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Executive Summary 1 
 2 
The AR5, SR1.5, SROCC and SRLCC reports underlined the urgent need for regional climate 3 
information that is useful and relevant to the decision scale. To help fill this gap, Chapter 10 assesses 4 
the foundations of how to move from global information to the regional scales of societal need. The 5 
AR6 thus provides foundational knowledge of key factors that frame the formulation, interpretation 6 
and application of regional messages of change. This chapter assesses the key foundations for the 7 
generation of regional climate change messages with methodologies that are employed in Chapters 11, 12 8 
and the Atlas. This chapter adds to Chapter 2 on the challenges and requirements associated with 9 
observations for constructing messages on a regional scale as compared to the global scale. The fitness of 10 
different modelling tools in different regional contexts is assessed, starting from the methodologies used at 11 
global scale in Chapters 3 and 4. Chapter 3 assesses the human influence on the climate system on a global 12 
scale, while in this chapter methodologies of attribution of regional climate change are assessed. Note that 13 
regional climate change, which ultimately is the change experienced at each location and the change that 14 
society needs to adapt to, is different from the global climate change attributable to human activities assessed 15 
in Chapter 3. Regional climate change can also be due to natural internal processes such as atmospheric 16 
internal variability and regional climate response to changes in large-scale phenomena and to other external 17 
forcings than those related to human activity, such as modulations of the solar cycle, orbital forcing or 18 
volcanic eruptions. Additional approaches for messaging assessed in this chapter are the interaction between 19 
different actors in the co-production process, the relevance of the context and values, the use of storylines as 20 
a tool to convey information, and the distillation process using multiple lines of evidence necessary to 21 
produce climate information and messages. 22 
 23 
 24 
Observations and models as sources of regional information 25 
 26 
To increase confidence in future projections of regional climate, there is high confidence that multiple 27 
sources of observations and tailored diagnostics are needed to evaluate climate model performance. 28 
There is very high confidence that the availability of multiple observational records at regional scale is 29 
fundamental for assessing climate model performance {Section 10.2.2}. There is high confidence that 30 
complex, multi-variate and process-oriented diagnostics are needed to evaluate whether a climate model 31 
realistically simulates required aspects of present-day regional climate, and to increase confidence of future 32 
projections of these aspects {Section 10.3.3}. 33 
 34 
Observational records for mountainous regions, data sparse regions and cities cause difficulties that 35 
pose limits to the assessment of regional climate change. There is very high confidence that precipitation 36 
measurements, especially of solid precipitation, in mountainous areas are strongly affected by the gauge 37 
location and setup. There is high confidence on elevation-dependant warming in most of the mountain ranges 38 
but field measurements are extremely limited at high elevations {Cross-Chapter-Box 10.3; Section 10.2.2}. 39 
It is virtually certain that the scarcity and decline of observations (e.g., in southern Mediterranean, Africa, or 40 
India) increase the uncertainty of long-term temperature and precipitation estimates {Section 10.2.2, Sections 41 
10.6.2-3-4}. Gridded products of temperature and precipitation are strongly affected by interpolation 42 
methods over complex orography and data scarce regions such as the southern Mediterranean {Section 43 
10.2.2, Section 10.6.4}. It is virtually certain that uncertainties related to long-term warming estimates at 44 
regional scale are reduced using statistical homogenization methods {Section 10.2.2}. 45 
 46 
Reducing errors in the model formulations of global climate models is fundamental for improving 47 
both global climate model performance at the regional scale and the boundary conditions for 48 
dynamical downscaling. There is very high confidence that, in spite of these errors, global climate models 49 
are an important source of future climate information at the regional scale. There is medium confidence that 50 
increasing global climate model resolution helps reducing systematic errors, although there is high 51 
confidence that higher resolution per se does not solve all performance limitations. {Section 10.3.3} 52 
 53 
Including all relevant forcings in regional climate models, including aerosols, land-use change and 54 
ozone concentrations is a prerequisite for reproducing historical trends and to ensure fitness for 55 
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purpose for future projections in certain regions (medium confidence) {Section 10.3.3, Section 10.4.1, 1 
Box 10.2}. 2 
 3 
Dynamical downscaling using regional climate models adds value in representing many regional 4 
weather and climate phenomena, in particular over complex terrain (very high confidence), in spite of 5 
errors in model formulation that affects performance. Simulations at kilometre-scale resolution add value 6 
to the representation of convection (high confidence) and many local-scale phenomena such as land-sea 7 
breezes and influences of soil-moisture (medium confidence), which are, in turn, relevant for triggering 8 
convection. {Section 10.3.3} 9 
 10 
Statistical downscaling methods with carefully chosen predictors and an appropriate model structure 11 
for a given application realistically represent many characteristics of present-day daily temperature 12 
and precipitation (high confidence), and plausibly simulate future changes in daily mean temperature 13 
(medium confidence). There is, however, a lack of research about which predictors are required for plausibly 14 
simulating future daily precipitation. Statistical downscaling of spatial fields remains a challenge, especially 15 
for daily precipitation. {Section 10.3.3} 16 
 17 
Bias adjustment has proven beneficial as an interface between climate model projections and impact 18 
modelling, yet it cannot correct for unresolved or fundamentally misrepresented processes that lead to 19 
model errors (high confidence). Applying bias adjustment to models that substantially misrepresent 20 
relevant physical processes leads to severe problems (medium confidence). Using bias adjustment as 21 
statistical downscaling, in particular of coarse-resolution GCMs, may lead to substantial misrepresentations 22 
of regional climate and climate change (medium confidence). Instead, dynamical downscaling may be 23 
required to resolve relevant local processes prior to bias adjustment. {Section 10.3.3, Cross-Chapter Box 24 
10.2} 25 
 26 
At the regional scale, multi-model mean and ensemble spread are not sufficient to characterise low-27 
probability high-impact changes or situations where different models simulate substantially different 28 
or even opposite changes (high confidence). Storyline approaches are a complementary instrument to 29 
aid the representation of climate projection uncertainties. Multi-model ensembles, while excluding 30 
models that simulate processes relevant for a given purpose unrealistically, are required to assess regional 31 
climate response uncertainty (very high confidence), although model spread is in general not a full measure 32 
of projection uncertainty. Grand ensembles of many realisations of internal variability are required to 33 
separate internal variability from forced changes (high confidence). In the construction of global/regional 34 
climate model ensembles, computational costs can be reduced by selecting a small number of global/regional 35 
climate model combinations such that climate response uncertainty is spanned as comprehensively as 36 
possible. {Section 10.3.4} 37 
 38 
There is very high confidence that all types of urban parameterizations simulate radiation exchanges in 39 
a realistic way; they have, however, strong biases when simulating latent heat fluxes. Networks of 40 
monitoring stations in urban areas provide key information to enhance the understanding of urban 41 
microclimates and their interaction with climate change. A simple single-layer parameterization is sufficient 42 
for urban climate modelling focusing on the urban heat island and its interaction with regional climate 43 
change (low confidence). {Box 10.2} 44 
 45 
 46 
Attribution of climate changes on regional scales 47 
 48 
Anthropogenic forcing has been a major driver of temperature change since 1950 in many sub-49 
continental regions of the world (high confidence). {Section 10.4.1} 50 
 51 
Anthropogenic forcing has contributed to multi-decadal precipitation changes in several regions 52 
(medium confidence). Large observational uncertainty and internal variability as well as model errors lead to 53 
low confidence with regard to a well-constrained quantification (best estimate and confidence interval) of the 54 
total anthropogenic contribution to precipitation changes as well as the relative contributions of greenhouse 55 
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gases, including ozone, and different aerosol species. {Section 10.4.1} 1 
 2 
Based on detection and attribution studies and climate projections from multi-model initial-condition 3 
large ensembles, temperature change due to anthropogenic forcing will be the dominant factor to 4 
future multi-decadal temperature trends in most land regions of the world under the high-end (SSP5-5 
8.5 and RCP8.5) GHG emission scenarios (high confidence) {Section 10.4.2}. 6 
 7 
Based on multi-model historical simulations, regional-scale attribution studies and climate projections, 8 
in particular those coming from initial-condition large ensembles, it is very likely that internal 9 
variability will still significantly influence future multi-decadal precipitation trends in many land 10 
regions (except Antarctica, Section 9.4.2) until at least the mid-21st century {10.4.2}. 11 
 12 
The global annual mean surface-air temperature response to urbanization is negligible (high 13 
confidence). However, in cities and their surroundings, the observed warming trend can partly be attributed 14 
to historical urbanization in rapidly industrialized countries (very high confidence). There is very high 15 
confidence that annual-mean maximum temperature is less affected than annual-mean minimum temperature 16 
by historical urbanization. {Box 10.2} 17 
 18 
 19 
Co-production and distillation of regional climate information and messages 20 
 21 
There is high confidence that involving diverse expertise from climate scientists and decision makers in 22 
the production of regional climate information results in better integration of scientific evidence into 23 
decision making. There is high confidence that regional climate-change messages are influenced by the 24 
values of those constructing, communicating, and receiving the message. There is high confidence that 25 
including users ensures the correct context in forming the message. {Section 10.5} 26 
 27 
There is high confidence that distilling climate messages derived from multiple, potentially 28 
contrasting, lines of evidence such as observed, palaeoclimate proxy and simulated data, theoretical 29 
understanding, diverse analysis methods and expert judgment increases confidence in regional climate 30 
change messages {Section 10.5.4, Section 10.6}. Three examples of the distillation process are described 31 
next. 32 
 33 
A message of a drier future in the Cape Town region will gain confidence by a distillation process that 34 
shows agreement among several lines of evidence: the projected precipitation by both global and 35 
regional climate models of different spatial resolutions, and the observed and projected changes of 36 
circulation patterns consistent with drier conditions. However, the distillation is limited by a lack of 37 
information about certain physical relationships, such as whether or not a relationship between Cape Town 38 
precipitation and large-scale circulation processes also occurs over longer historical periods than only the 39 
post-1979 decades, and how compensating changes in greenhouse gases and Antarctic ozone will influence 40 
circulation changes over the twenty-first century. {Section 10.6.2} 41 
 42 
The contrast between long-term future increases in Indian monsoon rainfall and declining rainfall in 43 
the observational record can be explained using multiple lines of evidence. The observational record and 44 
future projections are not contradictory since the trends are attributed to different mechanisms (aerosols and 45 
greenhouse gases, respectively). The long-term future changes are generally consistent across global 46 
(including at high resolution) and regional climate models, and supported by theoretical arguments; 47 
furthermore, while there are subtle differences found in palaeoclimate analogues of the future climate (the 48 
mid-Holocene), different physical mechanisms at play suggest that palaeoclimate evidence does not reduce 49 
confidence in the future projections. {Section 10.6.3} 50 
 51 
The distillation of several lines of evidence provides confidence in Mediterranean warming exceeding 52 
Northern Hemisphere mean warming. The lines of evidence include the projected temperature by 53 
global and regional climate models, agreement between observational records and understanding of 54 
mechanisms. The mechanisms include dynamic and thermodynamic processes and the impact of aerosols. 55 
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Despite the robust information of enhanced Mediterranean warming, uncertainties about future amplitude 1 
and regional distribution due to differences between the models about the relative contribution of those 2 
mechanisms remain. The yet unresolved discrepancy between the warming in the CMIP5 and CMIP6 3 
experiments is an example of this uncertainty, which highlights the need for further investigation and 4 
distillation of all available evidence. {Section 10.6.4} 5 
  6 
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10.1 Foundations for regional climate messages 1 
 2 
10.1.1 Preamble 3 
 4 
Regional climate is determined by a complex interplay of global external forcings, large-scale internal modes 5 
of climate variability and teleconnections, as well as regional-scale climate processes, feedbacks and 6 
forcings. Depending on the specific context, regional climates may refer to large areas such as a monsoon 7 
region, but they may also be confined to smaller areas such as a coastline, a mountain range or a human 8 
settlement like a city. Users (understood as anyone incorporating climate information into their activity) 9 
often request climate information to a provider from within this range of scales since regional operating and 10 
adaptation decision scales range from the local to the sub-continental level. Hence, the term region is used in 11 
this chapter to indicate the range of scales of relevance for impact and adaptation without prescribing any 12 
formal regional boundaries. 13 
 14 
Given the large number of types of regional climates and the broad range of regional scales, a variety of 15 
methodologies and approaches have been developed to construct climate change information for regions. 16 
The sources include global (GCM) and regional (RCM) climate models, statistical downscaling and bias 17 
adjustment methods, among many others. Regional observations likewise play a key role in the regional 18 
climate information formulation process. High quality observations, that allow monitoring the regional 19 
aspects of climate, are used to adjust inherent model biases, and are the basis for assessing model 20 
performance. Climate information also requires attributing observed changes to large- and regional-scale 21 
anthropogenic and natural drivers and forcings. A commonly used source is made of model-based long-term 22 
projections of regional climate change, as well as climate simulations for the near-term, understood as the 23 
next 30 years (Kushnir et al., 2019; Rössler et al., 2019a). 24 
 25 
All these sources, observations and model-based data, are used to distil contextualised regional climate 26 
information from multiple evidences (Figure 10.1). This climate information is then further distilled in a co-27 
production process involving the user and the producer resulting in a regional climate message. The 28 
distillation process leading to the message considers the specific context of the question at stake, the values 29 
of both the user and the producer, and the challenge of communicating across different communities (Figure 30 
10.1). 31 
 32 
The main objective of this chapter is to assess the key foundations for the generation of messages about 33 
regional climate change. This objective has been partly addressed in previous IPCC reports (Box 10.1), but 34 
this chapter assesses the way the regional climate change problem is dealt with from a more methodological 35 
point of view. The chapter is closely linked to three other chapters (11, 12 and Atlas), which 36 
comprehensively assess regional climate change information, as well as to the chapters that assess global-to-37 
continental scale climate information (2, 3, 4, 6 and 8). 38 
 39 
The chapter starts with an introduction of concepts and sources for the generation of regional climate 40 
messages (Section 10.1). Section 10.2 addresses the aspects associated with the access to and use of 41 
observations in the construction of regional climate information. The different modelling approaches 42 
available to construct regional information are introduced and assessed in Section 10.3, which also addresses 43 
the performance of models in simulating relevant climate phenomena to estimate the credibility of future 44 
projections. Section 10.4 assesses the causes of selected recent climate changes to illustrate the complex 45 
interplay of processes shaping regional climate change. Section 10.5 tackles how messages of regional 46 
climate are distilled from different sources of information taking into account the context and the values of 47 
both the producer and the societal actors to whom messages are destined. Section 10.6 illustrates how the 48 
distillation approach to construct regional climate change information and messages works using three case 49 
studies. Finally, Section 10.7 lists a number of topics identified as limit to this assessment. 50 
 51 
 52 
 53 
 54 
 55 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-12 Total pages: 236 
 

[START FIGURE 10.1 HERE] 1 
 2 
Figure 10.1: Simplified view of the construction of a regional climate message including sources, context, values and 3 

storylines, with the processes that lead to the distillation of the message. The chapters and sections where 4 
the elements entering the message construction can be found are indicated. 5 

 6 
[END FIGURE 10.1 HERE] 7 
 8 
 9 
10.1.2 Space and time scales and uncertainty treatment 10 
 11 
The global coupled atmosphere-ocean-land-cryosphere system, including its feedbacks, shows variability 12 
over a wide spectrum of temporal and spatial scales (Hurrell et al., 2009). This section discusses concepts 13 
and definitions with respect to what can be considered a region, the relevant time scales for regional climate 14 
information and region-specific aspects of the baselines used. The section also introduces the sources of 15 
uncertainty in model-derived regional climate information and how the quantification of the uncertainties 16 
impacts the confidence of the climate information and message. 17 
 18 
There is increasing recognition that the evolutions of the weather and climate are linked to the same physical 19 
processes in the coupled Earth system operating across multiple space and time scales (outlined in Figure 20 
10.2). The concept of a unified and seamless framework for weather and climate prediction (Brown et al., 21 
2012a; Hoskins, 2013) provides the context for understanding and simulating regional climate across 22 
multiple space and time scales. This benefits from the convergence of the methods traditionally used in the 23 
two fields, in particular with regard to the initialization of the climate system and towards maximizing the 24 
predictability evident at different time scales. Furthermore, there is evidence that errors inherent in the mean 25 
climate simulation in GCMs originate within a few days in simulations initialized with the observed state of 26 
the climate system (Martin et al., 2010; Cavallo et al., 2016; Sexton et al., 2019). Process interaction in space 27 
is pervasive, which means that small spatial scales have an impact on the larger scales. Global and regional 28 
models that resolve ocean mesoscale or atmospheric convection processes help understand these multiscale 29 
interactions in the climate system (Section 10.3.1). They help identify the processes of greatest importance 30 
for the region of interest, and documenting their upscale effects on climate (Hurrell et al., 2006; Allen et al., 31 
2018) (Section 10.3.3). 32 
 33 
 34 
[START FIGURE 10.2 HERE] 35 
 36 
Figure 10.2: Schematic diagram derived from the inventive way of (Orlanski, 1975) displaying relevant interacting 37 

space and time scales to regional climate change information. Also indicated are the processes included in 38 
the different models and model components considered in Chapter 10 as a function of time and space 39 
scales. This figure is a companion of Figure 1.14 in Chapter 1 where the region sets adopted in the report 40 
are illustrated as a function of time and space scales. 41 

 42 
[END FIGURE 10.2 HERE] 43 
 44 
 45 
10.1.2.1 Definition of regions 46 
 47 
Although climate change is a global phenomenon, its manifestations and consequences are different in 48 
different regions. Regional climate is not only controlled by large-scale forcings like greenhouse gases 49 
(GHGs), solar radiation, or volcanic aerosols, and processes like the atmospheric general circulation or large-50 
scale oceanic modes of variability, but also by regional and local forcings, such as some natural and 51 
anthropogenic aerosols or land use and the associated complex multiscale interactions. Section 10.3 52 
discusses several of these regional processes and their relevance to the models used to generate climate 53 
information, while Section 10.4 offers some examples of their expression on some regional climate. 54 
 55 
The definition of the regional scale is ambiguous. Chapter 1 provides definitions of the different regional 56 
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types adopted in the report using the same frame of multiscale processes as those illustrated in Figure 10.2. 1 
Among those processes, large-scale climate and phenomena have been defined in Chapter 2 (Cross-Chapter 2 
Box 2.1) as ranging from global and hemispheric, to ocean basin and continental. In this chapter, regional 3 
scales are defined as those from the sub-continental areas (e.g., the Mediterranean basin) to local scales (e.g., 4 
human settlements such as megacities) without prescribing any formal regional boundaries. The relevant 5 
driving modes and processes at the regional scale are summarized in Figure 10.2. An example of the 6 
relevance of regional scales interacting with each other is offered for the polar-mid-latitude regions in the 7 
Cross-Chapter Box 10.1. 8 
 9 
To accomplish one of the chapter objectives of assessing the methodologies for producing climate change 10 
information on a regional scale and its attribution to a range of drivers, these methodologies are applied on a 11 
large variety of examples of regions. These examples are considered representative of specific regions 12 
spanning almost all continents (except the Antarctic) and represent regions with very different spatial 13 
extension (Figure 10.3). 14 
 15 
 16 
[START FIGURE 10.3 HERE] 17 
 18 
Figure 10.3: Regions used in the chapter. The regions for Section 10.4, illustrative regional attribution examples are in 19 

blue: Caribbean small islands, central and eastern Eurasia, East Asia, western Europe, south-western 20 
Australia, south-eastern South America, Sahel/West African monsoon region, and south-western North 21 
America (AR6 region SWN). The regions for Section 10.6, the comprehensive case studies of 22 
constructing regional climate messages, are in black: Cape Town, Mediterranean and South Asian 23 
monsoon. The urban areas used in Box 10.2 (urban climate) and the region used in Cross-Chapter Box 24 
10.3 (Hindu-Kush Himalayan climate) are in red and orange, respectively. 25 

 26 
[END FIGURE 10.3 HERE] 27 
 28 
 29 
10.1.2.2 Scales in time and baselines 30 
 31 
Climate variability is observed on a continuum from weather to climate time scales, as reflected in the 32 
current initiatives across time scales like the subseasonal-to-seasonal (Vitart et al., 2017) and the seasonal-to-33 
multiannual (Smith et al., 2012) predictions. Climate variability emerges from the weather time scale as a 34 
combination of slow internal climate processes and external forcings. The relatively short observational time 35 
record (Section 10.2) is a primary challenge to estimate the forced signal and to isolate low-frequency, multi-36 
decadal and longer term internal variability (Frankcombe et al., 2015; Overland et al., 2016; Bathiany et al., 37 
2018). Besides, only one realization of internal variability is available for the actual climate and it is 38 
nontrivial to extract estimates of its characteristics from the available data (Frankcombe et al., 2015). 39 
However approaches that use large observational ensembles produced from models have been alternatively 40 
applied (Section 10.4; McKinnon and Deser, 2018). 41 
 42 
There is a close relationship between spatial and time scales. New et al. (2001) suggested that larger spatial 43 
variations generally occur at longer time scales and are associated with correspondingly large-scale 44 
phenomena in the climate system (Figure 10.2). For example, an individual convective storm may exhibit 45 
scales of variability from metres and seconds to kilometres and hours, while for El Niño-Southern 46 
Oscillation (ENSO) the scales of variability are regional to hemispheric in extent and multi-year in length. 47 
Munoz et al. (2015) used extreme rainfall characteristics (i.e., frequency, intensity and location) to highlight 48 
that different climate drivers with different spatial and time scales interact with each other. Climate models 49 
consider this integrated approach, although their present ability to simulate regional phenomena and even 50 
represent large-scale climate drivers still leaves room for improvement (Section 10.3). 51 
 52 
Due to the large range of drivers of variability and change (Figure 10.2), quantifying the interplay between 53 
internal modes of decadal variability and any externally forced component is crucial in attempts to attribute 54 
regional climate changes (e.g., Hoell et al., 2017; Nath et al., 2018). A climate signal could arise purely due 55 
to some anthropogenic influence or conversely, entirely due to internal variability, but it is most likely the 56 
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result of a combination of the two (Section 10.4). The interplay of internal and forced variability of different 1 
time scales is particularly relevant to near-term climate prediction, which aims at predicting the phase of the 2 
multi-annual variability in the context of changing external factors (Kushnir et al., 2019). 3 
 4 
The time characteristics of climate variability has implications for regional impacts (Bathiany et al., 2018). 5 
This is true not only because a longer event accumulates more impacts, but also because it can have impacts 6 
greater than the sum of its parts. For instance, a long heat wave can have greater impacts on human mortality 7 
than the sum of individual hot days (Gasparrini and Armstrong, 2012), while the compounding effect of the 8 
three-year drought experienced in Syria commencing in 2006 has been considered to exacerbate water and 9 
agricultural insecurity, failure of agricultural systems and widespread migration (Kelley et al., 2015). 10 
 11 
It is important to note that in this chapter and subsequent ones the baselines or reference periods used for 12 
presentation of climate change may vary from those used in Chapters 1–9 (Section 1.4.1, Cross-Chapter Box 13 
1.2). In those chapters three main time baselines are defined for the past, i.e., pre-industrial (1750), early-14 
industrial (1850–1900) and recent (1995–2014), while the future baseline periods are 2021–2040 (near term), 15 
2041–2060 (mid-century) and 2081–2100 (long term). This choice also poses some difficulties because this 16 
chapter assesses results obtained from both GCM and RCM simulations, which often use different baselines. 17 
Regional simulations described in the recent literature have been performed using different baselines 18 
determined by the availability of the boundary conditions from global simulations such as 1950–2005 for 19 
CMIP5 historical and 2006-2100 for CMIP5 future scenarios (Vaittinada Ayar et al., 2016; Dong-feng et al., 20 
2017; Cai et al., 2018), and for older scenarios other periods have been used. These are different from the 21 
baselines used in the CMIP6 exercise (Chapter 3). The mismatch needs to be taken into account when 22 
assessing results obtained from both RCMs and GCMs in the context of the climate information distillation 23 
process, or when linking the results of this chapter to the assessments performed in previous chapters. The 24 
choice of baseline provides another source of uncertainty for the use of climate information for climate 25 
impacts (e.g., for the response of bird species in Africa; Baker et al., 2016). This also highlights the need to 26 
consider a range of different baselines to satisfy the requirements of the variety of users, because the choice 27 
of a baseline directly affects the perceived result in impacts studies (Dobor and Hlásny, 2018), as illustrated 28 
in Sections 10.4 and 10.6. One way of overcoming the baseline uncertainty is to define the historical 29 
reference period for a given model based on a fixed global-mean temperature change from the pre-industrial 30 
period (e.g., Sylla et al., 2018a for West Africa; Kjellström et al., 2018 for Europe; Taylor et al., 2018 for the 31 
Caribbean; Montroull et al., 2018 for South America). 32 
 33 
 34 
10.1.2.3 Uncertainty and confidence 35 
 36 
Uncertainty and confidence in messages of regional climate change are not different in nature to the way 37 
they are used in larger-scale (continental and global) climate problems (Chapter 1). The degree of confidence 38 
in climate simulations and in the resulting climate information and message typically depends on the 39 
quantification of all the uncertainties associated with the specific set of simulations used as well as with the 40 
performance assessment of these simulations. Since the direct verification of simulations of future climate 41 
changes is not possible, model performance and reliable (i.e., trustworthy) uncertainty estimates need to be 42 
assessed indirectly through process understanding and a systematic comparison with observations of past and 43 
current climate (Section 10.3.3; Eyring et al., 2019; Knutti et al., 2010). The uncertainty of the observations 44 
also has to be taken into account in this assessment (Section 10.2). These uncertainty estimates are then 45 
propagated in the distillation process that uses climate data, among other sources, to generate climate 46 
information (Smith and Matthews, 2015). 47 
 48 
Uncertainties in model-based future regional climate information arise from different sources and are 49 
introduced at various stages in the process (Lehner et al., submitted): 1) forcing uncertainties associated with 50 
the future scenario or pathway that is assumed, 2) internal variability sampled by a range of initial 51 
conditions, either generated by the model itself (Hawkins et al., 2016; Deser et al., submitted) or as close to 52 
the observations as possible (as done in near-term climate prediction), and 3) uncertainties related to 53 
imperfections in climate models, also referred to as structural uncertainty. However, the relative role of each 54 
one of these sources of uncertainty differs between the global and the regional scales as well as between 55 
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variables and also between different regions (Lehner et al., submitted). The model uncertainty is among the 1 
largest contributors to the uncertainty cascade at the regional scale and arises from limited theoretical 2 
understanding, uncertainty in model parameters, structural model uncertainty, and even the inability to 3 
accurately describe known processes (McNeall et al., 2016). Additionally, new approaches to estimate the 4 
internal variability, like the availability of large ensembles of historical simulations and projections, have 5 
illustrated how important it is to obtain reliable estimates of regional climate projections that fully take into 6 
account all the variability sources (Dai and Bloecker, 2018; Deser et al., submitted). Specific elements in 7 
regional climate information, like the inconsistency between the GCM and RCM physics and dynamics or 8 
the observational uncertainty in bias-adjustment methods, also play a role in the uncertainty cascade (Sørland 9 
et al., 2018). All these elements affect the overall confidence in regional climate messages with respect to the 10 
typical uncertainty level of phenomena and indicators at global scales (Chapters 1‒9). 11 
 12 
One way to address the internal and structural uncertainties in climate information is to consider results from 13 
both multiple models and multiple realizations of the same model (Section 10.3.1; Díaz et al., submitted; 14 
Eyring et al., 2016a; Lehner et al., submitted). An implicit assumption is that multiple models provide 15 
additional and more reliable information than a single model and that higher confidence could be placed on 16 
results that are common to an ensemble, although in principle all models could suffer from similar 17 
deficiencies leading to an excess of confidence in some results. This illustrates the relevance of considering 18 
the independence of the models contributing to create the climate message, because when the independence 19 
of the elements in the multi-model ensemble is reduced, the likelihood of incorrectly sampling the 20 
uncertainty grows (Boé, 2018). This problem also strongly affects the decisions on weighting different 21 
models in a multi-model ensemble according to their performance to better represent uncertainty (Section 22 
10.3.3; Abramowitz et al., 2018). The complex scene created by the different sources of uncertainty and the 23 
range of modelling approaches involved in the generation of regional climate information make  the 24 
collection of results available from multi-model, multi-member simulations are often most useful when 25 
synthesized through a distillation process, as described in Section 10.5.4. 26 
 27 
 28 
10.1.3 Regional climate messages 29 
 30 
Regional climate messages translate climate information synthesized from different lines of evidence into the 31 
context of a user vulnerable to climate at regional scales (Baztan et al., 2017) taking into account the values 32 
(Corner et al., 2014; Bessette et al., 2017) of both the producer and user (Section 10.5). They allow 33 
connecting global climate change to the local and regional scales, where adaptation responses and policy 34 
decisions take place through the distillation of the climate information, which is also distilled from different 35 
climate sources (Figure 10.1; Sections 10.2‒10.4) and play an important role in guiding climate-resilient 36 
development (Kruk et al., 2017; Parker and Lusk, 2019). 37 
 38 
The approaches adopted in the generation of regional climate messages are diverse and include the simple 39 
production and delivery of data as information or the co-production with the user using as many lines of 40 
evidence as possible. The choice of the source and the approach has deep ramifications for the usefulness of 41 
the message. For instance, it is well established that it is invalid to take a time series from a cell of a GCM 42 
simulation as an observational estimate of a point within the cell, due to the lack of representativeness 43 
(Section 10.3), and consequently a message building on this type of data source is not useful. The 44 
construction of regional climate information (Lourenço et al., 2016) has constraints in terms of achievable 45 
spatial and temporal resolution (Lagabrielle et al., 2018; Sayles, 2018), the way of dealing with bias and 46 
error, or the impact of non-stationarity on climate statistics. Relevant decisions are usually made about what 47 
method is more suitable to a specific application, bringing the question of context to the fore. The regional 48 
climate message generation approaches first distil the different data sources into regional climate information 49 
that consolidates multiple lines of evidence and co-produce the climate message with the user through a 50 
second distillation process (Pettenger, 2016; Verrax, 2017). The specific climate message distillation 51 
approach and the way the outcome is communicated define the characteristics and the form of the regional 52 
climate message. Messages may be provided in the form of summarised raw data, a set of user-oriented 53 
indicators, a set of figures and maps with either a brief description, in the form of a storyline, or formulated 54 
as rich and complex climate adaptation plans. In all cases, the messages are intended to meet a specific 55 
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demand and include a description of the sources and assumptions, estimates of the associated uncertainty and 1 
its sources, and guidance to prevent possible misunderstandings in its communication. 2 
 3 
The choices made to generate climate messages have typically been part of a linear supply chain, starting 4 
from the generation of climate data using often climate simulations only that are transformed into maps or 5 
derived data products, and finally formulating statements that are communicated and delivered to a broad 6 
range of users (Hewitt et al., 2012; Hewitson et al., 2017). This methodology has proven to be valuable in 7 
many cases, but it is equally fraught with dangers of not communicating important assumptions, estimating 8 
the relevant uncertainty, and possibly causing misunderstandings in the hand-over from one community to 9 
another one. This has led to the emergence of new pathways to generate user-oriented climate messages, 10 
many in the context of emerging climate services (Buontempo et al., 2018), that are assessed in Sections 10.5 11 
and 10.6. 12 
 13 
 14 
10.1.4 Sources of regional climate variability 15 
 16 
Regional climate comprises a vast number of weather phenomena and processes across different time and 17 
space scales (Figure 10.2). Variability in regional climate arises from natural and anthropogenic forcings, the 18 
local expression of large-scale remote forcings (also known as teleconnections), and the feedbacks between 19 
them. This section briefly introduces these sources of variability relevant at the regional scale and should be 20 
read along with corresponding sections in Chapters 3 and 7. Section 10.4 discusses the relevance for a 21 
number of example regions and Section 10.6 makes reference to the sources in specific cases where regional 22 
climate messages are built. Section 8.2 offers a companion discussion focussing on changes in the water 23 
cycle. 24 
 25 
 26 
10.1.4.1 Forcings controlling regional climate 27 
 28 
10.1.4.1.1 Anthropogenic well-mixed greenhouse gases 29 
This global forcing impacts both land areas (in terms of surface temperature for instance) and ocean basins, 30 
where both heat and carbon are stored over long time scales. However, there are important differences in the 31 
processes affected over land and ocean. Over the ocean, the increased radiative forcing leads to an increase 32 
in latent heat flux and a decrease in sensible heat flux, while over land, water availability is limited and 33 
increased radiative energy is therefore converted mostly into sensible heat (Sutton et al., 2007). 34 
Consequently, GHGs affect the Northern Hemisphere temperatures more than the Southern ones since the 35 
Northern Hemisphere has more continental surfaces. This hemispheric warming asymmetry can also affect 36 
rainfall patterns, as it is the case in the Sahel (Section 10.4.1.2.1). The different impact of the GHG forcing 37 
also occurs at smaller spatial scales like the elevation-dependent warming in mountain areas (Cross-Chapter 38 
Box 10.3; Pepin et al., 2015). 39 
 40 
 41 
10.1.4.1.2 Solar forcing 42 
Variations in solar forcing can have regional impacts through influences on circulation patterns. The 11-year 43 
solar variability impacts on the leading atmospheric circulation modes of the North Atlantic region (Gray et 44 
al., 2013; Thiéblemont et al., 2015; Sjolte et al., 2018), and has been suggested as an important source of 45 
near-term predictability of the North Atlantic Oscillation (NAO; Kushnir et al., 2019), although the 46 
hypothesis is also contested (Ortega et al., 2015; Chiodo et al., 2019). On centennial timescales, solar 47 
fluctuations were found to be correlated with the Eastern Atlantic Pattern (Sjolte et al., 2018). Impacts on the 48 
winter circulation and temperature over Eurasia (Chen et al., 2015) and North America (Liu et al., 2014b; Li 49 
and Xiao, 2018) have also been identified. 50 
 51 
 52 
10.1.4.1.3 Stratospheric ozone 53 
Stratospheric ozone depletion has been argued to be a driver of the southward expansion of the Southern 54 
Hemisphere descending branch of the Hadley cell (Garfinkel et al., 2015; Waugh et al., 2015; Grise et al., 55 
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2019) that has regional impacts in e.g., south-eastern South America (González et al., 2014; Wu and Polvani, 1 
2017). Further discussion of the impacts of stratospheric ozone on regional climate can be found in Section 2 
10.4.1.2. 3 
 4 
 5 
10.1.4.1.4 Aerosols 6 
Both natural and anthropogenic aerosols are often emitted at a regional scale, have a short atmospheric 7 
lifetime (from a few hours to several days; Section 6.1), are dispersed regionally and affect climate at a 8 
regional scale through radiative cooling/heating and cloud microphysical effects (Rotstayn et al., 2015; 9 
Sherwood et al., 2015; Chapter 8). The majority of aerosols scatter solar radiation, but with strong regional 10 
variations (Shindell and Faluvegi, 2009) that leads to regional radiative effects of up to two orders of 11 
magnitude larger than the global average (Li et al., 2016b, 2016a; Mallet et al., 2016). Black carbon, instead, 12 
is known to absorb solar radiation with a very inhomogeneous spatial distribution, leading to regional 13 
atmospheric warming (Gustafsson and Ramanathan, 2016). 14 
 15 
Aerosol burden and forcing are generally co-located. However, temperature and precipitation responses are 16 
both local and remote (Li et al., 2016c; Kasoar et al., 2018; Liu et al., 2018c; Samset et al., 2018; Thornhill 17 
et al., 2018; Westervelt et al., 2018). For instance, changes in aerosol concentrations in the Northern 18 
Hemisphere have been reported to modulate monsoon precipitation in West Africa and the Sahel (Undorf et 19 
al., 2018; Section 10.4.1.2) and in Asia (Zhang et al., 2018; Section 10.6.3).  20 
 21 
 22 
10.1.4.1.5 Natural aerosols 23 
Natural aerosols include mineral dust, volcanic aerosol and sea salt. The feedback processes between climate 24 
and mineral dust as well as sea salt are described in Section 6.4. 25 
 26 
Mineral dust created by wind erosion of arid and semi-arid surfaces dominates the aerosol load over a 27 
number of areas and, hence, is a phenomenon essentially regional. The major sources of contemporary dust 28 
are located in the arid topographic basins of Northern Africa, Middle East, Central and Southwest Asia, the 29 
Indian subcontinent, and East Asia. Relatively smaller sources are found in Australia, Patagonia, North 30 
America, and South Africa (Prospero et al., 2002; Ginoux et al., 2012). Dust affects the Earth’s energy 31 
balance and, therefore, the energy and water cycles, directly by scattering and absorbing radiation, and 32 
indirectly by serving as nuclei of warm and cold clouds, thereby altering their properties, lifetime, and 33 
reflectivity (Chapter 6). Dust variations are controlled by changes in surface winds, precipitation, and 34 
vegetation, which in turn are modulated at multiple time scales by dominant modes of internal climate 35 
variability (Ridley et al., 2014; Wang et al., 2015b; DeFlorio et al., 2016; Evan et al., 2016; Pu and Ginoux, 36 
2018). Upon deposition, dust reduces snow surface albedo, initiating snow albedo feedbacks that can exert 37 
regionally important impacts upon the hydrological cycle (Skiles et al., 2012). Wind-induced dust storms 38 
result in locally intense visibility hazards and potentially hazardous air quality for humans in arid and semi-39 
arid environments as well as over wide areas downwind (Chapter 12). 40 
 41 
The sign and magnitude of the global and regional climate response to either the individual or the combined 42 
effects of dust remain largely uncertain. The surface direct radiative effect is likely negative over land and 43 
ocean, especially when the assumed solar absorption by dust is large (Miller et al., 2014; Strong et al., 2015). 44 
Surface temperature and precipitation adjust to the direct radiative effect over the extent of the perturbed 45 
circulation in complicated ways, and their sign and magnitude depend sensitively upon the assumed dust 46 
absorptive properties. Dust likely cools the surface, but in regions such as the Sahara surface air temperature 47 
increases as the prescribed shortwave absorption by dust is increased, despite further dimming of the surface 48 
(Miller et al., 2014). Dust likely increases surface temperature over the major reflective dust sources (Miller 49 
et al., 2014; Solmon et al., 2015; Strong et al., 2015; Jin et al., 2016; Sharma and Miller, 2017). 50 
 51 
Volcanic eruptions load the atmosphere with large amounts of sulphur, which is transformed through 52 
chemical reactions and micro-physics processes into sulphate aerosols (Stoffel et al., 2015; LeGrande et al., 53 
2016). If the plume reaches the stratosphere, sulphate aerosols can remain there for a few months to years 54 
(about two to three for large eruptions). It is then transported to other areas by the Brower-Dobson 55 
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circulation. If the eruption occurs in the tropical area, the dispersion is made all over the Earth in a few years, 1 
while if the eruption occurs in the high latitudes of one hemisphere, aerosols mainly remain in the same 2 
hemisphere (Pausata et al., 2015). Sulphate aerosols impact the radiative forcing of the Earth, backscattering 3 
shortwave radiation, limiting the amount of energy reaching the Earth’s surface (Timmreck, 2012). The 4 
global temperature response observed after the last five major eruptions of the last two centuries is estimated 5 
to be around 0.2°C (Swingedouw et al., 2017), in association with a general decrease of precipitation over 6 
the continental surfaces (Iles and Hegerl, 2017). 7 
 8 
Volcanic eruptions impact regional climate through both their spatial heterogeneous effect on the radiative 9 
budget and the dynamical responses triggered, influencing a number of modes of climate variability (Robock 10 
and Mao, 1992). Nevertheless, the statistical significance of the regional response remains difficult to 11 
evaluate over the historical era (Bittner et al., 2016; Swingedouw et al., 2017) due to the small sampling of 12 
large volcanic eruptions over this period and the fact that the signal is superimposed upon relatively large 13 
internal variability (Gao and Gao, 2018; Dogar and Sato, 2019). Evidence from paleoclimate observations is 14 
therefore crucial to obtain a sufficient signal-to-noise ratio (Sigl et al., 2015). Reconstructions of climate 15 
variability modes based on proxy data records allowed evaluating the impact of volcanic eruptions on those 16 
modes (Zanchettin et al., 2013; Ortega et al., 2015; Michel et al., 2018; Sjolte et al., 2018). 17 
 18 
 19 
10.1.4.1.6 Anthropogenic aerosols 20 
Although the global mean optical depth caused by anthropogenic aerosols did not change from the 1975 to 21 
2005, the regional pattern changed dramatically from Europe to eastern Asia, which is now the main polluter 22 
(Fiedler et al., 2017, 2019; Stevens et al., 2017). Regional implications of clean air policies that reduce 23 
emissions of these types of aerosols are described in the Western Europe summer warming example in Section 24 
10.4.1.2.6. 25 
 26 
Aerosol-radiation interactions induce feedbacks on temperature. Under severely polluted conditions, aerosols 27 
enhance stratification from morning to daytime and increase their surface concentration leading to a positive 28 
feedback loop (Gao et al., 2016; Kajino et al., 2017). 29 
 30 
 31 
10.1.4.1.7 Land use and management including urbanization 32 
Regional climate is also shaped by small-scale forcings such as land-use changes or the presence and 33 
expansion of cities. These features can have local (e.g., irrigation mitigates temperature extremes at the 34 
irrigated site; Section 10.3.3.7.2) and non-local impacts (e.g., increased rainfall downwind of a city; Box 35 
10.2). 36 
 37 
Anthropogenic changes to the continental land surface such as deforestation, afforestation, conversion to 38 
croplands, land management (e.g., irrigation and tillage), urbanization, and construction of artificial dams 39 
can have large impacts on local and regional climate (Box 10.1). The impact of a specific land-use change 40 
will depend on the background climate. As an example, afforestation can induce local warming in boreal 41 
areas in winter since it decreases the albedo over snow covered areas, while in tropical regions afforestation 42 
leads to cooling through increased latent heat flux that overrules the decrease in albedo. In this chapter, the 43 
potential influence of land management such as irrigation on regional climate change is exemplified in the 44 
end-to-end example on the South Asian summer monsoon (Section 10.6.3). 45 
 46 
There is limited evidence but high agreement that the GMST response to urbanization changes is negligible 47 
(Zhang et al. 2013; Chen et al., 2016; Hansen et al., 2010; Parker, 2006). However,  there is evidence that 48 
urbanization may amplify regionally the air temperature response to climate change in different climatic  49 
zones (Mahmood et al., 2014) either under present (Doan et al., 2016; Kaplan et al., 2017; Li et al., 2018d) or 50 
future conditions (Argüeso et al., 2014; Kim et al., 2016; Kusaka et al., 2016; Grossman-Clarke et al., 2017) 51 
with a strong impact on minimum temperatures. For instance, in Flanders (Northern Belgium) Berckmans et 52 
al. (2019), found that urbanization scenario for the near future (up to 2035) has an impact on minimum 53 
temperature (0.6 °C) that is comparable to the projected climate change signal in the RCP8.5 scenario.  54 
 55 
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10.1.4.2 Internal drivers and their pathways to shaping regional climate 1 
 2 
Internal climate variability on seasonal to multi-decadal time-scales is a strong internal driver of regional 3 
climate. This variability arises from internal modes of atmospheric and oceanic variability, the interaction of 4 
ocean modes and intrinsically coupled climate modes, and may additionally be forced by other components 5 
of the climate system. It also interacts with the forced response of the climate system. A detailed description 6 
of various modes of variability can be found in Chapters 2, 3 and 9 while their future projections are assessed 7 
in Chapter 4. Here, the focus is on their regional impact.  8 
 9 
Mid-latitude climate is strongly affected by the mid-latitude jet and cyclones along the storm tracks. The 10 
variability of these phenomena is characterised by large-scale atmospheric modes (Figure 10.2) such as the 11 
NAO, the Northern and Southern Annular Modes (NAM and SAM). They show variability on all time 12 
scales, including decadal and longer periods. 13 
 14 
Modes of variability may have different regional effects in different seasons like with the NAO in European 15 
winter (Tsanis and Tapoglou, 2019) and summer (Bladé et al., 2012; Dong et al., 2013). The SAM, which 16 
affects the climate of the Southern Hemisphere continents (Hendon et al., 2014a), has variability that can be 17 
attributed to natural processes (Smith and Polvani, 2017), while other aspects of the variability are defined 18 
by the recent stratospheric ozone changes (Bandoro et al., 2014). The teleconnections between these modes 19 
of variability and surface weather exhibit considerable non-stationarities (Hertig et al., 2015). 20 
 21 
Due to the large ocean heat capacity and long time scales, multiannual to multi-decadal modes of ocean 22 
variability such as the Pacific Decadal Variability (PDV), Interdecadal Pacific Oscillation (IPO), Atlantic 23 
Multidecadal Variability (AMV) (Buckley and Marshall, 2016), and Indian Ocean Dipole Mode (IOD) are 24 
key drivers of regional climate change. These modes not only affect nearby regions but also remote parts of 25 
the globe through atmospheric teleconnections (Meehl et al., 2013; Dong and Dai, 2015) and can act to 26 
modulate the impact of the different natural and anthropogenic forcings (Davini et al., 2015; Ghosh et al., 27 
2017; Ménégoz et al., 2018b). This generates a regional response in terms of temperature, wind, and 28 
precipitation. 29 
 30 
The dynamics of the ocean modes of variability is simultaneously affected by other modes of variability 31 
spanning the full range of length and time scales due to non-linearity (Kucharski et al., 2010; Dong et al., 32 
2018) (see Figure 10.1). This mutual interdependence can result in changing characteristics of the connection 33 
over time as, for example, for IPV and IOD (Dong and McPhaden, 2017), and of their regional climate 34 
impact (Martín-Gómez and Barreiro, 2016, 2017). The link of ocean modes to regional climate should 35 
therefore be treated with caution because this can vary over time even in a stationary climate (Sterl et al., 36 
2007; Pinto et al., 2011; Gallant et al., 2013; Brands, 2017). Besides, the strong seasonality of the modes and 37 
related teleconnections means that their impact on regional climates can be seasonally dependent (Haarsma 38 
et al., 2015). 39 
 40 
 41 
[START BOX 10.1 HERE] 42 
 43 
BOX 10.1: Regional climate in AR5 and the special reports SRCCL, SROCC and SR1.5 44 
 45 
This box summarizes the information on linking global and regional climate change information in the Fifth 46 
Assessment Report (AR5) and the three special reports to be published prior to the publication of the Sixth 47 
Assessment Report (AR6). This information helps framing the treatment of the production of regional 48 
climate information in previous reports and identifies some of the gaps that AR6 needs to address. 49 
 50 
AR5 51 
In the WGI Chapter 14 (Christensen et al., 2013), regional downscaling methods are mentioned to provide 52 
climate information at the scales needed for many climate impact studies. The assessment finds high 53 
confidence that downscaling adds value both in regions with highly variable topography and for various 54 
small-scale phenomena. Regional models necessarily inherit biases from the global models used to provide 55 
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boundary conditions. Furthermore, the ability to systematically evaluate RCMs, and statistical downscaling 1 
schemes, were hampered because coordinated inter-comparison studies were still emerging. However, 2 
several studies demonstrated that added value arises from higher resolution of stationary features like 3 
topography and coastlines, and from improved representation of small-scale processes like convective 4 
precipitation. 5 
 6 
The Working Group II (WGII) Chapter 21 (Hewitson et al., 2014b) addressed the regional climate change 7 
context from the perspective of impacts, vulnerability and adaptation. This chapter emphasizes that a good 8 
understanding of decision-making contexts is essential to define the type and scale of information required 9 
from physical climate (high confidence). Further, the chapter identifies that the regional climate information 10 
is limited by the paucity of comprehensive observations and their analysis along with the different levels of 11 
confidence in projections (high confidence). Notable was that at the time of the AR5 many studies still rely 12 
on global data sets, models, and assessment methods to inform regional decisions, which are not as effective 13 
as tailored regional approaches. The regional scale was not defined but instead it was emphasised that 14 
climate change responses play out on a range of scales, and the relevance and limitations of information 15 
differ strongly from global to local scales, and from one region to another. 16 
 17 
The point was made that better understanding of changes in climate processes would strengthen the 18 
reliability of emerging messages on future climate change. The reliability of past changes is predicated on 19 
the availability and quality of observations, while the reliability of future projections depends on the 20 
performance of the models used for the projections in simulating the processes that lead to these changes. 21 
 22 
The chapter noted that downscaled information (RCM and statistical empirical) remains weakly coordinated, 23 
and that results indicate that high-resolution downscaled reconstructions of the current climate can have 24 
significant errors. Key in this is that the increase in downscaled data sets has not narrowed the uncertainty 25 
range, and that integrating these data with historical change and process-based understanding remains an 26 
important challenge. 27 
 28 
With regard to spatial resolution, the chapter identifies the common perception that higher resolution (i.e., 29 
more spatial detail) equates to more useable and robust information, which is not necessarily true. As a 30 
consequence, it is through the integration of multiple sources of information that robust understanding of 31 
change is developed. 32 
 33 
Context strongly and differently conditions the entry point. Perspectives have been characterized as top-34 
down (physical vulnerability) and bottom-up perspectives (social vulnerability). The top-down perspective 35 
uses climate change impacts as the starting point of how people and/or ecosystems are vulnerable to climate 36 
change, and commonly applies global-scale scenario information or refine this to the region of interest 37 
through downscaling procedures. Conversely, in the “bottom-up” approach the development context is the 38 
starting point, focusing on local scales, and layers climate change on top of this. An impact focus tends to 39 
look to the future to see how to adjust to expected changes, whereas a vulnerability-focused approach is 40 
centred on addressing the drivers of current vulnerability. 41 
 42 
Special Report on Climate Change and Land (SRCCL; IPCC, 2019)  43 
Land surface processes modulate the likelihood, intensity, and duration of many extreme events including 44 
heatwaves, droughts, and heavy precipitations. According to the SRCCL, there is robust evidence and high 45 
agreement that land cover and land use or management exert significant influence on atmospheric states 46 
(e.g., temperature, rainfall, wind intensity) and phenomena (e.g., monsoons), at various spatial and temporal 47 
scales, through their biophysical impacts on climate. There is robust evidence that dry soil moisture 48 
anomalies favour summer heat waves. Part of the projected increase in heat waves and droughts can be 49 
attributed to soil moisture feedbacks in regions where evapotranspiration is limited by moisture availability 50 
(medium confidence). Vegetation changes can also amplify or dampen extreme events through changes in 51 
albedo and evapotranspiration, which will influence future trends in extreme events (medium confidence). 52 
 53 
Whatever the land change (e.g., afforestation, urbanization), its location on Earth determines the sign and 54 
magnitude of its impacts on climate (robust evidence, high agreement). For instance, irrigation may have 55 
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contributed to a decrease in extreme temperature in strongly irrigated areas (medium confidence). The 1 
background climate also influences the sign and magnitude of the changes triggered by land-use and land 2 
cover change. 3 
 4 
Water management and irrigation are generally not accounted by the CMIP5 global models. Additional 5 
water can modify regional energy and moisture balance particularly with highly productive agricultural crops 6 
with high rate of evapotranspiration. Urbanization increases the risks associated with extreme events (high 7 
confidence). Urbanization suppresses evaporative cooling and amplifies heatwave intensity (high confidence) 8 
with a strong impact on minimum temperatures (very likely, high confidence). Urban areas stimulate storm 9 
occurrence and heavy precipitations in part due to the presence of aerosols. Urbanization also increases the 10 
risk of flooding during heavy rain events. 11 
 12 
Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC; IPCC, 2019b) 13 
Observations and models for assessing changes in the ocean and the cryosphere have been developed 14 
considerably during the past century but observations in some key regions remain under-sampled and are 15 
very short relative to the timescales of natural variability and anthropogenic changes. Retreat of mountain 16 
glaciers and thawing of mountain permafrost continues and will continue due to significant warming in those 17 
regions, where it is likely to exceed global temperature increase. 18 
 19 
It is virtually certain that Antarctica and Greenland have lost mass over the past decade and observed glacier 20 
mass loss over the last decades is attributable to anthropogenic climate change (high confidence). It is 21 
virtually certain that projected warming will result in continued loss in Arctic sea ice in summer, but there is 22 
low confidence in climate model projections of Antarctic sea ice change because of model biases and 23 
disagreement with observed trend. Knowledge and observations of the polar regions are sparse compared to 24 
many other regions, due to remoteness and challenges of operation in them. 25 
 26 
The sensitivity of small islands and coastal areas to increased sea level differs between emission scenarios 27 
and regionally and a consideration of local processes is critical for projections of sea level impacts at local 28 
scales. 29 
 30 
Special Report on Global Warming of 1.5°C (SR1.5; IPCC, 2018) 31 
Most land regions are experiencing greater warming than the global average, with annual average warming 32 
already exceeding 1.5°C in many regions. Over one quarter of the global population live in regions that have 33 
already experienced more than 1.5°C of warming in at least one season. Land regions will warm more than 34 
ocean regions over the coming decades (transient climate conditions). 35 
 36 
Transient climate projections reveal observable differences between 1.5°C and 2°C global warming in terms 37 
of mean temperature and extremes, both at a global scale and for most land regions. Such studies also reveal 38 
detectable differences between 1.5°C and 2°C precipitation extremes in many land regions. Besides, for 39 
mean precipitation and various drought measures there is substantially lower risk for human systems and 40 
ecosystems in the Mediterranean region at 1.5°C compared to 2°C. 41 
 42 
The different pathways to a 1.5ºC warmer world may involve a transition through 1.5°C, with both short and 43 
long-term stabilization (without overshoot), or a temporary rise and fall over decades and centuries 44 
(overshoot). The influence of these pathways is small for some climate variables at the regional scale (e.g., 45 
regional temperature and precipitation extremes) but can be very large for others (e.g., sea level). 46 
 47 
Decisions on changes in land use can strongly affect regional climate change through biophysical feedbacks 48 
(e.g., changes in land evaporation or surface albedo), potentially affecting regional temperature and 49 
precipitation. 50 
 51 
 52 
[END BOX 10.1 HERE] 53 
 54 
 55 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-22 Total pages: 236 
 

[START CROSS-CHAPTER BOX 10.1 HERE] 1 
 2 
Cross-Chapter Box 10.1: Influence of the Arctic on mid-latitude climate 3 
 4 
Contributors: Francisco Doblas-Reyes (Spain), Hervé Douville (France), Nathan Gillett (Canada), Rein 5 
Haarsma (Netherlands), Gerhard Krinner (France), Dirk Notz (Germany), Krishnan Raghavan (India), Sonia 6 
Seneviratne (Switzerland), Laurent Terray (France), Cunde Xiao (China) 7 
 8 
Mean surface air temperature in the Arctic is rising more than twice as quickly as the global mean surface air 9 
temperature (Davy et al., 2018), with the strongest warming during winter. In some seasons and for certain 10 
parts of the temperature distribution, the warming is up to three times stronger, such as the warming of the 11 
coldest nights (Seneviratne et al., 2016). Several mechanisms are responsible for the enhanced lower 12 
troposphere warming of the Arctic (Sections 4.5.1.1 and 7.4.2). These include the ice-albedo, lapse rate, 13 
Planck and cloud feedbacks (Pithan and Mauritsen, 2014).  The rapid Arctic warming has a strong impact on 14 
the ocean, atmosphere and cryosphere in that region (Atlas 5.10.1). To illustrate the latter, late summer and 15 
early autumn sea ice extent has decreased by around 13% per decade since 1979 (Section 2.3.2.1). At least 16 
half of this recent Arctic sea ice decline is due to anthropogenic forcings (high confidence), as is further 17 
discussed in Sections 3.4.1.1 and 9.3.1. 18 
 19 
In this box, the possible impact of the Arctic warming on the lower latitudes is discussed. This linkage was 20 
also the topic of the Box 3.2 of the SROCC. It is a topic that has recently raised wide interest (Ogawa et al., 21 
2018; Wang et al., 2018a). Different hypotheses, which differ between winter and summer, have emerged 22 
that describe possible mechanisms of how the Arctic can influence the weather and climate at lower 23 
latitudes. They involve changes in the polar vortex, storm tracks, jet stream, planetary waves, stratosphere-24 
troposphere coupling, and eddy-mean flow interactions, thereby affecting the mid-latitude atmospheric 25 
circulation, and the frequency and intensity of extremes, like cold spells, heat waves, and floods (Figure 1). 26 
These hypotheses and the impact on mid-latitude climate, in particular on the extremes, are, however, 27 
strongly debated and criticised. These mechanisms and their criticisms will be discussed here as an extension 28 
to the SROCC box. 29 
 30 
 31 
[START CROSS-CHAPTER BOX 10.1, FIGURE 1 HERE] 32 
 33 
Cross-Chapter Box 10.1, Figure 1: Mechanisms of potential impacts of Arctic warming on mid-latitude climate. 34 

Mechanisms are different for winter and summer with different associated impacts 35 
on mid-latitudes. The mechanisms involve changes in the polar vortex, storm 36 
tracks, planetary waves and jet stream. 37 

 38 
[END CROSS-CHAPTER BOX 10.1, FIGURE 1 HERE] 39 
 40 
      41 
Mechanisms for a potential impact in winter 42 
It has been proposed that Arctic amplification, by reducing the equator-pole temperature contrast, could 43 
result in a weaker and more meandering jet with Rossby waves of larger amplitude (Francis et al., 2017). 44 
This may cause weather systems to travel eastward more slowly and thus, all other things being equal, Arctic 45 
amplification could lead to more persistent weather patterns over the mid-latitudes (Francis and Vavrus, 46 
2012). The persistent large meandering flow may increase the likelihood of temperature and precipitation 47 
extremes because they frequently occur when atmospheric circulation patterns are persistent, which tends to 48 
occur with a strong meridional wind component. Another proposed impact of Arctic warming is on the 49 
NAO/AO that shows a negative trend over the past two decades (Robson et al., 2016; Iles and Hegerl, 2017), 50 
and has been linked to the reduction of sea ice in the Barents and Kara seas, and the increase in Eurasian 51 
snow cover (Cohen et al., 2012a; Nakamura et al., 2015; Yang et al., 2016b). During negative NAO/AO the 52 
storm tracks shift equatorward and winters are predominantly more severe across northern Eurasia and the 53 
eastern United States, but relatively mild in the Arctic. This temperature pattern is sometimes referred to as 54 
the 'warm Arctic–cold continents (WACC)' pattern (Chen et al., 2018). However, Sun et al. (2016a) argue 55 
that the WACC is a manifestation of natural variability. Enhanced sea-ice loss in the Barents-Kara Sea has 56 
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also been related to increased stratospheric polar vortex variability (Kretschmer et al., 2016) that would 1 
induce a negative NAO/AO (Kim et al., 2014), the WACC pattern (Kim et al., 2014), and an increase in 2 
cold-air outbreaks (Kretschmer et al., 2018). Arctic warming might also increase Eurasian snow cover in 3 
autumn caused by the moister air that is advected into Eurasia from the Arctic with reduced sea-ice cover 4 
(Cohen et al., 2014; Jaiser et al., 2016), although Peings (2019) suggests a possible influence of Ural 5 
blockings on both the fall snow cover and the early winter polar stratosphere. Routson et al. (2019) argue 6 
that during the mid-Holocene, the weaker Arctic-Equator meridional temperature gradient and reduced 7 
cyclonic activity resulted in less mid-latitude precipitation, suggesting a similar response for the present 8 
Arctic warming. 9 
 10 
Mechanisms for a potential impact in summer 11 
Similar as in winter, Arctic summer warming may result in a weakening of the westerly jet and mid-latitude 12 
storm tracks, as suggested for the recent period of Arctic warming (Coumou et al., 2015; Petrie et al., 2015; 13 
Chang et al., 2016). Additional proposed impacts are a southward shift of the jet (Butler et al., 2010) and a 14 
double jet structure associated with an increase of the land-ocean thermal gradient at the land-ocean 15 
boundary (Coumou et al., 2018). It is hypothesized that weaker jets, diminished meridional temperature 16 
contrast, and reduced baroclinicity might induce a larger amplitude in stationary wave response to stationary 17 
forcings (Zappa et al., 2011; Petoukhov et al., 2013; Hoskins and Woollings, 2015; Coumou et al., 2018; 18 
Mann et al., 2018), and also that a double jet structure would favour wave resonance (Kornhuber et al., 2017; 19 
Mann et al., 2017). Some studies suggest that this is corroborated by an observed increase of quasi-stationary 20 
waves (Di Capua and Coumou, 2016; Vavrus et al., 2017; Coumou et al., 2018). 21 
 22 
Assessment 23 
The above proposed theories are based on concepts of geophysical fluid dynamics and surface coupling and 24 
can, in principle, help explain the existence of a link between the Arctic changes and the mid-latitudes 25 
(Barnes and Screen, 2015). However, the validity of some dynamical underlying mechanisms, such as 26 
reduced meridional temperature contrast inducing enhanced wave amplitude, have been questioned 27 
(Hassanzadeh et al., 2014; Hoskins and Woollings, 2015), or on the contrary related to reduced winter 28 
temperature variability (Collow et al., 2019). 29 
 30 
Studies that support the Arctic influence are mostly based on observational relationships between the Arctic 31 
temperature or sea ice extent and mid-latitude anomalies or extremes (Cohen et al., 2012a; Francis and 32 
Vavrus, 2012, 2015; Budikova et al., 2017). They are often criticised by the lack of statistical significance 33 
and the inability to disentangle cause and effect (Barnes, 2013; Barnes and Polvani, 2013; Screen and 34 
Simmonds, 2013; Barnes et al., 2014b; Hassanzadeh et al., 2014; Barnes and Screen, 2015; Sorokina et al., 35 
2016; Douville et al., 2017; Gastineau et al., 2017). Kretschmer et al. (2016) do attempt to disentangle cause 36 
and effect using causal inference techniques, and find a relationship with Barents-Kara Sea sea-ice loss, but 37 
no evidence of the impact of Eurasian snow cover. Section 9.5.4.6 assesses that there is low confidence in the 38 
reported relationships between Eurasian snow cover in fall and Northern Hemisphere circulation trends and 39 
anomalies in the following winter. The role of the Barents-Kara Sea ice loss is challenged by Blackport et al. 40 
(2019) who find a minimal influence of reduced sea ice on severe mid-latitude winters, and by Warner et al. 41 
(2019) who suggest that the apparent winter NAO response to the Barents-Kara sea-ice variability is mainly 42 
an artefact of the Aleutian Low internal variability and of the co-variability between sea ice and the Aleutian 43 
Low originating from tropical-extratropical teleconnections. Mori et al. (2019a) argue that models 44 
underestimate the forcing of the Barents-Kara Sea ice loss on the atmosphere, which is disputed by Screen 45 
and Blackport (2019). Other studies have stressed the importance of atmospheric variability as a driver of 46 
Arctic variability (Lee, 2014; Woods and Caballero, 2016; Olonscheck et al., 2019). 47 
 48 
An additional argument in the criticism is the inability of climate models to simulate a significant response, 49 
larger than the natural variability (Screen et al., 2014; Walsh, 2014; Chen et al., 2016c; Peings et al., 2017), 50 
although some studies find a significant response in summer, because then the internal variability is weaker 51 
(Petrie et al., 2015). 52 
 53 
Finally, a warmer Arctic climate can, without any additional changes in atmospheric dynamics, reduce cold 54 
extremes in winter due to advection of increasingly warmer air from the Arctic into the mid-latitudes 55 
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(Screen, 2014; Ayarzagüena and Screen, 2016; Ayarzagüena et al., 2018). 1 
 2 
Summarizing, different theories have been developed about the impact of recent Arctic warming on the mid-3 
latitudes in both winter and summer. Although some of the proposed causalities seem to be supported by 4 
various studies, such as the link with Barents-Kara Sea ice loss in winter and weakened storm tracks in 5 
summer, the underlying mechanisms and relative strength compared to internal climate variability have been 6 
questioned. A recent review paper by Cohen et al. (2020) states that divergent conclusions between model 7 
and observational studies, and even intramodel studies, continue to obfuscate a clear understanding of how 8 
Arctic warming is influencing mid-latitude weather. In agreement with Box 3.2 of SROCC, there is hence 9 
low to medium confidence in the exact role and quantitative impact of historical Arctic warming and sea-ice 10 
loss on mid-latitude atmospheric variability. 11 
 12 
Regarding future climate, it is important to note that mid-latitude variability is also affected by many drivers 13 
other than the Arctic changes and that those drivers as well as the linkages to mid-latitude variability might 14 
change in a warmer world. The AMOC, PDV, ENSO, upper tropospheric tropical heating, polar 15 
stratospheric vortex, land-surface processes associated with soil moisture (Miralles et al., 2014; Hauser et al., 16 
2016) are a few examples. A considerable body of literature has shown that changes to the NAO/AO on 17 
seasonal and climate change timescales can be driven by variations in the wavelength and amplitude of 18 
Rossby waves, mainly of tropical origin (Fletcher and Kushner, 2011; Cattiaux and Cassou, 2013; Ding et 19 
al., 2014; Goss et al., 2016). The impact of future Artic warming on mid-latitude circulation is difficult to 20 
disentangle from the effect of such a plethora of drivers (Blackport and Kushner, 2017; Li et al., 2018a). One 21 
of the impacts of climate change is a poleward shift of the jet (Barnes and Polvani, 2013), which is less 22 
obvious in winter especially over North Atlantic (Peings et al., 2018; Oudar et al., submitted), and the 23 
increase of the meridional temperature gradient in the upper troposphere, which increases storm track 24 
activity (Barnes and Screen, 2015). Although climate models indicate that future Arctic warming and the 25 
associated equator-pole temperature gradient could affect mid-latitude climate and variability (Haarsma et 26 
al., 2013b; McCusker et al., 2017; Zappa et al., 2018), they do not reveal a dominant impact on extreme 27 
weather (Woollings et al., 2014). 28 
 29 
In conclusion future climate change will affect mid-latitude variability in a number of ways that are still to be 30 
clarified, potentially also including the impact of Arctic warming, but there is low confidence in the 31 
dominant contribution of Arctic warming compared to other drivers. 32 
 33 
[END CROSS-CHAPTER BOX 10.1 HERE] 34 
 35 
 36 
10.2 Using observations for constructing regional climate messages 37 
 38 
10.2.1 Observation types 39 
 40 
10.2.1.1 In-situ and remote sensing data 41 
 42 
Climate information for the atmosphere and land mainly comes from two different and complementary data 43 
sources: direct (including in-situ data and from the instruments launched from the ground such as upper-air 44 
stations/radiosondes) and remote observing systems (e.g., space-borne, radar, reflectometry, occultation, and 45 
lidar observations). Direct observing systems are a critical component of a global monitoring programme, 46 
producing the basic data that is essential for monitoring how climate variability, especially extremes in 47 
temperature and precipitation, evolves across different regions. There are more observations over land than 48 
over the ocean. The Northern Hemisphere has more observational facilities than the Southern Hemisphere, 49 
but how much more depends on the variable (e.g., Harris et al. (2014) for a comparison for a number of 50 
surface variables and Schneider et al. (2016) for precipitation). These direct observations are essential to 51 
monitor local and regional climate, in ensuring that climate models can be evaluated and for the calibration 52 
of satellite sensors. Direct observations are irregularly spaced and are the basis for gridded products (see 53 
Section 10.2.1.2) that are needed to assess model performance. Comparing model simulations with 54 
individual station data introduces other issues such as comparing point values with model values that 55 
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represent what happens in an area. 1 
 2 
Surface or in-situ observations can come from a variety of networks such as climate reference networks, 3 
mesoscale weather and supersite observation networks, citizen science networks, and others, all with their 4 
strengths and weaknesses (McPherson, 2013). Supersite observatories are surface observing networks that 5 
measure a large amount of atmospheric and soil variables at least hourly over a decade or more (Ackerman 6 
and Stokes, 2003; Haeffelin et al., 2005; Xie et al., 2010; Chiriaco et al., 2018). These data are recorded with 7 
instruments with an adequate calibration, and undergo quality control and homogenization. They produce 8 
some of the most valuable data needed to diagnose processes and changes in regional and local climate. 9 
Several climate datasets have been developed from in situ station observations, at different spatial scales and 10 
temporal frequencies (see Technical Annex I on observations). These include sub-daily (Lewis et al., 2019; 11 
Dumitrescu et al., 2016), daily (Aalto et al., 2016; Funk et al., 2015; Beck et al., 2017a, 2017b; Camera et al., 12 
2014; Chen et al., 2008; Journée et al., 2015;  Schneider et al., 2017), and monthly time scales (Aryee et al., 13 
2018; Cuervo-Robayo et al., 2014). 14 
 15 
Satellite products provide a valuable complement to in-situ measurements and are particularly useful over 16 
regions with none or sparse direct observations. Most satellite products have global coverage. They have 17 
been discussed in earlier chapters (e.g., Chapters 2 and 8) for large scale assessment. Currently 54 essential 18 
climate variables (ECVs; Bojinski et al., 2014) are defined by the Global Climate Observing System (GCOS) 19 
programme, and efforts are integrated in related programmes, such as Copernicus Climate Change Service of 20 
the European Union. When considering their application at a regional scale it is important to consider that 21 
the spatio-temporal resolution of these products varies considerably, and that there is commonly a trade-off 22 
between temporal and spatial resolution. For example, Landsat provides images with a high spatial resolution 23 
of around 30 metres, but offers full coverage of the globe once every 8 to 16 days (Wulder et al., 2016), 24 
while SMOS (ESA's Soil Moisture Ocean Salinity Earth Explorer mission) has a coarser spatial resolution of 25 
25 km, but covers the full globe each 2.5‒3 days (Kerr et al., 2012). Moreover, a simple concatenation of 26 
data in time would show non-climatic jumps due to changes in calibration and processing algorithms or 27 
artificial trends for a satellite series related to orbit stability or changing performance of the instruments 28 
(Barrett et al., 2014). Re-calibration and cross-calibration are then an essential prerequisite to obtain 29 
homogenous time series of measurements across different or successive satellites that can then be used to 30 
produce long series known as climate data records (Merchant et al., 2017). For example, precipitation 31 
estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) is a sub-daily 32 
to daily rainfall product which covers 50°S to 50°N globally with 25 km resolution since 2000 to present 33 
(Nguyen et al., 2019). Also, the Tropical Rainfall Measurement Mission (TRMM; covering 35N–35S, 34 
1997–2016) (Simpson et al., 1996) and Global Precipitation Measurements (GPM; 65N–65S, 2014–35 
present) (Skofronick-Jackson et al., 2017) satellite products have provided three-dimensional precipitation 36 
radar data with ~5 km pixel size for more than 20 years and feature sub-diurnal sampling. These large scale 37 
products can also be used to study for example the characteristics of extreme precipitation systems at a 38 
regional scale and to study the relationship with their atmospheric environment (Sohn et al., 2013; Hamada 39 
and Takayabu, 2018). Constellation products such as the Global Satellite Mapping of Precipitation (GSMaP) 40 
(Kubota et al., 2007) and Integrated Multi-satellitE Retrievals for GPM (IMERG) (Huffman et al., 2007) 41 
provide hourly global precipitation data with ~11 km coverage. CPC MORPHing technique (CMORPH) 42 
provides 30 min interval global precipitation with ~8 km coverage since 2002 (Joyce et al., 2004). The use of 43 
these large scale high-resolution spatio-temporal precipitation products have enhanced our understanding of 44 
precipitation process at regional scale such as diurnal cycles in a large river valley (Chen et al., 2012c), in 45 
coastal regions (Hassim et al., 2016; Hirose et al., 2017; Yokoi et al., 2017) and in mountainous regions 46 
(Hirose et al., 2017). Advanced geostationary satellites such as GOES-East and GOES-17 (Goodman et al., 47 
2018), Meteosat-10 and 11 (Schmetz et al., 2002), Himawari-8 and 9 (Kurihara et al., 2016), and FY-4 (Cao 48 
et al., 2014) are valuable for regional applications since they provide images at very high spatiotemporal 49 
resolutions, typically 1–2 km, every 10–15 minutes. 50 
 51 
The climate science community is moving fast towards the use of a maturity model (related to the technical 52 
readiness levels framework for flight hardware and instrumentation) for generating climate data records 53 
useful at regional scale that captures best practices from the scientific community, preservation information 54 
from the archive community, and software best practices from the engineering community (Bates and 55 
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Privette, 2012; Hollmann et al., 2013; Yang et al., 2016a). There is now a network of satellite-based Global 1 
Observation System (https://www.wmo.int/pages/prog/www/OSY/GOS.html), mainly for cloud and 2 
moisture patterns using the visible or infrared channel sensors. The network has been established in 1987 in 3 
the framework of the FGGE (First GARP Global Experiment) project. Initially the network included two 4 
GOESs (USA), METEOSAT (Europe), a Russian satellite, and GMS (Japan). The network has been 5 
increased including INSAT (India), FY2 (China), and COMS (Korea) with a total number of 10 6 
geostationary satellites. In order to fill the gap around the Polar Regions there are also some sun-7 
synchronous orbit satellites now. During the past 40 years, time, resolution, and the channel sensors have all 8 
increased. 9 
 10 
 11 
10.2.1.2 Derived products 12 
 13 
Derived products are the result of modifying an existing one. It is created from raw datasets collected 14 
through surface observations, remote-sensing tools, and research vessels using either statistical interpolation 15 
techniques (see Section 10.2.2.4) or numerical atmospheric and land-surface models (Bosilovich et al., 16 
2015). 17 
 18 
Most global observational datasets are available at coarse temporal or spatial resolution, or do not include all 19 
available station data of a particular region due to, among others, availability problems. Therefore, efforts 20 
have been made to develop regional or country-scale datasets (see Technical Annex I on observations). 21 
Radar and satellite remote sensing are two other sources that can provide a valuable complement to direct 22 
measurements at regional scale. Examples for precipitation have been described recently, some of which 23 
have been released to the community (Bližňák et al., 2018; Dietzsch et al., 2017; Dinku et al., 2014; 24 
Krähenmann S. et al., 2018; Manz et al., 2016; Oyler et al., 2015; Panziera et al., 2018; Shen et al., 2018; 25 
Yang et al., 2017). However, some of these datasets are limited by their short length of record, varying 26 
between one (Shen et al., 2018) and 64 years (Oyler et al., 2015). 27 
 28 
Reanalyses products are designed to merge irregular observations and models that encompass many physical 29 
and dynamical processes. They generate a dynamical and coherent estimate of the state of the climate system 30 
(often only for the atmosphere and land) on uniform grids either at global (Balsamo et al., 2015; Chaudhuri 31 
et al., 2013), regional (Chaney et al., 2014; Dahlgren et al., 2016; Maidment et al., 2014; Mahmood et al., 32 
2018; Attada et al., 2018; Langodan et al., 2017) or country scales (Krähenmann et al., 2018; Mahmood et 33 
al., 2018; Rostkier-Edelstein et al., 2014). Recently, reanalyses using-convection permitting RCMs have 34 
been published (e.g., Wahl et al. (2017) for central Europe). 35 
 36 
Regional reanalyses are valuable for regional assessment, since they can employ higher resolution model 37 
simulations due to their small spatial coverage. Their accuracy also improves with respect to global 38 
reanalyses since they are often developed over regions with a high density of observational data to be 39 
assimilated into the model (e.g., Yamada et al., 2012). Current regional reanalyses datasets cover areas like 40 
the Arctic, Europe, North America, South Asia and Australia (see Technical Annex I on observations). 41 
 42 
 43 
10.2.2 Challenges for regional climate change assessment 44 
 45 
10.2.2.1 Quality control 46 
 47 
The usefulness of an observational data is conditioned by the availability and outcome of a quality control 48 
(QC) process. The objective of the QC is to verify if a reported data value is representative of the measured 49 
variable and to what degree the value could be contaminated by unrelated factors. The QC procedure 50 
depends strongly on the specific nature of the dataset. It focuses on aspects such as correctly identifying 51 
sensor, time and location, having values that reliably reflect the expected conditions, estimate if the 52 
uncertainty information is adequate, and assessing the consistency among the observed measurements. 53 
Detailed documentation of the data processing is part of the QC procedures and enhances the applicability of 54 
the data. 55 
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 1 
The outcome of the QC should be taken into account when using the observations. For instance, it informs 2 
users that many reanalysis datasets may be inconsistent in the long term because they assimilate 3 
inhomogeneous observations over the reanalyses period (Kobayashi et al., 2015). As a consequence, the 4 
evaluation against independent observations suggests that reanalyses should not be automatically regarded as 5 
climate quality products for monitoring trends at the regional level (Manzanas et al., 2014; Torralba et al., 6 
2017). When problems are identified some observational datasets are provided with a quality mask 7 
(Contractor et al., 2019) that can be taken into account when using the observations. Quality-controlled data 8 
are now produced widely such as sub-daily precipitation records in the United Kingdom (Blenkinsop et al., 9 
2017) and the USA (Nelson et al., 2016). However, many more datasets and variables lack the same level of 10 
scrutiny. 11 
 12 
QC is also closely related to data scarcity (Section 10.2.2.3), like in cases where the quality of a derived 13 
dataset is affected by gaps in time and space to fit the purpose of a specific application. This is often the case 14 
in high-resolution dynamical downscaling where high-resolution, gridded observational data may not be 15 
available to assess the added value of the increase in resolution (e.g., Di Luca et al., 2016; Zittis et al., 2017; 16 
Section 10.3.3). This implies a need for additional efforts to reach quality-controlled, high-resolution 17 
observational datasets. 18 
 19 
 20 
10.2.2.2 Homogenization  21 
 22 
Station data are influenced by factors that act at regional scale, from mesoscale and local scale down to the 23 
microscale (WMO, 2019), therefore, secular station time series contain inhomogeneities such as artificial 24 
jumps or trends, which hamper assessments of regional long-term trends. Typical reasons for this are the 25 
urbanization of a station’s surroundings (Hamdi, 2010; Adachi et al., 2012; Sun et al., 2016b), or cooling due 26 
to its relocation (Tuomenvirta, 2001; Yan et al., 2010; Xu et al., 2013; Dienst et al., 2017, 2019). Another 27 
source of inhomogeneity is transitions in measurement methods that affect most instruments of an 28 
observational network over a limited time span, such as the transition to Stevenson screens (Parker, 1994; 29 
Böhm et al., 2010; Brunet et al., 2011; Auchmann and Brönnimann, 2012) or to automatic weather stations 30 
(WMO, 2017). The main approach to reduce the influence of inhomogeneities in station observations is 31 
statistical homogenization produced by comparing a candidate station with neighbouring reference stations 32 
(Trewin, 2010). This is a challenging task because candidates and their references normally have multiple 33 
inhomogeneities. 34 
 35 
Three challenges should still be noted. First, most of our understanding of statistical homogenization stems 36 
from the homogenization of temperature observations from dense networks. A recent study suggests that our 37 
ability to remove biases quickly diminishes for sparse networks (Gubler et al., 2017; Lindau and Venema, 38 
2018a). This affects early instrumental data and observations that are not strongly correlated between 39 
stations, such as wind and humidity (Chimani et al., 2018). Second, in addition to systematic errors, 40 
homogenized data will also suffer from random errors, which are largest at the station level, but also present 41 
in network-average signals (Lindau and Venema, 2018b). They stem from the errors introduced by the 42 
homogenization. The uncertainties related to the homogenization procedure are determined both by the break 43 
signal, as well as the noise signal and the performance of the homogenization method. These errors are 44 
spatially correlated and have an impact on aspects like post-processing, interpolation and downscaling of 45 
climate simulations (Section 10.2.3.2). Third, the above discussion pertains to the homogenization of 46 
monthly and annual means. Homogenization of daily variability around the mean is more difficult. For daily 47 
data, specific correction methods are used (Della-Marta and Wanner, 2006; Mestre et al., 2011; Trewin, 48 
2013) that are able to improve the homogeneity of test cases, but recent independent validation efforts were 49 
not able to show much improvement (Chimani et al., 2018). The difference may stem from assumptions on 50 
the nature of inhomogeneities for daily data, which are not yet well understood. 51 
 52 
It is virtually certain that the uncertainties related to long-term warming estimates at regional scale are 53 
reduced using statistical homogenization methods. By decomposing the long-term warming RMSE into a 54 
bias and a noise uncertainty around the bias, especially the bias, but mostly also the noise uncertainty will be 55 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-28 Total pages: 236 
 

reduced. This is based on our understanding of the causes and nature of inhomogeneities combined with the 1 
design principles of statistical homogenization methods, as well as on analytical (Lindau and Venema, 2 
2018b), numerical (Venema et al., 2012; Williams et al., 2012), and empirical validation studies (Hausfather 3 
et al., 2016; Gubler et al., 2017). 4 
 5 
 6 
10.2.2.3 Data scarcity 7 
 8 
Even if satellite products have global coverage and can be used over regions with none or sparse 9 
observations, their performance at a regional scale vary greatly. For example over complex orography 10 
regions the satellite-only products have large systematic and random errors while the gauge-corrected ones 11 
perform better (Guo et al., 2017a). Data scarcity arises largely due to the lack of sustainable maintenance of 12 
observing stations, inaccessibility of the data held in national networks, and uneven spatial distribution of 13 
stations that lead to a low density in many regions. This is particularly damaging when trying to assess 14 
regional climate change, for which a high density of observational data is desirable. Although in several 15 
regions numerous stations provide (monthly) data covering more than 100 years for both temperature and 16 
precipitation (GCOS, 2015), large areas of the world remain sparsely covered. For instance, the geographical 17 
and temporal coverage of stations contributing to the Global Precipitation Climatology Centre (GPCC) 18 
monthly product vary greatly and the total number of stations providing data declined from 1990 onwards, 19 
although this may relate to delays in data acquisition (GCOS, 2015). According to Kidd et al., (2017), 20 
assuming each GPCC-available gauge represented a surrounding area of 5-km radius, the total area covered 21 
would represent only about 1% of Earth’s surface; in addition, only 1.6% of Earth’s surface lies within 10 22 
km of a rain gauge and many areas around the world (e.g., northern Canada, Siberia, Tibetan plateau, regions 23 
in Africa, Australia and South America) are beyond 100 km from the nearest rain gauge. Data scarcity is 24 
especially critical over Africa (Nikulin et al. 2012). For example, over South Africa, where the station 25 
density is relatively large compared to the rest of the continent, the number of weather stations collecting 26 
daily temperature used in the fourth version of the Climatic Research Unit Temperature dataset (CRUTEM4, 27 
Osborn and Jones, 2014) has significantly declined since 1980 (Archer et al., 2018). 28 
 29 
Even in Europe, where regional high resolution observational datasets exist, precipitation station density in 30 
the widely used E-OBS gridded dataset varies largely in space and time across regions, with Germany 31 
offering ten times more stations than France (Prein and Gobiet, 2017). This variability is partly due to the 32 
resistance of some data owners to share their data within an international effort. Regardless of the reason 33 
behind it, low station density is a major source of uncertainty (Isotta et al., 2015). Using 10-year rainfall 34 
measurements from a network of 150 rain gauges over an area of around 300 km2 Kirchengast et al. (2014) 35 
and O and Foelsche (2018) found that for capturing the area-averaged precipitation amount of heavy 36 
summertime precipitation events on a daily (hourly) basis with a normalised root mean square error of less 37 
than 20%, at least 2 to 5 (12) stations are required. Similarly to the E-OBS dataset, gridded daily temperature 38 
and precipitation datasets are being developed for other regions of the world such as Southeast Asia (SA-39 
OBS, van den Besselaar et al., 2017a) and West Africa (WACA&D, Van Den Besselaar et al., 2015). 40 
However, stations are unevenly distributed and its number varies over time, with gaps due to missing values. 41 
Still, there is value in these initiatives illustrated by the large number of studies where they are used. 42 
 43 
Data scarcity results in critical problems for climate monitoring (e.g., trend analysis of extreme events 44 
requires high temporal and spatial resolutions) or model evaluation (Section 10.4.2). It is virtually certain 45 
that the scarcity and decline of observations increase the uncertainty of the long-term temperature and 46 
precipitation estimates. As an example Lin and Huybers (2019) found that changes in the number of rain 47 
gauges after 1975 resulted in spurious trends in extremes of Indian rainfall in a 0.25gridded dataset covering 48 
the 20th century. In fact, the number of stations used to construct the gridded dataset dropped by half after 49 
1990, leading to inhomogeneity and spurious trends (Section 10.6.3). Over the southern part of the 50 
Mediterranean, which is an extended area being sparsely covered by meteorological stations, data scarcity 51 
can lead to large uncertainties in the different gridded datasets and strongly affect model evaluation (Section 52 
10.6.4). 53 
 54 
 55 
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10.2.2.4 Gridding 1 
 2 
Derived gridded datasets require merging data from different sources of observations and/or reanalysis data 3 
on a uniform grid (e.g., Xie and Arkin, 1997; Section 10.2.1.2). However, in-situ observations are distributed 4 
irregularly, especially over sparsely populated areas. This leads to an interpolation challenge. Gridded 5 
products of temperature and precipitation are strongly affected by the interpolation methods over complex 6 
orography and data scarce regions. 7 
 8 
There are two main approaches to produce gridded datasets: (1) based on in-situ observations and (2) 9 
combining in-situ observations with remote-sensing data. The first approach has been widely employed in 10 
regions with high station density using interpolation techniques such as inverse distance weighting, optimal 11 
interpolation, and kriging (Chen et al., 2008; Haylock et al., 2008; Frei, 2014; Isotta et al., 2014; Masson and 12 
Frei, 2014; Hiebl and Frei, 2016; Inoue et al., 2016). This approach can provide high spatial and temporal 13 
resolutions according to the scale of observational data. The second approach has been mainly applied in 14 
data sparse regions with low station density, using methods like simple bias adjustment, quantile mapping, 15 
and kriging merging in-situ observations and satellite data (Cheema and Bastiaanssen, 2012; Dinku et al., 16 
2014; Abera et al., 2016). Erdin et al. (2012) have been developing gridded rainfall datasets by combining 17 
radar and rain gauge data using kriging. Alternatively, Krähenmann et al. (2018) have produced a high 18 
resolution gridded dataset from station data, satellite estimation, and standard model outputs using several 19 
merging techniques. 20 
 21 
Gridding of station data is affected by uncertainties stemming from measurements errors, inhomogeneities, 22 
the distribution of the underlying stations and the interpolation error. The dominant factor is station density 23 
(Herrera et al., 2018b). Uncertainty due to interpolation is typically small for temperature but substantial for 24 
precipitation and its derivatives such as drought indices (Chubb et al., 2015; Hellwig et al., 2018). The 25 
largest errors typically occur in sparsely sampled mountain areas (Section 10.1.2.6). Interpolation generally 26 
brings about smoothing effects, for instance, the weaker variability of the derived dataset with respect to the 27 
in-situ observations (Chen et al., 2019). As a result, the effective resolution of gridded data is typically much 28 
lower than its nominal resolution. For instance, a 5 km gridded precipitation dataset for the European Alps 29 
has an effective resolution of about 10–25 km (Isotta et al., 2014). In an example for precipitation in Spain, 30 
the effective resolution converged to the nominal resolution only when at least 6–7 stations where inside the 31 
corresponding grid cell (Herrera et al., 2018b). To account for the smoothing errors, new stochastic ensemble 32 
observation data sets have been introduced. In this approach each ensemble member represents one possible 33 
observed field, given the station observations (Von Clarmann, 2014). 34 
 35 
 36 
10.2.2.5 Observations in small islands 37 
 38 
A discussion on the specific challenges related to observations, either in-situ or remote sensing, over small 39 
island will be developed here with a link to the case study on the Caribbean islands in Section 10.4.1.2.8. 40 
 41 
 42 
10.2.2.6 Observations in mountain areas 43 
 44 
Variability of meteorological parameters observed over mountainous areas is often quite high, indicating 45 
strong control of local topography on meteorological parameters (Gultepe et al., 2014). Difficult access, 46 
harsh climatic conditions as well as instrumental issues make meteorological measurements extremely 47 
challenging at higher elevations (Azam et al., 2018; Beniston et al., 2018). Measurements of wind speed, 48 
temperature, relative humidity and radiative fluxes are critical for climate model validation, but difficult to 49 
deal with due to complex interactions over mountainous terrain, and often need corrections (Gultepe, 2015). 50 
Permanent meteorological stations are limited and current knowledge is mainly based on sporadic valley 51 
bottom or low elevation meteorological stations (Qin et al., 2009; Lawrimore et al., 2011; Gultepe, 2015), 52 
which, generally, do not represent the higher elevation climate (Immerzeel et al., 2015; Shea et al., 2015). 53 
There is medium evidence but high agreement on elevation-dependent warming (EDW; Cross-Chapter-Box 54 
10.3) in most of the mountain ranges but unfortunately field-measurements supporting EDW are extremely 55 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-30 Total pages: 236 
 

limited from high elevations (Qin et al., 2009; Pepin et al., 2015). Measuring the precipitation amounts, 1 
especially solid precipitations, in mountainous areas is one of the most interesting but difficult tasks due to 2 
the presence of orographic barriers, its strong vertical and horizontal variability, and representative sites for 3 
precipitation measurements (Barry, 2012). 4 
 5 
There is very high confidence (robust evidence and high agreement) that precipitation measurements, 6 
especially solid precipitations, in mountainous areas are strongly affected by the gauge location and setup.  7 
These measurements are also affected by the type of measurement method, presence/absence of shield, 8 
presence/absence of heating system, range of operating meteorological conditions, etc. (Nitu et al., 2018). 9 
Solid precipitation measurements generally have errors ranging from 20% to 50%, largely due to under catch 10 
in windy, icing and rimming conditions (Rasmussen et al., 2012), and therefore require corrections by 11 
applying the transfer functions developed mainly from collected wind speed and temperature data 12 
(Kochendorfer et al., 2017). The latest Solid Precipitation Intercomparison Experiment report recommends 13 
measurements of wind speed, wind direction and temperature as the minimum standard ancillary data for 14 
solid precipitation monitoring (Nitu et al., 2018). 15 
 16 
Recent advancements through remote-sensing methods provide an alternative, but they also have limitations 17 
over mountainous areas. Different versions of Tropical Rainfall Measuring Mission products were found to 18 
perform differently over the mountainous areas (Zulkafli et al., 2014). It was noticed that orographic heavy 19 
rainfall over Taiwan associated with typhoon Morakot in 2009 was severely underestimated in all microwave 20 
products including TRMM 3B42. The underestimation have been mitigated in the Global Satellite Mapping 21 
of Precipitation (GSMaP) product by considering the orographic effects (Shige et al., 2013). Studies have 22 
suggested a high accuracy of passive optical satellite (e.g., MODIS, Landsat) snow products under clear 23 
skies when comparing with the field observations; however, cloud masking and sub-pixel cloud 24 
heterogeneity in these snow cover products considerably restrict their applications (Kahn et al., 2011; Brun 25 
et al., 2015; Tang et al., 2017; Stillinger et al., 2019). Gridded datasets (e.g., CRU, GPCC Full Data Product, 26 
GPCC Monitoring Product, ERA-Interim, ERA5, MERRA-2, MERRA-2 bias corrected, PERSIANN-CDR) 27 
are of paramount importance, yet demand in-situ observations to improve the temporal and spatial 28 
distribution of meteorological parameters over complex mountain terrain (Zandler et al., 2019). 29 
 30 
 31 
10.2.2.7 Other sources of uncertainty  32 
 33 
Beyond climate monitoring, the quality and availability of multiple observational references play a central 34 
role in the model evaluation assessment. In fact, when using observations for model evaluation, there are 35 
multiple examples where inter-observational uncertainty is as large as the inter-model variability. This has 36 
been shown for various aspects of the Indian monsoon (Section 10.6.3) (Collins et al., 2013a) and for 37 
precipitation uncertainties over Africa (Section 10.6.4) (Nikulin et al., 2012; Sylla et al., 2013; Dosio et al., 38 
2015; Bador et al., submitted). Over the India-Tibet region and East Asia Kim et al. (2015b) and Kim and 39 
Park (2016) showed that differences among gridded precipitation datasets can generate significant 40 
uncertainties in deriving precipitation characteristics. The uncertainties vary according to regions, seasons, 41 
and statistical properties (Cross-Chapter-Box 10.3). Dosio et al. (2015) demonstrated uncertainty between 42 
precipitation datasets over parts of East Africa up to 3 mm/day, nearly as large as the inter-model spread. 43 
Kotlarski et al. (2017) compared three high-resolution observational temperature and precipitation datasets 44 
(E-OBS, a compilation of national/regional high-resolution gridded datasets, and the EURO4M-MESAN 45 
0.22 reanalysis based on a high-resolution limited area model) with five EURO-CORDEX RCMs driven by 46 
ERA-Interim. Generally, the differences between RCMs are larger than those between observation datasets, 47 
but for individual regions and performance metrics, observational uncertainty can dominate. They also 48 
showed that the choice of reference dataset can have an influence in the RCM ranking score. Using a very 49 
different perspective, the agreement between model simulations may be used to estimate the uncertainty and 50 
quality of observations (Massonnet et al., 2016). There is very high confidence (robust evidence and high 51 
agreement) that multiple observational references at regional scale are fundamental for the model 52 
performance assessment. 53 
 54 
Another example of uncertainty is related to the fact that global observational products such as remote-55 
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sensing derived data or reanalyses have higher uncertainty in data sparse regions when in-situ data are used 1 
to tune the algorithm/model. An example is the estimate of evapotranspiration, for which a large variety of 2 
methods based on remote sensing exists (Zhang et al., 2016c). Remotely sensed evapotranspiration products 3 
are mostly evaluated against the Fluxnet networks, which has a relatively dense coverage over North 4 
America, Europe and Japan (Ichii et al., 2017), but only a few sites over other regions. Consequently, 5 
evapotranspiration algorithms in surface and boundary layer parameterizations may be not representative for 6 
data sparse regions. Satellite products of evapotranspiration have been shown to have very large 7 
uncertainties over tropical South America (Sörensson and Ruscica, 2018), in particular for the annual cycle 8 
and variability, while uncertainties in the mean are largest over arid areas. Some well-documented 9 
agricultural droughts over arid areas were found to be unrepresented in satellite products due to uncertainties 10 
in the representation of radiation anomalies in the forcing data (Sörensson and Ruscica, 2018). 11 
 12 
 13 
10.2.3 Use of observations 14 
 15 
Two pathways concerning the fitness-for-purpose in observations can be identified: one is for the 16 
development of adaptation strategies (related for example to extreme precipitation in Japan (Shimpo et al., 17 
2019)) and the other is for the evaluation and improvement of climate models and post-processing 18 
techniques. 19 
 20 
 21 
10.2.3.1 Model evaluation and parametrization improvement 22 
 23 
Many kinds of observation measurement are used to improve and develop new parameterizations for new 24 
generations of climate models. For example, although a parameterization of a land surface model is often 25 
developed over a certain soil type and might not be adequate for other types, adjustments can be done by 26 
constraining the model with observations. For example, by assimilating satellite brightness temperature 27 
observations with their LDAS-UT scheme (Yang et al., 2007) successfully optimized a land-surface model 28 
for the Tibetan plateau. 29 
 30 
Adequate modelling of precipitation processes, especially for extreme precipitation, is still a challenging 31 
issue for regional climate modelling. Recent accumulation of three dimensional radar observations from 32 
space (e.g., TRMM and GPM) are utilized to examine regional characteristics of extreme rainfall and its 33 
environment (Hamada and Takayabu, 2018; Sohn et al., 2013), based on knowledge from global statistics of 34 
extreme rainfall characteristics (Hamada et al., 2015b). 35 
 36 
Convective latent heating is an essential part of the diabatic heating of the atmosphere. Observational 37 
estimates of latent heating can be used for model evaluation (Section 10.3.3.5). The TRMM precipitation 38 
radar with the spectral latent heating algorithm (Shige et al., 2009) and the Convective Stratiform Heating 39 
product (Tao et al., 2016) enabled to have an estimate of the three dimensional convective heating. Since the 40 
latent heating profiles represent the precipitation characteristics even more directly than precipitation profiles 41 
themselves, the SLH product is able to clarify cumulus congestus regimes in subtropical regions aside the 42 
South Pacific Convergence Zone in the eastern Pacific ocean (e.g., Takayabu et al., 2010; Takayabu and Tao, 43 
2020). 44 
 45 
The scale representativeness is an issue in utilizing soil observations (Taylor et al., 2012, 2013a). Although a 46 
variety of technologies to measure soil moisture at the point scale exist (Dobriyal et al., 2012), its spatial 47 
representativeness is less than 1 m2 (Ochsner et al., 2013; Liu et al., 2016b). Therefore, to be able to use in 48 
situ soil moisture for validating coarser-scale data from satellites or models, networks of point-scale 49 
measurements are used (Crow et al., 2015; Polcher et al., 2016). Smaller networks are typically of the size of 50 
a single climate model grid or a satellite pixel and are suitable for monitoring water sheds, while small 51 
numbers of those representing larger areas (>100 km2) are emerging (Ochsner et al., 2013). 52 
 53 
 54 
 55 
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10.2.3.2  Statistical downscaling, bias adjustment and weather generators 1 
 2 
Statistical downscaling, bias adjustment and weather generators are post-processing methods used to derive 3 
climate information from climate simulations. They all require observational data for calibration as well as 4 
evaluation (Section 10.3.3.3.3). Typically, the so-called perfect prognosis methods use quasi-observations 5 
for the predictors (i.e. reanalyses) and actual observations for the predictands (the surface variables of 6 
interest). By contrast, bias adjustment methods use observations only for the predictands. Weather generators 7 
typically require only observed predictands, although some are conditioned on predictors as well. Very often 8 
these methods operate on the daily scale, because of user needs, but also for the limited availability of sub-9 
daily observations and the limited ability of climate models to realistically simulate sub-daily weather 10 
(Iizumi et al., 2012). Some methods are calibrated on the monthly scale, but some of the generated time 11 
series are then further disaggregated to the daily scale (e.g., Thober et al., 2014). Some methods, mainly 12 
weather generators, represent sub-daily weather (Mezghani and Hingray, 2009; Kaczmarska et al., 2014). 13 
Many methods simulate temperature and precipitation only, although some also represent wind, radiation 14 
and other variables. The limited availability of high quality and long observational records typically restricts 15 
these applications to a few cases (Pryor and Hahmann, 2019). 16 
 17 
All limitations and challenges of observational data discussed in Section 10.2.2 apply to the use for post 18 
processing of climate model data. High quality and long observational data series are particularly relevant, as 19 
all statistical post-processing approaches require observations. Different reanalyses present significant 20 
discrepancies when used as key predictor variables at the daily scale (Brands et al., 2012; Dayon et al., 21 
2015), suggesting that this data source may not be suitable for statistical downscaling. 22 
 23 
An important issue for bias adjustment is the correct representation of the required spatial scale. Ideally, bias 24 
adjustment is calibrated against area-averaged data of the same spatial scale as the climate model output. 25 
Hence, high-quality gridded datasets with an effective resolution close to the nominal resolution are required. 26 
Driven by the need to generate regional scale information also in station sparse regions, researchers 27 
considered derived datasets that blend direct and remote sensing data to produce high-resolution 28 
observations to be used as predictands (e.g., Haiden et al., 2011; Wilby and Yu, 2013; Sections 10.2.1.2 and 29 
10.2.2.4). Such developments are particularly important for statistical downscaling and bias adjustment. 30 
 31 
 32 
10.2.3.3 Assimilation of data, including paleoclimate 33 
 34 
Following some early concept studies, the first practical applications of paleoclimate data assimilation over 35 
past centuries used only selected data to reconstruct past climate changes for analysis of a specific process or 36 
case (Widmann et al., 2010). Recently, assimilation of multiple series from various data sources including 37 
tree rings, ice cores, lake cores, corals, and bivalves, has allowed production of reconstructions that can be 38 
widely shared and applied to multiple purposes as with modern reanalyses (Franke et al., 2017; Hakim et al., 39 
2016; Steiger et al., 2018, Tardif et al. 2019). Most of these paleo-reanalyses are global but there are 40 
products using regional models or targeted at specific regions such as Europe, east Africa and Indian ocean 41 
(Fallah et al., 2018; Klein and Goosse, 2018). 42 
 43 
Paleo-reanalyses are opening a new range of applications and have already provided useful information on 44 
seasonal to multi-decadal climate variability over the past millennia. They are useful tools to study the 45 
covariance between variables at interannual to centennial timescales and at regional to global spatial scales. 46 
In particular, they have highlighted the processes that can be responsible for change in continental hydrology 47 
at multi-decadal timescales (Franke et al., 2017; Klein and Goosse, 2018; Steiger et al., 2018). Paleo-48 
reanalyses have confirmed a large contribution of internal variability in past changes at regional scale during 49 
the pre-industrial period, superimposed on a weak common signal due to forcing changes (Goosse et al., 50 
2012; Goosse, 2017) and the absence of globally coherent warm period in the common era before the recent 51 
warming (Neukom et al., 2019). The reconstructions of the atmospheric state obtained in the reanalysis also 52 
provide a robust evidence of a local enhancement of warming or cooling conditions because of changes in 53 
atmospheric circulation, such as during the generally warm Medieval Climate Anomaly (950‒1250 CE), the 54 
cooling observed in 1809/1810, or the cold and rainy 1816 summer in Europe (Goosse et al., 2012; Hakim et 55 
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al., 2016; Franke et al., 2017; Schurer et al., 2019). 1 
 2 
  3 
10.2.4 Outlook for improving observational data for regional climates 4 
 5 
An encouraging development for understanding past climate variations over the last 250 years at the regional 6 
scale lies in the field of data rescue, in which hitherto hidden archives of meteorological data are brought to 7 
the forefront. At the global level, weather rescue is led by the Atmospheric Circulation Reconstructions over 8 
the Earth (ACRE) project (Allan et al., 2011). ACRE recovers land and ocean historical instrument data, 9 
which, after quality control, is made available for use as inputs or constraints in global or regional 10 
reanalyses. An example that benefits from that effort is the 56-member Twentieth Century Reanalyses 11 
(20CR; Compo et al., 2011), which is fed entirely by surface pressure observations and the addition of 12 
monthly sea surface temperature (SST) or sea-ice as boundary conditions. Alternatively, the ERA-20C 13 
reanalysis is a single-member product that assimilates surface pressure and marine winds over 1900–2010 14 
(Poli et al., 2016a, 2016b), whereas  CERA-20C provides a 10-member ensemble of coupled reanalysis, 15 
accounting for errors in the observational record as well as model error (Laloyaux et al., 2018). All these 16 
reanalyses are global, but their availability plays a central role in a large number of regional climate studies. 17 
 18 
Particular techniques include the transcription of handwritten logbooks of meteorological observations from 19 
merchant shipping (e.g., Brönnimann et al., 2011), aided by participatory “citizen science” projects such as 20 
Old Weather (oldweather.org). Other projects include Operation Weather Rescue1, which includes recent 21 
efforts to digitise mountain weather data from an observing outpost on the United Kingdom’s highest 22 
mountain at the turn of the 20th century, or work to retrieve archives of Australian climate information (both 23 
examples reviewed in Ashcroft et al., 2016). 24 
 25 
 26 
10.3 Using models for constructing regional climate messages 27 
 28 
Much of the information available on future regional climate arises from studies based on climate model 29 
simulations. In this section, different types of models (Section 10.3.1) and model experiments (Section 30 
10.3.2) for generating regional climate information are discussed, followed by an assessment of the 31 
performance, added value, and fitness-for-purpose of different model types (Section 10.3.3). The focus is put 32 
on representing large- to local-scale phenomena and processes relevant for regional climate. Finally, 33 
uncertainties of regional climate projections and methodologies to manage these are assessed (Section 34 
10.3.4). 35 
 36 
 37 
10.3.1 Types of models 38 
 39 
Regional climate change information may be derived from a hierarchy of different model types covering a 40 
wide range of spatial scales and processes (see Figure 10.4 for an overview). The most relevant models will 41 
be introduced in the following. The application of any model relies on assumptions, depending on the 42 
specific model as well as the application. Table 10.1 gives an overview of the generic assumptions of the 43 
different model types discussed here for generating regional climate information. The violation of these 44 
assumptions will affect the model performance, which is discussed in Section 10.3.3. 45 
 46 
 47 
[START FIGURE 10.4 HERE] 48 
 49 
Figure 10.4: Typical model types and chains used in modelling regional climate. Grey lines: upstream model output is 50 

used without further post-processing. Orange lines: upstream model output is dynamically downscaled. 51 
Green lines: upstream model output is further statistically post-processed. The dashed lines indicate 52 

 
 
1 https://www.zooniverse.org/projects/edh/weather-rescue 
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model chains that might prove useful but have not or only rarely been used. 1 
 2 
[END FIGURE 10.4 HERE] 3 
 4 
 5 
[START TABLE 10.1 HERE] 6 
 7 
Table 10.1: Assumptions underlying different model types in simulating regional climate change. Violating these 8 

assumptions will affect model performance (see links to different subsections for details). All future 9 
assumptions add to the present climate assumptions and are given conditional on the driving GCM 10 
simulating a plausible global climate sensitivity (Chapters 4 and 7). The assumptions listed for future 11 
climate applications of perfect prognosis (prog) statistical downscaling and bias adjustment are often 12 
called “stationarity assumption” [Placeholder: Links to the chapter subsections need to be added 13 
yet.]. 14 
  15 

Model Type Scale Present Climate Future Climate 

GCM Large GCM includes all relevant large-
scale forcings and simulates 
relevant large-scale circulation 
realistically.  

GCM simulates processes 
controlling changes 
realistically. 
Parameterisations work in 
different climate. 

Regional GCM includes all relevant regional 
forcings and simulates all relevant 
regional scale processes and 
feedbacks and their dependence on 
large-scale climate realistically. 

GCM simulates processes 
controlling changes 
realistically. 
Parameterisations work in 
different climate. 

RCM (dynamically 
downscaled GCM) 

Large As with GCM. The RCM does not 
deteriorate GCM simulations. 
Feedbacks from regional into large-
scale processes are negligible. 

As with GCM. 

Regional As with GCM. As with GCM. 
Perfect prog statistical 
downscaling of GCM 

Large GCM simulates all relevant large-
scale predictors realistically and 
bias free. The predictors represent 
the regional variability at all desired 
time-scales.  

As with GCM. The 
predictors represent the 
response to external forcing. 

Regional The statistical model structure is 
adequate to represent the predictor 
influence on regional-scale 
variability. There are no relevant 
feedbacks involving the 
predictands. 

The statistical model 
structure is adequate under 
the required extrapolation. 

Bias adjustment of 
dynamical model 

Large As with driving model. As with driving model. 
Regional As with driving model. The gap 

between driving model resolution 
and target resolution is minor. 

As with driving model. The 
chosen bias adjustment is 
applicable in a future 
climate. 

Delta change approach 
applied to dynamical 
model 

Large NA As with driving model. 
There are no changes 
altering the non-changed 
statistics (e.g., no circulation 
changes that alter temporal 
structure) 

Regional NA As with driving model. 
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There are no changes 
altering the non-changed 
statistics. The gap between 
driving model resolution and 
target resolution is minor. 

Change factor weather 
generator applied to 
dynamical model 

Large NA As with driving model. 
Regional The weather generator structure is 

adequate. 
As with driving model. The 
weather generator structure 
is adequate in a future 
climate. Change factors are 
adequately incorporated for 
all changing weather aspects. 
The gap between driving 
model resolution and target 
resolution is minor. 

 1 
[END TABLE 10.1 HERE] 2 
 3 
 4 
10.3.1.1 GCMs, including high-resolution and variable resolution GCMs 5 
 6 
State of the art GCMs are generally used to derive climate information at continental to global scales both for 7 
the past and future climate (Chapters 3 and 4). Although the nominal horizontal resolution in CMIP5 GCMs 8 
is typically 100–200 km, which implies an effective resolution of 600 to 1000 km (Klaver et al., submitted) 9 
thereby strongly limiting their ability to resolve local details, their results have also been applied to study 10 
past and future regional climate change. There has long been a tension regarding how to best use available 11 
simulation resources among choices of increasing model resolution (to capture finer scale processes), 12 
enhancing the ensemble size (to better capture internal variability and more accurately determine the 13 
response to forcings), improving parameterizations and adding new processes, such as the carbon cycle. 14 
Despite these efforts, since AR5 the progress in reducing biases and providing more credible regional 15 
projections by GCMs and ESMs has been moderate. Now for AR6, several of the new CMIP6 (Eyring et al., 16 
2016a) model intercomparison projects (MIPs)s address some of these limitations. The list of MIPs is 17 
provided in Chapter 3. HighResMIP (High-Resolution MIP, Haarsma et al., 2016) and GMMIP (Global 18 
Monsoons MIP, Zhou et al., 2016) specifically address the regional climate challenge using GCMs and 19 
ESMs. HighResMIP focuses on producing global climate projections at a horizontal resolution of around 50 20 
km grid spacing or finer and GMMIP aims at better understanding and predicting of monsoons. 21 
 22 
Apart from increasing resolution everywhere, variable resolution GCMs, that is, with locally enhanced 23 
resolution, have also been developed since the 1970s (Li, 1999), resulting in a first coordinated effort by Fox-24 
Rabinovitz et al., (2006, 2008). An overview of recent developments has been given by McGregor, (2015). 25 
This is a rapidly developing field (Krinner et al., 2014; Ferguson et al., 2016; Huang et al., 2016) that will 26 
likely contribute to improved future regional projections. 27 
 28 
 29 
10.3.1.2 RCMs 30 
 31 
RCMs are dynamical models similar to GCMs that are run over a limited area, but with a resolution higher 32 
than that of standard GCMs. They are the basis for dynamical downscaling but are also often used for 33 
process understanding. At the domain boundaries, RCMs take their values from a driving data set, which 34 
could be a GCM or a reanalysis. RCMs are typically one-way nested: they do not feed back into the driving 35 
model, although two-way nested GCM-RCM simulations have been performed (Lorenz and Jacob, 2005; 36 
Harris and Lin, 2013; Junquas et al., 2016). 37 
 38 
When RCMs are driven by GCMs, large-scale biases may be inherited through the lateral boundary 39 
conditions in addition to any inherent biases of the RCM itself (an issue usually referred to as ‘garbage-in, 40 
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garbage-out’; e.g., Dosio et al., 2015; Hall, 2014; Hong and Kanamitsu, 2014; Takayabu et al., 2016). The 1 
consistency between the circulation features simulated by the RCM and those inherited through the boundary 2 
conditions depends on two factors: 1) the relative importance of the large-scale forcing compared to local-3 
scale phenomena, and 2) the size of the RCM domain (e.g., Diaconescu and Laprise, 2013). In fact, large 4 
(continental scale) domains allow the RCM to generate its own climate, including additional unforced, 5 
internal variability (Nikiema et al., 2017, and references therin). An approach to ensure, if desired, 6 
consistency with the driving model (e.g., to synchronize internal variability) is spectral nudging  (Kida et al., 7 
1991; Waldron et al., 1996; von Storch et al., 2000; Kanamaru and Kanamitsu, 2007) by which selected 8 
variables, such as the wind field, are forced to closely follow a prescribed large-scale field over a specified 9 
range of spatial scales, whereas smaller scales are generated by the regional model itself. 10 
 11 
The CORDEX initiative (COordinated Regional climate Downscaling EXperiment; Giorgi et al., 2009; 12 
Giorgi and Gutowski, 2015; Gutowski Jr. et al., 2016) provides ensembles of high-resolution historical 13 
(starting as early as 1950) and future climate projections for various regions of the world. RCMs in 14 
CORDEX typically have had a horizontal resolution between 10 and 50 km. Much finer spatial resolution is 15 
required to fully resolve deep convection, an important cause of precipitation in much of the world. 16 
Therefore, an emerging strand in dynamical downscaling employs simulations at convection permitting 17 
scales, at horizontal resolutions of a few kilometres, where deep-convection parameterisations can be 18 
switched off, approximately resolving deep convection (Prein et al., 2015; Coppola et al., 2018; Stratton et 19 
al., 2018). A recent study indicates that explicitly simulating convection may be beneficial also in 20 
simulations performed at coarser resolutions (Vergara-Temprado et al., 2019). Alternatively, some RCMs 21 
make use of scale-aware parameterizations that are able to adapt to increasing resolution without switching 22 
off the convection scheme (Hamdi et al., 2012; De Troch et al., 2013; Plant and Yano, 2015; Giot et al., 23 
2016; Termonia et al., 2018a; Yano et al., 2018). 24 
 25 
RCMs often consist of atmospheric and land components that do not include all possible Earth-system 26 
processes and therefore neglect important processes such as air-sea coupling (in standard RCMs SSTs are 27 
prescribed from GCM simulations) or the chemistry of cloud-aerosol interaction (aerosols prescribed with a 28 
climatology), which may influence regional climate projections. Therefore, in recent years, many RCMs 29 
were extended by coupling to additional components like interactive oceans, sometimes with sea-ice, 30 
(Kjellström et al., 2005; Somot et al., 2008; Van Pham et al., 2014; Sein et al., 2015; Ruti et al., 2016), rivers 31 
(Sevault et al., 2014; Lee et al., 2015; Di Sante et al., 2019), glaciers (Kotlarski et al., 2010), and aerosols 32 
(Zakey et al., 2006; Zubler et al., 2011; Nabat et al., 2015). The coupling of these components allows for the 33 
investigation of additional climate processes such as regional sea-level change (Adloff et al., 2018), ocean-34 
land interactions (Lima et al., 2019; Soares et al., 2019a), or the control of high-frequency ocean-atmosphere 35 
coupling on the climatology of Mediterranean cyclones (Flaounas et al., 2018). If such RCMs are extended 36 
by additional components (such as the carbon cycle), they may be named Regional Climate System Models 37 
(RCSMs; Somot et al., 2018) or Regional Earth System Models (RESMs; Giorgi and Gao, 2018). 38 
 39 
 40 
10.3.1.3 Sub-component models  41 
 42 
A selection of sub-component models developed to represent the influence of sub-grid processes is 43 
introduced in this section. The relevance of including these models in GCM or RCM coupled simulations 44 
will be assessed in Section 10.3.3. 45 
 46 
 47 
10.3.1.3.1 Natural aerosols 48 
Dust has traditionally been specified with a climatological estimate in climate simulations. However, 49 
interactive dust emission modules that are able to correctly simulate the dust optical depth in most of the key 50 
emission regions have only been recently introduced (Pu and Ginoux, 2018). Dust variations are controlled 51 
by changes in surface winds, precipitation, and vegetation, which in turn are modulated at multiple time 52 
scales by dominant modes of internal climate variability. For instance, the dust increase during the first 53 
decade of the 21st Century in the Middle East has been associated with drought conditions in the Fertile 54 
Crescent (Yu et al., 2015) that could have been amplified by anthropogenic warming (Kelley et al., 2015). 55 
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This complexity points at the importance of including model components that represent the interaction 1 
between the atmosphere, the land surface and dust emissions.  2 
 3 
The impact of volcanic eruptions on the climate variability modes can shape regional climates for a few 4 
years after the eruption and can be seen as a unique source of predictability for climate (Ménégoz et al., 5 
2018a). This requires models to capture these impacts, which still remains a limited ability with model-6 
dependent results. A better integration of the volcanic aerosol in GCMs is evaluated in VolMIP (Zanchettin 7 
et al., 2016). The need for a good knowledge of initial conditions is also key, since the response is very 8 
sensitive to them (Ménégoz et al., 2018b; Zanchettin et al., 2019). However, a better performance requires 9 
taking into account volcanic location (Haywood et al., 2013; Pausata et al., 2015; Stevenson et al., 2016; Liu 10 
et al., 2018a), strength (Emile-Geay et al., 2008; Lim et al., 2016c; Liu et al., 2018b), and seasonality 11 
(Stevenson et al., 2017; Sun et al., 2019a, 2019b) into consideration. For instance, observations now made 12 
available by new satellites (Vernier et al., 2011) have been suggested to be used for the four-dimensional 13 
evolution of aerosol clouds in climate models, accounting at the same time for spatial variations (Yang et al., 14 
2019). 15 
 16 
 17 
10.3.1.3.2 Anthropogenic  aerosols 18 
To account for the effects of anthropogenic aerosols on regional climate, these can be represented in climate 19 
models (GCMs or RCMs) using modules of differing complexity. Without a fully coupled chemistry module, 20 
the radiative forcing can be simulated by specifying the optical properties from observations and prescribe 21 
the effect of the aerosols on the cloud droplet number with the single plume parameterization scheme 22 
(Fiedler et al., 2017, 2019; Stevens et al., 2017). In models with fully coupled chemistry modules the 23 
emissions of anthropogenic aerosols and reactive species are prescribed, and the model simulate the aerosol 24 
load and the optical and cloud perturbations that lead to the final spatio-temporal distribution of radiative 25 
forcing (Myhre et al., 2013; Ghan et al., 2016). 26 
 27 
 28 
10.3.1.3.3 Land management models 29 
Land management has been implemented in GCMs and RCMs since AR5, two important examples being 30 
irrigation and tillage. Irrigation increases the soil moisture, enhancing the latent heat flux and reducing the 31 
sensible heat flux and, in turn, local temperature. The simplest approach to implementing irrigation demand 32 
in a model is to define it as the difference between actual and desired soil moisture availability, the latter 33 
most commonly set to field capacity (Nazemi and Wheater, 2015). This demand is applied to areas equipped 34 
for irrigation and often applied all year round (Pokhrel et al., 2016) resulting in an overestimation of actual 35 
irrigation demand. The simplest way to implement supply of water to fill the irrigation demand is to add 36 
water from an infinite surface storage until the demand is covered (Tuinenburg et al., 2014; Nazemi and 37 
Wheater, 2015; Pokhrel et al., 2016). Another approach forces the model with historical irrigation data 38 
constructed from data assessment irrigation data and offline hydrological modelling, which can improve the 39 
spatio-temporal heterogeneity of irrigation (Shukla et al., 2014; Wada et al., 2014; Cook et al., 2015b). 40 
 41 
Tillage lowers the surface albedo by replacing light-coloured crop residue with darker soil, making the 42 
surface absorb more energy. The effect of tillage versus no-tillage systems in coupled simulations has been 43 
implemented through changes in albedo and, to account for effects on evaporation, soil resistance (Davin et 44 
al., 2014; Hirsch et al., 2017, 2018). 45 
 46 
 47 
10.3.1.3.4 Lake models 48 
Lakes have very different surface properties in comparison to land (lower surface roughness and albedo, and 49 
higher thermal conductance and heat capacity), and their presence in a landscape introduces large 50 
heterogeneities of temperature and evapotranspiration. A common way of accounting for the difference 51 
between land and lake temperatures has been to put the lake temperature and lake ice conditions equal to 52 
those at the closest sea point. This approach is problematic for seasonally ice-covered lakes, sea temperature 53 
falls much slower during autumn than the actual lake temperature would and therefore creates an artificial 54 
heat and moisture source to the atmosphere (Kirillin et al., 2012; Pietikäinen et al., 2018). 55 
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 1 
Lake models have been incorporated in RCMs (Martynov et al., 2010; Samuelsson et al., 2010; Gula and 2 
Peltier, 2012; Bennington et al., 2014). Most lake models assume that the horizontal gradient of temperature 3 
is negligible in comparison to the vertical gradient to justify a 1D approach. Although this can be 4 
problematic for large lakes (León et al., 2007), the large computational cost of coupled 2D and 3D lake 5 
models prevents this approach (Pietikäinen et al., 2018). A multi-layer model can describe the lake 6 
thermocline without parameterization (Xiao et al., 2016), but is computationally expensive. Therefore, the 7 
most common approach in RCMs is the two-layer model, including a lake-ice model, with parameterized 8 
vertical temperature profiles based on measurements (Mironov et al., 2010; Golosov et al., 2018). 9 
 10 
 11 
10.3.1.4 Statistical approaches to generate regional climate projections 12 
 13 
An alternative or addition to dynamical downscaling is the use of statistical approaches to generate regional 14 
projections. In AR5 these methods have been collectively referred to as statistical downscaling, but have 15 
received little attention. A major conclusion was that a wide range of different methods exist and a general 16 
assessment of their performance is difficult (Flato et al., 2014). Since AR5, several initiatives have been 17 
launched to improve the understanding of statistical approaches such as VALUE (which has been merged 18 
into the EURO-CORDEX activities; Maraun et al., 2015), STARMIP (Vaittinada Ayar et al., 2016) and 19 
BADJAM (Galmarini et al., 2019). The performance of different implementations of these approaches will 20 
be assessed in Section 10.3.3. 21 
 22 
 23 
10.3.1.4.1 Perfect prognosis 24 
Perfect prognosis models are statistical models calibrated between observation-based large-scale predictors 25 
(e.g., from reanalysis) and observed local-scale predictands. Regional climate projections are then generated 26 
by replacing the quasi-observed predictors by those from climate model (typically GCM) projections. 27 
Typical implementations of perfect prognosis models include regression-like models and the analogue 28 
method. 29 
 30 
Regression-like models rely on a transfer function linking an observed local statistic (such as the temperature 31 
at a given day) to some set of large-scale predictors. Recent developments  include the development of 32 
stochastic regression models to explicitly simulate local variability (San-Martín et al., 2017; those explicitly 33 
modelling temporal dependence are assessed in Section 10.3.1.4.4). Recently, the use of machine learning 34 
techniques has been proposed, including genetic programming to construct a data-driven model structure 35 
(Zerenner et al., 2016) and deep and convolutional neural networks (Reichstein et al., 2019). 36 
 37 
Analogue methods (e.g., Maraun and Widmann, 2018b) are based on the assumption that two similar large-38 
scale atmospheric fields typically result in similar local weather fields. Thus, analogue methods compare a 39 
simulated large-scale atmospheric field with an archive of observed atmospheric fields and select, by some 40 
distance metric, the observed field closest to the simulated field as analogue. The downscaled atmospheric 41 
field is then chosen as the local atmospheric field observed on the instant the analogue occurred. New 42 
analogue methods have been developed to simulate unobserved values including a rescaling of the analogue 43 
(Pierce et al., 2014) or by combining analogues and regression models (Chardon et al., 2018). 44 
 45 
 46 
10.3.1.4.2 Bias adjustment 47 
Bias adjustment is a statistical post-processing technique used to pragmatically reduce the errors in climate 48 
model outputs. The approach estimates the bias or relative error between a chosen simulated statistical 49 
property (such as the long-term mean or specific quantiles of the climatological distribution) and the 50 
corresponding observed one over a calibration period; the simulated statistic is then adjusted taking into 51 
account the simulated deviation. Bias adjustment methods are regularly applied on spatial scales similar to 52 
that of the simulation being corrected, but they are often used as a simple statistical downscaling method by 53 
calibrating them between coarse resolution (e.g., GCM) model output and finer observations. The most 54 
important difference between perfect prognosis and bias adjustment is that, whereas perfect prognosis can 55 
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link any physically sensible predictor at a given day to any local atmospheric variable, bias adjustment can 1 
only link long-term statistics of a simulated atmospheric variable to the same long-term statistic of the same 2 
observed atmospheric variable. By construction, the bias of the adjusted statistical property vanishes over the 3 
calibration period. In a climate change context this approach assumes that biases are time invariant (Table 4 
10.1 for further specification of this assumption). 5 
 6 
Typical implementations of bias adjustment are (1) additive adjustments, where the model data is adjusted by 7 
adding a constant, (2) rescaling, where the model data is adjusted by a factor, (3) or more flexible quantile 8 
mapping approaches that adjust different ranges of a distribution individually. One strand of research on new 9 
bias adjustment methods since AR5 has focused on the development of trend-preserving quantile mapping 10 
methods and multi-variable methods. Hempel et al. (2013), Pierce et al. (2015), Switanek et al. (2017), and 11 
Lange (2019) developed variants of quantile mapping that preserve trends in the mean or even further 12 
distributional statistics. Multivariate bias adjustment extends univariate methods, which adjust statistics of 13 
individual variables separately, to joint adjustment of multiple variables simultaneously. Implementations 14 
remove biases in (1) specific measures of multivariate dependence, like correlation structure, via linear 15 
transformations (Bárdossy and Pegram, 2012; Cannon, 2016), or, more flexibly, (2) the full multivariate 16 
distribution via nonlinear transformations (Vrac and Friederichs, 2015; Cannon, 2018; Vrac, 2018; Robin et 17 
al., 2019). Other research strands focus on the explicit separation of bias adjustment and a subsequent 18 
stochastic downscaling (Volosciuk et al., 2017; Lange, 2019c), or the integration of process understanding 19 
(Maraun et al., 2017b), such as by conditioning the adjustment on the occurrence of relevant phenomena 20 
(Manzanas and Gutiérrez, 2019). Over recent years, several issues have been identified that may arise when 21 
using bias adjustment. These are discussed in Cross-Chapter Box 10.2. 22 
 23 
 24 
10.3.1.4.3 Delta change approaches 25 
A mathematically similar though conceptually very different approach to bias adjustment is the delta change 26 
approach. Here, selected observations are modified according to corresponding changes derived from 27 
dynamical model simulations. Traditionally, only long term means have been adjusted, but recently 28 
approaches to modify temporal dependence (Webber et al., 2018) have been developed, as well as quantile 29 
mapping approaches that individually adjust quantiles of the observed distribution (Willems and Vrac, 30 
2011). 31 
 32 
 33 
10.3.1.4.4 Weather generators 34 
Weather generators are statistical models that simulate weather time series of arbitrary length. They are 35 
calibrated to represent observed weather statistics, in particular temporal day-to-day (or even sub-daily) 36 
variability. One variant of these models is conditioned on large-scale atmospheric predictors on a day-by-day 37 
basis. These models are advanced stochastic perfect prognosis methods underlying the same assumptions. 38 
Recent multisite-examples are based on, for instance, generalised linear models (Chandler, 2019). Another 39 
widely used variant is change-factor weather generators: the weather generator parameters are calibrated 40 
against present and future climate model simulations, and the climate change signal in these parameters is 41 
then applied to the parameters calibrated to observations. Such weather generators evolve randomly on a 42 
day-by-day basis and take only long-term changes from the climate model. Recent research has mainly 43 
focussed on multi-site Richardson type (Markov-chain) weather generators (Keller et al., 2015; Dubrovsky et 44 
al., 2019), some explicitly modelling extremes and extremal dependence (Evin et al., 2018). 45 
  46 
 47 
10.3.2 Types of experiments 48 
 49 
The most commonly used experiments to generate regional climate change information are transient 50 
simulations. Alternative experiment types may better serve for a specific purpose. The role of these 51 
experiment types for generating regional climate information will be assessed in the following. 52 
 53 
 54 
 55 
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10.3.2.1 Transient simulations and time-slice experiments 1 
 2 
Transient simulations intend to represent the evolving climate state of the Earth system (Chapter 4). They are 3 
typically based on some of the CMIP-type coupled GCM simulations, such as those in the DECK and 4 
ScenarioMIP part of CMIP6 covering the period 1850–2100 (Eyring et al., 2016a), and HighResMIP 5 
(although covering only the period 1950–2050 due to computational constrains; Haarsma et al., 2016). 6 
Global transient climate simulations may be further downscaled by either dynamical or statistical 7 
downscaling. Currently available CORDEX RCM simulations (1950–2100) are based on CMIP5 (Gutowski 8 
Jr. et al., 2016). 9 
 10 
On the contrary, time-slice experiments are designed to represent only a short, specific period of time 11 
(typically 30 years). They are often run using GCMs or RCMs in atmosphere-only mode, forced by SSTs 12 
derived either from observations, like in the AMIP experiments, or historical simulations and future 13 
projections from coupled GCMs. Compared to the transient simulations, they offer advantages in being 14 
computationally cheaper (due to the lack of coupled ocean and short duration), which allows for the number 15 
of ensemble members (Zhang et al., 2016d), and/or the resolution (Haarsma et al., 2013a; Davini et al., 2017) 16 
to be increased. Convection-permitting simulations, both covering the globe or particular regions, are 17 
currently conducted for short time slices only (Kendon et al., 2017; Coppola et al., 2018; Hewitt and Lowe, 18 
2018). Some time-slice experiments have been carried out for coupled ocean atmosphere RCMs (Sein et al., 19 
2015; Zou and Zhou, 2016, 2017). 20 
 21 
 22 
10.3.2.2 Pseudo-global warming experiments  23 
 24 
Often, results from downscaling experiments suffer from large-scale circulation biases in the driving GCMs 25 
such as misplaced storm tracks (Section 10.3.3.4). Moreover, changes in the atmospheric circulation are 26 
often uncertain owing to both climate response uncertainty (Section 10.3.4.2) and internal variability 27 
(Section 10.3.4.3). If, in a given application, one can assume that changes in the regional climate aspects of 28 
interest are dominated by thermodynamic rather than by circulation changes, so-called pseudo-global 29 
warming (PGW) experiments (Schär et al., 1996) may be helpful in mitigating the effects of circulation 30 
biases, and to fix the large-scale circulation to present climate. In classical PGW experiments, boundary 31 
conditions for the downscaling are taken from reanalysis data, though modified according to the 32 
thermodynamic aspects of climate change simulated by GCMs. These changes are added to the reanalysis by 33 
modifying the 3-dimensional temperature and moisture fields according to GCM-simulated changes. The 34 
large-scale dynamical fields are unchanged, assuming that they are not influenced by the imprinted 35 
thermodynamic changes. The boundary conditions thus represent the observed weather sequence as 36 
represented by the reanalysis, but with adjusted temperatures, humidity and atmospheric stability. Recent 37 
applications of PGW experiments include an assessment of climate change in Japan (Adachi et al., 2012; 38 
Kawase et al., 2012, 2013), the Los Angeles area (Walton et al., 2015), Hawaii (Zhang et al., 2016a), and the 39 
Alps (Keller et al., 2018). Recently, PGW studies have been generalised to modify GCM simulations with 40 
the objective of separating the drivers of regional climate change, such as the Mediterranean amplification 41 
(e.g., Brogli et al., 2019; Section 10.3.2.3). 42 
 43 
Equivalent simulations can be conducted for individual events, thereby allowing for very high resolution. 44 
With counterfactual past climate conditions, such simulations can be used for conditional event attribution 45 
(Trenberth et al., 2015; Chapter 11), with hypothetical future conditions to generate storylines of how 46 
specific events may manifest in a warmer climate. The approach has been employed to study extreme events 47 
that require very high resolution simulations such as tropical cyclones (Lackmann, 2015; Takayabu et al., 48 
2015; Kanada et al., 2017; Gutmann et al., 2018; Patricola and Wehner, 2018) or convective precipitation 49 
events (Pall et al., 2017; Hibino et al., 2018). The range of possible events is broader and has included 50 
Korean heat waves (Kim et al., 2018) and monsoon onset in West Africa (Lawal et al., 2016). However, if 51 
only individual events are simulated, no conclusions can be derived directly on changes in the occurrence 52 
probability of these events (Otto et al., 2016a; Shepherd, 2016). 53 
 54 
 55 
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10.3.2.3 Sensitivity studies with selected drivers  1 
 2 
Sensitivity studies are used to disentangle and document the impact of a specific driver or process on a given 3 
climate change or phenomenon. The influence of a single external forcing can be assessed with transient 4 
historical simulations within two different frameworks (Bindoff et al., 2013; Gillett et al., 2016). The former 5 
entails performing simulations with prescribed (often observed) changes only in the external forcing of 6 
interest, the others being fixed at a constant value (often pre-industrial). The latter is based on simulations in 7 
which all external forcings are applied but the one of interest. Both approaches in general do not give the 8 
same results as the climate response to a range of forcings is not necessarily identical to the sum of climate 9 
responses to individual forcings (Ming and Ramaswamy, 2011; Jones et al., 2013; Schaller et al., 2013; 10 
Shiogama et al., 2013; Marvel et al., 2015; Deng et al., 2019). 11 
 12 
To study the influence of internal variability, new approaches such as partial coupling simulations are now 13 
routinely used since AR5. These are coupled ocean-atmosphere simulations in which the interaction between 14 
the atmosphere and the ocean is only one-way over an oceanic basin or sub-basin and two-way everywhere 15 
else. Different implementations have been used such as SST anomaly Newtonian relaxation at the air-sea 16 
interface or prescribing daily or higher frequency wind stress anomalies from reanalysis (Kosaka and Xie, 17 
2013, 2016; England et al., 2014; McGregor et al., 2014; Douville et al., 2015; Deser et al., 2017a). Such 18 
simulations have been applied to identify the regional impacts of the AMV (Ruprich-Robert et al., 2017, 19 
2018). 20 
 21 
Another framework is used to evaluate the impact land conditions have on a climate phenomenon. The 22 
modelling framework consists of a pair of model experiments, with one simulation serving as control run, 23 
and a perturbed simulation with prescribed land conditions (i.e., soil moisture, leaf area index, and surface 24 
albedo) characterizing a specific state of the land surface. The difference between the perturbed and control 25 
simulations enables a robust assessment of the possible impact of land conditions on e.g., large-scale 26 
droughts and heatwaves (Seneviratne et al., 2013; Stegehuis et al., 2015; Hauser et al., 2016, 2017; Vogel et 27 
al., 2017; Rasmijn et al., 2018). 28 
 29 
RCM sensitivity simulations have been used in a similar way to assess the contribution of different large-30 
scale drivers to projected regional climate change (Brogli et al., 2019b, 2019a) and the influence of selected 31 
drivers on observed extreme events (Meredith et al., 2015b; Wang et al., 2017a; Ardilouze et al., 2019). 32 
 33 
 34 
10.3.2.4 Control simulations  35 
 36 
Over recent years, the role of internal variability has become clearer in the interpretation of climate 37 
projections, in particular at the regional scale (Section 10.3.4.3). A considerable fraction of CMIP5 and 38 
CMIP6 resources has therefore been invested in generating an ensemble of control simulations with 39 
prescribed constant external forcings. These are often several hundred years long, and sometimes much 40 
longer (Pedro et al., 2016; Rackow et al., 2018). As part of the CMIP6 DECK (Eyring et al., 2016a) pre-41 
industrial control (piControl) simulations have been conducted (Menary et al., 2018). 42 
 43 
Similarly, control simulations with present-day conditions (pdControl) have been performed to represent 44 
internal variability under more recent concentrations of forcing agents (Pedro et al., 2016; Williams et al., 45 
2018). Control simulations have been used to study the role of internal variability, teleconnections and many 46 
other fundamental aspects of climate models (Wang et al., 2015c; Krishnamurthy and Krishnamurthy, 2016). 47 
Unforced internal variability is a fundamental aspect of regional climate as any response to external forcings 48 
in experiments with variable forcings will interact with this type of variability (Thompson et al., 2015; Deser 49 
et al., 2017b). These simulations are also used along with large ensembles of historical or scenario 50 
simulations to assess the characteristics of the regional internal climate variability (Olonscheck and Notz, 51 
2017). 52 
 53 
 54 
 55 
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10.3.2.5 Simulations for evaluating downscaling methods 1 
 2 
Since AR5, reanalysis-driven RCMs have been extensively evaluated for many regions of the world, 3 
especially in the framework of the CORDEX project (see the examples in the Atlas). Experiments driven by 4 
perfect boundary conditions or predictors (observations or reanalysis) can be useful to evaluate downscaling 5 
performance (Frei et al., 2003; Laprise et al., 2013). In such a setting, any discrepancy between the modelled 6 
and observed climate arises only from errors in the downscaling method (Laprise et al., 2013) or internal 7 
climate variability generated by the downscaling method. 8 
 9 
A comprehensive inter-comparison of statistical downscaling, bias adjustment and weather generators is 10 
lacking, although several methodologies have been evaluated over specific regions. Over Europe, the 11 
VALUE initiative assessed the performance of statistical downscaling for marginal, temporal, and spatial 12 
aspects of temperature and precipitation including extremes, and performed a process based evaluation of 13 
specific climatic phenomena (Gutiérrez et al., 2018; Maraun et al., 2018). Alternatively, statistical 14 
downscaling can be evaluated in the so-called perfect model or pseudo reality simulations (Charles et al., 15 
1999), where a high-resolution climate model simulation is used as proxy for a hypothetical present and 16 
future reality. A statistical downscaling model is first calibrated with this pseudo present-day climate and, 17 
subsequently, assessed whether it correctly reproduces the future conditions (Dixon et al., 2016). 18 
 19 
 20 
10.3.3 Model performance and added value in simulating and projecting regional climate 21 
 22 
Assessing model performance is a prerequisite for characterizing confidence in regional climate projections. 23 
This section sets out with a discussion of evaluation diagnostics and the concept of added value, followed by 24 
an overall performance assessment to simulate regional climate with different model types. A key part of the 25 
subsection addresses performance to simulate relevant phenomena and processes at both large and small 26 
scales as well as the representation of past regional trends. The subsection closes with an assessment of 27 
approaches to link model performance in present climate to the model fitness for simulating future regional 28 
climate. 29 
 30 
 31 
10.3.3.1 Evaluation diagnostics 32 
 33 
Model evaluation compares simulated aspects of the climate system with the corresponding observed ones. 34 
The comparison involves two components: what is compared, typically measured by a quantitative statistic 35 
or index (referred to as diagnostic; see Chapter 1), and the quantification of the mismatch between model and 36 
an observational reference (referred to as performance measure or metric; Gleckler et al., 2008; Maraun et 37 
al., 2018). 38 
 39 
Since AR5, model evaluation has made use of a broad combination of diagnostics (Kotlarski et al., 2014; 40 
Eyring et al., 2016b; Gleckler et al., 2016; Ivanov et al., 2017, 2018), ranging from long-term means to 41 
indices of extreme events (Zhang et al., 2011; Sillmann et al., 2013) or a combination of those (Dittus et al., 42 
2016). More complex diagnostics are used to characterize specific meteorological phenomena (Sprenger et 43 
al. 2017), such as ENSO feedbacks (Bellenger et al., 2014), Madden-Julian Oscillation (MJO) characteristics 44 
(Ahn et al., 2017; Benedict et al., 2014; Jiang et al., 2015; Kim et al., 2015), extra-tropical modes of 45 
variability (Lee et al., 2019), cyclone tracking (Neu et al., 2013), or front detection (Hope et al., 2014; 46 
Schemm et al., 2015). However, the mismatch between observations and a model simulation might be 47 
caused solely by internal variability, particularly in the case of teleconnections and trends, especially for 48 
diagnostics calculated over short time periods (Notz, 2015; Deser et al., 2017c). 49 
 50 
Diagnostics are a complex set. To characterise compound events (Zscheischler et al., 2018), a family of 51 
events defined by several variables that might not be extreme individually, new diagnostics for multivariate 52 
dependencies are needed  (Hobaek Haff et al., 2015; Wahl et al., 2015; Sippel et al., 2016, 2017; Tencer et 53 
al., 2016; Bevacqua et al., 2017; Careto et al., 2018). Their success depends on the availability of relevant 54 
observational data (Section 10.2.2). Multivariate dependences discovered in compound events can also be 55 
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used for designing and evaluating multivariate bias correction and statistical downscaling. Process-based 1 
diagnostics are useful for identifying the cause of models errors, although it is not always possible to 2 
associate a systematic error with a specific cause (Eyring et al., 2019). AR5 discussed two main approaches 3 
of process-based evaluation: 1) the isolation of physical components or parameterizations by dedicated 4 
experiments (as discussed in Section 10.3.2.4) and 2) diagnostics conditioned on relevant regimes, usually 5 
synoptic-scale weather patterns. The regime-based approach has been used with both GCMs (e.g., Catto et 6 
al., 2015) and RCMs (Endris et al., 2016; Whan and Zwiers, 2017; Pinto et al., 2018), but also with perfect 7 
prognosis and bias adjustment methods (Kjellström et al., 2013; Marteau et al., 2015; Addor et al., 2016; 8 
Beranová and Kyselý, 2016; Soares and Cardoso, 2018; Soares et al., 2019b). 9 
 10 
Recent studies highlight the importance of user-defined or user-relevant diagnostics for model evaluation 11 
(Maraun et al., 2015; Rössler et al., 2019b). Diagnostics have been used to assess the performance of climate 12 
models to produce useful input data for impact models as in the comparison between RCMs and convection 13 
permitting models to capture flood generating precipitation events in the Alps (Reszler et al., 2018). 14 
Alternatively, the observed impact can be compared to that simulated by an impact model with input from 15 
both observations and climate models. This approach has been used to evaluate the influence of statistical 16 
downscaling and bias adjustment on hydrological (Rojas et al., 2011; Chen et al., 2012c; Gutiérrez et al., 17 
2018; Rössler et al., 2019b), agricultural (Ruiz-Ramos et al., 2016; Galmarini et al., 2019), forest and 18 
wildfire (Abatzoglou and Brown, 2012; Migliavacca et al., 2013), and regional ocean modelling (e.g., 19 
Macias et al., 2018). 20 
 21 
 22 
10.3.3.2 Model improvement and added value  23 
 24 
Obtaining regional information from global simulations may involve a range of different methods (see 25 
Section 10.3.1). An approach with higher complexity or resolution is useful if it adds further, useful 26 
information to that of a reference model (such as a standard GCM). This further useful information is often 27 
referred to as added value and is a function of variables, processes, and the temporal and spatial scales 28 
targeted taking into account the needs of specific users (Di Luca et al., 2012; Ekström et al., 2015; Giorgi 29 
and Gutowski, 2015; Torma et al., 2015; Rummukainen, 2016; Falco et al., 2018). There is no common 30 
definition of added value. Added value is considered here to be a characteristic that arises when one 31 
methodology attempts to give further value to what another methodology yields. The added value of 32 
downscaling GCM simulations is most likely where regional- and local-scale processes play an important 33 
role in the climate of a region, for example in complex or heterogeneous terrain such as mountains (Lee and 34 
Hong, 2014; Prein et al., 2016a), along coastlines (Feser et al., 2011; Herrmann et al., 2011), or where 35 
convective processes are important (Prein et al., 2015). Precipitation, in particular, is a variable where 36 
downscaling potentially can provide a substantial added value, because precipitation events are often 37 
regional in scale and short in duration. 38 
 39 
Most frequently, added value is discussed in terms of downscaling methods when adding value to the GCM 40 
output that yields useful added detail. Assessment of the further detail added to GCM output and the value of 41 
attaining it depends in part on the particular interests of the user (Di Luca et al., 2016). However, a common 42 
baseline expectation is that the downscaling method should give improved representation of the climate of a 43 
region compared to the driving data from the GCM (Di Luca et al., 2015), though arguably, there should be a 44 
clear physical reason for the improvement. Depending on the chosen definition, different statistical 45 
approaches may or may not add value to dynamical model simulations (Maraun et al., 2018). Perfect 46 
prognosis incorporates process information and may, in principle, add value. Bias adjustment and change 47 
factor weather generators intrinsically cannot improve the representation of processes and only add detail to 48 
long-term climatologies. 49 
 50 
A variety of performance measures can provide assessment of added value, such as errors versus 51 
observations on fine spatial scales (Di Luca et al., 2016), coherence of simulated versus observed spatial 52 
patterns (Di Luca et al., 2016), matching of probability distribution functions (Soares and Cardoso, 2018), 53 
and field-significance tests of spatially distributed errors (Wilks, 2016; Ivanov et al., 2017, 2018). The added 54 
value likely depends on the region, season, and governing physical processes (Lenz et al., 2017; Schaaf and 55 
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Feser, 2018). 1 
 2 
A first step in determining added value in downscaling is to analyse whether or not the downscaling 3 
procedure gives detail on spatial or temporal scales not well-resolved by a GCM, thus indicating the 4 
potential to represent climatic features missing in the GCM output. This added detail, referred to as potential 5 
added value (PAV; Di Luca et al., 2012), is not in itself sufficient to demonstrate added value in downscaling 6 
(Takayabu et al., 2016), but lack of PAV indicates that the downscaling method lacks usefulness. An 7 
advantage of a PAV analysis is that it sidesteps the challenge of having high resolution observations 8 
available to assess if there is true added value. Instead, relatively simple simulation experiments with fine 9 
and coarse-resolution simulations by the same model are used to see how well applying downscaling to the 10 
coarse simulation produces output that agrees with the fine-resolution simulation. Because the evaluation 11 
rests on model simulations only, one can assess the PAV for multiple fields and determine if there are 12 
physically consistent outcomes that help identify the processes yielding the PAV. Such analysis can provide 13 
a physical basis for examining whether or not added value exists with respect to observed and projected 14 
climates. Simulations known as “big brother” experiments (Di Luca et al., 2012) have demonstrated PAV 15 
and reasons for its occurrence for some regions (Di Luca et al., 2012; Lenz et al., 2017). 16 
 17 
Evaluating added value contributes to estimating the quality of regional information. Several studies have 18 
demonstrated the added value of downscaling in specific contexts, both for current climate and for climate 19 
projections (Sections 10.3.3.4 to 10.3.3.10). However, added value is not guaranteed simply by producing 20 
model output at finer resolution; it can depend on several factors, such as general framework of the 21 
simulation and the specific climatic variables analysed (Di Luca et al., 2012; Hong and Kanamitsu, 2014; 22 
Xue et al., 2014). Unforced, internal variability and sampling methodologies can obscure the climate signals 23 
being evaluated (Laprise, 2014). 24 
 25 
A further challenge, especially for increasingly higher resolutions, is that adequate observational data may 26 
not be available to assess added value (e.g., Di Luca et al., 2016; Zittis et al., 2017; Section 10.2). This 27 
implies a need for additional efforts to obtain and quality-control higher resolution observational (or 28 
observation-based) data sets. Univariate demonstration of added value is necessary, but even that may not be 29 
sufficient, as better agreement with observations in the downscaled variable may be a consequence of 30 
compensating errors that are not guaranteed to compensate similarly as climate changes.  Multivariate 31 
analysis of added value is more able to demonstrate physical consistency between observed and simulated 32 
behaviour (Prein et al., 2013a; Meredith et al., 2015a; Reboita et al., 2018). 33 
 34 
 35 
10.3.3.3 Overall performance of different model types 36 
 37 
The ability to simulate regional climate realistically is a formidable challenge and while improvements to do 38 
so, as measured by performance measures (Section 10.3.3.1), have been steady, progress has also been very 39 
slow (Fernández et al., 2019). The first level of performance assessment for the construction of regional 40 
climate messages tackles the evaluation of the fitness of the most common user variables such as temperature 41 
and precipitation. Model performance addresses not only the assessment of a single model, but also the 42 
evolution of multi-model ensembles, which are one of the most common tools to build regional climate 43 
messages for the future. As an example, Sillmann et al. (2013) found that the spread of metrics among 44 
CMIP5 models for several extreme temperature indices are reduced compared to CMIP3 models. In a multi-45 
model context, climate models exhibit large inter-model differences (Matte et al., 2019). This occurs due to 46 
the substantial variety in model biases, which largely dominate model performance. They are a symptom of 47 
processes not represented correctly in the models and complicate the extraction of useful climate change 48 
information. In certain cases, systematic errors are common across a model class, performance metrics 49 
highlighting pervasive problems in the models (Wang et al., 2015a; Nikiema et al., 2017). In the following, 50 
the performance of the different model types described in Section 10.3.1, GCMs, RCMs and statistical 51 
models, will be discussed. The role of sub-component models will be discussed where appropriate. An 52 
illustration of dynamical model performance can be found in Figures 10.5 and 10.6, while examples for 53 
statistical model performance are in Table 10.2. 54 
 55 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-45 Total pages: 236 
 

[START FIGURE 10.5 HERE] 1 
 2 
Figure 10.5: Illustration of some systematic errors in simulations performed with dynamical models. (a) Top row: 3 

Mean summer (June to August) near-surface air temperature (in °C) over the Mediterranean area in two 4 
observational datasets with the first panel for Berkeley surface temperature dataset (BEST) (Rohde et al., 5 
2013) and the second panel for E-OBS v19.0e (Cornes et al., 2018), and mean bias for five multi-model 6 
experiments with GCMs (CMIP5, CMIP6 and HighResMIP) and RCMs (CORDEX EUR-44 and EUR-7 
11). Biases of the CMIP ensembles are shown with respect to BEST, HighResMIP and CORDEX 8 
ensembles with respect to E-OBS. Bottom row: Box-and-whisker plot of the yearly mean summer near-9 
surface temperature averaged over the western Mediterranean area (33°N–45°N, 10°W–10°E, black 10 
quadrilateral in the first panel of the top row) for a set of references and single model runs of the five 11 
multi-model experiments (one simulation per model). Additional observation and reanalysis data included 12 
in the bottom row are CRU TS v4.02, E-OBS v17, ERA-Interim, EWEMBI, HadCRUT4, JRA-55, 13 
NCEP/NCAR (Kalnay et al., 1996; Dee et al., 2011; Morice et al., 2012; Harris et al., 2014; Kobayashi 14 
and Iwasaki, 2016; Cornes et al., 2018; Lange, 2019b). As (a) but for precipitation rate (mm day-1) and 15 
showing Global Precipitation Climatology Centre (GPCC) version 2018 (Schneider et al., 2017) in the 16 
first panel of the top row. Biases of the CMIP ensembles are shown in respect to GPCC. Additional 17 
observation and reanalysis data included in the bottom row are CRU TS v4.02, E-OBS v17, ERA-Interim, 18 
EWEMBI, GHCN (Jones and Moberg, 2003; Dee et al., 2011; Harris et al., 2014; Cornes et al., 2018; 19 
Lange, 2019b). All results correspond to the period 1986–2005. [Placeholder: The maps for EUR-44 20 
and EUR-11 need to be completed] 21 

 22 
[END FIGURE 10.5 HERE] 23 
 24 
 25 
[START FIGURE 10.6 HERE] 26 
 27 
Figure 10.6: Probability density function of the winter (December to February, top) and summer (June to August, 28 

bottom) daily precipitation in the HighResMIP, CMIP5 (eight models), CORDEX EUR-44 (27 models) 29 
and EUR-11 (36 models) multi-model simulations for different European regions: France (FR), Central 30 
Europe (CE), Mediterranean (MD) and Scandinavia (SC). [Placeholder: Observations will be added] 31 

 32 
[END FIGURE 10.6 HERE] 33 
 34 
 35 
10.3.3.3.1 GCMs 36 
GCMs are known for having pervasive systematic errors in some aspects of their large-scale behaviour (e.g., 37 
Oueslati and Bellon, 2015; see Section 10.3.4 and Chapter 3). They also show substantial systematic errors 38 
in precipitation and temperature at different regional scales: continental (Prasanna, 2016), national (Lovino 39 
et al., 2018) and local (Jiang et al., 2015). The systematic errors, which appear both in the mean and in 40 
higher order moments (Ren et al., 2019) of the climatological distribution of the variable (Figure 10.5), can 41 
be as high as 100% and have been considered an important limiting factor in model usability (Palmer, 2016). 42 
Performance at the regional scale is assessed in terms of the time or spatial averages (Prasanna, 2016), the 43 
ability to reproduce the seasonal cycle (Hasson et al., 2016), or a set of extreme indicators. In many cases, 44 
the performance estimates have been used to select models for an application or more in depth study (Lovino 45 
et al., 2018), to select the models that provide boundary conditions to perform RCM simulations 46 
(McSweeney et al., 2015) or to weight the results of the GCM simulations (Sanderson et al., 2015). Regional 47 
biases could occur even if all the relevant large-scale processes are correctly represented, but not their 48 
interaction. 49 
 50 
The special class of high-resolution GCMs (Prodhomme et al., 2016) are expected to improve some of the 51 
regional processes that are not appropriately represented in standard GCMs, such as the drought forcing by 52 
the circulation (van Haren et al., 2015). There is general agreement that increasing global model resolution 53 
improves some long-standing biases (Schiemann et al., 2014; Dawson and Palmer, 2015; Feng et al., 2017; 54 
Fabiano et al., submitted), although the resolution increase is not a guarantee of overall improvement. For 55 
instance, increasing resolution at GCM scale has been shown to improve Asian monsoon rainfall anchored to 56 
orography and the monsoon circulation (Johnson et al., 2016). However, it fails to solve the major dry bias. 57 
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Some efforts have been undertaken to obtain similar improvements in performance using stochastic 1 
parameterisations in standard resolution models (MacLeod et al., 2016; Zanna et al., 2017, 2019; Strømmen 2 
et al., 2018). 3 
 4 
Despite the known systematic errors in temperature and precipitation that affect model performance, there is 5 
high confidence that GCMs provide useful information for the generation of future climate messages at the 6 
regional scale. There is robust evidence and high agreement that the increase of global model resolution can 7 
help in reducing a number of the systematic errors limiting performance, although resolution per se does not 8 
automatically solve all performance limitations shown by GCMs. 9 
 10 
10.3.3.3.2 RCMs 11 
GCMs tend to have difficulties in simulating climate over regions with complex topography or strong 12 
surface gradients, as well as the upscale cascade of energy from unresolved scales (Zanna et al., 2019). This 13 
is because small-scale interactions and local feedbacks that take place at small, unresolved scales are missing 14 
and result in a degradation of the model performance compared to models with higher resolution. In this 15 
case, RCMs (and variable resolution GCMs) can resolve part of these processes in the regions of interest at 16 
an acceptable computational cost. Usually, the performance assessment focused mainly on temperature and 17 
precipitation climatology, including trends and extremes (Chapter 11 and Atlas). However, some studies 18 
have also investigated the ability of RCMs to correctly reproduce processes and phenomena (Sections 19 
10.3.3.4 to 10.3.3.7). 20 
 21 
The performance assessment of RCMs is carried out by evaluating simulations of the current climate with 22 
boundary forcings provided by both reanalysis products and GCM historical simulations in a comparison 23 
with the best observations available. RCM simulations driven by reanalyses (Section 10.3.2.5) have been 24 
extensively used to evaluate many aspects of the downscaling capability (including added value with respect 25 
to the driving reanalysis) and are used to identify the errors intrinsic to the RCM (Section 10.3.3.5 and 26 
Atlas). 27 
 28 
When RCMs are driven by GCMs, they are typically not able to mitigate GCM biases in large-scale 29 
dynamical processes. Thus, if such biases are substantial, and if the corresponding large-scale processes are 30 
important drivers of regional climate, downscaling is questionable (Section 10.3.3.4). However, when GCMs 31 
have weak circulation biases and regional climate change is controlled mainly by regional-scale processes 32 
and feedbacks, dynamical downscaling has the potential to add substantial value to GCM simulations (Hall, 33 
2014, Section 10.3.3.5 and Atlas). 34 
 35 
There is robust evidence and high agreement that RCMs have the potential to add value for the generation of 36 
future climate messages at the regional scale and have the potential to add value to GCM simulations 37 
especially over regions of complex orography or with heterogeneous surface characteristics. 38 
 39 
 40 
[START TABLE 10.2 HERE] 41 
 42 
Table 10.2: Performance of different statistical methods in representing local weather at daily resolution. REG: 43 

(generalised) linear model; ANA: analogue; QM: quantile mapping, RI: Richardson-type; POI: Poisson 44 
clustering; HM: hidden Markov; SS: single-site; MS: multisite; U: unconditional; C: conditional; "+": 45 
should work reasonably well based on empirical evidence and/or expert judgement; “o”: problems may 46 
arise depending on the specific context; "-": weak performance either by construction or inferred from 47 
empirical evidence; "?": not studied. The categorisation assumes that predictors are provided by a well 48 
performing dynamical model. Statements about extremes refer to moderate events occurring at least once 49 
every 20 years. Adopted and extended from (Maraun and Widmann, 2018b), [Note: References will be 50 
added after the SOD. Each reference will receive a label, which will be referred to in each entry. 51 
The +/0/- will be replaced by colour codes.] 52 

 53 
 54 
 55 
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Temperature 
Mean + + + ○ + + + + + + + + 
Variance - ○ + ○ ○ + + + + + + + 
Extremes - ○ + + ○ + + + + + + + 
Temperature, temporal variability 
Autocorrelation + + - - + + + + + + + + 
Mean spells ○ ○ - - + + + + + + + + 
Extreme spells + + - ○ + + + + + + + + 
Interannual variance - ○ - - + ○ ○ ○ - ○ - -/○ 
Climate change + - + - + ○ ○ ○ + + + + 
Temperature, spatial variability 
Means ○ ○ - -/+ + + + + -/? -/? -/? ? 
Extremes - - - -/+ + + + + -/? -/? -/? ? 
Precipitation, marginal 
Wet-day probabilities - - + + + + + + + + + + 
Mean intensity - - + + + + + + + + + + 
Extremes - - + + ○ + ○ + ○ ○ ○ ○ 
Precipitation, temporal variability 
Transition probabilities - - + + ○ + + + + + + + 
Mean spells - - + + ○ + + + ○ + ○ ○/+ 
Extreme spells - - + + + + + + - ○ - -/○ 
Interannual variance - ○ ○ ○ + ○ ○ ○ - ○ - -/○ 
Climate change + - + ○ + ○ ○ ○ + + + + 
Precipitation, spatial variability 
Means - - - -/+ ○ + + + -/○ -/○ -/○ ○ 
Extremes - - - -/+ ○ ○ ○ ○ -/? -/? -/? ? 
Multi variable 
Bulk - - - + + + + + + + + + 

 2 
[END TABLE 10.2 HERE] 3 
 4 
 5 
10.3.3.3.3 Statistical downscaling, bias adjustment and weather generators 6 
The performance of statistical downscaling models, bias adjustment and weather generators is very much 7 
determined by the chosen model structure (e.g., to representing variability and extremes or spatial 8 
dependence) and, when used, the predictors selected (Maraun et al., 2018). The VALUE initiative has 9 
assessed the performance of a range of perfect prognosis methods, bias adjustment methods, and weather 10 
generators in a perfect predictor experiment where the predictors are taken from reanalysis data (Maraun et 11 
al., 2015, 2018; Gutiérrez et al., 2018). Table 10.2 shows an overview comprising performance results from 12 
VALUE and other studies. 13 
 14 
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Perfect prognosis methods can perform well when the synoptic forcing (i.e., the explanatory power of large-1 
scale predictors) is strong (Schoof, 2013). Using this approach, downscaling of precipitation is particularly 2 
skilful in the presence of strong orographic forcing. The representation of daily variability and extremes 3 
requires the use of analogue methods or stochastic regression models, although the former typically do not 4 
extrapolate to unobserved values (Gutiérrez et al., 2018; Hertig et al., 2018). Temporal variability in 5 
precipitation is well represented by analogue methods and stochastic regression, but analogue methods 6 
typically underestimate temporal dependence of temperature (Maraun et al., 2017a). Spatial dependence in 7 
both temperature and precipitation is only well represented by analogue methods, for which analogues are 8 
defined jointly across stations, and by stochastic regression methods explicitly representing spatial 9 
dependence (Widmann et al., 2019). Overall, there is high confidence that analogue methods and stochastic 10 
regression are able to represent many aspects of daily temperature and variability, but the analogue method is 11 
inherently limited in representing climate change (Gutiérrez et al., 2013). 12 
 13 
Bias adjustment methods, if driven with reanalysis predictors, in principle adjust well all the aspects that they 14 
are intended to (Maraun and Widmann, 2018b). For temperature, all univariate methods are good to adjust 15 
means, variance, and high quantiles (Gutiérrez et al., 2018; Hertig et al., 2018). For precipitation, means, 16 
intensities, wet-day frequencies, and wet-dry and dry-wet transitions are well adjusted (Maraun et al., 2017a; 17 
Gutiérrez et al., 2018). The representation of high quantiles depends on the method chosen. In this case 18 
flexible quantile mapping performs best (Hertig et al., 2018). Empirical (non-parametric) methods perform 19 
better than parametric methods over the observed range, but it is unclear how this translates into 20 
extrapolation to unobserved values (Hertig et al., 2018; Stocker et al., 2015). Many quantile mapping 21 
methods overestimate interannual variability (Maraun et al., 2017a). Temporal and spatial dependence are 22 
usually not adjusted and thus inherited from the driving model (Maraun et al., 2017a; Widmann et al., 2019). 23 
Spatial fields are thus typically too smooth in space, also after bias adjustment (Widmann et al., 2019). 24 
Multivariate bias adjustment methods are good to adjust all statistical aspects of the multivariate distribution 25 
that they intend to adjust. Depending on the method, this includes correlation structure or all aspects of 26 
multivariate dependence structure (Cannon, 2016, 2018; Vrac, 2018). Often, marginal distributions are 27 
corrected using quantile mapping and hence univariate performance characteristics generally follow those 28 
mentioned above. However, adjustment of multivariate dependence necessarily modifies the temporal 29 
sequencing of the driving model (Cannon, 2016). Hence, there will be a loss of coherence between the 30 
modelled and bias adjusted chronology of events, and temporal dependence is no longer fully inherited from 31 
the driving model. The extent of the modification depends on the chosen method (Vrac and Friederichs, 32 
2015; Cannon, 2016; Vrac, 2018). If multivariate adjustment includes a spatial dimension, then spatial 33 
dependence is adjusted well (Vrac, 2018). There is high confidence that bias adjustment can improve the 34 
marginal distribution of simulated climate variables, if applied to a climate model that adequately represents 35 
the processes relevant for a given application (Box 10.2). 36 
 37 
Weather generators represent well most aspects that are explicitly calibrated. This typically includes mean, 38 
variance, high quantiles (for precipitation, if explicitly modelled), and short-term temporal variability for 39 
both temperature and precipitation, whereas interannual variability is strongly underestimated (Frost et al., 40 
2011; Hu et al., 2013a; Keller et al., 2015; Maraun et al., 2017a; Gutiérrez et al., 2018; Hertig et al., 2018; 41 
Dubrovsky et al., 2019; Widmann et al., 2019). There is growing evidence that some spatial weather 42 
generators fairly realistically capture the spatial dependence of temperature and precipitation (Frost et al., 43 
2011; Hu et al., 2013a; Keller et al., 2015; Evin et al., 2018; Dubrovsky et al., 2019). There is high 44 
confidence that weather generators can realistically simulate a wide range of local weather characteristics at 45 
single locations, but there is limited evidence and limited agreement of the ability of weather generators to 46 
realistically simulate the spatial dependence of atmospheric variables across multiple sites. 47 
 48 
 49 
10.3.3.3.4 Comparison of dynamical downscaling and statistical methods 50 
Several studies have addressed the relative performance of dynamical downscaling and statistical approaches 51 
in simulating various aspects of regional climate. A general outcome is that statistical downscaling, bias 52 
adjustment and weather generators, as they are calibrated, outperform uncorrected output of RCMs and 53 
GCMs for a range of statistical aspects at single locations, but RCMs are superior when spatial fields are 54 
relevant (Mehrotra et al., 2014; Vaittinada Ayar et al., 2016; Maraun et al., 2018). Similarly, there is some 55 
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evidence that bias adjustment is comparable in performance when applied to GCMs and dynamically 1 
downscaled GCMs only for single locations, but dynamical downscaling prior to bias adjustment clearly 2 
adds value once spatial dependence is relevant (Maraun et al., 2018). These results may explain why 3 
dynamical downscaling does not add value to GCM simulations for (single-site) agricultural modelling, 4 
when both GCM and RCM are bias adjusted (Glotter et al., 2014), but dynamical downscaling adds value 5 
compared to bias adjusted GCM output for spatially distributed hydrological models (Qiao et al., 2014). 6 
 7 
 8 
10.3.3.4 Performance at simulating large-scale phenomena and teleconnections relevant for regional 9 

climate 10 
 11 
Regional climate is often controlled by large-scale weather phenomena and teleconnections. In particular 12 
extreme events are often caused by specific, in some cases persistent, circulation patterns (Chapter 11). The 13 
ability of climate models to accurately represent such phenomena is therefore important to reasonably 14 
represent not only continental, but also regional climate and its variability. Standard resolution GCMs can 15 
suffer from biases in the location, occurrence frequency or intensity of large-scale phenomena. In such cases, 16 
any statements about regional climate and climate change will be highly uncertain. In fact, when these biases 17 
have large amplitude, RCMs over their limited domains cannot reduce their signature but merely add detail 18 
to an unrealistic large-scale field. In some cases, however, RCMs run over a large-domain may improve 19 
large-scale circulation features. Due to their enhanced representation of complex topography and coastlines 20 
that can lead to a better representation of the interaction between large-scale phenomena and local features, 21 
RCMs may also, in principle, add value to simulating the regional manifestation of teleconnections. This 22 
subsection illustrates this aspect with selected examples from the mid-to-high latitudes and tropics. 23 
 24 
 25 
10.3.3.4.1  Mid-to-high latitude atmospheric variability phenomena: blocking and extratropical cyclones 26 
A major phenomenon for mid-to-high latitude mean and extreme climate is atmospheric blocking, known to 27 
lead to extreme cold conditions in winter and warmth and drought during summer and determining the 28 
seasonal regional climate in certain years (Sousa et al., 2017, 2018b). Atmospheric blocking is characterized 29 
by a quasi-stationary long-lasting, high pressure system that blocks and diverts the movement of synoptic 30 
cyclones. An overview of model performance in simulating blocking is given in Figure 10.7. The 31 
longitudinal distribution of blocking frequency and its seasonality is reasonably well reproduced in the 32 
CMIP5 multi-model mean. However, CMIP5 climate models often underestimate winter blocking frequency 33 
over Europe and the north-eastern Atlantic (Anstey et al., 2013; Cattiaux et al., 2013; Dunn-Sigouin and Son, 34 
2013; Masato et al., 2013; Davini and D’Andrea, 2016), an aspect still appearing in the CMIP6 experiments 35 
(Davini and D’Andrea, submitted). This underestimation is dominated by short-lived blocking events with 36 
duration shorter than ten days. In contrast, North Pacific blocking frequency is overestimated by most 37 
models over broad regions and in all seasons, particularly on the poleward side of the observed blocking 38 
frequency maximum (Anstey et al., 2013; Dunn-Sigouin and Son, 2013). Summertime blocking frequency is 39 
slightly overestimated over the subpolar oceans, while it is underestimated over Eurasia (Masato et al., 40 
2013). CMIP5 climate models also underestimate decadal variability of Greenland summer blocking, which 41 
has seen a record rise in the observations since the 1990s while models indicate a decrease in the recent past 42 
and 21st century (Hanna et al., 2018). With regard to the Southern Hemisphere, CMIP5 models have 43 
differing large biases with opposite sign in austral winter, while they systematically simulate too little 44 
blocking to the south of Australia during summer (Parsons et al., 2016; Patterson et al., 2019). This 45 
underestimation is probably related to the overly equatorward jets found in most CMIP5 models (Bracegirdle 46 
et al., 2013) involving shortwave cloud forcing biases, underestimated low-level orographic drag, and/or a 47 
too persistent SAM (Ceppi et al., 2012; Pithan et al., 2016; Simpson et al., 2013). Blocking underestimation 48 
is highly region‐ and season-dependent and not necessarily an intrinsic property of the CMIP5 models 49 
(Masato et al., 2013; Patterson et al., 2019). In general, blocking biases result from lack of vertical (both 50 
tropospheric and stratospheric) and/or horizontal resolution, mean state biases, in particular, biases related to 51 
the parameterization of orographic effects, the misrepresentation of the Gulf Stream SST front (Anstey et al., 52 
2013; Berckmans et al., 2013; Davini and D’Andrea, 2016; O’Reilly et al., 2016; Pithan et al., 2016; 53 
Schiemann et al., 2017). Overall SST biases have been suggested to have only a weak relevance (Davini and 54 
D’Andrea, 2016). 55 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-50 Total pages: 236 
 

Based on 13 RCMs driven by ERA40, (Sanchez-Gomez et al., 2009) show that RCMs reproduce the 1 
European weather regimes, including blocking, behaviour in terms of composite pattern, mean frequency of 2 
occurrence and persistence reasonably well as well as the long-term trends and the interannual variability of 3 
the frequency of occurrence. In a study of five ERA-Interim-driven RCMs, Jury et al., (2018) showed that 4 
RCMs typically simulate fewer blocking events over Europe than are present in the driving data, irrespective 5 
of the RCM horizontal resolution. 6 
 7 
 8 
[START FIGURE 10.7 HERE] 9 
 10 
Figure 10.7: [Placeholder: Characteristics of summer (June to August) blocking over the North Atlantic in the 11 

HighResMIP experiment (seven models) as a function of resolution along with the CMIP5 and CMIP6 12 
multi-model results and a reference from ERA-Interim for (left) global climate model and (right) 13 
atmospheric global climate model simulations using observed sea surface temperature and sea ice. Top 14 
row: area mean blocking frequency; middle row: spatial correlation between simulated and observed 15 
frequencies; bottom row: root mean squared error between simulated and observed frequencies.] 16 

 17 
[END FIGURE 10.7 HERE] 18 
 19 
 20 
Other related key mid-latitude phenomena are the storm tracks of Atlantic and Pacific extratropical cyclones 21 
(Shaw et al., 2016). Similar to CMIP3, most CMIP5 models simulate climatological storm tracks that are too 22 
weak and displaced equatorward (Chang et al., 2012). Zappa et al. (2013) evaluated the North Atlantic storm 23 
track in CMIP5 models and found that the winter storm track tends to be either too zonal or displaced 24 
southward, resulting in too many cyclones in central Europe. The position of the summer North Atlantic 25 
storm track is generally well captured, but some models underestimate the number of cyclones. In both 26 
summer and winter, the intensity of cyclones is often too weak. Yang et al. (2018) found that half of thirteen 27 
selected CMIP5 models are able to reproduce the spatial pattern of the winter North Pacific storm-track 28 
climatology, but most of them underestimate its strength and spatial variation. They also found that most 29 
CMIP5 models are unable to reproduce interannual variability in storm-track strength and spatial pattern. In 30 
the Southern Hemisphere, most CMIP5 climate models have large equatorward biases in storm-track latitude 31 
leading to larger projected poleward shifts of the storm tracks for models with the largest bias (Chang et al., 32 
2012). Many causes of storm track biases have been suggested, such as misrepresented orography 33 
(Berckmans et al., 2013), in particular inadequate parameterisations of low-level drag (Pithan et al., 2016), 34 
SST biases (Booth et al., 2017), and a missing representation of mesoscale atmospheric features and 35 
mesoscale ocean eddies (Willison et al., 2013; Foussard et al., 2019). 36 
 37 
In general, RCMs cannot mitigate large-scale circulation errors of the driving GCM. If run over large-38 
domains, reanalysis-driven RCMs can, for specific regions, significantly improve the representation of storm 39 
characteristics compared to the driving reanalysis near areas with marked orography and regions with large 40 
water masses (Poan et al., 2018). However, this is not necessarily true if the domain is large enough as the 41 
RCM and its biases will then control the circulation leading to a biased performance with regard to storm 42 
characteristics (Pontoppidan et al., 2019). Flaounas et al. (2018) investigated the ability of 12 RCMs and 43 
RESMs to reproduce the climatology of Mediterranean cyclones based on different cyclone tracking 44 
methods. All RCMs reasonably reproduce the main areas of high cyclone occurrence. Air-sea coupling has a 45 
rather weak impact on cyclone climatology and intensity. Sánchez-Gómez and Somot (2018) showed that the 46 
effect of RCM internal variability on density of cyclone tracks is very significant and larger than for other 47 
variables such as precipitation. It is larger in summer than in winter, in particular over the Iberian Peninsula, 48 
countries in northern Africa and the eastern Mediterranean, which are regions of enhanced cyclogenesis 49 
during the warm season. 50 
 51 
 52 
10.3.3.4.2 Tropical phenomena: ENSO teleconnections, Madden-Julian oscillation 53 
The assessment of model performance in simulating ENSO characteristics, including ENSO spatial pattern, 54 
frequency, asymmetry between warm and cold events, and diversity, is discussed in Chapter 3. Here the 55 
ability of the recent generation of GCMs to adequately simulate ENSO-related teleconnections is reviewed. 56 
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The model assessment is a challenge due to the different types of ENSO and model errors in ENSO spatial 1 
patterns, non-stationary aspects of the teleconnection, as well as the strong influence of atmospheric internal 2 
variability at mid-to-high latitudes (Coats et al., 2013; Polade et al., 2013; Capotondi et al., 2015; Deser et 3 
al., 2017c; Garcia-Villada et al., submitted). 4 
 5 
Langenbrunner and Neelin (2013) showed that there is little improvement in the CMIP5 ensemble relative to 6 
CMIP3 in amplitude and spatial patterns of the ENSO influence on boreal winter precipitation (with model-7 
observation spatial pattern correlation coefficients typically less than 0.5). However, the CMIP5 ensemble 8 
accurately represents the amplitude of the precipitation response in regions where observed teleconnections 9 
are strong. Moreover, a high agreement between models on the teleconnection sign indicates a good 10 
performance in representing the observed teleconnections. Hurwitz et al. (2014) showed that CMIP5 models 11 
broadly simulate the expected (as seen in the MERRA reanalysis) upper tropospheric responses to central 12 
equatorial Pacific or eastern equatorial Pacific ENSO events in boreal autumn and winter. They also show 13 
that CMIP5 models do simulate the correct sign of Arctic stratospheric response, which consists in the polar 14 
vortex weakening during eastern and central Pacific Niño events and vortex strengthening during both types 15 
of La Niña events. In contrast, most CMIP5 models do not capture the observed weakening of the polar 16 
vortex in response to central Pacific ENSO events. This is due to a weak poleward planetary wave response 17 
linked to a weak South Pacific Convergence Zone convective response to central Pacific ENSO events that 18 
originates from a poor representation of the south-eastern tilted portion of the South Pacific Convergence 19 
Zone in the CMIP5 models (Brown et al., 2013). 20 
 21 
In RCMs, the effects of tropical large-scale modes and teleconnections are inherited through the boundary 22 
conditions and influenced by the size of the numerical domain. For instance, Done et al. (2015) and Erfanian 23 
and Wang (2018) claim that large domains that include teleconnected oceanic regions are required, although, 24 
without spectral nudging, this can lead to biased synoptic-scale patterns  (Prein et al., 2019). RCMs generally 25 
reproduce the regional precipitation responses to ENSO forcing, and improve the representation of these 26 
teleconnections compared to the driving reanalysis (Endris et al., 2013; Fita et al., 2017). Chandrasa and 27 
Montenegro (2019) and Endris et al. (2016) showed that the RCM response to different ENSO phases is 28 
largely determined by the quality of the forcing data (either reanalysis of GCMs) rather than the model 29 
internal dynamics. However, Whan and Zwiers (2017) argued that the differences in the physical schemes in 30 
two RCMs driven by the same reanalysis can lead to large differences in the response of extreme 31 
precipitation to ENSO teleconnection in North America. 32 
 33 
The MJO (Technical Annex VI) has a strong influence on a range of tropical phenomena from the onset and 34 
breaks of the Asian and Australian monsoon systems, the triggering and termination of ENSO events, and 35 
tropical cyclone activity. Significant extratropical surface air temperature variations can also arise as a result 36 
of teleconnections triggered by the MJO. Temperature variations over North America and Europe can arise 37 
in response to MJO-induced heating and horizontal temperature advection by northerlies or southerlies 38 
associated with a meridionally propagating Rossby wave train (Cassou, 2008; Lin et al., 2009; Henderson et 39 
al., 2016; Mundhenk et al., 2016; Seo et al., 2016; Jiang et al., 2017). 40 
 41 
In agreement with results from previous model generations, most CMIP5 models still underestimate MJO 42 
amplitude, and struggle to generate a coherent precipitation/convection and wind field eastward propagation 43 
(Hung et al., 2013; Jiang et al., 2015; Ahn et al., 2017). This underestimation affects the regional surface 44 
climate both in the tropics and extra-tropics. Additionally, most CMIP5 models simulate an MJO that 45 
propagates too fast compared to observations and intra-seasonal precipitation variability remains poorly 46 
simulated among CMIP5 models (Ahn et al., 2017). However, the propagation speed of some CMIP5 models 47 
in the Indian Ocean tends to be slower than observed due to a too strong persistence of equatorial 48 
precipitation (Hung et al., 2013; Jiang et al., 2015). Improvements in moisture-convection coupling and 49 
gross moist stability (i.e., the efficiency of vertical advection to export moist static energy out of the 50 
convective column) representation might be the most fruitful means to improving simulations of the MJO 51 
(Ahn et al., 2017; Kim and Maloney, 2017). Though the GCM representation of the MJO has advanced in 52 
recent decades, there is high confidence that most models from the current generation of GCMs still have 53 
difficulties in achieving a robust and physically-coherent MJO simulation. 54 
 55 
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10.3.3.5  Performance at simulating regional phenomena and processes 1 
 2 
Regional climate is shaped by a wide range of weather phenomena occurring at scales from about 2,000 km 3 
to 2 km (Figure 10.2). These modulate the influence of large-scale atmospheric phenomena and create the 4 
characteristic and potentially severe weather conditions experienced regionally. The climate in different 5 
regions will be affected by different mesoscale phenomena, and in a given application, several of these may 6 
be relevant. A skilful representation of these phenomena is a necessary condition for providing credible and 7 
relevant climate change information for a given region and application. Therefore, it is important to 8 
understand the strengths and weaknesses of different model types in simulating these phenomena. Here, the 9 
performance of different climate model types to simulate a selection of relevant mesoscale weather 10 
phenomena is assessed. 11 
 12 
 13 
10.3.3.5.1 Convection including tropical cyclones 14 
Convection is the process of vertical mixing due to atmospheric instability. Deep moist convection is 15 
associated with thunderstorms and related severe weather such as heavy precipitation and strong wind gusts. 16 
Convection may occur in single locations, in spatially extended severe events such as supercells, and 17 
organised into larger mesoscale convective systems such as squall lines or tropical cyclones (Section 18 
10.3.3.5.1), and embedded in fronts (Section 10.3.3.5.4). 19 
 20 
Shallow and deep convection are not explicitly simulated but parameterized in standard GCMs and RCMs. 21 
As a consequence, these models suffer from several biases in the representation of convection and related 22 
phenomena. AR5 has stated that many CMIP3 and CMIP5 models simulate the peak in the diurnal cycle of 23 
precipitation too early, but increasing resolution and better parameterisations help to mitigate this problem 24 
(Flato et al., 2014). Similar issues arise for RCMs with parameterised deep convection (Prein et al., 2015). 25 
Such standard RCMs also tend to overestimate high cloud cover (Langhans et al., 2013; Keller et al., 2016). 26 
 27 
Simulations with non-hydrostatic RCMs at convection-permitting resolution (at 3 km and finer) improve the 28 
representation of phenomena associated with deep convection, such as the initiation and diurnal cycle of 29 
convection (Zhu et al., 2012; Prein et al., 2013a, 2013b; Fosser et al., 2015; Berthou et al., 2018; Sugimoto et 30 
al., 2018; Finney et al., 2019), the triggering of convection by orographic lifting (Langhans et al., 2013; 31 
Fosser et al., 2015), spatial patterns of precipitation (Prein et al., 2013a, 2013b), precipitation intensities 32 
(Prein et al., 2015; Fumière et al., 2019), the scaling of precipitation with temperature (Ban et al., 2014), 33 
cloud cover (Böhme et al., 2011; Langhans et al., 2013), and maximum vertical wind speeds (Meredith et al., 34 
2015a). Phenomena such as supercells, mesoscale convective systems, or the local weather associated with 35 
squall lines are not captured by GCMs and standard RCMs. Convection-permitting RCM simulations, 36 
however, have been shown to realistically simulate supercells (Trapp et al., 2011), mesoscale convective 37 
systems, their life cycle and motion (Prein et al., 2017; Crook et al., 2019), and heavy precipitation 38 
associated with a squall line (Kendon et al., 2014). There is high confidence that simulations at convection 39 
permitting resolution add value to the representation of deep convection and related phenomena. 40 
 41 
Convection is the key ingredient of tropical cyclones. An inter-comparison study of high-resolution 42 
atmospheric global climate model (AGCM) simulations (Shaevitz et al., 2014) showed that tropical cyclone 43 
intensities appeared in general to be better represented with increasing model resolution. Takayabu et al. 44 
(2015) have compared simulations of typhoon Hayan at different resolutions ranging from 20 km to 1 km 45 
(Figure 10.7). While the eyewall structure in the precipitation pattern was strongly smoothed in the coarse 46 
resolution simulations, it was well resolved at the highest resolution. Gentry and Lackmann (2010) found 47 
similar improvements in simulating hurricane Ivan for horizontal resolutions between 8 km and 1 km. There 48 
is high confidence that convection permitting resolution is required to realistically simulate the three-49 
dimensional structure of tropical cyclones. 50 
 51 
 52 
 53 
 54 
 55 
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[START FIGURE 10.8 HERE] 1 
 2 
Figure 10.8: Hourly accumulated precipitation profiles (mm hour-1) around the eye of Typhoon Haiyan, represented by 3 

(a) GSMaP satellite observation data, (b) Guiuan radar (PAGASA), (c) meso-ensemble forecast (60 km), 4 
(d) NHRCM (20 km), (e) NHRCM (5 km), and (f) WRF (1 km) models. Adapted from Takayabu et al. 5 
(2015). 6 

 7 
[END FIGURE 10.8 HERE] 8 
 9 
 10 
10.3.3.5.2 Mountain wind systems 11 
Mountain slope and valley winds are localised thermally generated diurnal circulations that have a strong 12 
influence on regional temperature and precipitation patterns in mountain regions. During the day, heating of 13 
mountain slopes compared to the free atmosphere induces upslope winds; during the night this circulation 14 
reverses. This phenomenon is not resolved by GCMs and coarse-resolution RCMs. A reanalysis-driven RCM 15 
simulation at 4 km resolution showed good skill in simulating the diurnal cycle of temperature and wind on 16 
days of weak synoptic forcing in the Rocky Mountains (Letcher and Minder, 2017). Similarly the mountain-17 
plain wind circulation over the Tianshan mountains in Central Asia is well simulated by a model running at 4 18 
km resolution (Cai et al. 2019). In the Alps, a 1 km resolution has been required (Zängl, 2004). 19 
 20 
Föhn winds are regional-scale synoptically-driven winds that cause orographic precipitation in the windward 21 
side of a mountain range, and as a result of the raised condensation level, adiabatic warming in the 22 
downwind side. In an RCM study for the Japanese Alps, Ishizaki and Takayabu (2009) found that at least a 23 
10 km resolution was required to realistically simulate Föhn events. 24 
 25 
Synoptically-forced winds may be channelled and accelerated in long valleys. For instance, the Tramontana, 26 
Mistral and Bora are northerly winds blowing down-valley from central France and the Balkans into the 27 
Mediterranean (Flaounas et al., 2013). In winter, these winds may cause severe cold air outbreaks along the 28 
coast. Flaounas et al. (2013) have shown that a GCM with a horizontal resolution of roughly 3.75° 29 
longitude/1.875° latitude is unable to reproduce these winds because of the coarse representation of 30 
orography, whereas a 0.44° resolution RCM resolves these winds. Nevertheless, 0.44° RCM simulations did 31 
not realistically represent the Mistral (Obermann et al., 2018) and Bora winds (Belušić et al., 2018), but 32 
simulations at 0.11° resolution added substantial value. Similarly, Cholette et al. (2015) found that a 0.27° 33 
RCM resolution was not sufficient to adequately simulate the channelling of winds in the St. Lawrence River 34 
Valley in eastern Canada, whereas a 0.09° resolution was. 35 
 36 
There is very high confidence that climate models with resolutions of around 10 km or finer are necessary for 37 
better simulating mountain wind systems such as slope and valley winds and the channelling of winds in 38 
valleys. 39 
 40 
 41 
10.3.3.5.3 Coastal winds and lake effects 42 
Simulating coastal climates and the influence of big lakes are a modelling challenge, due to the complex 43 
coastlines, the different heat capacities of land and water, the resulting wind system, and the differential 44 
evaporation. Regional features are often not well resolved by GCMs. The AR5 concluded that RCMs can 45 
add value to the simulation of coastal climates. 46 
 47 
The summer coastal low-level jets in the mid-latitude western continental coasts are forced by the eastern 48 
branch of the semi permanent ocean anticyclones which drive equatorward coastal parallel winds, an inland 49 
thermal low, a strong cross-shore thermal contrast associated to the oceanic upwelling and high coastal 50 
topography. They are important factors in shaping regional climate by, for instance, preventing onshore 51 
advection of humidity and thereby causing aridity (Soares et al., 2014), or by transporting moisture towards 52 
regions of precipitation as in the North American monsoon (Bukovsky et al., 2013). 53 
 54 
Reanalyses and most GCMs do not well resolve the details of coastal low-level jets (Bukovsky et al., 2013; 55 
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Soares et al., 2014), but they are still able to represent annual and diurnal cycles and interannual variability 1 
(Cardoso et al., 2016; Lima et al., 2019). Bukovsky et al. (2013) found RCM simulations at a 50 km 2 
resolution to improve the representation of the coastal low-level jet in the Gulf of California and the 3 
associated precipitation pattern compared to the driving GCM. Lucas-Picher et al. (2017) find indirect 4 
evidence via precipitation patterns that 12 km simulations further improve the representation. In a study of 5 
the Iberian coastal low-level jet, Soares et al. (2014) dynamically downscaled the ERA-Interim reanalysis to 6 
an 8 km resolution. The simulations show a realistic three-dimensional jet structure, and the surface winds 7 
compare well with observations. Lucas-Picher et al. (2017) showed that a 0.44°-resolution RCM 8 
underestimated winds along the Canadian east coast, whereas a 0.11°-resolution version better represented 9 
the coastline, orography, surface roughness and local atmospheric circulation and thereby simulated more 10 
realistic 10-metre wind speed. Also, the Etesian winds in the Aegean Sea were realistically simulated by 11 
0.11°-resolution RCMs (Dafka et al., 2018). 12 
 13 
A particularly relevant coastal phenomenon is the sea breeze, which is caused by the differential heating of 14 
water and land during the course of the day and typically reaches several tens of kilometres inland. 15 
Reanalyses and GCMs have too coarse a resolution to represent this phenomenon, such that they typically 16 
underestimate precipitation over islands and misrepresent its diurnal cycle (Lucas-Picher et al., 2017). RCMs 17 
simulate sea breezes and thereby improve the representation of precipitation in coastal areas and islands. 18 
Over Cuba and Florida, a long peninsula, only a 0.11°-resolution RCM is able to realistically simulate the 19 
inland propagation of precipitation during the course of the day. RCM simulations at a 20 km horizontal 20 
resolution realistically represented the sea breeze circulation in the Mediterranean Gulf of Lions including 21 
the intensity, direction and inward propagation (Drobinski et al., 2018). Even though a coupled ocean-22 
atmosphere simulation improved the representation of diurnal SST variations, the sea breeze representation 23 
itself was not enhanced. 24 
 25 
Big lakes modify the downwind climate. In particular during winter they are relatively warm compared to 26 
the surrounding land, provide moisture, destabilize the passing air column and produce convective systems; 27 
the increase in friction when moving air reaches land causes convergence and  uplift, and may trigger 28 
precipitation. Gula and Peltier, (2012) found that a state-of-the-art GCM does not realistically simulate these 29 
effects over the North American Great Lakes, but a 10 km RCM better represents them and thereby 30 
simulates realistic downwind precipitation patterns, in particular enhanced snowfall during the winter season. 31 
Similar results were found by Wright et al. (2013) and Lucas-Picher et al. (2017). In a convection permitting 32 
simulation of the Lake Victoria region, a too strong nocturnal land-breeze resulted in unrealistically high 33 
precipitation (Finney et al., 2019). 34 
 35 
There is high confidence that climate models with sufficiently high resolution are necessary for better 36 
simulating lake and coastal weather including low-level jets, lake and sea breezes, as well as lake effects on 37 
rainfall and snow. 38 
 39 
In regions like Fenno-Scandinavia or central-eastern Canada, very large fractions of land are covered by 40 
small and medium sized lakes. Other regions have fewer but larger lakes, such as central-eastern Africa, the 41 
eastern border between the US and Canada, and central Asia. In these regions it has been considered 42 
essential to include a lake model in an RCM to realistically represent regional temperatures (Deng et al., 43 
2013; Mallard et al., 2014; Pietikäinen et al., 2018; Samuelsson et al., 2010; Thiery et al., 2015), as well as 44 
remote effects (Spero et al., 2016). For the Caspian Sea, which can be considered a large lake, it is found that 45 
a coupled ocean-atmosphere RCM improved, in addition to representing the circulation in the sea, the 46 
simulation of SST fields compared to simulations with a simpler coupled lake model (Turuncoglu et al., 47 
2012). 48 
 49 
There is medium evidence and high agreement that it is important to include interactive lake models in 50 
RCMs to improve the simulation of regional temperature, in particular in seasonally ice-covered areas with 51 
large fractions of lakes. There is medium evidence of the local influence of lakes on snow and rainfall as well 52 
as the importance of including lakes in regional climate simulations. 53 
 54 
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10.3.3.5.4 Fronts 1 
Weather fronts are two-dimensional surfaces separating air masses of different characteristics and are a key 2 
element of mid-latitude cyclones. In particular cold fronts are regions of relatively strong uplift and hence 3 
often associated with severe weather (e.g., Schemm et al., 2016). Stationary or slowly moving fronts may 4 
cause extended heavy precipitation. Research on how climate models represent fronts, however, is still 5 
limited. 6 
 7 
Catto et al. (2014) found in both ERA-Interim and CMIP5 models that frequency and strength of fronts were 8 
realistically simulated, albeit with some biases in the location of front occurrence maxima. In a follow-up 9 
study, Catto et al. (2015) investigated the representation of frontal precipitation for boreal and austral winter. 10 
The frequency of frontal precipitation is too high and the intensity is too low, but these compensating biases 11 
approximately cancelled out such that the total precipitation bias was small. Blázquez and Solman (2018) 12 
found similar results for the Southern Hemisphere during austral winter, and also showed that CMIP5 13 
models typically overestimate the fraction of frontal precipitation compared to total precipitation. The bias 14 
also appears in the observational reference. The ERA-Interim reanalysis misrepresents conditional 15 
symmetric instability associated with fronts, and the corresponding precipitation (Glinton et al., 2017). 16 
 17 
Only few studies evaluating fronts in RCMs have been conducted. Kawazoe and Gutowski (2013) diagnosed 18 
strong temperature gradients associated with extreme wintertime precipitation events in the framework of the 19 
North American Regional Climate Change Assessment Program (NARCCAP) RCM ensemble (Mearns et 20 
al., 2012) and found the models agreed well with observation-based gradients in a reanalysis of comparable 21 
resolution. De Jesus et al. (2016) diagnosed the representations of cold fronts over southern Brazil by two 22 
RCMs, and found that across the year, cold fronts were only underestimated by about 5%, but in one of the 23 
RCMs, cold fronts during summer were underestimated by 17%. An RCM-based reanalysis suggests that 24 
high resolution RCM simulations improve the representation of orographic influences on fronts (Jenkner et 25 
al., 2009). 26 
 27 
 28 
10.3.3.6 Performance at simulating regional feedbacks 29 
 30 
Both the SRCCL (Jia et al., 2019) and the SROCC (Hock et al., 2019) highlight the weaknesses of climate 31 
models in simulating atmosphere-land feedbacks. The performance in simulating some of these feedbacks is 32 
assessed below. 33 
 34 
The snow-albedo effect is an important process contributing to enhanced warming at high elevations (Pepin 35 
et al., 2015). In complex terrain, GCMs often do not represent the orography well enough to realistically 36 
simulate the snow-albedo feedback (Hall, 2014; Walton et al., 2015). RCMs have the potential for 37 
considerably improving the representation of the snow-albedo effect in complex terrain, but the performance 38 
appears to depend strongly on the specific model. Over Europe, some of the EURO-CORDEX RCMs 39 
simulate a springtime snow albedo feedback close to that observed, whereas other models considerably 40 
overestimate it (Winter et al., 2017). In a multi-physics ensemble based on the WRF RCM, the simulated 41 
snow-atmosphere interaction causes a cold bias in north-eastern Europe, which is amplified by the albedo 42 
feedback (García-Díez et al., 2015). For the Rocky Mountains, WRF simulations generally reproduce the 43 
observed spatial and seasonal variability in snow cover, but exhibit a strong overestimation of snow albedo 44 
(Minder et al., 2016). The elevation dependence of historical warming, which is partly caused by the snow-45 
albedo effect, is realistically represented across Europe by the ENSEMBLES RCMs (Kotlarski et al., 2015). 46 
There is medium confidence that RCMs considerably improve the representation of the snow albedo effect in 47 
complex terrain. 48 
 49 
Soil-moisture feedbacks both influence changes in temperature and precipitation. More than 30% of CMIP5 50 
models overestimate the influence of preceding precipitation (a measure of soil moisture) on temperature 51 
extremes in Europe and the USA (Donat et al., 2018), and many CMIP5 models simulate an unrealistic 52 
influence of evaporation on temperature extremes for European and US wet regions (Ukkola et al., 2018). 53 
For the EURO-CORDEX RCMs, Knist et al. (2017) found that the simulated coupling strength agrees well 54 
with observations in Northern Europe (weak) and Southern Europe (strong), but in Central Europe many 55 
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RCMs tend to overestimate the coupling strength. Global reanalysis-driven land-surface models agreed 1 
relatively well with observations. However, the strength of coupling varied strongly across models at the 2 
regional scale, and a realistic partitioning of the incoming radiation into latent and sensible heat fluxes did 3 
not necessarily result in a realistic soil-moisture temperature coupling (Gevaert et al., 2018). 4 
 5 
Evaluating the representation of soil-moisture precipitation feedbacks in climate models is challenging as 6 
different processes may induce feedbacks including moisture recycling, boundary-layer dynamics and 7 
mesoscale circulations. Moreover, the effects of soil-moisture on precipitation have a spatial and a temporal 8 
aspect with different possible feedbacks, and the feedbacks may be region and scale dependent and may even 9 
change sign depending on the strength of the background flow (Taylor et al., 2013a; Froidevaux et al., 2014; 10 
Guillod et al., 2015; Tuttle and Salvucci, 2016). On seasonal-to-interannual time scales, six CMIP5 models 11 
showed a stronger soil-moisture precipitation feedback than estimated by satellite data (Levine et al., 2016). 12 
Taylor et al. (2013) found that convection-permitting RCMs could simulate well surface-induced mesoscale 13 
circulations in day-time convection and the observed negative soil moisture feedback, whereas an RCM with 14 
parameterised convection, even when run at the same resolution, simulated an unrealistic positive feedback. 15 
There is medium evidence and high agreement that simulations at convection permitting resolution are 16 
required to realistically represent soil-moisture precipitation feedbacks. 17 
 18 
Ocean-atmosphere RCMs have successfully been used to simulate phenomena involving strong regional 19 
feedbacks like tropical cyclones in the Indian Ocean (Samson et al., 2014), near-coastline intense 20 
precipitation in the Mediterranean (Berthou et al., 2015), or snow bands in the Baltic region (Pham et al., 21 
2017). The positive impact of ocean-coupling on the simulation of strongly convective phenomena such as 22 
Medicanes, a class of severe cyclones in the Mediterranean, can only be diagnosed when using relatively fine 23 
horizontal grid-resolutions in the atmosphere of about 10 km (Akhtar et al., 2014; Flaounas et al., 2018; 24 
Gaertner et al., 2018). A positive impact of ocean coupling has been quantified in marginal sea regions with 25 
reduced large-scale influence (e.g., in the Baltic sea area during weak phases of the NAO and thus weak 26 
influence of Atlantic westerlies in the area (Kjellström et al., 2005; Pham et al., 2018). There is some 27 
evidence available that coupled ocean-components also positively impact RCM simulations of inland 28 
climates such as precipitation extremes in Central Europe (Ho-Hagemann et al., 2017; Akhtar et al., 2019). 29 
There is high confidence that coupled ocean-atmosphere RCMs improve the representation of ocean-30 
atmosphere feedbacks and related phenomena. 31 
 32 
 33 
10.3.3.7 Performance at simulating regional drivers of climate and climate change 34 
 35 
10.3.3.7.1 Aerosols 36 
In CMIP5 models, the influence of vegetation changes on mineral dust is largely underestimated while the 37 
influence of surface wind and precipitation are overestimated, resulting in a low bias of dust load (Pu and 38 
Ginoux, 2018). Simulations of future changes in dust are hindered by the uncertainties in future regional 39 
wind and precipitation as the climate warms (Evan et al., 2016), in the effect of CO2 fertilization on source 40 
extent (Huang et al., 2017), in the dust feedbacks (Evans et al., 2019), and in the effect of human activities 41 
that change the land use and disturb the soil, including cropping and livestock grazing, recreation and 42 
urbanization, and water diversion for irrigation (Ginoux et al., 2012). 43 
 44 
Both proxy analyses and simulations have demonstrated reduced Asian monsoon after tropical and Northern 45 
Hemisphere eruptions due to reduced humidity and divergent circulation (Man and Zhou, 2014; Zhuo et al., 46 
2014; Liu et al., 2016a; Stevenson et al., 2016). For the NAO, GCM experiments (Zanchettin et al., 2013; 47 
Ortega et al., 2015; Michel et al., 2018; Sjolte et al., 2018) have confirmed that tropical volcanic eruptions 48 
(larger than Mt Pinatubo in 1991) may lead to a positive phase of the NAO in the following few years (with 49 
an uncertainty on the exact years impacted). Nevertheless, such an effect is not well reproduced in climate 50 
models (Driscoll et al., 2012; Toohey et al., 2014; Swingedouw et al., 2017; Ménégoz et al., 2018b). For 51 
near-term time scales, a few decadal prediction systems have evaluated the impacts that volcanic eruptions 52 
may have on the predictability of regional climate and found a significant increase in forecast quality 53 
(Swingedouw et al., 2017; Illing et al., 2018; Ménégoz et al., 2018a). 54 
 55 
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It has been argued that some recent regional climate changes can only be represented by climate models if 1 
anthropogenic aerosols are included. Some examples are the recent enhanced warming over Europe (Nabat 2 
et al., 2014; Dong et al., 2017), the cooling over the East Asia monsoon region, leading to a weakening of the 3 
monsoon (Song et al., 2014; Wang et al., 2017c), as well as the observed monsoon precipitation in West 4 
Africa and South Asia (Undorf et al., 2018). 5 
 6 
 7 
10.3.3.7.2 Land management 8 
The inclusion of irrigation in GCMs and RCMs over the South Asian monsoon region has been found to be 9 
important to represent the monsoon circulation and rainfall correctly (Lucas-Picher et al., 2011; Guimberteau 10 
et al., 2012; Shukla et al., 2014; Tuinenburg et al., 2014; Cook et al., 2015a). Similarly, the inclusion of 11 
irrigation over northern India and western Pakistan could be important for the correct simulation of 12 
precipitation over the Upper Indus Basin in northern Pakistan (Saeed et al., 2013). Irrigation over East 13 
African Sahel inhibits rainfall over the irrigated region and enhances instead rainfall to the east, coherent 14 
with both observations and theoretical understanding of the local circulation anomalies induced by the lower 15 
air surface temperatures over the irrigated region (Alter et al., 2015). Although many studies on how 16 
modelled irrigation help reduce daytime temperature or alternatively elevates nighttime temperatures are 17 
available, few compare modelled results with observations. An exception is the study over the North China 18 
Plain, showing that a RCM represented the observed nighttime warming when introducing an irrigation 19 
scheme (Chen and Jeong, 2018). 20 
 21 
There is medium evidence and high agreement that representing irrigation is important for a realistic 22 
simulation of South Asian monsoon precipitation. There is limited evidence that including irrigation in 23 
climate models improves the simulation of maximum and minimum daily temperatures as well as 24 
precipitation outside of the South Asian monsoon region. 25 
 26 
Regional land radiation management, including modifying the albedo through e.g., no-tillage practices, have 27 
been suggested as a measure to decrease maximum daily temperatures regionally (see review in Seneviratne 28 
et al., 2018), but although modelled results and theoretical understanding are coherent, few studies have 29 
verified the realism of the modelled results comparing with observations. Hirsch et al. (2018) is an 30 
exception, showing that implementing conservation agriculture in a GCM over regions where it is practiced, 31 
improves the simulation of surface heat fluxes. 32 
 33 
 34 
10.3.3.8 Process-based evaluation of statistical downscaling and bias adjustment 35 
 36 
Perfect prognosis methods typically bridge mesoscales by directly linking synoptic and local scales, and bias 37 
adjustment simply adjusts the output of the dynamical model. Within the VALUE initiative, Soares et al. 38 
(2018) analysed whether statistically downscaled and bias-adjusted model data could represent the observed 39 
sensitivity of local weather to a range of phenomena relevant to European climate. The performance of 40 
perfect prognosis methods strongly depends on the method, the chosen predictors, and the scale at which the 41 
predictors are defined. Bias adjustment was, as expected, not able to represent any sensitivity to a 42 
phenomenon that was not resolved by the driving model, and quantile mapping could even exaggerate well-43 
represented sensitivities. 44 
 45 
 46 
10.3.3.9 Performance at simulating historical regional climate changes 47 
 48 
As an important precondition for credibly projecting regional climate change, climate models are required to 49 
realistically simulate historical regional trends. This section assesses how well GCMs and different 50 
downscaling approaches perform this task. Caveats of performance evaluations will be discussed. Region-51 
by-region assessments may be found in the Atlas. 52 
 53 
Trends in climate variables even on multi-decadal time scales are a superposition of forced signals and 54 
internal climate variability (Chapter 3 and Section 10.4.1). Comparing simulated and observed historical 55 
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trends is therefore relevant for two reasons: first, to attribute observed regional changes to different drivers 1 
and forcings, and second to evaluate how well climate models ultimately simulate regional trends. The 2 
attribution aspect will be discussed in depth in Section 10.4. Here, the focus is on model evaluation. 3 
 4 
 5 
10.3.3.9.1 Performance of GCMs at simulating regional historical trends 6 
At the regional scale the forced signal may be small compared to the internal variability (Section 10.3.4.3), 7 
especially for variables other than temperature. In these instances, given the limited ability to predict internal 8 
variability at multi-decadal time scales, an agreement between observed and individual simulated trends 9 
would therefore be expected to occur only by chance (Laprise, 2014). Thus, the AR5 has assessed the 10 
consistency of observed trends with those simulated by climate model ensembles as a whole (Kirtman et al., 11 
2014). For regional trends, AR5 concluded that the CMIP5 ensemble cannot be taken as a reliable 12 
representation of reality and that the true uncertainty can be larger than the simulated model spread (Kirtman 13 
et al., 2014). These findings have been corroborated and extended since then. Misrepresented trends have 14 
been attributed to an underestimation of trends in large-scale circulation patterns (van Haren et al., 2013), 15 
missing trends in both SST, and the occurrence of tropical cyclones (Saha et al., 2014; Roxy et al., 2015). 16 
 17 
 18 
10.3.3.9.2 Performance of downscaling at simulating regional historical trends 19 
In the context of downscaling, the following questions could be addressed: (1) whether downscaling methods 20 
can reproduce observed trends when driven with observed boundary conditions or predictors, and (2) 21 
whether downscaling can add value to the trends simulated by the GCMs. 22 
 23 
For temperature in the continental US, Bukovsky (2012) found that an ensemble of RCMs driven with the 24 
NCEP reanalysis skilfully simulated recent spring and, by and large, winter trends, but did not reproduce 25 
summer and autumn trends. Three RCMs with ERA-Interim boundary conditions reproduced the observed 26 
warming trend over Central America, though with lower strength (Cavazos et al., 2019). Similar studies have 27 
been carried out for statistical downscaling and bias adjustment using predictors from reanalyses (or in case 28 
of bias adjustment, dynamically downscaled reanalyses). For a range of different perfect prognosis methods 29 
Huth et al. (2015) found that simulated temperature trends were too strong for winter and too weak for 30 
summer. The performance was similar for the different methods, indicating the importance of choosing 31 
sensible predictors. Similarly, Maraun et al. (2017) found that the performance of perfect prognosis methods 32 
depends mostly on the predictor and domain choice (for instance, temperature trends were only captured by 33 
those methods including surface temperature as predictor). Bias adjustment methods reproduced the trends of 34 
the driving reanalysis, apart from quantile mapping methods, which deteriorated these trends. 35 
 36 
Regarding the added value of downscaling, Racherla et al. (2012) found no improvement in the simulation of 37 
regional-scale temperature and precipitation trends in a dynamically downscaled GCM compared to the 38 
actual GCM itself. Laprise (2014), however, argues that the experiment was ill-designed: because the weak 39 
forced signal was masked by internal variability, the GCM simulated trend cannot be expected to follow the 40 
observed trend, and the RCM cannot be expected to decrease the deviation between simulated and observed 41 
trends. 42 
 43 
Including all relevant regional forcings is important to realistically simulate historical trends. RCM 44 
experiments are often set up in such a way that changes in forcing agents are included only via the boundary 45 
conditions, but not explicitly included inside the domain. Jerez et al. (2018) demonstrated that not including 46 
time-varying GHG concentrations within the RCM domain may misrepresent temperature trends by 1‒2 ºC 47 
per century. Including anthropogenic sulphate aerosols in reanalysis-driven RCM simulations substantially 48 
improved the representation of recent brightening and warming trends in Europe (Nabat et al., 2014 , Section 49 
10.3.3.7). Similarly, Bukovsky (2012) argued that RCMs may not capture observed summer temperature 50 
trends in the US because changes in land cover are not taken into account. Barlage et al. (2015) have 51 
revealed that including the behaviour of groundwater in land schemes increases the performance of the WRF 52 
model to represent climate variability in the central US. Hamdi et al. (2014) found that an RCM that did not 53 
incorporate the historical urbanization in the land-use, land-cover scheme is not able to reproduce the 54 
warming trend observed in urban stations with a larger bias for the minimum temperature trend. 55 
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Overall, there is low evidence that dynamical downscaling adds value in simulating regional trends, but there 1 
is high confidence that including all relevant forcings is a prerequisite for reproducing historical trends. 2 
 3 
 4 
10.3.3.10  Fitness of climate models for projecting regional climate 5 
 6 
AR5 stated that confidence in climate model projections is based on the physical understanding of the 7 
climate system and its representation in climate models. A climate model credibility is increased if the model 8 
is able to simulate past variations in climate (Flato et al., 2014), as discussed, for instance, in Section 9 
10.3.3.9. In particular, the credibility of downscaled information depends on both the quality of the 10 
downscaling method itself and that of the GCM providing the large-scale boundary conditions (Flato et al., 11 
2014). Credibility is closely linked to the concept of adequacy or fitness for purpose (Parker, 2009, Chapter 12 
1). From a regional perspective, one may ask whether a climate model is adequate for the purpose of 13 
simulating future changes of specific aspects of a specific regional climate. A key challenge is to link 14 
performance in simulating present and past climate (Sections 10.3.3.3 to 10.3.3.9) to the confidence in future 15 
projections (Section 1.3.4; Baumberger et al., 2017). The following discussion is an assessment of how the 16 
preceding model performance evaluation can be used into the generation of climate information. 17 
 18 
 19 
10.3.3.10.1  Assessing the fitness-for-purpose of regional projections 20 
A general idea of model fitness for a given application may already be obtained by checking whether 21 
relevant large-scale (Section 10.3.3.4) and regional scale (Sections 10.3.3.5 and 10.3.3.6) processes are 22 
explicitly resolved (Figure 10.2). The basis for confidence in climate projection is a solid process 23 
understanding (Flato et al., 2014; Baumberger et al., 2017). Thus, the key to assessing the fitness for purpose 24 
of a model is the evaluation of how relevant processes controlling regional climate are represented (Collins 25 
et al., 2018). A process-based evaluation may even be more appropriate than an evaluation of the variables of 26 
interest (e.g., temperature, precipitation), because biases in the latter may in principle be reduced if the 27 
underlying processes are realistically simulated (Cross-Chapter Box 10.2), while individual variables may 28 
appear as well represented because of compensating errors (Flato et al., 2014; Baumberger et al., 2017).  29 
Fitness-for-purpose can also be assessed by comparing the simulated response of a model with simulations 30 
of higher resolution models that better represent relevant processes (Baumberger et al., 2017). For instance, 31 
Giorgi et al. (2016) have corroborated their findings on precipitation changes comparing standard RCM 32 
simulations with convection permitting simulations.  33 
 34 
The evaluation of historical variability and long-term changes provides further relevant information (Flato et 35 
al., 2014). Trend evaluation may provide very useful insight, but has limitations in particular at the regional 36 
scale, mainly due to multi-decadal internal climate variability (Section 10.3.3.8), observational uncertainty 37 
(Section 10.2), and the fact that often not all regional forcings are known (Section 10.4.1). 38 
 39 
The fitness of statistical downscaling and bias adjustment for regional climate projections has been scarcely 40 
addressed. Perfect model experiments (Section 10.3.2.5) have been used to assess whether a given model 41 
structure with a chosen set of predictors is capable of reproducing the simulated future climates (Gutiérrez et 42 
al., 2013; Räty et al., 2014; Dayon et al., 2015; Dixon et al., 2016; San-Martín et al., 2017). Importantly, it is 43 
found that standard analogue methods inherently underestimate future warming trends (Gutiérrez et al., 44 
2013). Emerging discussions on bias adjustment are assessed in the Cross-Chapter Box 10.2. 45 
 46 
 47 
10.3.3.10.2  Increasing the fitness of models for regional projections 48 
Increasing resolution (Haarsma et al., 2016) or carrying out downscaling may be particularly important when 49 
it modifies the climate change signal of a lower resolution model in a physically plausible way (Hall, 2014). 50 
Improvements may result from a better representation of regional processes, upscale effects, as well as the 51 
possibility of a region-specific model tuning (Sørland et al., 2018). For instance, Gula and Peltier (2012) 52 
showed that a higher resolution allows for a more realistic simulation of lake induced precipitation, resulting 53 
in a more credible projection of changes in the snow belts of the North American Great Lakes. Similarly, 54 
Giorgi et al. (2016) demonstrated that an ensemble of RCMs better represents high-elevation surface heating 55 
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and in turn increased convective instability. As a result, the summer convective precipitation response was 1 
opposite to that simulated by the driving GCMs (Figure 10.8). Walton et al. (2015) showed that a kilometre-2 
scale resolution RCM enables a more realistic representation of the snow-albedo feedback in mountainous 3 
terrain compared to standard resolution GCMs, leading to a more plausible simulation of elevation-4 
dependent warming. 5 
 6 
 7 
[START FIGURE 10.9 HERE] 8 
 9 
Figure 10.9: Projected changes in summer (June to August) precipitation (in percent with respect to the mean 10 

precipitation) over the Alps between the periods 2070‒2099 and 1975‒2004. (a) Mean of four GCMs 11 
regridded to a common 1.32°x1.32° grid resolution; (b) mean of six RCMs driven with these GCMs. The 12 
grey contours show elevation at 500 m intervals from the digital elevation model of the SMHI-RCA 13 
EUR11, regridded to the GCM resolution for panel b. Adapted from Giorgi et al. (2016). 14 

 15 
[END FIGURE 10.9 HERE] 16 
 17 
 18 
Besides, including additional components and feedbacks can substantially modify the simulated future 19 
climate. For example, Kjellström et al. (2005) and Somot et al. (2008) have shown that an RESM can 20 
significantly modify the SST response to climate change of its driving GCM with implications for the 21 
climate change signal over both the sea and land. In particular, coupled ocean-atmosphere RCMs may 22 
increase the credibility of projections in regions of strong air-sea coupling such as the East Asia-western 23 
North Pacific domain (Zou and Zhou, 2016, 2017). 24 
 25 
Of course, a difference between the climate changes simulated by two models does not automatically imply 26 
the more complex or higher resolution model is superior (e.g., Dosio et al., 2019). For instance, most studies 27 
comparing high-resolution, convection permitting RCM simulations that explicitly simulate deep convection 28 
with simulations of hydrostatic RCMs with parameterized convection find, at least for some regions, a 29 
qualitatively different response of short duration extreme summer precipitation (Chan et al., 2014b, 2014a; 30 
Ban et al., 2015; Tabari et al., 2016; Vanden Broucke et al., 2018), whereas other studies do not (Fosser et 31 
al., 2017). Process studies of convection under warming conditions provide evidence that convection 32 
permitting simulations simulate physically more plausible heavy precipitation changes (Meredith et al., 33 
2015a), but further research is required to determine the agreement in these findings. 34 
 35 
Overall, there is high confidence that increasing model resolution, downscaling and adding relevant model 36 
components can increase the fitness for some aspects of regional projections when are accompanied by a 37 
process-understanding analysis. 38 
 39 
 40 
10.3.4 Managing uncertainties in regional climate projections 41 
 42 
Regional climate projections are affected by mainly three sources of uncertainty (Section 10.2.2): unknown 43 
future external forcings, imperfect knowledge and implementation of the response of the climate system to 44 
external forcings, and internal variability (Lehner et al., submitted). In a regional downscaling context, 45 
uncertainties arise in every step of the modelling chain. Additionally, the calibration of statistical 46 
downscaling methods is affected by observational uncertainty (Section 10.2.3.3). Here the propagation of 47 
uncertainties, the management of uncertainties, the role of the internal variability for regional projections, 48 
and the design and use of ensembles to account for uncertainties will be assessed. 49 
 50 
 51 
10.3.4.1 Propagation of uncertainties 52 
 53 
Modelling chains for generating regional climate information range from the definition of forcing scenarios 54 
to the global modelling, and potentially to dynamical or statistical downscaling and bias adjustment (Figure 55 
10.2). The propagation and potential accumulation of uncertainties along the chain has been coined the 56 
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cascade of uncertainty (Wilby and Dessai, 2010). Even within one model, like a GCM, uncertainty 1 
propagates across scales. These uncertainties are related to forcings and global climate sensitivity, and errors 2 
in the representation of the large-scale circulation (Section 10.3.3.4) and regional processes (Section 3 
10.3.3.5), feedbacks (Section 10.3.3.6) and drivers (Section 10.3.3.7). Statistical downscaling, bias 4 
adjustment and weather generators express mesoscale to convective-scale atmospheric processes by a 5 
simplified and uncertain statistical model (Maraun and Widmann, 2018b). The overall uncertainty can be 6 
statistically decomposed into the individual sources (Evin et al., 2019), although there might be non-linear 7 
dependences between them. 8 
 9 
The uncertainty propagation often increases the spread in regional climate projections when comparing 10 
GCM and downscaled results, which has been used by some authors as an argument against top-down 11 
approaches to climate information (Prudhomme et al., 2010), but increased uncertainties in the modelling 12 
chain may in principle arise from a more comprehensive sampling of previously unknown or 13 
underrepresented uncertainties (Maraun and Widmann, 2018b). The spread increase is then an expression of 14 
a better understanding and increased model fitness for purpose (Section 10.3.3.10). 15 
 16 
 17 
10.3.4.2 Representing and reducing uncertainties 18 
 19 
Climate response uncertainties (Chapter 1) can be represented by multi-model ensembles, although the 20 
sampled uncertainty typically underestimates the full range of uncertainty (Collins et al., 2013b; Shepherd et 21 
al., 2018). Traditionally, climate response uncertainty has been characterized by the multi-model mean 22 
change and associated ensemble spread. The change has then further been qualified in terms of the 23 
agreement across models and the significance compared to internal climate variability (Collins et al., 2013b). 24 
Since AR5, several limitations of this “quasi-probabilistic” approach have been identified (Madsen et al., 25 
2017). Such a treatment fails to address physically plausible, but unlikely high-impact scenarios (Chapter 1; 26 
Sutton, 2018). Moreover, in particular at the regional scale, qualitatively different or even opposite changes 27 
may be equally plausible (Shepherd, 2014). In a multi-model mean these different responses would be 28 
lumped together, strongly dampened, and qualified as non-robust, whereas in fact high impacts might be 29 
expected. Even more, the multi-model mean itself is often implausible, because it is a statistical construct, 30 
and may not manifest at all (Zappa and Shepherd, 2017). Overall, there is high confidence that some regional 31 
future climate changes may not be well characterised by multi-model mean and spread, and that additional 32 
approaches may be required. 33 
 34 
Since AR5, physical climate storyline approaches (see also Chapter 1, Section 10.5.3, and Atlas 6.1.3) have 35 
therefore been developed to better characterise and communicate uncertainties in regional climate 36 
projections (Shepherd, 2019). A special class of storylines attempts to attribute regional uncertainties to 37 
uncertainties in remote drivers. For instance, the Dutch Meteorological Service has presented precipitation 38 
projections for the Netherlands for different plausible changes of the mid-latitude atmospheric circulation 39 
and different levels of European warming (Attema et al., 2014). Manzini et al. (2014) have quantified the 40 
impact of uncertainties in tropical upper troposphere warming, polar amplification, and stratospheric wind 41 
change on Northern Hemisphere winter climate change. Based on these results, Zappa and Shepherd (2017) 42 
separated the multi-model ensemble into physically consistent sub-groups or storylines of qualitatively 43 
different projections in relevant remote drivers of the atmospheric circulation. 44 
 45 
These storyline approaches help to physically explain contradicting projections at the regional scale and thus 46 
make the conveyed information a better representation of the true uncertainty (Hewitson et al., 2014a). 47 
Additionally, the attribution of regional uncertainties to drivers may in principle help to reduce uncertainties 48 
in the case where some storylines can be ruled out because the projected changes in the driving processes 49 
appear to be physically implausible (Zappa and Shepherd, 2017). There is hence high confidence that 50 
storylines attributing uncertainties in regional projections to uncertainties in changes of remote drivers aid 51 
the representation of climate projection uncertainties. 52 
 53 
Another approach that has been developed over recent years to characterise and reduce projection 54 
uncertainties are emergent constraints (Hall et al., 2019; Chapter 1). The idea is to link the spread in climate 55 
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model projections via a regression to the spread in present climate model biases for relevant driving 1 
processes. Models with lower biases are assigned higher weight in the projections, which in turn reduces the 2 
spread of the projection in a physical way and may additionally reduce projection uncertainty. For instance, 3 
Simpson et al. (2016) have reduced the spread in projections of North American winter hydroclimate by 4 
linking this spread to model biases in the representation of relevant stationary wave patterns. Other examples 5 
of using emergent constraints (Chapter 4) in a regional context are Brown et al. (2016), Li et al. (2017), and 6 
Giannini and Kaplan (2019). 7 
 8 
 9 
10.3.4.3 Role of internal variability 10 
 11 
A regional climate projection based on a single simulation from a single GCM or driving a single RCM 12 
alone will inevitably be affected by internal variability due to the chaotic nature of the climate system 13 
(Figure 10.10). This is mainly due to the dominant influence of the chaotic atmospheric circulation on 14 
regional climate variability, in particular at mid-to-high latitudes. Internal variability is an irreducible source 15 
of uncertainty for mid-to-long-term projections (Chapter 1). 16 
 17 
There is very high confidence that the role of internal variability has likely been underestimated in previous 18 
assessments of regional climate projections as shown by a large body of literature based on initial condition, 19 
single-model large ensembles (Deser et al., 2012b, 2014; Kay et al., 2015; Dai and Bloecker, 2018; Maher et 20 
al., 2019). Initial-condition large ensembles allow quantification of the influence of internal variability on 21 
GCM-based regional climate projections for all simulated variables and spatial and temporal scales (see also 22 
Section 1.4.4). Another related development is the more frequent use of observation-based statistical models 23 
to assess the influence of internal variability on regional-scale GCM and RCM projections (Thompson et al., 24 
2015; Salazar et al., 2016). 25 
 26 
Since AR5, several large (of size 30 or more) initial condition ensembles have been constructed and used to 27 
assess signal-to-noise diagnostics, mainly limited to GCMs (Deser et al., 2012b; Kay et al., 2015; Sigmond 28 
and Fyfe, 2016; Bengtsson and Hodges, 2018), but more recently also involving dynamical downscaling 29 
(von Trentini et al., 2019b, 2019a). Standard diagnostics include a simple assessment of the signal-to-noise 30 
ratio that can be defined as the forced response (ensemble mean) to the noise (ensemble spread) ratio, or the 31 
time of emergence, which indicates the time at which a forced climate signal emerges from the 32 
secular/decadal “noise” of an internal climate variability estimate (Hawkins and Sutton, 2012; Mahlstein et 33 
al., 2012; Lehner et al., 2017a). The time of emergence diagnostic can be based on the signal-to-noise ratio 34 
exceedance of a subjective threshold or a level of significance for rejecting a null hypothesis of no change in 35 
a given climate variable probability density function between two different periods. The time of emergence 36 
can also be assessed with regard to the mean change and/or changes in variability including extremes and 37 
records (Maraun, 2013b; King et al., 2015; Bador et al., 2016), although Maraun (2013) argued that the time 38 
of emergence can be misleading for the assessment of rare events, as the associated hazard may increase 39 
even when the signal-to-noise ratio is low (as indicated by the envelope of grey lines in Figure 10.10). The 40 
time of emergence is a subjective diagnostic with different sources of uncertainty as it can be affected by 41 
model biases, internal variability, definition of the base period (pre-industrial runs and/or late 19th century), 42 
time filtering choices, and spatial scale aggregation diagnostics records (Hawkins and Sutton, 2012; Maraun, 43 
2013b; King et al., 2015; Bador et al., 2016; Lehner et al., 2017a). 44 
 45 
 46 
[START FIGURE 10.10 HERE] 47 
 48 
Figure 10.10: Observed and projected changes in seasonal mean (December to February in the left column and June to 49 

August in the right one) precipitation. Observations based on Global Precipitation Climatology Centre 50 
(GPCC) version 2018 (Schneider et al., 2017) and Climate Research Unit (CRU TS) version 4.02 (Harris 51 
et al., 2014) datasets, projections based on the Max-Planck Institute Grand-Ensemble (MPI-GE) (Maher 52 
et al., 2019) with 100 simulations starting from different initial conditions. (a)-(d) 55-year trends (2016‒53 
2070) from ensemble members with the minimum (a,c) and maximum (b,d) area mean change in the 54 
trend. (e) and (f) Time series of seasonal mean precipitation with the red (blue) lines corresponding to the 55 
ensemble member with strongest (weakest) 55-year trend and the grey lines to all remaining ensemble 56 
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members. Box-and-whisker plots show changes relative to the base period across all ensemble members 1 
for three future time slices (near, mid, and long term). The top panels show global averages, the middle 2 
panels averages across the domains marked in (a)-(d), and the bottom panels results for grid boxes close 3 
to the cities mentioned. 4 

 5 
[END FIGURE 10.10 HERE] 6 
 7 
 8 
Based on the MPI-GE large-ensemble with an ensemble size of 100, Maher et al., (2019) show that a 9 
minimum of 40–50 members are needed to capture both the 21st century SLP-forced trend pattern and the 10 
variability of the trend, confirming previous results from Deser et al. (2012). Some regional-scale studies 11 
show that both large-scale internal variability and local-scale internal variability together can still represent a 12 
substantial fraction of the total uncertainty related to hydrological cycle variables, even at the end of the 21st 13 
century (Lafaysse et al., 2014; Aalbers et al., 2018; Gu et al., 2018). 14 
 15 
There is high confidence that internal variability introduces substantial irreducible uncertainty in regional-16 
scale climate change attribution and climate change projections. This problem applies to all regions and time 17 
scales (from a decade up to a century) and is more acute in the extra-tropics and for climate variables other 18 
than temperature, such as precipitation or for atmospheric circulation. 19 
 20 
 21 
10.3.4.4 Designing and using ensembles for regional climate change assessments to take uncertainty into 22 

account 23 
 24 
As noted in Sections 10.3.4.2 and 10.3.4.3, ensembles of climate simulations play an important role in 25 
quantifying uncertainties in the simulation output. In addition to providing information on internal 26 
variability, ensembles of simulations can estimate scenario uncertainty and model (structural) uncertainty. 27 
Chapter 4, especially Box 4.1, discusses issues involved with evaluating ensembles of GCM simulations and 28 
their uncertainties. 29 
 30 
In a downscaling context, further considerations are necessary, such as the selection of GCM-RCM 31 
combinations when performing dynamical downscaling. This is a relevant issue when resources are limited. 32 
The structural uncertainty of both the GCM and the downscaling method can be important (e.g., Dosio, 33 
2017; Mearns et al., 2012), as well as further potential uncertainty created by inconsistencies between the 34 
GCM and the downscaling method (e.g., Dosio et al., 2019), which could include, for example, differences 35 
in topography or the way to model precipitation processes (Mearns et al., 2013). 36 
 37 
An important consideration is which set of GCMs should be used for the combination. Some RCM-based 38 
initiatives consider a matrix of GCM-RCM combinations or one RCM to downscale multiple GCMs. If 39 
adequate resources exist, then large numbers of GCM-RCM combinations are possible, as in the 40 
ENSEMBLES project (Déqué et al., 2012). However, coordinated downscaling programmes can be limited 41 
by the resources available, both human and computational, for producing ensembles of downscaled output, 42 
which limits the number of feasible GCM-RCM combinations. With this limitation in mind, a small set of 43 
GCMs needs to be chosen that span the range of equilibrium climate sensitivity (e.g., Inatsu et al., 2015; 44 
Mearns et al., 2012, 2013) or some other relevant measure of sensitivity, such as the projected range of 45 
tropical SSTs (Suzuki-Parker et al., 2018). These GCMs may also be selected to represent physically self-46 
consistent changes in regional climate (Zappa and Shepherd, 2017). Statistical methods can provide 47 
estimates of outcomes from missing GCM-RCM combinations in a large matrix (Déqué et al., 2012; 48 
Heinrich et al., 2014). 49 
 50 
However, even using a relatively small set of GCMs can still involve substantial computation that strains 51 
available resources, both for performing the simulations and for using all simulations in the ensemble for 52 
further impacts assessment. The NARCCAP programme (Mearns et al., 2012) used only a subset of its 53 
possible GCM-RCM combinations that balanced comprehensiveness of sampling the matrix with economy 54 
of computation demand (Mearns et al., 2013). If information from all possible combinations is still desired, 55 
one can apply statistical methods to a well-balanced, but incompletely filled matrix and extract 56 
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climatological information for the missing combinations. An advantage of the sparse, but balanced matrix for 1 
those using the downscaling output for further studies, such as vulnerability, impacts and adaptation 2 
assessments is that they have a smaller, yet comprehensive set of GCM-RCM combinations to work with. 3 
Alternatively, data-clustering methods can clump together downscaling simulations featuring similar 4 
climate-change characteristics, so that only one representative simulation from each cluster may be needed 5 
for further impacts analysis, again systematically reducing the necessary number of simulations to work with 6 
(Mendlik and Gobiet, 2016; Wilcke and Bärring, 2016). 7 
 8 
Whatever the resources, participation of multiple models in a simulation programme such as CORDEX for 9 
RCMs or CMIP for GCMs creates ensembles of opportunity, which are ensembles populated by models that 10 
participants chose to use for simulation without there necessarily being an overarching guiding principle for 11 
an optimum choice. As discussed in Chapter 4, these ensembles are likely suboptimal for assessing sources 12 
of uncertainty. An important contributor to the suboptimal character of such an ensemble is that the models 13 
are not independent. Some may also have larger biases than others. Yet often, the output from models in 14 
these ensembles has received equal weight when viewed collectively, as was the case in much of the AR5 15 
assessment (e.g., Collins et al., 2013; Flato et al., 2014; Kirtman et al., 2014; Knutti et al., 2013). 16 
 17 
One approach to emphasize independent models is to combine models with the same origins into families, 18 
effectively an a priori weighting, and create ensemble averages giving equal weight to each of these families 19 
of models. A variation of this approach lumps together models that use similar parameterizations for some 20 
processes (Chapter 4). Much of the work with these approaches has been done using GCMs, which can be a 21 
basis for selecting relatively independent GCMs as contributors to a GCM-RCM matrix, for example. Evans 22 
et al. (2014) have also used RCM independence as a guiding principle for selecting RCMs to include in their 23 
matrix. Alternatively, some have proposed a posteriori weighting, wherein weights are based on a measure of 24 
simulation accuracy. Räisänen and Palmer (2001) and Giorgi and Mearns (2002) developed initial 25 
applications of this approach to GCM/RCM ensembles. Accuracy weighting has continued to be used for 26 
analysing GCMs (see Chapter 4) and RCMs (Déqué et al., 2012). However, the choice of accuracy measure 27 
can be somewhat arbitrary, and if applying the weighting to projections, it assumes that the models 28 
replicating present climate the best have the least error in their future scenario climates. Therefore, there is 29 
growing support for a process-based binary weighting, i.e., that GCMs should be discarded that 30 
unrealistically represent processes controlling the regional climate of interest (McSweeney et al., 2015; 31 
Maraun et al., 2017b; Eyring et al., 2019). Box 4.1 offers a more detailed discussion of the issues 32 
surrounding these approaches and their implications for ensemble evaluation and weighting. 33 
 34 
There is high confidence that ensembles for regional climate projections should be selected such that models 35 
unrealistically simulating processes relevant for a given application are discarded, but at the same time, the 36 
chosen ensemble spans an appropriate range of projection uncertainties. 37 
 38 
 39 
[START CROSS-CHAPTER BOX 10.2 HERE] 40 
 41 
Cross-Chapter Box 10.2: Issues in bias adjustment 42 
 43 
Contributors: Ana Casanueva (Spain), Alessandro Dosio (Italy), José M. Gutiérrez (Spain), Stefan Lange 44 
(Germany), Douglas Maraun (Austria/Germany) 45 
 46 
Bias adjustment was not assessed in AR5 (Flato et al., 2014) in spite of being commonly used at the interface 47 
between climate model projections and the assessment of climate hazards and impacts. Over recent years, 48 
however, several issues have been identified that may arise from an uncritical use of bias adjustment. This 49 
Cross-Chapter Box first discusses the rationale behind using bias adjustment, and then assesses these issues 50 
and potentially adverse consequences. The box extends the assessment in Section 10.3.3.4, where the 51 
performance of different bias adjustment methods is assessed when applied to perfect predictors. 52 
 53 
Justification and need for bias adjustment 54 
Bias adjustment has become widely used in climate hazard and impact studies (Gangopadhyay et al., 2011; 55 
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Hagemann et al., 2013; Warszawski et al., 2014) and national assessment reports (Cayan et al., 2013; 1 
Georgakakos et al., 2014). However, some authors question its validity when applied to climate change 2 
studies, as bias adjustment may alter the spatial-temporal and inter-variable consistency of the model data, 3 
violating conservation principles and neglecting feedback mechanisms (Ehret et al., 2012). In addition, the 4 
underlying assumption of whether biases are time-invariant or not is still debated (Vannitsem, 2011; Ehret et 5 
al., 2012). 6 
 7 
However, following a more pragmatic approach, and acknowledging the underlying shortcomings, other 8 
studies argue that climate model biases are severe enough to, in principle, justify the use of bias adjustment 9 
prior to impact modelling (Maraun et al., 2017b). A key argument made for the use of bias adjustment is the 10 
fact that impact models commonly react very sensitively, often non linearly, to the input climatic variables 11 
and their biases. Examples of impact modelling studies showing an improvement in simulating present day 12 
hazard, when fed with bias-adjusted climate model output, include the assessment of hydrological impacts 13 
such as river discharge (Rojas et al., 2011; Muerth et al., 2013; Montroull et al., 2018), forest fires 14 
(Migliavacca et al., 2013), crop production (Ruiz-Ramos et al., 2016), and regional ocean modelling (Macias 15 
et al., 2018). The use of bias-adjusted model outputs is also particularly beneficial when threshold-based 16 
climate indices are required (Dosio, 2016). There are, however, cases where bias adjustment may not be 17 
necessary or useful, such as: 18 

 when only qualitative statements are required, 19 

 when only changes in mean climate are considered (however, some authors argue that bias 20 
adjustment may improve the change, see below), 21 

 when percentile-based indices are used. 22 
 23 
Time-invariance assumption and modifications of the climate change signal by bias adjustment 24 
The AR5 has already presented examples of state-dependent climate model biases with examples where the 25 
time-invariance assumption, which implies that biases are the same in both the present and future climates, 26 
of the biases is violated (Flato et al., 2014). Further research since then addressed this issue by means of 27 
perfect model experiments (Section 10.3.2.5) and process understanding. Perfect model studies with GCMs 28 
found that circulation, energy, and water-cycle biases are roughly state-independent (Krinner and Flanner, 29 
2018), whereas temperature biases depend linearly on temperature (Kerkhoff et al., 2014). Other studies 30 
show that regional temperature biases may depend on soil moisture and albedo, and may thus be state-31 
dependent (Maraun, 2012; Bellprat et al., 2013; Maraun et al., 2017b). The state-dependence implies time-32 
varying biases, meaning that there will be different biases in present and future climate. For present climate, 33 
Teutschbein and Seibert (2013) argue that bias adjustment with quantile mapping methods may account for 34 
such state-dependence.  35 
 36 
 37 
[START CROSS-CHAPTER BOX 10.2, FIGURE 1 HERE] 38 
 39 
Cross-Chapter Box 10.2, Figure 1: Modification of simulated climate change signals by different bias-adjustment 40 

methods in different settings over the Iberian Peninsula. Climate change signal 41 
(deltas, Δ) for the 2071‒2100 (RCP8.5) period with respect to the baseline 1971‒42 
2000 for global (G-RAW, 1.125º horizontal resolution) and regional (R-RAW, 43 
0.2º) model outputs (first two boxplots in each panel) together with bias-adjusted 44 
results (rest of boxplots). Results are shown for two similar bias-adjustment 45 
experiments with high-resolution (0.2º, left column) and coarse (1.125º, right 46 
column) observational reference data from two different datasets: Iberia01 (IB) 47 
and E-OBS (E). In the left column the GCM outputs are “downscaled” to the high 48 
resolution, whereas the RCM outputs have the same target resolution (so there is 49 
no associated downscaling). However, in the right column all datasets are upscaled 50 
to the GCM resolution (no downscaling effect). Results are shown for seven bias-51 
adjustment methods with four results (boxplots) for each method (G-IB-code, G-52 
E-code, R-IB-code, R-E-code, for global ‘G’ and regional ‘R’ model outputs 53 
adjusted using Iberia01 ‘IB’ or E-OBS ‘E’ observational references). Adapted 54 
from Casanueva et al. (submitted). 55 

 56 
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[END CROSS-CHAPTER BOX 10.2, FIGURE 1 HERE] 1 
 2 
 3 
It has been shown that bias adjustment methods like quantile mapping can modify simulated climate change 4 
trends, with notable impacts on changes to climate indices (Figure 1), in particular, extremes (Haerter et al., 5 
2011; Dosio et al., 2012; Ahmed et al., 2013; Hempel et al., 2013; Maurer and Pierce, 2014; Cannon et al., 6 
2015; Dosio, 2016). Some authors argue that these trend modifications are implicit corrections of state-7 
dependent biases (Boberg and Christensen, 2012; Gobiet et al., 2015). However, others argue that quantile 8 
mapping is calibrated on high-frequency (like daily values) variability and cannot necessarily correct long-9 
term trends (Maraun et al., 2017b). Similar arguments have led to the development of trend preserving 10 
quantile mapping methods (Section 10.3.1.4.2). Other authors claim that bias adjustment has no 11 
overwhelming negative or positive effect on future precipitation changes, and there is no clear advantage in 12 
using a trend-preserving bias adjustment (Maurer and Pierce, 2014). Further research is still required to fully 13 
understand the time and state-dependence of climate model biases in bias adjustment, and the validity of 14 
trend modifications by quantile-mapping approaches. 15 
 16 
Bias adjustment in the presence of large-scale circulation errors 17 
Recent research has investigated the influence on bias adjustment of circulation errors, such as biases in the 18 
frequency of precipitation-relevant weather types (Addor et al. 2016). In this case, a standard bias adjustment 19 
(i.e. not accounting for this frequency bias) would remove the overall climatological bias, but residual 20 
precipitation biases for individual weather types would remain. Conversely, a bias adjustment applied 21 
separately for each weather type would remove weather-type specific biases, but not the overall 22 
climatological bias. Other works showed that the attempt to correct such frequency biases, by e.g., adjusting 23 
the number of wet days, may artificially deteriorate the spell-length distribution and either delete or 24 
artificially introduce long dry spells (Maraun et al., 2017b). 25 
 26 
In presence of biases in the location of dominant circulation patterns, bias adjustment may introduce 27 
physically inconsistent and implausible solutions (e.g., a northward-moving North Atlantic storm track 28 
accompanied by a southward moving precipitation pattern (Maraun et al., 2017b)). Bias adjusting the 29 
location of circulation features has been proposed (Levy et al., 2013) but this may introduce inconsistencies 30 
with the model orography, land-sea contrasts, and SSTs (Maraun et al., 2017b). Other authors therefore 31 
suggest bias adjustment during the simulation (Guldberg et al., 2005; Kharin et al., 2012; Krinner et al., 32 
2019).  33 
 34 
There is medium confidence that the selection of climate models with low biases in the synoptic-scale 35 
atmospheric circulation may increase the validity of bias adjustment. 36 
 37 
Bias adjustment prior to dynamical downscaling  38 
Some authors suggest to mitigate the influence of large-scale temperature or circulation biases by performing 39 
a bias adjustment of the driving fields prior to dynamical downscaling (e.g., Colette et al., 2012; Hernández-40 
Díaz et al., 2013). For present climate, this approach has been shown to substantially reduce the RCM biases 41 
in mean temperature and precipitation. In a case study for South Africa, White and Toumi (2013) 42 
demonstrated that bias adjustment reduces the bias in downscaled monthly mean precipitation, but quantile 43 
mapping artificially amplifies its interannual variability. This approach may introduce dynamical 44 
inconsistencies because the adjustment corrects the location of long-term mean patterns, but not the location 45 
of day-to-day variability (Maraun et al., 2017b). A modified version therefore corrects GCM-simulated SSTs 46 
and uses these as surface boundary conditions for an AGCM simulation, which in turn provides the boundary 47 
conditions for dynamical downscaling (Hernández-Díaz et al., 2019). Further research is required to 48 
understand the validity of bias-adjusted GCM outputs prior to dynamical downscaling. 49 
 50 
Representativeness issues and the use of bias adjustment as statistical downscaling 51 
Bias adjustment assumes that the simulated variable is representative of the observed target variable, which 52 
is not always the case. Maraun et al., (2017b) investigated a case where observed precipitation was closely 53 
correlated with ENSO variability, but GCM-simulated precipitation was essentially uncorrelated with the 54 
simulated ENSO variability. In complex terrain, the simulated regional flow may be substantially shifted 55 
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compared to reality because of, among other things, the coarse representation of topography in the climate 1 
model (Maraun and Widmann, 2015). In both cases, standard bias adjustment is not appropriate.  2 
 3 
Bias adjustment is often used to downscale climate model results from gridbox to point scale or finer 4 
resolution. For instance, several authors apply bias adjustment directly to GCM outputs instead of using an 5 
intermediate dynamical downscaling step (e.g., Johnson and Sharma, 2012). Bias adjustment of coarse 6 
simulations may lead to representativeness issues, as the climate in one location may substantially differ 7 
from the climate of the closest model cells. For precipitation, long-term trends may be artificially modified 8 
and area-aggregated extremes may be overestimated (Maraun, 2013a; Gutmann et al., 2014; Maraun et al., 9 
2017b). Similarly, temperature inversions in unresolved valleys, as well as sub-grid elevation dependent-10 
warming due to unresolved snow-albedo feedbacks are not represented (Maraun et al., 2017b) (Figure 2). It 11 
has therefore been suggested to account for local random variability by combining bias adjustment with 12 
stochastic downscaling (Volosciuk et al., 2017; Lange, 2019c), although this approach still does not account 13 
for local modifications of the climate change signal. Statistical emulators of high-resolution RCMs have 14 
been proposed to account for local modifications of the climate change signal (Walton et al., 2015). 15 
 16 
Overall, there is high confidence that the use of bias adjustment for statistical downscaling, in particular of 17 
coarse resolution GCMs, has limitations and that dynamical downscaling may be required to resolve relevant 18 
local processes prior to bias adjustment. Examples of such added value of RCMs are given in Sections 19 
10.3.3.3 and 10.3.3.5. 20 
 21 
 22 
[START CROSS-CHAPTER BOX 10.2, FIGURE 2 HERE] 23 
 24 
Cross-Chapter Box 10.2, Figure 2: Boreal spring (March to May) daily mean temperature in the Sierra Nevada region 25 

in California. (a) Present climate (1981‒2000 average) in the GFDL-CM3 GCM, 26 
interpolated to 8 km (left), GCM bias adjusted (using quantile mapping) to 27 
observations at 8 km resolution (middle) and WRF RCM at 3 km horizontal 28 
resolution (right). (b) Climate change signal (2081‒2100 average minus 1981‒2000 29 
average according to RCP8.5) in the GCM (left), the bias adjusted GCM (middle) 30 
and the RCM (right). As the GCM does not resolve the snow-albedo feedback, it 31 
simulates an implausible regional warming signal. The bias adjustment cannot 32 
improve the missing feedback. Only the high-resolution RCM simulation simulates 33 
a plausible elevation-dependent climate change signal. Adapted from Maraun et al. 34 
(2017b). 35 

 36 
[END CROSS-CHAPTER BOX 10.2, FIGURE 2 HERE] 37 
 38 
 39 
Calibrating and evaluating bias adjustment in the presence of observational uncertainty and internal 40 
variability 41 
Observational uncertainties and internal variability may introduce substantial uncertainty in the estimation of 42 
biases and thus in the calibration of bias-adjustment methods. Dobor and Hlásny (2018) found a considerable 43 
influence of the choice of the observational dataset and calibration period on the bias adjustment for some 44 
regions in Europe. Similarly, Kotlarski et al. (2017) found that RCM biases are typically larger than 45 
observational uncertainties, but in some regions, and in particular for wet-day frequencies, spatial patterns 46 
and the intensity distribution of daily precipitation, the situation may reverse. Switanek et al. (2017) found a 47 
strong influence of internal variability and thus of the choice of calibration period on the calibration of 48 
quantile mapping and ultimately even on the modification of the climate change signal. 49 
 50 
Bias adjustment is typically evaluated using cross-validation, i.e. by calibrating the adjustment function to 51 
one period of the observational record, and by evaluating it on a different one. Some studies highlight the 52 
difficulties of evaluating bias adjustment using this approach (Maraun et al., 2017b). Maraun and Widmann 53 
(2018) demonstrated that, for climate-change simulations, multi-decadal internal climate variability may lead 54 
to a rejection of a valid bias adjustment or even lead to a positive evaluation of an invalid bias adjustment. 55 
The authors therefore argued that, in the presence of substantial internal variability, bias adjustment of 56 
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climate cannot sensibly be evaluated by cross-validation, but instead by evaluating aspects that have not been 1 
adjusted, such as temporal, spatial, or multi-variable dependence. 2 
 3 
Recommendations for the use of bias adjustment 4 
In the light of these issues, several attempts have been made to provide guidelines for the use of bias 5 
adjustment, the most important ones are summarised in the following. Ehret et al. (2012) recommend that 6 
when using bias adjustment, the raw model output should always be provided alongside the bias adjusted 7 
data. This recommendation was backed up by Stocker et al. (2015). Maraun et al., (2017b) argued that the 8 
target resolution should be similar to the model resolution to avoid representativeness issues. Stocker et al. 9 
(2015) and Maraun et al. (2017) both highlighted the relevance of understanding model biases and the 10 
misrepresentations of the underlying physical processes prior to any bias adjustment, and encourage the 11 
development of physics-informed bias adjustment methods, and the collaboration between bias adjustment 12 
users, experts in climate modelling and experts in the considered regional climate (Galmarini et al., 2019). 13 
 14 
 15 
[END CROSS-CHAPTER BOX 10.2 HERE] 16 
 17 
 18 
10.4 Interplay between anthropogenic change and internal variability at regional scales 19 
 20 
This section assesses the physical causes of past and future regional climate change in the context of the 21 
ongoing anthropogenic influence on the global climate. In this section, regional climate change refers to a 22 
transient change in the state of the climate that can be identified by changes in the mean and/or higher 23 
moments, and persists for an extended period, typically a few decades or longer. Regional climate change as 24 
interpreted here may be due to natural internal processes such as atmospheric internal variability and local 25 
climate response to low-frequency modes of climate variability such as the AMV and the PDV. Regional 26 
climate change can also be due to changes in external forcings such as modulations of the solar cycle, orbital 27 
forcing, volcanic eruptions, and persistent anthropogenic changes in the composition of the atmosphere or in 28 
land use ((IPCC, 2018) glossary; Section 10.1.4; Cross-Chapter Box 3.1). Note that this differs from the 29 
United Nations Framework Convention on Climate Change (UNFCCC) Article 1 definition, which defines 30 
climate change as a change attributable to human activities altering the atmospheric composition. This 31 
different perspective is in line with the enhanced perception since the AR5 of the importance on internal 32 
variability as a driver of multi-decadal regional climate changes (Section 1.4.1). 33 
 34 
The assessment focuses on eight illustrative examples that span a wide range of regions, time scales, 35 
attribution methods and issues (Figure 10.11), and that without aiming at being comprehensive, offer the 36 
possibility to illustrate a number of methodological aspects. Here, the examples are defined by a 37 
geographical spatial domain as well as a past period (from a couple to several decades) during which the 38 
specific regional climate has undergone a substantial change. Note that substantial does not refer here to 39 
significantly rejecting a specific statistical null hypothesis. Instead, it is loosely used to describe a change 40 
that can have one or more of the following properties: large amplitude and/or spatial extent, a rare 41 
occurrence, high-impact in terms of consequence for human and natural systems, thus making a relevant link 42 
with the WGII assessment report. Elements about two specific WGII regions, mountains and cities, are also 43 
included (Cross-Chapter Box 10.3 and Box 10.2). The list of all selected illustrative examples roughly 44 
follows the order of the regional chapters of the WGII report. Section 10.4.1 describes regional-scale 45 
attribution methodologies and provides an assessment of the main causal factors underlying the observed 46 
changes for each example region. Section 10.4.2 focuses on the interplay between internal variability and 47 
external forcing in shaping future regional climate change, and its geographical and seasonal variations. A 48 
complete assessment of future regional climate change for all regions considered in the report (as defined in 49 
Box 1.1) can be found in the Atlas chapter. 50 
 51 
 52 
 53 
 54 
 55 
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[START FIGURE 10.11 HERE] 1 
 2 
Figure 10.11:Time series of surface air temperature (in °C, blue and red colours) or precipitation (in mm per month, 3 

green and ochre colours) anomalies (relative to the 1951–1980 period) area-averaged over appropriate 4 
regions of the selected illustrative examples. The regions are broadly defined by the green (precipitation) 5 
and magenta (temperature) rectangles. The precise region boundaries and examples are from top to 6 
bottom and left to right: (a) The south-western North America (28°N–40°N, 105°W–120°W) drought. (b) 7 
The Caribbean small islands (15°N–27°N, 65°W–85°W) summer (June to August) drought. (c) The 8 
south-eastern South America (26.25°S–38.75°S, 56.25°W–66.25°W) Austral summer (December to 9 
February) drought. (d) The Sahel and the West African summer (June to September) monsoon (10°N–10 
20°N, 20°W–40°E) drought and recovery. (e) The south-western Australia (25°S–39°S, 110°E–122°E) 11 
Austral autumn and winter rainfall decline. (f) The East Asia summer (June to August) monsoon 12 
weakening and recovery; here the time series is the difference of mean precipitation between two regions: 13 
(110°E–125°E, 35°N–45°N) – (105°E–125°E, 20°N–35°N). (g) The central and eastern Eurasia (40°N–14 
65°N, 40°E–140°E) winter (January to March) cooling. (h) The western Europe (35°N–70°N, 15°W–15 
20°E) summer (June to August) warming. Temperature data is from the Berkeley surface temperature 16 
dataset (BEST) (Rohde et al., 2013) and precipitation from Global Precipitation Climatology Centre 17 
(GPCC) version 2018 (Becker et al., 2013; Schneider et al., 2017). The light-grey area on each graphic 18 
represents the period of interest for attribution. The black line is a simple low-pass filter that has been 19 
used in AR4, Chapter 3, Appendix 3.A. It has five weights 1/12 [1-3-4-3-1] and for annual data, its half-20 
amplitude point is for a six-year period, and the half-power point is near 8.4 years. 21 

 22 
[END FIGURE 10.11 HERE] 23 
 24 
 25 
10.4.1 Attributing past regional changes to multiple causal factors 26 
 27 
This section focuses on recent research on attribution of past regional climate change for the selected 28 
illustrative examples. In this chapter, attribution is defined as the process of evaluating the relative 29 
contributions of multiple causal factors (or drivers) to a regional climate change (Box 1.3; Rosenzweig and 30 
Neofotis, 2013; Shepherd, 2019). Note that this slightly differs from the usual definition of attribution used 31 
in the AR5 (Hegerl et al., 2010; Box 3.1). In particular, the preliminary detection step is not required to 32 
perform attribution since causal factors may also include drivers of internal variability, such as the AMV or 33 
PDV among many others, in addition to external natural and anthropogenic forcing. Indeed, to understand 34 
changes in climate and attribute cause at the regional scale it is also vital to consider internal variability that 35 
might be considered as a noise problem at global scale. In order to make this distinction clear, the term 36 
regional-scale (or process-based) attribution will be used in this section (Cross-Chapter Box 1.4). 37 
Importantly, regional-scale attribution also seeks to determine the physical processes and uncertainties 38 
involved in the driver’s influence. Therefore, this section builds on the detection and attribution work of 39 
Chapter 3 by focusing on regional-scale changes arising from both internal variability and external forcing 40 
drivers. 41 
 42 
Firstly, in Section 10.4.1.1, methodologies in the attribution of regional climate change and links to drivers 43 
of climate change at the global and regional scale as outlined in Section 10.1.4 are assessed. Next, in Section 44 
10.4.1.2 a series of examples in which the attribution of regional climate changes in the historical period 45 
involves the interplay between the action of large- and local-scale anthropogenic drivers and internal 46 
variability are assessed. 47 
 48 
 49 
10.4.1.1 Methodologies for regional climate change attribution 50 
 51 
Attribution at sub-continental and regional scales are usually more complicated than at the global scale due 52 
to various factors: a larger contribution of internal variability drivers, an increased degeneracy among the 53 
responses to different external forcings, the importance at local scale of some omitted forcings in GCM 54 
simulations, and larger model errors related to the representation of small-scale phenomena (Zhai et al., 55 
2018). In addition to standard optimal fingerprint regression-based approaches (Section 3.2.1 and Zhai et al. 56 
(2018)), several emerging methodologies have been increasingly used for regional climate change 57 
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attribution. These include three statistical approaches, namely, dynamical adjustment techniques, the 1 
univariate detection and attribution method, and the ensemble empirical mode decomposition method that 2 
are often combined with dynamical model-based large ensembles (including both initial condition ensembles 3 
and perturbed physics ensembles; Section 1.4.4). Details are provided below. 4 
 5 
Standard optimal fingerprint methods have been applied to detection and attribution of climate change mean 6 
temperature signal in several regions of the world such as Canada, India, Central Asia, Northern China, 7 
Australia, and North Africa (Li et al., 2017a; Dileepkumar et al., 2018; Wang et al., 2018c; Peng et al., 2019; 8 
Wan et al., 2019). The influence of anthropogenic forcing, and in particular that of GHGs, is robustly 9 
detected in annual and seasonal mean temperatures for all the considered regions. The contribution of the 10 
GHG forcing to the observed temperature change varies among the different regions, ranging between 60 to 11 
more than 100%. While the influence of external natural forcing can often be detected as well, its 12 
contribution to observed changes is usually much smaller (Li et al., 2017a; Wan et al., 2019). Detection of 13 
precipitation changes due to human influence is much more difficult, due to a larger amount of internal 14 
variability at regional to local scales, as well as substantial modelling and observational uncertainty (Wan et 15 
al., 2015; Sarojini et al., 2016; Li et al., 2017a). It is noteworthy that these methods require a very significant 16 
reduction of spatial and temporal dimensions in order to reliably estimate the covariance matrix of internal 17 
variability (an entire region is thus often considered as being only one or a few spatial points that represent 18 
the spatial average of the whole region or a few sub-regions; time samples are often 5- or 10-year averages). 19 
Finally, model error is rarely included in the statistical model used in detection and attribution regional 20 
studies, while it has been shown to have a strong impact on the stability of scaling factors and confidence 21 
intervals when increasing the spatial dimension (Ribes and Terray, 2013). New statistical methods are 22 
emerging to provide some alternative to standard optimal fingerprinting but they have not yet been evaluated 23 
and applied at regional scales (Section 3.2.2). 24 
 25 
The dynamical adjustment method (Smoliak et al., 2015; Deser et al., 2016) seeks to isolate changes in 26 
surface air temperature or precipitation that are due purely to atmospheric circulation changes. The residual 27 
can then be analysed and attributed to internal changes in both land or ocean surface conditions and the 28 
thermodynamical response to external forcing. Smoliak et al. (2015) performed their dynamical adjustment 29 
using partial least squares regression of temperature to remove variations arising from sea-level pressure 30 
changes. Deser et al. (2016) used constructed atmospheric circulation analogues and resampling to estimate 31 
the dynamical contribution to changes in temperature. Removing temperature or any other variable changes 32 
associated with circulation patterns allows a cleaner, simplified residual time series of the regional climate 33 
variable to be assessed, in order to more easily determine the influence of local and remote ocean and land 34 
internal drivers or external forcing agents. It is noteworthy that the dynamical adjustment method by itself 35 
cannot account for the component of the forced response associated with circulation changes that project 36 
onto atmospheric internal variability. However, this component can be estimated within a model framework 37 
by averaging the dynamical contribution across multiple members of an initial condition large ensemble 38 
(Deser et al., 2016). 39 
 40 
Dynamical adjustment methods have been used by, for instance, Deser et al. (2016), O’Reilly et al. (2017), 41 
Gong et al. (2019), and Guo et al. (2019). Deser et al. (2016) focused on the causes of observed and 42 
simulated multi-decadal trends in North American temperature. A 30-member model ensemble was used, 43 
with differing initial states, to identify forced and internally generated components. They demonstrated that 44 
the main advantage of this technique is to narrow the spread of temperature trends found by the model 45 
ensemble and to bring the dynamically-adjusted observational trend much closer to the forced response 46 
estimated by the model ensemble mean. Similarly, O’Reilly et al. (2017) applied dynamical adjustment 47 
techniques to more carefully determine the influence of the AMV on continental climates. Variations in 48 
summer temperature and the AMV from 1901 to 2010 were measured, while three sea-level pressure datasets 49 
were used to construct the patterns of internal circulation variability. Over Europe, summer temperature 50 
anomalies induced thermodynamically by the warm phase of the AMV are further reinforced by circulation 51 
anomalies; meanwhile, precipitation signals are largely controlled by dynamical responses to the AMV. 52 
Based on a partial least-squares approach, Gong et al. (2019) showed that recent winter temperature 30-year 53 
trends over northern East Asia are strongly influenced by internal variability linked to decadal changes of the 54 
Arctic Oscillation. Using dynamical adjustment purely on precipitation observations, Guo et al. (2019) 55 
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showed that human influence has led to increased wintertime precipitation across north-eastern North 1 
America, as well as a small region of north-western North America, and to an increase in precipitation across 2 
much of north-western and north central Eurasia. 3 
 4 
The univariate detection method does not use spatial pattern information, but compares observed trends in 5 
gridded datasets with distributions of trends from ensembles of simulations during the historical period using 6 
natural forcing-only versus all forcings combined with distributions of internal variability trends from long 7 
simulations with pre-industrial constant external forcing (Knutson et al., 2013; Knutson and Zeng, 2018). 8 
Consistency between observed and historical simulation trends is also assessed with statistical tests that can 9 
be applied independently over a large number of grid points. The fraction of area classified as detectable, 10 
attributable, or consistent/inconsistent is then finally estimated. The method can be viewed as a simple 11 
consistency test for both amplitude and pattern of observed versus simulated trends. Its application to CMIP3 12 
and CMIP5 models suggests that 80% of the Earth surface has a detectable anthropogenic warming signal 13 
(Knutson et al., 2013). 14 
 15 
The ensemble empirical mode decomposition method (Wu and Huang, 2009; Wilcox et al., 2013; Ji et al., 16 
2014; Qian and Zhou, 2014) decomposes data, such as time series of historical temperature and precipitation, 17 
into independent oscillatory modes of decreasing frequency. The last step of the method leaves behind a 18 
nonlinear residual time series with no further oscillations. Typically, the nonlinear trend (e.g., of 20th-19 
century temperature) can be reconstructed by summing the long-term mean, the residual, and eventually the 20 
lowest-frequency mode to account for a multi-decadal forced signal, for instance associated with the 21 
anthropogenic aerosol forcing. The ensemble empirical mode decomposition method is an example of a data-22 
driven, non-parametric approach that can be used to directly provide an estimate of the forced response 23 
without the need for model data (Qian, 2016). Lehner et al. (2018b) have employed it directly on 24 
observations, together with dynamical adjustment, and initial condition and multi-model ensembles, 25 
designing a step-by-step attribution framework to tackle attribution of temperature and precipitation climate 26 
trends in the mid-to-high latitude regions. 27 
 28 
An additional regional attribution technique is based on the similarity between observations and one or 29 
several simulations of a large ensemble. Huang et al. (submitted, b) used a perturbed physics ensemble to 30 
attribute the drying trend of the Indian monsoon over the latter half of the 20th century to decadal forcing 31 
from the PDV (see detailed case study in Section 10.6). The ensemble members predicted different trends in 32 
PDV behaviour across the 20th century and the negative precipitation trend was only replicated in those 33 
members with a strong negative-to-positive PDV transition across the 1970s, consistent with the observed 34 
PDV behaviour. In a similar manner, Cvijanovic et al. (2017) addressed the possible influence of Arctic sea-35 
ice loss on the North Pacific pressure ridge and, consequently, on south-western United States precipitation. 36 
They used a coupled atmosphere-ocean mixed layer setup, rather than the fully coupled set up of Huang et al. 37 
(submitted, b). They sampled the uncertainties in selected sea-ice physics parameters (varying parameters 38 
within a realistic range) to achieve a “low Arctic sea-ice” state in their perturbed simulations. They then 39 
compared the latter with control simulations representative of sea-ice conditions at the end of the 20th 40 
century to assess changes purely due to sea-ice loss. 41 
 42 
Finally, new methods aiming at removing underlying model biases before performing detection and 43 
attribution, for instance related to precipitation changes, are beginning to emerge based on image 44 
transformation techniques such as warping (Levy et al., 2014a). By correcting location and seasonal 45 
precipitation biases in CMIP5 models, Levy et al. (2014b) showed that the agreement between observed and 46 
fingerprint patterns can be improved, further enhancing the ability to attribute observed precipitation changes 47 
to external forcings. The improvement mainly relies on the assumption that precipitation changes are tied to 48 
the underlying climatology, which has been shown to be a reasonable assumption in regions of the world 49 
where an intensification of the hydrological cycle is expected (Held and Soden, 2006). 50 
 51 
Finally, evidence that the models employed in regional-scale attribution are fit for purpose is essential in 52 
order to estimate the degree of confidence one can have in the attribution results (Section 10.3.3). For 53 
example, models need to be evaluated and assessed in their simulation of internal variability modes which 54 
are known through their teleconnections to be important drivers of regional climate change (Section 3.7).  55 
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Models are likely to have different performance in different regions and therefore their evaluation 1 
assessment in terms of key physical processes and mechanisms needs to be adapted to the regional climate 2 
change under consideration. 3 
 4 
 5 
10.4.1.2 Regional climate change attribution examples 6 
 7 
10.4.1.2.1 The Sahel and the West African monsoon drought and recovery 8 
The West African monsoon (10N–20N, 10W–20E) from 1950 to the present has experienced some of the 9 
most severe multi-decadal rainfall variations in the world, including excessive rainfall in the 1950s–1960s, 10 
followed by two decades of deficient rainfall, leading to a large negative trend until the mid-to-late 1980s.  In 11 
a study of rain gauge data over the Sahel (11N–18N; 20W–10E) since 1950, Panthou et al. (2018) also 12 
demonstrated trends towards longer dry spells and greater rainfall intensity or higher frequency of heavy 13 
rains. Some authors use the term Sahel interchangeably with the West African monsoon, although others 14 
consider the Sahel to cover the whole width of northern tropical Africa broadly within the 10‒20°N band. 15 
Since the mid-1980s, there has been a partial recovery of annual rainfall amounts (Wang et al., submitted), 16 
more significant over the central rather than the western Sahel from August to October (Lebel and Ali, 2009; 17 
Sanogo et al., 2015; Maidment et al., 2015). The period since the mid-1980s is also characterized by fewer 18 
rainy days with a rise in extreme rainfall occurrence, suggesting an intensification of the hydrological cycle 19 
(Giannini et al., 2013; Panthou et al., 2014). This finding was supported by rainfall records from an 20 
observatory in Niger since 1990, in which annual maximum sub-hourly rainfall intensities are found to have 21 
increased by 2–6% per decade. Bichet and Diedhiou (2018b, 2018a) used CHIRPS merged satellite/gauge 22 
data to show a wetter western Sahel since 1981, but with shorter and more frequent dry spells, while over the 23 
Guinea Coast, they showed less frequent and more intense rainfall. These distinct changes in precipitation 24 
characteristics suggest a greater complexity than merely a modulation of mean rainfall over several decades.  25 
 26 
In this example the drivers of the long-term drought in the West African monsoon region are assessed, 27 
spanning the decades from the 1950s up to the 1990s, in which annual rainfall fell between 20 and 30% 28 
(Hulme, 2001) (Figure 10.12a,b). The subsequent recovery of these rains is also explained (Figure 10.12a). 29 
The role of GHG and aerosol emissions as well as SST variability in different ocean basins on these changes 30 
in West African monsoon and Sahel precipitation are discussed. The interested reader is also referred to 31 
Section 8.3.2.4. 32 
 33 
 34 
[START FIGURE 10.12 HERE] 35 
 36 
Figure 10.12:Attribution of historic precipitation change in the West African monsoon and Sahel region during June to 37 

August: (a) Time series of GPCC version 2018 (Schneider et al., 2017) precipitation anomalies (mm day-38 
1, baseline 1955–1984) in the Sahel box (10°N–20°N, 20°W–40°E) indicated in panel (b) (same as Figure 39 
10.11) with a five-year weighted mean applied (see Figure 10.11). The two periods used for difference 40 
diagnostics are shown in grey columns. (b) Precipitation change (mm day-1) in GPCC data for the 1980–41 
1990 minus the 1950–1960 periods. (c) Precipitation difference (mm day-1) averaged over 1955–1984 and 42 
four ensemble members of HadGEM3 experiments between 1.5x and 0.2x historical aerosol emissions 43 
scaling factors after Shonk et al. (2019). (d) Precipitation anomaly time series (mm day-1, baseline 1955–44 
1984) over the Sahel in the CMIP6 multi-model database for 26 historical simulations with all forcings 45 
(in red), ten with greenhouse gas-only forcing (in light blue) and eight with aerosol-only forcing (in grey).  46 
(e) Precipitation change (% (29 years)-1) for the (left) decline period (1955–1984) and (right) recovery 47 
period (1985–2014) for ensemble means and in 26 individual models of the CMIP6 historical experiment, 48 
ten with greenhouse gas-only forcing, eight with aerosol-only forcing, 34 CMIP5 models (in dark blue) 49 
and in individual members of the Database for Policy Decision Making for Future Climate Change 50 
Grand-Ensemble (d4PDF-GE) (Mizuta et al., 2017) (pink histogram) and the Max-Planck Institute 51 
Grand-Ensemble (MPI-GE) (Maher et al., 2019) (violet histogram). The two black crosses represent 52 
observational estimates from GPCC and the Climate Research Unit Time-Series (CRU TS) version 4.02 53 
(Harris et al., 2014). Trends are estimated using ordinary least squares. 54 

 55 
[END FIGURE 10.12 HERE] 56 
 57 
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For the attribution of the rainfall decline, the impact of the different ocean basin SSTs on the West African 1 
monsoon decline is assessed first. Nicholson (2013) reviewed competing mechanisms from equatorial 2 
Atlantic SSTs and interhemispheric SST gradients in regulating interannual and decadal variability of the 3 
Sahel. Rodríguez-Fonseca et al. (2015) reviewed evidence determining that on interannual time scales, the 4 
tropical ocean warming results in reduced Sahelian rainfall, while positive SST anomalies over the 5 
Mediterranean Sea tend to be associated with increased rainfall. Similarly, at decadal time scales, warming 6 
over the tropics leads to Sahel drought, whereas North Atlantic warming promotes increased rainfall. This 7 
suggests the general importance of meridional temperature gradients in supporting the West African 8 
monsoon. 9 
 10 
Several papers have formalised the SST influence on the West African monsoon in the framework of the 11 
AMV. Martin et al. (2014), Martin and Thorncroft (2014), and Park et al. (2015b) suggested that changes in 12 
the SST gradient between the tropics and extratropical Atlantic increased the Northern Hemisphere 13 
differential warming and in turn drive Sahel rainfall. This suggested influence of AMV on the West African 14 
monsoon has been supported by results from CMIP5 decadal experiments (Gaetani and Mohino, 2013; 15 
Mohino et al., 2016; Sheen et al., 2017) showing that initialized decadal hindcasts outperform empirical 16 
predictions based on persistence (some skill is also attributed to a non-negligible contribution from external 17 
radiative forcing). The influence of PDV has also been studied but to a lesser extent. In a 18 
correlation/regression analysis of observations and CMIP5 models, Villamayor and Mohino (2015) 19 
suggested that the positive phase of the PDV has a negative impact on Sahel rainfall anomalies regardless of 20 
changes induced by anthropogenic forcing. 21 
 22 
Other studies have highlighted the role of anthropogenic aerosol forcing rather than internal modes of 23 
climate variability alone. In terms of regional emissions, Dong et al. (2014) used HadGEM2-ES simulations 24 
to study the impacts of European and Asian anthropogenic sulphur dioxide on summer Sahel rainfall. 25 
European emissions led to an increase in shortwave scattering by increased sulphate burden, leading to a 26 
decrease in surface downward shortwave radiation and thus surface cooling over North Africa. This weakens 27 
the Saharan heat low and Sahel precipitation. The remote effects of Asian emissions led to a smaller change 28 
in sulphate burden over North Africa, but they induce adjustment of the Walker circulation, which again 29 
leads to a weakening of the monsoon circulation and a decrease in Sahel precipitation. 30 
 31 
The effects of anthropogenic aerosol can also be considered at the hemispheric scale in an interaction with 32 
the effects of GHG, leading to a hemispheric asymmetry in temperature change that in turn shifts the inter-33 
tropical convergence zone position. Based on a coupled atmosphere-slab ocean model and following Biasutti 34 
and Giannini (2006), Ackerley et al. (2011) showed that increases in GHG alone cause an increase in 35 
Northern Hemisphere precipitation, particularly in the Sahel, while increases in aerosol loading cause a 36 
reduction in Sahel rainfall. Ackerley et al. (2011) further supported their hypothesis by comparing very large 37 
perturbed physics ensembles of all-historical forcings and altered aerosols in a coupled GCM. They 38 
concluded that aerosol changes were the main driver of observed drying over 1950–1980. This is consistent 39 
with Polson et al. (2014) who used CMIP5 aerosol and GHG single-forcing experiments to show that aerosol 40 
emissions, which are larger and more widespread in the Northern Hemisphere, have led to declining rainfall 41 
across the Northern Hemisphere monsoons, including in West Africa. Likewise, Hwang et al. (2013) found 42 
the consistent timing of the southward shift of the inter-tropical convergence zone in CMIP3 and CMIP5 43 
historical simulations to support the role of external forcing. Their atmospheric energetics approach 44 
attributed this to anthropogenic aerosol cooling of the Northern Hemisphere. By sampling the impact of 45 
uncertain aerosol radiative forcing across the CMIP5 archive and applying different aerosol scaling factors to 46 
a single-model study of the historical period, an impact on rainfall at the Gulf of Guinea coast was noted 47 
(Shonk et al., submitted), with differences of 0.5 mm day-1 between the strongest and weakest aerosol 48 
forcings. This is illustrated in Figure 10.12c, although the signal is shifted southwards with respect to the 49 
observations due to model bias. 50 
 51 
The recovery in West African monsoon and Sahel rainfall since the late 1980s raises the question of whether 52 
similar mechanisms apply. Atmospheric internal variability possibly plays a role in the trend: a five member 53 
ensemble of AGCM simulations forced with observed SSTs predicted a Sahel rainfall recovery from the 54 
1980s–2000s with a large spread, ranging from 6% to 21% (Roehrig et al., 2013). A detection study based on 55 
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three reanalyses (Cook and Vizy, 2015) suggests that the recent recovery in Sahel rainfall is concomitant 1 
with the increase of Sahara surface temperature, which is 2–4 times greater than the tropical-mean; the 2 
amplified Saharan warming with maximum from July to October was confirmed by Vizy and Cook (2017) 3 
and subsequently in the review of Cook and Vizy (2019). The warmer Sahara drives a stronger thermal low 4 
and more intense West African monsoon flow with more moisture, enhancing convection over the central 5 
and eastern Sahel while it weakens over the western Sahel. The Saharan temperature increase over the last 30 6 
years was forced by anomalous night time longwave heating of the surface by water vapour (Evan et al., 7 
2015). Such a result is supported by the ensemble mean of 15 CMIP5 models (Lavaysse et al., 2016), 8 
although not all models are able to simulate a rainfall-heat low regression pattern as in observations. Sahel 9 
rainfall is also incorrectly located in preliminary CMIP6 models, relating to errors in the simulated 10 
tropospheric temperature gradient (Martin et al., 2017). Taylor et al. (2017) attributed the change to a 11 
different mechanism: the frequency of extreme Sahelian storms (mesoscale convective systems) which have 12 
tripled since 1982 in satellite observations. While this increase in storms was only weakly correlated to the 13 
recovery of Sahel rainfall, it was attributed to the increase in global land temperatures and the increased 14 
temperature gradient southward from the Sahara, increasing the wind shear. 15 
 16 
Recent work also suggests the prominent influence of the Mediterranean Sea on the recovery of the West 17 
African monsoon and Sahel rains, such as Park et al. (2016) who analysed observational and multi-model 18 
datasets and conducted SST-sensitivity experiments with two AGCMs. Stronger evaporation and moist air 19 
advection from the Mediterranean southward into the Sahel give enhanced low-level moisture convergence 20 
and increased rainfall. However, the AGCM nature of the study could not (by design) identify whether the 21 
Mediterranean Sea SST warming is caused by external forcing or if internal factors have also contributed. 22 
 23 
Advancing on this, Dong and Sutton (2015) used the HadGEM3-A AGCM to investigate the role of SST, 24 
GHG and aerosol in climate changes over 1964–2011. They suggested that the GHG direct radiative 25 
influence is the main cause of Sahel rainfall recovery, with an additional role for changes in anthropogenic 26 
aerosol. They also found that recent changes in SSTs, although substantial, did not seem to have a significant 27 
impact on the recovery, which is expected to be sustained or amplified in the near-term future. CMIP6 28 
attribution analysis results for a limited range of historical simulations with all and single forcings are 29 
represented in Figure 10.12d. 30 
 31 
Giannini and Kaplan (2018) determined that since the CMIP5 multi-model mean over the historical period 32 
largely follows observations of the decline and recovery in Sahel rainfall (defined by the authors as the full 33 
width of tropical northern Africa, 10°N–20N, 20W–40E, as in Figure 10.12), then there must be an 34 
externally forced driver. Similarly, Knutson and Zeng (2018) were able to demonstrate a coherent Sahel 35 
drying signal in the CMIP5 multi-model mean over the extended 1901–2010 period, although the observed 36 
drying trend was of larger magnitude. However, Vellinga et al. (2016) caution that the full magnitude of 37 
decadal variability is not captured in most CMIP5 models, arguing that the models are not capable of 38 
reproducing heavy rainfall events associated with a teleconnection to the AMV and therefore internal 39 
variability still plays a role. Giannini and Kaplan (2019) attempted to unify the above driving mechanisms 40 
based on a singular value decomposition of observed and modelled SSTs, themselves forced by a 41 
combination of changing anthropogenic aerosol and GHG emissions. Using the resulting singular vectors as 42 
predictors in a bivariate regression of Sahel rainfall, they demonstrated the mapping of the GHG-forced SST 43 
pattern onto the combined sum of tropical and North Atlantic SSTs, while the anthropogenic aerosol pattern 44 
projected onto cooling in the North Atlantic. Thus, since the 1950s, tropical warming arising from GHG and 45 
North Atlantic cooling from aerosol led to regional stabilization, suppressing Sahel rainfall. The subsequent 46 
reduction in regional aerosol emissions led to warming in the North Atlantic, and a recovery in the Sahel. 47 
Such findings are continued into the near-term future, with Scannell et al. (2019) noting that scenarios 48 
featuring more aggressive reductions in aerosol emissions cause a northward shift of rainfall across the Sahel 49 
that exceed internal variability even 10 or 20 years after the change. The closer match between observed 50 
trends and the d4PDF large ensemble, in which SSTs are matched to observations, compared to the MPI-GE 51 
in which they are not, strongly suggests that the underlying ocean surface is essential in driving variability in 52 
both the decline and recovery period (Figure 10.12e). 53 
 54 
On the basis of these elements, there is very high confidence (robust evidence and high agreement) that 55 
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patterns of 20th century surface temperature variability have caused the Sahel drought and subsequent 1 
recovery, and that Saharan warming has contributed to this recovery. There is medium confidence (robust 2 
evidence and medium agreement) that patterns of SST variability are themselves driven by anthropogenic 3 
emissions: warming in the tropics and subsequently in the North Atlantic by GHG emissions; the cooling and 4 
subsequent warming of the North Atlantic by emissions of anthropogenic sulphate aerosols and their 5 
eventual removal. 6 
 7 
 8 
10.4.1.2.2 The East Asia summer monsoon weakening and recovery 9 
Since the late 1970s, the East Asian summer monsoon (EASM) has exhibited a considerable weakening 10 
trend, including the southward shift of the main rain belt, known as the southern flooding and northern 11 
drought (SFND) pattern (Figure 10.13a). Figure 10.13c shows that summer (June to August; JJA) 12 
precipitation differences from observations between two areas, 110°E–125°E, 35°N–45°N and 105°E–13 
125°E, 20°N–35°N, in the region are smaller than -30 mm month-1 over the period 1961‒2005. The major 14 
features of the weakened EASM are as follows: weakening of the southerly flow, a cooling trend of 15 
tropospheric temperature in East Asia, westward extension of the western North Pacific subtropical high, 16 
zonal expansion of the South Asia high, and a weakening of the land-sea thermal contrast across the East 17 
Asian continent and adjacent marginal seas (Hsu et al., 2014). Changes in the EASM have been significantly 18 
affected by a range of factors including land and oceanic thermal conditions (Zhou et al., 2009a; Zhang, 19 
2015a), and the associated atmospheric teleconnections (Wang et al., 2017b). Recently a few studies have 20 
suggested a recovery in the strength of the EASM circulation since the 2000s (Kwon et al., 2007; Zhou et al., 21 
2017b; Zhu et al., 2018). 22 
 23 
 24 
[START FIGURE 10.13 HERE] 25 
 26 
Figure 10.13:(a) Mean boreal summer (from June to August) precipitation spatial linear trend (mm month-1 (44 years)-27 

1) over the East Asia Summer Monsoon (EASM) region from 1961 to 2005. Trends are estimated using 28 
ordinary least squares. Top row: Observed trends from GPCC version 2018 (Schneider et al., 2017), CRU 29 
TS version 4.02 (Harris et al., 2014) and the Asian Precipitation-Highly Resolved Observational Data 30 
Integration Towards Evaluation of Water Resources (APHRODITE V1101) (Yatagai et al., 2012). 31 
Middle and bottom rows: Simulated trends corresponding to the East Asia-South (105°E–125°E, 20°N–32 
35°N) wettest (left) and mean (middle) and East Asia-North (110°E–125°E, 35°N–45°N) wettest (right) 33 
over the EASM region using the 100 ensemble simulations of the MPI-GE (Maher et al., 2019) (middle 34 
row) and from the 100 members of the d4PDF-GE (Mizuta et al., 2017) (bottom row). (b) Precipitation 35 
difference (mm month-1, baseline 1961–2005) between East Asia-North and East Asia-South for GPCC 36 
(grey bar charts). The lines show low-pass filtered time series of this difference for GPCC (in black) and 37 
for the East Asia-South wettest (in green) and East Asia-North wettest (in brown) MPI-GE members. The 38 
filter is the same as the one used in Figure 10.11. (c) Distribution of trends of the summer precipitation 39 
difference between the two regions in panel (b) for MPI-GE (violet histogram), d4PDF-GE (pink 40 
histogram), observations (back crosses), historical simulations from a set of 26 CMIP6 models (red 41 
circles) and ensemble mean trends. 42 

 43 
[END FIGURE 10.13 HERE] 44 
 45 
 46 
Among various contributing factors, inter-decadal changes of SSTs in different ocean basins play an 47 
important role in weakening tendency of the EASM since the late 1970s. Several studies have shown that the 48 
EASM weakening is accompanied by inter-decadal changes of Pacific SST that show warming in the 49 
tropical central and eastern Pacific but cooling in the central North Pacific, which is similar to the positive 50 
phase of the PDV (Ding et al., 2009; Li et al., 2010; Wu et al., 2016c; Zhou et al., 2017b). Li et al. (2010) 51 
showed that AGCMs forced with SSTs representing the positive phase of PDV can reasonably reproduce the 52 
observed EASM weakening. The proposed mechanisms are the reduced large-scale land-sea thermal contrast 53 
(Li et al., 2010) and the Pacific-Japan/East-Asian-Pacific-like atmospheric teleconnection pattern, which 54 
develops locally in response to the PDV-associated warm SST anomalies (Qian and Zhou, 2014). The impact 55 
of the PDV on the inter-decadal EASM changes is also noted by the recent recovery of EASM circulation in 56 
association with the phase transition of PDV from positive to negative (Zhou et al., 2017b). Zhu et al. (2011) 57 
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attributed decreased rainfall in southern China and increased rainfall in northern China during 2000–2008 in 1 
comparison to 1979–1999 to the shift of PDV to the negative phase based on AGCM experiments. Several 2 
studies have pointed out that the thermal forcing over the Tibetan Plateau during the preceding winter and 3 
spring associated with snow cover and sensible heating also plays a considerable role in regulating the 4 
EASM (Ding et al., 2009; Duan et al., 2013; Si and Ding, 2013) In addition to the PDV influence, the 5 
warming in the tropical Indian Ocean also has been found to be influential on the weakening of EASM 6 
(Yang and Lau, 2004; Ding et al., 2009). Zhou et al. (2009b) conducted the climate model experiment forced 7 
by Indian Ocean warming to show the westward extension of the western North Pacific subtropical high, 8 
which is responsible for SFND pattern. However, Fu and Li (2013) revealed that SSTs in the tropical Pacific 9 
Ocean exert a more significant influence on the EASM compared to those in the Indian Ocean. Several 10 
studies have also pointed out the influence of the AMV on the EASM through the circumglobal 11 
teleconnection pattern propagating from the North Atlantic through the westerly jet (Zuo et al., 2013; Wu et 12 
al., 2016a, 2016b). This North Atlantic influence has contributed to the strong summertime warming in 13 
Northeast Asia occurring in the mid-1990s (Monerie et al., 2018) and the increase of precipitation over the 14 
Huaihe-Huanghe valley since the late 1990s (Li et al., 2017c). Yang et al. (2017a) showed with idealised 15 
AGCM experiments that the PDV plays a dominant role in driving the SFND pattern whereas the AMV 16 
plays a secondary role enhancing the SFND pattern when PDV and AMV are in opposite phase. 17 
 18 
Anthropogenic factors such as GHGs and aerosols may also have an influence on the EASM (Song et al., 19 
2014; Zhou et al., 2017b; Tian et al., 2018). Wang et al. (2013) explained the effect of GHGs on the EASM 20 
via two pathways using a multi-model ensemble of GCM simulations. On one hand, GHGs induce notable 21 
Indian Ocean warming that causes a westward shift of the western North Pacific subtropical high and a 22 
southward displacement of the upper tropospheric East Asia westerly jet, leading to increased precipitation 23 
in the Yangtze River valley. On the other hand, the surface cooling effects of anthropogenic aerosols in 24 
eastern China and evaporative cooling from stronger convection in the Yangtze River valley, lead to a 25 
reduced land-sea thermal contrast, which results in weakening of the EASM circulation and hence a drier 26 
climate in northern China. Recent papers have argued that GHG and aerosol forcing have different 27 
contributions to different parts of the SFND pattern. Changes in GHGs lead to increasing precipitation over 28 
southern China, whilst changes in anthropogenic aerosols over East Asia are the dominant factors 29 
determining drought conditions over northern China (Song et al., 2014; Tian et al., 2018). The increase in 30 
anthropogenic aerosols may result in weakening of the EASM circulation (Jiang et al., 2013; Wang et al., 31 
2015a, 2017d; Xie et al., 2016; Zhang and Li, 2016; Su et al., 2018; Liu et al., 2019). Song et al. (2014) 32 
revealed that aerosol forcing in CMIP5 simulations reasonably reproduce the observed weakening trend of 33 
low-level EASM circulation due to the surface cooling effect of aerosol reducing land-sea thermal contrast. 34 
Recent observational studies indicate that the summertime local-scale rainfall frequency experienced 35 
significant declining trend throughout the whole eastern China in recent decades, which is most likely due to 36 
the increases in the aerosol burden (Guo et al., 2017b). Although the anthropogenic forcing has led to an 37 
overall decrease in total monsoon rainfall, Burke and Stott (2017b) suggested using model simulations that 38 
the most extreme heavy rainfall events become shorter in duration and more intense. Zhao and Wu (2017) 39 
suggested land use and land cover change as another possible driver of EASM weakening, using an RCM 40 
simulation. The roughness changes associated with land use changes over China between the 1980s and 41 
2010s led to a strengthening of the SFND pattern during the monsoon withdrawal. Jiang et al. (2017) also 42 
showed that the combined effect of aerosol and urbanization weakens the EASM. In their model experiment, 43 
the aerosol cooling effect was partially offset by the urban heating, however their combined effect on the 44 
circulation was dominated by the aerosol forcing, which further weakens the EASM circulation. 45 
 46 
However, the magnitude of the EASM weakening under anthropogenic forcing alone (i.e., GHGs and 47 
aerosols) is much weaker than in the observations. Figure 10.13c has illustrated large differences in trend 48 
values between observations and ensembles. This discrepancy suggests that internal variability may play a 49 
major role in monsoon weakening with aerosol and GHG forcing playing a secondary role (Li et al., 2010; 50 
Zhou et al., 2017b). It should also be noted that the simulated changes in the EASM may largely depend on 51 
the sensitivity of the models to GHGs and aerosols and thus the role of anthropogenic factors on EASM 52 
change remains uncertain (Zhang, 2015b). Knutson and Zeng (2018) found little evidence for a large-scale 53 
anthropogenic weakening of the EASM based on the comparison of observed precipitation trends over 1901–54 
2010. This further supports the notion that internal variability has dominated over anthropogenic influence in 55 
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this region, as least in terms of trends over the past century. 1 
  2 
There is high confidence (robust evidence and medium agreement) that the anthropogenic forcing has been 3 
influencing historical EASM changes, but there is low confidence (medium evidence and low agreement) in 4 
the magnitude of the anthropogenic influence on historical changes in the EASM. There is high confidence 5 
(robust evidence and high agreement) that the transition towards a positive PDV phase has been one of the 6 
main drivers of the EASM weakening since the 1970s. 7 
 8 
10.4.1.2.3 The southern Australian rainfall decline 9 
In this case study, the drivers of the precipitation trends across southern Australia in recent decades are 10 
assessed, extending the assessment done in the AR5 (Christensen et al., 2013). A recent review summarises 11 
much of the new research (Dey et al., 2019) that reveals nuances in the processes driving the observed 12 
changes. On average, southern Australian annual rainfall totals continue to trend downward, and 13 
temperatures are rising in agreement with many land regions worldwide. 14 
 15 
Southern Australia has a moderate climate, generally cooler in the south and with average seasonal 16 
temperatures ranging up to 33°C in the north of the region in summer and 18°C in winter. Frost occurs in the 17 
cooler seasons and there is seasonal snow on the mountains. The westward facing regions of the mainland 18 
have a Mediterranean climate with wet winters and very dry summers. The annual average rainfall in the 19 
southwest exceeds 600 mm. Inland from this region, annual average rainfall drops to less than 200 mm, and 20 
this region of very low annual rainfall extends across the south.  In the southeast, the annual average rainfall 21 
is also above 600 mm and has a reasonably even seasonal cycle, aside from the westward-facing regions that 22 
have higher rainfall totals in winter. There are mountainous regions in the southeast that generally receive 23 
more precipitation (including snow) than the surrounding plains (Pepler et al., 2017). 24 
 25 
The southwest was known for its reliable rain, and rainfall is generally brought by fronts and cut-off lows 26 
(Pook et al., 2012; Hope et al., 2014). Large-scale climate drivers such as ENSO have some influence in the 27 
region, but these associations are strongly modulated by their dynamical links with the SAM (Lim and 28 
Hendon, 2015). Given southern Australia's latitudinal location on the equatorward edge of the mid-latitude 29 
storm track, the region can be very sensitive to shifts in the storm track. 30 
 31 
In the southeast, rainfall is also associated with fronts and lows, including intense east coast lows, which can 32 
bring a great deal of rainfall (Pepler et al., 2014). Thunderstorm activity is also important for rainfall in the 33 
east of the region (Dowdy and Catto, 2017). ENSO and the Indian Ocean Dipole play an important role in 34 
driving interannual rainfall variability (Risbey et al., 2009), again modulated by interactions with SAM 35 
(Hendon et al., 2014b). Rainfall and temperature are intimately linked in these locations (e.g., Hope and 36 
Watterson (2018)). The Antarctic polar vortex has also been found to influence temperatures across southern 37 
Australia (Lim et al., 2018), and accounting for this component of the climate system has clarified the 38 
linkage between ENSO and SAM. 39 
 40 
Maximum daily average temperatures have increased in both the cool (from May to October) and warm 41 
(from November to April) half-years by about 1.1°C from 1900 to 2018 in south-eastern Australia (south of 42 
33°S, east of 135°E), and slightly more in south-western Australia (the land southwest of the line joining 43 
30°S–115°E and 35°S–120°E), as measured by the Australian Climate Observations Reference Network-44 
Surface Air Temperature (Trewin, 2013). Individual month-long heat events have also been attributed to 45 
increasing levels of atmospheric GHGs (Black et al., 2015; Hope et al., 2016). 46 
 47 
Across southern Australia, there has been a downward trend in rainfall since widespread, reliable records 48 
began in 1900. In the southwest, this was seen as a downward shift in the late 1960s (Figure 10.14), with an 49 
absence of very wet winters, resulting in a decline in average annual rainfall of 11% (from 1970 to 2018 50 
compared to 1900 to 1969) (Hope et al., 2006, 2015). In the southeast, there have been significant drought 51 
periods (Gergis et al., 2012; Freund et al., 2017), but there has also been a consistent downward trend in 52 
rainfall. Rainfall has been generally low since the start of the Millennium drought in 1997, interspersed with 53 
two wet spring/summer periods (2010–2011 and 2016–2017) associated with strong La Niña events. The 54 
influence of anthropogenic forcing on the rainfall changes in the southeast is complex because of the varying 55 
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influences on the relevant large-scale drivers, and climate models can give mixed results (Chiew et al., 2011; 1 
Cai et al., 2014). The trends in different seasons provide insight into the drivers, as influences from the 2 
higher latitudes are important in winter while tropical drivers and their interactions are more important in the 3 
warm season. For instance, the rainfall response to the positive phase of SAM varies strongly by season in 4 
this region (Hendon et al., 2007; Hope et al., 2017). The difference in response between the warm and cool 5 
seasons is amplified in trends in the mountainous regions of the southeast. Grose et al. (2019) found a 6 
seasonally enhanced rainfall decrease on the windward slopes in the cool season and a rainfall increase over 7 
peaks in summer due to an increase in convective rainfall (also found by Giorgi et al. (2016) in the European 8 
Alps). The rainfall changes in the southeast align with those in the southwest on a range of timescales (Hope 9 
et al., 2009), suggesting the shifts to a more positive SAM are also important for rainfall trends in the 10 
southeast. Since 1970, the downward trend in autumn and winter rainfall has continued in both the southwest 11 
and southeast (Figure 10.14). 12 
 13 
 14 
[START FIGURE 10.14 HERE] 15 
 16 
Figure 10.14:(a) Mean austral autumn and winter (March to August) precipitation spatial linear trend (% (55 year)-1) 17 

over Australia from 1960 to 2014. Trends are estimated using ordinary least squares. Top row: Observed 18 
trends from the GPCC version 2018 (Schneider et al., 2017) and CRU TS version 4.00 (Harris et al., 19 
2014). Middle row: Driest, mean and wettest trends (relative to the region enclosed in the black 20 
quadrilateral, left panel of bottom row) from the 100 members of the MPI-GE (Maher et al., 2019). 21 
Bottom row: Driest, mean and wettest trends (relative to the above region from the 40 members of the 22 
National Center for Atmospheric Research grand ensemble (NCAR-GE) (Kay et al., 2015). (b) Time 23 
series of austral autumn and winter precipitation anomalies (%, baseline 1971–2000) over the south-24 
western Australia region delimited by the black quadrilateral for GPCC (grey bar charts). Black, brown 25 
and green lines show low-pass filtered time series for GPCC, driest and wettest members of NCAR-GE, 26 
respectively. The filter is the same as the one used in Figure 10.11. (c) Distribution of south-western 27 
Australia region-averaged austral autumn and winter precipitation 1960–2014 trends (% (55 year)-1) for 28 
MPI-GE (violet histogram), NCAR-GE (pink histogram), observations (GPCC and CRUTS, dark grey 29 
open-filled circles) and historical simulations from a set of 22 CMIP6 models (yellow open-filled circles). 30 
Coloured triangles refer to ensemble mean trends of their respective ensemble. Brown and green open-31 
filled circles refer to the driest and wettest NCAR-GE ensemble members. 32 

 33 
[END FIGURE 10.14 HERE] 34 
 35 
 36 
GCM simulations and projections agree that the anthropogenic forcing will drive the region to drier 37 
conditions during the cool season (Christensen et al., 2013), generally believed to be associated with a 38 
contraction of the storm track around Antarctica and the SAM shifting to a more positive phase (Cai et al., 39 
2014). Related to the rainfall decline, and supporting the hypothesis of a shift to positive SAM, there has 40 
been a significant increase in pressure across southern Australia (Hope et al., 2015), with reduced 41 
baroclinicity (Frederiksen et al., 2017) and an increase in the number of high pressure systems (Pepler et al., 42 
2019). These factors combine to suggest that the rainfall decline is, at least partially, an anthropogenically-43 
forced response. Based on all and single-forcing simulation ensembles with a high-resolution model, 44 
(Delworth and Zeng, 2014) found that the observed long-term regional austral autumn and winter rainfall 45 
decline over southern and particularly southwest Australia is partially reproduced in response to 46 
anthropogenic changes in levels of GHGs and ozone in the atmosphere, whereas anthropogenic aerosols do 47 
not contribute to the simulated precipitation decline. However, the numbers of ensemble members for the all 48 
and single forcing simulations are only five and three, respectively, making a robust and quantitative 49 
attribution to specific drivers difficult (not to mention the additivity issue, Section 10.3.2.3). The 50 
precipitation pattern seen in the model simulated changes for the 1981–2012 period amplifies and expands in 51 
the future projections under the RCP8.5 GHG scenario to reach a 40% decline, which strengthens the 52 
conclusion that anthropogenic forcing has contributed to the recent precipitation decline in southwest 53 
Australia. Based on an atmospheric circulation storyline approach applied to CMIP5 models, Mindlin et al. 54 
(submitted) have suggested that tropical upper tropospheric warming is the main driver of southern Australia 55 
future drying. Application of the univariate detection method based on CMIP5 models confirms attributable 56 
anthropogenic drying in the far southwest Australia over the 1901–2010 and 1951–2010 periods (Knutson 57 
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and Zeng, 2018). It also suggests detectable wetting annual mean trends in northern Australia over the 1951–1 
2010 period. A robust estimation of the externally-forced contribution to the southwest Australia 2 
precipitation decline remains difficult due to observational and model uncertainty. Based on a single model, 3 
Delworth and Zeng (2014) estimate that at least 50% of the recent precipitation decline is externally forced 4 
while two recent large ensembles suggest a smaller contribution (Figure 10.14). 5 
 6 
It is noteworthy that extreme precipitation climate events can occur along with a long-term drying trend. In 7 
2016, two climate event attribution studies found minimal influence from anthropogenic forcing to the 8 
record high spring rainfall in the southeast (Hope et al., 2018). However, it was also found that the 9 
interaction between La Niña and a high-magnitude SAM was amplified by the global observed SST trends 10 
(Lim et al., 2016a) that probably have a component of anthropogenic climate change in them. It is also 11 
entirely plausible that a seasonal rainfall extreme event might be influenced by anthropogenic forcing 12 
(Guerreiro et al., 2018), even in the presence of a background trend towards less mean rainfall. 13 
 14 
There is high confidence (medium agreement and robust evidence) that anthropogenic forcing has 15 
contributed to southwest Australia autumn and winter rainfall decline since the early 1970s. There is low 16 
confidence (low agreement and medium evidence) in the magnitude of the human influence and role of 17 
specific anthropogenic drivers on the autumn and winter precipitation decline. 18 
 19 
 20 
10.4.1.2.4 The south-eastern South America summer wetting 21 
One of the few regions where a robust positive trend in precipitation has been detected since the beginning of 22 
the 20th century is south-eastern South America (Gonzalez et al., 2013; Vera and Díaz, 2015). This region is 23 
the most densely populated and agriculturally productive area of South America and has several large cities. 24 
The positive rainfall trend has, together with socio-economic and technological changes, enabled expansion 25 
of agriculture into semi-arid areas and has resulted in deforestation and increased crop yields in Argentina 26 
(Zak et al., 2008; Barros et al., 2015). On the other hand, large parts of the agricultural regions in the 27 
Argentinean Pampas are naturally flood-prone due to the flat topography and poor drainage (Kuppel et al., 28 
2015), which has possibly been aggravated by agricultural expansion leading to decreased transpiration and 29 
rising water tables (Nosetto et al., 2015; García et al., 2018). The main rivers of the la Plata Basin in central-30 
northern south-eastern South America have increased their mean flows and extreme discharges since the 31 
1970s (Barros et al., 2004, 2015). While in the upper basin this is mainly due to heavy deforestation, in the 32 
southern basin it is mainly due to the increase of precipitation (Saurral et al., 2008; Barros et al., 2015). 33 
Urban and agricultural expansion together with increased extreme precipitation has led to higher risks for 34 
human systems and ecosystems associated with floods from the early 1980s (Barros et al., 2015). 35 
 36 
 37 
[START FIGURE 10.15 HERE] 38 
 39 
Figure 10.15:(a) Mechanisms that have been suggested to contribute to south-eastern South America summer wetting 40 

since the beginning of the 20th century. (b) Mean austral summer (December to February) precipitation 41 
spatial linear 1951–2014 trends (mm per season and decade) from GPCC version 2018 (Schneider et al., 42 
2017) and CRU TS version 4.02 (Harris et al., 2014). Trends are estimated using ordinary least squares. 43 
(c) Time series of austral summer precipitation anomalies (%, baseline 1995–2014) over the south-eastern 44 
South American region (black in (b))for GPCC (bar charts). Black, brown and green lines show low-pass 45 
filtered time series for GPCC, driest and wettest members of GFDL-CM3, respectively. The filter is the 46 
same as the one used in Figure 10.11. (d) Distribution of precipitation 1951–2014 trends over south-47 
eastern South America from 12 grand ensembles (adapted from Díaz et al. (submitted)). The six grand 48 
ensembles to the left reproduce reasonably well the observed spatial patterns of mean precipitation and 49 
interannual variability (better performing), while the six grand ensembles to the right have a considerably 50 
worse performance (poor performing) (Díaz et al., submitted). The grey horizontal lines show the mean 51 
trend of each of these two subsets of grand ensembles. Dashed grey lines show GPCC and CRU TS 52 
trends and the red circles to the right show trends of 26 individual CMIP6 models. 53 

 54 
[END FIGURE 10.15 HERE] 55 
 56 
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The dominant contribution to the positive annual mean precipitation trend is an increase in summer 1 
(December to February; DJF) precipitation (Rusticucci and Penalba, 2000; Gonzalez et al., 2013, 2014; Vera 2 
and Díaz, 2015; de Barros Soares et al., 2017; Díaz and Vera, 2017; Saurral et al., 2017). The trend for the 3 
period 1951–2014 using GPCC and CRUTS is illustrated in the maps of Figure 10.15b, and for the black 4 
rectangle it amounts to 7.3‒8.5 mm per season and decade (see grey dashed horizontal lines in Figure 5 
10.15d) while the mean seasonal precipitation for the same period is 312 (CRUTS) ‒320 (GPCC) mm. The 6 
trend is also detectable in daily and monthly extremes (Re and Barros, 2009; Marengo et al., 2010; Penalba 7 
and Robledo, 2010; Doyle et al., 2012; Donat et al., 2013; Lorenz et al., 2016). 8 
 9 
The influence of SST anomalies on south-eastern South America precipitation have been studied extensively 10 
on interannual to multi-decadal time scales (Paegle and Mo, 2002). The positive phase of ENSO is related to 11 
stronger mean and extreme rainfall over south-eastern South America (Ropelewski and Halpert, 1987; 12 
Grimm and Tedeschi, 2009; Robledo et al., 2016). For multi-decadal variability, of interest for long term 13 
trends, it has been suggested that the ENSO influence is affected by the PDV (Kayano and Andreoli, 2007; 14 
Fernandes and Rodrigues, 2018) and the AMV (Kayano and Capistrano, 2014). PDV and AMV also 15 
influence the south-eastern South American climate independently of ENSO (Barreiro et al., 2014; Grimm 16 
and Saboia, 2015; Robledo et al., 2019). While Pacific SSTs dominate the total influence of oceanic 17 
variability in the region, the Atlantic variability seems to dominate on multi-decadal time scales and has been 18 
proposed as a driver for the long term positive trend (Seager et al., 2010; Barreiro et al., 2014). Based on an 19 
ensemble of season-length model experiments designed to test how south-eastern South America 20 
precipitation is modulated by tropical Atlantic SSTs, Seager et al. (2010) showed that cold anomalies in the 21 
tropical Atlantic favoured wetter conditions by inducing an upper-tropospheric flow towards the equator, 22 
which, via advection of vorticity, led to ascending motion over south-eastern South America (Figure 10.15a). 23 
They concluded that a large part of the wetting trend from the mid-20th century was forced by cooling of the 24 
tropical Atlantic resulting from the AMV cold phase (Seager et al., 2010). Monerie et al. (2019) supported 25 
this argument showing the negative relationship between south-eastern South America precipitation and the 26 
AMV index (Huang et al., 2015) in an AGCM coupled to an ocean mixed layer model with nudged SSTs. 27 
The idealized AMV warming experiments in Monerie et al. (2019) also supported the results by Seager et al. 28 
(2010) in that the mechanism for AMV control on precipitation is associated with the tropical Atlantic part 29 
of the AMV pattern. 30 
 31 
However, in contrast to these findings, other studies have attributed the positive precipitation trend to 32 
anthropogenic GHG emissions. Junquas et al. (2013) attributed the rainfall increase in the region to a non-33 
zonally uniform pattern of SST warming induced by anthropogenic GHG emissions using a stretched-grid 34 
AGCM. This warming pattern includes a warming pattern over the Indian and Pacific Oceans that excites 35 
wave responses over South America (Figure 10.15a). In fact, zonally uniform SST patterns of warming alone 36 
would lead to opposite rainfall signals to those observed. This suggests that the cause of the increased 37 
precipitation trend is anthropogenic in origin, with the mechanism mediated by uneven warming patterns in 38 
the tropical oceans. Using an ensemble of 59 CMIP5 historical simulations from 14 models, Vera and Díaz 39 
(2015) concluded that only the simulations including anthropogenic forcing showed a positive precipitation 40 
trend, although weaker than the observed one. The main features of the present summer mean rainfall and 41 
variability of South America are still not well represented in all CMIP5 and CMIP6 models (Gulizia and 42 
Camilloni, 2015; Díaz and Vera, 2017; Díaz et al., submitted), motivating the construction of ensembles that 43 
exclude the worst performing models (Knutti et al., 2010; Section 10.3.4.4). Díaz and Vera (2017) used a 44 
ensemble based on 33 CMIP5 models, each one contributing to the ensemble with 1-20 simulations. Sub-45 
ensembles of historical simulations with realistic representation of the rainfall dipole with anomalies of 46 
opposite sign over south-eastern South America and eastern Brazil were selected. In these simulations, the 47 
trend since the 1950s could be related to changes in rainfall characteristics, favouring the wet dipole phase 48 
over south-eastern South America, only when simulations included anthropogenic drivers. Zhang et al. 49 
(2016) attributed the wetting to anthropogenic GHG emissions by conducting a suite of experiments with 50 
two high-resolution GCMs. The authors explain the attribution with a mechanism in which the radiative 51 
forcing drives an expansion of the Hadley cell, so that its descending branch moves poleward from the 52 
region, generating anomalous ascending motion and precipitation (Figure 10.15a). A similar result was 53 
obtained by Saurral et al. (2019) using a GCM of medium complexity to examine the sensitivity to GHG and 54 
ozone concentrations. They found that increased GHG increased precipitation in the region through an 55 
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intensification of the ascending branch of the Hadley cell (Figure 10.15a). 1 
 2 
Mindlin et al. (submitted) developed future atmospheric circulation storylines for Southern Hemisphere mid-3 
latitudes with the CMIP5 models and related these to changes in precipitation. For south-eastern South 4 
America summer precipitation increases are related to the storyline based on a late springtime breakdown of 5 
the stratospheric polar vortex. The connecting mechanism between the late breakdown of the polar vortex 6 
and the increased summer rainfall over the region is a lagged southward shift of the jet stream (Saggioro and 7 
Shepherd, 2019) which enhances cyclonic activity over the region (Wu and Polvani, 2017). As depicted in 8 
Figure 10.15a, both stratospheric ozone depletion and increased GHG have contributed to the later 9 
breakdown of the polar vortex in recent decades (Ceppi and Shepherd, 2019; McLandress et al., 2010; Wu 10 
and Polvani, 2017). 11 
 12 
A common feature among the above discussed studies is that even if GCMs simulate positive trends, these 13 
are in general much smaller in magnitude than the observed trend (see also CMIP6 trends in red open circles 14 
in Figure 10.15d). Díaz et al. (submitted) showed that to capture the correct magnitude of the trend it is 15 
necessary to use a multi-model ensemble of large initial condition ensembles. Out of the 12 large ensembles 16 
that they examined (16‒100 members), only 7 simulated the observed trend within their range. This could 17 
partly be explained by the model biases of mean precipitation and its interannual variability. In the sub-18 
ensemble of six models that reproduce reasonably well the observed spatial patterns of mean precipitation 19 
and interannual variability, the model uncertainty is lower, the trend is closer to observations but the 20 
dispersion due to internal variability is higher than for the 6 models with very poor performance. 21 
 22 
There is high confidence that south-eastern South America summer precipitation has increased during the 23 
20th century and the beginning of the 21st century. This is based on both in situ and gridded observations and 24 
is also supported by an understanding of the mechanisms associated with the influence of SST variability and 25 
by modelling studies driven by observed concentrations of GHG and ozone. Since AR5, science has 26 
advanced in the identification of the drivers of the precipitation increase in south-eastern South America, 27 
including GHG, ozone depletion, Pacific and Atlantic variability, but there is still not a consensus on how 28 
much each driver has contributed to the wetting. There is medium confidence (medium evidence and medium 29 
agreement) in the possible drivers of south-eastern South America summer precipitation increase during the 30 
20th century, but low confidence (limited evidence and low agreement) on the relative contribution of each 31 
driver to the wetting. 32 
 33 
 34 
10.4.1.2.5 The central and eastern Eurasian winter cooling 35 
A key example of mid-latitude regional climate change across the historical period is the winter central and 36 
eastern Eurasia land cooling of the late-20th century until around 2014. This recent cooling episode disrupted 37 
the warming trend that started in the early 1970s (Figure 10.16) and is in striking contrast to the concurrent 38 
Arctic amplification (the propensity for greater surface warming in the Arctic region than at other latitudes) 39 
and sea-ice decline. The occurrence of this dipolar near-surface air temperature (temperature thereafter) 40 
anomalous pattern has been termed the warm Arctic cold Eurasia (or Siberia) pattern (Inoue et al. 2012; Mori 41 
et al. 2014) and is the second empirical orthogonal function mode of mid-to-high latitude Eurasian winter 42 
temperature variability (Sorokina et al., 2016). 43 
 44 
 45 
[START FIGURE 10.16 HERE] 46 
 47 
Figure 10.16:(a) Winter (January to March) near-surface air temperature spatial linear trend (in °C (12 year)-1) over 48 

Eurasia from 2001 to 2012. Trends are estimated using ordinary least squares. Top row: Observed trends 49 
from the BEST dataset (Rohde et al., 2013), the Cowtan and Way dataset (Cowtan and Way, 2014) and 50 
the Global Historical Climatology Network version 2 and the Climate Anomaly Monitoring System 51 
(GHCN-CAMS) dataset (Fan and van den Dool, 2008). Middle row: Coldest, mean and warmest trends 52 
(relative to the region enclosed in the black quadrilateral, left panel of middle row) from the 100 members 53 
of the MPI-GE (Maher et al., 2019). Bottom row: coldest, mean and warmest trends relative to the above 54 
region from the 100 members of the d4PDF-GE (Mizuta et al., 2017). (b) Time series of BEST winter 55 
temperature anomalies (%, baseline 1971–2000) over the Eurasian region delimited by the black 56 
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quadrilateral in (a) (grey bar charts). Black, brown and green lines show low-pass filtered time series for 1 
BEST, coldest and warmest members of d4PDF-GE, respectively. The filter is the same as the one used 2 
in Figure 10.11. (c) Distribution of Eurasia region-averaged winter temperature 2001-2012 trends (in °C 3 
(12 year)-1) for MPI-GE (violet histogram), d4PDF (pink histogram), four observational datasets (BEST, 4 
GHCN-CAMS, Cowtan and Way and National Oceanic and Atmospheric Administration Merged land 5 
ocean global surface temperature analysis version 5 (Vose et al., 2012; Huang et al., 2015; Menne et al., 6 
2018), dark grey open-filled circles) and historical simulations from a set of 22 CMIP6 models (yellow 7 
open-filled circles). Coloured triangles refer to ensemble mean trends of their respective ensemble. Blue 8 
and dark-red open-filled circles refer to the coldest and warmest d4PDF-GE ensemble members. 9 

 10 
[END FIGURE 10.16 HERE] 11 
 12 
 13 
The Eurasian winter cooling has made an important contribution to the 1998–2012 hiatus in global mean 14 
surface temperature (Cohen et al., 2012b; Li et al., 2015; Deser et al., 2017a). Li et al. (2015) used five 15 
observational datasets to show that the Eurasian winter cooling trend from 1998 to 2012 dominated the 16 
global warming hiatus in terms of a latitudinal contribution. Deser et al. (2017a) showed that Eurasian 17 
cooling represented about 70% of the winter temperature hiatus in both observations and a close model 18 
analogue drawn from eastern Pacific SST partial coupling experiments (Section 10.3.2.4). The recent 19 
Eurasian winter cooling is also related to the re-amplification of the East Asian winter monsoon in the mid-20 
2000s (Wang and Chen, 2014). 21 
 22 
Eurasian cold temperature anomalies are tightly coupled to recurrent and/or persistent anticyclonic sea level 23 
pressure anomalies corresponding to the intensification of the surface Siberian High (Luo et al., 2017; Gong 24 
et al., 2018). Attribution of the Eurasian cooling is then closely related to attribution of the recent increase in 25 
Eurasian blocking (Wang and Chen, 2014) and recovery of the Siberian High (Jeong et al., 2011). In turn, as 26 
strong western Siberian sea level pressure events are precursors of weak polar vortex states, the recovery of 27 
the Siberian High is possibly associated with the recent trend of the polar vortex towards a weaker state 28 
(Kretschmer et al., 2018). Based on a simple linear regression model, Kretschmer et al. (2018) suggest that 29 
the shift in mid-winter polar vortex states can account for 60% of the recent (1990‒2015) mid-winter cooling 30 
trends over Eurasian mid-latitudes. 31 
  32 
Based on observed correlation/regression analysis and modelling sensitivity experiments, a number of 33 
studies since the AR5 have suggested that this anomalous circulation pattern is due to a remote influence of 34 
Arctic sea-ice loss, in particular, in the Barents-Kara Seas (Chen et al. 2016; Inoue et al. 2012; Kug et al. 35 
2015; Mori et al. 2014, 2019; Tang et al. 2013). A first category of proposed mechanisms invokes a weaker 36 
meridional temperature gradient leading to weakened zonal winds and reduced Atlantic heat transport, 37 
altered cyclone pathways and a wavier atmospheric flow (Francis and Vavrus, 2015). An alternative 38 
mechanism suggests an amplification of the Siberian High by a stationary Rossby wave train triggered by 39 
anomalous heat fluxes (enhanced ocean heat loss) due to sea-ice retreat. Based on simulations targeting the 40 
response to future sea-ice loss with a single AGCM with a well resolved stratosphere, Zhang et al. (2018) 41 
suggested that the stratospheric response to future sea ice loss is crucial in the development of cold 42 
conditions over Siberia, indicating the dominant role of the stratospheric pathway. In particular, the 43 
downward influence of the stratospheric circulation anomaly significantly intensifies the ridge near the Ural 44 
Mountains and the trough over East Asia. The persistently intensified ridge and trough favour more frequent 45 
cold air outbreaks and colder winters over Siberia. 46 
 47 
Mori et al. (2014) studied the repeating severe winters of mid-latitude Eurasia that have occurred despite 48 
ongoing anthropogenic warming. In a model assessment, they found no robust atmospheric response (by 49 
looking at the Arctic Oscillation) to declining sea ice. Instead, they used a 100-member ensemble of 50 
atmospheric simulations to demonstrate a doubled likelihood of extreme winters in central Eurasia given the 51 
loss of ice and due to more frequent Eurasian blocking episodes. Likewise, Kug et al. (2015) used single-52 
model GCM simulations with SST-restoring at northern latitudes to constrain sea-ice loss over the Arctic 53 
during the 1980–2013 period. They found that the model response reproduced the observed regression 54 
pattern between a Barents-Kara Seas sea-ice concentration index, as well as temperature and sea level 55 
pressure over East Eurasia. Mori et al. (2019) applied maximum covariance analysis to detrended winter 56 
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temperature from observations combined with a multi-model ensemble of atmospheric simulations in order 1 
to extract the forced response due to observed SST and sea-ice concentration changes. They then used 2 
single-model sensitivity experiments to assess the relative roles of SST and sea-ice. Their results suggested 3 
that Barents-Kara Seas ice loss can explain a substantial fraction (44%) of the 1995–2014 central Eurasia 4 
cooling and that atmospheric models systematically underestimate sea-ice forced atmospheric variability. 5 
These results might be affected by the fact that the ocean and sea-ice conditions cannot respond to the sea-ice 6 
induced atmospheric changes in AGCM experiments (Mori et al., 2019b; Screen and Blackport, 2019). 7 
In an alternative explanation, a series of observational and modelling studies have questioned whether there 8 
is adequate evidence that Arctic sea-ice loss can significantly influence atmospheric circulation, blocking, 9 
and Eurasian winter temperatures. Woollings et al. (2014) found no agreement among a set of 12 CMIP5 10 
models on a significant link at interannual time scales between Eurasian blocking and Barents-Kara Seas 11 
temperature during both historical and future periods. Based on their set of AGCM experiments, Li et al. 12 
(2015) showed that Arctic sea-ice loss did not drive the associated regional circulation changes, which can 13 
instead be related to internal atmospheric variability. Similarly, both Peings and Magnusdottir (2014) and 14 
Screen et al. (2014) failed to detect a significant winter atmospheric circulation response over Eurasia to 15 
recent sea-ice loss based on large ensembles of sea-ice forced atmospheric simulations with three different 16 
AGCMs. Sun et al. (2016a) employed multi-model ensembles of AGCM and coupled GCM simulations to 17 
show that the observed Eurasian cooling was the consequence of an extreme event of internal atmospheric 18 
decadal variability. This is also suggested by the absence of any significant forced response simulated by two 19 
initial-condition large ensembles and the rank of the observed trends among the two model distributions 20 
(Figure 10.16). McCusker et al. (2016) also considered the decreasing temperature over central Eurasia since 21 
around 1990 in the face of increased anthropogenic forcing and Arctic amplification. Their 600 years of 22 
AGCM simulations forced by different sea-ice loss patterns showed no evidence that Arctic sea-ice loss has 23 
led to the central Eurasian cooling. They also used a large ensemble of coupled historical simulations in 24 
which Eurasian cooling of the same magnitude as the observed one was found only in a single ensemble 25 
member. However, it was shown to be unrelated to Barents-Kara Seas sea-ice loss. Hence, they concluded 26 
that internal atmospheric variability is the cause of the Eurasian temperature decline, a view shared by 27 
Sorokina et al. (2016). The latter study investigated causality by looking at lead-lag relationships between 28 
detrended Barents-Kara Seas sea-ice and heat fluxes, and the warm Arctic cold Eurasia pattern on daily, 29 
monthly and seasonal time scales in the ERA-Interim reanalysis. The findings showed that the warm Arctic 30 
cold Eurasia pattern was associated with a weak reduction in Barents-Kara Seas ice and reduced Barents-31 
Kara Seas heat flux, suggesting that the warm Arctic cold Eurasia pattern might primarily be an expression 32 
of internal atmospheric variability that could largely determine the Barents-Kara Seas ice distribution. These 33 
findings are confirmed by Blackport et al. (2019) who show, based on two independent and complementary 34 
methods of inferring causality from interannual variability in both observations and climate models, that 35 
anomalous atmospheric circulation simultaneously drive cold mid-latitude winters and Arctic sea-ice loss. 36 
Finally, based on large initial-condition historical and pacemaker ensembles, Deser et al. (2017a) showed 37 
that internal variability driven by tropical Pacific SSTs and intrinsic atmospheric dynamics contributed 38 
almost equally to the dynamically-induced Eurasian cooling, largely offsetting the radiatively induced 39 
warming trend. 40 
 41 
In an explanation focusing on the role of the tropics, Trenberth et al. (2014) have suggested that many of the 42 
regional circulation patterns associated with the 1999–2012 climate hiatus can be blamed on long-term 43 
forcing from central and east Pacific SSTs. They used an AGCM forced with the negative PDV-like SST 44 
forcing similar to that observed over the same period and demonstrated the excitation of teleconnections to 45 
the Atlantic and Northern Hemisphere high latitudes. 46 
 47 
Another hypothesis suggested that Barents-Kara Seas ice reduction may also be related to a larger 48 
teleconnection pattern associated with the position of the Gulf Stream in the northwest Atlantic (Sato et al., 49 
2014). Northward shifts in the SST front associated with the Gulf Stream would generate a remote planetary 50 
wave response that could favour enhanced advection of warm air and wave energy into the Barents-Kara 51 
Seas region (Liu et al., 2014a). The induced warming and sea-ice melting would then amplify the wave train, 52 
promoting the warm Arctic cold Eurasia pattern (Sato et al., 2014; Simmonds and Govekar, 2014). 53 
 54 
Studies based on observations and reanalysis do find significant linear correlations between Barents-Kara 55 
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Seas ice and mid-to-high latitude atmospheric circulation variability including Eurasian blocking, although 1 
they do not necessarily agree on the causality direction (Kretschmer et al., 2016; McGraw and Barnes, 2020). 2 
Furthermore, even with the use of causal effect networks, causality is challenging to prove because of the 3 
complexity of the possibly nonlinear mechanisms involved, non-stationarity and basic state dependence, as 4 
well as the relatively few degrees of freedom given the shortness of the observed record (Overland, 2016; 5 
Overland et al., 2015; Walsh, 2014). For instance, blocking over Eurasia might lead to warm southerly winds 6 
and moisture intrusions over the Barents-Kara Seas region, which have been shown to play a major role in 7 
recent Barents-Kara Seas temperature and ice concentration changes due to the associated increase in 8 
downwelling longwave radiation (Woods et al., 2013; Park et al., 2015a; Woods and Caballero, 2016). 9 
Furthermore, statistical robustness of lead-lag correlation analysis based on high-frequency data is difficult 10 
to achieve due to the large persistence of Barents-Kara Seas sea-ice anomalies and, in addition, results can be 11 
sensitive to the detrending methodology (Chen et al., 2016b). 12 
 13 
Studies based on modelling experiments forced by SST and/or sea-ice concentration boundary conditions do 14 
find an atmospheric response by design when using sufficient ensemble size and/or perturbation amplitude. 15 
The differing results and the lack of agreement among all model studies based on uncoupled simulations may 16 
be due to multiple reasons in addition to model structural differences: opposing influence of regional patterns 17 
of sea-ice and SST forcing (Chen et al., 2016b) and non-additivity of the response (Sun et al., 2015), 18 
influence of season definition, non-linearity of the atmospheric response (Chen et al., 2016c), different 19 
and/or limited ensemble sizes (Screen et al., 2014). Further complicating the regional-scale attribution is the 20 
presence of tremendous internal variability in large-scale atmospheric circulation and complex three-way 21 
ocean-ice-atmosphere interactions in the Earth climate system (Cohen et al., 2020). This may lead to 22 
conditional dependence of the Barents-Kara Seas warm Arctic cold Eurasia pattern linkages on the large-23 
scale circulation regime, in addition to other remote tropical and mid-latitude influence (Overland, 2016; 24 
Wang et al., 2019). Further discussion of Arctic-mid-latitude linkages can be found in the Cross-Chapter Box 25 
10.1. 26 
 27 
An emerging picture for the Arctic influence on the Eurasian cooling is that of an episodic and regional 28 
influence that could conditionally amplify the temperature changes due to internal modes of atmospheric 29 
circulation. While there is high confidence (robust evidence and medium agreement) that a significant (at 30 
least 50%) fraction of the recent Eurasian cooling has been caused by internal atmospheric variability 31 
associated with a weakening of the polar vortex, the persistent diversity of results and disagreement among 32 
them result in low confidence (robust evidence and low agreement) in the exact role and quantitative impact 33 
of Arctic warming and sea-ice loss on the recent Eurasian cooling. 34 
 35 
10.4.1.2.6 Western Europe summer warming 36 
Rapid European summer warming has occurred since around 1990 (Figure 10.17d) (Ruckstuhl et al., 2008; 37 
Philipona et al., 2009; van Oldenborgh et al., 2009; van der Schrier et al., 2013; Bador et al., 2016) at a rate 38 
of around 2.5 times the global mean temperature increase (van Oldenborgh et al., 2009). This warming was 39 
largest in western and central Europe and in the Mediterranean. In the last two millennia of reconstructed 40 
observed temperature records for Europe, there has not been any 30-year period with summer temperatures 41 
exceeding those of the last three decades (Luterbacher et al., 2016), where record-breaking heat waves and 42 
extreme temperatures also occurred (Russo et al., 2015; Lehner et al., 2018a). 43 
 44 
 45 
[START FIGURE 10.17 HERE] 46 
 47 
Figure 10.17:(a) European historical summer (June to August) near-surface air temperature spatial linear trend (in °C 48 

(64 years)-1) from 1950 to 2014. Trends are estimated using ordinary least squares. Observed trends from 49 
E-OBS v19.0e (Cornes et al., 2018) (left) and the coldest (middle) and warmest (right) trends from the 50 
100 members of the MPI-GE (Maher et al., 2019). Trends are estimated using ordinary least-squares. (b) 51 
Time series of European area mean (15ºW‒20ºE, 35ºN‒70ºN) summer temperature anomalies (in °C, 52 
baseline 1995–2014) applying the same filter used in Figure 10.11 for different observational datasets: E-53 
OBS, BEST (Rohde et al., 2013), CRU TS v4.02 (Harris et al., 2014) and HadCRUT4 (Morice et al., 54 
2012) (black, dark blue, turquois and brown line, respectively) and model ensemble means of CMIP6, 55 
HighResMIP and the MPI-GE (red, light blue and violet line, respectively). (c) European area mean 56 
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summer 1950–2014 warming trends (in °C (64 years)-1) for ensemble means and individual members of 1 
CMIP6 (28 members, red circles), HighResMIP (7 members, blue circles) and MPI-GE (violet 2 
histogram). The observational data sets are indicated by black crosses. 3 

 4 
[END FIGURE 10.17 HERE] 5 
 6 
Several mechanisms have been proposed for this warming, but their relative importance and possible 7 
interplays are not yet fully understood. Enhanced warming over land compared to the sea is expected due to 8 
the lapse-rate feedback associated with tropospheric moisture contrasts (Kröner et al., 2017; Brogli et al., 9 
2019a), and the globally enhanced land-sea contrast in near surface temperature is a robust result in CMIP5 10 
and CMIP6 models. In addition, the decrease of anthropogenic aerosols over Europe resulting from air 11 
pollution policies (Turnock et al., 2016) has been pointed out as an important contributor to the enhanced 12 
western European summer warming (Ruckstuhl et al., 2008; Philipona et al., 2009; De Laat and Crok, 2013; 13 
Nabat et al., 2014; Besselaar et al., 2015; Dong et al., 2017). Also, Turnock et al. (2015) and Zubler et al. 14 
(2011) found a brightening and increase of solar radiation over Europe. Pfeifroth et al. (2018) argues that this 15 
brightening is mainly due to cloud changes caused by the indirect aerosol effect with a minor role for the 16 
direct aerosol effect, in contrast to Nabat et al. (2014) and Boers et al. (2017) who attribute it to the direct 17 
aerosol effect. 18 
 19 
Also, circulation changes might have contributed to the enhanced warming. Sutton and Dong (2012) argued 20 
that AMV induced a shift around the 1990s towards warmer southern European (and wetter northern 21 
European) summers. Ghosh et al. (2017) linked the central and Eastern Europe warming to the AMV that 22 
showed a shift from its negative to its positive phase coinciding with the European warming trend. This 23 
mechanism is associated with a linear baroclinic atmospheric response to the AMV-related surface heat flux. 24 
Also O’Reilly et al. (2017) related warm European summer decades to the AMV, but the connection was 25 
shown to be mainly thermodynamic, whereas Peña-Ortiz et al. (2015) found a link between the length of 26 
European summers and AMV multi-decadal variability. 27 
 28 
Soil moisture feedback has amplified the increase in summer temperatures in particular during drought spells 29 
(Seneviratne et al., 2010; Jaeger and Seneviratne, 2011; Miralles et al., 2014; Brulebois et al., 2015; Whan et 30 
al., 2015), which are related to unusual circulation regimes, in particular blocking patterns (Pfahl and Wernli, 31 
2012; Pfahl, 2014; Horton et al., 2015; Brunner et al., 2017). However, according to Barnes et al. (2014), 32 
there is no robust evidence that the occurrence of blocking has changed during recent decades. Cahynová 33 
and Huth (2014) and Vautard and Yiou (2009) argue that European summer warming is not associated with 34 
changes in the circulation and that local surface and radiative feedbacks are the main drivers. 35 
 36 
Several studies argue that both GCMs and RCMs underestimate the observed trend (Lorenz and Jacob, 2010; 37 
Ceppi et al., 2012b; Dosio, 2016; Boé et al., submitted), indicating that essential processes are missing or 38 
that the natural variability is not correctly sampled (Dell’Aquila et al., 2018). The model ability to represent 39 
circulation multi-decadal trends is assessed in Boé et al. (submitted). They showed that differences in model 40 
ensemble mean and observed temperature trends are explained, to a large extent, by a spatial anti-correlation 41 
of sea level pressure trends over the North Atlantic and European domains between almost all models and 42 
observations. With respect to missing essential processes, in particular the role of aerosols is discussed 43 
(Allen et al., 2013; Bartók, 2017), and the inability to simulate the observed trend is attributed to an 44 
underestimation of the anthropogenic aerosol effect in the CMIP protocols (Cherian et al., 2014). Nabat et al. 45 
(2014) argued that including realistic aerosol variations enables climate models to correctly reproduce the 46 
summer warming trend. However, other studies showed models to be sensitive also to local effects, such as 47 
land surface processes, convection, microphysics, and snow albedo effect (Ceppi et al., 2012b; Vautard et al., 48 
2013; Davin et al., 2016). The role of aerosols in recent European warming is also discussed in Section 49 
Atlas.5.6.2. Finally, it is noteworthy that temperature differences between the Medieval Warm Period, the 50 
recent period, and the Little Ice Age are also larger in the reconstructions than in the simulations 51 
(Luterbacher et al., 2016). 52 
 53 
Figure 10.17 reveals that the observed European warming, compared with the trend distribution from an 54 
initial-condition large ensemble over the 1950‒2014 period, does not reveal a clear disagreement, although 55 
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over limited periods there are large deviations due to natural variability (Figure 10.17d).  Large ensembles 1 
are required for a reliable sampling of the natural variability and robust attribution of past trends (Deser et 2 
al., 2016). Figure 10.17 panels a, b, c and e reveal that the observed western European summer warming falls 3 
within the distribution simulated by the MPI large ensemble (Maher et al., 2019), indicating that natural 4 
variability strongly has affected the historical warming and that large ensembles are necessary for a correct 5 
estimation of the forced signal versus natural variability (Lehner et al., submitted). 6 
 7 
There is high confidence (strong evidence, high agreement) that the lapse-rate feedback has contributed to 8 
the western European summer warming. There is medium confidence (medium evidence, strong agreement) 9 
that the AMV and atmospheric circulation changes have contributed to the summer warming. There is 10 
medium confidence (medium evidence, medium agreement) that the decrease of anthropogenic aerosols over 11 
Europe has been a dominant factor for the enhanced European summer warming. There is high confidence 12 
(strong evidence, high agreement) that local feedbacks, such as the soil-moisture feedback, have contributed 13 
to the increase in extreme temperature variability and consequently, frequency and intensity of heat-waves 14 
and medium confidence (medium evidence, strong agreement) that it has contributed to the increase of 15 
seasonal mean summer temperature. There is medium confidence (medium evidence, low agreement) in the 16 
ability of GCMs and RCMs to correctly simulate the observed warming trend. A robust assessment is 17 
hampered by the small ensemble size of most experiments. 18 
 19 
 20 
10.4.1.2.7  The south-western North America drought 21 
Persistent hydroclimatic drought in south-western North America remains a much-studied event. Drought is 22 
a regular feature of the south-western North America’s climate regime, as can be seen in both the modern 23 
record, and through paleoclimate reconstructions (Cook et al., 2010; Woodhouse et al., 2010), as well as in 24 
future climate model projections (Cook et al., 2015a). Since the early 1980s, which were relatively wet in 25 
terms of precipitation and streamflow, the region has experienced major multiyear droughts such as the turn-26 
of-the-century drought that lasted from 1999 to 2005, and the most recent 2012–2014 drought that is perhaps 27 
unprecedented within the past 10,000 years (Griffin and Anchukaitis, 2014; Robeson, 2015). Shorter dry 28 
spells also happened between these multiyear droughts making the 1980 to present a period with an 29 
exceptionally steep trend from wet to dry (Figure 10.18), leading to strong declines in Rio Grande and 30 
Colorado river flows (Lehner et al., 2017b; Udall and Overpeck, 2017). While robust attribution of this trend 31 
is complicated by the large natural variability in this region, the 20th century warming has been suggested to 32 
increase the chances for hydrological drought periods through lowering runoff efficiency (Woodhouse et al., 33 
2016; Lehner et al., 2017b; Woodhouse and Pederson, 2018). There is some evidence suggesting that the 34 
Last Glacial Maximum, a period of low atmospheric CO2, ~21 ka, is a reverse analogue of current, relatively 35 
high CO2 levels (Morrill et al., 2018; Lowry and Morrill, 2019). Pluvial conditions at that time and a 36 
reduction in precipitation from the Last Glacial Maximum to the pre-industrial period are consistent with 37 
drying trends for the region in models with GHGs exceeding pre-industrial levels. However, the conclusion 38 
of the Last Glacial Maximum drying versus wetting seems to strongly depend on the physical property of 39 
interest, hydrologic or vegetation indicators (Scheff et al., 2017). Droughts are characterized by deficits in 40 
total soil moisture content that can be caused by a combination of decreasing precipitation and warming 41 
temperature, which promotes greater evapotranspiration. Regional-scale attribution of the south-western 42 
North America drought prevalence since 1980 then mostly focuses on the attribution of change in these two 43 
variables. 44 
 45 
The observed south-western North America drying fits the narrative of what might happen in response to 46 
increasing GHGs concentrations due to the poleward expansion of the subtropics, that is conducive to drying 47 
trends over subtropical to mid-latitude regions (Hu et al., 2013b; Birner et al., 2014; Lucas et al., 2014). 48 
However, several studies based on modern reanalyses and CMIP5 models have recently shown that the 49 
current contribution of GHGs to Northern Hemisphere tropical expansion is much smaller than in the 50 
Southern Hemisphere and will remain difficult to detect due to large internal variability, even by the end of 51 
the 21st century (Garfinkel et al., 2015; Allen and Kovilakam, 2017; Grise et al., 2018, 2019). In addition, 52 
the widening of the Northern Hemisphere tropical belt exhibits strong seasonality and zonal asymmetry, 53 
particularly in autumn and the North Atlantic (Amaya et al., 2018; Grise et al., 2018). Thereby, it seems that 54 
the recent tropical expansion results from the interplay of internal and forced modes of tropical width 55 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-87 Total pages: 236 
 

variations and that the forced response has not robustly emerged from internal variability (Section 3.3.3). 1 
 2 
A second possible causal factor is the role for ocean-forced or internal atmospheric circulation change. 3 
Analysis of observed and CMIP5-simulated precipitation indicates that the drought prevalence since 1980 is 4 
linked to natural, internal variability in the climate system (Knutson and Zeng, 2018). Based on observations 5 
and ensembles of SST-driven atmospheric simulations, Seager and Hoerling (2014) suggested that robust 6 
tropical Pacific and tropical North Atlantic forcing drove an important fraction of annual mean precipitation 7 
and soil moisture changes and that early 21st century multiyear droughts could be attributed to natural 8 
decadal swings in tropical Pacific and North Atlantic SSTs. A cold state of the tropical Pacific would lead by 9 
well-established atmospheric teleconnections to anomalous high pressure across the North Pacific and 10 
southern North America, favouring a weaker jet stream and a diversion of the Pacific storm track away from 11 
the southwest (Seager and Ting, 2017). The multiyear drought of 2012–2016 has been linked to the 12 
multiyear persistence of anomalously high atmospheric pressure over the north-eastern Pacific Ocean, which 13 
deflected the Pacific storm track northward and suppressed regional precipitation during California's rainy 14 
season (Swain et al., 2017). Going into more detail, Prein et al. (2016) used an assessment of changing 15 
occurrence of weather regimes to judge that changes in the frequency of certain regimes during 1979–2014 16 
have led to a decline in precipitation by about 25%, chiefly related to the prevalence of anticyclonic 17 
circulation patterns in the northeast Pacific. Finally, the moderate model performance in representing Pacific 18 
SST decadal variability and its remote influence (Section 3.7.6) as well as its change under warming may 19 
affect attribution results of observed and future precipitation changes (Seager et al., 2019). 20 
  21 
It has also been suggested that this ocean-controlled influence is limited and internal atmospheric variability 22 
has to be invoked to fully explain the observed history of drought on decadal time scales (Seager and 23 
Hoerling, 2014; Seager and Ting, 2017). Lasting from roughly 1980 to the present, the regional climate 24 
signals show an interesting mix between forced and internal variability. Lehner et al. (2018b) used a 25 
dynamical adjustment method and large ensembles of coupled and SST-forced atmospheric experiments to 26 
suggest that the observed south-western North America rainfall decline mainly results from the effects of 27 
atmospheric internal variability, which is in part driven by a PDV-related phase shift in Pacific SST around 28 
2000 (Figure 10.18). Based upon two very large ensembles (one using a GCM and another one an AGCM 29 
constrained by observed SSTs) and a CMIP6 multi-model suite constrained by observed external forcing, 30 
Figure 10.18 shows, in agreement with Lehner et al. (2018b), that observed SSTs with their associated 31 
atmospheric response are the main drivers of the south-western North America precipitation decrease during 32 
the 1983‒2014 period. It also suggests that the contribution of natural and anthropogenic forcings to the 33 
precipitation decline is extremely small. 34 
 35 
 36 
[START FIGURE 10.18 HERE] 37 
 38 
Figure 10.18:(a) Water year (October to September) precipitation spatial linear trend (in percent (32 year)-1) over North 39 

America from 1983 to 2014. Trends are estimated using ordinary least squares. Top row: Observed trends 40 
from GPCC version 2018 (Schneider et al., 2017), CRU TS version 4.00 (Harris et al., 2014) and the 41 
Global Precipitation Climatology Project (GPCP) (Huffman et al., 2009) version 2.3. Middle row: Driest, 42 
mean and wettest trends (relative to the region enclosed in the black quadrilateral, middle row) from the 43 
100 members of the MPI-GE (Maher et al., 2019). Bottom row: Driest, mean and wettest trends relative 44 
to the above region from the 100 members of the d4PDF-GE (Mizuta et al., 2017). (b) Time series of 45 
water year precipitation anomalies (%, baseline 1971–2000) over the above south-western North America 46 
region for GPCC (grey bar charts). Black, brown and green lines show low-pass filtered time series for 47 
GPCC, driest and wettest members of d4PDF-GE, respectively. The filter is the same as the one used in 48 
Figure 10.11. (c) Distribution of south-western region-averaged water-year precipitation 1983‒2014 49 
trends (in percent (32 year)-1) for MPI-GE (violet histogram), d4PDF (pink histogram), observations 50 
(GPCC, CRUTS and GPCP, dark grey open-filled circles) and historical simulations from a set of 22 51 
CMIP6 models (yellow open-filled circles). Coloured triangles refer to ensemble mean trends of their 52 
respective ensemble. Brown and green open-filled circles refer to the driest and wettest d4PDF-GE 53 
ensemble members. 54 

 55 
[END FIGURE 10.18 HERE] 56 
 57 
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Once aspects of the internal variability are removed by dynamical adjustment, the observed precipitation-1 
change signal and simulated anthropogenically-forced components look much more similar. Unlike the 2 
precipitation deficit, the south-western North America accompanying warming is driven primarily by 3 
anthropogenic forcing from GHGs rather than atmospheric circulation variability and may help to enhance 4 
the drought through increased evapotranspiration (Williams et al., 2015; Lehner et al., 2018b). 5 
 6 
There is high confidence (robust evidence and high agreement) that an important fraction (> 50%) of the 7 
anomalous atmospheric circulation that caused the south-western North America negative precipitation trend 8 
can be attributed to teleconnections arising from tropical Pacific SST variations related to PDV. There is 9 
medium confidence (medium evidence and medium agreement) that anthropogenic forcing has made a 10 
substantial contribution (~50%) to the south-western North America warming since 1980. 11 
 12 
 13 
10.4.1.2.8 The Caribbean small islands summer drought 14 
Climate variability over the Caribbean region impacts its agriculture, fisheries, health, tourism, water 15 
availability, recreation, energy usage, and other socioeconomic activities. Due to the region’s location, it is 16 
influenced by synoptic features over the tropical Atlantic and tropical Pacific basins including the migration 17 
of the North Atlantic subtropical high and the Inter-Tropical Convergence Zone, easterly winds, the Atlantic 18 
warm pool, the intrusion of cold fronts, and the passage of tropical depressions, easterly waves, storms and 19 
hurricanes (Ashby et al., 2005; Taylor et al., 2013b). 20 
 21 
Caribbean small islands exhibit a climatological mid-summer drought (also termed mid-summer drying) 22 
around June/July within a rainfall season from May to October. This mid-summer drought is particularly 23 
evident over the western/northern Caribbean and Central America. A negative trend in boreal summer (JJA) 24 
precipitation over the Caribbean Sea and parts of Central America has been identified since 1979 in satellite 25 
observations, and since 1950 at land stations (Figure 10.19) (Neelin et al., 2006). Differences in calculated 26 
trends emerge as a result of the shorter temporal span and absence of orographic rainfall from satellite 27 
observations though they enable greater spatial coverage, while some land observations have a longer 28 
temporal range but are limited in spatial coverage. This is characteristic of some regions including Mexico, 29 
Central America, the Caribbean, and Pacific islands (Wright et al., 2016; Cavazos et al., 2019). Notably, 30 
Cavazos et al. (2019) show positive trends in JJA rainfall over Cuba and Jamaica for CRU and parts of Cuba 31 
and eastern Hispaniola for CHIRPS, but negative trends over Cuba for GPCC and eastern Hispaniola for 32 
CRU for 1980-2010 and similar to patterns observed in Figure 10.19. Using grid-point based detection and 33 
attribution analysis, Knutson and Zeng (2018) show detectable anthropogenically-forced decreasing 34 
precipitation trends over 1901–2010 for some grid-points in the general region of the Caribbean, including 35 
south of Cuba, in the northern Bahamas, and in the Windward Islands, while for shorter periods (1951–2010 36 
and 1981–2010) no attributable trend was found. The drying trend has also been identified in studies 37 
undertaken for individual islands. Declines in summer rainfall (-4.4% per decade) and maximum five-day 38 
rainfall (-32.6 mm per decade) over 1960–2005 were reported for Jamaica from linear regression analyses on 39 
station data (Chen et al., 2012a). A slight decrease in summer precipitation accumulations was observed for 40 
Cuba for 1960 to 1995 (Naranjo-Diaz and Centella, 1998). Three of four stations examined for Puerto Rico 41 
exhibited declining JJA rainfall over 1955–2009 with the trend statistically significant at the 95% level for 42 
Canóvana (Méndez-Lázaro et al., 2019). Recent work also suggests that summer drought events may be 43 
intensifying. The 2015 Caribbean drought event was part of a pan-Caribbean drought occurring in 2013–44 
2016 (Herrera et al., 2018a). Herrera and Toby (2017) noted that the summer drought of 2015 was record 45 
breaking in terms of its spatial extent with 99% of the Caribbean experiencing drought conditions, and in 46 
terms of its severity for 17% of a domain that includes the Caribbean, South America and Central America. 47 
 48 
 49 
[START FIGURE 10.19 HERE] 50 
 51 
Figure 10.19:(a) Observed trends in June to August precipitation (mm day-1 decade-1) from GPCC version 2018 52 

(Schneider et al., 2017) and CRU TS version 4.02 (Harris et al., 2014) over the Caribbean from 1979 to 53 
2014. (b) Trends in June to August zonal winds at 925 hPa (m s-1 decade-1, in colour) and sea level 54 
pressure (solid (dashed) line contours indicate positive (negative) trends in 0.1 hPa decade-1 steps) over 55 
the tropical North Atlantic from MERRA (Rienecker et al., 2011) and ERA-Interim (Dee et al., 2011) 56 
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with the area for the Caribbean low-level jet highlighted (12.5°N–17.5°N, 70°W–80°W). (c) As (a) but 1 
for model simulations. Top row: Driest, mean and wettest trends (in the mean over the four indicated 2 
station locations in the bottom left panel) from the 100 members of the MPI-GE (Maher et al., 2019). 3 
Middle row: Driest, mean and wettest trends relative to the above station locations from the 100 members 4 
of the d4PDF-GE (Mizuta et al., 2017). Bottom row: Driest, median and wettest trends relative to the 5 
above station locations from historical simulations of 26 CMIP6 models. (d) Time series of average June 6 
to August precipitation for four stations (Bahamas in dark red, Cuba in light red, Cayman in brown, 7 
Jamaica in orange) and the mean over this four stations (in black) as well as the station location mean 8 
extracted from GPCC and CRU TS gridded data. The filter is the same as the one used in Figure 10.11. 9 
(e) Distribution of mean precipitation trends for the four station locations between 1979 and 2014 for 10 
MPI-GE (violet histogram), d4PDF-GE (pink histogram), historical simulations from a set of 26 CMIP6 11 
models (red circles), observations (means over station observations, GPCC and CRU TS, black crosses) 12 
and ensemble mean trends. All trends are estimated using ordinary least squares. 13 

 14 
[END FIGURE 10.19 HERE] 15 
 16 
 17 
JJA rainfall trends over 1980‒2010 from PRECIS, RCA4, RegCM4.0-G and RegCM4.5-T suggest disparate 18 
trends over Jamaica, Cuba, and eastern Hispaniola (Cavazos et al., 2019) where, for example, some weak 19 
positive trends are shown over Cuba but with different magnitudes and spatial distributions. Figure 10.19 20 
shows weak negative trends over much of the Caribbean for 1979-2014 with some weak positive trends over 21 
Cuba for MPI-GE ensemble mean. However, weak positive trends are evident over much of the domain for 22 
the d4PDF-GE ensemble mean but with some drying trend still evident over Cuba, Jamaica and Hispaniola 23 
while a stronger drying trend is observed from the CMIP6 ensemble mean trend. The limited number of 24 
available downscaled simulations for this region is a challenge to robust evaluation of trends.  25 
 26 
The climatological mid-summer drying is associated with an intensification and westward shift of the North 27 
Atlantic subtropical high, and a related increase in the strength of the low-level easterlies over the Gulf of 28 
Mexico and the Caribbean Sea (Hastenrath, 1966; Waylen et al., 1996; Knaff, 1997; Magana et al., 1999; 29 
Giannini et al., 2000; Rauscher et al., 2008), and a semi-annual strengthening of the Caribbean low level jet 30 
(Amador, 1998; Wang, 2007; Wang and Lee, 2007). The mid-summer drought has also been linked to warm 31 
SST anomalies in the tropical Atlantic and cool eastern equatorial Pacific SST anomalies through their 32 
combined modulation of the Caribbean low level jet (Whyte et al., 2008). Some studies have suggested that 33 
the intensifying mid-summer drying occurs alongside a general intensification and poleward movement of 34 
the subtropical high pressure cells (Christensen et al., 2007), with an equatorward contraction of tropical 35 
convective regions due to the suppression of convection in a more stable atmosphere (Neelin et al., 2003). 36 
Rauscher et al. (2011) and Whyte et al. (2008) note that the SST warming over the Atlantic, though smaller 37 
than the warming observed over global tropical areas, has been associated with enhanced divergence and 38 
increasing strength of the North Atlantic subtropical high and potentially the strength of the Caribbean low 39 
level jet. Figure 10.19 suggests a strengthening of the Caribbean low level jet over 1979‒2014. Falarz (2019) 40 
indicated slight increases in sea level air pressure at the centre of the North Atlantic subtropical high in July 41 
for 1948‒2018 with a southwest shift in its location for 1998‒2018. Figure 10.19 suggests that observed 42 
SSTs play a key role in the trends observed given that the histogram spread for d4PDF is smaller than for the 43 
fully coupled models and the d4PDF mean is closer to the means from the observation datasets. The 44 
histogram also suggests that observational uncertainty is important. These factors taken together imply that 45 
there is currently limited evidence to conclusively suggest the responsible mechanisms for the summer 46 
drying. 47 
 48 
Méndez-Lázaro et al. (2014) indicated that the summer drying trend could also be linked to the combined 49 
effect of ENSO and the NAO rather than to the anthropogenic forcing. A warm ENSO and positive NAO 50 
phase have been shown to result in negative summer rainfall anomalies (Giannini et al., 2000). The mid-51 
summer drought and its intensity have also been associated with the AMV, PDV and ENSO (Maldonado et 52 
al., 2016) where, for example, a positive PDV and a warm ENSO are linked to drier mid-summer events. 53 
The work of Herrera et al. (2018) suggested that for the 2013–2016 pan-Caribbean drought, anthropogenic 54 
warming accounted for ~15–17% of the drought's severity and ~7% of its spatial extent. This indicates that 55 
anthropogenic warming may be influencing the drying trends in summer rainfall, though no additional 56 
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studies to date have presented this case. There is limited evidence and low agreement for the cause of the 1 
drying trend over the Caribbean in mid-summer since 1950 and whether this trend is mainly caused by either 2 
decadal-scale internal variability or anthropogenic forcing. 3 
 4 
 5 
10.4.1.3 Assessment summary 6 
 7 
Attribution results from regression-based standard optimal fingerprinting and from the above examples are 8 
very different depending on whether one is interested in regional-scale attribution of temperature or 9 
precipitation changes. While the influence of anthropogenic forcing on regional temperature long-term 10 
change has been detected and attributed in several regions, a robust emergence of human influence on 11 
regional precipitation change has not occurred yet for most regions. This lack of emergence for precipitation 12 
is likely due to larger observational uncertainty and model error, as well as stronger internal variability. 13 
Attribution results can also be very sensitive to the period length and spatial size of the region under 14 
scrutiny. Even in the case of temperature and multi-decadal time scale, internal variability can still be the 15 
main driver of regional changes due to cancellation between different external forcings (Nath et al., 2018). 16 
Based on a non-parametric trend analysis of both CMIP3 and CMIP5 models compared to a large ensemble, 17 
Kumar et al. (2016) have found that at global scale, the contribution of internal variability to temperature 18 
trend uncertainty increases from 24% for the twentieth century (1901–1998) to 76% for the recent hiatus 19 
period (1999–2013) and at regional scales (based on 22 regions from Giorgi (2002)) from 43% to almost 20 
100% during the corresponding time periods. 21 
 22 
There is high confidence (robust evidence and medium agreement) that anthropogenic forcing has been a 23 
major driver of temperature change since 1950 in many sub-continental regions of the world. While there is 24 
medium confidence (medium evidence and medium agreement) that anthropogenic forcing has contributed to 25 
multi-decadal precipitation changes in several regions, large observational uncertainty and internal 26 
variability as well as model errors lead to low confidence (medium evidence and low agreement) with regard 27 
to a well-constrained quantification (best estimate and confidence interval) of the total anthropogenic 28 
contribution to precipitation changes as well as the relative contributions of GHGs, including ozone and 29 
different aerosol species. 30 
 31 
 32 
10.4.2 Future regional changes and interplay between internal variability and response to external 33 

forcing 34 
 35 
The fitness for purpose of regional climate projections to support adaptation policies is often questioned 36 
(Section 10.5). This is mainly due to the combination of three different sources of uncertainty (Lehner et al., 37 
submitted): uncertainty about the future GHGs and aerosol emissions as well land-use changes (scenario 38 
uncertainty, Section 4.2.5), the weakness of process understanding about the multi-scale interactions of 39 
large-scale and regional phenomena (also named model or structural uncertainty, Section 10.3), and 40 
uncertainty related to the lack of predictability of low-frequency internal variability due the chaotic nature of 41 
the climate system (Section 4.4). This section mostly focuses on the latter and its interplay with the model 42 
uncertainty associated with the forced climate response to anthropogenic radiative forcing. The different 43 
methodologies that are used to estimate and quantify the influence of internal variability and its interplay 44 
with the forced response on future regional climate projections are reviewed first. Next, the use of these 45 
methods, applied either globally or regionally, is assessed with a focus on our selected examples. 46 
 47 
The assessment is necessarily emission scenario and time-dependent, on a region-by-region basis. Depending 48 
on the emission scenario, period and/or regions, internal variability can counteract, be neutral, or exacerbate 49 
the forced response due to anthropogenic forcing (Deser et al., 2012b; Maher et al., 2019). The response to 50 
anthropogenic forcing can also project on internal modes of variability leading to difficulty in identifying the 51 
forced response and its spatial pattern. Analysis of multi-model archives such as CMIP-type simulations 52 
cannot easily disentangle structural model uncertainty and uncertainty related to internal variability. Only 53 
multi-models of (GCM and/or RCM) large initial-condition ensembles allow a clean separation between the 54 
two uncertainty sources (Kay et al., 2015; Aalbers et al., 2018; Leduc et al., 2019; Maher et al., 2019; von 55 
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Trentini et al., 2019b). The use of multi-model large ensembles is emerging as a promising way to robustly 1 
assess the respective contribution of internal variability and model uncertainty to future regional climate 2 
changes (Deser et al., submitted; Lehner et al., submitted). It is noteworthy that the use of multi-model 3 
initial-condition large ensembles assumes that they have a credible representation of internal variability 4 
(McKinnon et al., 2017; McKinnon and Deser, 2018; Chen and Brissette, 2019). Assessing the credibility of 5 
simulated internal variability remains an active research field that is still limited by the shortness and 6 
uncertainties of the observed record, in particular in data-scarce regions (Section 10.2.2.3). 7 
 8 
While other methodologies using internal variability from pre-industrial simulations to assess the role of 9 
internal variability in future climate change (Thompson et al., 2015) have been suggested, they implicitly assume 10 
that regional-scale internal variability does not change under anthropogenic forcing, which is a strong 11 
assumption that does not seem to hold at regional scales (LaJoie and DelSole, 2016; Dai and Bloecker, 12 
2018). Finally, the attribution of past changes is useful but not sufficient to robustly infer the relative 13 
contribution of the relevant drivers to future regional climate changes (Section 10.3.3). The relative 14 
importance of internal variability and anthropogenic factors is not constant in time as external anthropogenic 15 
and natural forcing can vary, as well as internal variability and the interaction between the different drivers 16 
(Nath et al., 2019), including a possible modulation of internal variability modes by external forcing 17 
(Thiéblemont et al., 2015). 18 
 19 
As described in Section 10.3.4.3, the influence of internal variability on climate projections can be quantified 20 
based on simple diagnostics such as signal-to-noise ratio and time of emergence. Signal-to-noise ratio and 21 
time of emergence global studies are first briefly assessed before focusing on a few selected regions. Based 22 
on a temperature variance ratio analysis of five CMIP5 models (each with 4 to 10 members), Lyu et al. 23 
(2015) have shown that the unbiased ratio of forced to total variance over the historical period is strongest in 24 
the tropics (30–40% in average, up to 70% locally) and decreases poleward (with a range of 5–30%). For 25 
temperature, the large variance ratio in tropical areas is mainly due to the forced climate change signal, 26 
which is dominant compared with the internal variability background. In contrast, the lower ratio in 27 
extratropical areas results from the larger internal variability. The larger ratio of forced variance to total 28 
variance generally corresponds to earlier emergence of forced signals from internal variability. The 29 
temperature variance ratio, over time intervals with the starting time being fixed at 1860 and the end time 30 
increasing from 1870 to 2100, shows that the globally averaged ratios of forced to total variance continue to 31 
increase with time under all three radiative concentration pathway GHG scenarios, reflecting the cumulative 32 
effect of externally forced climate change. Based on a 40-member ensemble constrained by the SRES-A1B 33 
scenario over 2005–2060 and using a simple signal-to-noise metric, the interplay between internal variability 34 
and the forced response to GHGs was assessed for surface air temperature, precipitation and sea level 35 
pressure (Deser et al., 2012a, 2012b). It was found that for temperature, only one realization is needed to 36 
detect a significant (at the 95% confidence level) warming in the 2050s decade compared to the 2010s at 37 
nearly all locations, compared to approximately 3–6 (15) ensemble members for tropical and high latitude 38 
(middle latitude) precipitation, and approximately 3–6 (9–30) members for tropical (extra-tropical) sea-level 39 
pressure, depending on location and season. They also underscored the low signal-to-noise (ratio of 40 
ensemble mean trend by standard deviation of ensemble member trends less than 1) in the large-scale 41 
patterns (e.g., annular modes) of extra-tropical atmospheric circulation response that are primarily due to 42 
intrinsic atmospheric dynamics (Deser et al., 2017b; Maher et al., 2019). Most of the random uncertainty in 43 
temperature and precipitation in the extra-tropics is associated with the annular mode variability in both 44 
seasons and hemispheres. Finally, they show that the magnitude of random uncertainty associated with 45 
internal variability is rarely less than half that due to model uncertainty for forced linear climate trends 46 
during 2005–2060. Similar analyses based on the same large ensemble and more recent ones were also 47 
conducted for sea level, the Hadley Cell and Arctic sea ice (Hu and Deser, 2013; Kang et al., 2013; Wettstein 48 
and Deser, 2014; Maher et al., 2019). Large ensemble simulations from Kay et al. (2015) and Sigmond and 49 
Fyfe (2016) were used to quantify the internal variability influence on trends in annual surface air 50 
temperature and precipitation over different time periods from 1950 up to 2100 (Dai and Bloecker, 2018). 51 
Results indicate that regional precipitation trends due to anthropogenic forcing may not be detectable over 52 
most of the globe until the later part of the 21st century even under a high-emission scenario (Figure 10.20), 53 
while forced temperature trends since 1979 are already detectable over many low-latitude regions (Hawkins 54 
et al., submitted) and are projected to emerge from internal variability over most of the globe by the 2030s 55 
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under the high-end GHG emission scenarios (Figure 10.20). 1 
 2 
 3 
[START FIGURE 10.20 HERE] 4 
 5 
Figure 10.20:(a) Time series of simulated decadal mean air temperature anomalies (baseline 1995–2014) for regions of 6 

Eurasia, Himalaya and western Europe (see Figure 10.11 for the exact regional boundaries). Box plots 7 
indicate simulated decadal mean temperature anomalies averaged over near-term (2021–2040) and long-8 
term (2081–2100) future periods. Models include seven initial-condition large ensembles, as in (Deser et 9 
al., submitted), 39 CMIP5 and 22 CMIP6 models that all have pre-industrial, historical and scenario 10 
simulations (RCP8.5 for CMIP5 and SSP5-8.5 for CMIP6 models). (b) As in (a) but for precipitation 11 
anomalies. The regions are sub-regions of North America, East Asia, South America, Africa, Caribbean 12 
and Australia (as in Figure 10.11). 13 

 14 
[END FIGURE 10.20 HERE] 15 
 16 
 17 
Based on detection and attribution studies and climate projections based on multi-model initial-condition 18 
large ensembles, it is extremely likely that temperature change due to anthropogenic forcing will have 19 
emerged from internal variability in most land regions of the world by 2050 under the high-end (SSP5-8.5 20 
and RCP8.5) GHG emission scenarios. Based on multi-model historical simulations, regional-scale 21 
attribution studies, and climate projections, in particular those coming from initial-condition large 22 
ensembles, it is very likely that internal variability will still significantly influence future multi-decadal 23 
precipitation trends in many land regions (except Antarctica; Section 9.4.2) until at least the mid 21st 24 
century. 25 
 26 
 27 
[START BOX 10.2 HERE] 28 
 29 
BOX 10.2: Urban climate 30 
 31 
Urban areas extend typically from a few kilometres to hundreds of kilometres, but their internal features 32 
influence the air flow at scales down to the street-canyon scale of a few metres (Oke et al., 2017). Urban 33 
centres and cities are often several degrees warmer compared to the surrounding rural area due to what is 34 
known as the urban heat island effect (Bader et al., 2018; Kuang, 2019). Urban areas and cities affect the 35 
local weather by perturbing the wind, temperature, moisture, turbulence, and surface energy budget field. 36 
Another unique feature of cities is the release of the anthropogenic heat flux from building energy 37 
consumption and direct emission from traffic (Ichinose et al., 1999; Bohnenstengel et al., 2014; Chow et al., 38 
2014; Ma et al., 2017). Three main factors contribute to the establishment of the urban heat island: 3-D urban 39 
geometry, thermal characteristics of impervious surfaces, and anthropogenic heat release. There is also a 40 
strong contribution of local background climate to the urban heat island magnitude (Zhao et al., 2014; Ward 41 
et al., 2016). Cities can also experience other phenomenon, such as the urban dryness island, which refers to 42 
conditions where lower relative humidity is observed in cities relative to nearby rural locations (Kuttler et al., 43 
2007; Lokoshchenko, 2017b) and the urban wind island where cities experience slower wind speeds 44 
compared to their adjacent suburbs and countryside (Wu et al., 2017; Bader et al., 2018). 45 
 46 
Monitoring network 47 
Although the urban heat island is well documented and studied (FAQ 10.2), climate data in urban areas 48 
remain very limited. This is in part due to the standards set by the World Meteorological Organization 49 
(WMO, 2019) that cannot be met in an urban environment due to the high density of buildings and other 50 
obstacles. Especially long-term datasets (a year or more) are very scarce (Bader et al., 2018; Caluwaerts et 51 
al., 2020). City-scale climate monitoring networks can enhance the understanding of urban microclimate and 52 
their interaction with climate change, and provide key information for end-users such us urban planners, 53 
decision-makers such as city mayors, stakeholders and the general public (Chen et al., 2012b; Barlow et al., 54 
2017; Bader et al., 2018). Recently, networks of weather monitoring stations and both satellite and ground-55 
based remote sensing instruments have been established in different cities around the world (see Technical 56 
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Annex I on observations). However, there is still a lack of harmonization of collection practices, 1 
instrumentations, station locations, and quality control methodologies across cities to facilitate collaborative 2 
research (Muller et al., 2013; Barlow et al., 2017). Over the past decade, more crowdsourcing data in real 3 
time is becoming available through the use of cheap sensors (using internet of things technology) that are 4 
incorporated in various platforms like cars, amateur weather stations, and smartphones (Sosko and Dalyot, 5 
2017). They are collected in citizen science projects (Muller et al., 2015). This technological trend could 6 
prove very useful and the regional climate community is making efforts to understand the extent to which 7 
these methods can be exploited as a complement to traditional datasets (Meier et al., 2017; Zheng et al., 8 
2018; Langendijk et al., 2019). 9 
      10 
Urban modules in climate models 11 
In order to calculate the exchanges of heat, water and momentum between the urban surface and its 12 
overlying atmosphere, specific surface-atmosphere exchange schemes dedicated to urban areas must be 13 
implemented. Urban schemes were developed in the last 20 years and vary considerably in complexity. In 14 
general, three different types, in order of increasing complexity, can be distinguished (Masson, 2006; 15 
Grimmond et al., 2010, 2011; Chen et al., 2011; Best and Grimmond, 2015): (1) The simplest is the slab or 16 
bulk approach, where urban areas are represented by modifying soil and vegetation parameters within land 17 
surface models (e.g., Best et al., 2006; Dandou et al., 2005; Liu et al., 2006; Seaman et al., 1989). They 18 
usually feature parameters based on the observation that roughness length and displacement height are large 19 
over cities. The energy balance is also often modified to account for the radiation trapped by the urban 20 
canopy, heat storage, evaporation, and anthropogenic heat fluxes. However, the three-dimensional structure 21 
of the city is not resolved. (2) Single-layer urban canopy modules represent cities with a simplified geometry 22 
(urban canyon, with three surface types: roof, road and wall) that can approximately capture the main 3D 23 
dynamical and thermal physical processes influencing radiative and energy fluxes (Masson, 2000; Kusaka et 24 
al., 2001). (3) In multi-layer urban canopy modules, urban effects are computed vertically throughout the 25 
urban canopy, allowing a direct interaction with the planetary boundary layer (Brown, 2000; Martilli et al., 26 
2002; Hagishima et al., 2005; Dupont and Mestayer, 2006; Hamdi and Masson, 2008; Schubert et al., 2012). 27 
As a sub-model of urban canopy modules, building-energy models that estimate anthropogenic heat from a 28 
building for given atmospheric conditions have also been developed (e.g., Bueno et al., 2012; Kikegawa et 29 
al., 2003; Lipson et al., 2018). 30 
 31 
Many regional modelling groups are now beginning to implement the three types of urban parameterizations 32 
within the land-surface component of their RCMs (Daniel et al., , 2019; Halenka et al., 2019; Hamdi et al., 33 
2014; Kusaka et al., 2012; McCarthy et al., 2012; Oleson et al., 2011; Trusilova et al., 2016). 34 
 35 
There is very high confidence (robust evidence and high agreement) that while all types of urban 36 
parameterizations generally simulate radiation exchanges in a realistic way, they have, however, strong 37 
biases when simulating latent heat fluxes. There is medium evidence but high agreement (Kusaka et al., 38 
2012a; McCarthy et al., 2012; Hamdi et al., 2014; Trusilova et al., 2016; Jänicke et al., 2017; Daniel et al., 39 
2019) that a simple single-layer parameterization is sufficient for urban climate modelling focusing on the 40 
urban heat island and its interaction with the regional climate change at the city scale. 41 
 42 
Observed climate in cities 43 
There is medium evidence but high agreement (Parker, 2010; Zhang et al., 2013; Chen et al., 2016d) that the 44 
global annual mean surface air temperature response to urbanization is negligible. At the city scale, there is 45 
very high confidence (robust evidence and high agreement) that a percentage of the observed warming trend 46 
is linked to historical urbanization in rapidly industrialized countries (Figure 1), although large differences 47 
exist between different attribution methods (Park et al., 2017). 48 
 49 
[START BOX 10.2, FIGURE 1 HERE] 50 
 51 
Box 10.2, Figure 1: Change in the annual mean surface temperature over the period 1950‒2018 based on local linear 52 

trend retrieved from the GISTEMP data (Lenssen et al., 2019). This background warming is added 53 
to the local warming that has been reported during 1950‒2018 in the literature from historical 54 
urbanization in different cities and plotted on top of the background as hexagon for each city. The 55 
colour of the circles refers to the magnitude of the urban warming calculated as the background 56 
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warming plus the historical urbanization warming. This map has been compiled using the 1 
following studies: (Ajaaj et al., 2018; Alizadeh-Choobari et al., 2016; Bader et al., 2018; Chen et 2 
al., 2016; Chrysanthou et al., 2014; Doan et al., 2016; Dou et al., 2015; Elagib, 2011; Founda et 3 
al., 2015; Fujibe, 2009; Gaffin et al., 2008; Hinkel and Nelson, 2007; ; Li et al., 2018; Liao et al., 4 
2017; Lokoshchenko, 2017; Polydoros et al., 2018; Sun et al., 2016; ; Wang et al., 2018; Zhou et 5 
al., 2016, 2017). The bottom left panel shows the low-pass filtered time series of the annual mean 6 
temperature anomalies observed in the urban station of Tokyo and the rural reference station in 7 
Choshi (Japan) (°C, baseline 1887-1917). The filter is the same as the one used in Figure 10.11. 8 

 9 
[END BOX 10.2, FIGURE 1 HERE] 10 
 11 
There is very high confidence (robust evidence and high agreement) that the annual-mean maximum 12 
temperature is less affected by urbanization than the minimum temperature. It is virtually certain that if 13 
observations of near-surface air temperatures in growing cities are used in the assessment of global warming 14 
trends, these trends are overestimated by the urban warming, while this urban warming is smaller for a 15 
station that originally was established in a densely built-up area (Ezber et al., 2007; Fujibe, 2009; Hamdi, 16 
2010; Elagib, 2011; Camilloni and Barrucand, 2012; Robaa, 2013; Hausfather et al., 2013; Argüeso et al., 17 
2014; Alghamdi and Moore, 2015; Alizadeh-Choobari et al., 2016; Sachindra et al., 2016; Liao et al., 2017; 18 
Lokoshchenko, 2017; Wang et al., 2017a; Arsiso et al., 2018). 19 
 20 
There is medium confidence (medium evidence and medium agreement) (Schlünzen et al., 2010; Ganeshan et 21 
al., 2013; Ganeshan and Murtugudde, 2015; Haberlie et al., 2015; Daniels et al., 2016; Liang and Ding, 22 
2017; McLeod et al., 2017) that urban areas induce increases in mean but also in extreme precipitation over 23 
and downwind of the city in different climate regions of the world and especially in the afternoon and early 24 
evening. 25 
 26 
Moreover, since many of the world’s largest cities are located along the coast, this will introduce additional 27 
complexity to urban hydrology due to the local sea level rise. The process of subsidence and groundwater 28 
withdrawal accelerate local sea level rise faster than the global average (Hallegatte et al., 2013; Bader et al., 29 
2018; Kulp and Strauss, 2019). 30 
 31 
Future climate projection 32 
It is very uncertain to estimate how the urban heat island will evolve under climate change conditions 33 
because several studies using different methods report contrasting results. However, there is very high 34 
confidence (robust evidence and high agreement) that the projected change of the urban heat island under 35 
climate change conditions is one order of magnitude less than the projected warming in both urban and rural 36 
areas under simulation constraints of no urban growth (Adachi et al., 2012; Arsiso et al., 2018; Früh et al., 37 
2011; Hamdi et al., 2014; Hatchett et al., 2016; Hoffmann et al., 2018; Kusaka et al., 2012; McCarthy et al., 38 
2010, 2012; Oleson, 2012; Oleson et al., 2011; Sachindra et al., 2016). 39 
 40 
Therefore, climate change will, on average, have a limited impact on the magnitude of the urban heat island. 41 
In some studies the regionally downscaled data using a RCM is used to force an off-line urbanized land 42 
surface scheme (Lemonsu et al., 2013; Lauwaet et al., 2015; Rafael et al., 2017). These studies report also 43 
contrasting results about the changes in the urban heat island magnitude under climate change. However, the 44 
contribution and feedback processes by urban heat island and climate change are not accounted for in these 45 
offline simulations. 46 
 47 
There is very high confidence (robust evidence and high agreement) that future urbanization will amplify the 48 
projected air temperature under different background climate, with a strong impact on minimum 49 
temperatures, that could be comparable in magnitude to the global warming (Berckmans et al., 2019). There 50 
is very high confidence (robust evidence and high agreement) that large impact is expected from the 51 
combination of future urban development and more frequent occurrence of extreme climatic events, such as 52 
heat waves (Hamdi et al., 2016; Bader et al., 2018). Finally, Kusaka et al. (2016) provided the first attempt in 53 
quantifying the uncertainties arising from choice of RCM or of future urban planning scenarios. The results 54 
showed that the impacts of urban planning scenario and RCM differences are larger during nighttime, but at 55 
most 0.6°C. The results indicate that the uncertainties related to both the RCM and urban planning scenario 56 
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are significantly less than those arising from global emission scenarios or GCM projections. However, it is 1 
worth mentioning that there is a large uncertainty from the RCM with and without urban land use, indicating 2 
that this impact is comparable to the differences between GCMs. Impact assessments and adaptation plans 3 
will require high spatial resolution climate projections along with models that represent urban processes, 4 
ensemble dynamical and statistical downscaling, and local-impact models (Masson et al., 2014; Duchene et 5 
al., submitted). 6 
 7 
 8 
[END CHAPTER BOX 10.2 HERE] 9 
 10 
 11 
[START CROSS-CHAPTER BOX 10.3 HERE] 12 
 13 
Cross-Chapter Box 10.3: Climate Change over the Hindu Kush Himalaya 14 
 15 
Contributors: Muhammad Adnan (Pakistan), Muhammad Amjad (Pakistan), Subimal Ghost (India), Akm 16 
Saiful Islam (Bangladesh), Martin Jury (Spain/Austria), Asif Khan (Pakistan), Krishnan Raghavan (India), 17 
Laurent Terray (France), Andrew Turner (UK), Zhiyan Zuo (China) 18 
 19 
The Hindu Kush Himalaya (HKH), with the largest collection of glaciers and snow cover outside the poles, 20 
provides the headwaters for several major rivers in Asia (Sharma et al., 2019). Global warming has caused 21 
significant glacial retreat, snowmelt, and permafrost degradation in HKH (Yao et al., 2012b, 2012a; Azam et 22 
al., 2018; Bolch et al., 2019). Since the 1960s, the HKH has experienced significant trends in the mean and 23 
extremes of temperature and precipitation, corresponding to frequent devastating landslides, heavy 24 
cloudbursts, flash floods, monsoonal floods/drought, glacial avalanches, glacier lake outburst floods, and 25 
hailstorms (Krishnan et al., 2019b). These incidents caused sudden and severe damage to life and property in 26 
many parts of the region (Bhardwaj et al., 2019). The change is challenging to predict but will have major 27 
consequences, not just in the region, but globally. There was little presence in the complex HKH in previous 28 
IPCC assessments due to the lack of consistent high-quality datasets and the simulation performance 29 
assessment being hampered by the observational uncertainties. Therefore, there is a critical need to assess the 30 
changes in the HKH. These are changes and assessment difficulties common to many other mountain areas. 31 
In this box, uncertainty in observational datasets and model performance are first discussed, followed by the 32 
key features of the observed climate change and the possible attribution to a number of drivers. 33 
 34 
Observational uncertainty and model performance 35 
The key causes of uncertainty in temperature and precipitation datasets for the HKH (e.g., 36 
APHROTEMP/APHRODITE, CRU and GPCC) have been identified as the sparseness of observational data 37 
and choice of interpolation method (Immerzeel et al., 2015; Ghimire et al., 2018) (Figure 1). In spite of the 38 
scarce observations, it can be estimated that the CORDEX South Asia RCMs and their driving CMIP5 39 
GCMs feature a large cold bias in the Himalayas (Mishra, 2015). Using 13 CORDEX South Asia RCMs 40 
Sanjay et al. (2017) showed that the downscaled seasonal mean temperatures have relatively larger cold 41 
biases than their driving CMIP5 GCMs over the HKH. Despite the cold bias, the ensemble of CORDEX 42 
South Asia RCMs shows a significant spatial correlation with the APHROTEMP (Nengker et al., 2018). The 43 
CORDEX South Asia RCMs also generally feature a dry bias along the Himalayan foothills and a wet bias at 44 
higher elevations in summer (Hasson et al., 2019). 45 
 46 
Elevation-dependent warming (EDW) 47 
A key process for the HKH is EDW, as reviewed in Pepin et al. (2015). Xu et al. (2016b) described observed 48 
surface warming over the HKH region of between 2°C and 2.5°C at 5,000 m from 1961 to 2006, but 49 
considerably lower (0.5°C) at sea level. The SROCC reports that there is not a uniform pattern of EDW since 50 
the EDW varies by region, season and temperature indicator (e.g., daily mean, minimum or maximum 51 
temperature). The largest warming trend occurred on the Tibetan Plateau while the weakest was over north 52 
India (Ren et al., 2017). The annual mean surface temperature in the Tibetan Plateau has accelerated since 53 
the 1980s (You et al., 2016). However, a summer cooling trend over the Karakoram (western HKH) for 54 
1960–2010 was reported by Forsythe et al. (2017). Observational analysis and model simulations have 55 
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attributed EDW to increased GHG and black carbon aerosol emissions over Asia since the 1980s (Xu et al. 1 
2016b). The resulting snow-albedo feedback occurs due to the deposition of light-absorbing aerosols, which 2 
accelerate warming (Ming et al., 2012; Gautam et al., 2013; Lau and Kim, 2018; Yan et al., 2016; Zhang et 3 
al., 2018). Beside the GHGs and light-absorbing aerosols, Zeng et al. (2015) reported increasing cooling-4 
effect aerosols also lead to the EDW in the HKH because the cooling effect is more pronounced at low 5 
elevation than at high elevation. Therefore, there is high confidence (robust evidence and high agreement) 6 
that the eastern and central Himalayan region has exhibited rising temperatures, and that the rate of warming 7 
is amplified with elevation. There is high confidence (robust evidence and high agreement) that a large 8 
fraction of the warming can be attributed to increases in GHG (Figure 1). 9 
 10 
 11 
[START CROSS-CHAPTER BOX 10.3, FIGURE 1 HERE] 12 
 13 
Cross-Chapter Box 10.3, Figure 1: Historical annual-mean surface air temperature linear trend (°C decade-1) and its 14 

attribution over the Hindu Kush Himalaya (HKH) region. (a) Top row: Observed 15 
trends from the Berkeley surface temperature (BEST) dataset (Rohde et al., 2013), 16 
Climatic Research Unit Time Series (CRU TS) version 4.02 (Harris et al., 2014), 17 
the Japanese 55-year Reanalysis (JRA-55) (Kobayashi and Iwasaki, 2016) for 18 
1961–2014 and from Asian Precipitation-Highly-Resolved Observational Data 19 
Integration Towards Evaluation (APHRODITE) V1204R1 (Yasutomi et al., 2011) 20 
for 1961–2007. Second row: Coldest, mean, and warmest trends (relative to the 21 
region enclosed in the black quadrilateral, fifth row) from the 100 members of the 22 
Max-Planck Institute grand ensemble (MPI-GE) (Maher et al., 2019). Third row: 23 
coldest, median, and warmest trends from CMIP6 historical 29 members. Fourth 24 
and fifth rows: coldest, median, and warmest trends from CMIP6 aerosol-only 25 
nine members and greenhouse gas-only ten members, respectively. The black 26 
shape in the last row second column map is the HKH boundary. (b) Time series of 27 
annual-mean surface air temperature anomalies (°C, baseline 1961–1980) over the 28 
region enclosed in the black quadrilateral (25°N–40°N, 75°E–105°E) in (a) bottom 29 
left map. Black, brown, orange, red, dark red, grey, and blue lines show low-pass 30 
filtered time series for BEST, CRU TS, JRA-55, APHRODITE, CMIP6 all-forcing 31 
historical mean, CMIP6 aerosol-only mean, and CMIP6 greenhouse gas-only 32 
mean, respectively. The filter is the same as the one used in Figure 10.11. (c) 33 
Distribution of annual mean surface air temperature trends (°C decade-1) over the 34 
region enclosed in the black quadrilateral (25°N–40°N, 75°E–105°E) from 1961 to 35 
2017 for ensemble means, the MPI-GE (violet histogram), and individual 36 
members of CMIP6 all-forcing historical (red circles), CMIP6 greenhouse gas-37 
only (blue triangles), CMIP6 aerosols-only (grey triangles), and observations 38 
(black cross). 39 

 40 
[END CROSS-CHAPTER BOX 10.3, FIGURE 1 HERE] 41 
 42 
 43 
Precipitation 44 
Yao et al. (2012) used GPCP data to show that central-eastern HKH annual precipitation exhibits a 45 
decreasing trend from 1979 to 2010, a result repeated in summer in multiple observed datasets (Palazzi et al., 46 
2013; Roxy et al., 2015). This negative trend has been attributed to a weakening South Asian monsoon (Yao 47 
et al., 2012b; Palazzi et al., 2013; Roxy et al., 2015; Shrestha et al., 2019). There is much contradictory 48 
evidence for precipitation trends in the western HKH. Meher et al. (2018a) used rain gauge data to show 49 
significant declining trends in winter rainfall and the number of rainy days over the western HKH over 50 
1902–2005. Li et al. (2018) used four datasets in northern India to show that summer precipitation exhibited 51 
a positive trend during 1981–2008. Azmat et al. (2017) suggested that the precipitation has a slightly 52 
increasing tendency over the Jhelum river basin in the western HKH for 1961–2013. Hunt et al. (2019) 53 
reported that the frequency of western disturbances (WDs) exhibits a slight negative trend from 1970 54 
onwards, leading to a falling trend in winter precipitation over northern India and Pakistan, while Kumar et 55 
al. (2015) reported that winter WD frequency over Himachal Pradesh (central Himalayas) during 1977–2007 56 
has experienced a significant declining trend. In contrast, by using the variance of band-pass filtered 200 hPa 57 
geopotential height to represent WDs activity, Krishnan et al. (2018) found a rising trend of WDs activity in 58 
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both reanalysis data and climate model outputs, resulting in enhanced orographic precipitation over the 1 
western HKH in recent decades. Therefore, there is medium confidence (medium evidence but high 2 
agreement) that the eastern-central HKH has experienced a decrease in summer precipitation. There is 3 
medium confidence (medium evidence but high agreement) that the decrease in summer precipitation in the 4 
eastern-central HKH can be mainly attributed to the weakening South Asian monsoon (Section 10.6.3). 5 
There is low confidence (robust evidence but low agreement) in the precipitation trend and the impact of 6 
WDs on the precipitation trend over the western HKH in recent decades. 7 
 8 
Extreme events 9 
Using the global land-surface daily air temperature dataset developed by the Chinese Meteorological 10 
Administration (Ren et al., 2017), many studies have reported that the HKH has featured a significant rising 11 
trend of extreme warm events over 1961–2015, alongside a falling trend of extreme cold events (Wester et 12 
al., 2019b; Krishnan et al., 2019a). Sun et al. (2017) reported that the decrease in Tibetan Plateau extreme 13 
cold events is smaller than the increase in extreme warm events after 1961. Using the Global Land Monthly 14 
and Daily Precipitation datasets developed recently by the Chinese Meteorological Administration, Zhan et 15 
al. (2017) found more frequent intense precipitation and less frequent light rain after 1990 in the HKH. Over 16 
the central and western HKH, there is an increase in frequency and intensity of extreme precipitation events 17 
while no clear trend is observed over the eastern HKH, where contrasting evidence exists (Sheikh et al., 18 
2015; Adnan et al., 2016; Dimri et al., 2017; Talchabhadel et al., 2018). Extreme precipitation events occur 19 
during both summer and winter in the western HKH; summer extremes are generally associated with tropical 20 
lows (Hurley and Boos, 2015) and their interactions with WDs, whereas winter extremes are associated with 21 
only WDs (Dimri et al., 2015). Western HKH summer extremes show an increasing trend associated with 22 
weakening southwest monsoon circulation and increased activity of westerly upper-air troughs (Ridley et al., 23 
2013; Madhura et al., 2015; Priya et al., 2017). Therefore, there is high confidence (robust evidence and high 24 
agreement) in the increase of extreme warming events and in the decrease of extreme cold events over the 25 
eastern Himalayas over the last five decades. There is medium confidence (medium evidence but high 26 
agreement) in the increase of summer extreme precipitation over the western HKH. There is low confidence 27 
(limited evidence) that the increasing summer extreme precipitation can be attributed to declining monsoon 28 
circulation. 29 
 30 
Flood hazards 31 
Intense floods have become more frequent in the HKH region during 2001–2013 (Elalem and Pal, 2015). 32 
However, You et al. (2017) suggested that limited observational data availability over HKH may lower the 33 
confidence in the result. HKH floods are complex geophysical phenomena associated with extreme 34 
precipitation events (Devrani et al., 2015; Dimri et al., 2017), complex topography, glacier lake outburst 35 
floods (Kropáček et al., 2015; Das et al., 2015; Cook et al., 2018), and contributions from glaciers and snow-36 
melt due to rising temperature (Immerzeel et al., 2014). These intense floods can be linked to climate change 37 
(Adnan et al., 2017; Hunt et al., 2018). Nevertheless, based on the recent attribution studies of discharge in 38 
2017 in the Brahmaputra basin (Philip et al., 2018), the 2013 extreme precipitation in Uttarakhand, extreme 39 
precipitation in Srinagar valley in 2014, and extreme rainfall in Bangladesh in 2017 (Rimi et al., 2019), there 40 
is no significant increase in the likelihood of these events attributable to anthropogenic climate change (Patil 41 
et al., 2019; Rimi et al., 2019). Therefore, there is medium confidence (medium evidence and medium 42 
agreement) in the increased frequency of intense floods over the central and western HKH in recent decades. 43 
There is low confidence (limited evidence) in the attribution of anthropogenic climate change to the 44 
increasing floods. 45 
 46 
 47 
[END CROSS-CHAPTER BOX 10.3 HERE] 48 
 49 
 50 
10.5 Combining approaches to constructing regional climate messages 51 
 52 
This section assesses approaches and challenges for producing climate information and climate messages to 53 
inform adaption and policy decisions at regional scales (Section 10.1.2.1). An overview of the different 54 
sources and approaches to develop regional climate information including the role of climate services is 55 
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given in Section 10.5.1. A more extensive discussion of climate services can be found in Section 12.6 and in 1 
Cross-Chapter Box 12.2. The role of the context in the construction of a climate message is discussed in 2 
Section 10.5.2. Narratives and storylines are important approaches in constructing climate change messages, 3 
which is the topic of Section 10.5.3. Finally, the distillation process from multiple lines of evidence is 4 
discussed in Section 10.5.4. 5 
 6 
 7 
10.5.1 Sources of and approaches to regional information and climate services 8 
 9 
The rise in demand for relevant climate information (Lourenço et al., 2016) has resulted in diverse 10 
approaches that include various open-access, web-portal delivery services of data as information (Hewitson 11 
et al., 2017), commercialization of climate services (Webber and Donner, 2017), and moves toward the fully 12 
tailored distillation of information drawing on and reconciling multiple sources of information (Figure 13 
10.21), where the context is defined through co-design with users. The constructed information is then the 14 
basis for the development of a regional climate message that translates the factual information into the 15 
context and values of the user (Figure 10.1 and Sections 10.5.3 and 10.5.4). 16 
 17 
 18 
[START FIGURE 10.21 HERE] 19 
 20 
Figure 10.21:Illustration of how using different tools can result in different and potentially conflicting information. 21 

Change in daily precipitation (2071‒2100 RCP8.5 relative to 1981‒2010) over West Africa as simulated 22 
by an ensemble of GCM-driven RCMs. (a) Change in daily precipitation (mm) for April to September, as 23 
mean of 17 CORDEX models (Dosio et al., submitted) (b-e) Time-latitude diagram of daily precipitation 24 
change for four selected RCM-GCM combinations. For each month and latitude, model results are 25 
averaged along the longitude between 10°W‒10°E (blue box in a). Different CGM-RCM combinations 26 
can produce substantially different and contrasting results, when the same RCM is used to downscale 27 
different GCMs (b, d), or the same GCM is downscaled by different RCMs (d, e). GCM1=IPSL-IPSL-28 
CM5A, GCM2=ICHEC-EC-EARTH, RCM1=RCA4, RCM2=REMO2009. 29 

 30 
[END FIGURE 10.21 HERE] 31 
 32 
 33 
10.5.1.1 Sources of climate information 34 
 35 
Regional climate information may be constructed from a range of sources, each resting on different 36 
assumptions and affected by different methodological limitations (Sections 10.2, 10.3 and 10.4). Depending 37 
on whether users of climate information select and analyse these sources themselves, or whether they engage 38 
with climate scientists in the construction of information, certain products may either be a source of 39 
information or an intermediate product in the construction process. Widely used sources are: 40 

 Extrapolation of observed historical trends into the future (e.g., Livezey et al., 2007; Laaha et al., 41 
2016). Given the role of internal variability for regional trends (Section 10.4), this approach is  42 

difficult to defend without other supporting evidence (Westra et al., 2010). 43 
 Direct use of the numerical output from GCMs, including high-resolution GCMs (Section 10.3.1). 44 

Model data may or may not be bias adjusted (Section 10.3.1.4 and Cross Chapter Box 10.2) or 45 
weighted (Section 10.3.4.4 and Box 4.1). 46 

 Use of the numerical output from dynamically (10.3.1.2) or statistically (10.3.1.4) downscaled GCM 47 
simulations. Model data may or may not be bias adjusted (in the case of RCMs, Section 10.3.1.4) or 48 
weighted (Section 10.3.4.4 and Box 4.1). 49 

 Use of process understanding about the drivers of regional climate variability and change, resting in 50 
theory about e.g., dynamics and thermodynamics of the climate system as a basis for process-based 51 
evaluation, or to better understand changes in relevant regional weather (Sections 10.1.4, 10.3.3.4, 52 
10.4.2). 53 

 Use of idealized scenarios of possible future climates (e.g., Hallegatte, 2014) to explore the 54 
implications and consequences of such scenarios. This approach has been used to explore the 55 
response to geoengineering (Cao et al., 2016), as well as alternative scenarios where model 56 
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projections are highly uncertain (Brown et al., 2016). 1 
 Access to information from the scientific and not peer-reviewed literature, including the engagement 2 

with climate scientists and local communities who may provide indigenous information 3 
(Rosenzweig and Neofotis, 2013). The scientific literature captures projections of climate change in 4 
a range of forms, and these may be directly accessed by users, incorporated in climate services, or 5 
form the foundations for experts consulted by users such as, for example, in communities of practice 6 
(Parker and Lusk, 2019), in a meta-analysis of papers to assess future heat mortality (Sanderson et 7 
al., 2017), or drawing on the communications to the UNFCCC about national adaptation. 8 

 9 
In addition to the difference in models used as sources, the resulting model data may stem from a range of 10 
different experiment types targeting different purposes (Section 10.3.2). Depending on the resources, one 11 
may even design model experiments specifically for a given use case such as for the construction of event 12 
storylines (Section 10.3.2.2). 13 
 14 
The diversity of sources may partly be explained by the large range of purposes (Sections 10.1‒10.3), such 15 
that different sources of regional information may be adequate to represent different aspects of the 16 
constructed information (Sections 10.3.3.4‒10.3.3.10). Regional climate information is also affected by 17 
substantial uncertainties in observational data (Section 10.2) and climate model simulations (Section 10.3). 18 
In addition, the complex interplay of different regional climate drivers and the internal variability play an 19 
important role (Section 10.4). Combinations of sources and hierarchies of model ensembles are thus required 20 
to address different aspects of the problem and to sample uncertainties as comprehensively as possible 21 
(Section 10.3.4). 22 
 23 
However, users of climate information may face the so-called practitioner’s dilemma: often a plethora of 24 
different and potentially incompatible datasets (Figure 10.21) are provided without a comprehensive and user 25 
relevant evaluation, as well as lacking a transparent and easily understandable explanation of underlying 26 
assumptions, strengths and limitations (Barsugli et al., 2013; Hewitson et al., 2014a). Often, the choice of 27 
information source is therefore not guided by selecting the most adequate sources of information, but rather 28 
determined by practical constraints such as accessibility and ease of use and may be limited to extreme cases 29 
like the use of just one model (Rössler et al., 2019a). In some contexts, the availability of information 30 
sources may also be strongly limited (section 10.5.2). 31 
 32 
 33 
10.5.1.2 Approaches to climate information and climate messages 34 
 35 
Historically, the construction of climate information has been embedded in a linear supply chain: extracting 36 
the source data, processing into maps or secondary data products, preparing the material for communication, 37 
and delivering to users. Such a chain, although it is intended to meet a demand for regional climate 38 
information, contains many assumptions that are not obvious to the recipients and that may introduce 39 
unforeseen propagation and growth of error, uncertainty and possible misunderstandings in the hand-over 40 
from one community to the next (Meinke et al., 2006; Lemos et al., 2012; Haines, 2019). This has led to the 41 
emergence of two new pathways for the production of regional climate information: the distillation from 42 
multiple lines of evidence in relation to the context of the information requirements (Section 10.5.4). and 43 
bottom-up approaches, also referred to as scenario-neutral impact studies (Brown et al., 2012, Prudhomme et 44 
al., 2010, Culley et al., 2016, Culley et al., 2016). The latter begins with the user’s articulation of 45 
vulnerability in the context of climatic and non-climatic stressors, follows with the definition of key system 46 
thresholds of climatic variables, and only incorporates climate data to assess the likelihood of threshold 47 
exceedances. Bottom-up approaches are special cases of robust decision making (Lempert et al., 2006; 48 
Lempert and Collins, 2007; Walker et al., 2013; Weaver et al., 2013), which are designed to account for 49 
uncertainties not represented by climate models as well as non-climatic stressors. Maraun and Widmann 50 
(2018) point out the danger of producing misleading results with these approaches, if not all relevant 51 
characteristics of climatic drivers of a given impact system are accounted for. As a response, regional climate 52 
change information is increasingly being developed through participatory and context-specific dialogues that 53 
bring together producers and users across disciplines, and define climate impacts as one of the many 54 
stressors shaping user decisions (Brown and Wilby, 2012; Lemos et al., 2012). 55 
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Thus, provision of climate change information for the integration in decision making (Brown and Wilby, 1 
2012; Lemos et al., 2012), from the perspective of the provider, relates to specific contexts of information 2 
requirements. This is increasingly recognized as paramount (e.g., Kruk et al., 2017) to construct information 3 
relevant for decisions at the regional scale and to include the user values in connecting the science with users 4 
(Parker and Lusk, 2019). 5 
 6 
 7 
10.5.1.3 Climate services in the context of the production of regional climate information 8 
 9 
“A climate service can be considered as the provision of climate information in such a way as to assist 10 
decision-making. The service needs to be based on scientifically credible information and expertise, have 11 
appropriate engagement from users and providers, have an effective access mechanism and meet the users’ 12 
needs” (Hewitt et al., 2012). Thus, climate services include the synthesis of context-relevant climate 13 
information (Guido et al., 2012) addressing a wide range of time scales that go beyond operational weather 14 
services (Brasseur and Gallardo, 2016). From this point of view, climate services are an instrument for the 15 
production of climate information in a co-production process that is inclusive, collaborative and flexible 16 
(Vincent et al., 2018). The historical development and role of climate services is discussed in Chapter 12. 17 
 18 
Different climate service providers use different approaches for constructing regional information. For 19 
example, the Swedish climate services (Kjellström et al., 2016) is focused on producing country-scale, high-20 
resolution climate projections using the Rossby Centre RCM RCA4. On the other hand, Cordex.be 21 
(Termonia et al., 2018b), an initiative for the foundation of climate services in Belgium, created a multi-22 
model small ensemble of high-resolution projections over Belgium at convection-permitting resolution and 23 
also used these to drive seven local impact models. Ekström et al. (2016) illustrated the potential pitfalls of 24 
GCM sub-sampling or the use of a single downscaled product when conducting impact, adaptation, and 25 
vulnerability research in Australia. They suggested the use of the widest range of climate change signals 26 
from all available model sources to best characterize the future and avoid possible mal-adaptation. Other 27 
examples of using high resolution downscaling products in a climate services context are the dynamical and 28 
statistical downscaling of global seasonal forecasts over Ethiopia (Nikulin et al., 2018; Tucker et al., 2018) 29 
or, at the urban scale, the future projection of extreme precipitation intensity-duration-frequency curves for 30 
climate adaptation in New York state (DeGaetano and Castellano, 2017). These examples suggest that there 31 
is high confidence (medium evidence, high agreement) that the development and value of climate services 32 
benefits from working in close collaboration with stakeholders and practitioners in a solution-oriented co-33 
development approach to generate climate information (Vincent et al., 2018). In this concept of climate 34 
services users can also participate in the underpinning research by defining their needs and by developing 35 
specific requests. The experience with climate services suggests that while there exists a diversity of 36 
perspectives around what constitutes co-production of climate information (Bremer and Meisch, 2017), there 37 
is a medium evidence and high agreement that processes that support collaborative learning and knowledge 38 
production involving a diversity of expertise including both climate scientists and decision makers, results in 39 
enhanced integration of science evidence into decision (Lemos et al., 2012; Bremer and Meisch, 2017). 40 
 41 
Climate services, apart from providing a mechanism or framework for the generation of climate messages, 42 
reports also entail a platform for the operational generation of climate information and messages. Climate 43 
services can also assist in decision-making, by periodic reports such as national assessment reports (Vincent 44 
et al., 2017) or even IPCC reports. 45 
 46 
 47 
10.5.2 How context frames the message construction 48 
 49 
10.5.2.1 Consideration of different contexts 50 
 51 
Climate messages seek to build knowledge for informing adaptation and policy through a process of 52 
distilling climate information that takes account of the context of both the producer and the user and their 53 
values. Hence, without a context for the message, the distillation of the climate information cannot meet the 54 
goal of informing adaptation and policy (Baztan et al., 2017; Cash et al., 2003; Lemos et al., 2012). Section 55 
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10.1.3 identifies three implicit framing issues to construct regional messages:  practical issues arising from 1 
the climate information sources, issues involving the context for constructing the messages, and difficulties 2 
in constructing messages by complex networks of practitioners. Of these, the social context leads the framing 3 
of subsequent decisions about the message construction. This requires a nuanced and holistic approach to 4 
recognize the complexity of a coupled social and physical system (Daron et al., 2014). For example, urban 5 
water managers must recognize the dependency of the city on different water resources and the interplay of 6 
both local and national government legislation that can involve a range of different constituencies and 7 
decision makers (Scott et al., 2018). 8 
 9 
Context plays a role in determining the risks that may affect human systems and ecosystems and 10 
consequently the information needs. Context may also limit the access to information. Hence, the context 11 
brings inherent constraints on how climate messages are constructed to be optimally aligned with the 12 
application purpose. Although contexts are unlimited in variety, some key contextual elements are: 13 

 Whether the problem formulation needs to be constructed through consultative activities that, for 14 
instance, help setting thresholds of vulnerability in complex urban or rural systems (Baztan et al., 15 
2017; Willyard et al., 2018) or is a more a matter of addressing a generic vulnerability already 16 
identified as in the case of the frequency of flood events or recurrence intervals of multi-year 17 
droughts (Hallegatte et al., 2013). 18 

 Societal capacity, such as cultural or institutional flexibility and willingness to respond to different 19 
messages (e.g., Hart and Nisbet, 2012; Kahan, 2012b, 2013). 20 

 The operational capacity of the different actors, which includes users, producers, and communicators 21 
(e.g., Gorddard et al., 2016; Sarewitz, 2004). 22 

 Potential contrasts in value systems like the different views of western countries compared to those 23 
of economies in transition or countries under development (Henrich et al., 2010a, 2010b). 24 

 The relative importance of climate change in relation to climate variability and non-climate stressors 25 
on the time/space scales of interest to the user, which at times are not the ones initially assumed by 26 
the producers (Otto et al., 2015). 27 

 Availability, timing and accessibility of the required climate information, including the availability 28 
of sources like observations, model simulations, literature and experts of the relevant regional 29 
climate (Mulwa et al., 2017). In developing countries, the availability of all or some of these sources 30 
may be limited (Dinku et al., 2014). 31 

 32 
These and other contextual issues frame subsequent decisions about the regional climate message 33 
construction. For example, an engineer typically seeks quantitative information, while the policy community 34 
may be more responsive to (complex) storylines (Section 1.4.3) and how messages are positioned within an 35 
identified risk framework (Figure 10.22). Multiple contexts can coexist and potentially result in competing 36 
approaches (for example, in relation to urban governance versus regional water resource management). 37 
 38 
 39 
[START FIGURE 10.22 HERE] 40 
 41 
Figure 10.22:Schematic of regional climate storylines consistent with a particular climate impact of concern (red), 42 

which is associated with a meteorological hazard such as a long-term trend or a short-term event. The 43 
hazard involves a combination of thermodynamic factors linked to regional warming and particular 44 
dynamical conditions. Storylines express the fact that the same antecedent conditions could have more 45 
than one explanation in terms of the role of greenhouse gas forcing, other forcings affecting the 46 
dynamical conditions that do not scale with global-mean warming (e.g. ozone depletion, regional aerosol 47 
forcing), and natural variability. The dark blue elements represent the specified elements that define the 48 
storyline. The thicker arrows indicate that regional warming is mainly determined by greenhouse gas 49 
forcing, whilst the dynamical conditions are mainly determined by natural variability. Adapted from 50 
Shepherd (2019). 51 

 52 
[END FIGURE 10.22 HERE] 53 
 54 
 55 
 56 
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10.5.2.2 Conditioning by values and expertise of different actors and communities 1 
 2 
Climate messaging is inherently influenced by the values of all parties: those constructing the message, those 3 
communicating the message, those receiving the message, and critically those who construct the problem 4 
statement which the message seeks to inform. Discussion here focuses on messages targeting regions.  A 5 
discussion of how values in the scientific community shape climate research appears in Section 1.2. A 6 
programme of research spanning several decades, 44 nations and over 25,000 respondents (Schwartz et al., 7 
2012) has identified that certain types of values cluster together. Research into climate change 8 
communication has confirmed that certain clusters of values are consistently associated with positive 9 
engagement with climate science messaging (Zia and Todd, 2010; Kahan, 2012a; Corner et al., 2014). 10 
However, for a message on regional climate change to be effective it needs to recognize and respond to the 11 
values of all parties (Figure 10.23), including those of the scientists, (e.g., Bessette et al., 2017; Cash et al., 12 
2003). Values introduce in the message construction the fact that the world is culturally, socially and 13 
economically heterogeneous, while until now the construction of messages has been mainly led by the 14 
scientific community of developed nations. The dialogue implied by Figure 10.23 is important for giving the 15 
message saliency and relevance, most notably when informing the complexity of risks for human systems 16 
and ecosystems and resilience in developing nations (e.g., Baztan et al., 2017). Part of the challenge with 17 
climate messages, especially for messages of impactful change, is that they can be based on a variety of 18 
disciplines and target people with a variety of backgrounds, which could give them differing sets of 19 
experiences, capabilities, and values, so that the messages may need to accommodate a range of normative 20 
lenses (Sarewitz, 2004; Rosenzweig and Neofotis, 2013; Gorddard et al., 2016). Lack of this recognition can 21 
make the message ineffective even if the climate information it is based on is of the highest quality. 22 
 23 
 24 
[START FIGURE 10.23 HERE] 25 
 26 
Figure 10.23:Effective messaging requires shared development of the actionable information that engages all parties 27 

involved and the values that guide their engagement. Participants in the development of climate messages 28 
come from varying perspectives, based in part on their professions and communities. Each of the three 29 
broad categories shown in the Venn diagram (U, P, R) is not a homogenous group, and often has a 30 
diversity of perspectives, values and interests among its members. The subheadings in each category are 31 
illustrative and not all-inclusive. The arrows connecting those categories represent the distillation process 32 
of providing context and sharing climate relevant information. The arrows that point toward the centre 33 
represent the distillation of climate messages that involves all three categories. 34 

 35 
[END FIGURE 10.23 HERE] 36 
 37 
 38 
There is a substantial body of evidence that shows that the receptivity of individuals to climate messages is 39 
strongly conditioned by motivated reasoning (Hart and Nisbet, 2012; Kahan, 2012b, 2013), wherein a 40 
person’s reception of climate information is influenced by the values of the community with which the 41 
person identifies. This can affect people of any political persuasion, which in turn affects how critically or 42 
approvingly they accept statements provided by the scientific community. Adherence to a community’s 43 
values forms part of an individual’s social identity (Hart and Nisbet, 2012). Fear of losing membership of the 44 
community can easily outweigh considerations of how believable statements about climate change might be 45 
(Hart and Nisbet, 2012). Individuals thus frame their analysis and understanding of climate messages in the 46 
context of cultural values espoused by their community (Hart and Nisbet, 2012; Kahan, 2012b, 2013; 47 
Campbell and Kay, 2014; Bessette et al., 2017; Tschakert et al., 2017; Vezér et al., 2018). In addition, 48 
political activists may purposely skew messages to motivate support of their partisans (Hamilton, 2011). 49 
 50 
Overcoming resistance to receiving a climate message is not simply a matter of presenting more information. 51 
However, simply presenting more information without recognizing the contextual elements of climate 52 
messaging listed in Section 10.5.2.1 is ineffective (Kahan, 2013). Rather, giving more information can 53 
harden an aversion to climate messages and the aversion, if present, can become stronger for people who are 54 
more scientifically literate: they feel more confident sifting through all sources of information to find support 55 
for their positions (Kahan, 2012b). Divisions over the uptake of climate messages can thus become stronger 56 
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with increased knowledge and, notably, with increased capacity for reflection (Kahan, 2013). A challenge of 1 
messaging, then, is that if it is not framed carefully, it may make the sceptical person less receptive to further 2 
messages about climate change (Hart and Nisbet, 2012; Shalev, 2015). 3 
 4 
Successful framing of climate messages thus seeks to identify interests in targeted groups that yield a 5 
common ground between the messenger and the recipients for viewing the messages and responding to them.  6 
Audiences may view climate change as a problem distant in time and space (Spence et al., 2012). Linking to 7 
climate-change impacts more immediate and local can overcome this psychological distancing (Wiest et al., 8 
2015; Polk, 2018). However, audiences may deny the messaging considered highly threatening (Brügger et 9 
al., 2015; McDonald et al., 2015). In addition, an important factor is recognizing that an aversion to climate 10 
change solutions, such as those that pose economic challenges (e.g. Bessette et al., 2017), may be a greater 11 
cause of a person’s negative response to climate messages than the message itself (Campbell and Kay, 2014). 12 
The proposed response measures may violate personal or community values, regardless of the level of 13 
acceptance of the message of climate change. Recognising this problem, successful framing and response 14 
have occurred when climate information is presented in a region-focused context with respect to a local 15 
challenge posed by climate change. Thus, two states in the United States of America with fairly conservative 16 
leadership, which tend to be more sceptical about climate change, have passed initiatives that respond to 17 
specific, local impacts of climate change: rising sea level in Florida and water-resource shortfalls in Arizona 18 
(Kahan, 2013). Key factors were recognizing a serious impact and avoiding a central motivation of fighting 19 
global climate change. Identifying positive outcomes of adaptation and mitigation efforts also appears to 20 
promote successful climate messaging (Bain et al., 2012). 21 
 22 
The effectiveness of climate messages can increase if developed in partnership with the communities for 23 
which the message is intended (Tschakert et al., 2016) (Figure 10.23), an approach that can inspire trust 24 
among all parties and at the same time promote a co-production process (Cash et al., 2003). Trust in the 25 
messenger thus acts as a heuristic shortcut, allowing the recipient to make decisions about what messages to 26 
believe (Slovic et al., 2004), and audiences have the greatest trust in messengers perceived to understand 27 
their context and share their values and identity (Corner et al., 2014). Such partnerships are expedited if the 28 
relevant climate information generation that leads to the messaging is transparent and accessible (Vezér et 29 
al., 2018). This is not always possible with climate and climate impacts simulation, but developing mental 30 
models can help, provided they are informed by values (Bessette et al., 2017). This does not preclude the 31 
climate-research community from taking steps to develop and convey messages. Indeed, communicating 32 
expert consensus about contested scientific issues is beneficial (Goldberg et al., 2019). Climate services, in 33 
particular, can become an effective means for taking messages from the climate community and crafting 34 
them to be consistent with the needs, interests and values of stakeholder communities. 35 
 36 
A regional message on climate change is intended to inform decision makers. There is high confidence 37 
(medium evidence and high agreement) that including users ensures that the context contributes to formulating 38 
the message, especially when the messaging involves complex, contextual details. As such, the context and 39 
values (of both users and producers) become a central component in the development of effective regional 40 
information for a number of applications. 41 
 42 
 43 
10.5.2.3 The relative roles of spatial and temporal resolution in relation to decision scale 44 
 45 
Climate processes occur on a range of spatial and temporal scales, from global to local, from centuries and 46 
longer to days or less (Section 10.1.2 and Figure 10.2). Similarly, decisions by stakeholders cover a range of 47 
spatial and temporal scales that can vary with the size of their jurisdiction and scope of activity, which 48 
determine their (spatial and temporal) decision scales. However, the link between decision scales and the 49 
spatial and temporal resolution of climate and related natural-system information is not straightforward, and 50 
failure to recognize mismatches between the two can undermine the effectiveness of messages (Cumming et 51 
al., 2006; Sayles, 2018). 52 
 53 
The scale of regional climate information does not have to be the same as the decision scale. For example, 54 
process-based storylines valid at large scales can be used to create messages that are relevant to making local 55 
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decisions. Thus, an expectation of increased multi-year drought episodes over a subcontinental region due to 1 
changes in circulation patterns can be relevant to decisions by an individual farmer. On the other hand, 2 
extreme precipitation processes can occur on scales of tens of kilometres and smaller and thus require high 3 
resolution climate information when projected future changes (e.g., Xie et al., 2015). An important factor to 4 
develop effective climate messages is matching through the distillation process the vulnerability of the social 5 
and economic systems, which range from, for instance, a farmer to a national agricultural ministry, with the 6 
most prominent changes in the natural system (Andreassen et al., 2018; O’Higgins et al., 2019). Thus, more 7 
sophisticated matching of spatial and temporal resolution of climate information with decision scales might 8 
require engagement across a hierarchy of governance structures at national, regional and local level (e.g., 9 
Lagabrielle et al., 2018). 10 
 11 
 12 
10.5.2.4 Addressing compound events and non-traditional variables 13 
 14 
Users often require and need information from compound events such as concurrent drought and heat waves 15 
(Zscheischler and Seneviratne, 2017) or concurrent precipitation and wind extremes (Martius et al., 2016) in 16 
the form of non-traditional diagnostics. These diagnostics are post-processed output from models and 17 
observations also known as hazards (Chapter 12) that are regional in nature: heat stress, heating degree days, 18 
cooling degree days, growing degree days, drought indices, fire-weather indices, or evaporation surplus. 19 
Compound events refer to the combination of multiple drivers and/or hazards that contribute to societal or 20 
environmental risk (Zscheischler et al., 2018). Because large impacts are often not linked to single climate 21 
extremes, a good understanding of compound events is critical for managing the climate-related risks for 22 
human systems and ecosystems (Leonard et al., 2014). Awareness for correlated hazards is increasing in the 23 
research community and crucial for risk assessment because compound hazards often lead to 24 
disproportionate damages. This has been shown for compound precipitation and wind extremes and their 25 
impacts on infrastructure (Martius et al., 2016), compound storm surge and rainfall extremes and associated 26 
flood damage (Wahl et al., 2015) and compound drought and heat and their effect on terrestrial carbon 27 
uptake (Zscheischler et al., 2014). 28 
 29 
Non-traditional variables here refers to those that are not part of standard climate model output (e.g. CMIP 30 
archives (Eyring et al., 2016a)) and that depend on multiple climate variables. Many, however, can directly 31 
be computed from the available climate model output. For instance, heat-stress indicators are typically based 32 
on some combination of temperature and humidity (Lee, 1980). Many impact assessments rely on absolute 33 
values of non-traditional variables. For instance, a heat index (i.e., an apparent temperature taking into 34 
account both air temperature and relative humidity) larger than 40.6°C is considered dangerous (e.g. 35 
Anderson et al., 2013). Similarly, energy consumption for heating and cooling of buildings relies on precise 36 
estimates of heating and cooling degree days. Crop models rely on the number of growing degree days. Fire 37 
warnings are issued when a specific fire-related indicators exceed a certain threshold (de Jong et al., 2016). 38 
Due to biases in climate models, assessing risks associated with climate through projections of non-39 
traditional variables is not straightforward and typically requires some sort of bias adjustment (Cross-40 
Chapter Box 10.2) of either the standard climate variables or the non-traditional variable. 41 
 42 
When events are very complex or rare, it is often difficult to assign likelihood to them. In such cases, 43 
storylines (Sections 1.4.3 and 10.5.3) can be used to explore potentially devastating events that would have 44 
low or unknown probabilities (Sutton, 2018). These are particularly helpful for studying compound and 45 
cascading events, which can often not be addressed by standard probabilistic frameworks. This is 46 
accomplished by presenting physically self-consistent unfolding of past events, or plausible future events or 47 
pathways, which frame risk for human systems and ecosystems in an event-oriented rather than a 48 
probabilistic manner, while providing a physical basis for partitioning uncertainty and explore the boundaries 49 
of plausibility (Shepherd et al., 2018). 50 
 51 
 52 
 53 
 54 
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10.5.3 Narratives and storylines 1 
 2 
Narratives and storylines are approaches that can be used to communicate climate change messages (e.g., 3 
Dessai et al., 2018; Fløttum & Gjerstad, 2017; Moezzi et al., 2017; Scott et al., 2018), or integrate climate 4 
information into an impact assessment (e.g., Strasser et al., 2019) (Figure 10.22; Section 1.4.3). 5 
Narratives/storylines have a purpose to develop evidence-based textual descriptions of some state of the past, 6 
present, and future climate, out of which many possible storylines of evolution and events may be 7 
constructed. For example, one may have a narrative based on evidence from CMIP5 or CMIP6, and there 8 
may be many storylines that connect the narrative to the user context in terms of pathways, events, impacts 9 
or consequences. It is recognized that there is need for expert judgment of projections of changing climate 10 
when using climate model output for adaptation and mitigation planning (Lempert et al., 2006; Thompson et 11 
al., 2016; Dessai et al., 2018). Storylines built on narratives of the projected change that can arise in many 12 
ways, allow tailoring them for their intended use (e.g., Zappa and Shepherd, 2017; James et al., 2015; 13 
Stevens et al., 2016; Hazeleger et al., 2015). Storylines may also be a core element in future thinking in 14 
decision making when messages are timed to support the application of new information in decision cycles 15 
or in a framework for future thinking (Corballis, 2019), or even as an approach to conveying information 16 
from climate models (Corballis, 2019). It is worth mentioning that, in a broader IPCC context, the term 17 
scenario storyline is used as a narrative description of a scenario (or family of scenarios) highlighting their 18 
main characteristics, relationships between key driving forces and the dynamics of their evolution as 19 
indicated in Chapter 1. 20 
 21 
The use of the terms narratives and storyline is not consistent in the literature. They could refer to using 22 
climate processes and expert elicitation to convey information and/or messages on regional precipitation 23 
(Dessai et al., 2018), plausible storylines of atmospheric circulation change and other physical processes 24 
(Hazeleger et al., 2015; Zappa and Shepherd, 2017) (Figure 10.22) or the interchangeable use of concepts 25 
beyond analytical approaches (Moezzi et al., 2017). The use of these terms ranges from early compound 26 
phrasing of narrative storylines (Schneider, 2001) to emergent transdisciplinary narrative framing (Scott et 27 
al., 2018) and storylines derived from mutually exclusive but equally plausible changes in the atmospheric 28 
circulation (Zappa and Shepherd, 2017). 29 
 30 
Storylines are complementary to data-based approaches such as ensemble means and probabilistic 31 
projections. They are especially valuable for recognizing, for instance, risks associated with the emergence 32 
of projected low-probability high-impact events. Storylines can be tailored to recognize the values and 33 
interests of the intended audiences (Kok et al., 2014; Hazeleger et al., 2015; Bhave et al., 2018), providing 34 
the sequences of weather and climate events, such as drought or pluvial episodes, that are part of the climate 35 
change scenario in a succinct, physically plausible manner (Hazeleger et al., 2015). 36 
 37 
Climate-related risks for human systems and ecosystems are typically greater in developing countries, owing 38 
in part to their greater vulnerability and lower capacity for adaptation (e.g. Bhave et al., 2016). Storyline 39 
development, however, can engage experts on a region’s climate (Dessai et al., 2018) and/or stakeholders 40 
(Bhave et al., 2018; Scott et al., 2018) to co-produce storylines that foster adaptive responses to efficiently 41 
account for the climate information needs of the region. 42 
 43 
 44 
10.5.4 Distillation and multiple lines of evidence 45 
 46 
The preceding sections laid out the diversity of sources of climate information (Section 10.5.1) and decision 47 
contexts (Section 10.5.2). Similar diversity also exists in the way users interact with climate science, ranging 48 
from data delivery with a focus on visualisation and user-friendly interfaces (e.g. portals), through to 49 
intensive long-term engagement with user communities deploying trans-disciplinary principles. As a result, 50 
also a range of approaches to distilling a climate message from different sources of information in a given 51 
context exist; Section 10.5.4.1 (below) provides examples. For simulations, in particular, confidence in 52 
projections of regional climate can be increased when comparing the response of processes at different scales 53 
across hierarchies of models. Recent coordinated modelling efforts spanning GCMs (CMIP; Eyring et al., 54 
2016), high-resolution GCMs (HighResMIP; Haarsma et al., 2016), standard RCMs (CORDEX; Giorgi and 55 
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Gutowski, 2015) and convection-permitting RCMs (Coppola et al., 2018) provide unprecedented 1 
opportunities to study the response of processes across a broad range of scales and thereby substantially 2 
increase our understanding of which models are adequate for which purpose. 3 
 4 
The term distillation lacks a clear definition yet speaks to the challenges of constructing or distilling 5 
messages of value to society from a diverse range of evidence that may contain disparate elements. In 6 
principle, distillation has two aspects, namely the construction of (potentially user-targeted) information and 7 
the construction of a climate message in a specific context, targeting a specific purpose and set of values. 8 
The former involves data distilled from multiple lines of evidence, using knowledge from experts and with 9 
uncertainties comprehensively assessed to give physically plausible climate information. The latter translates 10 
the information explicitly into the user context, such as by linking to experience, by formulating a narrative, 11 
by highlighting the relevance for the user context, or by putting into the context of non-climatic stressors. 12 
 13 
Distilling climate messages for a specific purpose involves including non-climate-scientists in the process of 14 
making assumptions, or at least guiding assumptions about the climate research conducted (Collins and Ison, 15 
2009; Wildschut, 2017; Bhave et al., 2018). Importantly, the application of trans-disciplinary engagement 16 
processes that emphasise the role of non-scientists in the learning and knowledge production process builds 17 
relationships and trust between information users and producers, which is arguably as important for the 18 
uptake of climate science into decision making as the nature of the climate information itself (Section 19 
10.5.2). Although there are multiple practical issues involving communication (Rössler et al., 2019), such as 20 
providing data in a format that users can read, being mindful of the contextual issues raised in Section 10.5.2 21 
allows non-scientists to be involved in decisions about approaches and assumptions for the distillation and 22 
thus take ownership of the resultant information and make informed decisions based on the distilled 23 
information and messages (Pettenger, 2016; Verrax, 2017). 24 
 25 
 26 
10.5.4.1 Information construction 27 
 28 
Data, either from observations or models, is in general not information, but may contain relevant information 29 
if interpreted appropriately (Hewitson et al., 2017). Relevance is controlled by a given user context and 30 
relates to the required time and space scales (Section 10.5.2.3), the characteristics of required variables, and 31 
the meteorological and climatic phenomena driving these variables (Section 10.1.3).  For example, if climate 32 
information for driving impact models is sought (e.g., McSweeney et al., 2015), the impact modelling 33 
analysis is the specific user context. 34 
 35 
Reconciling different sources of information has two aims: first, assessing the adequacy of different sources 36 
in the given context and thereby potentially omitting (or down-weighting) selected sources (Sections 10.3.3), 37 
and, second, integrating different sources into a broader picture within a context (Sections 10.3.4). The first 38 
aim may in principle lead to a reduction of uncertainty, whereas the second serves to sample uncertainty of 39 
different aspects of the given problem as comprehensively as possible. 40 
 41 
A non-comprehensive selection of approaches that may contribute to the construction of information is:  42 

 preselection of models based on a priori knowledge on their adequacy for a given context, e.g., based 43 
on resolution or structure (e.g. coupled vs. uncoupled model components, simulated processes, 44 
structure of statistical downscaling and bias adjustment methods); 45 

 overall assessment and inter-comparison of different sources of information, including hierarchies of 46 
models, identification of potentially conflicting results (Figure 10.21); 47 

 testing whether differences in simulations can be explained by internal variability, ideally by initial 48 
condition grand ensembles (Section 10.3.4.3); 49 

 assessing the interdependence of chosen models to identify the amount of independent information 50 
(Section 10.3.4.4); 51 

 process-based evaluation with focus on those processes that are relevant for the specific application, 52 
resulting in an assessment of fitness-for-purpose (Sections 10.3.4‒10.3.10); 53 

 tracing differences in projections to the representation of fundamental processes, e.g. by using 54 
storylines (Sections 10.3.4.2 and 10.5.3) or sensitivity simulations (Section 10.3.2.3); 55 
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 producing event storylines to explore uncertainties not sampled by available model ensembles 1 
(Shepherd et al., 2018), for example in pseudo-global warming experiments (Section 10.3.2.2); 2 

 comparing observed trends with projected trends, potentially to constrain projections with, for 3 
instance, the Allen-Stott-Kettleborough method (Allen et al., 2000; Stott and Kettleborough, 2002; 4 
Stott et al., 2013) to explain drivers of past observed trends (Section 10.4.2) to understand future 5 
trends; 6 

 integrating present-day performance via emergent constraints to reduce projection uncertainty 7 
(Section 10.3.2); 8 

 sub-selecting ensembles for further impact studies while sampling as much uncertainty as 9 
possible (Section 10.3.4.4); 10 

 possibly weighting or omitting models depending on the outcome of the evaluation (Section 11 
10.3.4.4); 12 

 constructing information on different physical aspects of the problem (e.g., changes in driving large-13 
scale circulation (Section 10.3.3.4) or changes in local convective precipitation (Section 10.3.3.5)) 14 
from potentially different sources of information; 15 

 using process understanding to develop possible events/storylines that have never happened before 16 
(Lin and Emanuel, 2016); 17 

 complementing the sources with expert judgement (e.g. integrating knowledge from theory or 18 
experience that is available from experts or the literature). 19 

 20 
These approaches can be used in combination to increase confidence in the climate information (Hewitson et 21 
al., 2017). The first step in the climate information distillation process is interrogating the user context to 22 
determine the best approaches, although there can be cases where the use context is essentially unknown. 23 
 24 
The provision of complete climate information includes explanations on the potential use and misuse of the 25 
product (Arnold; Street, 2016; Lamb, 2017) and documentation of the assumptions and choices made in 26 
producing the information. This is particularly relevant if the information is provided as a generic, publicly 27 
accessible product without a specific context (Hewitson et al., 2017). 28 
 29 
 30 
10.5.4.2 Barriers to message construction 31 
 32 
As implied by Section 10.5.2, meeting the needs of users can be a substantial challenge for climate scientists 33 
if they misunderstand user needs and context (Porter and Dessai, 2017). Several barriers in user communities 34 
can trigger and sustain this challenge. This can include an institutional aversion to incorporating new tools 35 
into decision making (Callahan et al., 1999). Coincident with this factor, there may be limited staff capacity, 36 
lack of management support and lack of a mandate to plan for climate change (Lee and Whitely Binder, 37 
2010). 38 
 39 
Following from those challenges, climate information and messaging production often occurs under the 40 
overarching assumption that uncertainty is a problem and reducing uncertainty is the priority (Eisenack et al., 41 
2014; Otto et al., 2016b). This is both a psychological barrier (Morton et al., 2011), as well as pragmatic 42 
barrier in cases where uncertainty appears to limit the ability to make decisions (Mukheibir and Ziervogel, 43 
2007). However, where in-depth engagements with decision contexts are undertaken, these initial barriers are 44 
often dismantled to reveal a more complex, nuanced and potentially more productive intersection with 45 
climate uncertainty (e.g., Lemos et al., 2012c; Moss, 2016b; Rice et al., 2009). Specifically, disclosure of all 46 
uncertainties in the climate information and messages, transparency about the sources of these uncertainties, 47 
and tailoring the uncertainty information to specific decision frameworks has the potential for reducing 48 
problems of distilling a message with uncertain climate information (Otto et al., 2016b). 49 
 50 
 51 
 52 
 53 
 54 
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10.6 Comprehensive examples of constructing regional climate messages 1 
 2 
10.6.1 Introduction 3 
 4 
Section 6 presents three comprehensive examples of constructing regional climate messages that integrate 5 
the multiple sources of regional climate information presented in this chapter. Examining the activities for 6 
constructing these messages exposes the strengths and challenges in linking the different sources, while also 7 
exposing the assumptions behind and consequences of decisions made in the process. The examples are 8 
framed within a human dimension to provide context for their regional climate messages. The recent Cape 9 
Town drought, the South Asian monsoon and the Mediterranean summer warming have been chosen, since 10 
most of the components for constructing regional climate messages outlined thus far in Chapter 10 are 11 
directly relevant to each case. 12 
 13 
The three comprehensive examples follow a similar structure: 14 

 Motivation and regional context 15 
 The region’s climate  16 
 Observational issues 17 
 Relevant anthropogenic and natural drivers 18 
 Model simulation and attribution over the historical period  19 
 Future climate information from global simulations 20 
 Future climate information from regional downscaling 21 
 Potential for abrupt change 22 
 Storyline and narrative approaches 23 
 Messages distilled from multiple lines of evidence 24 

 25 
Following this structure, construction of the regional climate message presented in these examples depends 26 
on an assessment of observational uncertainty (Section 10.2) and its role in determining the realism of a 27 
climate signal, the evaluations of model bias to judge the adequacy for purpose of a given model (Section 28 
10.3), and expert judgement. Accounting for these factors can lead to attribution of historical climate-change 29 
signals (Section 10.4). At the regional scale, attribution must also account for the interplay between 30 
externally forced signals and unforced, internal modes of variability; confirmation that an internal mode of 31 
variability has driven change at the regional scale is just as valuable for a stakeholder as any attribution to an 32 
external source. The sources of information that provide multiple lines of evidence for the messages may 33 
conflict, thus requiring distillation of the evidence (Section 10.5) to arrive at the most confident statements.  34 
When moving from global climate information to messages at the regional scale, following the structure 35 
above provides a basis for arriving at relevant, credible, salient and actionable climate messages. The 36 
comprehensive examples of distilling climate messages thus show the value of working with multiple lines 37 
of evidence to discern robust messages of climate change for a region.  38 
 39 
 40 
10.6.2 Cape Town drought 41 
 42 
10.6.2.1 Motivation and regional context 43 
 44 
Cape Town’s “Day Zero” water crisis in 2018 threatened a shut-down of water supply to 3.4 million 45 
inhabitants of the city and resulted in domestic water use restriction of 50 litres per person per day lasting for 46 
9 months, punitive water tariffs, and temporary closure of irrigation systems. Problems with water supply in 47 
many large cities in developing countries are endemic and rarely reported internationally. The water crisis in 48 
Cape Town attracted considerable international attention to a city with functional government structures, 49 
well developed services (compared to other urban centres in Africa), a centre of international tourism, and an 50 
economic hub with GDP of USD22 billion (~USD 6,000 per capita) (CoCT, 2018) that exceeds that of many 51 
developing countries. The crisis was widely seen as a harbinger of future problems to be faced by the city, 52 
and a highlight of vulnerability of many cities in the world resulting from interplay of three factors: 1) the 53 
fast urban-population growth, 2) the economic, policy, infrastructural and water resource paradigms and 54 
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constraints, and 3) anthropogenic climate change. 1 
 2 
The Cape Town’s crisis was a result of a combination of a strong multi-year meteorological drought (Figure 3 
10.24), the severity of which is estimated at 1 in 300 years (Wolski, 2018), and factors related to the nature 4 
of the water supply system, operational water management and water resource policies. Cape Town was very 5 
successful in implementing water saving actions after the previous drought of 2000–2003, reducing water 6 
losses from over 22% to 15.2% (Frame and Killick, 2007; DWA, 2013), in effect decoupling a previous link 7 
between population and growth in water demand. As a consequence, Cape Town won a Water Smart City 8 
award only three years prior to the crisis. The water-saving actions, together with changing priorities in water 9 
resource provision from infrastructure-oriented towards resource and demand management, have likely led 10 
to delays in implementation of the expansion of water supply infrastructure (Muller, 2018). The expansion 11 
plan, formulated a decade prior to the crisis, fully anticipated long-term climate change-related drying in the 12 
region (DWAF, 2007). The crisis also exposed structural deficiencies of water management and inadequacy 13 
of the policy model where decisions about local water resources are taken at a national level, particularly in a 14 
situation of political tension (Visser, 2018). 15 
 16 
 17 
[START FIGURE 10.24 HERE] 18 
 19 
Figure 10.24:Historical and projected rainfall and Southern Annular Mode (SAM) over the Cape Town region. (a) 20 

Yearly accumulation of rainfall (in mm) obtained by summing monthly totals between January and 21 
December, with the drought years 2015‒2017 highlighted in color. (b) Monthly rainfall for the drought 22 
years (in color) compared with the 1981‒2014 climatology (grey line). Rainfall in (a) and (b) is the 23 
average of 20 quality controlled and gap-filled series from stations within the Cape Town region (31ºS‒24 
35ºS, 18ºW‒20.5ºW). (c) Time series of historical and projected rainfall anomalies (%, baseline 1980–25 
2010) over Cape Town region and SAM index. Observed data presented as 30-year running means of 26 
relative total annual rainfall over the Cape Town region for station-based data (black line, average of 20 27 
stations as in (a) and (b)), and gridded data (average of all grid cells falling within 31ºS‒35ºS, 18ºW‒28 
20.5ºW): the Global Precipitation Climatology Centre (GPCC) version 2018 (Schneider et al., 2017) 29 
(brown line) and the Climate Research Unit (CRU TS) version 4.03 (Harris et al., 2014) (green line). 30 
Model ensemble results presented as the 90th-percentile range of relative 30-year running means of 39 31 
CMIP5 (blue shading), 12 CMIP6 (red shading), 6 COREX driven by 1 to 10 GCMs (orange shading) 32 
and 6 CCAM (green shading) individual ensemble member’s rainfall, respectively. SAM calculated from 33 
sea-level pressure  reanalysis and GCM data as per Gong and Wang (1999) and averaged over the 34 
aforementioned bounding box. The orange, green and grey lines correspond to NCEP/NCAR (Kalnay et 35 
al., 1996), ERA20C (Poli et al., 2016b) and 20CR v3 (Slivinski et al., 2019), respectively. (d) Historical 36 
and projected trends in rainfall over the Cape Town region and in SAM index. Observations and gridded 37 
data processed as in (c). Trends calculated as Theil-Sen trend with block-bootstrap confidence interval 38 
estimate. Markers show median trend, bars 95% confidence interval. GCMs in each CMIP group ordered 39 
according to the magnitude of trend in rainfall, and the same order is maintained in panels showing trends 40 
in SAM. 41 

 42 
[END FIGURE 10.24 HERE] 43 
 44 
 45 
Economic and social impacts of the crisis were significant. Loss of revenue of companies of all sizes resulted 46 
from the scaling down of water-dependent activities, but also from the need to invest in water efficient 47 
technologies and processes. The upside, however, is that the latter likely increased city’s resilience in the 48 
long-term. Tourism was affected too through reduced arrivals and bookings, although only temporarily 49 
(CTT, 2018). In the agricultural sector, 30,000 people were laid-off and production dropped by 20%  50 
(Piennaar and Boonzaaier, 2018). The crisis initially polarized the society, with conflict emerging between 51 
various water users and erosion of trust in the government, but eventually social cohesion and an acute 52 
awareness of water resource emerged (Robins, 2019). 53 
 54 
 55 
 56 
 57 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-110 Total pages: 236 
 

10.6.2.2 The region’s climate 1 
 2 
An evaluation of the relative role of rainfall and temperature signal in the 2015–2017 hydrological drought 3 
gives a strong indication that lack of rainfall was the primary driver (Otto et al., 2018). Thus, the remainder 4 
of this section focuses on rainfall. 5 
  6 
Cape Town is located at the south-western tip of Africa, with an approximately 100 km x 300 km region 7 
receiving 80% of its rainfall during the austral winter, spanning March to October, with the largest portion in 8 
JJA. The region is surrounded by arid and semi-arid regions with summer rainfall regime. In the vicinity of 9 
Cape Town, rainfall is strongly heterogeneous, ranging from ~300 mm/year in coastal plains to >2,000 10 
mm/year in mountain ranges. The Cape Town water supply relies on surface water reservoirs located in and 11 
supplied from a few small (~800 km2 in total) mountain catchments. Cape Town’s region receives 85% of its 12 
rainfall from a series of cold fronts forming within the mid-latitude cyclones. The remainder is brought in by 13 
infrequent cut-off lows that occur throughout the year (Favre et al., 2013). This creates a very strong water 14 
resource dependency on a single rainfall delivery mechanism, which is potentially strongly affected by 15 
anthropogenic climate change (Section 10.6.2.3). 16 
 17 
The climatic event underlying the crisis was a multi-year drought, with strong rainfall anomalies in shoulder 18 
seasons (March to May, MAM, and less strongly in September to November), and average rainfall in June 19 
and July (Sousa et al., 2018a; Mahlalela et al., 2019). The anomaly resulted from fewer rainfall events and 20 
lower average intensity of events. The anomaly was strongest in the mountainous region where water supply 21 
system’s catchments are located (Wolski et al., submitted). 22 
 23 
Although the 2015–2017 drought was unprecedented in the historical record, Cape Town has experienced 24 
other droughts of substantial magnitude, notably in the 1930s, 1970s and more recently in 2000‒2003. Long 25 
term (>90 years) rainfall trends are mixed in sign, location-dependent, and weak (Kruger and Nxumalo, 26 
2017; Wolski et al., submitted), and mixed in sign in mid-term (~50 years; MacKellar et al., 2014).  In the 27 
south-western part of the region, rainfall is mostly decreasing in the post 1981 period, particularly in DJF 28 
and MAM, although there is no trend or a weak wetting in JJA (Sousa et al., 2018; Wolski et al., submitted).  29 
Rainfall trends of similar magnitude and duration to the post-1981 trend accompanied previous strong 30 
droughts in the region (Wolski et al., submitted). 31 
 32 
 33 
10.6.2.3 Observational issues 34 
 35 
Compared to other African countries, South Africa and the Cape Town region have good instrumental 36 
weather data. Records start in late 1800s, with in excess of 10 gauges reporting since 1920s, expanding to 37 
~80 gauges in 1980s, and reduction in number or rain gauges since. Few records are available in the 38 
mountains receiving more than 1,000 mm/year. In view of strong heterogeneity of rainfall, the changes in 39 
number of stations contributing to datasets such as CRU and GPCP results in their unreliability in the region  40 
(Wolski et al., submitted) (Figure 10.25). 41 
 42 
Paleoclimate studies reveal that long-term rainfall variability in the winter rainfall region of South Africa is 43 
consistent with the general model relating it to the warming/cooling-induced latitudinal migration of the 44 
westerlies and transformation of the sub-tropical high pressure belt and associated hemispherical processes 45 
(Section 10.2.3.3 for further discussion of paleoclimate analysis). Winter and summer rainfall regions are 46 
characterized by opposite rainfall anomalies, with higher rainfall in the former associated with lower rainfall 47 
in the latter, and vice versa, which reflects the mid-latitude and tropical control respectively (Hahn et al., 48 
2016). The synchronicity of winter rainfall with Antarctic ice core-derived polar temperature anomalies is 49 
consistently revealed in studies using different paleo-climate proxies and time scales of 1.4k (Stager et al., 50 
2012), ~3k (Hahn et al., 2016) and 12k years (Weldeab et al., 2013). This general pattern is consistent with 51 
patterns detected in other austral winter rainfall regions (South America and Australia/New Zealand) as 52 
shown by the common drying trend during the Medieval Climate Anomaly (900‒1400 AD) and wetting 53 
during Little Ice Age (1400‒1800 AD). However, region-to-region differences in rainfall regimes arise at 54 
shorter (decadal) time scales that likely reflect influence of locally-relevant processes in each of the southern 55 
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ocean's basins affecting these regions and modifying the influence of the position of the westerlies (Stager et 1 
al., 2012). In the case of South African winter rainfall region, these specific factors likely include the 2 
Agulhas current's interaction with the Atlantic, resulting in changes in SST and coastal upwelling, as well as 3 
modification of the wind tracks by topography (Stager et al. 2012). 4 
 5 
 6 
10.6.2.4 Relevant anthropogenic and natural drivers 7 
 8 
Considering the primary rainfall delivery mechanism, frontal rain, the dominant large-scale drivers of 9 
relevance are those that affect the cyclogenesis, frontogenesis and the latitudinal position and moisture 10 
supply of the mid-latitude westerlies. From that perspective, the region’s rainfall is linked to the Antarctic 11 
Oscillation (AAO; Reason and Rouault, 2005) or Southern Annual Mode (SAM), the dominant monthly and 12 
interannual mode of Southern Hemisphere atmospheric variability, and a measure of the pressure gradient 13 
between high and mid-latitudes. The Cape Town region’s rainfall is also potentially linked to other 14 
hemispheric phenomena, such as the expansion of the tropics and, specifically, the South Atlantic high-15 
pressure system and the position of the subtropical and polar jets that although influenced by the SAM/AAO 16 
also vary independently of it. 17 
 18 
The relationships between these phenomena and Cape Town rainfall have not been thoroughly investigated 19 
outside of the context of the 2015–2017 drought, but the drought itself was associated with the poleward 20 
expansion of the subtropical anticyclones in the South Atlantic and South Indian Oceans and (a resulting) 21 
poleward displacement in the moisture corridor across the South Atlantic (Sousa et al. 2018), as well as a 22 
weaker subtropical jet (Mahlalela et al., 2019). Burls et al. (2019) also link the decline in rainfall days to the 23 
increase in sea-level pressure along the poleward flank of the South Atlantic high-pressure system and the 24 
intensity of the post- frontal ridging high. Additionally, there is a possible linkage between rainfall and near-25 
shore SST cold anomalies arising due to upwelling driven by Ekman transport related to the reduction of 26 
westerly and increase in the south-easterly winds. These might lead to suppression of convection and reduction 27 
of rainfall over land (Rouault et al., 2010). All these phenomena are conceptually consistent with the poleward 28 
migration of the westerlies and expansion of the tropics. 29 
 30 
Rainfall in the Cape Town region also responds to SST anomalies in the Southeast Atlantic, including the 31 
Agulhas Current retroflection region, which may drive intensification of the low-pressure systems, leading to 32 
the trailing front strengthening as it makes landfall over the Cape Town region (Reason and Jagadheesha, 33 
2005). There are also linkages at seasonal time scale between the Cape Town region’s rainfall and Antarctic 34 
sea ice (Blamey and Reason, 2007). 35 
 36 
In addition to the mid-latitude controls, sub-tropical processes also play the role in the Cape Town region’s 37 
rainfall variability. The 10˚‒30˚S region of sub-tropical Atlantic, parts of South American continent and even 38 
parts of the African continent north of Cape Town are sources of moisture to atmospheric river events 39 
contributing to frontal rainfall (Blamey et al., 2018; Ramos et al., 2019), with implications for the 2015‒40 
2017 drought (Sousa et al., 2018a). Also, the second major rainfall contributing system, cut-off-lows, is 41 
conditional on moisture supply from the sub-tropics (Abba Omar and Abiodun, 2020). 42 
 43 
In spite of evidence linking the drought and recent rainfall trends to the hemispheric process of poleward 44 
migration of the westerlies, at annual time scale, correlations between the Cape Town region’s rainfall and the 45 
main index expressing that process, i.e., the SAM/AAO, are, however, weak and suggest domination of local 46 
circulation anomalies over hemispheric forcing (e.g., Seager et al., 2019), with stronger relationships at near-47 
decadal time scales (Reason and Rouault, 2005). Note also that, while in the post-1930 period, the SAM/AAO 48 
displays a long-term trend, the Cape Town region’s rainfall does not, and only the post-1979 trends of 49 
rainfall and SAM/AAO are conceptually consistent (i.e. upward trend in the SAM/AAO is associated with a 50 
downward trend in rainfall (Section 10.6.2.5 and Figure 10.24). Also, there is good agreement between the 51 
seasonality of the SAM/AAO and rainfall trends in the post-1979 period: a drying trend appears strongly in DJF 52 
and MAM, but not in JJA and September to November (Wolski et al., submitted), and trends in the SAM/AAO 53 
have similar seasonal dependence (Lim et al., 2016b). Additionally, there is a similar seasonal pattern in the post-54 
1979 trends in indices capturing the southern edge of the tropical high pressure cell (Grise et al., 2018). 55 
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In the longer-term, Cape Town region rainfall is characterized by a multi-decadal scale quasi-periodicity 1 
(Figure 10.24; Dieppois et al., 2019; Wolski et al., submitted), with the 2015‒2017 drought, and previous 2 
strong droughts (1930s and 1970s) occurring during its low phases. However, the studies linking the Cape 3 
Town 2015‒2017 drought to the hemispheric processes expressed by the SAM/AAO (Sousa et al., 2018a; Burls et 4 
al., 2019; Mahlalela et al., 2019) focused almost exclusively on the post-1979 period, when global reanalyses are 5 
available. The detailed understanding of drivers of previous (1930s and 1970s) Cape Town region droughts 6 
and the role of hemispheric processes expressed by the SAM/AAO in the pre-1979 period is missing. 7 
 8 
The SAM/AAO varies with a characteristic decorrelation time of ~2 weeks, but its low frequency variability 9 
is influenced by GHGs (Fyfe et al., 2012), stratospheric ozone (Arblaster et al., 2011; Thompson et al., 2011) 10 
and ENSO (Lim et al., 2016a). The historical trend in the SAM/AAO is related to ozone depletion, and the 11 
influence of GHGs on the SAM/AAO is similar in nature to that resulting from the depletion of ozone in the 12 
Antarctic. The ongoing ozone recovery compensates for the GHG increase, but the GHG increase is 13 
projected to dominate after 2045 (Barnes et al., 2014a). The influence of ozone, however, appears mostly in 14 
the austral summer the SAM/AAO state, and it is thus uncertain whether or not ozone dynamics have 15 
impacts on austral winter rainfall in general, and the Cape Town region’s winter and early winter rainfall in 16 
particular. 17 
 18 
The relationship between ENSO and Cape Town’s rainfall is weak and time-inconsistent, showing the 19 
strongest impact in May to June (Philippon et al., 2012). During the drought, there was an El Niño event in 20 
the 2015‒2016 season, but during the rest of the drought period ENSO was in a neutral state, and no 21 
relationship between ENSO on the drought has been elucidated (Sousa et al., 2018a; Mahlalela et al., 2019). 22 
ENSO, however, influences large scale processes and phenomena described earlier that are of relevance from 23 
the drought perspective.  The relationship between ENSO and the SAM/AAO is complex, with various 24 
ENSO “flavours” influencing the SAM/AAO differently in different seasons (Ding et al., 2012). Similarly, 25 
ENSO impacts meridional circulation and thus the subtropical anticyclone as well as the polar and sub-26 
tropical jets (Seager et al., 2019), however, modifying rather than driving their role in Cape Town’s rainfall. 27 
 28 
 29 
10.6.2.5 Model simulation and attribution over the historical period 30 
 31 
Due to the small scale of the Cape Town region, it is difficult to robustly compare CMIP5 GCM simulations 32 
to observations. However, in general, the CMIP5 models capture well the nature of seasonality, such as the 33 
dominance of austral winter rains, although they overestimate the peak and underestimate the shoulder 34 
season rainfall (Mahlalela et al., 2019). Trends in rainfall are particularly difficult to assess as they are 35 
generally weak and depend strongly on the time period and dataset adopted for the analyses. Throughout the 36 
20th century, ~50% of CMIP5 and CMIP6 GCMs simulate a significant decline in total annual rainfall, which 37 
is not consistent with the lack of robust long-term trend in observations (Figure 10.24). 38 
 39 
Models capture the overall manifestations of the observed main hemispherical processes, such as the 40 
expansion of tropics, positive trend in the SAM/AAO and the poleward shift of the westerly jet.  However, 41 
they fail to capture details of their observed climatology and variability (Simpson and Polvani, 2016), and 42 
the magnitudes of simulated trends vary, though the models typically underestimate observed trends (Purich 43 
et al., 2013; Staten et al., 2018). In general, although CMIP5 models fail to capture the influence of ENSO 44 
on the SAM/AAO on a month-to-month basis, they do capture the SAM/AAO-regional rainfall association, 45 
although not consistently across all seasons (Purich et al., 2013; Lim et al., 2016b). 46 
 47 
 48 
10.6.2.6 Future climate information from global simulations 49 
 50 
CMIP5 and CMIP6 models show strong consistency in a drying signal for the Cape Town region, with the 51 
reduction in total annual rainfall ranging up to 20% by the end of the twenty-first century (Almazroui et al. 52 
(submitted); Figure 10.24). This is a robust signal across the ensembles compared to the summer rainfall 53 
region of southern Africa, where the climate change signal varies spatially: stronger drying in the west and 54 
moderate drying or weak wetting in the east (DEA, 2013, 2018) (see Atlas.5.2 for further discussion of 55 
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southern Africa precipitation projections). Rainfall changes projected for the Cape Town region are 1 
consistent with projected changes in hemispherical-scale processes and regional scale dynamics that point 2 
toward reduced frequency of frontal systems affecting that region. There is a robust signal in CMIP5 models 3 
for the Southern Hemisphere in terms of poleward expansion of the tropics (Hu et al., 2013b), poleward 4 
displacement of mid-latitude storm tracks (Chang et al., 2012), increase in strength and a poleward shift of 5 
the westerly winds (Bracegirdle et al., 2018) and sub-tropical jet-streams (Chenoli et al., 2017), and a shift 6 
toward a more positive phase of the SAM/AAO (Lim et al., 2016b). 7 
 8 
However, there is also a substantial increase in the frequency of atmospheric rivers and integrated water 9 
vapour transport towards the Southwest coast of southern Africa in the projected climate (Espinoza et al., 10 
2018). This behaviour has strong implications for the region, as most topographically high locations receive 11 
rainfall from persistent atmospheric rivers (Blamey et al., 2018), and reduction of tropical moisture transport 12 
was identified by Abba Omar and Abiodun (2020) as one of the significant drivers of the 2015‒2017 13 
drought. A thorough understanding of the role of atmospheric rivers in the Cape Town region under 14 
changing climate is missing. 15 
 16 
 17 
10.6.2.7 Future climate information from regional downscaling 18 
 19 
Dynamical downscaling studies implemented with a stretched-grid CCAM model (Engelbrecht et al., 2009) 20 
revealed a signal compatible with the GCM ensemble, i.e., consistent drying throughout the region, 21 
amplifying in time, irrespective of the considered GHG emission scenario and the generation of GCMs 22 
(DEA, 2013, 2018). More recent high-resolution (8 km) simulations confirm a similar direction of future 23 
change. A multi-model CORDEX ensemble indicates a robust signal of reduction of total annual rainfall in 24 
the future, although there is less agreement on how changes in rainfall occurrence may evolve in the region, 25 
such as whether through fewer consecutive rain days or longer dry spells (Abiodun et al., 2017; Maúre et al., 26 
2018). For the end of the century under RCP8.5, Dosio et al. (2019) compared a CORDEX ensemble with its 27 
driving GCMs and showed that the drying is associated with an increase in the number of consecutive dry 28 
days and a reduction in number of rainy days. These results are consistent with the driving GCMs for all the 29 
precipitation indices, and they are robust independently of the choice of the RCM or GCM. 30 
 31 
Statistical downscaling results using a perfect-prog method (Hewitson and Crane, 2006; Section 10.3.1.4.1), 32 
in contrast to the overall drying simulated by GCMs, indicate possible wetting in the region, particularly in 33 
the mountainous catchments (DEA, 2013). While the result is theoretically justifiable by thermodynamic 34 
considerations in a warming climate, it is possible that this is a spurious effect resulting from the fact that the 35 
method was applied using predictor variables that inadequately reflect drivers of rainfall variability in the 36 
region (Wolski et al., 2018). There is not enough understanding of the interplay of dynamic and 37 
thermodynamic effects on rainfall in the strongly topographically diverse region of Cape Town, however, to 38 
dismiss the perfect-prog projections outright, although they remain discounted in view of other sources of 39 
information. 40 
 41 
 42 
10.6.2.8 Potential for abrupt change 43 
 44 
Since the rainfall delivery mechanisms in the region are strongly conditional on the latitudinal position of the 45 
mid-latitude westerlies and storm track, a question arises as to whether it is possible for the region to 46 
experience a threshold-controlled rainfall regime shift, and whether the 2015–2017 drought is simply a 47 
manifestation of such as shift. Such a situation might have occurred in Perth, Australia, which is located in a 48 
climatological setting almost identical to that of Cape Town. In Perth, patterns in the 120-year river runoff 49 
record have been interpreted as several events of step change (as for example illustrated in Figure 11.3 of 50 
Hennessy et al., 2007) shifting the region to a “permanent drought” situation. However, Bates et al. (2010), 51 
Hughes et al. (2012), and Smith and Power (2014) showed that the decline in the annual inflow is more 52 
consistent with a smooth declining trend than with a sequence of sharp breaks (see Section 10.4.1.2.3 for 53 
further discussion of past behaviour of southern Australia precipitation trends). 54 
 55 
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In terms of paleoclimate indicators of regime shifts, multi-proxy and modelling studies indicate that mid-1 
Holocene and more recent climate evolution in the winter South African rainfall region had a character of 2 
gradual desertification and wetting, with no abrupt changes (Weldeab et al., 2013). In these multi-proxy 3 
analyses, Weldeab et al., (2013) found that the gradual aridification was accompanied by an increase in an 4 
easterly hot wind flowing off the edge of South Africa’s interior plateau, a weakening of the southern 5 
Benguela Current upwelling and Agulhas Current leakage into the southern Atlantic from the Indian Ocean. 6 
These effects are consistent with a southward migration of the mid-latitude westerlies. The behaviour 7 
indicates that at least within range of the climate variability experienced in the last 12k years, an abrupt shift 8 
of the rainfall regime in the Cape Town region is unlikely. 9 
 10 
 11 
10.6.2.9 Storyline and narrative approaches 12 
 13 
There is a consistency in rainfall projections with projections of drivers of rainfall, and with the general 14 
understanding of the influence of warming on the circulation dynamics and rainfall patterns in the region.  15 
Thus, the expansion of the south Atlantic high-pressure system, related to widespread warming of the tropics 16 
and poleward shift of the subsiding limb of the Hadley cell, is associated with the southward displacement of 17 
the sub-tropical jet, and southward migration of mid-latitude westerlies and storm tracks, in addition to 18 
changes in the SAM/AAO. These effects are also relatively consistent with recent (post-1980s) declines in 19 
rainfall in the Cape Town region. There is, however, little consistency in the long-term, with previous 20 
droughts in the 20th century not clearly reflecting GHG-related trends, and with an overall weak or 21 
increasing rainfall at the time scale of 90 or more years (Kruger and Nxumalo, 2017; Wolski et al., 22 
submitted; Figure 10.24). In spite of this inconsistency, the overall message is that of a drier future, with 23 
either a warmer and drier climate or a much warmer and considerably drier climate. These messages are 24 
reinforced by results of a 2015–2017 drought multi-method attribution study (Otto et al., 2018), which 25 
estimated the probability of the event to have increased by a factor of 3 since pre-industrial times (although 26 
with a wide 95% confidence interval of 1.5 to 6), and to have a further factor of 3 increase in a world 27 
experiencing further warming to 2˚C above pre-industrial levels. 28 
 29 
 30 
10.6.2.10  Messages distilled from multiple lines of evidence 31 
 32 
There is medium confidence that the recent (post-1979) downward trend in the Cape Town region’s rainfall 33 
leading to the 2015‒2017 drought is related to hemispheric processes of poleward shift in the westerlies and 34 
expansion of the tropical high-pressure cell, supported by a high agreement among observational data and 35 
reanalyses, but less so in historical CMIP5 and CMIP6 model experiments. 36 
 37 
There is high agreement among multiple sources giving high confidence that precipitation in the Cape Town 38 
region will likely decrease toward the end of the 21st century. This conclusion is supported by the high 39 
agreement in projections of key circulation mechanisms, including the southward shift in the Southern 40 
Hemisphere of the mid-latitude westerlies, storm tracks, subtropical jet and subsiding branch of the Hadley 41 
cell. A potentially counteracting feature is the behaviour of atmospheric rivers, whose impact on the region’s 42 
precipitation needs further study. 43 
 44 
The message of a drier future in the Cape Town region gains confidence by a distillation process that shows 45 
agreement among several lines of evidence: the projected precipitation by GCMs and RCMs of different 46 
spatial resolutions, and the observed and projected changes of circulation patterns consistent with dryer 47 
conditions. However, the distillation is limited by a lack of information about certain physical relationships, 48 
such as whether or not a relationship between Cape Town precipitation and large-scale circulation processes 49 
also occurs over longer historical periods than just the post-1979 decades, and how compensating changes in 50 
GHGs and Antarctic ozone will influence circulation changes over the twenty-first century. 51 
 52 
 53 
 54 
 55 
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10.6.3 Indian summer monsoon 1 
 2 
10.6.3.1 Motivation and regional context 3 
 4 
Societies in South Asia are finely attuned to the summer monsoon; for India alone, the monsoon between 5 
June and September provides 80% of the annual rainfall, supplying the majority of water resources for 6 
agriculture, industry, drinking and sanitation of over a billion people. As such, any variations in the monsoon 7 
on time scales from days to decades can have large impacts (Challinor et al., 2006; Gadgil and Gadgil, 8 
2006). There is therefore a pressing need to understand if the monsoon will change in the future under 9 
anthropogenic forcing and to quantify any such changes. 10 
 11 
In studies going back several decades, the monsoon has been suggested to increase in strength in future 12 
projections under idealised enhanced CO2 forcing, supported by the theory of greater availability of moisture 13 
in a warmer climate. It was therefore puzzling that little trend was observed in central India up to the turn of 14 
the 21st century, with increases in extreme rainfall events compensating for decreases in light and moderate 15 
rain (Goswami et al., 2006b). Further analysis of trends in a variety of datasets has shown consistent negative 16 
trends since the 1950s until the turn of the century (Bollasina et al., 2011; Jin and Wang, 2017). This 17 
opposition between idealised or theoretical future projections and observed historical trends makes the 18 
region an ideal topic for the more in-depth assessment described here. 19 
 20 
Simulation of the Indian monsoon over the historical period in CMIP-class GCMs is poor, with consistent 21 
deficiencies in summer rainfall in CMIP3 and CMIP5 models (Sperber et al., 2013; also Chapter 8). The 22 
region is also the subject of coordinated modelling under the Global Monsoon MIP (GMMIP; Zhou et al., 23 
2016) and regional efforts such as CORDEX South Asia (Gutowski Jr. et al., 2016; Choudhary et al., 2018), 24 
sometimes with contradictory outcomes. Research has begun to apply emergent-constraint techniques to the 25 
Indian monsoon (Li et al., 2017b), while alternatively, narratives approaches are also beginning to be 26 
employed (Dessai et al., 2018). 27 
 28 
 29 
10.6.3.2 The regional climate of India 30 
 31 
The geography of India gives rise to distinct differences in societal experience of the monsoon and its 32 
impacts. India is bounded on its west coast by the Western Ghats mountain range, leading to orographic 33 
enhancement and heavy rains as the monsoon flow (known as the Somali jet) hits from the southwest; these 34 
rains supply rivers with water for much of the southern peninsula. To the east of the Western Ghats, south-35 
eastern India sits under a rain shadow (this is the only major part of India to receive more rainfall during the 36 
winter monsoon season). The northern plains region contains the Ganges river basin and has India’s most 37 
intensive agriculture, the crops either being rainfed or irrigated from the Ganges, associated canals, or 38 
groundwater pumping. Synoptic systems known as monsoon depressions are incident upon India’s northeast 39 
coast, bringing much of the rain to the northern plains. Further north, the Himalayas also experience heavy 40 
precipitation; in the eastern Himalayas, this is dominated by the summer monsoon, while the western 41 
Himalayas receive most precipitation from western disturbances during winter (Palazzi et al., 2013). 42 
 43 
 44 
10.6.3.3 Observational issues for India 45 
 46 
India has an extensive network of rain gauges dating back to the 19th century. This has led to the production 47 
of several gridded products for model evaluation (Prakash et al., 2015) and analysis of climate trends (e.g. 48 
around 2,000 quality controlled gauges consistently reporting since the early 1950s, Rajeevan et al., 2006). A 49 
smaller subset of 306 stations has operated since the early 19th century and reveals pronounced decadal 50 
variability (e.g., Sontakke et al., 2008). A more recent 0.5-gridded dataset begins in the 1970s, but it is 51 
clearly acknowledged as unsuitable for climate trend analysis, since there are critical inhomogeneities in 52 
station distribution and reporting over time (Rajeevan and Bhate, 2009). Such data are suitable for use in 53 
mesoscale analysis only.  Spatial inhomogeneity in the input data also presents challenges; an example 54 
snapshot of the uneven distribution of rain gauges into a common data product is shown in Figure 10.25a. 55 
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More recently, a 0.25°-gridded dataset has been introduced covering the period from 1901 onwards (Pai et 1 
al., 2014, 2015) based on Shepard’s interpolation method for gridding irregularly-spaced station data 2 
(Shepard, 1968). Findings include the increased intensity of daily rainfall and extreme events over four 3 
analysed regions, especially in the latter half of the 20th century. However, as discussed in Section 10.2.2.3, 4 
critical assessment of the methods used in conjunction with the inhomogeneities in the input data, in 5 
particular their variation over time, leads to the suggestion (Lin and Huybers, 2019) that changes in the input 6 
gauges have introduced an artificial jump in higher frequencies of more extreme rainfall since 1975 over 7 
central India. At its worst, Lin and Huybers (2019) stated that this may have acted to mask declines in mean 8 
rainfall; they highlighted the desire for openness of raw meteorological information to allow improved 9 
assessments. While trends for India over the extended period of 1901 to 2010 are inconclusive (Knutson and 10 
Zeng, 2018), the number of competing drivers acting over such a long period (Section 10.6.3.5) makes this 11 
unsurprising. 12 
 13 
Finally, the large number of locally and internationally produced observational products for India and 14 
differences between them can indicate some of the uncertainty in observational datasets, which might pose 15 
challenges when evaluating climate models (as suggested in Section 10.3.3.3; Prakash et al., 2015). Collins 16 
et al., (2013) found evidence of cases (such as the seasonal mean monsoon rainfall) in which large biases 17 
clearly separated CMIP5 models from the available observational products. However, in other cases, such as 18 
measures of variability or teleconnections, the spread across observational products overlaps with that in the 19 
CMIP5 ensemble, with a significant portion of the models within the observational range. Such observational 20 
uncertainty presents difficulties in evaluating models. 21 
 22 
 23 
10.6.3.4 Relevant anthropogenic and natural drivers 24 
 25 
Numerous studies in the AR5 and before have shown the relevance of various anthropogenic and natural 26 
drivers for the Indian monsoon. While the attribution of observed changes in the monsoon to these drivers 27 
and the implications for future projections will be discussed later in Sections 10.6.3.5 and 10.6.3.6 the 28 
drivers are summarised briefly here: 29 

 The increase in GHG concentrations (chiefly of CO2) are suggested as a strong contributor to 30 
changes in the Indian monsoon, with potential impacts on the meridional temperature contrast 31 
driving the monsoon circulation (Ueda et al., 2006; Roxy et al., 2015), on the monsoon winds in the 32 
lower troposphere (Cherchi et al., 2011), or on the availability of moisture, chiefly derived from the 33 
Indian Ocean (May, 2011). 34 

 Anthropogenic aerosol emissions can potentially alter the monsoon from both remote regions and 35 
locally. Preferential emissions of sulphate aerosol from industrial processes in the Northern 36 
Hemisphere could lead to changes in the inter-hemispheric energy transports and weakening of the 37 
monsoon (Polson et al., 2014; Undorf et al., 2018). Meanwhile, India has large emissions of sulphate 38 
aerosols and also black carbon (soot) from extensive use of cooking fires (Wallack and Ramanathan, 39 
2009; Rehman et al., 2011; Kaskaoutis et al., 2012; Babu et al., 2013; Pandey et al., 2017), although 40 
the effect of black carbon on the monsoon is uncertain (Lau and Kim, 2006; Nigam and Bollasina, 41 
2010). 42 

 While natural drivers such as arid and semi-arid desert dust emissions and dust storms from the 43 
Arabian peninsula, Iraq, Syria and Iran have a role to play in heating the troposphere locally (Vinoj 44 
et al., 2014), their interaction with anthropogenic black carbon aerosols may also drive change in the 45 
monsoon (Lau, 2014). 46 

 Over the late-20th century, India underwent considerable land-use change, including a green 47 
revolution with massive expansion of agriculture, culminating in the loss of natural vegetation such 48 
as forest and shrublands and its replacement with crops. To support the agricultural expansion, 49 
India’s northern plains have some of the most widespread irrigation in the world; model studies have 50 
shown it to be a region of strong land-atmosphere coupling (Koster et al., 2004). 51 

 Increasingly, human migration to urban areas has led to their expansion (another land-use change), 52 
potentially with local climate impacts (Shastri et al., 2015; Singh et al., 2016) such as altered 53 
sensitivity of extreme rainfall to circulation. 54 

 Finally, internal modes of variability in the oceans such as AMV and PDV are known to yield 55 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-117 Total pages: 236 
 

decadal forcing on the Asian monsoon (Krishnan and Sugi, 2003; Goswami et al., 2006a), which 1 
may interfere with the interpretation of climate signals. 2 

 3 
 4 
10.6.3.5 Model simulation and attribution of drying over the historical period 5 
 6 
That rainfall in India was not increasing over the course of the 20th century had been regarded as a puzzle 7 
(Goswami et al., 2006b), because the trend was not in line with the expected wetter trend arising from future 8 
projections under GHG emission scenarios (e.g., Kitoh, 2017; Kitoh et al., 2013a; Turner and Annamalai, 9 
2012). Answering the attribution and projection question for changes in Indian monsoon rainfall is 10 
complicated by long-standing large dry biases in historical coupled GCM simulations (Sperber et al., 2013), 11 
persisting through CMIP3 and CMIP5, and as demonstrated for CMIP6 in Figure 10.25b.  These dry biases 12 
are connected to a lower tropospheric circulation that is too weak (Sperber et al., 2013) and wet biases in the 13 
equatorial Indian Ocean (Bollasina and Ming, 2013). 14 
 15 
Various studies have suggested that aerosol forcing is the cause for the declining rainfall trend. Attribution 16 
work using single-forcing historical experiments in CMIP5 has suggested this for the Northern Hemisphere 17 
monsoons generally (Polson et al., 2014) and specifically for the Asian monsoon region (Guo et al., 2015, 18 
2016; Shawki et al., 2018). This is due to the dominance of aerosol emissions in industrialized regions of the 19 
Northern Hemisphere, cooling it relative to the Southern Hemisphere and thus increasing northward energy 20 
transport at the expense of moisture transport towards India (Bollasina et al., 2011, albeit in a single GCM). 21 
The aerosol hypothesis is supported by Salzmann et al. (2014), who noted a negative monsoon rainfall trend 22 
in 15 CMIP5 GCMs forced by aerosol and GHG, compared to a positive trend when forced by GHG only. 23 
Takahashi et al. (2018) supported this finding using an experiment in the MIROC-ESM in which aerosols 24 
were scaled back to pre-industrial levels, while aerosol removal experiments in remote regions and locally to 25 
India have added robustness to this conclusion, particularly for sulphate aerosols (Guo et al., 2016; Shawki et 26 
al., 2018). Some caution needs to be taken regarding the impacts of aerosol, since Takahashi et al. (2018) 27 
noted the uncertainty surrounding aerosol-cloud interactions, which could change the sign of long-term 28 
trends in precipitation. Furthermore, the large spread in effective radiative forcing of aerosol in GCMs could 29 
have an impact on the monsoon response to aerosol. Dittus et al. (submitted) forced a single GCM with 30 
separate historical experiments in which aerosol emissions were scaled between 0.2 and 1.5 times their 31 
observed values, representing the spread in CMIP5 effective radiative forcing. The impact of this on the 32 
Indian monsoon over the late-20th century was a spread of around 0.5 mm day-1 less rainfall in the strongest 33 
aerosol forcing experiment (Shonk et al., submitted). Salzmann et al. (2014) also cautioned that over small 34 
regions such as northern-central India, there was a large spread between individual model realisations of 35 
comparable magnitude to the purported aerosol-induced signal, suggesting that internal variability may also 36 
play a role. 37 
 38 
Alternatively, the impact of rapidly warming Indian Ocean SSTs, themselves mainly arising due to radiative 39 
forcing from GHG (Guemas et al., 2016), has been blamed for declining Indian rainfall over the historical 40 
period. Roxy et al. (2015) forced a coupled GCM in the equatorial Indian Ocean (the region of strongest SST 41 
warming signal) by nudging SST to demonstrate a weakening response of the Indian monsoon. Annamalai et 42 
al. (2013) used a coupled climate model to suggest instead that preferential warming of the western North 43 
Pacific may lead to a Rossby wave response to its west that produces dry advection and descending motion 44 
over India, weakening the monsoon. A different viewpoint for the decreasing rainfall lies in the relative 45 
cooling of the troposphere over the Asian landmass compared to that of the adjacent Indian Ocean (e.g., Zuo 46 
et al., 2012, 2013), following the mechanism of Ueda et al. (2006) in which the thickness of the troposphere 47 
over the equator increases, decreasing the meridional temperature gradient. The cause for the relative cooling 48 
may lie in robust multi-decadal variations over the Asian landmass, which is related to internal variability, 49 
especially the AMV (Zuo et al., 2013, Zuo et al., 2018). 50 
 51 
Internal variability in the Pacific could also be a significant driver. Huang et al. (submitted, b) compared 57 52 
members of a perturbed physics ensemble of the coupled HadCM3C model run over the historical period, as 53 
well as the MPI 100-member initial condition ensemble. Those members in which the Indian negative 54 
rainfall trend was replicated were accompanied by a strong phase change in the IPO from negative to 55 
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positive, consistent with the observed trend in SST. In parallel with the decline and recovery of the West 1 
African monsoon (Section 10.4.2.2.1), Jin and Wang (2017) have demonstrated increasing Indian monsoon 2 
rainfall since 2002 in a variety of observed datasets, suggesting the increase is due either to a change in 3 
dominance of a particular forcing (for example from aerosol to GHG) or to a phase change in a mode of 4 
internal variability such as the IPO. Huang et al. (submitted, b) also partially attribute this increase in rainfall 5 
to a phase change in the IPO; likewise the study of Ha et al. (submitted), using the CESM large ensemble 6 
and a combination of reanalyses, attributes the positive change to internal variability. 7 
 8 
Finally, other authors have raised the possibility that local land-use/land-cover changes and land 9 
management are drivers of Indian monsoon drying. For example, Paul et al. (2016) forced the regional WRF 10 
model with land cover patterns from 1987 and 2005, representing a shift from forest cover to agricultural 11 
land, and found a weakening of summer monsoon rainfall especially in central and eastern India, due to a 12 
decrease in local evapotranspiration. Ramarao et al. (2015) have noted the overall anthropogenic impact on 13 
the drying trend and noted the potential for the warmer surface to decrease evapotranspiration as a result, 14 
potentially feeding back on the supply of moisture. India is the world’s most irrigated region with around 0.5 15 
mm/day on an annual basis across parts of the country, although peaks are higher in summer (Cook et al., 16 
2015b; McDermid et al., 2017); including irrigation in GCMs and RCMs slows the monsoon circulation and 17 
diminishes the rainfall (Lucas-Picher et al., 2011; Guimberteau et al., 2012; Shukla et al., 2014; Tuinenburg 18 
et al., 2014; Cook et al., 2015b). However, the methodologies used to implement irrigation in these studies 19 
were simplified relative to actual practice and did not take into account spatial heterogeneity or they 20 
overestimated both demand and supply (Nazemi and Wheater, 2015; Pokhrel et al., 2016; see also Section 21 
10.3.1.3.3). 22 
 23 
Krishnan et al. (2016) tried to unify some of the above mechanisms. Using all-forcings and natural-forcings 24 
historical simulations in the LMDZ4 model, they demonstrated the positive influence of increased GHG 25 
concentrations (and GHG-associated SST patterns) on rainfall. Meanwhile the influence of the radiative 26 
effect of GHG forcing, together with imposed SSTs, a slight weakening of the monsoon circulation was 27 
found, related to an increase in the static stability. When the monsoon was driven by all forcings other than 28 
GHGs, declining rainfall was found. Based on other literature, Krishnan et al. (2016) hypothesized that the 29 
combination of anthropogenic aerosol, land-use change, and rapid Indian Ocean warming may be to blame 30 
for the declining Indian monsoon. 31 
 32 
Thus, understanding the 20th century Indian monsoon drying trend relies on a mixture of control exerted 33 
from anthropogenic forcing and internal variability (supported by the review of Wang et al. (submitted). 34 
Common factors are the relative cooling of the Eurasian land mass or Northern Hemisphere, and relative 35 
equatorial warming in the Indian Ocean. Understanding the interplay between these controls will be 36 
important for understanding future change in the region. 37 
 38 
 39 
10.6.3.6 Future climate information from global simulations 40 
 41 
In the AR5, Christensen et al. (2013) concluded that Indian monsoon rainfall is likely to strengthen under 42 
future climate scenarios (Figure 10.25c), while the circulation will weaken. More recent work has examined 43 
changes in the future mean-state monsoon rainfall at RCP4.5 and RCP8.5. Latif et al. (2018) found increased 44 
June-to-September rainfall over the Indo-Pakistan region, attributed to strengthened northward moisture 45 
transport over the Indian Ocean. However, they selected a subset of models given their agreement at 46 
simulating the pattern of observed rainfall trends in the 20th-century historical period. Since the trend over 47 
the 20th century is likely to have been driven by other drivers than GHG (Section 10.6.3.5) and the dominant 48 
forcing at the end of the 21st century in RCPs is GHG emissions, the result might be different if using 49 
different criteria (e.g., the performance in terms of mean circulation patterns) to select the subset of models. 50 
 51 
 52 
 53 
 54 
 55 
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[START FIGURE 10.25 HERE] 1 
 2 
Figure 10.25:Changes in the Indian monsoon in the historical and future periods: (a) Observational uncertainty 3 

demonstrated by a snapshot of rain-gauge density in the APHRODITE V1101 (Yatagai et al., 2012) 0.5°-4 
daily precipitation dataset for June to September 1956. (b) Multi-model ensemble (MME) mean bias of 5 
16 CMIP6 models for June to September precipitation (mm day-1) compared to GPCC v2018 (Schneider 6 
et al., 2017; doi:10.5676/DWD_GPCC/FD_M_V2018_100) observations for the 1985-2010 period. (c) 7 
Time series of June to September precipitation averaged over the central India box (15°N‒25°N, 75°E‒8 
85°E) shown in panel (b) in GPCC (black line) since 1950 in comparison with the MME-mean from the 9 
all-forcings historical experiments in 16 CMIP6 models (red line), and with changes in aerosol-only (hist-10 
aer, 8 models, blue line) and greenhouse gas-only (hist-GHG, 9 models, grey line). MME-mean change in 11 
the SSP5-8.5 experiment for future projections out to 2100. CMIP6 results are compared with historical 12 
and future simulations of the MPI Grand Ensemble (MPI-GE historical-RCP85, violet line) (Maher et al., 13 
2019). Anomalies are computed with respect to the 1995‒2014 baseline and a weighted 13-year low-pass 14 
filter is applied. The low-pass filter has been used in AR4, Chapter 3, Appendix 3.A. It has 13 weights 15 
1/576 [1-6-19-42-71-96-106-96-71-42-19-6-1] and for annual data, its half-amplitude point is about a 12-16 
year period, and the half-power point is 16 years. (d) Maps of rainfall trends (mm day-1 decade-1) in 17 
GPCC observations, the CMIP6 MME-mean of hist-aer runs, the CMIP6 MME-mean of greenhouse gas-18 
only runs over the 1950‒2000 period and an example MME-mean future projection from CMIP6 SSP5-19 
8.5 for 2015‒2100. (e) Histogram to illustrate the role of internal variability for historical 1950‒2000 20 
(left) and future 2015‒2100 (right) trends in South Asian monsoon rainfall (% decade-1) in the MPI-GE 21 
(expressed as percentage of simulations showing a trend in each bin, violet histogram). Individual 22 
members as well as ensemble means of CMIP6 historical-SSP5-8.5 (all-forcings, red circles), hist-aer 23 
(grey triangles) and hist-GHG (light blue triangles) are also shown, along with observed estimates from 24 
GPCC and CRU TS v4 (doi: 10.5285/edf8febfdaad48abb2cbaf7d7e846a86). All trends are estimated 25 
using ordinary least squares. 26 

 27 
[END FIGURE 10.25 HERE] 28 
 29 
 30 
Mechanisms for Indian monsoon change were explored in more detail by Li and Ting (2017), in order to 31 
determine the relative impacts of SST change and direct radiative forcing from GHG, using CMIP5 coupled 32 
and AGCM output. Rainfall increases were found to be dominated by the fast radiative response to GHG 33 
increase. However, in response to SST forcing, there was much greater model spread, likely arising from a 34 
competition between dynamic and thermodynamic responses in the moisture budget. While the 35 
thermodynamic response was found to be robust between models, the dynamic one is not. Li and Ting 36 
(2017) therefore conclude that the weak multi-model ensemble mean response of Indian monsoon rainfall in 37 
CMIP5 emerges from the combination of different processes arising on different time scales. 38 
 39 
More detail of changes to the overall rainy season was examined by Sabeerali and Ajayamohan (2018), who 40 
used the CMIP5 RCP8.5 multi-model ensemble to project shortening of the rainy season, due to alteration of 41 
onset and withdrawal dates, in contrast to the single-model study of Singh and AchutaRao (2018) who found 42 
considerable increases in rainfall during September to November, which could be interpreted as an extension 43 
to the monsoon. Most models were found to exhibit preferential warming over the western tropical Indian 44 
Ocean, leading to tropospheric warming aloft and reducing the upper tropospheric meridional temperature 45 
gradient. This was found to be coincident with weakened easterly wind shear in the vertical, also reducing 46 
the period in which the tropospheric meridional temperature gradient is favourable for the monsoon. 47 
 48 
Endo et al. (2018) explored the changing meridional temperature gradient in more detail in nine CMIP5 49 
GCMs. In coupled experiments, lower tropospheric monsoon winds are found to move northwards and 50 
strengthen over land, in response to the stronger land-sea temperature contrast in RCP8.5 experiments. 51 
Meanwhile the tropical easterly jet in the upper troposphere was found to weaken, consistent with weakening 52 
of the meridional gradient at upper levels. AMIP experiments were then used to isolate the role of the SST, 53 
finding that the strengthened meridional temperature gradient in the lower troposphere can be explained by 54 
the GHG radiative forcing alone. 55 
 56 
Sooraj et al. (2015) selected a subset of seven CMIP5 models that well simulated the monsoon during the 57 
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historical period. In RCP4.5, they found a robust reduction in the large-scale upper-tropospheric meridional 1 
temperature gradient, ascribed to tropospheric heating and enhanced ascent over the tropical Pacific. This 2 
combined with an increase in atmospheric stability to weaken the Asian monsoon circulation. By 3 
decomposing the climate signal into dynamic and thermodynamic components, the dynamic part was found 4 
to give a tendency for decreasing monsoon rainfall, while the thermodynamic part gave a positive tendency; 5 
the positive tendency was greater in magnitude. By testing the impact of CO2 radiation forcing and plant 6 
physiological changes separately in quadrupled CO2 experiments in four ESMs, Cui et al. (submitted) 7 
showed little impact of plant physiology on annual rainfall, although they exert a negative influence on 8 
evapotranspiration and a positive influence on runoff. 9 
 10 
The RCP4.5 experiments of Krishnan et al. (2016) in the LMDZ AGCM forced by coupled-model derived 11 
future warming patterns superimposed onto AMIP SSTs, showed the 20th century drying of India to 12 
continue into the 21st century, before a rainfall recovery in the second half of that period, suggesting a 13 
change in the dominant forcing. The switch in forcing will be partially controlled by the rate at which aerosol 14 
emissions decline in future scenarios.  In a comparison of RCP8.5 with an alternative in which aerosol 15 
emissions are held at (high) 2005 values, the version maintaining present day aerosol is shown to feature 16 
lower Indian monsoon rainfall at the end of the 21st century (Zhao et al., 2019). The spatial distribution of 17 
continuing aerosol emissions is also likely to play a role in near-term projections of the Indian monsoon, 18 
indicated by the spread of emissions in SSP1‒3 (Samset et al., 2019). In particular SSP3 under weak air-19 
quality policies features a dipole of declining sulphate emissions for China but increases over India, leading 20 
to suppression of GHG-related precipitation increases for India (Wilcox et al., submitted). 21 
 22 
For the near-term future, consideration must be made of the interplay between internal modes of variability 23 
and external forcing in determining the response of the monsoon. Singh and AchutaRao (2018) aimed to 24 
quantify sources of uncertainty in Indian regions using the 40-member CESM1 large ensemble. They show 25 
that internal variability remains quite large and comparable to model uncertainty until at least the latter part 26 
of the 21st century. Much of the rainfall uncertainty is found for the more arid northwest region, with the 27 
west-central region exhibiting lower uncertainties. Similarly, Huang et al. (submitted, a) used the 100-28 
member MPI-ESM and 50-member CanESM2 large ensembles to suggest that internal variability can 29 
overcome the forced upward trend in the SAM-related rainfall at least to 2045, which they attribute to PDV. 30 
 31 
In summary, future scenarios dominated by GHG increases such as the RCPs tend to suggest likely increases 32 
in monsoon rainfall, dominated by thermodynamic mechanisms leading to increases in the available 33 
moisture. However, there is large uncertainty as to how the rainfall evolution is spatially distributed, which is 34 
explored further in the subsequent text on downscaling studies. 35 
 36 
 37 
10.6.3.7 Future climate information from regional downscaling 38 
 39 
While the studies previously mentioned used GCM output directly for attributing past climate trends or 40 
projecting the future, others attempted to add value to the results based on GCMs by employing downscaling 41 
methods (Section 10.3.3). 42 
 43 
Starting with statistical downscaling, Akhter et al. (2019) used principal component-based linear regression 44 
to test a variety of large-scale fields from the NCEP-NCAR re-analysis to determine their suitability for 45 
downscaling precipitation in seven different regions of India. Fields such as precipitable water and relative 46 
humidity seem to be consistently good predictors. Their finding that increasing the domain size leads to 47 
worsened results points to the complex nature of India’s hydroclimatic zones. Applying statistical methods to 48 
the future, albeit in older SRES A2 projections, Vigaud et al. (2013) used a variant of quantile mapping to 49 
bias adjust (Section 10.3.1.4.2 and Cross-Chapter Box 10.2) GCM outputs for southern India. The method is 50 
applied month-wise to maintain seasonality. During the historical validation period, using India 51 
Meteorological Department gauge observations for comparison, the method was shown to improve the 52 
pattern, mean and seasonal cycle of modelled rainfall versus the GCMs used. Increases in monsoon rainfall 53 
were found for the future in southern India. 54 
 55 
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Salvi et al. (2013) attempted statistical downscaling for the whole of India at 0.5-resolution based on five 1 
ensemble members of the CCCMA model in SRES scenarios for the 21st century and using a regression-2 
based perfect prognosis method (Section 10.3.1.4.1). They noted increases over the heavy rainfall regions of 3 
the west coast and northeast India, while decreases were found in the north, west and southeast regions. 4 
Madhusoodhanan et al. (2018) used statistical downscaling at 0.05-resolution to provide added detail in 5 
future rainfall projections over India based on inputs from 20 CMIP5 models. While their method provided 6 
medium confidence of rainfall change over the Western Ghats, Himalayan foothills and central India, with 7 
most models in agreement, they found significant inter-model differences in the pattern of change. However, 8 
the accuracy of their method is dependent on the quality of the observational data used for training that, as 9 
explained above, offers substantial challenges. In addition, the large disparity in resolution between the 10 
output and driving GCM suggest that the downscaled product may provide high spatial detail at the expense 11 
of neglecting key physical processes that cannot be resolved at the GCM scale, such as topographically 12 
determined circulation distributions. 13 
 14 
Given ongoing concerns about the added value of dynamical downscaling for regional climate projection, 15 
Singh et al. (2017) raised this issue in relation to the Indian monsoon. They compared nine RCMs from 16 
CORDEX South Asia against their driving CMIP5 models, with respect to present-day (1951 or 1970 to 17 
2005) monsoon rainfall patterns and processes related to intraseasonal variability such as northward 18 
propagation. They found no consistent improvement in any present-day monsoon characteristics other than 19 
the spatial pattern (e.g. the representation of rainfall close to better-resolved orography); some characteristics 20 
were made worse. 21 
 22 
In contrast, Varikoden et al. (2018) assessed the 1951–2005 historical period in the CORDEX South Asia 23 
models and found considerable improvement in the representation of historical rainfall patterns compared to 24 
the five driving GCMs. In particular, they noted better simulation of the long-term mean specifically over the 25 
Western Ghats mountains (consistent with Singh et al., 2017), reducing the dry bias; but improvements were 26 
not found over the northern plains, which are dominated by synoptic variability known as monsoon 27 
depressions. 28 
 29 
Similarly, Sabin et al. (2013) used the variable-resolution LMDZ model to compare two ten-member 30 
ensembles: one operating with a uniform 1-resolution and a second using a version zoomed to ~35 km over 31 
South Asia, while coarsening the grid outside and conserving the total number of grid points. Such 32 
modifications led to an improved simulation of orographic precipitation as well as the monsoon trough. 33 
 34 
For the future, a combination of the WRF regional model and a surrogate approach (like pseudo-global 35 
warming, see Section 10.3.2.2) has been used to demonstrate the separate and combined impacts of warming 36 
and moistening on monsoon depressions (Sørland and Sorteberg, 2016; Sørland et al., 2016). The 37 
depressions are found to give more precipitation in future, dominated by the warming mechanism which 38 
strengthens the synoptic circulation. 39 
 40 
Finally, by using a GCM to produce a perturbed parameter ensemble (HadCM3-QUMP) with the PRECIS 41 
RCM, Bal et al. (2016) made projections under SRES A1B for the 2020s, 2050s and 2080s in a continuous 42 
integration since 1970. They noted increases in rainfall of 15–24% for India. 43 
 44 
There are mixed messages as to whether downscaling methods add value to climate projections of the Indian 45 
monsoon; it is a common theme however that rainfall patterns tied to orography are better represented by 46 
dynamical downscaling, giving high confidence to the precipitation changes tied to orography. 47 
 48 
 49 
10.6.3.8 Potential for abrupt change  50 
 51 
Given the interest in physically plausible high impact scenarios (Sutton, 2018), it is worth considering 52 
whether the Indian monsoon may undergo abrupt change, which hypothetically could involve failure to 53 
establish the meridional tropospheric temperature gradient during spring, collapse of the monsoon circulation 54 
and thus considerable weakening of the monsoon rains for a season or more. Such ideas pertaining to 55 
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collapse of the monsoon were explored in the wider review of Lenton et al. (2008), where it was suggested 1 
that monsoon collapse could occur if regional planetary albedo exceeded 0.5, perhaps pertaining to aerosol 2 
emissions or land-use change. This finding was based entirely on the results from a single conceptual box 3 
model (Zickfeld et al., 2005). As reported in Hoegh-Guldberg et al. (2018), given the small radiative forcing 4 
in 1.5°C or 2°C equilibrium scenarios, or the absence of large aerosol emissions at the end of the 21st 5 
century in RCPs, there is limited evidence of abrupt changes in the Indian monsoon. There has been no 6 
credible evidence for abrupt monsoon collapse under the radiative forcings present in the RCP scenarios. 7 
 8 
The palaeoclimate record may reveal large magnitude shifts in monsoon behaviour.  However, evidence 9 
from palaeoclimate proxy observations and model experiments (e.g. of the mid-Holocene) may be unsuitable 10 
for constraining future projections of the Indian monsoon (D’Agostino et al., 2019) since the mechanisms 11 
involved are different. D’Agostino et al. (2019) argue that in the mid-Holocene dynamic changes arising 12 
from the increased obliquity (axial tile) act in concert with thermodynamic changes to enhance the monsoon, 13 
whereas in future climate experiments thermodynamic increases oppose and overcome weakening from 14 
dynamic mechanisms. This finding is supported by Hill (2019) who found the same mechanisms for change 15 
might not be at play on different time scales. 16 
 17 
 18 
10.6.3.9 Storyline and narrative approaches for India 19 
 20 
Since the AR5, considerable focus has been given to understanding regional climate impacts in future 21 
scenarios at target levels of global-mean warming in line with the Paris Agreement; such comparisons are 22 
often made between 1.5°C and 2°C above pre-industrial conditions. The IPCC Special Report on Global 23 
Warming of 1.5˚C (SR15; Hoegh-Guldberg et al., 2018), suggested that since the radiative forcings involved 24 
in these time-slice scenarios are rather lower than those at the end of the 21st century in the typical RCP4.5 25 
and RCP8.5 scenarios, then there is only low confidence in projections of monsoon change at 1.5°C and 2°C, 26 
and of any differences between them. However, in further literature examining equilibrium-temperature 27 
experiments for monsoon regions, Chevuturi et al. (2018) compared five AGCMs from HAPPI (Half a 28 
degree Additional warming, Prognosis and Projected Impacts) data, forced by SST patterns representative of 29 
1.5˚C and 2.0˚C warming. Despite considerable model spread, the mean and extreme monsoon rainfall both 30 
amplify. Persistent daily rainfall extremes are likely to become more frequent with the additional half-degree 31 
warming. 32 
 33 
The only study so far to have examined climate narratives for the Indian monsoon is Dessai et al. (2018). 34 
Using an expert elicitation approach, they constructed physically plausible futures of the monsoon 35 
substantiated by climate processes, focusing on the Cauvery river basin in southern India. Possible outcomes 36 
of the monsoon were provided based on the changes in two drivers: the availability of moisture from the 37 
Arabian Sea and the strength of the low-level flow. The key outcome is that the mechanistic narratives 38 
identified in the expert elicitation process were able to explain 70% of the variance in monsoon rainfall over 39 
1979–2013, the implication being that climate uncertainties could be easily communicated to stakeholders. 40 
 41 
 42 
10.6.3.10 Messages distilled from multiple lines of evidence 43 
 44 
There is very high confidence (robust evidence, high agreement) that both internal variability and 45 
anthropogenic aerosol emissions over the Northern Hemisphere have contributed to the negative rainfall 46 
trend in the Indian monsoon over the 20th century. There is limited evidence of the spatial distribution of 47 
historical and projected changes, made worse by the substantial observational uncertainty. There is high 48 
confidence (robust evidence, medium agreement) that Indian monsoon rainfall will increase at the end of the 49 
21st century in response to increased GHG forcing; this arises due to the dominance of thermodynamic 50 
mechanisms. No contradictory evidence is found from downscaling methods. There is low agreement on 51 
how the monsoon onset might change in the future. 52 
 53 
 54 
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10.6.4 Mediterranean summer warming 1 
 2 
10.6.4.1 Motivation and regional context 3 
 4 
The Mediterranean region is historically loosely denoted as the region that surrounds the Mediterranean Sea. 5 
It is a culturally rich area that has experienced significant climate variability over the past decades. The 6 
region is characterized by complex orography and strong land-sea contrasts. It also contains a dense and 7 
growing human population. Within the Mediterranean region, large regional differences exist: whereas the 8 
population of the European Mediterranean countries has been relatively stable or even declining during the 9 
last decade, the population of countries in Mediterranean areas of the Middle East and North Africa has 10 
quadrupled between 1960 and 2015, and the degree of urbanization has risen from 35 to 64% during the 11 
same period (World Bank Group, 2017; Cramer et al., 2018). Agricultural land management is intensifying, 12 
particularly through enhanced irrigation; as many southern and eastern land systems seem to have the 13 
potential for further increase in yields (Mueller et al., 2012), agricultural management is likely to change 14 
further, with consequences for water resources, biodiversity and landscape functioning (Cramer et al., 2018). 15 
 16 
The Mediterranean climate is characterized by mild humid winters and dry hot summers. As a consequence, 17 
water scarcity is a recurrent problem for the region especially in summer, requiring substantial infrastructural 18 
efforts, like dams and irrigation systems (Saadi et al., 2015). The dry hot Mediterranean climate is also a 19 
potential factor of risk for wildfires, which are the most important natural threat to forests and wooded areas 20 
of the Mediterranean basin. The region also suffers from severe heatwaves causing a mortality-risk in 21 
particular for older adults, young children and people with pre-existing and chronic medical conditions. 22 
 23 
 24 
10.6.4.2 The region’s climate 25 
 26 
The Mediterranean has a heterogeneous climate, that is partly semi-arid, especially along the southern coast 27 
(Lionello et al., 2012). Dry summers are associated with large scale subsidence that is partly related to the 28 
downward branch of the Hadley circulation, but also other factors affect the Mediterranean circulation such 29 
as the monsoon heating over Asia (Rodwell and Hoskins, 1996) and circulation anomalies induced by middle-30 
east topography (Simpson et al., 2015). Seasonal variability is strongly linked to the NAO in winter and the 31 
summer NAO in summer (Folland et al., 2009; Bladé et al., 2012). During positive summer NAO phase the 32 
Mediterranean is anomalously wet, associated with an upper level through over the Balkans (Bladé et al., 33 
2012). The Mediterranean Sea acts as an evaporation source that dominates the hydrological cycle of the 34 
region but also of remote locations such as the Sahel (Park et al., 2016). Strong storms can develop over the 35 
Mediterranean: the most intense ones, known as Medicanes, are particular destructive and exhibit several 36 
similarities with tropical cyclones (Cavicchia et al., 2014). Due to its semi-arid climate, the Mediterranean 37 
region is characterized by strong land-atmosphere coupling and feedbacks (Seneviratne et al., 2006) 38 
generating prolonged droughts and intense heatwaves, which can also affect other European regions 39 
(Zampieri et al., 2009). 40 
 41 
 42 
10.6.4.3 Observational issues 43 
 44 
The Mediterranean region spans a wide variety of countries and economies. This has led to large differences 45 
in the existence and availability of observations, with the southern part of the area being sparsely covered by 46 
meteorological stations (Figure 10.26b). In addition, political problems and civil strife have undermined the 47 
continuity of observational records. As a consequence, basin-wide, homogeneous, quality controlled 48 
observational datasets are lacking, especially before the advent of substantial satellite observations in the 49 
1970s. 50 
 51 
Large differences up to 7°C between CRU and UDEL (see technical annex on observations) datasets have 52 
been found over the region especially over mountainous area, such as the Atlas in Morocco (Zittis and 53 
Hadjinicolaou, 2017; Strobach and Bel, 2019). Bucchignani et al., (2016b, 2016a) compared three different 54 
datasets (CRU, UDEL, and MERRA) with the available ground observations and found that even if the 55 
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geographical distribution of the bias is qualitatively similar for the three datasets, absolute values of bias are 1 
generally lower in MERRA especially over North-Africa during the summer and winter season. There is 2 
high confidence (robust evidence, high agreement) that the sparse monitoring network in this region strongly 3 
affects the interpolation in the different gridded datasets (Section 10.2). 4 
 5 
 6 
10.6.4.4 Relevant anthropogenic and natural drivers 7 
 8 
As discussed in Section 10.4.1.2.6, apart from the increase in GHGs, the anthropogenic decrease in aerosol 9 
concentration, resulting from air pollution policies (Turnock et al., 2016), has been an important driver of 10 
enhanced summer warming especially over western Europe. This is to a lesser extend also true for the 11 
Mediterranean region (Besselaar et  al., 2015; Dong et al., 2017). The AMV affecting Western Europe 12 
(Section 10.4.1.2.6) also impacts the Mediterranean region. Another driver is the Asian monsoon by 13 
inducing adiabatic descent over the Mediterranean (Rodwell and Hoskins, 1996). 14 
 15 
 16 
10.6.4.5 Model simulation and attribution over the historical period 17 
 18 
The European part of the Mediterranean region has been warming faster than the global mean in recent 19 
decades. Part of this warming of about 1ºC can be ascribed to the enhanced warming over land associated 20 
with the lapse-rate feedback (Kröner et al., 2017). Basin-wide, annual mean temperatures are in 2018 1.4°C 21 
above late-19th-century levels (van der Schrier et al., 2013; Cramer et al., 2018; Lionello and Scarascia, 22 
2018). For the last two decades, the surface air temperature of the Mediterranean including the Sea has 23 
warmed by around 0.4°C per decade (Macias et al., 2013). Figure 10.26e shows the historical warming over 24 
the land points of the Mediterranean. The enhanced Mediterranean warming is related to the enhanced 25 
western European warming discussed in Section 10.4.1.2.6. 26 
 27 
Several studies have linked the enhanced Mediterranean warming to a shift to the positive phase of the AMV 28 
around the 1990s (Sutton and Dong, 2012; Macias et al., 2013; O’Reilly et al., 2017), with the underlying 29 
mechanism either being thermodynamical, where the enhanced North Atlantic warming directly warms the 30 
Mediterranean, or dynamical, with a linear atmospheric response downstream over Europe (Figure 10.26a). 31 
However, the recent warming has also been linked to reduced aerosol concentrations. As discussed in 32 
Section 10.4.1.2.6, there is medium confidence that reduction of aerosol concentrations, an outcome of air 33 
pollution control legislation, has also been a dominant factor for the enhanced warming by changing the 34 
optical properties of clouds (Besselaar et al., 2015; De Laat and Crok, 2013; Dong et al., 2017; Philipona et 35 
al., 2009; Ruckstuhl et al., 2008; Turnock et al., 2015, 2016). By means of model sensitivity experiments, 36 
Nabat et al., (2014) also associated the increase in Mediterranean SST to the decrease in aerosol 37 
concentrations. 38 
 39 
An analysis of observed vs. modelled surface temperature trends at gridbox scale over 1901‒2010 (Knutson 40 
et al., 2013) shows for the Mediterranean region observed warming trends that are detectable (highly unusual 41 
compared to CMIP5 simulated natural variability) and partly attributable to anthropogenic forcing, being 42 
either consistent with or greater than simulated by the CMIP5 model runs that included both anthropogenic 43 
and natural forcings. The ensemble-mean trends of CMIP5, CMIP6, HighResMIP and CORDEX over the 44 
period 1960-2014 are less than observed (Figure 10.26g). However, there is a large spread among the 45 
different models and due to natural variability also among the different ensemble members of an individual 46 
model, of which some encompass the observations (Figure 10.26f). 47 
 48 
Due to its semi-arid climate, strong atmosphere-land coupling has contributed to the larger increase of mean 49 
summer temperature compared to the increase of the annual mean temperature (Seneviratne et al., 2006). In 50 
particular, during drought spells, soil moisture limitation of evaporation provides a positive feedback and 51 
enhances the intensity of heat waves (Lorenz et al., 2016). By comparing reanalysis-driven RCM simulations 52 
with observations, Knist et al. ( 2017) found that RCMs are able to reproduce soil moisture interannual 53 
variability, spatial patterns, and annual cycles of surface fluxes over the period 1990–2008, revealing a 54 
strong land-atmosphere coupling especially in southern Europe in summer. Other key mechanisms are the 55 
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enhanced land-sea temperature contrast which leads to relative humidity and soil moisture feedbacks 1 
(Rowell and Jones, 2006). The increased Mediterranean summer drying is also related to the increased 2 
moisture divergence associated with enhanced pressure over the Atlantic and Northern Europe (Seager et al., 3 
2014). 4 
 5 
ERA-Interim-driven RCM simulations show in general a cold bias over the southern part of the 6 
Mediterranean/ Middle East and North Africa region (Almazroui, 2016; Almazroui et al., 2016b, 2016a; 7 
Ozturk et al., 2018; Zittis and Hadjinicolaou, 2017), although higher resolution, new bare soil albedo and 8 
modified aerosol parametrization significantly improve the results (Bucchignani et al., 2016b, 2016a, 2018). 9 
 10 
In their analysis of the effect of model resolution and air-sea coupling in Med-CORDEX RCMs, Panthou et 11 
al. (2018) found that models reproduce well the observed spatial patterns of hot days and droughts, although 12 
they tend to overestimate extreme return levels of hot days. In particular, higher resolution simulations 13 
showed a clear improvement in the representation of droughts, while the additional degrees of freedom in 14 
coupled simulations did not downgrade the performance. Similarly, Akhtar et al. (2018) argued that higher 15 
resolution improved the wind speed (particularly near coastal areas) and subsequently the turbulent heat flux 16 
simulations. Both fields were also better simulated with an interactive ocean model, compared to simulations 17 
with prescribed SST. 18 
 19 
Finally, Macias et al. (2018) argued that simulated SST in RCMs are significantly improved when wind 20 
speed values were bias-corrected towards observed values, whereas other variables like air temperature and 21 
cloud cover had a more marginal importance in reducing the SST bias. 22 
 23 
 24 
10.6.4.6 Future climate information from global simulations  25 
 26 
The Mediterranean is expected to be one of the most prominent and vulnerable climate change hotspots 27 
(Diffenbaugh and Giorgi, 2012). CMIP5, CMIP6, HighResMIP and CORDEX (Section 10.6.4.7) simulations 28 
all project an enhanced future warming for the 21st century compared to global mean and enhanced drying 29 
(Figure 10.26h ; Mariotti et al., 2015). In particular, summer warming is projected to reach values up to 40–30 
50% larger than the global warming, with local values up to 100% larger than global warming for the land 31 
areas located north of the basin (Lionello and Scarascia, 2018). Peculiar to the Mediterranean is that daily 32 
maximum temperature is projected to warm more than daily minimum one. Consequently, the difference 33 
between daytime maxima and night-time minima is expected to increase, particularly in summer (Lionello 34 
and Scarascia, 2018). Simulations also project a northward and eastward expansion of the Mediterranean 35 
climate and the southern part becoming more arid with an increased summer drying in both old and newly 36 
established Mediterranean climates (Alessandri et al., 2015; Barredo et al., 2018). 37 
 38 
CMIP5 results (Lelieveld et al., 2016) show that warming is strongest in summer in the southern part of the 39 
Mediterranean region with warming exceeding 6°C by the end of the century under RCP8.5 scenario 40 
compared to the reference period 1986‒2005. No positive soil moisture-temperature feedback is found due to 41 
the arid background climate, which is governed by the radiative cooling. The CMIP6 dataset also show 42 
robust summer warming in the southern parts of Mediterranean and adjacent North Africa regions by the end 43 
of the 21st century (Figure 10.26h; Almazroui et al., submitted), although magnitudes differ from CMIP5. 44 
The reasons for the apparent discrepancy between the still incomplete CMIP6 data set and CMIP5 are as yet 45 
unknown and under investigation. 46 
 47 
 48 
[START FIGURE 10.26 HERE] 49 
 50 
Figure 10.26:Aspects of Mediterranean summer warming. (a) Mechanisms and feedbacks involved in enhanced 51 

Mediterranean summer warming. (b) Locations of observing stations in E-OBS v19e (Cornes et al., 2018) 52 
and Donat et al. (2014). (c) Differences in temperature observational data sets with respect to E-OBS for 53 
the land points between the Mediterranean Sea and 46°N and west of 30°E. (d) Observed summer (June 54 
to August) surface air temperature trends (°C decade-1) over the 1960‒2014 period from BEST (Rohde et 55 
al., 2013) dataset. (e) Time series of area averaged (25°N‒50°N, 10°W‒40°E) land point summer 56 
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temperature anomalies (°C, baseline 1995–2014). Black, brown, orange and violet lines show low-pass 1 
filtered temperature of BEST, CRU TS v4.02 (Harris et al., 2014), HadCRUT4 (Morice et al., 2012) and 2 
the MPI-GE (Maher et al., 2019), respectively. Dark blue, red and light blue lines and shadings show 3 
low-pass filtered ensemble means and standard deviations of CMIP5 (30 members), CMIP6 (15 4 
members) and HighResMIP (7 members), respectively. The filter is the same as the one used in Figure 5 
10.11. (f) Distribution of 1960‒2014 summer temperature trends (°C decade-1) for observations (black 6 
crosses), the MPI-GE (violet histogram) and for ensemble means and single runs of CMIP5 (dark blue 7 
circles), CMIP6 (red circles) and HighResMIP (light blue circles). (g) Bias in ensemble mean 1960‒2014 8 
trends (°C decade-1) of CMIP5, CMIP6, HighResMIP and CORDEX in reference to BEST. (h) 9 
Projections of ensemble mean 2014‒2050 trends (°C decade-1) of CMIP5, CMIP6, HighResMIP and 10 
CORDEX. All trends are estimated using ordinary least-squares. [Placeholder: The CORDEX and 11 
HighResMIP panels need to be completed.] 12 

 13 
[END FIGURE 10.26 HERE] 14 
 15 
 16 
The Mediterranean climate model projections are also characterised by reduced precipitation in all seasons 17 
(Lionello and Scarascia, 2018; Mariotti et al., 2015). During summer this is predominantly caused by the 18 
warming land-sea contrast (Joshi et al., 2008; Byrne and O’Gorman, 2013a, 2013b) and the lapse rate 19 
feedback (Brogli et al., 2019a, 2019b) rather than circulation changes. Land-surface feedbacks increase this 20 
drying thereby contributing to the enhanced warming (Whan et al., 2015; Lorenz et al., 2016; Russo et al., 21 
2019). An additional mechanism for Mediterranean drying, with a feedback on summer temperatures, is the  22 
“monsoon-desert mechanism” that relates diabatic heating associated with the South Asian summer monsoon 23 
rainfall with subsidence over the eastern Mediterranean (Cherchi et al., 2016). Waha et al. (2017) projects a 24 
pronounced increase in aridity under RCP8.5 over the Mediterranean coastal areas by the end of the 21st 25 
century. 26 
 27 
The Mediterranean summer climate is affected by large-scale circulation patterns of which the summer NAO 28 
is the most important (Folland et al., 2009; Bladé et al., 2012). It is also connected with the Hadley 29 
circulation. These large-scale drivers of the Mediterranean summer climate often show large biases in global 30 
models decreasing confidence in the regional projections (Bladé et al., 2012). Correctly simulating their 31 
impact on the Mediterranean climate can partly offset the anthropogenic warming signal (Barcikowska et al., 32 
2019). 33 
 34 
 35 
10.6.4.7 Future climate information from regional downscaling 36 
 37 
To unravel the complex interactions and feedbacks involving ocean-atmosphere-land-biogeochemical 38 
processes that modulate the climate and environment of the Mediterranean region on a range of spatial and 39 
temporal scales, regional downscaling projects are being developed to provide an integrated view on the 40 
future of the Mediterranean. A recent example is Med-CORDEX (Ruti et al., 2016; Somot et al., 2018), but 41 
earlier activities have included ENSEMBLES (Fernández et al., 2019) and ESCENA (Jiménez-Guerrero et 42 
al., 2013) and the ongoing EURO-CORDEX (Jacob et al., 2014). 43 
 44 
From an analysis of EURO-CORDEX results, studies showed that southern Europe is projected to face a 45 
robust non-linear increase in temperature larger than the global mean, especially for both hot and cold 46 
extremes (Jacob et al., 2018; Kjellström et al., 2018; Maule et al., 2017). In particular, Dosio and Fischer 47 
(2018) showed that the increase in the number of tropical nights is more than 60% larger in many places in 48 
southern Europe and the Mediterranean under 2°C warming compared to 1.5°C. Over the region, the 49 
projected temperature increase, including a higher probability of severe heat waves (Russo et al., 2015), 50 
together with a reduction in precipitation (Jacob et al., 2014; Dosio, 2016;  Rajczak and Schär, 2017) results 51 
in projected increase of drought frequency and severity (Spinoni et al., 2018, 2019). Also, the frequency and 52 
severity of marine heat waves of the Mediterranean sea are projected to increase (Darmaraki et al., 2019).  53 
RCM simulations with the CORDEX-Middle East and North Africa domain under RCP8.5 project a change 54 
in hot days (i.e. those with maximum temperature > 50°C) for 2070‒2099 with respect to 1971‒2000 of 55 
about five days in the northern Mediterranean (southern Europe), but up to about 70 days in the southern 56 
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Mediterranean (Almazroui, 2019). 1 
 2 
For the southern part of the Mediterranean, RCM simulations project a warming for the period 2070-2100 3 
between 3°C and 9°C depending on the RCP4.5 and RCP8.5 scenarios (Bucchignani et al., 2018; Ozturk et 4 
al., 2018). Bucchignani et al. (2018) using COSMO-CLM driven by CMCC-CM projects a decrease in 5 
precipitation up to 30% in the Mediterranean coastal areas by the end of the 21st century. 6 
 7 
Despite the large efforts of these regional downscaling projects, the GCM-RCM matrix is still sparse and 8 
lacking a systematic design to explore the uncertainty sources (e.g., GCM, RCM, scenario, resolution). 9 
Focusing on the Iberian peninsula, Fernández et al. (2019) argued that the driving GCM is the main 10 
contributor to uncertainty in the grand-ensemble. Consistent but implausible temperature changes in RCMs 11 
can occur. An example is a strong temperature increase over the Pyrenees due to excessive snow cover in the 12 
present climate (Fernández et al., 2019). Based on an older set of RCMs simulations (ENSEMBLES), Déqué 13 
et al. (2012) also argued that the largest source of uncertainty in the temperature response over Southern 14 
Europe is the choice of the driving GCM (whereas for summer precipitation the choice of the RCM 15 
dominates the uncertainty). Similarly, Macias et al., (2018) claimed that the choice of the GCM has the 16 
largest impact on the simulated SST bias exhibited by the RCM. Finally, Bartók et al. (2017) found that 17 
RCMs projected a change in surface solar radiation (on average, -0.60 W/m2 per decade over Europe) 18 
opposite to that of the driving GCMs, with the large discrepancies being over spring and summer, due 19 
mainly to different trends in cloud cover in global and RCMs. 20 
 21 
In addition, statistical downscaling studies for the Mediterranean exist that confirm the results obtained from 22 
GCM and RCM studies, however with some regional variations (Jacobeit et al., 2014; Hertig and Tramblay, 23 
2017). 24 
 25 
10.6.4.8 Potential for abrupt change 26 
 27 
A growing number of studies are investigating the impacts of warming levels above the Paris Agreement 28 
(which would limit warming to 1.5C above the pre-industrial level) on the hydrological cycle, vegetation 29 
and their socio-economic consequences. Based on EURO-CORDEX results, Barredo et al. (2018) showed 30 
that, by the end of the century under RCP8.5, the present land area of the Mediterranean climate zone is 31 
projected to contract by 16%, mainly due to the expansion of the arid zone, which is projected to increase by 32 
more than twice its present extent, equivalent to three times the size of Greece. In addition, under RCP8.5, 33 
the land area of the Mediterranean climate zone is projected to expand to other zones by an area equivalent 34 
to 50% of its present extent. The region of heat stress and extreme precipitation extends from southern 35 
Europe at 1.5 ºC global warming to heavenly populated regions across Europe at 3 ºC global warming 36 
(Pfeifer et al., 2019). Combining Holocene pollen profiles and CMIP5 climate scenarios, Guiot and Cramer 37 
(2016) argued that above 2°C of warming, climatic change will generate Mediterranean land ecosystem 38 
changes that are unmatched in the Holocene, a period characterized by recurring precipitation deficits rather 39 
than temperature anomalies. The changes will likely lead to substantial expansion of deserts in much of 40 
southern Europe and northern Africa. Samaniego et al., (2018), using an ensemble of hydrological and land-41 
surface models, estimated that a warming of 3˚C will increase the drought area by 40% affecting up to 42% 42 
more of the population. It is important to note that the highest population densities and the location of major 43 
cities are largely concentrated along the cost of the Mediterranean (Lange, 2019a). The south European and 44 
north African countries are projected to become hot spots for drought by the end of the 21st century (Waha et 45 
al., 2017). 46 
 47 
 48 
10.6.4.9 Storyline and narrative approaches 49 
 50 
The atmospheric circulation is influenced by large scale, often slowly varying components of the climate 51 
system, such as ocean, sea-ice and soil moisture. Historical and future changes of the atmospheric circulation 52 
depend, among other factors, on how these drivers have changed and will change. Zappa and Shepherd 53 
(2017) have analysed this for the Mediterranean region and identified different possible evolutions of those 54 
drivers and their impact on the Mediterranean winter climate. Important identified drivers are tropical and 55 
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polar amplification of global warming and the polar stratospheric vortex (Manzini et al., 2014; Simpson et 1 
al., 2018), with implications for precipitation. Brogli et al. (2019a, 2019b) and Kröner et al. (2017) have done 2 
this for the Mediterranean summer climate, revealing the relative importance of thermodynamic processes, 3 
lapse rate and circulation. 4 
 5 
 6 
10.6.4.10  Messages distilled from multiple lines of evidence 7 
 8 
The Mediterranean has a semi-arid climate with a dense and growing human population and various 9 
environmental pressures. There is high confidence (high agreement, robust evidence) that the Mediterranean 10 
region has experienced a summer temperature increase in recent decades that is faster than the increase 11 
for the Northern Hemisphere summer mean. There is also high confidence (high agreement, robust 12 
evidence) that the projected summer temperature increase will be larger than the Northern Hemisphere mean, 13 
resulting in an increase in frequency and intensity of heat waves with possible socio-economic 14 
consequences. 15 
 16 
There is robust evidence and high agreement and, thus, high confidence that summer precipitation in the 17 
Mediterranean region will decrease toward the end of the 21st century. One reason for the high confidence in 18 
projected future drying is the finding of prominent detectable and at least partly attributable (to anthropogenic 19 
forcing) century-scale decreasing precipitation trends in the region. There is high confidence that this will 20 
substantially affect the hydrological cycle and vegetation, with implications for the socio-economic structure. 21 
Due to the biases in GCMs and RCMs, there is low to medium confidence in the spatial distribution of 22 
projections of precipitation for the Mediterranean region. Natural variability on decadal time scales 23 
enhances this uncertainty. 24 
 25 
 26 
10.7 Limits to the assessment 27 
 28 
A number of challenges have been identified that limit the assessment of regional climate change: 29 

 There is a need to monitor climate in poorly observed regions. Some regions such as the poles, 30 
northern Canada, Siberia, Tibetan plateau, southern Mediterranean and large areas in Africa, 31 
Australia and South America have only sparse in situ observational networks. Climate is changing 32 
fast with a high impact on cities, mountains and forests. However, these locations are undersampled 33 
due to the strict WMO standards that do not necessarily promote reference stations in those areas. 34 
Furthermore, access to relevant observational data remains a problem since some countries do not 35 
make their data available to the research community or charge substantial fees for access. In all these 36 
cases, the confidence in messages reliant mainly on numerical models might be low due to the lack 37 
of observational validation and support (Sections 10.2 and 10.6). 38 

 There is a substantial shortage of observed variables needed for both validation and model 39 
development other than temperature and precipitation, such as evaporation and soil moisture. 40 
Climate messages also require high-density, homogeneous, long observational records for a large 41 
number of variables. For instance, estimating crop-yield change or potential for generation of 42 
renewable energy require data for radiation, wind and relative humidity to elaborate the 43 
corresponding climate information and messages (Sections 10.2 and 10.6). 44 

 There is a disproportionate amount of climate change literature available across regions. Literature 45 
plays a central role as an information source when climate change messages are produced at the 46 
regional level. In addition, large bodies of literature (e.g., local and regional reports) are often 47 
overlooked when performing assessments and constructing climate messages. Furthermore, although 48 
the quality of the assessment is dependent on the amount of literature dealing with regional climate, 49 
research agendas are dominated by the priorities of the global north. As a consequence, aspects 50 
relevant to other regions of the planet, some of which are also suffering from climate impacts, may 51 
not be given the attention they require (Sections 10.2, 10.3 and 10.6). 52 

 There is a shortage of process-based evaluation at regional scales compared to the increasing number 53 
of large-scale evaluations. Such analyses are required to assess the fitness of the chosen models for 54 
the given purpose and are the basis for our confidence in climate projections. The relevant processes 55 
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cover a wide range of scales from planetary to synoptic to mesoscale and potentially even to local. 1 
Yet, there is a lack of regional climate change studies addressing the representation of large-scale 2 
processes in GCMs relevant for downscaling. Such studies are particularly important for the design 3 
of GCM/RCM ensembles that span the range of projection uncertainty and realistically represent the 4 
climate over the region of interest. Moreover, the fitness of statistical methods for climate change 5 
studies has received only very limited attention, such as pseudo-reality studies to assess which 6 
predictors, change factors and model structures are required for downscaling a given aspect of a 7 
variable in a future climate (Section 10.3). 8 

 Internal variability is an important contributor to the climate uncertainty at regional scales, especially 9 
for variables other than temperature. To construct near-term regional climate messages there is 10 
therefore a need for a better understanding of the processes governing internal variability, such as the 11 
oceanic modes of variability, and the teleconnections that connect them to the regions around the 12 
world (Sections 10.3, 10.4 and 10.6). 13 

 Methodologies on how to propagate climate uncertainties from global, regional, and up to the human 14 
settlement scale are still under development and more investigations are needed for the assessment. 15 
For the moment, the production of a climate message at this scale relies mainly on GCMs or RCMs 16 
that often do not incorporate urban parametrizations in their land-surface components. In some 17 
cases, bias adjustment methods are used with a substantial lack of the physical process involved at 18 
this scale. There is also a strong limitation to constraint the uncertainties due to the reduced 19 
availability of long-term monitoring stations in cities, as mentioned above. These difficulties limit 20 
the usefulness of current climate messages at the urban scale (Box 10.2). 21 

 There is limited literature about the construction of regional climate messages. Regional and local 22 
climate messages developed by governmental institutions therefore follow different approaches, thus 23 
not being necessarily coherent in the messages produced and communicated. This could be improved 24 
implementing a quality control system. Regional and local climate communications are not always 25 
available in English and there is need for a database collecting these messages. The climate research 26 
community also needs to work further with the social sciences and humanities to better understand 27 
how potential users of regional climate messages perceive and respond to them, as well as to 28 
translate their requirements to be understood by researchers (Section 10.5). 29 

 There is a shortage of regional climate change studies based on multiple lines of evidence. Most 30 
studies rely on either GCMs (potentially bias-adjusted) or downscaled GCMs. But there are only few 31 
studies combining information obtained from observations, process understanding and hierarchies of 32 
models comprehensively evaluated to address relevant aspects at different spatial scales (Sections 33 
10.5 and 10.6). 34 

  35 
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Frequently Asked Questions 1 
 2 
FAQ 10.1: How can we provide useful climate information for regional stakeholders? 3 
 4 
The world is physically and culturally diverse, and the challenges posed by climate change vary by region 5 
and location. Because climate change affects so many aspects of people’s daily work and living, information 6 
about climate change can help with decision-making, but only when the information is relevant for the 7 
people involved in making those decisions. Users of climate information may be highly diverse, ranging from 8 
professionals in areas such as human health, agriculture or water management to a broader community that 9 
experiences the impacts of changing climate.  Providing useful, actionable information thus requires an 10 
awareness of local contexts, agreement on the appropriate formulation of the information, and a mutual 11 
understanding of limitations and uncertainties.  12 
 13 
The development, delivery, and use of climate change information are inherently influenced by the values of 14 
all parties involved: those providing the information, those communicating the information, those hearing the 15 
information, and those who need the information in order to make decisions or solve problems 16 
Consequently, partnerships between these participating communities, especially involving those for whom 17 
the information is intended, can help ensure that the appropriate information is delivered and provided in 18 
ways that are accessible and usable by decision-makers.  19 
 20 
Effective partnerships recognize and respond to the values of all parties involved, especially when they 21 
involve culturally diverse communities. This is particularly true for climate change – a global issue posing 22 
challenges that vary by region.  Challenges like this require exchanging information between groups that 23 
may be culturally diverse and from different disciplines and domains of expertise. By recognizing this 24 
diversity, climate information can be made more relevant and credible, most notably when conveying the 25 
complexity of risks for human systems and ecosystems and for building resilience in developing nations, 26 
which may be more vulnerable to damaging impacts of climate change. 27 
 28 
Useful climate information can come in many different forms and from many different sources. For example, 29 
climate scientists can provide information on future changes by extending historical trends forward into the 30 
future, using model simulations of the global and/or regional climate change, and inferring regional change 31 
by evaluating changes in the weather behaviour that influences a region. Constructing useful climate 32 
information requires considering all available sources in order to capture the fullest possible representation 33 
of projected changes and distil the information in a way that meets needs of the stakeholders and 34 
communities impacted by the changes. Ideally, the distillation process (FAQ 10.1, Figure 1) engages with 35 
the intended recipients of the information, especially stakeholders whose work involves non-climatic factors, 36 
such as human health, agriculture or water resources. The distillation should evaluate the accuracy of all 37 
information sources (observations, simulations, expert judgement), weigh the credibility of possible 38 
conflicting information, and arrive at climate information that also estimates the confidence a user should 39 
have the information. Information providers should further recognize that the geographic regions and time 40 
periods governing stakeholders’ interest (for example, the growing season of an agricultural zone) may not 41 
align well with the time and space resolution of available climate data, and thus additional development may 42 
be required to extract useful climate information. 43 
 44 
Successfully framing information on climate impacts and effective societal responses requires presenting 45 
information in the context of the local challenges posed by climate change. For example, the U.S. state of 46 
Arizona passed an initiative that responded to a specific, local impact of climate change—water-resource 47 
shortfalls in Arizona – even though some of the state’s government leaders were unsure about global climate 48 
change. The success of this effort was the result of recognizing a serious impact while avoiding the central, 49 
but likely controversial, motivation of fighting global climate change. Similarly, city officials of Lusaka in 50 
Zambia engaged in a sustained dialogue with climate scientists. The result was a partnership that constructs 51 
and communicates climate information relevant to governing an African city vulnerable to climate change, 52 
such as changes in rain seasons. 53 
Stakeholders often need information about complex, compound events—such as floods following a period of 54 
drought – and the information they need, such as data on heat-stress conditions or a drought index, may not 55 
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be a primary concern for scientists focused on projecting changes in the physical climate system  1 
 2 
One way to link complex information to stakeholder applications is through stories. Storylines give climate 3 
change information in a form that connects with the recipients’ experiences of existing weather and climate. 4 
These storylines can make climate information more accessible and physically comprehensible. For example, 5 
a storyline may take a common experience like the arrival and duration of a winter storm and show how the 6 
storm’s snowfall and winds will change in the future. The development of storylines uses the experience and 7 
expertise of stakeholders who seek to develop appropriate response measures, such as water-resource 8 
managers and health professionals. With appropriate choices, storylines can engage nuances of the climate 9 
information in a meaningful way by building on common experiences, thus enhancing the information’s 10 
usefulness. 11 
 12 
 13 
[START FAQ 10.1, FIGURE 1 HERE] 14 
 15 
FAQ 10.1, Figure 1: [Placeholder, the figure will be updated: Climate information for decision makers is more 16 

useful if the physical and cultural diversity across the world is considered.  The figure illustrates 17 
schematically the broad range of knowledge that must be blended with the diversity of users to 18 
distil information that will have relevance and credibility.] 19 

 20 
[END FAQ 10.1, FIGURE 1 HERE] 21 
 22 
  23 
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FAQ 10.2: How does the growth of cities interact with climate change? 1 
 2 
Urban areas with buildings in close proximity to each other “trap” heat, reduce the natural ventilation and 3 
modify the local radiation and energy balance. Combined with less vegetation and heat released by human 4 
activities, cities are creating the so-called “urban heat island” (UHI), which causes cities to experience 5 
higher than average temperatures than their surrounding areas. Urbanization and the increasing severity of 6 
heat waves under climate change further amplify this effect. 7 
 8 
Cities are on front line in both the causes and the effects of climate change. On one hand, cities are 9 
responsible for up to 70% of current emissions of GHGs yet occupy less than 1% of global land mass. By 10 
2030, almost 60% of the world’s population will live in urban areas and every year sees the addition of 67 11 
million new urban dwellers, 90% of these is added to cities in developing countries. On the other hand, cities 12 
and their inhabitants are highly vulnerable to climate extremes, including more frequent, longer and more 13 
intense heat waves. Urban areas are already vulnerable to increased thermal stress during heat-waves and 14 
projected rates of urban growth means that vulnerability will increase. This became apparent in 2003 in 15 
Paris, France, when daily mortality tripled during a heat wave in early August (around 30,000 causalities), or 16 
in 2010, in Ahmedabad, India, when a heatwave killed more than 1,100 people. 17 
Due to the low albedo (reflectivity) of impervious surfaces, such as rooftops and asphalt roadways, 18 
differential heat storage (big heat capacity of building materials), anthropogenic heat, reduced wind speed 19 
(greater surface roughness), and light trapping within the canyons formed by taller structures, cities 'trap' 20 
heat (see FAQ10.2 Figure 1). They are therefore often associated with elevated surface air temperature, a 21 
phenomenon referred to as the urban heat island, where night-time urban air temperature is substantially 22 
higher (several degrees) than corresponding temperatures in the surrounding rural areas. In different cities 23 
around the world with different background climate, it has been found that during heat waves episodes, the 24 
urban heat islands gets intensified compared to its climatological mean values. 25 
 26 
Although the urban heat island phenomenon is well documented and better understood, important 27 
measurements of meteorological and external climatic drivers across urban areas remain are lacking, due to 28 
the scarcity of high-density, in-situ measurement networks. Especially, long-term datasets (a year or more) 29 
are very scarce but invaluable because they allow more in-depth research on the seasonal evolution of the 30 
urban climate. In many cities, especially in the developing world, the historical record is too short, 31 
discontinuous, or the quality too uncertain to support trend analysis and climate change attribution. 32 
 33 
Estimating how the urban heat island will evolve under climate change conditions is uncertain because 34 
several studies, which use a variety of methods, report contrasting results. However, there is clear evidence 35 
that future urbanization amplifies the projected air temperature under different background climate with a 36 
strong impact on minimum temperatures that could be comparable in magnitude to the global warming. 37 
 38 
Climate change will, on average, have a limited impact on the magnitude of the urban heat island but 39 
urbanization together with more frequent extreme climatic events (e.g. heat waves) will strongly affect cities. 40 
 41 
 42 
[START FAQ 10.2, FIGURE 1 HERE] 43 
 44 
FAQ 10.2, Figure 1: [Placeholder, the figure will be updated: Various factors contribute to either warm up or cool 45 

down urban areas, compared to their surroundings.  Overall, cities tend to be warmer than their 46 
surroundings. This is called the “urban heat island” effect. Values are taken from the recent 47 
literature.] 48 

 49 
[START FAQ 10.2, FIGURE 1 HERE] 50 
  51 
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Figure 10.1: Simplified view of the construction of a regional climate message including sources, context, values and 5 
storylines, with the processes that lead to the distillation of the message. The chapters and sections where 6 
the elements entering the message construction are assessed are indicated. 7 
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Figure 10.2: Schematic diagram derived from the inventive way of (Orlanski, 1975) displaying relevant interacting 4 

space and time scales to regional climate change information. Also indicated are the processes included in 5 
the different models and model components considered in Chapter 10 as a function of time and space 6 
scales. This figure is a companion of Figure 1.14 in Chapter 1 where the region sets adopted in the report 7 
are illustrated as a function of time and space scales. 8 
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Figure 10.3: Regions used in the chapter. The regions for Section 10.4, illustrative regional attribution examples are in 4 
blue: Caribbean small islands, central and eastern Eurasia, East Asia, western Europe, south-western 5 
Australia, south-eastern South America, Sahel/West African monsoon region, and south-western North 6 
America (AR6 region SWN). The regions for Section 10.6, the comprehensive case studies of 7 
constructing regional climate messages, are in black: Cape Town, Mediterranean and South Asian 8 
monsoon. The urban areas used in Box 10.2 (urban climate) and the region used in Cross-Chapter Box 9 
10.3 (Hindu-Kush Himalayan climate) are in red and orange, respectively. 10 
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 1 
Cross-Chapter Box 10.1, Figure 1: Mechanisms of potential impacts of Arctic warming on mid-latitude climate. 2 

Mechanisms are different for winter and summer with different associated impacts 3 
on mid-latitudes. The mechanisms involve changes in the polar vortex, storm 4 
tracks, planetary waves and jet stream. 5 
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 1 
Figure 10.4: Typical model types and chains used in modelling regional climate. Grey lines: upstream model output is 2 

used without further post-processing. Orange lines: upstream model output is dynamically downscaled. 3 
Green lines: upstream model output is further statistically post-processed. The dashed lines indicate 4 
model chains that might prove useful but have not or only rarely been used. 5 
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Figure 10.5: Illustration of some systematic errors in simulations performed with dynamical models. (a) Top row: 3 

Mean summer (June to August) near-surface air temperature (in °C) over the Mediterranean area in two 4 
observational datasets with the first panel for Berkeley surface temperature dataset (BEST) (Rohde et al., 5 
2013) and the second panel for E-OBS v19.0e (Cornes et al., 2018), and mean bias for five multi-model 6 
experiments with GCMs (CMIP5, CMIP6 and HighResMIP) and RCMs (CORDEX EUR-44 and EUR-7 
11). Biases of the CMIP ensembles are shown with respect to BEST, HighResMIP and CORDEX 8 
ensembles with respect to E-OBS. Bottom row: Box-and-whisker plot of the yearly mean summer near-9 
surface temperature averaged over the western Mediterranean area (33°N–45°N, 10°W–10°E, black 10 
quadrilateral in the first panel of the top row) for a set of references and single model runs of the five 11 
multi-model experiments (one simulation per model). Additional observation and reanalysis data included 12 
in the bottom row are CRU TS v4.02, E-OBS v17, ERA-Interim, EWEMBI, HadCRUT4, JRA-55, 13 
NCEP/NCAR (Kalnay et al., 1996; Dee et al., 2011; Morice et al., 2012; Harris et al., 2014; Kobayashi 14 
and Iwasaki, 2016; Cornes et al., 2018; Lange, 2019). As (a) but for precipitation rate (mm day-1) and 15 
showing Global Precipitation Climatology Centre (GPCC) version 2018 (Schneider et al., 2017) in the 16 
first panel of the top row. Biases of the CMIP ensembles are shown in respect to GPCC. Additional 17 
observation and reanalysis data included in the bottom row are CRU TS v4.02, E-OBS v17, ERA-Interim, 18 
EWEMBI, GHCN (Jones and Moberg, 2003; Dee et al., 2011; Harris et al., 2014; Cornes et al., 2018; 19 
Lange, 2019b). All results correspond to the period 1986–2005. [Placeholder: The maps for EUR-44 20 
and EUR-11 need to be completed]  21 
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Figure 10.6: Probability density function of the winter (December to February, top) and summer (June to August, 4 
bottom) daily precipitation in the HighResMIP, CMIP5 (eight models), CORDEX EUR-44 (27 models) 5 
and EUR-11 (36 models) multi-model simulations for different European regions: France (FR), Central 6 
Europe (CE), Mediterranean (MD) and Scandinavia (SC). [Placeholder: Observations will be added] 7 
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Figure 10.7: [Placeholder: Characteristics of summer (June to August) blocking over the North Atlantic in the 3 
HighResMIP experiment (seven models) as a function of resolution along with the CMIP5 and CMIP6 4 
multi-model results and a reference from ERA-Interim for (left) global climate model and (right) 5 
atmospheric global climate model simulations using observed sea surface temperature and sea ice. Top 6 
row: area mean blocking frequency; middle row: spatial correlation between simulated and observed 7 
frequencies; bottom row: root mean squared error between simulated and observed frequencies.] 8 
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Figure 10.8: Hourly accumulated precipitation profiles (mm hour-1) around the eye of Typhoon Haiyan, represented by 4 
(a) GSMaP satellite observation data, (b) Guiuan radar (PAGASA), (c) meso-ensemble forecast (60 km), 5 
(d) NHRCM (20 km), (e) NHRCM (5 km), and (f) WRF (1 km) models. Adapted from Takayabu et al. 6 
(2015). 7 
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Figure 10.9: Projected changes in summer (June to August) precipitation (in percent with respect to the mean 3 

precipitation) over the Alps between the periods 2070‒2099 and 1975‒2004. (a) Mean of four GCMs 4 
regridded to a common 1.32°x1.32° grid resolution; (b) mean of six RCMs driven with these GCMs. The 5 
grey contours show elevation at 500 m intervals from the digital elevation model of the SMHI-RCA 6 
EUR11, regridded to the GCM resolution for panel b. Adapted from Giorgi et al. (2016). 7 
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Figure 10.10:Observed and projected changes in seasonal mean (December to February in the left column and June to 4 
August in the right one) precipitation. Observations based on Global Precipitation Climatology Centre 5 
(GPCC) version 2018 (Schneider et al., 2017) and Climate Research Unit (CRU TS) version 4.02 (Harris 6 
et al., 2014) datasets, projections based on the Max-Planck Institute Grand-Ensemble (MPI-GE) (Maher 7 
et al., 2019) with 100 simulations starting from different initial conditions. (a)-(d) 55-year trends (2016‒8 
2070) from ensemble members with the minimum (a,c) and maximum (b,d) area mean change in the 9 
trend. (e) and (f) Time series of seasonal mean precipitation with the red (blue) lines corresponding to the 10 
ensemble member with strongest (weakest) 55-year trend and the grey lines to all remaining ensemble 11 
members. Box-and-whisker plots show changes relative to the base period across all ensemble members 12 
for three future time slices (near, mid, and long term). The top panels show global averages, the middle 13 
panels averages across the domains marked in (a)-(d), and the bottom panels results for grid boxes close 14 
to the cities mentioned. 15 

  16 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-213 Total pages: 236 
 

 1 

 2 
 3 
 4 

Cross-Chapter Box 10.2, Figure 1: Modification of simulated climate change signals by different bias-adjustment 5 
methods in different settings over the Iberian Peninsula. Climate change signal 6 
(deltas, Δ) for the 2071‒2100 (RCP8.5) period with respect to the baseline 1971‒7 
2000 for global (G-RAW, 1.125º horizontal resolution) and regional (R-RAW, 8 
0.2º) model outputs (first two boxplots in each panel) together with bias-adjusted 9 
results (rest of boxplots). Results are shown for two similar bias-adjustment 10 
experiments with high-resolution (0.2º, left column) and coarse (1.125º, right 11 
column) observational reference data from two different datasets: Iberia01 (IB) 12 
and E-OBS (E). In the left column the GCM outputs are “downscaled” to the high 13 
resolution, whereas the RCM outputs have the same target resolution (so there is 14 
no associated downscaling). However, in the right column all datasets are upscaled 15 
to the GCM resolution (no downscaling effect). Results are shown for seven bias-16 
adjustment methods with four results (boxplots) for each method (G-IB-code, G-17 
E-code, R-IB-code, R-E-code, for global ‘G’ and regional ‘R’ model outputs 18 
adjusted using Iberia01 ‘IB’ or E-OBS ‘E’ observational references). Adapted 19 
from Casanueva et al. (submitted). 20 
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Cross-Chapter Box 10.2, Figure 2: Boreal spring (March to May) daily mean temperature in the Sierra Nevada region 4 
in California. (a) Present climate (1981‒2000 average) in the GFDL-CM3 GCM, 5 
interpolated to 8 km (left), GCM bias adjusted (using quantile mapping) to 6 
observations at 8 km resolution (middle) and WRF RCM at 3 km horizontal 7 
resolution (right). (b) Climate change signal (2081‒2100 average minus 1981‒2000 8 
average according to RCP8.5) in the GCM (left), the bias adjusted GCM (middle) 9 
and the RCM (right). As the GCM does not resolve the snow-albedo feedback, it 10 
simulates an implausible regional warming signal. The bias adjustment cannot 11 
improve the missing feedback. Only the high-resolution RCM simulation simulates 12 
a plausible elevation-dependent climate change signal. Adapted from Maraun et al. 13 
(2017b). 14 
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Figure 10.11: Time series of surface air temperature (in °C, blue and red colours) or precipitation (in mm per month, 5 
green and ochre colours) anomalies (relative to the 1951–1980 period) area-averaged over appropriate 6 
regions of the selected illustrative examples. The regions are broadly defined by the green (precipitation) 7 
and magenta (temperature) rectangles. The precise region boundaries and examples are from top to 8 
bottom and left to right: (a) The south-western North America (28°N–40°N, 105°W–120°W) drought. (b) 9 
The Caribbean small islands (15°N–27°N, 65°W–85°W) summer (June to August) drought. (c) The 10 
south-eastern South America (26.25°S–38.75°S, 56.25°W–66.25°W) Austral summer (December to 11 
February) drought. (d) The Sahel and the West African summer (June to September) monsoon (10°N–12 
20°N, 20°W–40°E) drought and recovery. (e) The south-western Australia (25°S–39°S, 110°E–122°E) 13 
Austral autumn and winter rainfall decline. (f) The East Asia summer (June to August) monsoon 14 
weakening and recovery; here the time series is the difference of mean precipitation between two regions: 15 
(110°E–125°E, 35°N–45°N) – (105°E–125°E, 20°N–35°N). (g) The central and eastern Eurasia (40°N–16 
65°N, 40°E–140°E) winter (January to March) cooling. (h) The western Europe (35°N–70°N, 15°W–17 
20°E) summer (June to August) warming. Temperature data is from the Berkeley surface temperature 18 
dataset (BEST) (Rohde et al., 2013) and precipitation from Global Precipitation Climatology Centre 19 
(GPCC) version 2018 (Becker et al., 2013; Schneider et al., 2017). The light-grey area on each graphic 20 
represents the period of interest for attribution. The black line is a simple low-pass filter that has been 21 
used in AR4, Chapter 3, Appendix 3.A. It has five weights 1/12 [1-3-4-3-1] and for annual data, its half-22 
amplitude point is for a six-year period, and the half-power point is near 8.4 years. 23 
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Figure 10.12:Attribution of historic precipitation change in the West African monsoon and Sahel region during June to 5 
August: (a) Time series of GPCC version 2018 (Schneider et al., 2017) precipitation anomalies (mm day-6 
1, baseline 1955–1984) in the Sahel box (10°N–20°N, 20°W–40°E) indicated in panel (b) (same as Figure 7 
10.11) with a five-year weighted mean applied (see Figure 10.11). The two periods used for difference 8 
diagnostics are shown in grey columns. (b) Precipitation change (mm day-1) in GPCC data for the 1980–9 
1990 minus the 1950–1960 periods. (c) Precipitation difference (mm day-1) averaged over 1955–1984 and 10 
four ensemble members of HadGEM3 experiments between 1.5x and 0.2x historical aerosol emissions 11 
scaling factors after Shonk et al. (2019). (d) Precipitation anomaly time series (mm day-1, baseline 1955–12 
1984) over the Sahel in the CMIP6 multi-model database for 26 historical simulations with all forcings 13 
(in red), ten with greenhouse gas-only forcing (in light blue) and eight with aerosol-only forcing (in grey).  14 
(e) Precipitation change (% (29 years)-1) for the (left) decline period (1955–1984) and (right) recovery 15 
period (1985–2014) for ensemble means and in 26 individual models of the CMIP6 historical experiment, 16 
ten with greenhouse gas-only forcing, eight with aerosol-only forcing, 34 CMIP5 models (in dark blue) 17 
and in individual members of the Database for Policy Decision Making for Future Climate Change 18 
Grand-Ensemble (d4PDF-GE) (Mizuta et al., 2017) (pink histogram) and the Max-Planck Institute 19 
Grand-Ensemble (MPI-GE) (Maher et al., 2019) (violet histogram). The two black crosses represent 20 
observational estimates from GPCC and the Climate Research Unit Time-Series (CRU TS) version 4.02 21 
(Harris et al., 2014). Trends are estimated using ordinary least squares. 22 
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Figure 10.13:(a) Mean boreal summer (from June to August) precipitation spatial linear trend (mm month-1 (44 years)-3 
1) over the East Asia Summer Monsoon (EASM) region from 1961 to 2005. Trends are estimated using 4 
ordinary least squares. Top row: Observed trends from GPCC version 2018 (Schneider et al., 2017), CRU 5 
TS version 4.02 (Harris et al., 2014) and the Asian Precipitation-Highly Resolved Observational Data 6 
Integration Towards Evaluation of Water Resources (APHRODITE V1101) (Yatagai et al., 2012). 7 
Middle and bottom rows: Simulated trends corresponding to the East Asia-South (105°E–125°E, 20°N–8 
35°N) wettest (left) and mean (middle) and East Asia-North (110°E–125°E, 35°N–45°N) wettest (right) 9 
over the EASM region using the 100 ensemble simulations of the MPI-GE (Maher et al., 2019) (middle 10 
row) and from the 100 members of the d4PDF-GE (Mizuta et al., 2017) (bottom row). (b) Precipitation 11 
difference (mm month-1, baseline 1961–2005) between East Asia-North and East Asia-South for GPCC 12 
(grey bar charts). The lines show low-pass filtered time series of this difference for GPCC (in black) and 13 
for the East Asia-South wettest (in green) and East Asia-North wettest (in brown) MPI-GE members. The 14 
filter is the same as the one used in Figure 10.11. (c) Distribution of trends of the summer precipitation 15 
difference between the two regions in panel (b) for MPI-GE (violet histogram), d4PDF-GE (pink 16 
histogram), observations (back crosses), historical simulations from a set of 26 CMIP6 models (red 17 
circles) and ensemble mean trends. 18 
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Figure 10.14:(a) Mean austral autumn and winter (March to August) precipitation spatial linear trend (% (55 year)-1) 4 
over Australia from 1960 to 2014. Trends are estimated using ordinary least squares. Top row: Observed 5 
trends from the GPCC version 2018 (Schneider et al., 2017) and CRU TS version 4.00 (Harris et al., 6 
2014). Middle row: Driest, mean and wettest trends (relative to the region enclosed in the black 7 
quadrilateral, left panel of bottom row) from the 100 members of the MPI-GE (Maher et al., 2019). 8 
Bottom row: Driest, mean and wettest trends (relative to the above region from the 40 members of the 9 
National Center for Atmospheric Research grand ensemble (NCAR-GE) (Kay et al., 2015). (b) Time 10 
series of austral autumn and winter precipitation anomalies (%, baseline 1971–2000) over the south-11 
western Australia region delimited by the black quadrilateral for GPCC (grey bar charts). Black, brown 12 
and green lines show low-pass filtered time series for GPCC, driest and wettest members of NCAR-GE, 13 
respectively. The filter is the same as the one used in Figure 10.11. (c) Distribution of south-western 14 
Australia region-averaged austral autumn and winter precipitation 1960–2014 trends (% (55 year)-1) for 15 
MPI-GE (violet histogram), NCAR-GE (pink histogram), observations (GPCC and CRUTS, dark grey 16 
open-filled circles) and historical simulations from a set of 22 CMIP6 models (yellow open-filled circles). 17 
Coloured triangles refer to ensemble mean trends of their respective ensemble. Brown and green open-18 
filled circles refer to the driest and wettest NCAR-GE ensemble members. 19 
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Figure 10.15:(a) Mechanisms that have been suggested to contribute to south-eastern South America summer wetting 3 
since the beginning of the 20th century. (b) Mean austral summer (December to February) precipitation 4 
spatial linear 1951–2014 trends (mm per season and decade) from GPCC version 2018 (Schneider et al., 5 
2017) and CRU TS version 4.02 (Harris et al., 2014). Trends are estimated using ordinary least squares. 6 
(c) Time series of austral summer precipitation anomalies (%, baseline 1995–2014) over the south-eastern 7 
South American region (black in (b)) for GPCC (bar charts). Black, brown and green lines show low-pass 8 
filtered time series for GPCC, driest and wettest members of GFDL-CM3, respectively. The filter is the 9 
same as the one used in Figure 10.11. (d) Distribution of precipitation 1951–2014 trends over south-10 
eastern South America from 12 grand ensembles (adapted from Díaz et al. (submitted)). The six grand 11 
ensembles to the left reproduce reasonably well the observed spatial patterns of mean precipitation and 12 
interannual variability (better performing), while the six grand ensembles to the right have a considerably 13 
worse performance (poor performing) (Díaz et al., submitted). The grey horizontal lines show the mean 14 
trend of each of these two subsets of grand ensembles. Dashed grey lines show GPCC and CRU TS 15 
trends and the red circles to the right show trends of 26 individual CMIP6 models. 16 
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Figure 10.16:(a) Winter (January to March) near-surface air temperature spatial linear trend (in °C (12 year)-1) over 4 
Eurasia from 2001 to 2012. Trends are estimated using ordinary least squares. Top row: Observed trends 5 
from the BEST dataset (Rohde et al., 2013), the Cowtan and Way dataset (Cowtan and Way, 2014) and 6 
the Global Historical Climatology Network version 2 and the Climate Anomaly Monitoring System 7 
(GHCN-CAMS) dataset (Fan and van den Dool, 2008). Middle row: Coldest, mean and warmest trends 8 
(relative to the region enclosed in the black quadrilateral, left panel of middle row) from the 100 members 9 
of the MPI-GE (Maher et al., 2019). Bottom row: coldest, mean and warmest trends relative to the above 10 
region from the 100 members of the d4PDF-GE (Mizuta et al., 2017). (b) Time series of BEST winter 11 
temperature anomalies (%, baseline 1971–2000) over the Eurasian region delimited by the black 12 
quadrilateral in (a) (grey bar charts). Black, brown and green lines show low-pass filtered time series for 13 
BEST, coldest and warmest members of d4PDF-GE, respectively. The filter is the same as the one used 14 
in Figure 10.11. (c) Distribution of Eurasia region-averaged winter temperature 2001-2012 trends (in °C 15 
(12 year)-1) for MPI-GE (violet histogram), d4PDF (pink histogram), four observational datasets (BEST, 16 
GHCN-CAMS, Cowtan and Way and National Oceanic and Atmospheric Administration Merged land 17 
ocean global surface temperature analysis version 5 (Vose et al., 2012; Huang et al., 2015; Menne et al., 18 
2018), dark grey open-filled circles) and historical simulations from a set of 22 CMIP6 models (yellow 19 
open-filled circles). Coloured triangles refer to ensemble mean trends of their respective ensemble. Blue 20 
and dark-red open-filled circles refer to the coldest and warmest d4PDF-GE ensemble members. 21 
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Figure 10.17:(a) European historical summer (June to August) near-surface air temperature spatial linear trend (in °C 4 
(64 years)-1) from 1950 to 2014. Trends are estimated using ordinary least squares. Observed trends from 5 
E-OBS v19.0e (Cornes et al., 2018) (left) and the coldest (middle) and warmest (right) trends from the 6 
100 members of the MPI-GE (Maher et al., 2019). Trends are estimated using ordinary least-squares. (b) 7 
Time series of European area mean (15ºW‒20ºE, 35ºN‒70ºN) summer temperature anomalies (in °C, 8 
baseline 1995–2014) applying the same filter used in Figure 10.11 for different observational datasets: E-9 
OBS, BEST (Rohde et al., 2013), CRU TS v4.02 (Harris et al., 2014) and HadCRUT4 (Morice et al., 10 
2012) (black, dark blue, turquois and brown line, respectively) and model ensemble means of CMIP6, 11 
HighResMIP and the MPI-GE (red, light blue and violet line, respectively). (c) European area mean 12 
summer 1950–2014 warming trends (in °C (64 years)-1) for ensemble means and individual members of 13 
CMIP6 (28 members, red circles), HighResMIP (7 members, blue circles) and MPI-GE (violet 14 
histogram). The observational data sets are indicated by black crosses. 15 
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Figure 10.18:(a) Water year (October to September) precipitation spatial linear trend (in percent (32 year)-1) over North 5 
America from 1983 to 2014. Trends are estimated using ordinary least squares. Top row: Observed trends 6 
from GPCC version 2018 (Schneider et al., 2017), CRU TS version 4.00 (Harris et al., 2014) and the 7 
Global Precipitation Climatology Project (GPCP) (Huffman et al., 2009) version 2.3. Middle row: Driest, 8 
mean and wettest trends (relative to the region enclosed in the black quadrilateral, middle row) from the 9 
100 members of the MPI-GE (Maher et al., 2019). Bottom row: Driest, mean and wettest trends relative 10 
to the above region from the 100 members of the d4PDF-GE (Mizuta et al., 2017). (b) Time series of 11 
water year precipitation anomalies (%, baseline 1971–2000) over the above south-western North America 12 
region for GPCC (grey bar charts). Black, brown and green lines show low-pass filtered time series for 13 
GPCC, driest and wettest members of d4PDF-GE, respectively. The filter is the same as the one used in 14 
Figure 10.11. (c) Distribution of south-western region-averaged water-year precipitation 1983‒2014 15 
trends (in percent (32 year)-1) for MPI-GE (violet histogram), d4PDF (pink histogram), observations 16 
(GPCC, CRUTS and GPCP, dark grey open-filled circles) and historical simulations from a set of 22 17 
CMIP6 models (yellow open-filled circles). Coloured triangles refer to ensemble mean trends of their 18 
respective ensemble. Brown and green open-filled circles refer to the driest and wettest d4PDF-GE 19 
ensemble members. 20 
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Figure 10.19:(a) Observed trends in June to August precipitation (mm day-1 decade-1) from GPCC version 2018 4 
(Schneider et al., 2017) and CRU TS version 4.02 (Harris et al., 2014) over the Caribbean from 1979 to 5 
2014. (b) Trends in June to August zonal winds at 925 hPa (m s-1 decade-1, in colour) and sea level 6 
pressure (solid (dashed) line contours indicate positive (negative) trends in 0.1 hPa decade-1 steps) over 7 
the tropical North Atlantic from MERRA (Rienecker et al., 2011) and ERA-Interim (Dee et al., 2011) 8 
with the area for the Caribbean low-level jet highlighted (12.5°N–17.5°N, 70°W–80°W). (c) As (a) but 9 
for model simulations. Top row: Driest, mean and wettest trends (in the mean over the four indicated 10 
station locations in the bottom left panel) from the 100 members of the MPI-GE (Maher et al., 2019). 11 
Middle row: Driest, mean and wettest trends relative to the above station locations from the 100 members 12 
of the d4PDF-GE (Mizuta et al., 2017). Bottom row: Driest, median and wettest trends relative to the 13 
above station locations from historical simulations of 26 CMIP6 models. (d) Time series of average June 14 
to August precipitation for four stations (Bahamas in dark red, Cuba in light red, Cayman in brown, 15 
Jamaica in orange) and the mean over this four stations (in black) as well as the station location mean 16 
extracted from GPCC and CRU TS gridded data. The filter is the same as the one used in Figure 10.11. 17 
(e) Distribution of mean precipitation trends for the four station locations between 1979 and 2014 for 18 
MPI-GE (violet histogram), d4PDF-GE (pink histogram), historical simulations from a set of 26 CMIP6 19 
models (red circles), observations (means over station observations, GPCC and CRU TS, black crosses) 20 
and ensemble mean trends. All trends are estimated using ordinary least squares. 21 
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Figure 10.20:(a) Time series of simulated decadal mean air temperature anomalies (baseline 1995–2014) for regions of 4 
Eurasia, Himalaya and western Europe (see Figure 10.11 for the exact regional boundaries). Box plots 5 
indicate simulated decadal mean temperature anomalies averaged over near-term (2021–2040) and long-6 
term (2081–2100) future periods. Models include seven initial-condition large ensembles, as in (Deser et 7 
al., submitted), 39 CMIP5 and 22 CMIP6 models that all have pre-industrial, historical and scenario 8 
simulations (RCP8.5 for CMIP5 and SSP5-8.5 for CMIP6 models). (b) As in (a) but for precipitation 9 
anomalies. The regions are sub-regions of North America, East Asia, South America, Africa, Caribbean 10 
and Australia (as in Figure 10.11). 11 
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Box 10.2, Figure 1: Change in the annual mean surface temperature over the period 1950‒2018 based on local linear 4 
trend retrieved from the GISTEMP data (Lenssen et al., 2019). This background warming is added 5 
to the local warming that has been reported during 1950‒2018 in the literature from historical 6 
urbanization in different cities and plotted on top of the background as hexagon for each city. The 7 
colour of the circles refers to the magnitude of the urban warming calculated as the background 8 
warming plus the historical urbanization warming. This map has been compiled using the 9 
following studies: (Ajaaj et al., 2018; Alizadeh-Choobari et al., 2016; Bader et al., 2018; Chen et 10 
al., 2016; Chrysanthou et al., 2014; Doan et al., 2016; Dou et al., 2015; Elagib, 2011; Founda et 11 
al., 2015; Fujibe, 2009; Gaffin et al., 2008; Hinkel and Nelson, 2007; ; Li et al., 2018; Liao et al., 12 
2017; Lokoshchenko, 2017; Polydoros et al., 2018; Sun et al., 2016; ; Wang et al., 2018; Zhou et 13 
al., 2016, 2017). The bottom left panel shows the low-pass filtered time series of the annual mean 14 
temperature anomalies observed in the urban station of Tokyo and the rural reference station in 15 
Choshi (Japan) (°C, baseline 1887-1917). The filter is the same as the one used in Figure 10.11. 16 

  17 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-226 Total pages: 236 
 

 1 
 2 
 3 
 4 

Cross-Chapter Box 10.3, Figure 1: Historical annual-mean surface air temperature linear trend (°C decade-1) and its 5 
attribution over the Hindu Kush Himalaya (HKH) region. (a) Top row: Observed 6 
trends from the Berkeley surface temperature (BEST) dataset (Rohde et al., 2013), 7 
Climatic Research Unit Time Series (CRU TS) version 4.02 (Harris et al., 2014), 8 
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the Japanese 55-year Reanalysis (JRA-55) (Kobayashi and Iwasaki, 2016) for 1 
1961–2014 and from Asian Precipitation-Highly-Resolved Observational Data 2 
Integration Towards Evaluation (APHRODITE) V1204R1 (Yasutomi et al., 2011) 3 
for 1961–2007. Second row: Coldest, mean, and warmest trends (relative to the 4 
region enclosed in the black quadrilateral, fifth row) from the 100 members of the 5 
Max-Planck Institute grand ensemble (MPI-GE) (Maher et al., 2019). Third row: 6 
coldest, median, and warmest trends from CMIP6 historical 29 members. Fourth 7 
and fifth rows: coldest, median, and warmest trends from CMIP6 aerosol-only 8 
nine members and greenhouse gas-only ten members, respectively. The black 9 
shape in the last row second column map is the HKH boundary. (b) Time series of 10 
annual-mean surface air temperature anomalies (°C, baseline 1961–1980) over the 11 
region enclosed in the black quadrilateral (25°N–40°N, 75°E–105°E) in (a) bottom 12 
left map. Black, brown, orange, red, dark red, grey, and blue lines show low-pass 13 
filtered time series for BEST, CRU TS, JRA-55, APHRODITE, CMIP6 all-forcing 14 
historical mean, CMIP6 aerosol-only mean, and CMIP6 greenhouse gas-only 15 
mean, respectively. The filter is the same as the one used in Figure 10.11. (c) 16 
Distribution of annual mean surface air temperature trends (°C decade-1) over the 17 
region enclosed in the black quadrilateral (25°N–40°N, 75°E–105°E) from 1961 to 18 
2017 for ensemble means, the MPI-GE (violet histogram), and individual 19 
members of CMIP6 all-forcing historical (red circles), CMIP6 greenhouse gas-20 
only (blue triangles), CMIP6 aerosols-only (grey triangles), and observations 21 
(black cross). 22 
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Figure 10.21:Illustration of how using different tools can result in different and potentially conflicting information. 3 

Change in daily precipitation (2071‒2100 RCP8.5 relative to 1981‒2010) over West Africa as simulated 4 
by an ensemble of GCM-driven RCMs. (a) Change in daily precipitation (mm) for April to September, as 5 
mean of 17 CORDEX models (Dosio et al., submitted) (b-e) Time-latitude diagram of daily precipitation 6 
change for four selected RCM-GCM combinations. For each month and latitude, model results are 7 
averaged along the longitude between 10°W‒10°E (blue box in a). Different CGM-RCM combinations 8 
can produce substantially different and contrasting results, when the same RCM is used to downscale 9 
different GCMs (b, d), or the same GCM is downscaled by different RCMs (d, e). GCM1=IPSL-IPSL-10 
CM5A, GCM2=ICHEC-EC-EARTH, RCM1=RCA4, RCM2=REMO2009. 11 
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Figure 10.22:Schematic of regional climate storylines consistent with a particular climate impact of concern (red), 5 
which is associated with a meteorological hazard such as a long-term trend or a short-term event. The 6 
hazard involves a combination of thermodynamic factors linked to regional warming and particular 7 
dynamical conditions. Storylines express the fact that the same antecedent conditions could have more 8 
than one explanation in terms of the role of greenhouse gas forcing, other forcings affecting the 9 
dynamical conditions that do not scale with global-mean warming (e.g. ozone depletion, regional aerosol 10 
forcing), and natural variability. The dark blue elements represent the specified elements that define the 11 
storyline. The thicker arrows indicate that regional warming is mainly determined by greenhouse gas 12 
forcing, whilst the dynamical conditions are mainly determined by natural variability. Adapted from 13 
Shepherd (2019). 14 
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Figure 10.23:Effective messaging requires shared development of the actionable information that engages all parties 5 
involved and the values that guide their engagement. Participants in the development of climate messages 6 
come from varying perspectives, based in part on their professions and communities. Each of the three 7 
broad categories shown in the Venn diagram (U, P, R) is not a homogenous group, and often has a 8 
diversity of perspectives, values and interests among its members. The subheadings in each category are 9 
illustrative and not all-inclusive. The arrows connecting those categories represent the distillation process 10 
of providing context and sharing climate relevant information. The arrows that point toward the centre 11 
represent the distillation of climate messages that involves all three categories. 12 
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Figure 10.24: Historical and projected rainfall and Southern Annular Mode (SAM) over the Cape Town region. (a) 4 
Yearly accumulation of rainfall (in mm) obtained by summing monthly totals between January and 5 
December, with the drought years 2015‒2017 highlighted in colour. (b) Monthly rainfall for the drought 6 
years (in colour) compared with the 1981‒2014 climatology (grey line). Rainfall in (a) and (b) is the 7 
average of 20 quality controlled and gap-filled series from stations within the Cape Town region (31ºS‒8 
35ºS, 18ºW‒20.5ºW). (c) Time series of historical and projected rainfall anomalies (%, baseline 1980–9 
2010) over Cape Town region and SAM index. Observed data presented as 30-year running means of 10 
relative total annual rainfall over the Cape Town region for station-based data (black line, average of 20 11 
stations as in (a) and (b)), and gridded data (average of all grid cells falling within 31ºS‒35ºS, 18ºW‒12 
20.5ºW): the Global Precipitation Climatology Centre (GPCC) version 2018 (Schneider et al., 2017) 13 
(brown line) and the Climate Research Unit (CRU TS) version 4.03 (Harris et al., 2014) (green line). 14 
Model ensemble results presented as the 90th-percentile range of relative 30-year running means of 39 15 
CMIP5 (blue shading), 12 CMIP6 (red shading), 6 COREX driven by 1 to 10 GCMs (orange shading) 16 
and 6 CCAM (green shading) individual ensemble member’s rainfall, respectively. SAM calculated from 17 
sea-level pressure  reanalysis and GCM data as per Gong and Wang (1999) and averaged over the 18 
aforementioned bounding box. The orange, green and grey lines correspond to NCEP/NCAR (Kalnay et 19 
al., 1996), ERA20C (Poli et al., 2016b) and 20CR v3 (Slivinski et al., 2019), respectively. (d) Historical 20 
and projected trends in rainfall over the Cape Town region and in SAM index. Observations and gridded 21 
data processed as in (c). Trends calculated as Theil-Sen trend with block-bootstrap confidence interval 22 
estimate. Markers show median trend, bars 95% confidence interval. GCMs in each CMIP group ordered 23 
according to the magnitude of trend in rainfall, and the same order is maintained in panels showing trends 24 
in SAM. 25 
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Figure 10.25: Changes in the Indian monsoon in the historical and future periods: (a) Observational uncertainty 5 

demonstrated by a snapshot of rain-gauge density in the APHRODITE V1101 (Yatagai et al., 2012) 0.5°-6 
daily precipitation dataset for June to September 1956. (b) Multi-model ensemble (MME) mean bias of 7 
16 CMIP6 models for June to September precipitation (mm day-1) compared to GPCC v2018 (Schneider 8 
et al., 2017; doi:10.5676/DWD_GPCC/FD_M_V2018_100) observations for the 1985-2010 period. (c) 9 
Time series of June to September precipitation averaged over the central India box (15°N‒25°N, 75°E‒10 
85°E) shown in panel (b) in GPCC (black line) since 1950 in comparison with the MME-mean from the 11 
all-forcings historical experiments in 16 CMIP6 models (red line), and with changes in aerosol-only (hist-12 
aer, 8 models, blue line) and greenhouse gas-only (hist-GHG, 9 models, grey line). MME-mean change in 13 
the SSP5-8.5 experiment for future projections out to 2100. CMIP6 results are compared with historical 14 
and future simulations of the MPI Grand Ensemble (MPI-GE historical-RCP85, violet line) (Maher et al., 15 
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2019). Anomalies are computed with respect to the 1995‒2014 baseline and a weighted 13-year low-pass 1 
filter is applied. The low-pass filter has been used in AR4, Chapter 3, Appendix 3.A. It has 13 weights 2 
1/576 [1-6-19-42-71-96-106-96-71-42-19-6-1] and for annual data, its half-amplitude point is about a 12-3 
year period, and the half-power point is 16 years. (d) Maps of rainfall trends (mm day-1 decade-1) in 4 
GPCC observations, the CMIP6 MME-mean of hist-aer runs, the CMIP6 MME-mean of greenhouse gas-5 
only runs over the 1950‒2000 period and an example MME-mean future projection from CMIP6 SSP5-6 
8.5 for 2015‒2100. (e) Histogram to illustrate the role of internal variability for historical 1950‒2000 7 
(left) and future 2015‒2100 (right) trends in South Asian monsoon rainfall (% decade-1) in the MPI-GE 8 
(expressed as percentage of simulations showing a trend in each bin, violet histogram). Individual 9 
members as well as ensemble means of CMIP6 historical-SSP5-8.5 (all-forcings, red circles), hist-aer 10 
(grey triangles) and hist-GHG (light blue triangles) are also shown, along with observed estimates from 11 
GPCC and CRU TS v4 (doi: 10.5285/edf8febfdaad48abb2cbaf7d7e846a86). All trends are estimated 12 
using ordinary least squares.  13 
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Figure 10.26:Aspects of Mediterranean summer warming. (a) Mechanisms and feedbacks involved in enhanced 4 

Mediterranean summer warming. (b) Locations of observing stations in E-OBS v19e (Cornes et al., 2018) 5 
and Donat et al. (2014). (c) Differences in temperature observational data sets with respect to E-OBS for 6 
the land points between the Mediterranean Sea and 46°N and west of 30°E. (d) Observed summer (June 7 
to August) surface air temperature trends (°C decade-1) over the 1960‒2014 period from BEST (Rohde et 8 
al., 2013) dataset. (e) Time series of area averaged (25°N‒50°N, 10°W‒40°E) land point summer 9 
temperature anomalies (°C, baseline 1995–2014). Black, brown, orange and violet lines show low-pass 10 
filtered temperature of BEST, CRU TS v4.02 (Harris et al., 2014), HadCRUT4 (Morice et al., 2012) and 11 
the MPI-GE (Maher et al., 2019), respectively. Dark blue, red and light blue lines and shadings show 12 
low-pass filtered ensemble means and standard deviations of CMIP5 (30 members), CMIP6 (15 13 
members) and HighResMIP (7 members), respectively. The filter is the same as the one used in Figure 14 
10.11. (f) Distribution of 1960‒2014 summer temperature trends (°C decade-1) for observations (black 15 
crosses), the MPI-GE (violet histogram) and for ensemble means and single runs of CMIP5 (dark blue 16 
circles), CMIP6 (red circles) and HighResMIP (light blue circles). (g) Bias in ensemble mean 1960‒2014 17 
trends (°C decade-1) of CMIP5, CMIP6, HighResMIP and CORDEX in reference to BEST. (h) 18 
Projections of ensemble mean 2014‒2050 trends (°C decade-1) of CMIP5, CMIP6, HighResMIP and 19 
CORDEX. All trends are estimated using ordinary least-squares. [Placeholder: The CORDEX and 20 
HighResMIP panels need to be completed.] 21 

  22 



 
 

Second Order Draft Chapter 10 IPCC AR6 WGI 

 

Do Not Cite, Quote or Distribute 10-235 Total pages: 236 
 

 1 
 2 

FAQ 10.1, Figure 1: Climate information for decision makers is more useful if the physical and cultural diversity 3 
across the world is considered.  The figure illustrates schematically the broad range of knowledge 4 
that must be blended with the diversity of users to distil information that will have relevance and 5 
credibility.  6 
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FAQ 10.1, Figure 2: Various factors contribute to either warm up or cool down urban areas, compared to their 4 
surroundings. Overall, cities tend to be warmer than their surroundings. This is called the “urban 5 
heat island” effect. Values are taken from the recent literature. 6 
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