) illustrates 6 
the definitions of ERF for the special case of a doubling atmospheric CO2 concentration, the 7 
feedback parameter and the ECS. b) illustrates how approximate estimates of these metrics are made 8 
within the Chapter and how these approximations relate to the exact definition adopted in panel a). 9 
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 3 
Figure 7.3: Schematic representation of the global mean energy budget of the Earth (upper panel), and its equivalent 4 

without considerations of cloud effects (lower panel). Numbers indicate best estimates for the magnitudes 5 
of the globally averaged energy balance components in W m-2 together with their uncertainty ranges in 6 
parentheses (5 % to 95 % confidence range), representing present day climate conditions at the beginning 7 
of the 21th century. Adapted from Wild et al. (2015, 2019).  8 
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 2 
Figure 7.4: Anomalies in global mean all-sky TOA fluxes from EBAF Ed4.0 (solid black lines) and various CMIP6 3 

climate models (coloured lines) in terms of reflected solar (upper panel), emitted thermal (middle panel) 4 
and net TOA fluxes (lower panel). The multimodel means are additionally depicted as doted black lines. 5 
Model fluxes stem from simulations driven with prescribed SSTs and all known anthropogenic and 6 
natural forcings.  Shown are anomalies of 12-month running means. Larger reflected shortwave and 7 
emitted thermal flux anomalies are defined as positive in upper and middle panels. Net TOA flux is 8 
defined as incoming shortwave flux minus reflected and emitted fluxes (i.e. downward positive). Adapted 9 
from Loeb et al. (submitted).  10 
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 1 
Box 7.2, Figure 1: Estimates of the net cumulative energy change (ZJ = 1021 Joules) for the period 1971–2018 2 

associated with: (a) Total Earth System Warming; (b) Effective Radiative Forcing; (c) Earth 3 
System Radiative Response. Shaded regions indicate the 5th to 95th percentile uncertainty range. 4 
The grey lines indicate equivalent heating rates in W m-2, expressed relative to Earth’s surface 5 
area. Panels (d) and (e) show the breakdown of components, as indicated in the legend, for Total 6 
Earth System Warming and Effective Radiative Forcing, respectively. Panel (f) shows the Earth 7 
Energy Budget assessed for the period 1971–2018, i.e. the consistency between Total Earth 8 
System Warming and the implied heat storage from Effective Radiative Forcing plus Earth System 9 
Radiative Response. Shading represents the 5% to 95% uncertainty range. Forcing and Response 10 
timeseries are computed using a baseline period of 1850–1900. [placeholder: Total Earth System 11 
Warming components to be updated to 2018 for final draft. Reported values for sum of 12 
components in main text are based on extrapolation of 2006–2015 rate to 2018. The aerosol ERF 13 
estimate is based on AR5 and will be updated for the final draft.]    14 
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 2 
 3 

Box 7.2, Figure 2: Two-layer model simulations of global mean surface temperature (left) and 4 
ocean thermal expansion (right) under the RCP2.6 and RCP4.5 scenarios, following Palmer et al. 5 
(2018). Shaded regions indicate the 90% confidence interval based on the ensemble standard 6 
deviation. Dotted lines indicate the ensemble mean response. Solid lines show a single CMIP5 7 
model simulation to illustrate the characteristics of variability in each variable.  Projections are 8 
shown relative to a 1986-2005 baseline period.  9 
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Figure 7.5: Observation-based and CMIP5 climatological northward energy transports in the atmosphere and ocean 3 

(top) and projected heat transport changes at year 100 following CO2 quadrupling (bottom). (a) 4 
Climatological net heat transport inferred from CERES TOA (Armour et al., 2019; Donohoe et al., 5 
submitted) and simulated by CMIP5 models. (b) Climatological atmospheric heat transport calculated 6 
from the NCEP Reanalysis (Trenberth and Stepaniak, 2003) and simulated by CMIP5 models. (c) 7 
Climatological oceanic heat transport inferred from surface energy budgets (calculated as a residual 8 
between atmospheric heat transport divergence and TOA radiation fluxes). Grey shading shows 5% to 9 
95% range on observational estimates. For total meridional heat transport the range is estimated from 10 
inter-annual variability and total CERES calibration error added in quadrature at each latitude. For 11 
atmospheric heat transport the range is estimated from inter-annual variability and for oceanic heat 12 
transport the range is estimated as a residual from the total and atmospheric heat transports with errors 13 
propagated in quadrature. (d-f) Anomalies in net, atmospheric, and implied oceanic heat transports 14 
simulated by CMIP5 models under abrupt CO2 quadrupling relative to the pre-industrial control 15 
simulations which define their climatologies in (a)-(c) (following Donohoe et al., submitted). Implied 16 
ocean heat transport changes are derived from net sea-surface heat fluxes and thus do not account for the 17 
pattern of ocean heat storage.  18 
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  1 
 2 
Figure 7.6: The effective radiative forcing (ERF), instantaneous radiative forcing (IRF) and adjustment (a) and 3 

breakdown of the adjustment using radiative kernels (b) for five idealised forcing experiments across nine 4 
models. The 90% confidence range is shown. Note that the land-surface response is included in ERF.  5 
Data modified from Smith et al. (2018b). Separation of temperature adjustments into tropospheric and 6 
stratospheric contributions is approximate based on a fixed tropopause of 100 hPa at the equator, varying 7 
linearly in latitude to 300 hPa at the poles. The results are computed from idealized single forcing 8 
experiments with the following abrupt perturbations from present day conditions; doubling CO2 9 
concentration (2×CO2), tripling methane concentration (3×CH4), two percent increase in insolation 10 
(+2%Sol), ten times black carbon concentrations or emissions (10×BC), five times sulphate 11 
concentrations or emissions (5×Sul). 12 

 13 
 14 
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 1 
Figure 7.7: Values of climate sensitivity (−1/𝛼) derived from ERF and SARF for twelve forcing experiments. Multi-2 

model means and full model ranges are shown. ERF is derived from prescribed SST and sea-ice 3 
experiments. The number of models analysed differs between experiments as indicated on the bars. Data 4 
from Richardson et al. (2019). The results are computed from idealized single forcing experiments with 5 
the following abrupt perturbations from present day conditions; doubling CO2 concentration (2xCO2), 6 
tripling methane concentration (3xCH4), two percent increase in insolation (2%Sol), ten times black 7 
carbon concentrations or emissions (10xBC), five times sulphate concentrations or emissions (5xSul), ten 8 
times sulphate concentrations or emissions over Asia only (10xSulAsia), ten times sulphate 9 
concentrations or emissions over Europe only (10xSulEur), change in CFC-12 mixing ratio to 5ppb 10 
(CFC-12), change in CFC-11 mixing to 5ppb (CFC-11), change in N2O mixing ratio to 1ppm (N2O), five 11 
times tropospheric ozone concentration (ozone), change in vegetation to pre-industrial conditions (land 12 
use). Black bars represent 90% range of model spread for 2xCO2, 3xCH4, +2%Sol, 10xBC and 5xSul and 13 
the full model range for other experiments. 14 

  15 



Second Order Draft Chapter 7 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 7-185 Total pages: 206 

 1 
 2 
Figure 7.8: Net aerosol ERFari+aci from different lines of evidence. Green bars show the assessment based on 3 

satellite observations. Blue bars show the assessment based on climate models, with individual models 4 
from CMIP5 (Zelinka et al., 2014) and CMIP6 (Smith et al., submitted, b) depicted. Individual assessed 5 
best-estimate contributions from ERFari and ERFaci are shown with darker and paler shading 6 
respectively. Overlaid black diamond and black lines shows the best estimate and very likely range of 7 
satellite- and model-derived ERFari+aci.  Grey shading shows the very likely range consistent with 8 
energy budget constraints. Purple bars show the assessed very likely range (thin), likely range (thick), and 9 
best estimate (black diamond) from all lines of evidence in this assessment.  10 

 11 
 12 
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Figure 7.9: Effective radiative forcing from 1750 to 2018 by contributing forcing agents. 4 
 5 
  6 
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 1 
Figure 7.10: Components of radiative forcing from 1850 to 2014 by emitted species based on CMIP6 models 2 

(Thornhill et al. submitted). “VOC” includes CO as well as other non-methane hydrocarbons. WMGHGs 3 
are from the analytical formulae in section 7.3.2, H2O (strat) is from table 7.8. Other components are 4 
multi-model means from Thornhill et al. (submitted), see Chapter 6, Section 6.3.1.1, and are based on 5 
model simulations where one species at a time is increased from 1850 levels to 2014. Error bars are 5-6 
95% and account for uncertainty in radiative efficiencies and multi-model error in the means. IRFari and 7 
cloud effects are calculated from separate radiation calls for clear-sky and aerosol free conditions (Ghan, 8 
2013; Thornhill et al. submitted). “Cloud” includes cloud adjustments (semi-direct effect) and ERFaci. 9 
The aerosols (SO2, organic carbon, black carbon) components are scaled to sum to -0.25 W m-2 for IRFari 10 
and -0.95 W m-2 for “cloud” (section 7.3.3). 11 
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 1 
Cross-Chapter Box 7.1, Figure 1: A comparison between the global-mean surface 2 
air temperature response of various calibrated simple climate model types and one 3 
CMIP6 Earth System models, IPSL CM6A-LR. Most of the latest generation 4 
emulators incorporate a non-linearity or state-dependency of the climate sensitivity 5 
in order to match ESMs results across the wide response space of SSP scenarios 6 
(panel a), quadrupled, doubled and halved CO2 concentrations (panel b). This is an 7 
advancement over simple climate model as used in the IPCC Second Assessment 8 
Report (cf. Figure 17 in Harvey et al., 1997). Figure adapted from Nicholls et al. 9 
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 1 
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Figure 7.11: The contribution of forcing agents to 2018 temperature change relative to 1750 produced using the two-3 

layer energy balance model (Cross-Chapter Box 7.1) where ranges for ERF were taken from Section 7.3 4 
and ranges for ECS were taken from Section 7.5. Dashed error bars show the contribution of forcing 5 
uncertainty and solid error bars show the combined forcing and climate response uncertainty.  6 
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 1 
Figure 7.12: Timeseries of near surface global temperature changes, using the time series of ERFs assessed in Chapter 2 

2 and calculated using the two-layer energy balance model (Cross-Chapter Box 7.4) with the best 3 
estimate of ECS assessed in Section 7.5. 4 
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 3 
Figure 7.13: (a) Estimates of global-mean climate feedbacks in 28 CMIP5 (blue) and 27 CMIP6 (orange) 4 

abrupt4xCO2 simulations. The open circle represents individual models and the black circle with an error 5 
bar indicates the multi-model mean and the inter-model standard deviation. Decomposition of 6 
temperature and moisture feedbacks follows (Held and Shell, 2012), which divide them into Planck 7 
response with fixed relative humidity (P*, denoted as ‘Held & Shell’ in the figure), Lapse Rate (LR*) and 8 
Relative Humidity (RH) feedbacks. The P* term is further separated to the conventional Planck response 9 
and a water vapour feedback with fixed RH (represented as ‘Conventional’ and ‘Clausius-Clapeyron’; see 10 
Section 7.4.2.2). The net cloud feedback is the sum of cloud shortwave (Cloud SW) and longwave (Cloud 11 
LW) feedbacks. The residual between the summed feedback and the net climate feedback (left), the latter 12 
directly derived from the models, includes feedbacks neglected in this analysis but considered in some 13 
models (e.g.  non-biogeochemical feedbacks) and above all errors in the radiative kernel. (b) 14 
Decomposition of the global cloud SW feedback into contributions from non-low and low clouds (left), 15 
the latter further broken down to the low cloud amount (middle) and albedo (right) feedbacks. Their 16 
global means are equal to the average of tropical (30°S–30°N) and extratropical (poleward of 30°S/N) 17 
components. All the values are based on six radiative kernels by Zelinka et al. (2019). 18 
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Figure 7.14: Schematic cross section of diverse cloud regimes between the tropics and polar regions. Thick solid and 3 
dashed curves indicate the tropopause and the subtropical inversion layer in the current climate. Thin grey 4 
text and arrows represent robust responses in the thermodynamic structure to greenhouse warming, of 5 
relevance to cloud changes. Text and arrows in red show the major cloud responses and the sign of their 6 
feedbacks to the surface warming assessed in this chapter. 7 
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Figure 7.15: Feedback parameter, α (W m-2 °C-1), as a function of global mean surface air temperature anomaly 3 

relative to preindustrial, for model simulations (coloured circles and lines; Caballero and Huber, 2013; 4 
Good et al., 2015; Jonko et al., 2013; Mauritsen et al., 2019; Meraner et al., 2013; Stolpe et al., 2019; Zhu 5 
et al., 2019), and from paleoclimate data (grey circles and associated uncertainties; Anagnostou et al., 6 
2016; Shaffer et al., 2016).  For the model simulations, the value on the x-axis refers to the mean of the 7 
temperature before and after the system has equilibrated to a forcing (in most cases a CO2 doubling), and 8 
is expressed as an anomaly relative to an associated pre-industrial global mean temperature from that 9 
model.  The values of α from proxies assume a radiative forcing of 3.7 W m-2 for CO2 doubling. 10 

 11 
 12 
 13 
 14 
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Figure 7.16: Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to regional surface 3 
temperature changes at year 100 of abrupt CO2 quadrupling simulations of CMIP5 models. (a) Pattern of 4 
near-surface air temperature change. (b-d) Contributions to net Arctic (>60N), tropical (30S-30N), and 5 
Antarctic (<60S) warming calculated by dividing regional-average energy inputs by the regional-average 6 
Planck response, with the contributions from radiative forcing, changes in atmospheric heat transport, 7 
ocean heat uptake, and radiative feedbacks summing to the value of net warming; inset shows regional 8 
warming contributions associated with individual feedbacks, summing to the total feedback contribution. 9 
Uncertainties show 25% and 75% percentiles across models. The warming contributions (units of C) for 10 
each process are diagnosed by calculating the energy flux (units of W m-2) that each process contributes 11 
to the atmosphere over a given region, either at the TOA or surface, then dividing that energy flux by the 12 
regional Planck response (around 3.2 W m-2 C-1 but varying with latitude). By construction, the 13 
individual warming contributions sum to the total warming in each region. Radiative kernel methods (see 14 
Section 7.4.1) are used to decompose the net energy input from radiative feedbacks into contributions 15 
from changes in atmospheric water vapour, lapse-rate, clouds and surface albedo, leaving a small residual 16 
(Shell et al., 2008) and the analysis is based on that of Goosse et al., (2018). 17 
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 5 

Figure 7.17: Temperature anomalies compared with pre-industrial for the high-CO2 EECO and MPWP time periods, 6 
and for the Last Glacial Maximum (expressed as LGM minus preindustrial), from paleoclimate proxies 7 
and models. (a,b,c) Modelled near-surface air temperature anomalies for ensemble-mean simulations of 8 
the (a) EECO (Lunt et al, submitted), (b) Pliocene (Haywood et al, submitted), and (c) Last Glacial 9 
Maximum (Kageyama et al, submitted).  (d,e,f) Proxy sea surface temperature anomalies (black circles), 10 
including published uncertainties (vertical bars), black lines show model ensemble mean SST anomaly 11 
(solid back line) and near-surface air temperature anomaly (dashed black line) for the same ensembles as 12 
in (a,b,c), coloured lines show the modelled SST anomaly for the individual models that make up each 13 
ensemble (LGM, N=1; MPWP, N=15; EECO, N=5). Proxy datasets are (d) (Hollis et al., 2019), (e) 14 
(Foley and Dowsett, 2019), and (f) Tierney et al (submitted). (g,h,i) As (a,b,c) but for SST anomalies, and 15 
with the proxy SST anomalies from (d,e,f) also shown (coloured circles).  For the Eocene maps (c,i), the 16 
anomalies are relative to the zonal mean of the preindustrial. 17 
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Figure 7.18: Illustration of tropospheric temperature and low-cloud response to observed and projected Pacific Ocean 3 

sea-surface temperature trends; adapted from Mauritsen (2016). (a) Atmospheric response to linear sea-4 
surface temperature trend observed over 1870-2018 (HadISST1 dataset; Rayner et al., 2003). (b) 5 
Atmospheric response to linear sea-surface temperature trend projected over 150 years following CO2 6 
quadrupling by an average of 22 CMIP6 GCMs (Dong et al.,submitted). The historical temperature trend 7 
shows relatively large warming in the western tropical Pacific has been communicated aloft (red 8 
atmospheric temperature profile), remotely warming the tropical free troposphere and increasing the 9 
strength of the inversion in regions of the tropics where warming has been muted, such as the eastern 10 
equatorial Pacific. In turn, an increased inversion strength has increased the low-cloud cover (Zhou et al., 11 
2016) causing an anomalously negative cloud and lapse-rate feedbacks over the historical record 12 
(Andrews et al., 2018; Marvel et al., 2018). The projected temperature trend shows relatively large 13 
warming in the eastern tropical Pacific which is trapped near the surface (red atmospheric temperature 14 
profile), decreasing the strength of the inversion locally. In turn, a decreased inversion strength combined 15 
with surface warming is projected to decrease the low-cloud cover, causing the cloud and lapse-rate 16 
feedbacks to become less-negative in the future.  17 
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Figure 7.19: Sea-surface temperature linear trends (a) observed over 1870-2018 (HadISST dataset; Rayner et al., 4 
2003), and (b) projected over 150 years following CO2 quadrupling by an average of 22 CMIP6 GCMs 5 
(Dong et al., submitted)  6 
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Figure 7.20: Relationship between effective and equilibrium radiative feedbacks in CMIP5 and CMIP6 models. (a) 4 
CMIP5 effective feedback values estimated by using year 100 of 1%/yr CO2 ramping simulations as an 5 
analog for historical warming (Armour, 2017). (b) CMIP5 effective feedback values estimated by using 6 
year 100 of 1%/yr CO2 ramping simulations as an analog for historical warming with updated estimates 7 
of CO2 radiative forcing (Lewis & Curry, 2018). (c) CMIP6 effective feedback values estimated by 8 
regression over the first 50 years of abrupt CO2 quadrupling (abrupt4xCO2) simulations as an analog for 9 
historical warming with updated estimates of CO2 radiative forcing (Dong et al., submitted). (d) Effective 10 
radiative feedbacks estimated from atmospheric GCMs with prescribed observed sea-surface temperature 11 
and sea-ice concentration changes (Andrews et al., 2018) based on linear regression of global TOA 12 
radiation against global near-surface air temperature over the period 1870-2010 (pattern of warming 13 
similar to Figure 7.19a) and compared with equilibrium feedbacks in abrupt4xCO2 simulations of 14 
coupled versions of the same GCMs (pattern of warming similar to Figure 7.19b). The inset shows the 15 
effective radiative feedback estimated from historical global energy budget constraints (Section 7.5.2.1); 16 
vertical bar shows median value, box shows 17 to 83% range, and horizontal line shows 5% to 95% 17 
range. In all cases, the equilibrium feedback magnitudes are estimated as CO2 ERF divided by ECS where 18 
ECS is derived from linear regression over years 1-150 of abrupt4xCO2 simulations (Box 7.1); similar 19 
results are found if the equilibrium feedback is estimated directly from the regression of global TOA 20 
radiation against global near-surface air temperature over years 1-150 of abrupt4xCO2 simulations. 21 

 22 
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Figure 7.21: Probability distributions of ERF to CO2 doubling (∆𝐹ଶ×େଶ, top) and the total climate feedback (α, right), 2 

derived from process-based assessments in Sections 7.3.2 and 7.4.2. Middle panel shows the joint PDF 3 
calculated on a two-dimensional plane of ∆𝐹ଶ×େଶ and α (red), on which the 90% range shown by an 4 
ellipse is imposed to the background theoretical values of ECS (colour shading). The white dot, thick and 5 
thin curves in the ellipse represent the mean, likely and very likely range of ECS. An alternative 6 
estimation of the ECS range (pink) is calculated by assuming that ∆𝐹ଶ×େଶ and α have a covariance. The 7 
assumption about the co-dependence between ∆𝐹ଶ×େଶ and α does not alter the mean estimate of ECS but 8 
affects its uncertainty. 9 

  10 
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Figure 7.22: (a) Time evolution of the effective radiative forcing (ERF) to the CO2 concentration increased by 1% per 4 
year until the year 70 (equal to the doubling, grey line) and kept fixed afterword. The range of ERF has 5 
been assessed in Section 7.3.2.1. (b) Range of surface temperature response to the CO2 forcing in the two-6 
layer EBM calculated with a given range of ECS, considering uncertainty in ΔF2×CO2,α and an additional 7 
parameter associated with the ocean heat uptake and efficacy (shaded by blue and cyan). For comparison, 8 
the step response to abrupt doubling of the CO2 concentration is displayed by a grey curve. The mean and 9 
ranges of ECS and TCR are shown at the right (the values of TCR also presented in the panel).  10 

 11 
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Figure 7.23: (a) Transient climate response (TCR) estimated from global energy budget constraints for the period 3 

2006–2018 relative to 1850–1900; horizontal bar shows median value, box shows 17 to 83% range, and 4 
vertical line shows 5% to 95% range. (b) Effective equilibrium climate sensitivity (ECS) estimated from 5 
global energy budget constraints for the period 2006–2018 relative to 1850–1900 (blue) and ECS 6 
accounting for the pattern effect (orange) (Section 7.4.4.3) based on feedback changes derived from 7 
coupled GCM simulations (middle, using α’ = +0.1 ± 0.3 W m–2 °C–1) or from feedback changes 8 
assessed from multiple lines of evidence including GCM simulations with prescribed historical sea-9 
surface temperature and sea-ice concentrations (right, using α’ = +0.5 ± 0.5 W m–2 °C–1). (c) Relationship 10 
between effective ECS (blue) and actual ECS (orange) in CMIP5 and CMIP6 GCMs where the effective 11 
ECS is derived from coupled GCM simulations ('CMIP5 GCMs' Armour, 2017; 'CMIP6 GCMs' Dong et 12 
al., submitted; 'CMIP5 GCMs with updated CO2 ERF' Lewis & Curry, 2018) or from GCM simulations 13 
with prescribed historical sea-surface temperature and sea-ice concentrations ('GCMs with observed 14 
warming pattern' Andrews et al., 2018). The actual ECS in models is estimated from simulations of 15 
abrupt CO2 quadrupling (Box 7.1).  16 
 17 
 18 
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Figure 7.24: Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to global 5 

atmospheric energy input and near-surface air temperature change at year 100 of abrupt CO2 quadrupling 6 
simulations of CMIP5 models. (a) The energy flux to the global atmosphere associated with the effective 7 
CO2 forcing, global ocean heat uptake, Planck response, and radiative feedbacks, which together sum to 8 
zero; inset shows energy input from individual feedbacks, summing to the total feedback energy input. (b) 9 
Contributions to net global warming calculated by dividing the energy inputs by the global Planck 10 
response (3.2 W m–2 C–1), with the contributions from radiative forcing, ocean heat uptake, and radiative 11 
feedbacks summing to the value of net warming; inset shows warming contributions associated with 12 
individual feedbacks, summing to the total feedback contribution. Uncertainties show 25% and 75% 13 
percentiles across models. Feedbacks are calculated using radiative kernels (Shell et al., 2008) and the 14 
analysis is based on that of Goosse et al. (2018). 15 
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Figure 7.25: Emission metrics for two SLCFs: HFC-32 and CH4, (lifetimes of 5.2 and 12.4) years. The temperature 3 

response function comes from (Geoffroy et al., 2013a) which has a climate sensitivity of 4 
0.885 °C (W m-2)-1.  Values for non-CO2 species include the carbon cycle response (Section 7.6.2.3). 5 
Results for HFC-32 have been divided by 100 to show on the same scale. (a) temperature response to a 6 
step change in SLCF emission. (b) temperature response to a pulse CO2 emission. (c) conventional GTP 7 
metrics (pulse vs pulse). (d) combined-GTP metric (step vs pulse).  8 
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FAQ 7.1, Figure 1:  Schematic illustration of different types of clouds in the present climate (grey) and their response 3 

to surface warming (red). From the left to right: high-level thick clouds, low-level thin clouds, and 4 
mixed-phase clouds over the high latitudes. Arrows represent radiative fluxes. Physical processes 5 
associated with the changes in cloud property and the resultant sign of the feedback are described 6 
at the bottom. 7 
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FAQ7.2, Figure 1:   The left panel shows equilibrium climate sensitivity estimated from the latest 3 
generation of climate models (CMIP6), the previous generation used in the AR5 assessment report 4 
(CMIP5) and the assessed very likely range from Chapter 7.  The right panel shows the projected 5 
temperature change for a future high emission scenario over 2090-2100 for CMIP6, CMIP5, and 6 
from the assessed range in Chapter 4.   7 

 8 


