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Executive Summary 1 
 2 
This chapter assesses changes in weather and climate extremes with a regional focus, including 3 
observed and projected changes, as well as their attribution. The considered extremes include 4 
temperature extremes, rainfall extremes, floods, droughts, storms (including tropical cyclones), as well 5 
as compound events. Changes in marine extremes, including marine heatwaves, extreme ocean waves and 6 
sea level are addressed in Chapter 9 and Cross-chapter Box 9.1. Reliable observations with global coverage 7 
are available only after 1950 and for this reason, assessments of past changes and their causes are also from 8 
1950 onward, unless indicated otherwise. Because of the close connection between regional changes in 9 
extremes and the level of global warming, future projections are provided as a function of global warming 10 
levels. The timing at which global warming levels are reached under different emission scenarios is assessed 11 
in Chapter 4. {11.1, 11.2} 12 
 13 
There have been major new developments and knowledge advances on changes in weather and climate 14 
extremes since the AR5. Evidence of observed changes in extremes and their attribution to human influence 15 
have strengthened since the AR5, in particular for extreme precipitation, droughts, tropical cyclones, and 16 
compound extremes. There is evidence of an increase in the land area affected by concurrent extremes. 17 
{11.1, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, Box 11.3} 18 
 19 
Many of the observed changes in extremes will continue in the future. An additional half degree of 20 
global warming would be sufficient to cause further detectable changes in temperature extremes 21 
(virtually certain) and precipitation extremes (very likely) at the global scale. Accumulating evidence 22 
continues strengthening our understanding that many of the observed changes in extremes will continue in 23 
the future, but future changes in extreme events will be limited if global warming is stabilized to 1.5°C 24 
compared to 2°C or higher levels of global warming.  Climate models are overall suitable for projections of 25 
changes in extremes, but their accuracy depends on the considered extreme. {11.1, 11.3, 11.4, 11.5, 11.6, 26 
11.7} 27 
 28 
Temperature extremes 29 
 30 
It is virtually certain that there has been an increase in the likelihood and severity of hot extremes and 31 
a decrease in the likelihood and severity of cold extremes on global scale since 1950. Evidence of 32 
changes include an increase in the number of warm days and nights, an increase in the intensity and duration 33 
of heatwaves, and a decrease in the number of cold days and nights (virtually certain). Both the coldest 34 
extremes and hottest extremes display increasing temperatures (virtually certain). The observed trends 35 
depend on the observed extreme indices and are clearest for the number of hot days, on all continents (high 36 
confidence). Trends in temperature extremes are generally larger (by ca. 50% to 200%) than those in global 37 
mean temperature, due to larger warming on land and additional feedback effects (high confidence). Trends 38 
on regional to continental scales are generally consistent with the global-scale trends (high confidence). In a 39 
few regions, trends are difficult to assess due to limited data availability, in particular in parts of Africa and 40 
Southern America. {11.3, 11.9} 41 
 42 
It is extremely likely that human influence is the main contributor to the observed increase in the 43 
likelihood and severity of hot extremes and the observed decrease in the likelihood and severity of cold 44 
extremes on global scales. It is very likely that this also applies on continental scale. The available evidence 45 
suggests that some recent extreme events could not have occurred without human influence (medium 46 
confidence).  The effect of enhanced greenhouse gas concentrations on extreme temperature are moderated, 47 
counteracted or amplified at the regional scale due to feedbacks or forcings such as regional land use and 48 
land cover changes, or aerosols. Urbanization has exacerbated the effects of global warming in cities (high 49 
confidence). Changes in aerosol concentrations have affected trends in hot extremes in some regions, with 50 
the presence of aerosols leading to attenuated warming, in particular from 1950-1980. Irrigation and crop 51 
expansion have attenuated increases in summer hot extremes in some regions, such as the central North 52 
America (medium confidence). {1.3} 53 
 54 
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It is virtually certain that further increases in the likelihood and severity of hot extremes and decreases 1 
in the likelihood and severity of cold extremes will occur throughout the 21st century. Such changes are 2 
expected at both global and continental scales, and in nearly all inhabited regions1, if global warming 3 
increases to +1.5°C or higher above the preindustrial level, with stronger increases at higher levels of 4 
global warming. It is virtually certain that the number of hot days and hot nights and the length, frequency, 5 
and/or intensity of warm spells or heat waves (defined with respect to late 20th century conditions) will 6 
increase over most land areas. In most regions, changes in the magnitude of temperature extremes are 7 
proportional to global warming levels (high confidence). The likelihood of temperature extremes generally 8 
increases exponentially with increasing global warming levels (high confidence). {11.3, 11.9} 9 
 10 
Heavy precipitation  11 
 12 
There is high confidence that heavy precipitation has intensified on global scale over land regions. It is 13 
likely that, since 1950, the annual maximum amount of precipitation falling in a day or over five consecutive 14 
days has increased in more regions than it has decreased, over land regions with sufficient observation 15 
coverage for assessment. This is also the case at the continental scale over three continents, including North 16 
America, Europe, and Asia. Larger percentage increases in heavy precipitation have been observed in the 17 
northern high-latitudes in all seasons, as well as in the mid-latitudes in the cold season (high confidence). 18 
Regional increases in the frequency and/or in the intensity of heavy rainfall have also been observed in i) 19 
most parts of Asia, northwest Australia, northern Europe, southeast South America, north South America and 20 
most of the United States (high confidence), and ii) west and southern Africa, central Europe, eastern 21 
Mediterranean region, Mexico (medium confidence). Elsewhere, there is generally low confidence in 22 
observed trends in heavy precipitation due to data limitations. {11.4, 11.9} 23 
 24 
It is likely that anthropogenic influence is the main cause of the observed intensification of heavy 25 
precipitation in land regions.The evidence includes attribution of the observed global increase in annual 26 
maximum one-day and five-day precipitation to human influence (high confidence), a large fraction of land 27 
showed enhanced extreme precipitation, and larger probability in record-breaking one-day precipitation. At 28 
continental and regional scales, human influence on extreme precipitation is less detectable because of 29 
higher variability, but evidence is emerging. There is evidence of human influence on intensification of 30 
extreme precipitation in North America, and a human contribution to the increase in the probability or 31 
magnitude of some individual extreme precipitation events in different parts of the world. {11.4} 32 
 33 
Over almost all land regions, it is very likely thatextreme precipitation will be more intense and more 34 
frequent in a warmer world. The increase in the magnitude of extreme precipitation will be, in general, 35 
proportional to the global warming level, with an increase of 7% and a slightly smaller rate in the 50-yr event 36 
of annual maximum 1-day and 5-day precipitation per 1°C warming, respectively (high confidence). The 37 
increase in the likelihood of extreme precipitation will very likelyaccelerate with increased global warming, 38 
with larger incremental increases at higher global warming levels, and for rarer events. There can be large 39 
differences in the increase regionally. {11.4} 40 
 41 
Floods and water logging 42 
 43 
There is high confidence that the seasonality of flood has changed in cold regions where snow-melt is 44 
involved. There is high confidence that significant trends in peak streamflow have been observed in some 45 
regions over the past decades, including increases in parts of northern Asia, southern South America, 46 
northeast US, UK, and the Amazon and decreases in parts of the Mediterranean, northeastern Brazil, 47 
southern Australia, central China, southeastern US. There is low confidence in attributing changes in the 48 
probability or magnitude of individual floods to human influences. {11.5} 49 
 50 
There is high confidence in an increase in flood potential in urban areas where extreme precipitation is 51 
projected to increase, especially at high global warming levels. Global hydrological models project a 52 
                                                 
1 See Figure 1.16 in Chapter 1 for definition. 
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larger fraction of the land areas to be affected by an increase in river floods than by a decrease in river floods 1 
(medium confidence). There is medium confidence that river floods will increase in the western Amazon, the 2 
Andes, and northern Eurasia. Regional changes in river floods are more uncertain because complex 3 
hydrological processes are involved. {11.5} 4 
 5 
Droughts 6 
 7 
Different drought types (related to precipitation deficits, soil moisture deficits, streamflow deficits or 8 
increased atmospheric evaporative demand) are associated with different impacts and respond 9 
differently to increased greenhouse gas forcing. Observed trends in drought measures are highly 10 
regional, with increases in some regions and decreases in others. Atmospheric evaporative demand 11 
displays a global drying tendency over continents, and there is an observed tendency towards 12 
increased drying in the dry season since the beginning of the 20th century, when aggregated on global 13 
scale. There is high confidence (medium confidence) that precipitation deficits have increased since the mid 14 
20th century in west Africa, central Africa, and southern Africa (Northeastern Brazil). There is medium 15 
confidence that soil moisture deficits have increased in east Asia, central Europe, the Mediterranean region, 16 
and northwest North America. There is medium confidence that some regions show more frequent 17 
hydrological droughts (e.g., southern Africa, southern North America, the Mediterranean region). There is 18 
medium confidence that trends in potential evaporation have exceeded trends in precipitation in some regions 19 
and seasons. There is overall medium confidence in the ability of available models (climate, land surface or 20 
hydrological models) to simulate trends and anomalies in precipitation deficits, soil moisture deficits, 21 
streamflow deficits, or atmospheric dryness on global and regional scales. {11.6} 22 
 23 
There is high confidence that human influence has increased the potential for worsening of drought 24 
conditions and increased the tendency towards drying in the dry season since the beginning of the 20th 25 
century, when aggregated on the global scale. The drying tendency is dominated by warming- and 26 
radiation-induced increase in evaporative demand rather than by changes in precipitation. At local to 27 
regional scales, human influence on drought and water scarcity is complex, as it includes climate forcing, 28 
land use changes, water management, and socio-economical influences. There is low confidence in the 29 
contribution of greenhouse gas forcing to changes in atmospheric circulation processes affecting 30 
drought.{11.6} 31 
 32 
There is high confidence that atmospheric evaporative demand will continue to increase with 33 
increasing global warming and lead to further drying tendencies in some regions. There is medium 34 
confidence in projected increases in the frequency and severity of precipitation, soil moisture, and 35 
streamflow deficits in the Mediterranean region, southern Africa, southern North America, central 36 
America and northeastern Brazil. While there is high agreement among climate models, there are 37 
uncertainties in drought representation in climate models, the use of drought metrics in projections, and a 38 
lack of observations in several regions to evaluate models. In addition, there is medium confidence that soil 39 
moisture and streamflow deficits may also be affected by physiological CO2 effects on plants’ transpiration 40 
under enhanced CO2 concentrations. Projections of soil moisture deficits show stronger increases in drought 41 
area and severity than projections of changes in precipitation deficits (medium confidence). These projections 42 
are strongly dependent on the warming scenario considered, with stronger drought trends for higher warming 43 
levels, even for changes as small as 0.5°C in global warming (high confidence). Some regions with humid or 44 
transitional climate characteristics in the 20th century are projected to become drier (medium confidence). 45 
{11.6} 46 
 47 
Storms 48 
 49 
There is medium confidence that the global proportion of stronger tropical cyclones (TCs) has 50 
increased detectably over the past 40 years. The average location of peak TC wind-intensity has 51 
migrated poleward in the western North Pacific Ocean since the 1940s, substantially increasing TC 52 
exposure at higher latitudes.  It is unlikely that the observational evidence for a migration is the result 53 
of data artefacts, and there is medium confidence that it cannot be explained by natural variability 54 
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{11.7.1}. There is medium confidence that TC forward motion (translation speed) has slowed detectably over 1 
the U.S. since 1900, but low confidence for a global signal because of the potential for data heterogeneity 2 
{11.7.1}. There is low confidence in the cause of the slowdown in any region due to a lack of robust 3 
agreement among models that simulate TCs, although the slowdown is consistent with theory and modelling 4 
studies that indicate a general slowing of atmospheric circulation with warming {11.7.1}. There is low 5 
confidence in past trends in characteristics of severe convective storms such as hail and severe thunderstorm 6 
winds {11.7.3}.  7 
 8 
There is high confidence that average peak TC wind speeds and the proportion of Category 4-5 TCs 9 
will increase globally with warming {11.7.1}. There is medium confidence that the average location where 10 
TCs reach their maximum wind-intensity will migrate poleward in the western North Pacific Ocean as the 11 
tropics expand with warming {11.7.1}. There is medium confidence that the global frequency of TCs over all 12 
categories will decrease or remain unchanged {11.7.1}. There is medium confidence that wind speeds 13 
associated with extratropical cyclones will change following changes in the storm tracks, with 14 
increases/decreases depending on the region being considered {11.7.2}. There is medium confidence that the 15 
frequency of springtime severe convective storms will increase, leading to a lengthening of the severe 16 
convective storm season {11.7.3}. 17 
 18 
There is high confidence that the average and maximum rain-rates associated with tropical and 19 
extratropical cyclones, atmospheric rivers and severe convective storms will increase as atmospheric 20 
water vapour increases with warming {11.7.1, 11.7.2, 11.7.3}. There is medium confidence that peak TC 21 
rain-rates will increase at greater than the Clausius-Clapeyron scaling rate of 7% per °C of warming in some 22 
regions due to increased low-level moisture convergence caused by regional increases in TC windintensity 23 
{11.7.1}. There is high confidence that the magnitude of the increase in precipitation depends on the 24 
horizontal resolution and the specific representation of convective processes in climate models due to the 25 
effect of fine-scale dynamical feedbacks {11.7.1, 11.7.2, 11.7.3}.  26 
 27 
Compound events 28 
 29 
There is high confidence that concurrent heatwaves and droughts have become more frequent and 30 
that this trend will continue under higher levels of global warming. There is high confidence that 31 
concurrent extremes events at different locations, but possibly affecting similar sectors (e.g., breadbaskets) in 32 
different regions, will become more frequent at higher levels of warming, in particular above 2°C of global 33 
warming. There is medium confidence that the likelihood of compound flooding (storm surge, extreme 34 
rainfall and/or river flow) has increased in some locations, and will continue to increase due to both sea level 35 
rise and increases in heavy precipitation. There is medium confidence that wildfire (compound hot and dry 36 
event) risk has increased in some regions over the last century. There is medium confidence that various risks 37 
of other compound events will increase under higher levels of global warming. {11.8, Box 11.3, Box 11.4}.    38 
 39 
Limits to the assessment 40 
 41 
There are currently several knowledge gaps associated with assessments on changes in the dynamics driving 42 
extreme events in past and future. Some topics are still insufficiently investigated such as hail, and there are 43 
some remaining uncertainties regarding changes in some extremes such as droughts and tropical cyclones, 44 
although evidence have become much more robust in these areas compared to the AR5. Also, there is low 45 
confidence regarding the global warming levels at which possible changes associated with global and 46 
regional tipping points (low-probability high-impact events)related to extremes would occur, but these 47 
cannot be excluded, especially at high global warming levels (>3°C). Finally, there are still remaining 48 
important data and literature gaps in several regions of the world, in particular in Africa and south America. 49 
{11.10} 50 
 51 
  52 
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11.1 Framing 1 
 2 
11.1.1 Introduction to the chapter 3 
 4 
This chapter provides assessments on changes in weather and climate extremes (collectively referred to as 5 
extremes) with a focus on the relevance to the Working Group II assessment. Here, we assess observed 6 
changes, their attribution to causes, and future projections. The occurrence of extremes in an environment 7 
with exposed and vulnerable human and natural systems can lead to disasters (IPCC, 2012). Changes in 8 
extremes result in changes in impacts not only as a direct consequence of changes in the magnitude and 9 
frequency of extremes (which are termed “hazards” in a risk framework, see also Chapter 12), but also 10 
through their influence on exposure and resilience. As such, extremes are an essential component assessed in 11 
sucessive IPCC reports. The Special Report on Managing the Risks of Extreme Events and Disasters to 12 
Advance Climate Change Adaptation (referred as the SREX report, IPCC, 2012) provided a comprehensive 13 
assessment on changes in extremes and how exposure and vulnerability to extremes determine the impacts 14 
and likelihood of disasters. Chapter 3 of that report (Seneviratne et al., 2012a, hereafter also referred to as 15 
SREX  Chapter 3) assessed physical aspects of extremes, and laid a foundation for the follow-up assessments 16 
of changes in extremes including the IPCC Working Group I 5th Assessment report (IPCC AR5; IPCC, 17 
2013), and the recent IPCC special reports on 1.5°C global warming (SR1.5, IPCC, 2018), on climate change 18 
and land (IPCC, 2019a), and on oceans and the cryosphere (IPCC, 2019b). These assessments are the starting 19 
point of the present assessment.  20 
 21 
The AR6 WGI report dedicates this chapter to assess past and projected changes in extremes. This chapter is 22 
also one of the three “regional chapters” of the WGI report (along with Chapters 10 and 12). We assess 23 
changes in extremes from a global and continental perspective to provide a large-scale context, and the 24 
assessment also has a regional focus paying particular attention to changes in extremes at regional scales. 25 
The approach taken in the AR6 WGI report for the assessment of changes in extremes is different from that 26 
in the AR5 WGI report. The assessments in the AR5 were spread throughout various chapters including 27 
observed changes (Hartmann et al., 2013), the evaluation of models’ performance in simulating extremes 28 
(Flato et al., 2013), the detection and attribution of changes in extremes to causes (Bindoff et al., 2013), and 29 
long-term projections in extremes (Collins et al., 2013a). The AR5 assessments were also at large scales in 30 
general. The types of extremes assessed in the AR5 are similar to those assessed in the SREX Chapter 3. We 31 
adapt the general approach used in SREX  Chapter 3 regarding the types of extremes assessed and the 32 
presentation of the assessment. This provides a traceability and basis for comparison to earlier assessments. 33 
Note that this chapter does not assess impacts, which are covered in the WGII report. Chapter 10 of this 34 
report provides a framework for understaning regional changes. Chapter 12 translates the assessment of 35 
changes in extremes provided here into changes in metrics that quantify impact-relevant hazards, 36 
supplemented by assessments of other hazards and supported by the Atlas, providing a key handshake with 37 
the WGII report.   38 
 39 
This chapter is structured as follows. This Section (11.1) provides a general framing and introduction for the 40 
chapter, highlighting key aspects that underlie the confidence and uncertainty in the assessment of changes in 41 
extremes, and introducing some main elements of the chapter. Section 11.2 introduces methodological 42 
aspects of research on climate extremes. Sections 11.3 to 11.7 assess past changes and their attribution to 43 
causes, and projected future changes in extremes, for different types of extremes, such as temperature 44 
extremes, heavy precipitation, floods, droughts, and storms in separate sections. Section 11.8 addresses 45 
compound events or multivariate extremes. Section 11.9 summarizes regional information on extremes by 46 
continents in tables. Finally, Section 11.10 provides a brief summary of current knowledge gaps in the field. 47 
The chapter also entails several boxes and FAQs to more specific topics. 48 
 49 
 50 
11.1.2 What is an extreme event and how is its change studied? 51 
 52 
The risk framework defined in the SREX report (IPCC, 2012) articulates clearly that the exposure and 53 
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vulnerability to hazards such as extremes determine the magnitude of impacts, and that adaptation that 1 
reduces exposure and vulnerability will increase resilience resulting in a reduction in impacts. There is thus 2 
not always a one-to-one correspondence between the weather and climate extremes and extreme impacts. 3 
Consequently, when assessing changes in extremes in this chapter, we focus on physical aspects of extremes 4 
rather than on their impacts, which are assessed in the WGII report. Building on the SREX report, the AR5 5 
defined an extreme weather event as “an event that is rare at a particular place and time of year” and an 6 
extreme climate event as “a pattern of extreme weather that persists for some time, such as a season” (AR5 7 
Glossary). These definitions are adopted here. Yet, there is no clear-cut distinction between an extreme 8 
weather event and an extreme climate event, although usage implies that they are of different space and time 9 
scales in general. An extreme weather event typically has a weather scale (from minutes to days, such as a 10 
storm) while an extreme climate event typically has a climate scale (months or years, such as a drought). For 11 
simplicity, here we collectively refer to weather and climate extremes as “extremes” or “extreme events”. 12 
The definitions of rare are wide ranging, depending on applications. Some studies consider an event as an 13 
extreme if it is unprecedented; on the other hand, other studies consider events that occur several times a 14 
year as moderate extreme events. Rarity of an event with a fixed magnitude also changes in the changing 15 
climate. For example, the 2013 summer temperature was the hottest on record at the time, but it has a 16 
recourrence interval of about 4 years in the climate of 2013 (Sun et al., 2014). 17 
 18 
In the literature, an event is generally considered as extreme if the value of a variable exceeds (or lies below) 19 
a threshold. The thresholds have been defined in different ways, leading to differences in the meaning of 20 
extremes that may share the same name. For example, two sets of frequency of hot/warm days have been 21 
used in the literature. One set counts the number of days when maximum daily temperature is above a 22 
relative threshold defined as the 90th or higher percentile of maximum daily temperature for the calendar day 23 
over a base period. An event based on such a definition can occur during any time of the year and the impact 24 
of such an event would differ depending on the season. The other set counts the number of days in which 25 
maximum daily temperature is above an absolute threshold such as 35°C, as exceedance of this temperature 26 
can sometimes cause health impacts (however, these impacts may depend on location and whether 27 
ecosystems and the population are adapted to such temperatures). While both types of hot extreme indices 28 
have been used to analyze changes in the frequency of hot/warm events, they represent different events that 29 
occur at different times of the year, possibly affected by different types of processes and mechanisms, and 30 
possibly also associated with different impacts.  31 
 32 
Changes in extremes have also been examined from two perspectives: changes in the frequency for a given 33 
magnitude of extremes or changes in the magnitude for a particular return period (frequency). Changes in the 34 
probability of extremes ( e.g., temperature extremes) are dependent on the rarity of the extreme event that is 35 
assessed, with a larger change in the probability associated with a rarer event ( e.g., Kharin et al., 2018). On 36 
the other hand, changes in the magnitude represented by the return levels of the extreme events may not be 37 
as sensitive to the rarity of the event. While the answers to the two different questions are related, their 38 
relevance to different audiences may differ. Conclusions regarding the respective contribution of greenhouse 39 
gas forcing to changes in magnitude versus frequency of extremes may also differ (Otto et al., 2012). 40 
Correspondingly, the sensitivity of changes in extremes to increasing global warming is also dependent on 41 
the definition of considered extremes. In the case of temperature extremes, changes in magnitude have been 42 
shown to often depend linearly on global temperature (Seneviratne et al., 2016; Wartenburger et al., 2017), 43 
while changes in frequency tend to be non-linear and can, for example, be exponential for increasing global 44 
warming levels (Fischer and Knutti, 2015; Kharin et al., 2018). When similar damage occurs once a fixed 45 
threshold is exceeded, it is more important to ask a question regarding changes in the frequency. But when 46 
the exendance of this fixed threshold becomes a normal occurrence in the future, this can lead to a saturation 47 
in the change of probability (Harrington and Otto, 2018a). On the other hand, if the impact of an event 48 
increases with the intensity of the event, it would be more relevant to examine changes in the magnitude. 49 
Finally, adaptation to climate change might change the relevant thresholds over time, although such aspects 50 
are still rarely integrated in the assessment of projected changes in extremes. Framing, including how 51 
extremes are defined and how the questions are asked in the literature, is considered when forming our 52 
assessments. 53 
 54 
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11.1.3 Types of extremes assessed in this chapter 1 
 2 
The types of extremes and phenomena assessed in this chapter include temperature and precipitation 3 
extremes, drought, floods, tropical cyclones, and severe convective storms. In addition, we also consider 4 
compound events, i.e. bivariate or multivariate extreme events. We consider these types of extremes because 5 
of their relevance to impacts as well as the availability of literature on the subject. Most of the considered 6 
extremes were also assessed in the SREX and the AR5. Compound events were not assessed in detail in past 7 
IPCC reports, although the SREX briefly addressed this topic (SREX  Chapter 3). Marine-related extremes 8 
such as marine heat waves and extreme sea level, are assessed in Chapter 9 (Cross-chapter box 9.1) of this 9 
report.  10 
 11 
Extreme phenomena in the atmosphere are of different spatial and temporal scales. Tornadoes have a spatial 12 
scale as small as less than 100 meters and a temporal scale as short as a few minutes. In contrast, a drought 13 
can last for multiple years, affecting a whole continent. The level of complexity of the involved processes 14 
differs from one type of extreme to another, affecting our capability in detecting and attributing, and in 15 
projecting changes in weather and climate extremes. Temperature and precipitation extremes studied in the 16 
literature are often based on extremes derived from daily values, such as annual maxima or minima of daily 17 
temperatures, annual counts of daily temperature above or below certain percentiles, duration of heatwaves 18 
based on daily temperature data, annual maximum one-day or five-day precipitation events. Studies of events 19 
on longer time scales for both temperature or precipitation, or on sub-daily extremes are scarcer, which 20 
generally limits the assessment for such events. Nevertheless, extremes on time scales different from daily 21 
are assessed, when possible. We assess drought and tropical and extratropical cyclones as phenomena in 22 
general, not limited by their extreme forms, because these phenomena are relevant to impacts. We also 23 
consider both precipitation and wind extremes associated with storms.  24 
 25 
Multiple stressors can come together to yield more extreme hazards and/or exhaust the adaptative capacity of 26 
a system more quickly. For this reason, the occurrence of multiple extremes that are multivariate and/or 27 
concurrent and/or in succession, which are the so-called “compound events” (SREX  Chapter 3), can lead to 28 
impacts that are much larger than the sum of the impacts from the occurrence of individual extremes in 29 
isolation (see Section 11.8, and also Chapter 12). For this reason, compound events are assessed in as much 30 
depth as the literature allows (Section 11.8). 31 
 32 
The assessment of projected future changes is presented as function of different levels of global warming 33 
(Section 11.2.6). This is to provide traceability and comparison to the SR15 assessment (Hoegh-Guldberg et 34 
al., 2018, hereafter referred to as SR15  Chapter 3). This shall also be useful for decision makers as 35 
actionable information, as much of the mitigation policy discussion and adaptation planning can be tied to 36 
the level of global warming. For example, regional changes in extremes, and thus their impacts, can be 37 
linked to global mitigation efforts. Additionally, there is also an advantage of separating uncertainty in future 38 
projections due to natural internal variability from other factors such as differences in model sensitivities and 39 
emission scenarios. However, some analyses related to specific emissions scenarios are also provided based 40 
on CMIP6 simulations to fascilitate easier comparsion with the AR5 assessment. 41 
 42 
A global-scale synthesis of this chapter’s assessments is provided in Section 11.1.7. In particular, Tables 43 
11.1 and 11.2 provide a synthesis for observed and attributed changes and projected changes in extremes, 44 
respectively, at different levels of global warming. Tables for regional-scale assessments are provided in 45 
Section 11.9. 46 
 47 
 48 
11.1.4 Effects of greenhouse gas and other external forcings on extremes 49 
 50 
External forcings such as human emissions of greenhouse gases are the main drivers of the past and future 51 
changes in the climate. They are also the main drivers of the changes in extremes, at least globally, as 52 
extremes are an integral part of the climate system. The SREX, AR5, and SR15 reports assessed that there is 53 
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evidence from observations that some extremes have changed since the mid 20th century, that some of the 1 
changes are a result of anthropogenic influences, and that some observed changes are projected to continue 2 
into the future, while other changes are projected to emerge from natural climate variability under enhanced 3 
global warming (SREX  Chapter 3, AR5  Chapter 10; see also 11.1.3).  4 
 5 
At the global and continental scales and at the regional scale to some extent, much of the changes in 6 
extremes are a direct consequence of the enhanced radiative forcing, and the associated global warming 7 
and/or its resultant increase in the water-holding capacity of the atmosphere as well as changes in vertical 8 
statbility and meridional temperature gradients that affect climate dynamics (see Box 11.1 on 9 
Thermodynamic vs Dynamic processes). Widespread observed and projected increases in hot extremes and 10 
decreases in cold extremes are consistent with global and regional warming (Section 11.3). Increases in the 11 
magnitude of annual maximum daily maximum temperatures and in annual minimum daily minimum 12 
temperatures scale robustly and in general linearly with the global mean temperature increase across 13 
different geographical regions and different emission scenarios (Seneviratne et al., 2016; Wartenburger et al., 14 
2017; Kharin et al., 2018; for more details see Section 11.2.6), whereby extreme temperatures on land tend to 15 
increase more than the mean global temperature (Fig 11.1), due in large part to the land-sea contrast, and 16 
additionally to regional feedbacks in some regions (Section 11.1.6) The number of heatwave days and the 17 
length of heatwave seasons in various regions also scale well, but non-linearly (because of the threshold 18 
effect) with global mean temperatures (Wartenburger et al., 2017; Sun et al., 2018a). Changes in annual 19 
maximum one-day precipitation are proportional to global mean temperature changes, at about 7% increase 20 
per 1°C temperature increase, i.e. following the Clausius-Clapeyron relationship (Box 11.1), in the 21 
observations (Westra et al., 2013) and in future projections (Kharin et al., 2013) at the global scale. Extreme 22 
short-duration precipitation in North America also scales with global mean temperature (Li et al., 2018a; 23 
Prein et al., 2016b). At the local and regional scales, changes in extremes are also strongly modulated and 24 
controlled by regional forcings and feedback mechanisms (Section 11.1.6), whereby some regional forcings,  25 
e.g., associated with land use/albedo or aerosol emissions, can have non-local or some (non-homogeneous) 26 
global-scale effects (Persad and Caldeira, 2018; Seneviratne et al., 2018a). In general, there is high 27 
confidence in changes in extremes due to global-scale thermodynamic processes (i.e. mean global warming, 28 
mean moisterning of the air) as the processes are well understood, while the confidence of those related to 29 
dynamic processes or regional and local forcing, including regional and local thermodynamic processes, are 30 
much lower due to multiple factors (see two following sub-sections and Box 11.1).   31 
 32 
 33 
[START FIGURE 11.1 HERE] 34 
 35 
Figure 11.1: Time series of temperature anomalies (relative to 1979-2018 mean) for global average annual mean 36 

temperature (T_global), land average annual mean temperature (T_land) and extreme temperatures 37 
fromCMIP5 and CMIP6 simulations, and from observations and a reanalysis data product. Extreme 38 
temperatures include annual maximum daily maximum temperature (TXx) and the annual 95th percentile 39 
of daily maximum temperature (TXp95). Grey shading mark the reference period 1979-2018. (a) and (b), 40 
temperatures from CMIP5 and CMIP6 simulations, respectively. Solid lines are multi-model averages 41 
while the blue shading shows the multiple range of global mean temperature by all models. CMIP5 42 
temperatures include the models’ historical simulations and future projection under RCP4.5 forcing 43 
scenario. CMIP6 temperatures include the models’ historical simulations and future projections under the 44 
SSP2-4.5 forcing scenario (note that RCP4.5 and SSP2-4.5 do not share the same forcing). (c) Observed 45 
temperatures based on HadCRUT4 and temperatures computed from ERA–Interim reanalysis. 46 

 47 
[END FIGURE 11.1 HERE] 48 
 49 
 50 
Since the AR5, the attribution of extreme weather events, or the investigation of changes in the frequency or 51 
magnitude of individual and local- and regional-scale extreme weather events due to various drivers (see 52 
Cross Chapter Box 1.4, Section 11.2.5) has provided evidence that greenhouse gases and other external 53 
forcings have affected individual extreme weather events. The events that have been studied are 54 
geographically uneven. A few events,  e.g., extreme rainfall events in the UK (Schaller et al., 2016; Vautard 55 
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et al., 2016; Otto et al., 2018b) or heat waves in Australia (King et al., 2014; Perkins-Kirkpatrick et al., 2016; 1 
Lewis et al., 2017b), have spurred more studies than other events. Many highly impactful extreme weather 2 
events have not been studied in the event attribution framework due to various reasons including lack of 3 
observational data (Section 11.2), lack of reliable climate models (Section 11.2.3), and lack of scientific 4 
capacity (Otto et al., submitted, b). While the events that have been studied are not representative of all 5 
extreme events that occurred and results from these studies may also be subject to selection bias, the large 6 
number of event attribution studies provide evidence that changes in the properities of these local and 7 
individual events are in line with expected consequences of anthropogenic influence on the climate and can 8 
be attributed to external drivers. Fig 11.2 provides a synthesized assessment of the existing event attribution 9 
literature to date.  10 
 11 
 12 
[START FIGURE 11.2 HERE] 13 
 14 
Figure 11.2: Synthesis of event attribution literature. The symbols depict types of extreme events for which one or 15 

more such events have been studied in the event attribution framework (see Appendix A.1). The location 16 
of symbols does not indicate the places of the event occurrence as the symbols represent the synthesized 17 
assessment of all studies for the same type of events occurring in the region. The arrows indicate the 18 
direction of changes in the intensity and likelihood of the events due to anthropogenic climate change. A 19 
“mixed signal” indicates that different studies found different results regarding the direction of changes in 20 
magnitude and frequency, depending on the definition of the event (Section 11.2.5). 21 

 22 
[END FIGURE 11.2 HERE] 23 
 24 
 25 
[START BOX 11.1 HERE] 26 
 27 
BOX 11.1: Thermodynamic and dynamic changes across scales 28 
 29 
Changes in weather and climate extremes result from the combined effect of changes related to atmospheric 30 
or oceanic motions (dynamic changes) and those associated with local exchanges of heat, moisture, and other 31 
quantities (thermodynamic changes). While thermodynamic and dynamic processes are necessarily 32 
interconnected, considering them separately may allow disentangling roles of different processes 33 
contributing to the changes in climate extremes as a result of greenhouse forcing and internal climate 34 
variability ( e.g., Shepherd, 2014). The AR5 used the dynamic and thermodynamic framework when placing 35 
the level of confidence in the projected patterns of precipitation change (Collins et al., 2013a). 36 
 37 
Temperature extremes 38 
An increase in the concentration of greenhouse gases in the atmosphere leads to warming of air and the 39 
Earth’s surface. This direct thermodynamic effect produces a shift of the temperature distribution towards a 40 
warmer state, leading to an increase in the frequency and intensity of warm extremes and a decrease in the 41 
frequency and intensity of cold extremes. The initial increase in temperature in turn leads to other 42 
thermodynamic responses and feedbacks, such as an increase in the water vapour content of the atmosphere 43 
(water vapour feedback, see Section 7.4.2.2) and changes in vertical temperature profiles (e.g., lapse rate 44 
feedback, see Section 7.4.2.2). While the water vapour feedback always contributes to temperature increases 45 
(positive feedback), the sign and magnitude of the lapse rate feedback depends on the sign of the change in 46 
the lapse rate and leads to near-surface temperature increases in mid and high latitudes and decreases in 47 
tropical regions (Pithan and Mauritsen, 2014).  48 
 49 
The initial temperature increase near the surface can also trigger other positive land surface feedbacks such 50 
as the snow-ice albedo feedback (see Section 7.4.2.3) and soil-moisture feedbacks, both of which are 51 
characterised by a strong seasonal and regional dependence. For instance, Arctic amplification occurs due to 52 
the combined effect of several feedback processes, including snow-ice albedo, water vapour and lapse-rate 53 
feedbacks (see Section 7.6.2.1 for details), which leads to increases in winter Arctic temperature extremes 54 
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being three times as large as global mean changes (high confidence, Section 11.3). In some midlatitude areas 1 
such as the Mediterranean, temperature increases are amplified by the stabilizing effect of changes in 2 
temperature lapse rates (Kröner et al., 2016; Brogli et al., 2018) and by the higher atmospheric moisture 3 
demand combined with a decrease in precipitation that results in a drying of the soils leading to enhanced 4 
sensible heat fluxes and thus a further heating of the air immediately above. These changes lead to a positive, 5 
i.e self-enhancing, soil-moisture temperature feedback process (Seneviratne et al., 2010; Vogel et al., 2017) 6 
and thus larger increases in warm temperature extremes and decreases in cold temperature extremes. The soil 7 
moisture-temperature feedback can also include further decrease of cloud cover (increasing incident 8 
shortwave radiation) as a result of decreased evapotranspiration input from the land surface (Vogel et al., 9 
2018). Greenhouse gases also have direct and indirect radiative forcing on regional land temperatures due to 10 
physiological responses of plants to the increase in CO2(Lemordant et al., 2016; Swann et al., 2016; Section 11 
11.6).  12 
 13 
Changes in the spatial distribution of temperatures can in turn lead to changes in the large-scale atmospheric 14 
circulation (dynamics) and the characteristics of synoptic perturbations leading to further changes in warm 15 
and cold temperature extremes. For example, polar amplification has been linked with a weakening of the 16 
summer circulation in the Northern Hemisphere with weaker cyclone activity and an increase in the 17 
persistence of heatwaves which could explain some of the summer temperature increases over the last four 18 
decades (Coumou et al., 2015, 2018; Mann et al., 2017), although there is only low confidence in these 19 
changes in atmospheric circulation patterns and their persistence characteristics (Section 11.1.5).  20 
 21 
Precipitation extremes 22 
The thermodynamic vs. dynamic decomposition framework has been used to understand the observed and 23 
projected future changes in precipitation extremes (Byrne and O’Gorman, 2015; O’Gorman, 2015; Trenberth 24 
et al., 2015; Vautard et al., 2016; Pfahl et al., 2017). Changes in water vapour have been shown to be 25 
controlled by temperature changes through increases in evaporation and in the water-holding capacity of the 26 
atmosphere (e.g., Trenberth, 1999). As a result, water vapour content at the global scale increases roughly 27 
following the Clausius-Clapeyron (C-C) relation, with an increase of approximately 7 % for every degree of 28 
global-mean surface warming (Held and Soden, 2006; O’Gorman and Schneider, 2009). Nonetheless, 29 
increases at regional scales may differ from this C-C rate because regions with temperature increases 30 
stronger than the global mean would have larger increases in the atmospheric water-holding capacity. 31 
Additionally, regional differences from the global rate may occur because atmospheric moisture over land 32 
may be more limited in the future due to decreases in evapotranspiration rates (from land-atmosphere 33 
feedbacks and CO2 effects on photosynthesis, Berg et al. 2016) and decreases in moisture supply from the 34 
ocean (Byrne and O’Gorman, 2018) 35 
 36 
CMIP3 and CMIP5 models consistently project increases in global-scale atmospheric moisture at a rate close 37 
to that determined by the C-C relationship. The thermodynamic contribution would lead to precipitation 38 
extremes increasing at a similar rate as atmospheric moisture: around 7 % per degree of surface warming. 39 
Some studies (Westra et al., 2013; Fischer and Knutti, 2016) have shown that the observed rate of increase of 40 
precipitation extremes is similar to the C-C scaling, but this agreement seems to result from large regional 41 
compensations (e.g., Westra et al., 2013). At regional scales, dynamic effects can be substantial and strongly 42 
modify the rate of change of extreme precipitation compared to the thermodynamic contribution (Pfahl et al., 43 
2017; Guerreiro et al., 2018b). Dynamic contributions to changes in precipitation extremes are ultimately 44 
related to changes in the magnitude and distribution of atmospheric vertical motion. Vertical velocities can 45 
be influenced by changes in large-scale conditions (i.e., circulation patterns and static stability) and by 46 
changes occurring within the storm (e.g., Pendergrass, 2018). Large-scale changes in the vertical and 47 
horizontal distribution of temperature (thermodynamics) lead to modifications in hydrodynamic instabilities 48 
affecting atmospheric motions (dynamics) from a range of synoptic and subsynoptic phenomena including 49 
tropical cyclones, extratropical cyclones, fronts, mesoscale-convective systems and thunderstorms. There is 50 
medium confidence in the magnitude and direction of current and future changes in these phenomena. This is 51 
because changes in atmospheric circulation occur as an indirect effect of thermodynamic changes. This is 52 
also because the circulation effects in synoptic and subsynoptic phenomena are usually complex due to the 53 
interplay between several large-scale drivers that often have opposing influences (e.g., Shaw et al., 2016). 54 
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Therefore, changes in extremes due to dynamic contributions show large differences across models and are 1 
more uncertain than those due to thermodynamic contributions (Shepherd, 2014; Trenberth et al., 2015; 2 
Pfahl et al., 2017). Nevertheless, there is consistency among model simulations that dynamic contributions 3 
can lead to increases in some regions but decreases in other regions on the backdrop of the thermodynamic 4 
contribution (Norris et al., 2019; Pfahl et al., 2017; Tandon et al., 2018). 5 
 6 
Box 11.1, Figure 1 shows the fractional change in annual maximum one-day precipitation (Rx1day) together 7 
with an estimated decomposition of thermodynamic and dynamic contributions over the period 1950-2100 8 
simulated by 22 CMIP5 models (Pfahl et al., 2017). Precipitation extremes (Box 11.1, Figure 1a) are 9 
projected to intensify with global warming over most of the globe, with the exception of some subtropical 10 
areas where no changes or even decreases are simulated. The thermodynamic contribution (Box 11.1, Figure 11 
1b) leads to increases everywhere with similar magnitude (mostly between 4 and 8% per degree of 12 
warming). The dynamic contribution (Box 11.1, Figure 1c) varies greatly in space with large regions in the 13 
subtropics showing substantial decreases and an area in the equatorial Pacific showing substantial increases. 14 
Most areas where changes are substantial also show high agreement across models, though in transition areas 15 
and most middle and high latitudes the agreement across models is poor. In the subtropics, negative 16 
contributions from the dynamic term have been linked with a decrease in the horizontal scale of the 17 
ascending motion related to increases in static stability (Tandon et al., 2018b, 2018a). 18 
 19 
Extreme precipitation can also be enhanced by dynamic responses and feedbacks occurring within the storms 20 
resulting from the extra latent heat released from changes in the thermodynamic contribution (Lackmann, 21 
2013; Willison et al., 2013; Marciano et al., 2015; Nie et al., 2018). The extra latent heat released within the 22 
storms has been shown to increase precipitation extremes by strengthening convective updrafts and the 23 
intensity of the cyclonic circulation, although weakening effects have also been found in midlatitude 24 
cyclones (e.g., Kirshbaum et al., 2017). Additionally, the increase in latent heat can also suppress convection 25 
at larger scales due to atmospheric stabilization (Nie et al., 2018; Tandon et al., 2018b; Kendon et al., 2019). 26 
As these dynamic effects result from feedback processes within the storms and include convective processes, 27 
their proper representation requires models to explicitly represent convective processes, and to have higher 28 
horizontal and vertical resolutions than current climate models (i.e., Ban et al., 2015; Kendon et al., 2014; 29 
Meredith et al., 2015; Nie et al., 2018; Prein et al., 2015; Westra et al., 2014). Positive dynamic feedbacks, 30 
either related to changes in the large scale circulation or within the storm, lead to changes in precipitation 31 
extremes that exceed those expected from purely thermodynamic considerations. 32 
 33 
In summary, there is high confidence that thermodynamic factors will drive an intensification of heavy 34 
rainfall events close to 7% per degree of warming, but less certain dynamic changes might exacerbate or 35 
mitigate this intensification at regional scales. 36 
 37 
 38 
[START BOX 11.1, FIGURE 1 HERE] 39 
 40 
Box 11.1, Figure 1: Multi-model mean fractional changes in % per degree of warming for (a) annual maximum 41 

precipitation (Rx1day), (b) thermodynamic contributions and (c) dynamic contributions estimated 42 
using the difference between full changes and changes in thermodynamic contributions. Changes 43 
were derived from a linear regression for the period 1950–2100. Stippling indicates that at least 44 
80% of the models agree on the sign of the signal. A more detailed description of the estimation of 45 
dynamic and thermodynamic contributions is given in Pfahl et al. (2017).  46 

[END BOX 11.1, FIGURE 1 HERE] 47 
 48 
 49 
Droughts 50 
Droughts alsoresult from a combination of thermodynamic and dynamic processes (Section 11.6). While 51 
greenhouse gas forcing on drought is strongly related to thermodynamic processes (through increased 52 
radiation, air temperature, and atmospheric drying, which all increase evaporative demand), it is uncertain 53 
how changes in circulation patterns may affect drought occurrence, length, and intensity (Section 11.6). 54 
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There is high confidence that historical and projected changes in drought pattens cannot be fully 1 
encompassed with the simplistic statement “dry-gets-drier, wet-gets-wetter”, since many dry or wet regions 2 
display uncertain changes, and some humid regions currently display drying trends and/or are projected to 3 
become drier (Greve et al., 2014; Byrne and O’Gorman, 2015). This highlights that thermodynamic 4 
processes cannot be understood using the C-C relationshipalone because, over continents, limited moisture 5 
supply can strongly modify the evaporative demand and contribute to the full response, together with internal 6 
climate variability (Kumar et al., 2015).In addition, regional changes in thermodynamic processes affecting 7 
droughts display large model variations and thus are only associated with low or medium confidence (Section 8 
11.6). In particular, observed atmospheric drying in recent decades over land is not well captured in the 9 
CMIP5 multi-model ensemble (Douville and Plazzotta, 2017), with possible consequences for drought and 10 
heavy precipitation projections. 11 
 12 
In summary, both thermodynamic and dynamic processes contribute to the occurrence of climate 13 
extremes and their changes. Thermodynamic processes are usually directly related to greenhouse gas 14 
forcing and thus are better understood and more easily attributable to human-induced global 15 
warming. However, there remain large uncertainties related to regional-scale thermodynamic 16 
processes ( e.g., snow-albedo temperature feedbacks or soil moisture-evapotranspiration-17 
temperature/precipitation feedbacks). Dynamic processes are usually an indirect response to 18 
thermodynamic changes and are also strongly affected by internal climate variability. Contributions 19 
from changes in the dynamic processes can be substantial, and can either enhance or counteract the 20 
effect of thermodynamic responses. 21 
 22 
[END BOX 11.1 HERE] 23 
 24 
 25 
11.1.5 Effects of large-scale circulation on changes in extremes 26 
 27 
Atmospheric large-scale circulation patterns and associated atmospheric dynamics are important 28 
determinants of the regional climate (Chapter 10). As a result, they are also important to the occurrence and 29 
severity of extremes (see also Box 11.3). Aspects of changes in large-scale circulation patterns are assessed 30 
in Chapters 2, 3, 4, and 8. Here we provide some general concepts, through a couple of examples, on why the 31 
uncertainty in the response of large-scale circulation patterns to external forcing can cascade to uncertainty 32 
in the response of extremes to external forcings. Details for specific types of extremes are covered in the 33 
relevant subsections. For example, the occurrence of the El Niño-Southern Oscillation (ENSO) influences 34 
precipitation regimes in many areas, favoring droughts in some regions and heavy rains in others (Box 11.3). 35 
The extent and strengh of the Hadley circulation influences regions where tropical and extra-tropical 36 
cyclones occur, with important consequences for the characteristics of extreme precipitation and winds. The 37 
circulation patterns associated with land-ocean heat contrast, which affect the monsoon circulations (Biasutti 38 
et al., 2018), lead to heavy precipitation along the coastal regions in East Asia (Freychet et al., 2015). As a 39 
result, changes in the spatial and/or temporal variability of the atmospheric circulation in response to 40 
warming affect characteristics of weather systems such as tropical cyclones (Sharmila and Walsh, 2018), 41 
storm tracks (Shaw et al., 2016), and atmospheric rivers (Waliser and Guan, 2017) (see also Section 11.7). 42 
Changes in weather systems in turn affect the frequency and intensity of extreme winds, extreme 43 
temperatures, and extreme precipitation, on the backdrop of thermodynamic responses of extremes to 44 
warming. Aerosol forcing through changing patterns of sea surface temperatures (SSTs) also affects 45 
circulation patterns and tropical cyclone activities (Takahashi et al., 2017). 46 
 47 
Changes in atmospheric large-scale circulation due to external forcing are uncertain in general but there are 48 
clear signals in some aspects (Chapter 2, 3, 4, and 8). Among them, there is medium confidence that the 49 
Hadley circulation has expanded poleward (Chapter 3). The poleward expansion affects drought occurrence 50 
in some regions (see Section 11.6), and results in poleward shifts of tropical cyclones and storm tracks (see 51 
Sections 11.7.1 and 11.7.2). The projection of ENSO events is uncertain (Chapter 4), and this would have 52 
implications for projected changes in extreme events affected by ENSO, including droughts over wide areas 53 
(Section 11.6 and Box 11.3) and tropical cyclones (see Section 11.7.1). A case study is provided for the 54 
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intense ENSO in 2015/2016 in Box 11.3 to highlight the influence of ENSO on extremes.  1 
 2 
In summary, large-scale atmospheric circulation patterns are important drivers for local and regional 3 
extremes, especially on the interannual time scale. There is overall low confidence about future 4 
changes in the strength of these patterns, which results in uncertainty in projected responses of 5 
extremes.   6 
 7 
 8 
11.1.6 Effects of regional-scale processes and forcings and feedbacks on changes in extremes 9 
 10 
At the local and regional scales, changes in extremes are strongly modulated by regional and local feedbacks 11 
(Seneviratne et al., 2013; Miralles et al., 2014; Lorenz et al., 2016; Vogel et al., 2017), changes in large-scale 12 
circulation patterns (11.1.5), and regional forcings such as changes in land use or aerosol concentrations 13 
(Hirsch et al., 2017, 2018; Seneviratne et al., 2018; Thiery et al., 2017; Wang et al., 2017f; Findell et al., 14 
2017). In some cases, such responses may also include non-local effects (e.g., Persad and Caldeira, 2018; 15 
Miralles et al., 2019). It should be noted that regional-scale forcing and feedbacks are often found to be 16 
asymmetric for temperature distributions, with generally higher effects for the hottest percentiles (Section 17 
11.3).  18 
 19 
Land use can affect regional extremes, in particular hot extremes, in several ways (high confidence). For 20 
instance, cropland intensification has been suggested to be responsible for a cooling of the highest 21 
temperature percentiles in the US Midwest (Mueller et al., 2016b). Similarly, irrigation has been shown to be 22 
responsible for a cooling of hot temperature extremes of up to 1-2°C in many mid-latitude regions in the 23 
present climate (Thiery et al., 2017), a process not represented in state-of-the-art Earth System Model (ESM) 24 
simulations of the 5th or 6th phase of the Coupled Model Intercomparison Project (CMIP5, CMIP6). Changes 25 
in agricultural management associated with no-till farming, which lead to higher surface albedo after harvest 26 
(about +0.1) and reduced surface evaporation, may also asymmetrically cool hot days more than median 27 
days, with effects of ca. 1°C (Davin et al., 2014). In addition, the decrease in soil evaporation may also 28 
mitigate the onset of drought (Wilhelm et al., 2015). Finally, deforestation has been shown to have 29 
substantially contributed to the warming of hot extremes in some mid-latitude regions over the course of the 30 
20th century (Lejeune et al., 2018); it should be noted that this effect is often not well captured in ESMs. 31 
While observations show a cooling effect of forest cover compared to non-forest vegetation during daytime 32 
(Li et al., 2015), in particular in arid, temperate, and tropical regions (Alkama and Cescatti, 2016), several 33 
models simulate a warming of daytime temperatures for regions with forest vs non-forest cover (Lejeune et 34 
al., 2017). Overall, the effects of land use forcing may be particularly relevant in the context of low-35 
emissions scenarios, which include large land use modifications, for instance associated with the expansion 36 
of biofuels, or biofuels with carbon capture and storage (BECCS) or re-/afforestation to ensure negative 37 
emissions, as well as with the expansion of food production ( e.g., Seneviratne et al., 2018b, Hirsch et al., 38 
2018). 39 
 40 
Aerosol forcing also has a strong regional footprint associated with regional emissions, which affects 41 
temperature and precipitation extremes (high confidence; see also Sections 11.3 and 11.4). From 42 
approximately the 1960s to 1980s, enhanced aerosol loadings led to regional cooling due to decreases in 43 
global solar radiation (“global dimming”) which was followed by a phase of “global brightening” due to a 44 
reduction in aerosol loadings (Chapter 7; Wild et al., 2005). King et al. (2016a) show that aerosol-induced 45 
cooling delays the timing of the identification of a significant human contribution to record-breaking heat 46 
extremes in some regions. On the other hand, the decreased aerosol loading since the 1990s has led to an 47 
accelerated warming of hot extremes in some regions. Based on simulations with an ESM, Dong et al. 48 
(2017b) suggest that a substantial fraction of the warming of the annual hottest days in Western Europe since 49 
the mid-1990s has been due to decreases in aerosol concentrations in the region. Dong et al. (2016) also 50 
identify non-local effects of decreases in aerosol concentrations in Western Europe, which they estimate 51 
played a dominant role in the warming of the hottest daytime temperatures in Northeast Asia since the mid-52 
1990s, via induced coupled atmosphere-land surface and cloud feedbacks, rather than through a direct impact 53 
of anthropogenic aerosol changes on cloud condensation nuclei.  54 
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In addition to regional forcings, regional feedback mechanisms can also substantially affect extremes (high 1 
confidence). This is the case with soil moisture feedbacks in several mid-latitude regions, which lead to a 2 
marked additional warming of hot extremes compared to mean global warming (Seneviratne et al., 2016), 3 
which is superimposed on the known land-sea contrast in mean warming (Vogel et al., 2017). These 4 
feedbacks are also associated with substantial spread in models, and in some regions can imply more 5 
uncertainty for projections in temperature extremes than the spread resulting from the differences in global 6 
transient climate responses in climate models (Seneviratne and Hauser, submitted). In addition, there are also 7 
feedbacks between soil moisture content and precipitation occurrence, generally characterized by negative 8 
spatial feedbacks and positive local feedbacks (Taylor et al., 2012; Guillod et al., 2015). Climate model 9 
projections suggest that these feedbacks are relevant for projected changes in heavy precipitation 10 
(Seneviratne et al., 2013), however, there is evidence that climate models do not capture the correct sign of 11 
the soil moisture-precipitation feedbacks in several regions, in particular spatially and/or in some cases also 12 
temporally (Taylor et al., 2012; Moon et al., 2019). In high latitudes of the Northern Hemisphere, the snow- 13 
and ice-albedo feedback, along with other factors, is projected to largely amplify temperature increases (e.g., 14 
Pithan and Mauritsen, 2014), although the effect on temperature extremes is still unclear. It is also still 15 
unclear whether snow-albedo feedbacks in mountainous regions might have an effect on temperature and 16 
precipitation extremes (e.g., Gobiet et al., 2014), however these feedbacks play an important role in 17 
projections of changes in high-latitude warming (Hall and Qu, 2006), and, in particular, changes in cold 18 
extremes in these regions (Section 11.3). 19 
 20 
Finally, in some regions, weather and climate extremes may amplify one another. This is, for instance, the 21 
case between heatwaves and droughts, with high temperatures leading to drying tendencies on land because 22 
of increased evapotranspiration, and drier soil conditions leading later on to decreased evapotranspiration 23 
and higher sensible heat flux and hot temperatures (Seneviratne et al., 2013; Vogel et al., 2017; Zscheischler 24 
and Seneviratne, 2017; Miralles et al., 2014; see also Box 11.1 and Section 11.8).  25 
 26 
In summary, regional forcings and feedbacks, in particular associated with land use and aerosol 27 
forcings, and soil moisture-temperature, soil moisture-precipitation, and snow/ice-albedo-temperature 28 
feedbacks, play an important role in modulating regional changes in extremes. These can also lead to a 29 
higher warming of extreme temperatures compared to mean temperature (high confidence), and 30 
possibly cooling in some regions (medium confidence). However, there is only medium confidence in the 31 
representation of the associated processes in state-of-the-art Earth System Models. 32 
 33 
 34 
11.1.7 Global-scale synthesis 35 
 36 
Tables 11.1 and 11.2 provide a synthesis for observed and attributed changes in extremes, and projected 37 
changes in extremes, respectively, at different levels of global warming. 38 
 39 
Figure 11.3 provides a synthesis on the level of confidence in the attribution and projection of changes in 40 
extremes, building the assessments from Tables 11.1 and 11.2. In the case where the physical processes 41 
underlying the changes in extremes in response to human forcing are well understood and the signal in the 42 
observations is still relatively weak, confidence in the projections would be higher than in the attribution 43 
because of increase in signal to noise ratio with higher global warming. On the other hand, when the 44 
observed signal is already strong and when observational evidence is consistent with model simulated 45 
responses, confidence in attribution may be higher than that in projections if certain physical processes could 46 
be expected to behave differently in a much warmer world and under much higher greenhouse gas forcing, 47 
and if such a behavior is poorly understood.  48 
 49 
 50 
[START FIGURE 11.3 HERE] 51 
 52 
Figure 11.3: Synthesis of confidence in attribution of extremes vs confidence in projection of extremes 53 

[PLACEHOLDER: THIS FIGURE WILL BE FURTHER DEVELOPED FOR THE FGD FOR ALL 54 
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CONSIDERED EXTREMES, AS WELL AS FOR DIFFERENT SPATIAL SCALES) 1 
 2 
[END FIGURE 11.3 HERE] 3 
 4 
 5 
[START TABLE 11.1 HERE] 6 
 7 
Table 11.1: Synthesis table on observed changes in extremes and contribution by human influences. Note that 8 

observed changes in marine extremes are assessed in the cross-chapter box 9.1 in Chapter 9. 9 
[PLACEHOLDER: TO BE UPDATED FOR FGD] 10 
 11 

Phenomenon and 
direction of trend 

Observed/detected trends since 
1950 (for +0.5°C global warming 
or higher) 

Human contribution to the observed trends 
since 1950 (for +0.5°C global warming or 
higher)  

Warmer and/or more 
frequent hot days and 
nights over most land 
areas 

Virtually certain on global scale 

North America, Europe, Australia, 
Asia, South America:Extremely 
likely 
 
Central America, Southern Africa: 
Medium confidence 
 
Africa, except southern Africa: Low 
confidence because of lack of 
observations 

Extremely likely main contributoron global 
scale; very likelymain contributor on 
continental scale for North America, South 
America, Europe, Australia, Asia 

Central America, Southern Africa: Medium 
confidence 
 
Africa (except southern Africa): Low 
confidence in generalbecause of lack of 
observations 

Warmer and/or fewer 
cold days and nights over 
most land areas 

Virtually certain on global scale 

Australasia: Very likely 

Asia: Very likely 

South America: Low evidence 

Extremely likely on global scale 

 

Warm spells/heatwaves; 
Increases in frequency or 
intensity over most land 
areas 

Virtually certain on global scale 

Australasia: Very likely 

Asia: Very likely 

South America: Low evidence 

Very likely on global scale 

Cold spells/cold waves: 
Decreases in frequency 
or intensity over most 
land areas 

Virtually certain on global scale 

South America: Low evidence, 
medium agreement 

Very likely on global scale 

Heavy precipitation 
events: increase in the 
frequency, intensity, 
and/or amount of heavy 
precipitation 

Likely more regions with positive 
than negative trends 

 

Likely main contributor to the observed 
intensification of heavy precipitation in land 
regions 
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Drought events: 
Increases in frequency, 
intensity and/or duration  

 

Observed trends in drought 
measures are highly regional, with 
increases in some regions and 
decreases in others. Atmospheric 
evaporative demand displays a 
global drying tendency over 
continents, and there is an observed 
tendency towards increased drying 
in the dry season since the beginning 
of the 20th century, when 
aggregated on global scale. 

There is high confidence that human influence 
has increased the potential for worsening of 
drought conditions and increased the tendency 
towards drying in the dry season since the 
beginning of the 20th century, when 
aggregated on the global scale. The drying 
tendency is dominated by warming- and 
radiation-induced increase in evaporative 
demand rather than by changes in precipitation. 

 

Floods and water 
logging: Increases in 
intensity and/or 
frequency 

Low confidence in the majority of 
the world regions with the exception 
of increases in the Amazon (high 
confidence), Northwest US and UK 
(medium confidence). 

High confidence in changes of flood 
seasonality, mostly in snow 
dominated regions. 

Low confidence due to little evidence and high 
seasonality.  

Increase in precipitation 
associated with tropical 
cyclones 

Low confidence for detectable global 
trend in tropical cyclone (TC) rain 
rates, due to data limitations.  

Low confidence for detectable global 
change in TC translation speed. 

Low confidence for global TC rain rates and 
changes in translation speed. 

Low to medium confidence for contribution of 
TCs to detectable anthropogenic contribution 
to extreme rainfall events. 

Medium confidence for detectable 
anthropogenic contribution to global near-
surface water vapor increases, which is 
expected to increase TC rainfall, all other 
things equal.  

Medium confidence for anthropogenic 
contribution to extreme rainfall events, which 
TCs contribute to, over the United States and 
other regions with sufficient data coverage. 

Increase in tropical 
cyclone intensity 
(maximum surface wind 
speed) 

Generally low confidence in 
detection of trends in historical 
tropical cyclone intensity in any 
basin or globally due to lack of 
confidence resulting from data 
inhomogeneities. 

Generally low confidence in attribution of any 
anthropogenic influence on historical changes 
in tropical cyclone intensity in any basin or 
globally due to lack of confidence resulting 
from data inhomogeneities, with exception of 
North Atlantic.  

North Atlantic: Medium confidence that a 
reduction in aerosol forcing has contributed at 
least in part to the observed increase in tropical 
cyclone intensity since the 1970s.Low 
confidence for direct role of greenhouse gas 
forcing. 

Changes in frequency of 
tropical cyclones 

Low confidence in detection of 
trends in historical tropical cyclone 
frequency in any basin or globally 
due to lack of confidence resulting 

Low confidence in attribution of any 
anthropogenic influence on historical changes 
in tropical cyclone frequency in any basin or 
globally due to lack of confidence resulting 
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from data inhomogeneities. 
Furthermore, physical process 
understanding is still unclear and 
there is no clear expectation for an 
increase in overall frequency with 
increasing greenhouse gas 
concentration. 

from data inhomogeneities, with exception of 
North Atlantic.  

North Atlantic: Medium confidence that a 
reduction in aerosol forcing has contributed at 
least in part to the observed increase in tropical 
cyclone frequency since the 1970s. Low 
confidence for direct role of greenhouse gas 
forcing. 

 

Poleward migration of 
tropical cyclones 

Low confidence for a detectable 
global signal. Medium confidence 
for a detectable migration rate in the 
western North Pacific. 

Low confidence for global migration. Medium 
confidence for migration in the western North 
Pacific. 

Slowdown of tropical 
cyclone translation speed 

Low confidence due to a present 
limited literature and lack of 
consensus on model results. 

Low confidence. 

Severe convective storms 
(tornadoes, hail, rainfall, 
wind, lightning) 

Low confidence in past trends in hail 
and winds and tornado activity due 
to short length of high quality data 
records. 

Low confidence. 

Increase in compound 
events 

Medium confidence that compound 
flooding risk has increased along the 
US coastline. 

High confidence that co-occurrent 
heatwaves and droughts are 
becoming more frequent under 
enhanced greenhouse gas forcing at 
global scale.  

Medium confidence wildfires have 
become more intense and that their 
frequency has increased in some 
fire-prone regions. 

Low confidence that human influences has 
contributed to changes in compound events 
leading to flooding. 

High confidence that human influence has 
increased the frequency of co-occurent 
heatwaves and droughts.  

Medium confidence that human influence has 
increased wildfire occurrence in some regions.  

 

[END TABLE 11.1 HERE] 1 
 2 
 3 
[START TABLE 11.2 HERE] 4 
 5 
Table 11.2: Synthesis table on projected changes in extremes. Note that projected changes in marine extremes are 6 

assessed in Chapter 9 and the Cross-chapter box 9.1 (marine heatwaves). [PLACEHOLDER: TO BE 7 
UPDATED FOR FINAL FGD, INCLUDING FOR PROJECTIONS AT +4°C] 8 

 9 
Phenomenon and direction 
of trend 

Projected changes at 
+1.5°C global warming 

Projected changes at 
+2°C global warming 

Projected changes at 
+3°C global warming 

Warmer and/or more 
frequent hot days and 

Virtually certain 
compared to pre-
industrial on global 

Virtually certain compared 
to pre-industrial on global 

Virtually certaincompared 
to pre-industrial on global 
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nights over most land 
areas 

scale; extremely likely on 
all continents 

Warming of hottest days 
of up to +3°C in mid-
latitudes (medium 
confidence) 

scale; extremely likely on 
all continents 

Warming of hottest days of 
up to +4°C in mid-latitudes 
(medium confidence) 

scale; extremely likely on 
all continents 

Warming of hottest days 
of up to +6°C in mid-
latitudes (medium 
confidence) 

Warmer and/or fewer cold 
days and nights over most 
land areas 

Virtually certain 
compared to pre-
industrial on global 
scale; extremely likely on 
all continents 

Warming of coldest 
nights of up to +4.5°C in 
Arctic, several northern 
high-latitude regions, and 
some northern mid-
latitude regions (medium 
confidence) 

Virtually certain compared 
to pre-industrial on global 
scale; extremely likely on 
all continents 

Warming of coldest nights 
of up to +6°C in Arctic, 
several northern high-
latitude regions, and some 
northern mid-latitude 
regions (medium 
confidence) 

Virtually certain compared 
to pre-industrial on global 
scale; extremely likely on 
all continents 

Warming of coldest nights 
of up to +9°C or larger in 
Arctic, several northern 
high-latitude regions, and 
some northern mid-latitude 
regions (medium 
confidence) 

Warm spells/heatwaves; 
frequency and/or duration 
increases over most land 
areas 

Virtually certain 
compared to pre-
industrial on global 
scale; extremely likely on 
all continents 

Virtually certain compared 
to pre-industrial on global 
scale; extremely likely on 
all continents 

 

Virtually certain compared 
to pre-industrial on global 
scale; extremely likely on 
all continents 

 

Cold spells/cold waves: 
Decreases in frequency, 
intensity and/or duration 
over most land areas 

Very likelycompared to 
pre-industrial on global 
scale 

 

Very likelycompared to 
pre-industrial on global 
scale 

Very likelycompared to 
pre-industrial on global 
scale 

 

Heavy precipitation 
events: increase in the 
frequency, intensity, 
and/or amount of heavy 
precipitation  

High confidence in most 
continents but low 
confidence in 
Australasia, Central and 
South America  

[PLACEHOLDER: TO 
BE UPDATED WITH 
MORE CMIP6 
SIMULATIONS FOR 
FGD] 

Likely in most continents 
but low confidence in 
Australasia, Central and 
South America  

[PLACEHOLDER: TO BE 
UPDATED WITH MORE 
CMIP6 SIMULATIONS 
FOR FGD] 

Very likely in most 
continents but low 
confidence in Australasia, 
Central and South 
America  

[PLACEHOLDER: TO 
BE UPDATED WITH 
MORE CMIP6 
SIMULATIONS FOR 
FGD] 

Increases in intensity 
and/or duration of drought 
events 

High confidence that 
atmospheric evaporative 
demand will continue to 
increase compared to 
pre-industrial conditions 
and lead to further drying 
tendencies in some 
regions 
 
Medium confidence in 
increase in drought 
probability in subtropical 

High confidence that 
atmospheric evaporative 
demand will continue to 
increase compared to pre-
industrial conditions and 
lead to further drying 
tendencies in some regions 
 

Medium confidence in 
increase in drought 
probability in subtropical 

High confidence that 
atmospheric evaporative 
demand will continue to 
increase compared to pre-
industrial conditions and 
lead to further drying 
tendencies in some regions 
 

Medium confidence in 
increase in drought 
probability in subtropical 
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regions: Mediterranean,   
Southern Africa, 
Northeast Brazil, 
Southern North America 
and Central America 

High confidence in 
higher probability of 
atmospheric aridity, i.e. 
drier atmosphere, in 
subtropical and mid-
latitude regions 

 

regions (Mediterranean,   
Southern Africa, Northeast 
Brazil, Southern North 
America and Central 
America), with higher 
probability of 
intense/frequent droughts 
than at 1.5°C global 
warming 

Medium confidence in  
expansion of drought 
probability outside these 
regions given increased 
radiative forcing ( e.g., 
central Europe and   
Central North America, the 
Amazon) 

High confidence in higher 
probability of atmospheric 
aridity, i.e. drier 
atmosphere, in subtropical 
and mid-latitude regions 

 

 

regions (Mediterranean,   
South Africa, Northeast 
Brazil, Southern North 
America and Central 
America), with higher 
probability of 
intense/frequent droughts 
than at 2°C of global 
warming 

Medium confidence in  
expansion of drought 
probability outside these 
regions given increased 
radiative forcing ( e.g., 
central Europe and   
Central North America, 
the Amazon), with 
probability of intense 
droughts being higher than 
at 2°C of global warming 

High confidence in higher 
probability of atmospheric 
aridity, i.e. drier 
atmosphere, in subtropical 
and mid-latitude regions 

Increases in floods and 
water logging 

Medium confidence that 
an increase in global 
warming to 1.5°C would 
lead to alarger fraction of 
land area affected 
by flood hazard at global 
scale compared to 
present 

Medium confidence that an 
increase in global warming 
to 2°C compared to 1.5°C 
or present-day conditions 
would lead to a 
larger fraction of land area 
affected by flood hazard at 
global scale. 

High confidence that flood 
hazard would be even 
more widespread at +3°C 
compared to +2°C given 
projected changes in heavy 
precipitation; in part lack 
of literature to 
quantitatively assess 
projected changes. 

Increase in precipitation 
associated with tropical 
cyclones (TC) 

High confidence in a 
projected increase of TC 
rain rates at the global 
scale; the median 
projected rate of increase 
is about 11%. 
Medium confidence that 
rainrates will increase in 
every basin. 

High confidence in a 
projected increase of TC 
rain rates at the global 
scale; the median projected 
rate of increase is about 
14%. 
Medium confidence that 
rainrates will increase in 
every basin. 

High confidence in a 
projected increase of TC 
rain rates at the global 
scale; the median 
projected rate of increase 
is about 21%. 
Medium confidence that 
rainrates will increase in 
every basin. 

Increase in mean tropical 
cyclone lifetime-maximum 
wind speed (intensity) 

Medium-to-high 
confidence for a 3.75% 
increase. 

Medium-to-high 
confidence for 5% 
increase. 

Medium-to-high 
confidence for a 7.5% 
increase. 
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Changes in frequency of 
tropical cyclones 

Medium-to-high 
confidence for an 
increase in the proportion 
of TCs that reach the 
strongest (Category 4-5) 
levels. The median 
projected increase in this 
proportion is about 10%.. 

Medium-to-high 
confidence for an increase 
in the proportion of TCs 
that reach the strongest 
(Category 4-5) levels.  The 
median projected increase 
in this proportion is about 
13%. 

Medium-to-high 
confidence for an increase 
in the proportion of TCs 
that reach the strongest 
(Category 4-5) levels.  The 
median projected increase 
in this proportion is about 
20%. 

Severe convective storms There is medium 
confidence that the 
frequency of severe 
convective storms 
increases in the spring 
with enhancement of 
CAPE, leading extension 
of seasons of occurrence 
of severe convective 
storms. There is high 
confidence of future 
intensification of 
precipitation associated 
with severe convective 
storms. 

Same as the left cell. Same as the left cell. 

Increase in compound 
events (frequency, 
intensity) 

High confidence that co-occurrent heatwaves and droughts will continue to increase 
under higher levels of global warming, with higher frequency/intensity with every 
additional 0.5°C of global warming.  

Medium confidence that humid heatwaves will continue to increase under higher 
levels of global warming, with higher frequency/intensity with every additional 
0.5°C of global warming. 

Medium confidence that compound flooding at the coastal zone will increase under 
higher levels of global warming, with higher frequency/intensity with every 
additional 0.5°C of global warming. 

 1 
[END TABLE 11.2 HERE] 2 

 3 
 4 
11.2 Data and Methods 5 
 6 
This section provides an assesment of data and challenges to study extreme events, of methodological 7 
aspects of the research on climate extremes, and of the modeling of extreme events. Key points and new 8 
developments in detection and attribution methods are briefly assessed as well. The main focus is on extreme 9 
events over land, as extremes in the ocean are assessed in Chapter 9 of this report.  10 
 11 
 12 
11.2.1 Observations for extremes 13 
 14 
Extremes are rare events, which means that the extremal portions of the distribution in the available 15 
observations are most relevant when analysing long-term changes in extremes. Compared with mean 16 
climate, there are unique challenges and special data requirements when characterizing long-term changes in 17 
extremes. The SREX and AR5 WGI reports (SREX  Chapter 3, AR5  Chapter 2) discussed critical issues 18 
regarding the quality and availability of observed data and their relevance for the assessment of changes in 19 
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extremes. The different types of observations (e.g., station-based, satellite, reanalysis), quality and quantity 1 
(e.g., homogeneity, record length), and the consistency of data for overall climate monitoring are assessed in 2 
Chapter 10 (Section 10.2.1). We provide here more background on aspects specifically related to 3 
observations of extremes. 4 
 5 
 6 
11.2.1.1 Ground-based instrumental record 7 
 8 
Several relevant extreme weather and climate events happen on time scales of hours to weeks, such as land 9 
and marine heatwaves, cold spells, flooding, tropical cyclones, and extra-tropical cyclones. The analysis of 10 
these events may require daily or sub-daily (one- to six-hourly) instrumental observations. However, such 11 
observational records are too short (less than 10 years) in many regions, and stations may not have been 12 
uniformly maintained or their data may not be openly available. On the other side of the spectrum, longer 13 
events such as droughts, which can last from a few weeks to several years (“mega-droughts”,  e.g., Ault et al. 14 
2014) are necessarily rare and thus require even longer records to detect trends and distinguish human-15 
induced signals from internal climate variability. Hence, the observational analysis of weather and climate 16 
extremes poses very unique data challenges.  17 
 18 
The density of networks with available station data (at daily and monthly time scales) has decreased in recent 19 
years. The spatial coverage of observed data of relevance for extremes is uneven, and there are large data 20 
gaps for various regions such as Africa and South America (Donat et al., 2013a; Funk et al., 2015b). While 21 
spatial coverage of daily data can be improved by integrating data sources, such as the International Surface 22 
Temperature Initiative (ISTI) databank that combines the Global Historical Climatology Network (GHCN)–23 
Daily data sets with other historical data sources (Karl et al., 2015), the level of improvement is still limited 24 
by the availability of underlying station observations (see also Chapters 1 and 10: Section 1.5.1.2, Section 25 
10.2.2.3). Sub-daily observations of precipitation and temperature are more widely available than for 26 
humidity (Willett et al., 2014), which is necessary to calculate heat indices and other measures of human 27 
discomfort during heat waves. In-situ observations of soil moisture (Seneviratne et al., 2010; Dorigo et al., 28 
2011), and to a lesser extent streamflow and runoff (Do et al., 2018), are limited as well, complicating the 29 
characterization of changes in drought and water logging statistics (Sections 11.5 and 11.6). Data 30 
inhomogeneity (Chapter 10, Section 10.2.2.2) due to changes in siting, instruments, or observation practices, 31 
is not always addressed, especially for precipitation data. In addition, different quality control schemes may 32 
have been used (Dunn et al., 2014). These introduce various sources of uncertainty, making trend analysis 33 
more uncertain.  34 
 35 
Station data have been used to generate climate extreme products available in regular grid meshes (i.e., 36 
gridded datasets) to be used for different purposes, including infilling data gaps and climate model 37 
evaluation. However, when producing gridded datasets (Chapter 10, Section 10.2.2.4), the order in which the 38 
extremes’ calculation and the interpolation are performed is important for evaluation. In some instances, 39 
daily values of station observations are first gridded and various indices representing different aspects of 40 
extremes are then computed. In regions with high station density, the gridded values are closer to extremes 41 
of area mean and thus more appropriate for comparisons with extremes estimated from climate model output, 42 
which is often considered to represent areal means (Chen and Knutson, 2008; Gervais et al., 2014; Avila et 43 
al., 2015; Di Luca et al., submitted). In regions with very limited station density, the gridded values are 44 
closer to point estimates of extremes. It follows that it can be difficult to interpret the extremes computed 45 
from gridded values due to different station densities in different regions. In other instances, the extreme 46 
indices are computed first and then gridded. These gridded values are more representative of point estimates 47 
of extremes, subject to some spatial smoothing due to gridding, making these products less suitable for 48 
climate model evaluation. Because of the spatial variability of the climate and varying station densities in 49 
different regions, these two types of data products are not always comparable.  50 
 51 
Agreement between different global and regional datasets varies, with better agreement for extreme 52 
temperatures than for extreme precipitation (Donat et al. 2014). While index-based data products provide a 53 
broader spatial coverage than raw variables, deterioration of networks over time is also reported, particularly 54 
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for Africa and parts of South and Central America (Donat et al., 2013). These differences can be substantial 1 
enough to lead to very different conclusions about whether a specific precipitation event is actually extreme 2 
(Angélil et al., 2017). 3 
 4 
 5 
11.2.1.2 Satellite-based instrumental record 6 
 7 
Satellite remote sensing offers complementary data to in-situ measurements and the opportunity for more 8 
spatially homogeneous, albeit shorter temporal coverage (see Chapter 10, Section 10.2.11). In some regions 9 
with sparse data coverage, they provide the main source of information on observed changes. In addition, a 10 
key advantage of satellite data for extremes is the temporal resolution of some products providing subdaily 11 
data for precipitation (e.g., TRMM; Maggioni et al. 2016), clouds (e.g., HIMAWARI; BESSHO et al. 2016; 12 
Chen et al. 2019), or winds (e.g., QuikSCAT; Lee et al. 2008; Chan and Chan 2012, 2015). However, 13 
satellites do not observe the primary atmospheric state variables directly and polar orbiting satellites do not 14 
observe any given place at all times. Hence, their utility as a substitute for high-frequency (i.e. daily) ground-15 
based observations is limited. For instance, Timmermans et al. (2019) analysed extreme daily and pentad 16 
precipitation and found little relationship between the timing of observed extreme precipitation in satellite 17 
and gridded station data products over the United States.  18 
 19 
Despite these limitations, some satellite records are now becoming long enough to assess longer-term 20 
changes in precipitation extremes (Alexander et al., 2019, submitted); Bador et al., submitted). A limited 21 
number of global land-based precipitation products date back to the early 1980s (Ashouri et al., 2015; Funk 22 
et al., 2015; Roca et al., 2019), while many others have data going back to at least the early 2000s (Huffman 23 
et al., 2001, 2007; Kubota et al., 2007; Roca et al., 2019; Xie et al., 2017). However, problems with 24 
homogeneity ( e.g., instrumentation change, satellite drift, merging techniques), issues with how very dry 25 
and very wet precipitation is calculated, and problems with the orographic precipitation calculation have 26 
limited the usefulness of satellite products in climate assessments. Often datasets are not developed with 27 
extremes in mind and can show idiosyncrasies in the extremes but not in the mean (Bador et al., 28 
submitted;Masunaga et al., submitted). There is a lack of data outside of 50°S to 50°N except in northern 29 
Europe, where data sparsity is less of an issue because of the many other observational sources available. It 30 
is becoming recognised though that satellite products might offer a useful complement to existing global 31 
products which are primarily in situ-based (Alexander et al., 2019) but caution is required in the 32 
interpretation of long-term trends especially in regions with low station density, prohibiting calibration of the 33 
satellite observations(Harrison et al., 2019; Timmermans et al., 2019). Generally, the spread across products 34 
is larger for satellite-based products than those that are solely in situ-based. The mean of the current range of 35 
available products is closest to the mean of the majority of in situ-based products. Caution is recommended 36 
for all products dependent on their intended application (Alexander et al., 2019; Bador et al., 2020). 37 
 38 
Shorter satellite products can still provide useful insights on the interannual variability of extremes, on 39 
potential emerging trends, and on mechanistic aspects leading to the occurrence of extreme events or relating 40 
them to potential impacts. For instance, the records of the Gravity Recovery and Climate Experiment 41 
(GRACE) that provided 15 years of data on water storage variability, provided useful insights on some 42 
emerging drying or wettening trends (e.g., Rodell et al., 2018). Several mechanistic studies on droughts 43 
(either on processes leading to droughts or on effects of droughts on other climate processes) have used 44 
satellite data products given the lack of large-scale ground observations for soil moisture ( e.g., Otkin et al., 45 
2016; Miralles et al., 2014; Dorigo et al., 2017; Stocker et al., 2019; Liu et al., submitted), or have provided 46 
insights on the performance of climate models (e.g., Scanlon et al., 2018; Humphrey et al., 2018). Recently 47 
also satellite datasets of land surface temperature have been used to assess processes related to hot extremes ( 48 
e.g., Folwell et al., 2016).  49 
 50 
 51 
11.2.1.3 Reanalysis data as observational proxy for extremes. 52 
 53 
As analyses of past changes in climate extremes are restrained by the limited availability of suitable 54 
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observational data (Section 11.2.1.1), studies have also used atmospheric reanalyses to investigate changes in 1 
climate extremes. Reanalyses are produced by assimilating certain types of observational data into 2 
atmospheric models, which are mostly frozen versions of operational forecast models (Dee et al., 2011; 3 
Onogi et al., 2007; Saha et al., 2010). If sufficiently constrained by observational data, reanalyses therefore 4 
represent the observed evolution of large-scale weather conditions. Reanalyses provide spatially and 5 
temporally complete coverage and physically consistent data (consistent both across different variables and 6 
in the representation of specific variable fields), which makes them a popular data basis for studies of past 7 
climate conditions.  Similar to purely observational datasets, reanalyses are, however, also affected by 8 
inhomogeneities. These come primarily from issues with the observational input data used for assimilation 9 
(in particular specific inhomoheneities in local observations but also variability in the available network), 10 
imperfections in data assimilation schemes, and model uncertainty (Bengtsson et al., 2004; Thorne and Vose, 11 
2010). These observations potentially confine the applicability of reanalyses to study long-term climatic 12 
changes. While reanalyses have been reported to represent high-quality and the most homogeneous 13 
observation-based datasets for the last approximately 30 years (Dee et al., 2011a), they are affected by 14 
distinct structural break points common to all reanalyses due to the introduction of certain types of data 15 
sources (such as the introduction of radio sondes in 1958 and the introduction of satellite data in 1979). In 16 
addition to the operational reanalyses, also two century-long reanalyses have been developed, which 17 
assimilate fewer observed variables but provide data throughout the entire 20th century, partly back to the 18 
mid-19th century (Compo et al., 2011; Poli et al., 2016).  19 
 20 
Evaluating a selection of indicators representing temperature and precipitation extremes in a set of 21 
commonly-used reanalyses including ERA-Interim, ERA40, NCEP1, NCEP2, and JRA-25 (Dee et al., 22 
2011b; Kalnay et al., 1996; Kanamitsu et al., 2002; ONOGI et al., 2007; Uppala et al., 2005), Donat et al. 23 
(2014) showed that changes in temperature extremes from reanalyses were most consistent with gridded 24 
observations after about 1980, but larger differences between reanalyses and gridded observations were 25 
found during the pre-satellite era. Generally lower agreement across datasets is found for extreme 26 
precipitation changes, although temporal and spatial correlations against observations were found to be still 27 
significant. Temperature and precipitation extremes from the century-long reanalyses (20CR and ERA-20C, 28 
Compo et al., 2011; Poli et al., 2016) were shown to reasonably agree with observations after about 1950, in 29 
particular in regions with good observational coverage, but often indicated different changes during the first 30 
half of the twentieth century (Donat et al., 2016a). In particular in regions with sparse observations, there is 31 
generally less agreement between different reanalyses products. For example, for extreme precipitation in 32 
Africa and parts of South America, different reanalyses indicate long-term changes of opposing signs (Donat 33 
et al., 2014b, 2016a). Timmermans et al. (2019) found little relationship (as measured by tail dependence) 34 
for extreme pentadal precipitation (five-day rainfall) between ERA-Interim and the gridded station data 35 
products over the United States. However, as the North American Regional Reanalysis (NARR) directly 36 
assimilates station precipitation data, they found this measure of agreement to be high for that product. For 37 
extra-tropical cyclones (ETCs, Section 11.7), several studies identified inconsistencies in reanalyses data 38 
(Krueger et al., 2013; Tilinina et al., 2013; Befort et al., 2016; Chang and Yau, 2016; Wang et al., 2016b). 39 
 40 
 41 
[START BOX 11.2 HERE] 42 
 43 
BOX 11.2: Extremes in palaeoclimate archives compared to instrumental records 44 
 45 
Examining extremes in pre-instrumental information can help to put events occurring in the instrumental 46 
record (called ‘observed’ here) in a longer-term context. This box focuses on extremes in the Common Era 47 
(CE, the last 2000 years) and discusses evidence of extreme events in palaeoreconstructions, documentary 48 
evidence (such as grape harvest data, ecclesiastical documents, newspapers and logbooks) and model-based 49 
analyses. This discussion includes evidence of whether observed extremes have or have not been exceeded in 50 
the Common Era. This focus is because there is generally higher confidence in pre-instrumental information 51 
gathered from the more recent archives from the Common Era, than from earlier evidence. This box provides 52 
overviews of i) the AR5 assessments and ii) types of evidence assessed here, evidence of iii) droughts, iv) 53 
temperature extremes, v) palaeofloods and vi) palaeotempests, and vii) summary of remaining challenges.  54 
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 1 
Based on studies of palaeoclimate reconstructions, documentary evidence and early instrumental data, AR5 2 
(and SREX) concluded with high confidence that droughts of greater magnitude and of longer duration than 3 
those observed in the instrumental period occurred in many regions during the last millennium. 4 
Evdidence assessed of past floods provided high confidence that floods during the past five centuries in 5 
northern and central Europe, western Mediterranean region and eastern Asia were of greater magnitude than 6 
those observed (Masson-Delmotte et al., 2013). The AR5 report medium confidence in evidence that floods 7 
in the near East, India and central North America are comparable to modern observed floods. The AR5 8 
assessed 20th Century summer temperatures compared to those reconstructed in the Common Era but not 9 
shorter duration temperature extremes (Masson-Delmotte et al., 2013). 10 
 11 
Given the rarity of extreme events and limited data samples available, even with literature published since 12 
the AR5, it remains difficult to quantify systematically the likelihood of such an event occurring in the past 13 
and whether the likelihood has changed in the instrumental period. Many factors affect confidence in 14 
information on pre-instrumental extremes. First, the geographical coverage of palaeoclimate reconstructions 15 
of extremes is not spatially uniform (Smerdon and Pollack, 2016) and depends on both the availability of 16 
archives and records, which are environmentally dependent, and also the differing attention and focus from 17 
the scientific community. In Australia, for example, the palaeoclimate network is sparser than for other 18 
regions, such as Asia, Europe and North America, and synthesised products rely on remote proxies and 19 
assumptions about the relationship of remote climates spatial coherence of precipitation (Cook et al., 2016c; 20 
Freund et al., 2017). Second, pre-instrumental evidence of extremes may be focused on understanding 21 
archetypal extreme events, such as the climatic impact of the 1815 eruption of Mount Tambora, Indonesia 22 
(Brohan et al., 2016; Veale and Endfield, 2016). These studies provide narrow evidence of extremes in 23 
response to specific forcings (Li, 2017) in particular locations, for specific epochs. Third, natural archives 24 
may provide information about extremes in one season only ( e.g., some dendrochronlogical archives 25 
provide temperature but not precipitation data). Finally, the probability of finding an unprecedented extreme 26 
event increases with an increase of length of past record-keeping, in the absence of trends. Thus, there is also 27 
a comparatively higher chance for very rare extreme events to have occurred at some prior time in the 28 
combined palaeoclimate and historical records which provided extended records length.  29 
 30 
Evidence of shorter duration extreme event types, such as floods and tropical storms, is further restricted by 31 
the comparatively low chronological controls and temporal resolution ( e.g., monthly, seasonal, yearly, 32 
multiple years) of most archives compared to events ( e.g., minutes to hours or days). Natural archives may 33 
be sensitive only to intense environmental disturbances, and so only sporadically record short duration or 34 
small spatial scale extremes. Interpreting sedimentary records as evidence of past short-duration extremes is 35 
also complex and requires clear understandings of natural processes. For example, palaeoflood 36 
reconstructions of flood recurrence and intensity produced from geological (eg. river and lake sediments, 37 
speleothems (Denniston and Luetscher, 2017), botanical ( e.g., flood damage to trees, or tree ring 38 
reconstructions) and faunal ( e.g., diatom fossil assemblages) require understandings of sediment sources and 39 
flood mechanisms. Pre-instrumental records of tropical storm intensity and frequency (also called 40 
palaeotempest records) derived overwash deposits of coastal lake and marsh sediments are difficult to 41 
interpret, with many factors affecting whether disturbances are deposited in archives (Muller et al., 2017) 42 
and deposits providing sporadic and incomplete preservation histories ( e.g., Tamura et al., 2018).  43 
 44 
Overall, the most complete pre-instrumental evidence of extremes occurs for high-duration, large spatial-45 
scale extremes, such as for multi-year meteorological droughts or seasonal- and regional- scale temperature 46 
extremes. Additionally, more precise insights into recent extremes emerge where multiple studies have been 47 
undertaken, compared to confidence in extremes reported at single sites or in single studies which may not 48 
necessarily be representative of large-scale changes, or for reconstructions that synthesise multiple proxies 49 
over large areas ( e.g., drought atlases). Such products combine palaeoclimate temperatures reconstructions 50 
and cover sub-continental- to hemispheric-scale regions to provide continuous records of the Common Era 51 
(e.g., Ahmed et al., 2013; Neukom et al., 2014 for temperature). 52 
 53 
There is high confidence in the occurrence of high-duration and severe drought events during the Common 54 
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Era for many locations, although their severity compared to recent drought events differs for locations and 1 
length of reconstruction provided. In some regions (the Levant (Cook et al., 2016a), California in the United 2 
States (Cook et al., 2014b;  Griffin and Anchukaitis, 2014) and the Andes (Domínguez-Castro et al., 2018)), 3 
recent observed drought extremes do not have precedents within the multi-century periods reconstructed in 4 
these studies in terms of duration and/or severity. In some regions (in Southwest North America (Asmerom 5 
et al., 2013; Cook et al., 2015a) and the Great Plains region (Cook et al., 2004), the Middle East (Kaniewski 6 
et al., 2012) and China (Gou et al., 2015)), recent drought extremes may have been exceed in the Common 7 
Era. In further locations, there is conflicting evidence for the severity of pre-instrumental droughts compared 8 
to observed extremes, depending on the length of reconstruction and seasonal perspective provided (see 9 
Cook et al., 2016b; Freund et al., 2017 for Australia). There can also be differing conclusions for the severity 10 
or even the occurrence of specific individual pre-instrumental droughts when different evidence is compared 11 
( e.g., Büntgen et al., 2015; Wetter et al., 2014).  12 
 13 
There is medium confidence that the magnitude of large-scale, seasonal-scale extreme temperatures in 14 
observed records exceed those reconstructed over the Common Era in some locations such as Central 15 
Europe. In one example, multiple studies have examined the unusualness of present-day European summer 16 
temperature records in a long-term context, particularly in comparison to exceptionally warm 1540 CE in 17 
Central Europe. Several studies indicate that the recent extreme summers (2003 and 2010) in Europe have 18 
been unusually warm in the context over the last 500 years (Barriopedro et al., 2011; Wetter and Pfister, 19 
2013; Wetter et al., 2014; Orth et al., 2016a), or longer (Luterbacher et al., 2016).  Others studies show 20 
summer temperatures in Central Europe in 1540 were warmer than the present-day (1966–2015) mean, 21 
although note it is difficult to assess whether or not the 1540 summer was warmer than observed record 22 
extreme temperatures(Orth et al., 2016a).  23 
 24 
There is high confidence that the magnitude of floods over the Common Era has exceeded observed records 25 
in some locations, including central Europe and eastern Asia. Recent literature supports previous AR5 26 
assessments of floods (Wilhelm et al., 2018). High temporally resolved records provide evidence, for 27 
example, of Common Era floods exceeding probable maximum flood levels in the Upper Colorado River, 28 
USA (Greenbaum et al., 2014) and peak discharges that are double gauge levels along the middle Yellow 29 
River, China (Liu et al., 2014). Further studies demonstrate pre-instrumental or early instrumental 30 
differences in flood frequency compared to the instrumental period, including reconstructions of high and 31 
low flood frequency in the Alps (Swierczynski et al., 2013; Amann et al., 2015) and Himalayas (Ballesteros 32 
Cánovas et al., 2017). The combination of extreme historical flood episodes determined from documentary 33 
evidence also increases the confidence in flood frequency and magnitude determination, compared to using 34 
geomorphological archives alone (Kjeldsen et al., 2014). In regions such as Europe and China that have rich 35 
historical flood documents (Wilhelm et al., 2019), there is strong evidence of high magnitude flood events 36 
over historical periods (Benito et al., 2015; Kjeldsen et al., 2014; Macdonald and Sangster, 2017). A key 37 
feature of palaeoflood records is variability in flood recurrence at centennial timescales (Wilhelm et al., 38 
2019), although constraining climate-flood relationships remains challenging. Pre-instrumental floods often 39 
occurred in considerably different contexts in terms of land use, irrigation and infrastructure and may not be 40 
directly insightful into modern river systems, which further prevents long term assessments of flood changes 41 
being made based on these sources.  42 
 43 
There is medium confidence that periods of both more and less tropical cyclone activity than observed 44 
occurred over the Common Era in many regions. Palaeotempest studies cover a limited number of locations, 45 
and provide information on specific locations that cannot be extrapolated basin-wide (see Muller et al., 46 
2017). In some locations, such as the Gulf of Mexico and New England coast, similarly intense storms to 47 
those observed recently have occurred multiple times over centennial timescales (Donnelly et al., 2001; 48 
Bregy et al., 2018). Further research focused on the frequency of tropical storm activity. Extreme storms 49 
occur considerably more frequently in particular periods of the Common Era compared to the instrumental 50 
period in northeast Queensland, Australia (Nott et al., 2009; Haig et al., 2014), and the Gulf Coast (e.g., 51 
Brandon et al., 2013), although the associated risk of surges or flooding may have increased (Lin et al., 52 
2014).  53 
 54 
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Given the data limitations, dating uncertainities, and spatial and temporal inhomogeneities outlined here, it is 1 
not typically possible to assess potential observed changes in the characteristics of most extremes from a 2 
systematic long-term (palaeoclimatic) perspective in many locations. In one study, extended evidence of the 3 
last millennium from observational data and palaeoclimate reconstructions using tree rings indicate a 4 
detectable signal in the worldwide risk of droughts in the beginning of the early 20th Century (Marvel et al., 5 
2019). However, it is also generally difficult to determine whether human or natural external forcing is 6 
having an influence on the likelihood of observed extreme events from these Common Era data.  7 
 8 
In summary, there is low confidence in overall changes in extremes derived from palaeo-archives. The 9 
most robust evidence is high confidence that high-duration and severe drought events occurred at 10 
many locations during the last 2000 years. There is also high confidence that high-magnitude flood 11 
events occurred at some locations during the last 2000 years, but overall changes in infrastructure and 12 
human water management make comparison with present-day records difficult. There are 13 
remaining data limitations, dating uncertainities, and spatial and temporal inhomogeneities that limit 14 
a systematic long-term perspective on extremes being gained from palaeo-archives. 15 
 16 
[END BOX 11.2 HERE] 17 
 18 
 19 
11.2.2 Statistical methods for change detection 20 
 21 
To detect a trend or likelihood/intensity change in extremes, the data set has to be of sufficient temporal and 22 
spatial coverage. Since the analysis of extremes often involves the examination of the tails of the statistical 23 
distributions, a parametric or non-parametric approach can be used to define extremes. The non-parametric 24 
approach is largely adopted in most of the literature to characterize moderate temperature and precipitation 25 
extremes with shorter return periods. The Expert Team on Climate Change Detection and Indices (ETCCDI -26 
https://www.wcrp-climate.org/etccdi) defined 27 indices to characterize different aspects of moderate 27 
temperature and precipitation extremes, which are described by Frich et al. (2002), Alexander et al. (2006) 28 
and Donat et al. (2013), and were also extensively used in previous IPCC reports. In this chapter, a subset of 29 
these indices is assessed in detail (Section 11.3 and Section 11.4). For events with longer return periods ( 30 
e.g., events that occur once in 20 years or even rarer), the parametric approach based on Extreme Value 31 
Theory (EVT) (Coles, 2001) is used and adopted in the literature ( e.g., Kharin and Zwiers 2000; Brown et 32 
al. 2008; Kharin et al. 2013). These events are also assessed throughout this chapter. These two approaches 33 
are complementary as some of the ETCCDI indices can be used to derive estimates of rarer events (e.g., 34 
Wehner, submitted). While significant progress has been made since the AR5 in developing and applying 35 
advanced statistical methods to extreme weather and climate, it is clear that a stronger involvement of the 36 
statistics community could further enhance confidence in estimating the magnitude, changes, and 37 
uncertainties in extreme events. 38 
 39 
 40 
11.2.3 Modelling and model evaluation for extremes 41 
 42 
Chapter 10 (Section 10.3.3) provides an overall performance assessment of different model types in 43 
simulating and projecting regional climate. The ability of the various modelling approaches to simulate 44 
weather and climate extremes varies greatly, depending on the complexity and spatiotemporal scales of the 45 
events. Some extremes are also affected by local or regional feedbacks, which can increase spread in 46 
resulting projections because of discrepancies in the representation of the underlying processes. Abnormally 47 
hot or cold seasons are often large enough in scale that the appropriate large-scale meteorological patterns 48 
can be simulated well (Angélil et al., 2016, 2017;Stegall and Kunkel, 2017) at standard CMIP5/6 horizontal 49 
resolutions (~100km). On the other hand, limitations of current state-of-the-art models have been reported in 50 
representing floods (11.5) or droughts (11.6), implying overall medium confidence in the representation of 51 
the relevant processes for these types of extremes. AOGCMs and ESMs are usually able to represent some, 52 
although not all, aspects of synoptic scale phenomena such as heatwaves, cold snaps, extratropical cyclones, 53 
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and atmospheric blocking (Mitchell et al., 2017; Rohrer et al., 2018). However, depending on the phenomena 1 
and the specific region, biases can be important, and are generally larger for the magnitude/intensity of 2 
events than for their frequency of occurrence (e.g., Zappa et al., 2013a). For short-duration events, AOGCMs 3 
and ESMs fail to reproduce some key features of the observed distribution. This is the case even for high 4 
temperature extremes in European regions densely covered by observations (Kew et al., 2018; Min, et al. 5 
2013; Sippel, et al., 2016) and in Asia. In particular, minimum temperature extremes are less well 6 
represented (Seo et al., 2018). In some cases, observations-based emerging constraints can provide a 7 
selection of climate projections based on model performance ( e.g., Stegehuis et al., 2013; Vogel et al., 2018; 8 
Donat et al., 2018). ESMs also display systematic biases in the representation of very persistent events, with 9 
an underestimation of multi-year drought events (Ault et al., 2014; Moon et al., 2018). 10 
 11 
Statistical and dynamical downscaling (see Chapter 10, Section 10.3.1) of time slices of AOGCM 12 
simulations allows a better representation of some phenomena and more realistic surface forcings (e.g., 13 
topography and land-sea contrasts) often leading to a more realistic simulation of extreme temperatures and 14 
precipitation (Massey et al., 2015; Di Luca et al., 2016a; Guillod et al., 2017; Mizuta et al., 2017). A more 15 
detailed assessment of added value in downscaling is given in Section 10.3.3. Higher-resolution model 16 
simulations systematically show a more realistic representation of phenomena leading to extreme events 17 
including extratropical cyclones (Schaaf and Feser, 2018), tropical cyclones (Xue et al., 2013), atmospheric 18 
rivers (Whan and Zwiers, 2016), and precipitation in complex orography areas (Poschlod et al., 2018; Prein 19 
et al. 2013). Continental and regional-scale atmospheric modelling at 4km or finer (Chapter 10, Section 20 
10.3.3.5.1) can resolve certain classes of short-term extreme events including convective storms (Ban et al., 21 
2014; Kendon et al., 2017; Prein et al., 2017c, 2017a). However, multi-decadal convection-permitting 22 
simulations are not currently computationally feasible at global scales, limiting their usefulness in evaluating 23 
changes in extremes. And the limited ensemble sizes available for such very-hich resolution simulations 24 
reduce confidence in assessing the structural uncertainty in projected changes. In addition, regional climate 25 
model ensembles used for dynamical downscaling also have limitations compared to global-scale ESMs. For 26 
instance, in the European CORDEX ensemble, aerosol concentrations were prescribed as constant in 27 
projections (Bartók et al., 2017) and the land surface models used in the regional climate models do not 28 
account for physiological CO2 effects (Section 11.6, Box 11.1) on photosynthesis (Schwingshackl et al., 29 
2019). Both features are likely to explain an identified discrepancy in the projections of hot extremes in the 30 
CORDEX ensemble compared to the CMIP5 ESMs, whereby the CORDEX ensemble displays much smaller 31 
increases (Schwingshackl et al., 2019). 32 
 33 
 34 
11.2.4 Storylines, assessing potential surprises, and low-probability high-impact extremes 35 
 36 
The SREX assigned low confidence to potential surprises and low-probability high-impact events (SREX  37 
Chapter 3). Such surprises are also discussed in Chapter 4 and can either result from tipping points of the 38 
climate system (Section 1.4.5), such as the shutdown of the Atlantic thermohaline circulation or the drydown 39 
of the Amazonian rainforest ( e.g., SR15  Chapter 3; Drijfhout et al. 2015), or from poor understanding of 40 
climate processes including climate feedbacks that may enhance or damp extremes either related to global or 41 
regional climate responses (Seneviratne et al., 2018;Sutton 2018). The low confidence does not by itself 42 
exclude the possibility of such surprises or affirm that abrupt and thus surprising changes in climate extremes 43 
will occur; it is instead an indication of the poor state of knowledge. Such outcomes, while unlikely, could be 44 
associated with very high impacts, and are thus highly relevant from a risk perspective, considering that risk 45 
is equal to the probability of an outcome times the impact of that outcome (see Chapter 1, Section 1.4.3, Box 46 
11.4; Sutton 2018, 2019). Alternatively high impacts can occur when different extremes occur at the same 47 
time or in short succession at the same location or in several regions with shared vulnerability ( e.g., food-48 
basket regions Gaupp et al., 2019). These “compound events” are assessed in Section 11.8 and Box 11.3 49 
provides a case-study example.  50 
 51 
The difficulties in determining the likelihood of occurrence and time frame of potential tipping points and 52 
surprises persist.  However, new literature has emerged on surprises and low-probability high-impact events. 53 
There are events that are sufficiently rare that they have not been observed in meteorological records, but 54 
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whose occurrence is nonetheless plausible within the current state of the climate system. The rare nature of 1 
such events and the limited availability of relevant data makes it difficult to estimate their occurrence 2 
probability and thus gives little evidence on whether to include such hypothetical events in planning 3 
decisions and risk assessments. The estimation of such potential surprises is often limited to events that have 4 
historical analogues, albeit the magnitude of the event may differ. Additionally, there is also a limitation of 5 
available resources to exhaust all plausible trajectories of the climate system. As a result, there will still be 6 
events that cannot be anticipated. These events (also called ‘grey or black swans’) can be surprises to many 7 
in that the events have not been experienced, although their occurrence could be inferred by statistical means 8 
or physical modelling approaches (Chen et al., 2017; van Oldenborgh et al., 2017; Harrington and Otto, 9 
2018a). Another approach focusing on the estimation of low-probability events and of events whose 10 
likelihood of occurrence is unknown consists in nudging physical climate models into an extreme 11 
atmospheric state and thus creating a non-probabilistic, physically self-consistent storyline of plausible 12 
extreme events and assessing their impacts and driving factors in past (Section 11.2.5) or future conditions 13 
(11.2.6) (Shepherd 2016; Zappa and Shepherd 2017; Shepherd et al. 2018; Sutton 2018;Wehrli et al., 14 
submitted;Hazeleger et al., 2015).  15 
 16 
In many parts of the world, observational data are limited to 50-60 years. This means that the chance to 17 
observe an extreme event that occurs once in several hundred or more years is small. Thus when a very 18 
extreme event occurs, it becomes a surprise to many (Bao et al., 2017), and very rare events are often 19 
associated with high impact (van Oldenborgh et al., 2017; Philip et al., 2018a; Tozer et al., 2020). Such 20 
events do occur somewhere on the Earth from time to time, however. Attributing and projecting very rare 21 
events in a particular location by assessing their likelihood of occurrence within the same larger region and 22 
climate thus provides another way to make quantitative assessments regarding events that can locally be 23 
considered grey-swans. Some examples of such grey-swan events include for instance:  24 

 Hurricane Harvey, that made landfall in Houston, TX in August 2017 (Section 11.7.1.4.) 25 
 The 2010-2011 extreme floods in Queensland, Australia (Christidis et al., 2013a) 26 
 The 2018 concurrent heatwaves across the northern Hemisphere (Box 11.3) 27 
 Tropical cyclone Idai in Mozambique 28 
 The California fires in 2018 and 2019 29 
 The heat extremes in France in June and July 2019 (Vautard et al., submitted) 30 
 The 2019-2020 Australia fires 31 

 32 
One factor of surprise is the fact that we now live in a non-stationary climate, and that the framework of 33 
reference for adaptation is continuously moving ( e.g., Schleussner et al., submitted). As an example, the 34 
concurrent heatwaves that occurred across the Northern Hemisphere in the summer of 2018 were considered 35 
very unusal and were indeed unprecedented given the total area that was concurrently affected (Toreti et al., 36 
2019; Vogel et al., 2019; Drouard et al., 2019; Kornhuber et al., 2019); however, the probability of this event 37 
under 1°C global warming was found to be about 16% (Vogel et al., 2019), which is not extremely low. 38 
Furthermore, when other aspects of the risk, vulnerability, and exposure are historically high or have recently 39 
increased (see WG2, Chapter 16, Section 16.4), relatively moderate extremes can have very high impacts 40 
(Otto et al., 2015b; Philip et al., 2018a). As warming continues, the climate moves further away from its 41 
historical state with which we are familiar, resulting in an increased likelihood of unprecedented events and 42 
surprises. This is particularly the case under high warming levels such as the climate of the late 21st century 43 
under the RCP8.5 scenario.  44 
 45 
 46 
11.2.5 Attribution of extremes 47 
 48 
Attribution science concerns the identification of causes for given features of the climate system (e.g., trends, 49 
single extreme events). A general background and methods of attribution science is provided in the Cross-50 
Chapter Box 1.4 and a different use of the term in regional contexts is assessed in Chapter 10 (Section 51 
10.4.2). Trend detection using optimal fingerprinting methods is a well-established field, and has been 52 
assessed in the IPCC SREX (SREX  Chapter 3) and IPCC AR5 (AR5  Chapter 10). The method is detailed in 53 
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Chapter 3 (Section 3.2.1). There are specific challenges when applying optimal fingerprinting to the 1 
detection and attribution of trends in extremes. In particular, the method generally requires the data to follow 2 
a Normal (Gaussian) distribution, which is often not the case for extremes. Recent studies showed that 3 
extremes can, however, be transferred to a Gaussian distribution, for example by averaging over space, so 4 
that optimal fingerprinting techniques can still be used (Zhang et al., 2013; Wen et al., 2013; and Wan et al., 5 
2019). More recent studies have used non-stationary extreme value distributions which are more appropriate 6 
statistical descriptions and thus allow for detailed detection and attribution of regional trends in temperature 7 
extremes (Wang et al., 2017d).  8 
 9 
Apart from the detection and attribution of trends in extremes, new approaches have been developed to 10 
answer the question whether and to what extent external drivers (in most studies, human-induced climate 11 
change) have altered the likelihood and intensity of an individual extreme event (National Academies of 12 
Sciences, Engineering, 2016). In the AR5 there was an emerging consensus that the role of external drivers 13 
of climate change in specific extreme weather events could be estimated and quantified in principle (AR5  14 
Chapter 10, 10.6.2), but related assessments were still confined to particular case studies, often using a single 15 
model, and typically focussing on high-impact events with a clear attributable signal.  16 
 17 
However, since AR5, the attribution of extreme weather events has emerged as a growing sub-field of 18 
climate research with an increasing body of literature (see series of supplements to the annual State of the 19 
Climate report (Peterson et al., 2012, 2013b; Herring et al., 2014, 2015, 2016, 2018), including the number 20 
of approaches to examining extreme events (described in Easterling et al., 2016; Otto, 2017; Stott et al., 21 
2016)). Two distinct but complementary approaches have been used to examine the role of external drivers 22 
of climate change in specific extreme weather events: the likelihood- or magnitude-based approaches. These 23 
so-called risk-based approaches produce statements such as ‘anthropogenic climate change made this event 24 
type twice as likely’ or ‘anthropogenic climate change made this event 15% more intense’. Jézéquel et al. 25 
(2018) and Otto et al. (2016) identified that the framing of, and conditions imposed on, the attribution 26 
question can affect the sensitivity of an attribution statement. There is no single methodology to answer the 27 
question of whether and to what extent anthropogenic climate change altered the likelihood and intensity of 28 
an extreme event to occur, but recently key methodologies have emerged (van Oldenborgh et al., submitted; 29 
Philip et al., submitted)as well as efforts to calibrate the language used in different studies (Lewis et al., 30 
2019b). There are a number of different analytical methods encompassed in the so-called risk-based 31 
approach based on observations and statistical analysis ( e.g., van Oldenborgh et al., 2012), optimal 32 
fingerprint methods (Sun et al., 2014), regional climate and weather forecast models (e.g. Schaller et al., 33 
2016), GCMs (Lewis and Karoly, 2013), and large ensembles of atmosphere-only GCMs ( e.g., Lott et al., 34 
2013). The magnitude-based approach similarly compares the magnitude and/or duration and spatial extent 35 
of an event of a fixed probability. While these two framing approaches were developed independently, many 36 
recent analyses assess both effects on the frequency and magnitude in a single framework.  37 
 38 
A key component in any event attribution analysis is the level of conditioning on the state of the climate 39 
system. In the least conditional approach, the combined effect of the overall warming and changes in the 40 
large-scale atmospheric circulation are considered and often utilize fully-coupled climate models (Sun et al., 41 
2014). More conditional approaches involve prescribing certain aspects of the climate system. These range 42 
from prescribing the pattern of the surface ocean change at the time of the event ( e.g., Hoerling et al., 2013, 43 
2014), often using AMIP-style global models, where the choice of sea surface temperature and ice patterns 44 
influences the attribution results (Sparrow et al., 2018), to prescribing the large-scale circulation of the 45 
atmosphere and using weather forecasting models or methods ( e.g., (Pall et al., 2017; Patricola and Wehner, 46 
2018; Wehner et al., 2018a). These highly conditional approaches have also been called “storylines” 47 
(Shepherd, 2016) and can be useful when applied to extreme events that are too rare to otherwise analyse or 48 
where the specific atmospheric conditions were central to the impact. However, the imposed conditions limit 49 
an overall assessment of the anthropogenic influence on an event as the fixed aspects of the analysis may 50 
also have been affected by climate change. For instance, the specified initial conditions in the highly 51 
conditional hindcast attribution approach often applied to tropical cyclones ( e.g., Patricola and Wehner, 52 
2018; Takayabu et al., 2015) permit only a conditional statement about the magnitude of the storm if similar 53 
large-scale meteorological patterns could have occurred in a world without climate change, thus precluding 54 
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any attribution statement about the change in frequency.  1 
 2 
The key sources of uncertainty in event attribution are the definition of the event and the uncertainty 3 
resulting from the framing and modelling approach. Observational uncertainties arise both in estimating the 4 
magnitude of an event as well as its rarity (Angélil et al., 2017). Results of attribution studies can also be 5 
very sensitive to the choice of climate variables (Sippel and Otto, 2014; Wehner et al., 2016). Attribution 6 
statements are also dependent on the spatial (Uhe et al. 2016; Cattiaux and Ribes 2018; Kirchmeier‐Young et 7 
al. 2019) and temporal (Harrington, 2017; Leach et al., 2020) extent of event definitions, with large-scale 8 
averages generally yielding higher attributable changes in magnitude or probability due to the smoothing out 9 
of the noise. In general, confidence in attribution statements for large-scale heat and lengthy extreme 10 
precipitation events have higher confidence than shorter and more localized events such as extreme storms.  11 
 12 
The reliability of the representation of the event in question in the climate models used in the study is of 13 
utmost importance (Angélil et al., 2016; Herger et al., 2018). Very extreme events stretch the capabilities of 14 
current-generation models, which is a factor in choosing a framing approach when GCMs are not able to 15 
simulate the underlying dynamics well, implying that the risk-based approach cannot be applied. The limited 16 
number of multi-model assessments of events and the lack of model evaluation have led to criticism of the 17 
emerging field of attribution science as a whole (Trenberth et al., 2015) and of individual studies (Angélil et 18 
al., 2017). It is overall well-established that multi-model and multi-approaches ( e.g., combining 19 
observational analyses and model experiments) are necessary to derive robust estimates regarding the 20 
attribution of single events, in particular for extremes for which there is a less strong effect of human-21 
induced climate change compared to natural climate variability, e.g., droughts: Hauser et al. 2017;Philip et 22 
al. 2018; Otto et al. 2018a, floods: Philip et al. 2019, and, more generally, in all cases where climate models 23 
are less robust in simulating the analysed events (van Oldenborgh et al., 2018; Kew et al., 2019b). While an 24 
overarching model evaluation framework for event attribution, applicable to all types of events, is currently 25 
not available, several ways of quantifying statistical uncertainty (Paciorek et al., 2018) and model evaluation 26 
(Lott and Stott, 2016; Philip et al., 2018, van Oldenborgh et al. in review, Philip et al., in review) have been 27 
employed. Paciorek et al. (2018) assessed a variety of advanced statistical methods to estimate standard 28 
error, making several recommendations for estimating risk ratio uncertainty (Section 11.2.4). The ability to 29 
confidently attribute the human influence on extreme events depends on these uncertainties and limits the 30 
confidence in the attribution of different types of events (National Academies of Sciences, Engineering, 31 
2016). It should be noted that under present climate change (+1°C) some events can occur that would have 32 
had a (near) zero probability of occurrence under pre-industrial climate conditions ( e.g., Imada et al., 2019; 33 
Vogel et al., 2019). This poses particular challenges for attribution science as the calculated probability ratios 34 
become infinite. 35 
 36 
Event attribution studies provide now important evidence for the effects of climate change on a specific type 37 
of event and region. Given that for the relatively new field of event attribution, no best-practice 38 
methodologies exist yet, it is particularly important to clarify the assessment process and make steps 39 
transparent  40 
 41 
 42 
[START FIGURE 11.4 HERE] 43 
 44 
Figure 11.4: Flowchart, adapted from (Otto et al., submitted, a), depicting the assessment process to identify the 45 

quality of evidence in attribution studies and illustrating the different decision steps when assing the 46 
quality of evidence.  47 
 48 

[END FIGURE 11.4 HERE] 49 
 50 
 51 
(Fig. 11.4). In its most simple definition, evidence is simply the number of independent studies available in 52 
the literature (Mastrandrea et al., 2010). However, the available evidence for a certain type of extreme in a 53 
specific region can be low, medium, or high depending on how the study is conducted. Together with an 54 
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assessment of the agreement of the studies, the quality of evidence will allow for a confidence level to be 1 
assigned to the assessment of how a type of event has changed or will change at a certain warming level. 2 
Figure 11.4 illustrates the different aspects that determine the quality of the evidence. High quality of 3 
evidence is given when independent models and methodologies are used, thorough model evaluation is 4 
conducted, and the observational data analysed is of high quality (Section 11.2.4). Low quality of evidence is 5 
assigned when either the observational data is poor, or the model(s) and methodologies employed do not 6 
allow for an assessment of the dependency of the result on the exact choices made.  7 
 8 
 9 
11.2.6 Projecting changes in extremes as a function of global warming levels 10 
 11 
The most important quantity used to characterize past and future climate change is the globally-averaged 12 
mean surface temperature (GMST) relative to its pre-industrial level. On the one hand, changes in GMST are 13 
linked quasi-linearly to global cumulative CO2 emissions (IPCC, 2013). On the other hand, changes in 14 
regional climate, including many types of extremes, scale quasi-linearly with changes in GMST, often 15 
independently of the underlying emissions scenarios (SR15  Chapter 3; Seneviratne et al., 2016; 16 
Wartenburger et al., 2017; Matthews et al., 2017; Tebaldi and Knutti 2018, Sun et al., 2018a, Kharin et al., 17 
2018, Beusch et al., 2019). Finally, the use of global temperature goals in the context of global policy 18 
documents (in particular the 2015 Paris Agreement, UNFCCC 2015), implies that information on changes in 19 
the climate system, and in particular extremes, as a function of GMST are of particular policy relevance. 20 
 21 
Projections of future changes in extremes in relation to global warming levels have an important advantage 22 
in separating uncertainty associated with the global climate response (Chapter 4) from that resulting from the 23 
regional climate response associated with the given global warming levels (Seneviratne and Hauser, 24 
submitted). If the interest is in the projection of regional changes at certain global warming levels, such as 25 
those defined by the Paris Agreement, projections based on time periods and emission scenarios would have 26 
unnecessarily larger uncertainty due to differences in model global transient climate responses. To take 27 
advantage of this feature and to provide easy comparison with the SR15 assessment, assessments of 28 
projected changes in this chapter are largely provided in relation to future global warming levels, with a 29 
focus on changes at +1.5°C, +2°C,  and +4°C of global warming above pre-industrial levels (Table 1.6). 30 
These correspond to a scenario compatible with the aim of the Paris Agreement (+1.5°C), a scenario slightly 31 
overshooting the aims of the Paris Agreement (+2°C), and a “worst-case” scenario with failed mitigation 32 
(+4°C). One limitation of this methodology is the path dependency found in a few cases (James et al., 2017), 33 
as some emission scenarios pathways ( e.g., RCP2.6) do not sample higher warming levels and thus are more 34 
subject to noise (Wartenburger et al., 2017). The second concern is that this method is not suitable for 35 
impacts that have a temporal dependency such as sea-level rise (James et al., 2017). These are, however, 36 
limited in the case of climate extremes. 37 
 38 
While regional changes in many types of extremes respond linearly with global mean temperature, generally 39 
irrespective of emission scenarios (see above), effects of local forcing can distort this relation. In particular, 40 
emission scenarios with the same radiative forcing can have different regional extreme precipitation 41 
responses under different aerosol forcing (Wang et al., 2017e). Another example is related to forcing from 42 
land use and land cover changes. Climate models are known to either overestimate or underestimate 43 
observed changes in annual maximum daily maximum temperature depending on the region and considered 44 
models (Donat et al., 2017; Vautard et al., submitted). Part of the discrepancies may be due to the lack of 45 
representation of some land forcings, in particular crop intensification and irrigation (Mueller et al., 2016b; 46 
Thiery et al., 2017; Findell et al., 2017; Thiery et al., in press). As these local forcings are not represented 47 
and as their future changes are difficult to project, these can be important caveats when using global 48 
warming scaling to project future changes for these regions.  49 
 50 
The SR1.5 (SR1.5  Chapter 3) assessed different climate responses at 1.5°C of global warming, including 51 
transient climate responses, short-term stabilization responses, and long-term equilibrium stabilization 52 
responses, and their implications for future projections of different extremes. Indeed the temporal dimension, 53 
i.e. when the given global warming level occurs, also matters for projections, in particular beyond the 21st 54 
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century and for some climate variables with large inertia ( e.g., sea level rise and associated extremes). 1 
Nonetheless, for assessments focussed on conditions within the next decades and for the main extremes 2 
considered in this chapter, derived projections are relatively insensitive to details of climate scenarios and 3 
can be well estimated based on transient simulations (SR1.5  Chapter 3). 4 
 5 
An important question is the global temperature at which a given change in a climate extreme can begin to 6 
emerge from climate noise. For this type of assessment, a “global temperature of emergence" (Kirchmeier‐7 
Young et al., 2019) can be determined, similarly to the well-established concept of “time of emergence” 8 
(Hawkins and Sutton, 2012). Figure 11.5 displays the global temperature of emergence for two types of 9 
climate extremes (Kirchmeier‐Young et al., 2019), the 20-year return value of the the annual maximum of 10 
daily temperature (TXx_20yr) and of the annual maximum of the 1-day precipitation accumulation 11 
(Rx1day_20yr), based on the CanESM2 model (Arora et al., 2011) large ensemble when aggregated over 1 12 
grid cell (2.8 degrees) or 25 grid cells (about 14 degrees). Results for another ESM are found to be 13 
qualitatively similar (Kirchmeier‐Young et al., 2019), and similar analyses for the whole CMIP5 and CMIP6 14 
ensembles for the IPCC AR6 large regions are also found to be consistent  (Fig. 11.6). Overall, it is 15 
interesting to see that signals for extremes emerge very early for TXx_20yr, already below 0.2°C in many 16 
regions (Fig 11.5a,b), and at around 0.5°C in most regions. This is consistent with conclusions from the 17 
SR15  Chapter 3 for less-rare temperature extremes (TXx on yearly time scale), which shows that a 18 
difference as small as 0.5°C of global warming,  e.g., between +1.5°C and +2°C of global warming, leads to 19 
detectable differences in temperature extremes in TXx in most IPCC-type large regions in CMIP5 20 
projections (e.g,Wartenburger et al., 2017; Seneviratne et al., 2018b). For precipitation extremes 21 
(Rx1day_20year), the signals tend to emerge with larger changes in global warming, and tend to be stronger 22 
when aggregated on a larger scale than when analysed on the grid-cell level. This is also largely consistent 23 
with analyses for less-extreme heavy precipitation events (Rx5day on yearly time scale) in the SR15  24 
Chapter 3. These results are consistent as well with the assessment of the SR15  Chapter 3 regarding the 25 
detectability of changes in extremes for a 0.5°C difference in global warming in the observational record 26 
(SR15  Chapter 3; (Schleussner et al., 2017)). It should be noted that detectable changes for a 0.5°C 27 
increment in global warming are also found for regional changes in other types of extremes ( e.g., 28 
droughts in the Mediterranean and Southern Africa), as highlighted in the SR15  Chapter 3, Wartenburger et 29 
al. (2017) and Seneviratne et al. (2018b). Figure 11.6 also provides complementary analyses on a regional-30 
scale of the global temperature of emergence for temperature and precipitation extremes in the full CMIP5 31 
and CMIP6 ensembles. The results are found to be consistent with those in Figure 11.5. 32 
 33 
To some extent, the analyses as functions of global warming replace the time axis with a global temperature 34 
axis. Nonetheless, information on the timing of given changes in extremes is obviously also relevant. 35 
Regading this information, i.e. the time frame at which given global warming levels are reached, the readers 36 
are referred to Chapter 4 (Section 4.6).  37 
 38 
 39 
[START FIGURE 11.5 HERE] 40 
 41 
Figure 11.5: Global warming level (°C) for the emergence of a robust increase in the probability of extremes 42 

attributable to anthropogenic forcing. The temperature displayed is from the 10‐year period when the 43 
lower bound (5th percentile) of the risk ratio for 20-year TXx (a,b) and Rx1day (c,d) events first exceeds 44 
1.0 and remains above 1.0 for all subsequent periods. The first column calculates extremes from each grid 45 
box, while the second column first calculates the mean of the surrounding 25 grid boxes (5 x 5) to 46 
represent larger-scale extremes. A perfect-model approach was used with the CanESM2 large ensemble 47 
and areas in grey indicate emergence did not occur before +4.7 °C. Adapted from Kirchmeier‐Young et 48 
al. (2019). 49 

 50 
[END FIGURE 11.5 HERE] 51 
 52 
 53 
 54 
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[START FIGURE 11.6 HERE] 1 
 2 
Figure 11.6: Regional-scale analysis of the global mean temperature of emergence for temperature extremes and 3 

precipitation extremes based on the CMIP5 and CMIP6 ensembles. For definition of regions, see Atlas 4 
[adapted from Seneviratne and Hauser (submitted)], for a detection compared to pre-industrial time rather 5 
than late 20th century conditions]. 6 

 7 
[END FIGURE 11.6 HERE] 8 
 9 
 10 
11.3 Temperature extremes 11 
 12 
This section provides an assessment of changes in temperature extremes at global and regional scales, with 13 
the main focus on observed trends, the climate models’ performance in simulating temperature extremes, as 14 
well as the detection and attribution and long-term projections of changes in temperature extremes. The 15 
metrics assessed for temperature extremes are mainly based on the definitions of the expert group on Climate 16 
Change Detection and Indices (ETCCDI) (Karl et al., 1999; Peterson et al., 2001), whereby the changes in 17 
temperature extremes are examined from three perspectives, i.e., frequency, magnitude, and duration. In this 18 
section, we refer to percentile-based indices ( e.g., TX90p, the frequency of warm days) as frequency 19 
indicators and absolute measures ( e.g., TXx, the maximum of daily maximum temperature) as magnitude 20 
indicators (see also Table 1 in Sillmann et al. 2013 for the definition). In addition, changes in the probability 21 
(e.g., once-in-20-year) of extreme temperatures are also assessed, in particular from model projections.  22 
 23 
 24 
11.3.1 Mechanisms and drivers 25 
 26 
The SREX  Chapter 3 and AR5 WGI  Chapter 10 concluded that greenhouse gas forcing is the dominant 27 
factor for the increases in intensity, frequency, and duration of warm extremes and the decrease in those of 28 
cold extremes, although many other factors also contribute to changes in temperature extremes. The general 29 
warming due to the increase of anthropogenic greenhouse gases in the atmosphere is the background of the 30 
changes in temperature extremes, and they are also modulated by variabilities at different time scales from 31 
shorter-term including intra-seasonal and inter-seasonal to inter-annual, decadal, and multi-decadal scales. 32 
The spatial scales of changes in extreme temperatures range from local and regional to larger scales such as 33 
continental or planetary. Changes might also be related to soil moisture-evapotranspiration-temperature and 34 
snow/ice-albedo-temperature feedbacks, land use change, or changes in aerosol concentrations (Sections 35 
11.1.5, 11.1.6). Though the anthropogenic effect on large-scale circulation changes is not robustly detected 36 
in many cases (Chapter 3), drivers of extreme temperature due to large-scale atmospheric circulation patterns 37 
are affected by ocean-atmosphere interactions, land-atmosphere feedbacks, and local and regional forcings. 38 
 39 
Changes in regional temperature extremes are observed over all land surfaces in the historical data record 40 
(Sections 11.3.2, 11.9), consistent with the observed global warming during that time period (Section 41 
2.3.1.1). The changes in the intensity of temperature extremes,  e.g., the temperature of the hottest days or 42 
coldest nights, are shown to increase more than GMST in several regions ( e.g., Seneviratne et al., 2016, 43 
Wartenburger et al., 2017; IPCC SR15  Chapter 3). There are several reasons for this (Sections 11.1.4, 44 
11.1.6, Box 11.1): 1) the mean differential warming between land and ocean with higher warming on land 45 
(Section 7.6.6.2); 2) snow/ice-albedo-temperature feedbacks in high latitudes and mountainous regions, 46 
which lead to a larger warming in regions/seasons with decreased snow/ice cover; and 3) soil moisture-47 
evapotranspiration-temperature feedbacks leading to an additional warming in dry seasons/locations on land 48 
(see also hereafter). In addition, the decrease of plant transpiration under enhanced CO2 concentrations is a 49 
direct CO2 forcing of land temperatures (warming due to lack of cooling), which contributes to higher 50 
warming on land (Lemordant et al., 2016). At the regional scale, changes in temperature extremes, in 51 
observations and CMIP5 models, tend to follow changes in local mean temperature, although most regions 52 
display changes in skewness towards the hotter part of the distribution with some exceptions (Tamarin-53 
Brodsky et al. 2019). Although the snow/ice-albedo feedback plays an important role in amplifying 54 
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temperature variability in high-latitudes (Diro et al. 2018), the effect on temperature extremes is still unclear 1 
(Pithan and Mauritsen 2014; Gobiet et al. 2014; Section 11.6).  2 
 3 
Warming at the global or regional scales may have a secondary impact on temperature-related extremes 4 
through large-scale circulation changes (Section 11.1.5). Extreme temperature events are associated with 5 
regional air mass excursions induced by circulation anomalies that are part of large-scale meteorological 6 
patterns (Grotjahn et al., 2016). This occurs directly through large-scale circulations that facilitates air mass 7 
excursions or alternatively the indirect modulation of variability, such as the interaction of storm track 8 
behaviour with blocking patterns. Quasi-stationary anticyclonic circulation anomalies or atmospheric 9 
blocking events are linked to temperature extremes in many regions in the mid-latitudes. Such large-scale 10 
circulation anomalies are also associated with temperature extremes in Australia (Parker et al., 2014; 11 
Perkins-Kirkpatrick et al., 2016), Europe (Brunner et al., 2017, 2018; Schaller et al., 2018), and Asia (Chen 12 
et al., 2016; Ratnam et al., 2016; Rohini et al., 2016). Mid-latitude planetary wave modulations affect short-13 
duration temperature extremes such as heatwaves (Perkins, 2015; Kornhuber et al., 2020). Therefore, if the 14 
circulation changes in response to warming, these changes would affect temperature extremes (Clark and 15 
Brown, 2013; Tamarin-Brodsky et al., 2019). As highlighted in Chapters 2-4, it is likely that there have been 16 
observational changes in the extratropical jets and the mid-latitude jet meandering (Section 2.3.1.3.3); there 17 
is high confidence in human influence on the observed poleward shift of the jet in austral summer, but there 18 
is low confidence in the human influence on storm tracks and blocking activity (Section 3.3.3.3); and there is 19 
high confidence in the projections of the storm tracks in the southern hemisphere, but substantial uncertainty 20 
remains with low confidence in the northern hemispheric storm tracks and blocking (Section 4.5.1.6). There 21 
is also low confidence in possible effects of the Arctic warming on mid-latitude temperature extremes 22 
(Cross-chapter box 10.1). Hence, there is low confidence at the moment regarding greenhouse gas effects on 23 
temperature extremes that would be mediated through large-scale circulation changes. 24 
 25 
Since the AR5, the effect of climate variability on extremes over various time scales from short-term intra-26 
seasonal to longer multi-decadal has been examined. The modes of variability such as the North Atlantic 27 
Oscillation (NAO), the Arctic oscillation (AO), the Southern Annular Mode (SAM), the El Niño-Southern 28 
Oscillation (ENSO), and the Pacific Decadal Oscillation (PDO) (Section 11.1.5) can affect temperature 29 
extremes. Yet, large portion of changes in extreme temperature remains after the removal of the effect of 30 
those modes of variability at the multi-decadal scale and can be attributed to human influence (Wan et al., 31 
2019)(Kamae et al., 2017b). An increase in temperature extremes is detected during the hiatus period, that is 32 
the “slower surface global warming” from the late 1990s to early 2010s (Box 3.1) (Kamae et al., 2014; 33 
Seneviratne et al., 2014; Imada et al., 2017). It is suggested that cold and warm extremes in mid-latitudes are 34 
associated with atmospheric circulation patterns including atmosphere-ocean coupled modes such as the 35 
Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) (Kamae et al., 2014; 36 
Johnson et al., 2018; Ruprich-Robert et al., 2018; Yu et al., 2019). 37 
 38 
Feedback mechanisms including land-atmosphere feedbacks strongly modulate regional- and local-scale 39 
changes in temperature extremes (high confidence; Section 11.1.6; Seneviratne et al., 2013;Vogel et al., 40 
2017; Donat et al., 2017; Sillmann et al. 2017; Hirsch et al. 2019; Lemordant et al., 2016). This effect is 41 
particularly notable in the mid-latitude regions where drying of soil moisture amplifies high temperatures 42 
(Whan et al., 2015; Douville et al., 2016). The soil moisture-temperature feedback was shown to be relevant 43 
for past and present-day heatwaves based on observations and model simulations (Miralles et al. 2014; 44 
Hauser et al. 2016; Meehl et al. 2016;Wehrli et al., 2019;Cowan et al., 2016). The uncertainty due to the land 45 
modelling is a cause of the discrepancy between observations and simulations (Clark et al., 2006; Mueller 46 
and Seneviratne, 2014; Meehl et al., 2016). The soil moisture-temperature feedback also has non-local 47 
effects (Vautard et al., 2007; Stéfanon et al., 2014). 48 
 49 
Regional external forcings, such as land-use changes or anthropogenic aerosols, play an important role in the 50 
changes of temperature extremes at the regional scale in several regions (high confidence), as highlighted in 51 
Section 11.1.6. Deforestation has been shown to have contributed about one third of the warming of hot 52 
extremes at local scales in some mid-latitude regions since the pre-industrial time (Lejeune et al., 2018). 53 
There is medium confidence in the changes in temperature extremes due to land cover change given the large 54 
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spread of Earth System Models in representing the underlying processes (Li et al. 2018b), which requires 1 
model weighting based on observational evidence. Some aspects of agricultural management, including no-2 
till farming, irrigation, and overall crop intensification are likely to cool hot temperature extremes, but these 3 
processes are generally not represented in the CMIP5 and on-going CMIP6 simulations (Section 11.1.6). On 4 
the other hand, it has been suggested that double cropping could have led to increased hot extremes in the 5 
inter-cropping season in part of China (Jeong et al., 2014). Rapid increases in summertime warming in 6 
western Europe and northeast Asia since the 1990s are also linked to a reduction in anthropogenic aerosol 7 
precursor emissions over Europe, which was a key factor in increases in temperature extremes in both 8 
regions (Dong et al., 2016, 2017), in addition to the effect of increased greenhouse gas forcing (Section 9 
10.4.2.2.6). This effect of aerosols on temperature-related extremes is also noted for declines in short-lived 10 
anthropogenic aerosol emissions over North America (Mascioli et al., 2016). These regional scale effects of 11 
global warming on temperature are extensively described in Chapter 10 (Europe: Section 10.4.3.2.6). 12 
 13 
On the local scale, the urban heat island (UHI) effect also contributes to warming in cities, in addition to 14 
greenhouse gas forcing (e.g., Phelan et al., 2015; Chapman et al., 2017; Sun et al., 2019) . The UHI refers to 15 
the higher temperatures experienced in urban areas compared to the surrounding countryside and results 16 
from a reduction of vegetation in urban areas, reduced evapotranspiration, a higher occurrence of dark land 17 
surfaces with low albedo, and increased anthropogenic heat production. Studies note that the specific 18 
intensity of the UHI in individual cities depends on geographic features, climatic conditions, and seasonal 19 
variations of a city's particular location (Mohajerani et al., 2017). In addition, city population levels impact 20 
the degree of urban-rural surface temperature anomalies (Manoli et al., 2019). The UHI exacerbates the heat 21 
stress experienced during heatwaves for urban residents (Zhao et al., 2018b). The interaction between the 22 
UHI and heatwaves is sensitive to multiple considerations. The relationship between the UHI and future 23 
heatwaves depends on the scenarios considered and the degree of local warming (Zhao et al., 2018b). In 24 
terms of the impacts of heat, vulnerability to heat stress from the interaction of the UHI with heatwaves in 25 
Europe cities depends on city climatology and urban green space, with cooler cities more affected by 26 
additional heat (Ward et al., 2016). These effects may be partially mitigated through the implementation of 27 
reflective surfaces or increased vegetation cover in cities, which could potentially reduce mean warming and 28 
hot extremes (Li et al., 2014a; Seneviratne et al., 2018a).  29 
 30 
Summary: There are multiple mechanisms underlying changes in extreme temperatures, with the 31 
greenhouse gases forcing being the dominant driver. At the regional scales, changes in circulation 32 
patterns and soil moisture-evapotranspiration-temperature or snow/ice-albedo-temperature feedbacks 33 
can play an important role in modulating long-term changes in temperature extremes. The short-term 34 
behaviour of extremes are also affected by decadal and multi-decadal natural variability and shorter-35 
lived anthropogenic forcers. Land use, including land cover change and agricultural management, can 36 
affect trends and short-term variations. There is low confidence in projected changes in storm tracks, 37 
jets, and blocking and thus their influence in extreme temperatures in mid-latitudes. 38 
 39 
 40 
11.3.2 Observed trends 41 
 42 
The SREX  Chapter 3 reported a very likely decrease in the number of cold days and nights and increase in 43 
the number of warm days and nights at the global scale. Confidence in trends was assessed as regionally 44 
variable (low to medium confidence) due to either a lack of observations or varying signals in sub-regions.  45 
 46 
Since the SREX and AR5, many regional-scale studies have examined trends in extremes of shorter-duration 47 
measures such as daily temperatures and ETCCDI indices in many locations, providing strengthened 48 
evidence for increased heat-related extremes. The magnitude of trends in temperature-related observed 49 
extremes varies depending on the region, spatial and temporal scales, and metric assessed. In particular, we 50 
note the importance of distinguishing trends in frequency and magnitude measures of temperature. 51 
Furthermore, as noted in 11.2, in most locations observational data is of a length that restricts the assessment 52 
of long-term trends in daily temperature extremes. The frequency of warm days (TX90p) has increased, with 53 
larger decreases in the frequency of cold nights (TN10p) (from 12% of nights in 1951 to about 6% of nights 54 
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in 2014) globally over the period of 1951-2014 (Alexander, 2016). Nearly all land regions showed 1 
statistically significant decreases in TN10p (Alexander, 2016), though trends in TX90p are variable with 2 
some decreases in the number of warm days in southern South America, mainly during austral summer 3 
(Rusticucci et al., 2017). A decrease in the number of five-day duration cold spells is also reported over 4 
nearly all land surface areas (Easterling et al., 2016). These global land-based changes in temperature 5 
extremes are also observed in a new global land surface daily air temperature dataset (Zhang et al., 2019c). 6 
Consistent warming trends in temperature extremes globally and in most land areas over the past century are 7 
also found in a range of largely independent observations-based data sets (Donat et al. 2016; Dunn et al. 8 
submitted). Analysis demonstrated seasonal variations in trends in temperature-related extremes. Over the 9 
recent 1997-2010 period, a further increase in warm-season temperature extremes was determined over most 10 
land areas, despite only slight warming of or constant global annual mean temperature (Seneviratne et al., 11 
2014). Over that period, warm extreme trends were strongest in the warm season, with some cooling of 12 
warm extremes in the boreal winter recorded over a large fraction of the northern hemisphere mid and high 13 
latitudes (see also Section 11.3.1). 14 
 15 
 16 
[INSERT FIGURE 11.7 HERE] 17 
 18 
Figure 11.7: Linear trends over 1950-2018 in the annual maximum daily maximum temperature (TXx, top), the annual 19 

number of days when daily maximum temperature exceeds its 90th percentile during a base period 1961-20 
1990 (TX90p, middle), and the annual minimum daily minimum temperature (TNn, bottom) based on the 21 
HadEX3 data set. Units are °C/decade for TXx and TNn and days/decade fir TX90p. HadEX3 is gridded 22 
product at 2.5° latitude x 3.75 ° longitude resolution. Linear trends are calculated only for grids with at 23 
least 66% annual values over the period. Areas without sufficient data are shown in grey. (adapted from 24 
Dunn et al. submitted) 25 

 26 
[END FIGURE 11.7 HERE] 27 
 28 
 29 
Various studies report trends in particular regions or countries, with many regions displaying trends in 30 
temperature-related extremes consistent with global averages. These are summarized in Tables 11.4-11.9 in 31 
Section 11.9. Figure 11.7 also shows the observed linear trend over 1951 to 2018 in TXx and TNn (the 32 
minimum of daily minimum temperature) from the HadEX3 dataset  (Dunn et al. submitted).  33 
 34 
In Africa (Table 11.4), recent observational studies show a considerable warming trend over most of the 35 
continent, accompanied by an increase in high temperature extremes. These include an increase in the 36 
frequency of warm days and nights and a decrease in the frequency of cold days and nights with high 37 
confidence  over almost all the continent, where data are available (Donat et al., 2013b, 2014b; Kruger and 38 
Sekele, 2013; Chaney et al., 2014; Filahi et al., 2016; Ringard et al., 2016; Barry et al., 2018; Gebrechorkos 39 
et al., 2019). The increase in TNn is more significant than in TXx (Figure 11.1). Additionally, there is 40 
medium confidence that heatwaves, regardless of definition, have been becoming longer-lasting, hotter, and 41 
more spatially extensive in the last decades (Ceccherini et al., 2016; Moron et al., 2016; Russo et al., 2016). 42 
 43 
In Asia (Table 11.5), there is high confidence in the increase of daily temperature extremes during the last 44 
decades over most of the Asian continent. Changes in temperature extremes in China are consistent with 45 
warming in the last decades (Zhou et al., 2016a; Yin et al., 2017; Qian et al., 2019), including decreases in 46 
cold extremes and increases in warm extremes, larger warming in the coldest day (night) than in the warmest 47 
day (night), and larger warming in the coldest (warmest) night than in the coldest (warmest) day (Zhou et al., 48 
2016a). Over the south Asian region (Bangladesh, northern India, Nepal, Pakistan and Sri Lanka), warm 49 
extremes have similarly become more common and cold extremes less common, although the magnitude of 50 
warming varies (AlSarmi and Washington, 2014; Sheikh et al., 2015; Zahid et al., 2017; Roy, 2019). The 51 
warming trends in daily temperature extreme indices have also been observed in central Asia (Hu et al., 52 
2016; Feng et al., 2018), the Himalaya and Tibetan Plateau (Sun et al., 2017), and southeast Asia (Supari et 53 
al., 2017). 54 
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In Australasia (Table 11.6), there is high confidence in increases in the number of warm days and warm 1 
nights and decreases in the number of cold days and cold nights since 1950 (Lewis and King, 2015; Jakob 2 
and Walland, 2016; Alexander and Arblaster, 2017). The increase in extreme minimum temperatures occurs 3 
in all seasons over most of Australia and typically exceeds the increase in extreme maximum temperature 4 
(Wang et al., 2013b; Jakob and Walland, 2016). Similar positive trends in extreme minimum and maximum 5 
temperatures have been observed in New Zealand, in particular in the autumn-winter seasons, although 6 
generally showing higher spatial variability (Caloiero, 2017). In the tropical western Pacific region, spatially 7 
coherent warming trends in maximum and minimum temperature extremes have been reported for the period 8 
of 1951–2011 (Whan et al., 2014). 9 
 10 
In Europe (Table 11.8), there is high confidence in the increase in maximum temperatures and the frequency 11 
of heatwaves. The increase in the magnitude and frequency of high maximum temperatures has been 12 
observed consistently across regions including in central (Twardosz and Kossowska-Cezak, 2013; Christidis 13 
et al., 2015) and southern Europe (Croitoru and Piticar, 2013; El Kenawy et al., 2013; Christidis et al., 2015; 14 
Nastos and Kapsomenakis, 2015; Fioravanti et al., 2016; Ruml et al., 2017). In northern Europe, a strong 15 
increase in extreme winter warming events has been observed (Matthes et al., 2015; Vikhamar-Schuler et al., 16 
2016).  17 
 18 
In Central and South America (Table 11.7), there is high confidence that observed hot extremes (TN90p, 19 
TX90p) have increased and that cold extremes (TN10p, TX10p) have decreased over recent years, with 20 
trends varying among different extremes types, datasets, and regions (Skansi et al., 2013; Donat et al., 2016a; 21 
Rusticucci et al., 2017). There is medium confidence that TNn extremes are increasing faster than TXx 22 
extremes, with the largest warming rates observed over Northeast Brazil (NEB) and North South America 23 
(NSA) for cold nights (Skansi et al., 2013). However, there is high confidence that warm extremes (TXx and 24 
TX90p) have decreased in the last decades over most of South Eastern South America (SES) during austral 25 
summer (Rusticucci et al., 2017; Skansi et al., 2013;Wu and Polvani, 2017). According to Wu and Polvani 26 
(2017), a decrease in TXx by about  0.3°C/decade is reported over southeastern South America in HadEX2 27 
over 1955–2005. 28 
 29 
In North America (Table 11.9), there is substantial spatial and seasonal variation in trends in temperature 30 
extremes. Minimum temperatures display substantial warming across the continent, while there are more 31 
contrasted trends in the annual maximum temperatures (Fig 11.7). In the US, some stations show a cooling in 32 
monthly maximum temperatures, although minimum temperatures show significant warming (Lee et al., 33 
2014; van Oldenborgh et al., 2019). The western United States, northern Midwest, and New England have 34 
experienced the largest increases in monthly temperatures. There is medium confidence that the lack of 35 
warming of the hottest extremes is due to crop intensification, based on an analysis of Mueller et al., (2016b) 36 
(see also Sections 11.1.6 and 11.3.1). In addition, it is possible that irrigation also played a role in masking 37 
the warming of hot extremes in this region (Thiery et al., 2017). The spatial variation in trends across the US 38 
varies depending on the dataset, time period, and temperature metric examined. For example, trends in daily 39 
maximum temperature values greater than the 95th percentile over 1979–2014 in NLDAS-2 show that warm 40 
anomalies have generally increased, except for parts of the Intermountain West and the western Northern 41 
Plains in winter where a decreasing trend has occurred (Yu et al., 2018). In Canada, changes in temperature-42 
related extremes, for instance, increases in summer days and the number of hot days, are consistent with 43 
warming during the period of 1948-2014 (Vincent et al., 2018). In Mexico, a clear warming trend in TNn 44 
was found, particularly in the northern arid region (Montero-Martínez et al., 2018). The number of warm 45 
days has increased and the cold days have decreased (García-Cueto et al., 2019).  46 
 47 
Trends in some measures of heatwaves are also observed at the global scale. Globally-averaged heatwave 48 
intensity, duration, and the number of heatwave days have increased from 1950-2011 (Perkins 2015). There 49 
are some regional differences in trends in characteristics of heatwaves with significant increases reported in 50 
Europe, Australia, Brazil (Bitencourt et al., 2016), and most of Argentina (Barros et al., 2015), although 51 
decreases in Excess Heat Factor (EHF), which is a metric for heatwave intensity, are observed in South 52 
America in data derived from HadGHCND (Cavanaugh and Shen, 2015).  53 
 54 
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Trends in some locations are also sensitive to the time period examined, or the heatwave metric analysed. 1 
The majority of heatwave characteristics examined in China between 1961-2014 show negative/positive 2 
trends in heatwave days before/after 1990, which reflects rapid warming since 1990 (You et al., 2017). The 3 
increases in frequency and duration of heatwaves since the 1990s are also observed in Mongolia (Erdenebat 4 
and Sato, 2016) and India (Ratnam et al., 2016; Rohini et al., 2016). In the UK, the lengths of short 5 
heatwaves have increased since the 1970s, while the lengths of long heatwaves (over 10 days) have 6 
decreased over some stations in the southeast of England (Sanderson et al., 2017b). In Africa, heatwaves, 7 
regardless of definition, have been becoming more frequent, longer-lasting, and hotter over more than three 8 
decades (Moron et al., 2016; Russo et al., 2016). 9 
 10 
Summary: It is virtually certain that there has been an increase in the number of warm days and 11 
nights and a decrease in the number of cold days and nights on global scale since 1950. Both the 12 
coldest extremes and hottest extremes display increasing temperatures. It is very likelythat these are 13 
also the cases at the regional scale in Europe, Australasia, Africa, and Asia, where data are available. 14 
Trends in temperature extremes are generally larger (by ca. 50% to 200%) than those in global mean 15 
temperature, due to larger warming on land and additional feedback effects (high confidence). It is 16 
very likely that there has been an increase in the intensity and duration of heatwaves and in the 17 
number of heatwave days at the global scale. These trends occur in Europe, Asia, and Australia. There 18 
is medium confidence in similar changes in temperature extremes in South America, the lower 19 
confidence is due to reduced data availability and fewer studies.   20 
 21 
 22 
11.3.3 Model evaluation 23 
 24 
The AR5 assessed that CMIP5 models generally capture observed spatial distributions of the mean state 25 
during 1986-2005, and trends in the second half of the 20th century for indices of extreme temperature (AR5 26 
WG1 9.5.4.1). The CMIP5 modelled trends were consistent with both reanalyses and station-based estimates, 27 
with ensemble simulations outperforming individual model realisations. CMIP5 multi-model ensembles also 28 
simulate present-day warm extremes (in terms of 20-year return values), reasonably well, with errors 29 
typically within a few degrees Celsius over most of the globe (AR5 WGI 9.5.4.1). 30 
 31 
Since the AR5, an increasing number of studies have been performed to evaluate the performance of CMIP5 32 
models in simulating temperature extremes at regional and local scales. Validation of models depends on the 33 
metric assessed ( e.g., change in mean or variability of extremes, spatial distribution, trends of past change), 34 
and no single metric is universally insightful about model performance.  35 
 36 
Overall, the characteristics of changes in global-scale temperature extremes are captured by CMIP5 models, 37 
but with varying performance on the regional scale, in some regions displaying a good representation of 38 
specific features but in others also showing some quantitative biases (though good overall qualitative 39 
representation), either in terms of spatial features or trends over certain time periods. For example, over east 40 
Asia, the CMIP5 GCMs are able to simulate the climatological spatial distribution of the observed extreme 41 
temperature indices over China during 1986-2005, with the ensemble performing better than individual 42 
models and the ensemble simulateing intensity indices better than percentile indices (Zhou et al., 2014; Dong 43 
et al., 2015). Over North America, CMIP5 model skill in capturing observed ETCCDI metrics over the 44 
period 1979-2005 was higher in spring, compared to winter, summer, and autumn (Sillmann et al., 2013a; 45 
Grotjahn et al., 2016).  46 
 47 
Initial analyses of CMIP6 simulations (Li et al. submitted; Kim et al. submitted, Wehner et al. submitted) 48 
indicate that the CMIP6 models generally capture the observed global and regional patterns of temperature 49 
extremes, with limited improvements over the CMIP5 models. But in-depth analyses of CMIP6 models’ 50 
performance in simulating long-term changes in temperature extremes are still to emerge, limiting the scope 51 
of the assessment of CMIP6 models’ performance here. The top panel of Figure 11.8 shows relative error 52 
estimates in simulating various indices of temperature extremes in the available CMIP6 models. Overall, no 53 
single model performs the best on all indices and the multi-model ensemble seems to out-perform any 54 
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individual model due to its reduction in systematic bias. The middle and bottom panels of Figure 11.8 show 1 
errors in the 1979-2014 average annual TXx and annual TNn simulated by available CMIP6 models in 2 
comparison with HadEX3 and ERA5 (Li et al. submitted; Kim et al. submitted, Wehner et al. submitted). 3 
While the magnitude of the model error depends on the reference data set, the model evaluation drawn from 4 
them are quite similar. In general, models reproduce the spatial patterns and magnitudes of both cold and hot 5 
temperature extremes quite well. There are also systematic biases. Hot extremes tend to be too cool in  6 
mountainous and high latitude regions but too warm in the eastern United States and south America. For cold 7 
extremes, CMIP6 models are too cool except in northeastern Eurasia and the southern mid-latitudes. Errors 8 
in seasonal mean temperatures are uncorrelated to errors in extreme temperatures and often of opposite sign 9 
(Wehner et al. submitted). The errors between CMIP5 and CMIP6 are very similar and the pattern 10 
correlations between them are high. In general, CMIP5 and CMIP6 historical simulations are 11 
interchangeable in their performance in simulating the observed climatology of extreme temperature (high 12 
confidence). 13 
 14 
 15 
[START FIGURE 11.8 HERE] 16 
 17 
Figure 11.8: Top panel: A portrait diagram of relative spatially averaged root mean square errors (RMSEs) in the 18 

1981–2000 climatologies of temperature indices simulated by the CMIP6 models with respect to the 19 
ERA‐5 reanalysis (upper triangle), and HadEX3 (right triangle). The RMSEs are spatially averaged over 20 
global land 531 grid points. The top row indicates the mean relative RMSE across all indices for a 21 
particular model.  The  grey‐shaded  columns  and  blue-red  columns  on  the  right  side  indicates  the 22 
standardized median RMSEmedian,std for CMIP6 and CMIP5 and their differences. Adapted from Kim 23 
et al., (submitted). Middle panel: Difference between CMIP6 multi-model average and ERA5 in their 24 
respective averages over 1979-2014. Bottom panel: Difference between CMIP6 multi-model average and 25 
HadEX3 in their respective averages over 1979-2014. The left in both middle and bottom panels is for 26 
TXx and the right for TNn. Unit is °C. Adapted from Kim et al., (submitted), Li et al., (submitted) and 27 
Wehner et al., (submitted).  28 

 29 
[END FIGURE 11.8 HERE] 30 
 31 
 32 
In terms of historical trends, the models’ ability in capturing observed trends in temperature-related extremes 33 
depends on the metric evaluated, the time period considered, and how indices are calculated within models. 34 
Observed trends in global temperature extremes lie within the spread of simulated trends in CMIP5, with 35 
better consistency for the longer period considered (Sillmann et al., 2014). However, a systematic 36 
overestimation of the warming of hot extremes compared to local mean warming is identified for many land 37 
regions, in particular over Europe, North America, South America, and parts of western and southern Africa, 38 
for a comparison between the late 20th/early 21st century vs the mid-20th century (Ringard et al., 2016; Donat 39 
et al., 2017). This systematic bias is also consistent with an identification of overestimated mean June-July-40 
August temperatures in many mid-latitude land regions in the CMIP5 GCMs, which also present a 41 
concomitant overestimation of dryness conditions (underestimated precipitation and evapotranspiration) in 42 
these regions (Mueller and Seneviratne, 2014). For the period from the late-1990s to the early-2000s, there is 43 
a discrepancy between observed and ensemble-simulated trends in global mean surface temperature due to 44 
the so-called hiatus (Karl et al., 2015; Fyfe et al., 2016; Santer et al., 2017), but this observation-model 45 
discrepancy does not generally extend to temperature extremes (Sillmann et al., 2014). The observed 46 
warming trends in TXx during this time period are well represented in CMIP5 simulations (Sillmann et al., 47 
2014). Trends in TNn are less well represented in CMIP5 simulations, but the simulated trends are 48 
nevertheless consistent with observed trends globally and in many regions (Sillmann et al., 2014). Although 49 
the multi-model mean trend averaged over regions may be relatively small, the range of model differences in 50 
trends is large. The largest discrepancy between observed and simulated trends in cold extremes is found in 51 
the northern mid-latitudes, where observed cold extremes indicate a coherent zonal band of cooling trends 52 
over the period from the late-1990s and early-2000s (Sillmann et al., 2014). This discrepancy may suggest 53 
the influence of interannual variability and spatial and temporal scale (Marotzke and Forster, 2015; 54 
Hedemann et al., 2017). Some external forcing components not fully represented in current climate models 55 
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may also have contributed to the observed local cooling trends in cold extremes (Meehl, Gerald A et al., 1 
2013; England et al., 2014; Fyfe and Gillett, 2014; Sillmann et al., 2014). 2 
 3 
Regionally, over east Asia, the CMIP5 ensemble performs well in reproducing the observational trend in 4 
temperature extremes averaged over China (Dong et al., 2015). Over Australia, the multi-model mean 5 
performs better than individual models in capturing observed trends in ETCCDI temperature measures in 6 
gridded observational datasets, with some individual models showing stronger or weaker than observed 7 
trends in temperature indices (Alexander and Arblaster, 2017). Over Europe, North America, South America, 8 
and parts of southern Africa, as mentioned, CMIP5 models simulate accelerated warming rates in TXx 9 
relative to annual average warming rates, which appears inconsistent with observations except over Europe, 10 
which may be due to relevant terrestrial processes (Meehl et al., 2016; Donat et al., 2017).  In west and 11 
central Africa, Diedhiou et al., (2018) compared the scaling relationship of changes of ETCCDI temperature 12 
indices as a function of global temperature values for the period 1920–2010 (compared to the reference 13 
period 1961–1990) from CMIP5 models (historical) and observation-based data (GSWP3). Both models and 14 
observations show an increase in temperature, but the warming is around 1°C in CMIP5 models and 2°C in 15 
GSWP3, confirming that the models likely underestimate the temperature rise (Sherwood et al., 2014). 16 
 17 
AMIP or SST-forced simulations are also used to assess the characteristics of temperature-related extremes ( 18 
e.g., trends, heatwaves etc.). The observed trends in temperature extremes are generally well-captured by the 19 
SST-forced simulations although some regional features such as the lack of warming in daytime warm 20 
temperature extremes over South America are not reproduced in the model simulations (Dittus et al., 2018). 21 
The dynamics of heatwave events over central-eastern China are well reproduced by the AMIP models. 22 
However, the AMIP models assessed tend to produce too-persistent heatwave events (lasting more than 20 23 
days). The bias in the duration of the events does not impact the reliability of the models’ positive trends, 24 
which is mainly controlled by the changes in mean temperatures (Freychet et al., 2018).  25 
 26 
Several regional climate models (RCMs) have also been evaluated in terms of their performances in 27 
simulating the climatology of extremes in various regions of the Coordinated Regional Downscaling 28 
Experiment (CORDEX) (Giorgi et al., 2009), especially in East Asia (Ji and Kang, 2015; Yu et al., 2015; 29 
Park et al., 2016; Bucchignani et al., 2017; Gao et al., 2017a; Shi et al., 2017; Hui et al., 2018; Niu et al., 30 
2018; Wang et al., 2018a), Europe (Vautard et al., 2013; Cardoso et al., 2019), and Africa (Diallo et al., 31 
2015). Compared to global climate models, RCM simulations show an added value in simulating 32 
temperature-related extremes, though this depends on topographical complexity and the parameters 33 
employed. The improvement with resolution is noted in east Asia (Park et al., 2016; Zhou et al., 2016b; Shi 34 
et al., 2017; Hui et al., 2018). However, in the European CORDEX ensemble, aerosol concentrations were 35 
prescribed as constant in projections (Bartók et al., 2017) and the land surface models used in the regional 36 
climate models do not account for physiological CO2 effects on photosynthesis (Schwingshackl et al., 2019), 37 
which could lead to biases in the representation of temperature extremes in these projections (See Section 38 
11.2.3). In addition, there are key cold deficiencies in temperature extremes over areas with complex 39 
topography (Niu et al., 2018). Over North America, 12 RCMs were evaluated over the ARCTIC-CORDEX 40 
region (Diaconescu et al., 2018). Models were able to simulate well climate indices related to mean air 41 
temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region 42 
where models displayed the largest biases related to topographic effects. Two RCMs were evaluated against 43 
observed extremes indices over North America over the period 1989–2009, with a cool bias in minimum 44 
temperature extremes in both RCMs shown (Whan and Zwiers, 2016). The most significant biases are found 45 
in TXx and TNn, with fewer differences in the simulation of the minimum of daily maximum tempertaure 46 
(TXn) and the maximum of daily minimum temperature (TNx) in central and western North America. Over 47 
Central and South America, maximum temperatures from the Eta RCM are generally underestimated, 48 
although hot days, warm nights, and heatwaves are increasing in the period 1961-1990, in agreement with 49 
observations (Chou et al., 2014b). 50 
 51 
Summary: There is high confidence that climate models can reproduce the climatology and the overall 52 
warming in temperature extremes observed globally and, in most regions, although the magnitude of 53 
the trends may differ. The ability of models to capture observed trends in temperature-related 54 
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extremes depends on the metric evaluated, the way indices calculated, and the time periods and spatial 1 
scales considered. 2 
 3 
 4 
11.3.4 Detection and attribution, event attribution 5 
 6 
The SREX  Chapter 3 assessed that it is likely that anthropogenic influences have led to warming of extreme 7 
daily minimum and maximum temperatures at the global scale. The AR5 concluded that human influence 8 
has very likely contributed to the observed changes in the frequency and intensity of daily temperature 9 
extremes on the global scale in the second half of the 20th century. These assessments are largely based on 10 
the analysis of changes in extreme daily temperatures, as studies on changes in temperature extremes of 11 
longer time scales such as extreme monthly or seasonal temperatures were limited at the time of assessments. 12 
With regard to individual, or regionally- or locally-specific events, the AR5 concluded that it is likely that 13 
human influence has substantially increased the probability of occurrence of heatwaves in some locations, in 14 
addition to natural weather variability contributing to the overall magnitude of heatwave events. 15 
 16 
There is more recent literature on human influence on long-term changes in frequency or intensity of global-17 
scale, continental-scale, and sometimes regional-scale extreme temperatures of shorter duration. Focusing on 18 
TXx, TNx, TXn, and TNn, Kim et al. (2016) compared changes in the HadEX2 datasets with those simulated 19 
by the CMIP5 models for 1951-2010 using the optimal fingerprinting method. Results confirm previous 20 
HadEX/CMIP3-based results, where an anthropogenic signal is detected through optimal fingerprinting at 21 
global and continental scales. Wang et al. (2017) fitted the observed daily extreme temperatures to a 22 
generalized extreme value distribution with model-simulated responses as predictors, and their results are 23 
similar to those of Kim et al. (2016). Seong et al. (submitted) compared changes in these extreme daily 24 
tempertaures in the HadEX3 observations and in simulations by the CMIP6 models for 1951-2015; they not 25 
only confirmed earlier results, but also found the new results to be more robust due to the extended period 26 
that improves the signal-to-noise ratio. Fischer and Knutti (2015) quantified that as much as 75% of the 27 
moderate daily hot extremes (above 99.9th percentile) over land are about five times higher than in pre-28 
industrial conditions due to anthropogenic warming. Wan et al. (2019) and Wen et al. (2013) attributed 29 
observed increases in extreme hot temperatures to anthropogenic influence in Canada and China, 30 
respectively. More generally, anthropogenic signals are robustly detected in the changes in the mean of 31 
extreme daily temperatures at global and continental scales. The detected anthropogenic signals are clearly 32 
separable from the response to natural forcing, and results are generally insensitive to the use of different 33 
model samples as well as different data availability.   34 
 35 
Long-term changes in various other temperature-related indices, including the percentage of days when daily 36 
temperature is above its 90th percentile or below its 10th percentile over the globe and in various regions have 37 
also been attributed to anthropogenic influence. Hu et al. (submitted) compared the changes in the number of 38 
warm nights, warm days, cold nights, and cold days in the HadEX3 observations and CMIP6 simulations for 39 
1951-2015 over the globe and five continents including Asia, Europe, North and South America, and 40 
Austraila. They attributed observed changes in these indices over the globe and the five continents to the 41 
influence of anthropogenic forcing, dominated by greenhouse gases. Regional studies, including for Asia 42 
(Dong et al., 2018), Australia (Alexander and Arblaster, 2017), and Europe (Christidis and Stott, 2016) 43 
found similar results. Studies also found attributable trends in multi-day heat indices such as the Warm Spell 44 
Duration Index (WSDI). For example, Christidis and Stott (2016) found a detectable increase in WSDI in 45 
Europe over the previous two decades. At the continental scale, anthropogenic increases in WSDI are 46 
detectable (Lu et al., 2018). Using an index that combines multiple ETCCDI indices (Combined Extreme 47 
Index, CEI), a clear anthropogenic signal is found in the trends in the maximum and minimum temperature 48 
index components for North America, Asia, Australia, and Europe (Dittus et al., 2016). While various 49 
studies have described increasing trends in several heatwave metrics (HWD, HWA, EHF, etc.) in different 50 
global regions (e.g., Bandyopadhyay et al., 2016; Cowan et al., 2014; Sanderson et al., 2017), few recent 51 
studies have explicitly attributed these changes to causes and rather stated that observed trends are consistent 52 
with anthropogenic warming.  53 
 54 
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There are also studies examining the rate at which new high-temperature records are observed. Studies of 1 
monthly, seasonal, and annual records in various regions (Kendon, 2014; Lewis and King, 2015; Bador et al., 2 
2016; Meehl et al., 2016) and globally (King, 2017) show an increase in hot record breaking. For global-3 
scale records, an anthropogenic influence on the rate of record-breaking was detected in CMIP5 simulations 4 
as far back as the 1930s (King, 2017). Changes in anthropogenically-attributable record-breaking rates are 5 
noted to be largest over the Northern Hemisphere land surfaces (Shiogama et al., 2016). 6 
 7 
Long-term changes in cold extremes on various timescales have also been examined. King (2017) found a 8 
decreased likelihood of the occurrence of cold extremes due to anthropogenic forcings. Focusing on the rate 9 
of cold record-breaking, this study showed that it was harder to attribute cold extremes to a particular cause 10 
due to the rarity of the occurrence of new records. Christidis and Stott (2016) found that a human influence 11 
could be detected in cold nights on a global scale, but changes in the cold extremes were not detected in 12 
Europe, providing different results to SREX where likely decreases in cold nights were reported (Table 3-2). 13 
Furthermore, no attributable signal was detected for the cold indices FD and ID (frost and icing days). This 14 
study was based on simulations by two climate models, however Yin and Sun (2018) found clear evidence of 15 
an anthropogenic signal when multiple model simulations were used. In some key wheat-producing regions 16 
of southern Australia, increases in frost days or frost season length have been reported (Crimp et al., 2016; 17 
Dittus, Karoly, Lewis, & Alexander, 2014). The increase in frost days or season-length in southern (east and 18 
west) Australia is linked to decreases in rainfall, cloud-cover, and subtropical ridge strength, despite an 19 
overall increase in regional mean temperatures (Dittus et al., 2014; Pepler et al., 2018).  20 
 21 
There are a large number of studies focusing on extreme temperature events at monthly and seasonal scales, 22 
using various extreme event attribution methods. Using a combination of observations and 30 realisations of 23 
a single model, Diffenbaugh et al. (2017) examined the anthropogenic contribution to observed changes in 24 
the hottest day and hottest month. Anthropogenic warming was found to have increased the severity and 25 
probability of the hottest month over >80% of the available observational area. Similarly, Christidis and Stott 26 
(2014) examined how anthropogenic forcings changed the odds of warm years, summers, or winters in a 27 
number of regions using an attribution framework where two different types of ensembles of simulations 28 
were generated with an atmospheric model to represent the actual climate and what the climate would have 29 
been in the absence of human influences. In all cases, warm events become more probable because of 30 
anthropogenic forcings. Sun et al. (2014) found that changes in summer mean temperature over eastern 31 
China can be attributed to human influence and this influence has caused a more than 60-fold increase in the 32 
likelihood of the extreme warm 2013 summer since the 1950s. Extensions of this study to other regions and 33 
variables show similar results. Mueller et al. (2016a) found anthropogenic influence in most of the land 34 
regions they analysed and inferred large increases in the probability of the historically hottest summers over 35 
many regions. Li et al. (2017) focused on the change in wet-bulb globe temperature (WBGT) that measures 36 
environmental conditions related to heat stress in northern hemispheric land areas. They estimated that the 37 
probability of summer mean WGBT exceeding the highest recorded value in the observational history has 38 
increased by a factor of at least 70 at regional scales due to anthropogenic influence. In most regions of the 39 
Northern Hemisphere, changes in the likelihood of extreme summer average WBGT were found to be about 40 
an order of magnitude larger than changes in the likelihood of extreme hot summers estimated by surface air 41 
temperature. In addition to these generalised, global-scale approaches, extreme event studies have found an 42 
attributable increase in the likelihood of hot annual and seasonal temperatures in many locations, including 43 
Australia (Knutson et al., 2014a; Lewis and Karoly, 2014), China (Li et al. submitted;Sparrow et al. 2018), 44 
and Europe (King et al., 2015).  45 
 46 
There have also been many extreme event attribution studies that have examined short duration temperature 47 
extremes (daily temperatures, temperature indices, heatwave metrics). Examples of these events from 48 
different regions are summarised in various annual Explaining Extreme Events supplements of the Bulletin 49 
of the American Meteorological Society (Peterson et al. 2012, 2013, Herring et al. 2014, 2015, 2016, 2018), 50 
including a number of approaches to examine extreme events (described in Easterling et al., 2016; Otto, 51 
2017; Stott et al., 2016). Several studies of recent events from 2016 onwards have determined an infinite risk 52 
ratio (FAR of 1), indicating that the occurrence probability for such events is close to zero in model 53 
simulations without anthropogenic influences (see Herring et al., 2018).  However, caution should be 54 
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exercised in this interpretation if rigorous uncertainty quantification techniques have not been applied 1 
(Paciorek et al. 2018). In addition, the interpretation of infinite risk ratios should also consider that risk ratios 2 
can depend on the details of the event definition (including thresholds and spatial and temporal scales; see 3 
discussion below). 4 
 5 
Further studies have focused on the attributable signal in observed cold extreme events, producing complex 6 
results. Individual attribution studies on the extremely cold winter of 2011 in Europe find a decreasing 7 
likelihood (BAMS EEE 2012). On small spatial scales, the role of natural variability and dynamical 8 
responses to anthropogenic warming have been identified as important and have been examined in event 9 
attribution studies. Several studies of extreme cold conditions occurring in the eastern US during 2014 and 10 
2015 demonstrate that winter climate variability is decreasing due to anthropogenic influences and observed 11 
extreme cold spells are less probable due to climate change (Trenary et al., 2015, 2016; Wolter et al., 2015; 12 
Bellprat et al., 2016). These studies determined that extreme cold was caused largely by natural internal 13 
variability. A similar attributable reduction in the likelihood of a cold extreme was found in the cold spring 14 
of 2013 in the United Kingdom (Christidis et al., 2014) and of 2016 in eastern China (Qian et al., 2018; Sun 15 
et al., 2018b). Grose et al (2018) focused on the severe western Australian frost of 2016 and found an 16 
increase in risk due to anthropogenically-driven changes in circulation patterns that drive cold outbreaks and 17 
frost risk. However, larger thermodynamic changes may have still made severe frost events less probable. 18 
 19 
The interpretation of differences in results from temperature event attribution analyses needs to be placed in 20 
the proper context, as different framing may lead to different results. The temperature event definition itself 21 
plays a crucial role in the attributable signal (Fischer and Knutti 2015; Kirchmeier‐Young et al. 2019). 22 
Large-scale, longer-duration events tend to have notably larger attributable risk ratios (Angélil et al. 2014, 23 
2018; Uhe et al. 2016; Harrington 2017; Kirchmeier‐Young et al. 2019), as the anthropogenic signal is large 24 
in comparison to natural variability. While uncertainty in the best estimates of the risk ratios may be 25 
significant, the lower bounds can be quite insensitive to uncertainties in observations or model descriptions, 26 
thus increasing confidence in conservative attribution statements (Jeon et al, 2016). The relative strength of 27 
anthropogenic influences on temperature extremes is regionally variable, in part due to differences in 28 
changes in atmospheric circulation, land surface feedbacks, and other external drivers like aerosols. For 29 
example, in the Mediterranean, risk ratios of the order of a 100 have been found (Kew et al., accepted, 30 
BAMS 2018), whereas in the US changes are much less pronounced. This is probably an artefact of the land-31 
surface feedback enhanced extreme 1930s temperatures that reduce the rarity of recent extremes, in addition 32 
to the definition of the events and framing of attribution analyses ( e.g., spatial and temporal scales 33 
considered). In India, heatwave likelihoods are not changing (van Oldenborgh et al., 2018) or even 34 
decreasing in some parts while increasing in others (Wehner et al., 2016). In this region, short-lived aerosols 35 
or an increase in irrigation may be masking the warming effect of greenhouse gases (Wehner et al., 2018c). 36 
More generally, irrigation and crop intensification have been shown to lead to a cooling in some regions, in 37 
particular in North America, Europe, and India (Mueller et al., 2016b; Thiery et al., 2017; see also Section 38 
11.1.6, 11.3.2) (high confidence), although these effects are not represented in the CMIP5 or CMIP6 GCMs. 39 
There is also evidence that several CMIP5 models represent the effects of deforestation on temperature 40 
extremes with the wrong sign (producing cooling instead of warming with deforestation, Lejeune et al., 41 
2017), although there is medium confidence that deforestation has contributed about 1/3 of the total warming 42 
of hot extremes in some mid-latitude regions since pre-industrial times (Lejeune et al., 2018). Despite all of 43 
these differences, and larger uncertainties at the regional scale, nearly all studies demonstrated that human 44 
influence has contributed to an increase in the frequency or magnitude of hot extremes and to a decrease in 45 
the frequency or severity of cold extremes.  46 
 47 
Summary: Since the AR5, there has been new evidence of human influences on various temperature 48 
extremes. Long-term changes in various aspects of long- and short-duration extreme temperatures, 49 
including intensity, frequency, duration, and other relevant characteristics have been detected in 50 
observations and attributed to human influence at the global and continental scales. Event attribution 51 
studies on temperature extremes point to human influence on recent extreme heat-related events, 52 
regardless of framing, methods, definitions of events, and regions. It is extremely likely that human 53 
influence is the main contributor to the observed increase in the likelihood and severity of hot 54 
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extremes and the observed decrease in the likelihood and severity of cold extremes on global scales. It 1 
is very likely that this applies on continental scale. Some specific recent hot extreme events would have 2 
been extremely unlikely to occur without human influence on the climate system. Urbanization has 3 
exacerbated the effects of global warming in cities (high confidence). Changes in aerosol 4 
concentrations have affected trends in hot extremes in some regions, with the presence of aerosols 5 
leading to attenuated warming, in particular from 1950-1980. Irrigation and crop expansion have 6 
attenuated increases in summer hot extremes in some regions, such as the central North America 7 
(medium confidence). 8 
 9 
 10 
11.3.5 Projections 11 
 12 
The AR5 concluded that it is virtually certain that there will be more frequent hot extremes and fewer cold 13 
extremes at the global scale and over most land areas in a future warmer climate and it is very likely that 14 
heatwaves will occur with a higher frequency and longer duration. More recently, the SR15  Chapter 3 15 
provided a more specific assessment regarding projected changes in hot extremes at 1.5°C vs 2°C global 16 
warming. It came to consistent conclusions, assessing that it is very likely that a global warming of 2°C 17 
versus 1.5°C would lead to more frequent and more intense hot extremes on land, as well as to longer warm 18 
spells, affecting many densely-inhabited regions. SR15  Chapter 3 also assessed that it is very likely that the 19 
strongest increases in the frequency of hot extremes are projected for the rarest events, while cold extremes 20 
will become less intense and less frequent and cold spells will be shorter.  21 
 22 
The available studies since the AR5 and SR15 using either Global Climate Model (GCM) or Regional 23 
Climate Model (RCM) simulations provide more specific information on future projections of extreme 24 
temperatures and generally confirm the conclusions of the AR5 and SR15. Compared to the AR5, important 25 
literature updates include projections of temperature-related extremes relative to mean changes in global 26 
warming, analyses of CMIP6 projections, analyses of existing projections based on global mean stabilization 27 
goals, and the examination of new metrics. For the CMIP5 projections, the forced response pattern of hot 28 
extremes in RCP8.5 simulations over the period 2006-2100 shows the greatest intensification over mid-29 
latitude land regions and an overall warming of the hottest days that substantially exceeds the global mean 30 
temperature change (Fischer et al., 2014; Seneviratne et al., 2016). Changes in spatiotemporal heatwaves 31 
strongly depend  on the thresholds used to define them (i.e., based on historical or future climatologies, the 32 
latter being of possible relevance in case of adaptation); based on historical thresholds there are projected 33 
strong increases in heatwave area, duration, and magnitude (Vogel et al. submitted). 34 
 35 
Over Africa (Table 11.4), future projections show an increase in extreme temperatures. Increases are also 36 
projected, with high confidence, in the frequency of hot extremes such as warm days, warm nights, and 37 
heatwaves over the continent, with the exception of Central Africa (Giorgi et al., 2014; Engelbrecht et al., 38 
2015; Lelieveld et al., 2016; Russo et al., 2016; Dosio, 2017; Mba et al., 2018; Nangombe et al., 2018; 39 
Kruger et al., 2019). 40 
 41 
In Asia (Table 11.5), increases in hot events and decreases in cold events are projected with high confidence 42 
over most of the continent (Zhou et al., 2014; Zhang et al., 2015c; Singh and Goyal, 2016; Xu et al., 2017; 43 
Gao et al., 2018; Han et al., 2018). Particularly, in southern Asia, more intense heatwaves of longer durations 44 
and occurring at a higher frequency are projected with medium confidence over India (Murari et al., 2015) 45 
and Pakistan (Nasim et al., 2018). 46 
 47 
Over Australia (Table 11.6), there is high confidence in future increases in hot temperature extremes and 48 
decreases in cold temperature extremes (Alexander and Arblaster, 2017; Lewis et al., 2017; Herold et al., 49 
2018). Over most of Australia, increases in extremes are projected to be predominantly driven by increases 50 
in long-term mean temperatures (Di Luca et al. submitted). Future projections indicate a decrease in the 51 
number of frost days regardless of the region and season considered. 52 
 53 
In Europe (Table 11.8), there is high confidenceof a projected increase in summer heatwaves, similar to 2003 54 
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and 2010, and in an increase in hot temperature extremes over the whole continent (Lau and Nath, 2014; 1 
Ozturk et al., 2015; Russo et al., 2015; Schoetter et al., 2015; Vogel et al., 2017; Winter et al., 2017; Lhotka 2 
et al., 2018; Rasmijn et al., 2018; Cardoso et al., 2019). An increase in ice-free arctic summers is projected 3 
even under moderate warming scenarios, with medium confidence(Laliberté et al., 2015; Sigmond et al., 4 
2018). In the Alps, there is high confidence in a projected increase in temperature extremes in all seasons 5 
(Gobiet et al., 2014). 6 
 7 
In Central and South America (Table 11.7), projections show an increase in TN and TX and in the frequency 8 
of warm nights (TN90p) and warm days (TX90p) and a decrease in the frequency of TN10p and TX10p 9 
(López-Franca et al., 2016; Stennett-Brown et al., 2017). Over SES, during the austral summer, the increase 10 
in the frequency of TN90p is larger than that projected for TX90p, consistent with observed past changes 11 
(López-Franca et al., 2016). 12 
 13 
In North America (Table 11.9), projections of temperature extremes for the end of the 21st century show that 14 
warm (cold) days and warm (cold) nights are very likely to increase (decrease) in all regions. There is 15 
medium confidence in large increases in warm days and warm nights in summer, particularly over the United 16 
States and in large decreases in cold days in Canada in fall and winter (Grotjahn et al., 2016; Vose et al., 17 
2017; Alexandru, 2018; Li et al., 2018a; Yang et al., 2018a; Zhang et al., 2019d). 18 
 19 
Following the approach used in the SR15 report, which is based on the sampling of responses from transient 20 
simulations at given global warming levels (see also Section 11.2 for details), we also provide here 21 
projections of changes in temperature extremes at different global warming levels, based on the CMIP5 22 
simulations (Figs. 11.9 and 11.10). Figures 11.9 and 11.10 confirm that 1) there are already substantial 23 
increases in the temperatures of hot and cold extremes at 1.5°C global warming, 2) that projected changes at 24 
2°C are substantially larger than at 1.5°C in several regions, and 3) that a warming of temperature extremes 25 
of 5°C or more is already reached at 3°C global warming in several regions. As identified in previous 26 
analyses, hot spots of warming include the mid-latitude and subtropical regions for hot extremes, and the 27 
Arctic for cold extremes. 28 
 29 
 30 
[START FIGURE 11.9 HERE] 31 
 32 
Figure 11.9: Projected  changes (°C) in annual maximum daily maximum temperature (TXx) at 1.5°C, 2°C, 3°C, and 33 

4°C of global warming compared to the early-industrial baseline (1851-1900), based on simulations by 21 34 
CMIP5 and 11 CMIP6 models. Stippling indicates where the multi-model average change is larger than 35 
the across-model standard deviation (Note to reviewers: stippling scheme will be changed in the FGD to 36 
be consistent with other chapters, maps will be updated if additional simulations from CMIP6 models 37 
become available).  38 

 39 
[END FIGURE 11.9 HERE] 40 
 41 
 42 
[START FIGURE 11.10 HERE] 43 
 44 
Figure 11.10: Projected  changes (°C) in annual minimum daily minimum temperature (TNn) at 1.5°C, 2°C, 3°C, and 45 

4°C of global warming compared to the early-industrial baseline (1851-1900), based on simulations by 21 46 
CMIP5 and 11 CMIP6 models. Stippling indicates where the multi-model average change is larger than 47 
the across-model standard deviation (Note to reviewers: stippling scheme will be changed in the FGD to 48 
be consistent with other chapters, maps will be updated if additional simulations from CMIP6 models 49 
become available).  50 

 51 
[END FIGURE 11.10 HERE] 52 
 53 
 54 
Figures 11.9 and 11.10 show projected changes in annual maximum daily maximum temperature (TXx) and 55 
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annual minimum daily minimum temperature (TNn) when the global mean temperature warms by 1.5, 2.0, 1 
3.0, and 4.0°C above its pre-industrial level. Projected warming is larger for TNn and exhibits strong 2 
equator-to-pole amplification similar to the warming of boreal winter mean temperatures. The warming of 3 
TXx is more uniform over land and does not exhibit this behaviour. Overall, the warming of temperature 4 
extremes tends to scale linearly with global warming (Seneviratne et al., 2016, Wartenburger et al., 2017; Li 5 
et al. submitted; see also IPCC SR15,  Chapter 3), but with a stronger warming on land. Regions and seasons 6 
of strongest warming include – as highlighted above and in the SR15  Chapter 3 – the mid-latitude summer 7 
and the Arctic winter. In the mid-latitudes, warming in hot extremes is up to double that of GMST (Fig. 8 
11.11), i.e. about +3°C at +1.5°C of global warming and about +8°C at +4°C of global warming. In the 9 
Arctic winter, the warming of the temperature of the coldest nights is up to 3 times the warming of GMSTi.e. 10 
about +4.5°C at +1.5°C global warming, and about +12°C at +4°C global warming(Appendix Figure11.A.1). 11 
There is medium confidence in these quantitative assessments of projected changes in the temperature of 12 
extremes because of inter-model spread. Figure 11.11 provides the scaling of the regional changes in TXx as 13 
a function of global warming. From this figure as well as two similar figures on regional changes in TNn and 14 
TMean in the Appendix (Figs. 11.A.1 and 11.A.2), it can be seen that projected changes in temperature 15 
extremes can deviate substantially from projected changes in mean warming in the same regions. As 16 
discussed in Section 11.1.6, additional processes that control the response of regional extremes include, in 17 
particular, soil moisture-evapotranspiration-temperature feedbacks for hot extremes in mid-latitude and 18 
subtropical regions, and snow/ice-albedo-temperature feedbacks in high-latitude regions. 19 
 20 
Despite the quasi-linear scaling of changes in the magnitude of temperature extremes as a function of global 21 
warming, projections of the probability of exceeding a certain hot extreme threshold tend to show an 22 
exponential increase as a function of global warming ( e.g., Fischer and Knutti, 2015, Kharin et al., 2018). 23 
For example, the frequency for present-day climate 20-year hot extremes is projected to increase by 80% at 24 
1.5°C global warming level and by 180% at 2.0°C global warming level, while the increase in the frequency 25 
for present-day climate 100-year hot extremes is projected to increase by 200% and more than 700% at the 26 
1.5°C and 2.0°C warming levels, respectively (Kharin et al., 2018).Such nonlinearities in the characteristics 27 
of future regional extremes are shown, for instance, for Europe (Seneviratne et al., 2018; Dosio and Fischer, 28 
2018), Asia (Guo et al., 2017; Harrington and Otto, 2018b; King et al., 2018), and Australia (Lewis et al., 29 
2017a) under various global mean warming thresholds. The non-linear increase of fixed-threshold indices ( 30 
e.g., percentile-based for a given reference period or based on an absolute threshold) as a function of global 31 
warming is consistent with a linear warming of the absolute temperature of the temperature extremes ( e.g., 32 
Whan et al., 2015).   33 
 34 
Several studies of future projections of the hottest summer temperatures demonstrate decreases in the return 35 
times, i.e. a higher frequency, of such events (Mueller et al., 2016a; Lewis et al., 2017b). Tebaldi and 36 
Wehner (2018) analysed RCP4.5 and RCP8.5 projections from the CESM large ensemble (Kay et al., 2015) 37 
of 20-year return values of both TXx and the running 3-day average of the daily maximum temperature (or 38 
TX3x). At the middle of the 21st century, 66% of the land surface area would experience present-day 20-year 39 
return values every other year on average under the RCP8.5 scenario, as opposed to only 34% under RCP4.5. 40 
By the end of the century, these area fractions increase to 92% and 62%, respectively. While long-period 41 
return values of TX3x are slightly lower than for TXx, the relative changes are larger and more robust. These 42 
results further demonstrate that projections of temperature extremes are dependent on the metrics analysed 43 
and the details of the definition of extreme temperatures.  44 
 45 
Projections of temperature-related extremes in RCMs in CORDEX regions demonstrate robust increases in 46 
future scenarios and can provide information on finer spatial scales than GCMs. Five RCMs in the 47 
CORDEX-East Asia region show projected decreases in the 20-year return values of temperature extremes 48 
(summer maxima), with models exhibiting warm biases projecting stronger warming (Park and Min, 2018). 49 
Similarly, in the African domain, future increases in warm days (TX90p) and nights (TN90p) are projected 50 
(Dosio, 2017; Mostafa et al., 2019). This regional-scale analysis provides fine scale information, such as 51 
distinguishing the increase in TX90p over sub-equatorial Africa (Democratic Republic of Congo, Angola 52 
and Zambia) with values over the Gulf of Guinea, Central African Republic, South Sudan, and Ethiopia.  53 
 54 
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As for the projected changes of extremes in 20-year return values under stabilization goals, Wehner et al. 1 
(2018a) analysed five of the HAPPI atmosphere-only models and Sanderson et al. (2017a) analysed an 2 
extension of the CESM large ensemble at these goals. Combining the results of these two studies, the global 3 
land average of the 20-year return values of TX3x increases about the same as the global land average warm 4 
season (summer) temperatures. These amounts are about 0.3-0.4C larger than the targeted global average 5 
stabilized warming, reflecting that land warms more than oceans as greenhouse gas concentrations are 6 
increased. There are significant differences in the occurrence and intensity of heat extremes under warming 7 
of 1.5C and 2C above pre-industrial values. Changes in nearly all heat extremes have a strong correlation to 8 
global mean temperature, so that scenarios and times with greater temperature change experience greater 9 
index changes for many regions (Aerenson et al., 2018).  10 
 11 
 12 
[START FIGURE 11.11 HERE] 13 
 14 
Figure 11.11: Regional mean changes in annual maximum daily temperature (TXx) for land regions, the global land 15 

and global ocean, against changes in global mean surface temperature (Tglob) as simulated by CMIP5 16 
models for historical conditions (black) and under different forcing scenarios including RCP2.6 (light 17 
blue), RCP4.5 (blue), RCP6.0 (light red), and (red) RCP8.5. The black line indicates the 1:1 reference 18 
scaling. The grey shading indicates the range over all RCPs. [Note to reviewers: the plot will be updated 19 
to include CMIP6 simulations for the FGD, as well as the final selected AR6 regions]. 20 

 21 
[END FIGURE 11.11 HERE] 22 
 23 
 24 
Summary: Given the virtually certain increase in global mean temperature and the link between global 25 
mean temperature and local temperature extremes, it is virtually certain that further increases in the 26 
likelihood and severity of hot extremes and decreases in the likelihood and severity of cold extremes 27 
will occur throughout the 21st century and around the world. It is virtually certain that the number of 28 
hot days and hot nights and the length, frequency, and/or intensity of warm spells or heat waves 29 
(defined with respect to late 20th century conditions) will increase over most land areas.In most 30 
regions, changes in the magnitude of temperature extremes are proportional to global warming levels 31 
(high confidence). The likelihood of temperature extremes generally increases exponentially with 32 
increasing global warming levels (high confidence). Confidence in assessments depends on the spatial 33 
and temporal scale of the extreme in question, with high confidence inprojections of temperature-34 
related extremes at global and continental scales for daily to seasonal scales. There is high confidence 35 
that the magnitude of temperature extremes increases more strongly on land than global mean 36 
temperature. This includes a projected warming of extreme hot daytime temperatures of up to twice 37 
that of the global warming in mid-latitudes, i.e. about +3°C at +1.5°C global warming and about +8°C 38 
at +4°C global warming (medium confidence). The warming of extreme cold night-time temperatures 39 
in the Arctic, in several northern high-latituderegions, and some mid-latitude regionsis additionally 40 
projected to be about three times larger than the warming of global mean temperature, i.e. about 41 
+4.5°C at +1.5°C global warming, and about +12°C at +4°C global warming (medium confidence).   42 
 43 
 44 
11.4 Heavy precipitation 45 
 46 
This section assesses changes in heavy precipitation at global and regional scales. The main focus of this 47 
section is on extreme precipitation at a daily scale due to data and literature availability; however, extreme 48 
precipitation of shorter durations at sub-daily scales and of a longer durations of five days or more are also 49 
assessed. A majority of studies have focused on long-term changes (trends) in the annual maximum one-day 50 
or five-day precipitation, while some studies have also used peaks-over-threshold methods, where peaks 51 
were defined based on selecting a specific percentile (e.g., 95th  percentile or 99th percentile). Percentile-52 
based definitions also vary depending on the selection of the sample, whether they are from the entire year or 53 
from only wet days (Schär et al., 2016). Many of the studies have also examined changes in rarer events such 54 
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as those that occur once in 20 years, in particular in model projections.  1 
 2 
 3 
11.4.1 Mechanisms and drivers 4 
 5 
Extreme precipitation is controlled by two main drivers: the amount of moisture and the atmospheric uplift. 6 
SREX  Chapter 3 assessed changes in heavy precipitation that are governed by thermodynamic and/or 7 
dynamic changes depending on the regions (see also Box 11.1). The thermodynamic contribution mostly 8 
follows the Clausius-Clapeyron (C-C) relationship and is generally responsible for an increase in heavy 9 
precipitation where the changes in atmospheric circulation are small. However, this C-C relationship does 10 
not hold in regions with significant changes in circulation patterns, where the dynamics of moisture supply 11 
from remote sources dominate. Further background on these processes is provided in Section 8.2.3.2, Box 12 
11.1, and Section 11.7, which assesses extreme storms including tropical/extratropical cyclones and severe 13 
convective storms, which act as parent storms for heavy precipitation. Latent heating can invigorate parent 14 
storms (Nie et al., 2018; Zhang et al., 2019g), which can increase precipitation intensity above that expected 15 
from the Clausius-Clapeyron equation (super C-C). Changes in large-scale modes of circulation patterns that 16 
modulate precipitation extremes are difficult to isolate from internal variability based on the historical record 17 
(Chapter 2) and future projections (Chapter 4). For example, future changes in El Niño-Southern Oscillation 18 
(ENSO) and its associated effects on precipitation extremes are uncertain (Section 4.4.3.2). 19 
 20 
Thermodynamic and dynamic processes are important in driving heavy precipitation changes associated with 21 
monsoon circulations. The observed and projected changes in the monsoon system are assessed in Sections 22 
2.3.1.3.2, 4.4.1.4, and 8.2.2.2. The associated precipitation may be amplified under future global warming in 23 
some regions, including East and South Asia (KITOH, 2017), but our understanding of monsoon circulations 24 
remain limited because of the complexity of these systems (Seth et al., 2019). Projected changes in the Asian 25 
monsoon generally include an increase in precipitation in the coastal regions of East and South Asia 26 
(Freychet et al., 2015; KITOH, 2017; Lee et al., 2018;Li et al., 2019). It is projected that SSTs will increase 27 
more near the coasts of the continents, and that this pattern of changes in SST can result in heavier rainfalls 28 
near the coastal areas in East Asia via tropical cyclones (Mei and Xie, 2016) or the torrential areas over 29 
western Japan (Manda et al., 2014). Low-level monsoon westerlies with moisture surge towards the Indian 30 
subcontinent are associated with the warming of the Western Indian Ocean and this may lead to an increase 31 
in the occurrence of precipitation extremes over central India (Krishnan et al., 2016; Roxy et al., 2017).  32 
 33 
There is evidence that a decline in atmospheric aerosols causes additional warming leading to an increase in 34 
extreme precipitation. Hence, aerosol forcing plays an important role in the 21st century projections of heavy 35 
precipitation (Lin et al., 2016). An explicit treatment of aersol-cloud interactions further improves the 36 
simulation of extreme precipitation in the CMIP5 suite of models, specifically over India and China (Lin et 37 
al., 2018b). Possible effects of aerosols on extreme precipitation are detected via changes in tropical 38 
cyclones, which were modulated by changes in large-circulation patterns due to aerosol forcing (Takahashi 39 
et al., 2017; Strong et al., 2018). 40 
 41 
Since SREX, the number of studies on the impacts of local land cover and land use change on heavy 42 
precipitation has increased. For example, there is a growing literature that indicates increases in heavy 43 
precipitation in urban centres due to urbanization (Zhang et al., 2019e). There are four possible mechanisms: 44 
a) increase in atmospheric moisture due to horizontal convergence of air associated with the urban heat 45 
island effect (Shastri et al., 2015); b) increase in condensation due to urban aerosol emissions (Han et al., 46 
2011; Sarangi et al., 2017); c) aerosol pollution that impacts cloud microphysics (Schmid and Niyogi, 2017) 47 
(Box 8.1), and d) urban structures and resulting impediments to atmospheric motion and additional diffusion 48 
(Ganeshan and Murtugudde, 2015; Paul et al., 2018; Shepherd, 2013). Other local factors may also have the 49 
potential to impact heavy precipitation, such as reservoir that enhanced local evaporation (Woldemichael et 50 
al., 2012), irrigation (Devanand et al., 2019), or large-scale land use and land cover change (Odoulami et al., 51 
2019).  52 
 53 
Summary: Extreme precipitation is controlled by both thermodynamic and dynamic processes. 54 
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Warming induced thermodynamic change results in an increase in extreme precipitation, at a rate 1 
that closely follows the Clausius-Clapeyron relationship. The effects of warming-induced dynamic 2 
change on extreme precipitation are more complicated and difficult to quantify. This is because of the 3 
involvement of a widerange of processes from large-scale circulation to small-scale processes such as 4 
storms. This is also due to the high uncertainty in projecting circulation changes. The large 5 
uncertainty in projecting changes in the dynamic processes results in large uncertainty in projected 6 
changes in extreme precipitation, in regions where circulation is expected to change.    7 
 8 
 9 
11.4.2 Observed Trends 10 
 11 
Both the SREX Chapter 3 and the AR5 Chapter 2 concluded that it is likely that the number of heavy 12 
precipitation events over land has increased in more regions than it has decreased, though there are wide 13 
regional and seasonal variations, and trends in many locations are not statistically significant. This 14 
assessment is continuously supported by post-AR5 studies. (Du et al., 2019) found a significant increase in 15 
the global average of the annual maximum precipitation amount falling in a day and in precipitation events 16 
that last more than one day. Recent development of the new data set HadEX3 (Dunn et al., submitted) 17 
reveals more regions with increases than with decreases in the annual maxima (Rx1day) and an increase in 18 
the contribution of rainfall from very extreme days to total precipitaton (R95pTOT). A global and 19 
continental analysis (Sun et al., submitted) of station data showed that the percentage of stations with 20 
statistically significant increasins in Rx1day is larger than expected by chance, while the percentage of 21 
stations with statistically significant decreases is smaller than expected by chance, over global lands as a 22 
whole and over North America, Europe, and Asia where data coverage is relatively good (Figure 11.12). 23 
Stations with significant increases or decreases are not concentrated in any particular region. There are more 24 
regions with significant increases than with significant decreases. They also indicate significant 25 
intensification of Rx1day at the global and continental scales and that a decrease is not significant. There is a 26 
higher percentage of stations showing significant increases over 1951-2018 than over 1951-2010, but the 27 
percentages of stations with significant decreases over the two periods are similar (Sun et al., submitted), 28 
indicating enhanced evidence of an intensification of Rx1day with an additional eight years of observations. 29 
Extreme precipitation in the 20th Century has increased close to the C-C scaling in most of the land stations 30 
where data is available (Sun et al., submitted). Donat et al. (2019) have found a robust increase in extreme 31 
precipitation over humid regions around the globe. In dry regions, the trend is not robust, but shows an 32 
increase and this is partly due to high variability of precipitation and sparse observational coverage over dry 33 
regions.  34 
 35 
Daily precipitation extremes show spatially non-homogenous trends for the 20th Century over Africa, where 36 
data are available (Donat et al., 2014a; Mathbout et al., 2018b). In North Africa, there is medium confidence 37 
of an increase in precipitation extremes (Donat et al., 2014b; Sun et al., submitted).  Over sub-Saharan 38 
Africa, increases in the frequency and intensity of extreme precipitation have been observed over the well-39 
gauged areas during 1950-2013; however this covers only 15% of the total area of sub-Saharan Africa 40 
(Harrison et al., 2019). Significant increases for extreme precipitation-related indices are identified: in 41 
R10mm over Western Sahara and Sudan, in R20mm, SDII and R95p over the western Sahel and in SDII, 42 
RX5day, and consecutive wet day (CWD) counts over western and southern Africa. For West Africa, 43 
observational evicence has pointed, with high confidence, to a substantial increase in precipitation extremes 44 
and intensity in recent years (Mouhamed et al., 2013; Panthou et al., 2014, 2018; Evan et al., 2015; Barry et 45 
al., 2018). Over central Africa, there is low confidence in observed changes in extreme precipitation due to a 46 
severe lack of station data (Alexander et al., 2019). There is an increase in extreme precipitation events in 47 
Southern Africa (Weldon and Reason, 2014). There is medium confidence in the increase in extreme daily 48 
precipitation over most of the continent (Barry et al., 2018; Chaney et al., 2014, Sun etal 2019).  49 
 50 
There is an overall increase in extreme daily precipitation over Asia; however this is dominated by high 51 
spatial variability. There is high confidence in the observed increase in daily precipitation extremes over 52 
central Asia (Hu et al., 2016), most of south Asia (Roxy et al., 2017; Sheikh et al., 2015; Rohini et al., 2016; 53 
Roxy et al., 2017; Sheikh et al., 2015; Zahid and Rasul, 2012; Adnan et al., 2016; Dimri et al., 2017; Sheikh 54 
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et al., 2015; Krishnan et al, 2019a; Priya et al, 2017; Hunt et al., 2018); the northwest Himalaya (Malik et al., 1 
2016), and parts of east Asia ((Nayak et al., 2017; Baek et al., 2017), whereas, no trend is observed over the 2 
eastern Himalayas or contrasting evidence exists (Sheikh et al., 2015; Talchabhadel et al., 2018). There is 3 
high spatial variability in the trends in extreme precipitation over China, with a mixture of regions with 4 
increases and decreases (Fu et al., 2013a; Jiang et al., 2013; Ma et al., 2015; Yin et al., 2015). Over China as 5 
a whole, the trend is not significant (Li et al., 2018e). There is also an increase in the spatial variability of 6 
extremes in India (Ghosh et al. 2012, Shashikanth et al. 2018). Increases have been observed in precipitation 7 
extremes associated with an increase in western disturbances over the western Himalayas since the 1950s 8 
(Ridley et al., 2013; Dimri et al., 2015; Madhura et al., 2015). The monsoon extremes over the western 9 
Himalayas also show increases associated with declining southwest monsoon circulation and increased 10 
activities of westerly upper-air troughs (Priya et al., 2017). Increases have been observed over Jakarta 11 
(Siswanto et al., 2015), but Rx1day over most parts of the Maritime Continent has decreased (Villafuerte and 12 
Matsumoto, 2015). In Iran, 50% of the stations show increases in extreme precipitation with an overall 13 
decline in the frequency (Najafi and Moazami, 2016). 14 
 15 
Over the whole of Australia, trends (1911-2010) in extreme daily precipitation indices are usually positive 16 
but their magnitude depends strongly on the dataset (HadEX2 or WAP) and on the specific index being 17 
considered (Alexander and Arblaster, 2017). There have been increases in heavy precipitation in northwest 18 
Australia (Dey et al., 2019) and decreases in many areas of southern Australia. There is a significant increase 19 
in PRCPTOT, R10mm, R20mm, R95p, CWD in northwest Australia over the period 1951-2015, and a 20 
significant decrease in SDII in coastal eastern Australia. A significant decrease in CWD, PRCTOT, R10mm, 21 
R20mm, SDII is reported in southeast Australia. Over southeast Australia, gridded observations show an 22 
overall increase in rainfall extremes (e.g., Rx1day) for the period 1911-2014 although trends vary spatially 23 
and seasonally (Evans et al., 2017). Over southeastern Australia, positive and sometimes significant trends in 24 
CWD, PRCTOT, R10mm, R20mm and Rx1d are observed when considering AWAP gridded data while 25 
HadEX2 usually show less positive trends and even a different sign for SDII  (Alexander and Arblaster, 26 
2017; Evans et al., 2017). There is low confidence that the number of heavy snowfall events has remain 27 
unchanged in the last 25 years over the Snowy Mountains (Fiddes et al., 2015). Over New Zealand, 28 
decreases are observed for moderate-heavy precipitation events, but no significant trends for very heavy 29 
events (more than 64 mm in a day) for the period 1951-2012. There is low confidence in the changes in 30 
frequency of heavy rain days with mostly decreases (Caloiero, 2015; Harrington and Renwick, 2014;Li et al., 31 
2017).  32 
 33 
Since SREX, there has been a growing number of studies on regional trends of daily extreme precipitation in 34 
Europe. There is medium confidence in an observed increase in the intensity and frequency of daily extreme 35 
precipitation events (van den Besselaar et al., 2013; Cioffi et al., 2015). Dominant decreases in extreme 36 
precipitation are observed in the western Mediterranean and some increases in the eastern Mediterranean 37 
(Rajczak et al., 2013; Casanueva et al., 2014; de Lima et al., 2015; Gajić-Čapka et al., 2015; Sunyer et al., 38 
2015; Ribes et al., 2019). There are regions such as Portugal, where a mixed trend is observed (Pedron et al., 39 
2017). In the Netherlands, the total precipitation contributed from extremes doubles per degree C increase in 40 
warming and this primarily comes from an increase in frequency (Myhre et al., 2019). In Romania, decreases 41 
are observed for the total number of precipitation days (R0.1mm) and increases are found for the frequency 42 
of moderate and heavy precipitation (R5mm, R10mm) (Croitoru et al., 2016). An increase in extreme 43 
precipitation is observed in central Europe, which is associated with the warming of the Mediterranean Sea 44 
(Volosciuk et al., 2016); though there are large discrepancies among studies and regions and strong seasonal 45 
differences (Croitoru et al., 2013; Willems, 2013; Casanueva et al., 2014; Roth et al., 2014; Fischer et al., 46 
2015). In north Europe, extreme rainfall trends are different depending on the season (Irannezhad et al., 47 
2017). Evidence for increasing extreme precipitation is observed during summer and winter, but not in other 48 
seasons (Yiou and Cattiaux 2013, BAMS, Dong et al. 2013 BAMS, (Held and Soden, 2006; Grams et al., 49 
2014; Madsen et al., 2014; Helama et al., 2018) .  50 
 51 
In North America, specifically in the United States, there is medium to high confidence in an overall increase 52 
in heavy precipitation at the daily scale, both in terms of intensity and frequency (Sun et al., submitted;Donat 53 
et al., 2013; Huang et al., 2017; Villarini et al., 2012; Easterling et al., 2017; Wu, 2015;Howarth et al., 2019), 54 
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except for the southern part of the US (Hoerling et al., 2016). In Canada, there is a lack of detectable trend in 1 
observed annual maximum daily (or shorter duration) precipitation (Shephard et al. 2014, Mekis et al. 2015, 2 
Vincent et al. 2018). In Mexico, increases are observed in R10mm and R95p (Donat et al., 2016a) and in 3 
PRCPTOT and RX1day (Donat et al., 2016b).  4 
 5 
For South America, the dominant signal is a wetting trend with high spatial variability. There is low 6 
confidence in the change (decrease) in daily extreme precipitation in northeastern Brazil (Skansi et al., 2013; 7 
Luiz Silva et al., 2018) with decreases in Rx1day, R50mm, R95p, R99p in Custódia and Sta Maria da Boa 8 
Vista (PE) (Bezerra et al., 2018). The annual maximum one-day (RX1day), and the heavy rainfall (R99p) 9 
exhibit increases when spatially averaged over large regions of South America, including NWS, SWS, SAM 10 
and SSA, but with low confidence (Skansi et al., 2013). An increase in extreme rainfall in observed in AMZ 11 
with medium confidence (Skansi et al., 2013) and in SES with high confidence (Wu and Polvani, 2017; 12 
Barros et al., 2015). Among all sub-regions, SES shows the highest rate of increase for rainfall extremes, 13 
followed by AMZ. SES shows the highest rate for Rx1day and Rx5day, but not for R99p (Skansi et al., 14 
2013). According to (Skansi et al., 2013), moderate and non-statistically significant decreases are also 15 
observed over northeast Brazil, southern Peru and southern Chile. In Central America, trends in annual 16 
precipitation are generally non-significant, although small (but significant) increases are found in Guatemala, 17 
El Salvador, and Panama (Hidalgo et al., 2017). 18 
 19 
Analyses of long-term changes in extreme sub-daily precipitation have been conducted only in a few regions. 20 
(Sen Roy and Rouault, 2013) showed an increase in extreme sub-daily rainfall over South Africa during 21 
summer in the last two decades. Ali and Mishra (2018) found an increase in sub-daily extreme precipitation 22 
over urban regions of India and showed the role of warming on such observed changes through dynamic and 23 
thermodynamic scaling. More increases than decreases in hourly extreme precipitation are observed over 24 
China (Westra et al., 2014). In eastern China, the southern part shows an increasing trend with no trend over 25 
the northern part (Yu and Li, 2012).  Hourly data of Peninsular Malaysia show an increase in heavy 26 
precipitation (Syafrina et al., 2015). In Australia, Chen et al. (2013) found that the changes in rainfall 27 
intensity at the hourly scale positively correlate with changes in the mean maximum temperature. Guerreiro 28 
et al. (2018) analysed long-term changes in the magnitude and frequency of extreme hourly precipitation in 29 
Australia between 1966-1989 and 1990-2013. They showed a detectable increase in hourly extreme 30 
precipitation, spatially averaged over 107 guage stations. The highest magnitudes of hourly precipitation 31 
increase at about 20% per 1 degree increase in global mean temperature, which is about 10% per one degree 32 
increase in Australia temperature. The rate of increase of daily precipitation extremes is about one-third of 33 
that for hourly extremes. But uncertainty in the result is large as the station network used in the study is 34 
sparse. In Europe, studies on sub-daily extreme precipitation events are available for a limited number of 35 
regions. An increase in hourly extreme precipitation was observed in Sicily (Arnone et al., 2013). Sub-hourly 36 
rainfall data over the UK for the period 1996-2009 shows an increase in intensity and a decrease in the 37 
duration of extreme precipitation (Chan et al., 2016). For North America, the hourly precipitation data from 38 
13 stations in the US show a large increase in extreme precipitation (Muschinski and Katz, 2013). Barbero et 39 
al. (2017) selected 733 stations with good quality long-term hourly observations from over 6000 US stations, 40 
and analysed trends of annual maximum one-hour precipitation. They found that about 5% of stations 41 
showed a significant increase, which is a rate higher than what would be expected by chance and the 42 
percentage of stations with a significant decrease was lower than expected by chance. This indicates a 43 
detectable increase in hourly extreme precipitation. The rate of increase in relation to mean temperature 44 
across the United States is about 4% per one degree temperature increase, smaller than the C-C rate. When 45 
compared with changes in annual extreme daily precipitation, the rate of increase in hourly extremes is 46 
smaller than for daily extremes and it is also more difficult to detect changes in hourly extremes.   47 
 48 
A well constrained quantification of changes in short duration extreme precipitation can require records with 49 
lengths that are several times the length of available observations (Li et al., 2018b). This makes it difficult to 50 
quantify long-term trends in hourly extreme precipitation in many places of the world due to limited data 51 
availability. The connection between saturation vapour pressure and temperature governed by the Clausius-52 
Clapeyron relation and the fact that extreme short-duration precipitation occurs at a time of ample moisture 53 
availability have motivated a large number of studies that attempt to establish a relation between extreme 54 
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precipitation and temperature. This relation is based on day-to-day temperature variations and a robust 1 
estimation of such a relation, sometimes called apparent scaling, is more attainable. The estimation of these 2 
scaling relationships typically involves binning hourly precipitation according to some temperature measure 3 
( e.g., near-surface or aloft, daily or hourly, or directly including a moisture component by using dew point 4 
temperature) and then estimating the scaling of high percentile (i.e. 95, 99th) precipitation as a function of the 5 
bin temperature. Various methods have been explored, but a consensus is forming on the importance of 6 
including moisture in the estimation (see  e.g., Lenderink and Fowler, 2017). 7 
 8 
A unique and very large-scale data collection effort for sub-daily precipitation across multiple continents 9 
(Lewis et al., 2019) has enabled a comprehensive analysis of the relation between sub-daily precipitation 10 
extremes and day-to-day temperature variations on the global scale. There is a super-C-C scaling of hourly 11 
peak intensities at continental scales for the majority of observed gauges when using dew point temperature 12 
as the scaling variable. This apparent scaling seems to be robust across methodologies and regions and 13 
ranges between C-C and two times C-C ( e.g., Burdanowitz et al., 2019; Formayer and Fritz, 2017; 14 
Lenderink et al., 2017). Yet evidence that there is a correspondence between this apparent scaling of daily 15 
temperature and precipitation intensities and the response of precipitation extremes to climate changes, 16 
called ‘climate scaling’, still needs to be established. In fact, studies suggest apparent scaling may not be 17 
representative of climate scaling. Bao et al. (2017) showed ensemble simulations by regional climate model 18 
were able to reproduce the spatial distribution of apparent scaling over Australia including large rates in 19 
midlatitude locations but weak or negative rates in the tropics. Yet, the same simulation projects a consistent 20 
increase in extreme precipitation across the Australian continent. Sun et al. (2019) compared apparent 21 
scaling and climate scaling over North America in a large ensemble of simulations of the Canadian regional 22 
climate model. They found that apparent scaling of the current climate is a good predictor for apparent 23 
scaling of the future climate. However, the magnitude and spatial pattern of apparent and climate scaling 24 
rates are quantitatively different, with little spatial correlation between them, regardless of precipitation 25 
duration or choice of temperature variable. 26 
 27 
Overall, there is lack of systematic analysis of long-term trends in sub-daily extreme precipitation over the 28 
globe, but the available studies limited to some regions show an increase in general. It is difficult to infer 29 
how sub-daily extreme precipitation may have changed based on the observed changes in daily extreme 30 
precipitation because sub-daily extreme precipitation may involve different processes and/or occur in 31 
different seasons in many parts of the world (Barbero et al., 2019). The relevance of the present day apparent 32 
scalings to the past or future changes in sub-daily extreme precipitation remains questionable. Given these 33 
considerations, there is medium confidence in the increase in sub-daily extreme precipitation in parts of the 34 
world land areas. 35 
 36 
Studies on past changes in extreme precipitation of durations longer than a day are more limited, though 37 
there are some studies examining long-term trends in annual maximum five-day (Rx5day) precipitation. An 38 
analysis of long-term trends in Rx5day shows that at the global and continental scales, Rx5day has increased 39 
in a way similar to that of Rx1day. The percentage of stations with significant increases in Rx5day is slightly 40 
larger than that in Rx1day, but the percent increase in Rx5day is slightly smaller than that in Rx1day (Sun et 41 
al. 2019 JCLI-0892). There are also some regional studies indicating an increase. Zhang et al. (2018) showed 42 
an increase in the global monsoon region with a rate of 5.17% per degree C. In west Africa, an increase in 43 
Rx5day is also observed (Chaney et al., 2014; Barry et al., 2018). An increase is observed in spatially-44 
averaged Rx5day over large regions of South America, including NWS, SWS, SAM and SSA, but with low 45 
confidence (Skansi et al., 2013). A significant increase in Rx5day is also observed in northwest Australia 46 
over the period 1951-2015 (Dey et al., 2019). It should be noted that heavy precipitation events are often 47 
studied for a fixed duration, though these events can persist beyond the durations being studied. Hence, there 48 
is a need to consider a metric to address the complexity of changing extreme precipitation of varying 49 
durations in an warming environment (Du et al., 2019). 50 
 51 
 52 
 53 
 54 
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[START FIGURE 11.12 HERE] 1 
 2 
Figure 11.12: (a) Trends in annual maximum amount of one-day precipitation (Rx1day) during 1950–2018 at 8345 3 

stations with sufficient data for the calculate data to estimate. Light blue dots indicate increases and light 4 
red dots mark decreases. Solid blue and red dots indicate statistically significant increases and decreases, 5 
respectively, as determined by a two-tailed test conducted at the 5% level. (b) Summary statistics of the 6 
percentage of stations with statistically significant trends in Rx1day in the observations during the same 7 
period and in 1000 bootstrap samples. The blue and red colors indicate significant positive and negative 8 
trends, respectively, in the observations. Box-and-whisker plots summarize the breadth of the distribution 9 
from 1000 bootstrap realizations under the no-trend null hypothesis. In the plots, the upper and lower 10 
edges of the boxes mark the 25th and the 75th percentiles and the red lines indicate the median values. 11 
The upper and lower whiskers show the 97.5th and the 2.5th percentiles, respectively. Adapted from (Sun 12 
et al., submitted). 13 
 14 

[END FIGURE 11.12 HERE] 15 
 16 
 17 
Summary 18 
 19 
There is high confidence that heavy precipitation has intensified on global scale over land regions. It is 20 
likely that, since 1950, the annual maximum amount of precipitation falling in a day or over five 21 
consecutive days has increased in more regions than it has decreased, over land regions with sufficient 22 
observational coverage for assessment. The percentage of stations showing statistically significant 23 
increase is higher than that can be expected by chance while the percentage of stations with significant 24 
decrease trend is not different from the expectation by chance. This is also the case at the continental 25 
scale over three continents, including North America, Europe, and Asia. Larger percentage increases 26 
in heavy precipitation have been observed in the northern high-latitudes in all seasons, as well as in 27 
the mid-latitudes in the cold season (high confidence). Regional increases in the frequency and/or in 28 
the intensity of heavy rainfall have also been observed in i) most parts of Asia, northwest Australia, 29 
northern Europe, southeast South America, north South America and most of the United States (high 30 
confidence), and ii) west and south Africa, central Europe, eastern Mediterranean region, Mexico 31 
(medium confidence). Elsewhere, there is generally low confidence in observed trends in heavy 32 
precipitation due to data limitations. 33 
 34 
 35 
11.4.3 Model evaluation 36 
 37 
Since the AR5, the simulation of large-scale patterns of precipitation has improved. The uncertainty in 38 
observed rainfall is large and model evaluation of simulated short-term heavy precipitation is challenging. A 39 
common issue when evaluating model output is the scale mismatch between simulated and observed data 40 
(Avila et al., 2015, Alexander et al., 2019) as daily and subdaily precipitation are not spatially-continuous 41 
fields. Furthermore, simulations represent average conditions over grid cells but station-based observations 42 
are conducted at point locations and are often sparse. As a result, extreme precipitation is expected to be 43 
smaller in the spatially-coarse CMIP5 and CMIP6 model simulations than in gridded station observations. 44 
Gervais et al. (2014) estimated that the reduction in precipitation extremes can be as large as 30% when 45 
comparing areal-mean values representative of current GCM grid boxes (~100km) to point estimations. 46 
However, Risser and Wehner (2020) reversed the order of operations by performing gridding to 25km after 47 
fitting extreme value distributions and found that winter long-period return values are larger than from an 48 
extreme value analysis of available gridded station precipitation products and that model skill in evaluation 49 
of the CMIP6 HighResMIP models is affected. Some model evaluation studies have utilized output from 50 
reanalysis products as a globally-complete proxy for observations ((Sillmann et al., 2013a); Kim et al., 51 
submitted; Li et al., submitted). However, while uncertainties related to large-scale circulation are reduced 52 
and the scale mismatch problem eliminated, local processes share similar parameterizations to the models 53 
themselves, reducing the objectivity of the comparison.   54 
 55 
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Studies evaluating the overall skill of the different generations of the Coupled Model Intercomparison 1 
Project (CMIP) models (Flato et al., 2013; Watterson et al., 2014) have found quite modest, although steady, 2 
improvements. Improvements in the representation of the magnitude of the Expert Team on Climate Change 3 
Detection and Indices (ETCCDI) indices in CMIP5 over CMIP3 (Sillmann et al., 2013a; Chen and Sun, 4 
2015a) have been attributed to higher resolution. And growing evidence suggests that high-resolution models 5 
(CMIP5 median resolution ∼ 180 ×96) reproduce extreme rainfall comparable with observations (Sillmann et 6 
al., 2013b; Kusunoki, 2017, 2018b). The simulation of extreme precipitation in some models is improved by 7 
refining horizontal resolution alone (Wehner et al., 2014; Kusunoki, 2017, 2018), but this is insufficient in 8 
other models (Bador et al., submitted) as model parameterization also plays a significant role (Wu et al., 9 
2019a).  Models generally underestimate extreme precipitation (Borodina et al., 2017) and this is partially 10 
due to the parameterization of convection (Kendon et al., 2019, Kendon et al., 2017). It should be noted that 11 
these overall assessments are often based on relatively simple scores and might not reflect much of the 12 
improvements in new generations of models with a more comprehensive and better formulation of processes 13 
in model components (Di Luca et al., 2015a).   14 
 15 
Adopting a spatial perspective, Dittus et al. (2016) utilized the areal extent of daily precipitation extremes to 16 
evaluate eight CMIP5 models in comparison with the observations over the period 1951-2005. They found 17 
that many CMIP5 models can reproduce the observed increase in the difference between areas experiencing 18 
an extreme high (90%) and an extreme low (10%) proportion of the annual total precipitation from heavy 19 
precipitation (R95p/PRCTOT) for the Northern Hemisphere regions. Regarding precipitation intensity, 20 
models have also been shown to reproduce the compensation between precipitation extremes and the rest of 21 
the distribution (Thackeray et al., 2018), a characteristic found in the observational record (Gu and Adler, 22 
2018). 23 
 24 
Extreme precipitation simulated by CMIP5 and CMIP6 models has been compared with various 25 
observational products. As horizontal resolutions of the CMIP6 models are not substantially different from 26 
those in CMIP5, the multimodel performance is not significantly different and the error patterns are highly 27 
correlated (Wehner et al., submitted). Kim et al. (submitted) compared simulated Rx1day and Rx5day with 28 
HadEX3 data (Dunn et al., submitted) and found the wetter CMIP6 to be closer to HadEX3 than the drier 29 
CMIP5. Figure 11.13 shows the multi-model ensemble bias in mean Rx1day over the period 1979-2014 from 30 
21 available CMIP6 models, as measured by three independent reference data sets. It illustrates the principal 31 
difficulty in evaluating extreme precipitation from climate models. As expected from the scale mismatch 32 
problem described above, extreme precipitation in the CMIP6 models is significantly drier than HadEX3, a 33 
product constructed by gridding annual Rx1day at individual stations to a 1.25 o x1.875o mesh. Model 34 
performance is much more mixed when compared to the 0.25 o ERA5 reanalysis or REGEN, a daily 35 
precipitation product constructed by Kriging interpolation of a merger of a variety of daily station data sets 36 
to a 1o mesh (Contractor et al., 2019). However, the inconsistency of these bias estimates, even in regions 37 
with a relatively dense observing network, undermines confidence in both the sign and magnitude of model 38 
errors in the simulation of extreme precipitation. 39 
 40 
The performance portrait in the upper right of Figure 11.13 shows that individual model performance is 41 
generally consistent across a number of different extreme precipitation metrics, as measured by global land 42 
root mean square error. Taylor plot based performance metrics reveal strong similarities in the patterns of 43 
extreme precipitation errors over land regions between CMIP5 and CMIP6 (Srivastava et al., submitted; 44 
Wehner et al., submitted) and between annual mean precipitation errors and Rx1day errors for both 45 
generations of models (Wehner et al., submitted). While it is difficult to evaluate models’ performance in 46 
simulating the magnitude of extreme precipitation, models seem to perform well in capturing large-scale 47 
features of precipitation extremes, including intense precipitation extremes in the intertropical convergence 48 
zone (ITCZ), and weak precipitation extremes in dry areas in the tropical regions (Li et al., submitted).  In 49 
general, CMIP5 and CMIP6 historical simulations are interchangeable in their performance in simulating the 50 
observed climatology of extreme precipitation (high confidence). 51 
 52 
 53 
 54 
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[START FIGURE 11.13 HERE] 1 
 2 
Figure 11.13: Top panel (matrix): A portrait diagram of relative spatially averaged root mean square errors (RMSEs) in 3 

the 1981–2000 climatologies of precipitation indices simulated by the CMIP6 models with respect to the 4 
ERA‐5 reanalysis (upper triangle), and HadEX3 (right triangle). The RMSEs are spatially averaged over 5 
global land 531 grid points. The top row indicates the mean relative RMSE across all indices for a 6 
particular model.  The  grey‐shaded  columns  and  blue-red  columns  on  the  right  side  indicates  the 7 
standardized median RMSEmedian,std for CMIP6 and CMIP5 and their differences. Adapted from Kim 8 
et al., (submitted). Other panels (maps): Percent errors in the CMIP6 multimodel mean Rx1day (1979-9 
2014) relative to HadEX3 (top), ERA5 (middle) and REGEN (bottom). Brown indicate that models are 10 
too dry, while blue indicates that they are too wet. Adapted from Kim et al., (submitted), Li et al., 11 
(submitted) and Wehner et al., (submitted).  12 

 13 
[END FIGURE 11.13 HERE] 14 
 15 
 16 
Studies using regional climate models (RCMs), for example, the Coordinated Regional Downscaling 17 
Experiment (CORDEX; (Giorgi et al., 2009)) over Africa (Gbobaniyi et al., 2014; Dosio et al., 2015; Klutse 18 
et al., 2016; Pinto et al., 2016), Australia, East Asia (Park et al., 2016), Europe (Prein et al., 2016a), and parts 19 
of North America (Diaconescu et al., 2018) suggest that extreme rainfall events are better captured in RCMs 20 
compared to their host GCMs due to their ability to address regional characteristics, e.g., topography and 21 
coastlines. However, CORDEX simulations do not show good skill over south Asia for heavy precipitation 22 
and do not add value with respect to their parent CMIP5 GCMs (Mishra et al., 2014a; Singh et al., 2017) 23 
 24 
Model evaluation of HighResMIP-class (resolution minimum 50 km in the atmosphere and 0.25° in the 25 
ocean) simulations (Haarsma et al., 2016) is incomplete. Wehner et al. (2014) found that in a ~25km version 26 
of the Community Atmospheric Model (fvCAM5.1), long-period return values of seasonal RX5day were 27 
substantially increased over the same model at ~100km. While the high-resolution simulation of mid-latitude 28 
winter extreme precipitation over land is in reasonable agreement with observations, simulation of the 29 
summer extreme precipitation has a high bias. As simulated extreme precipitation in the tropics also appears 30 
to be too large, deficiencies in the parameterization of cumulus convection at this resolution are suspected. 31 
Indeed, precipitation distributions are much improved with a convection-permitting model over west Africa 32 
at both daily and sub daily time-scales (Berthou et al., 2019) and over Belgium in Europe (Vanden Broucke 33 
et al., 2019).  34 
 35 
There is high confidence that the ability to simulate climate extremes has steadily increased since the SREX 36 
and the AR5, principally due to refinements in horizontal resolution of global and regional models. At about 37 
25km, models begin to simulate tropical and other intense storms considerably better than at lower 38 
resolutions, leading to higher values of extreme precipitation closer to observations, especially in regions of 39 
highly variable topography (Section 10.5.3). However, representation of cumulus convection is a challenging 40 
issue and current parameterizations need improvements. Further progress in this regard awaits the 41 
computational advances necessary for explicit representation of convective processes in multi-decadal 42 
simulations. Despite these few exceptions, in general the ability of the models to simulate the extreme events 43 
in the present improves the confidence of projected changes.  44 
 45 
 46 
Summary 47 
 48 
There is high confidence in the ability of CMIP6 models to capture large-scale features of precipitation 49 
extremes. The overall performance of CMIP6 models in simulating precipitation intensity and 50 
frequency is similar to that of CMIP5 models (high confidence). Both CMIP5 and standard resolution 51 
CMIP6 models are drier when compared to HadEX3. Some CMIP6 HighResMIP models produce 52 
higher and somewhat more realistic values of extreme precipitation (medium confidence). As extreme 53 
precipitation at a point location should be larger than extremes in area-mean precipitation, the 54 
mismatch in spatial scales between HadEX3 that is based on station data and the climate models' grid 55 
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area mean makes it difficult to determine if the models truly underestimate extreme precipitation at 1 
the spatial scale they simulate. 2 
 3 
 4 
11.4.4 Causes of the Observed Changes 5 
 6 
Both the SREX and the AR5 concluded with medium confidence that anthropogenic forcing has contributed 7 
to a global scale intensification of heavy precipitation over the second half of the 20th century. These 8 
assessments were based on the evidence of anthropogenic influence on aspects of the global hydrological 9 
cycle, in particular, the human contribution to the warming-induced observed increase in atmospheric 10 
moisture that should lead to an increase in heavy precipitation, and limited evidence of anthropogenic 11 
influence on extreme precipitation of durations from one to five days. 12 
 13 
New studies, including detection and attribution and event attribution studies, since the AR5 have 14 
significantly improved the understanding of human influence on extreme precipitation. In particular, 15 
detection and attribution analyses have provided consistent and robust evidence of human influence on 16 
extreme precipitation of one- and five-day durations at global to continental scales. Zhang et al. (2013) 17 
compared the observed and CMIP5 models simulated Rx1day and Rx5day over 1951-2005 and found that 18 
the intensification in these indices of extreme precipitation over the Northern Hemisphere land areas can be 19 
attributed to human influence. They found that the anthropogenic signal is detectable in the extreme 20 
precipitation observations while the natural forcing signal is not detectable. They further found that the 21 
intensification of extreme precipitation is about 5.2% per K (90% confidence interval 1.3% to 9.3%), 22 
consistent with the Clausius-Clapeyron scaling. Paik et al. (submitted) analysed observed and CMIP6-23 
simulated Rx1day and Rx5day over 1951-2015, and found the influence of greenhouse gases to be the 24 
dominant contributor to the observed intensitification of Rx1day and Rx5day over global land areas, in the 25 
mid-to-high latitudes, western and eastern Eurasia, and the gobal dry regions. These findings are also 26 
corroborated by the results of the analysis of changes in the fraction of extreme precipitation in the total 27 
precipitation. Dong et al. (submitted) examined changes in the annual total precipitation falling into the top 28 
5th or top 1st percent of daily precipitation in the observations and the CMIP6 simulations. They found 29 
essentially the same results as (Paik and et al. (submitted). Kirchmeier-Young and Zhang (submitted) used 30 
three large-ensemble simulations, including two by coupled models and one by a regional model, and both 31 
detection and attribution and event attribution approaches in their regional- and continental-scale analysis of 32 
changes in extreme precipitation in North America from 1961-2010. They concluded that human influence 33 
has contributed to the increase in frequency and intensity of regional precipitation extremes.   34 
 35 
One study examined the volcanic impacts, showing detectable influence from natural forcing on extreme 36 
precipitation at the global scale. Paik and Min (2018) found substantial reductions in RX5day and SDII 37 
(simple daily intensity index) over the global summer monsoon regions after explosive volcanic eruptions, 38 
using the HadEX2 observations and CMIP5 multi-model ensemble for 1957-2000. From models, they found 39 
that the reduction in extreme precipitation is closely linked to the decrease in mean precipitation, for which 40 
both thermodynamic effects (moisture reduction due to surface cooling) and dynamic effects (monsoon 41 
circulation weakening) play important roles.  42 
 43 
Comparing spatially aggregated changes in RX5day over the global land area for 1960-2010, Fischer et al., 44 
(2014) found a large fraction of land has experienced a strong intensification of heavy precipitation, which is 45 
generally captured by CMIP5 models including anthropogenic forcing but not by unforced simulations. 46 
CMIP5 models were, however, found to underestimate the observed trends in precipitation extremes. 47 
Shiogama et al., (2016) found human influence on the historical changes in record-breaking one-day 48 
precipitation to be statistically significant.  49 
 50 
Attribution of long-term changes in extreme precipitation at regional scales is more limited and the results 51 
tend to be less robust. Li et al. (2017) detected anthropogenic influence on extreme precipitation in China 52 
using the optimal fingerprinting method, but anthropogenic influence is not detected when a different 53 
method is used (Li et al., 2018e), indicating the lack of robustness in the detection results. A weak signal-to-54 
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noise ratio seems to be the main cause for the lack of robustness as Li et al. (2018d) also showed that the 1 
signal would become robustly detectable 20 years in the future. Krishnan et al. (2016) attributed the observed 2 
decrease in low and moderate rain (intensity between 5 mm /day and 100 mm/day) occurrences and increase 3 
in heavy rain events (intensity > 100 mm/day) in the post-1950s over central India to the combined effects of 4 
GHG, aerosols, landuse and landcover changes, and rapid warming of the equatorial Indian Ocean SSTs.  5 
 6 
Systematic studies on long-term changes in heavy precipitation of a duration longer than five days are 7 
lacking. Instead, the focus has been on individual events, i.e., the attribution of changes in the probability or 8 
the magnitude of a class of extreme precipitation events similar to those that occurred recently by comparing 9 
real-world and counterfactual-world simulations. Many of those studies are summarised in the annual 10 
supplement report on “Explaining Extreme Events from a Climate Perspective” (Herring et al., 2014, 2015, 11 
2016, 2018; Peterson et al., 2012, 2013b). Some studies found an influence of anthropogenic activities on the 12 
probability or magnitude of observed extreme precipitation events, including European winters (Schaller et 13 
al., 2016; Otto et al., 2018b), parts of the US for individual events (Knutson et al., 2014c; Szeto et al., 2015; 14 
Eden et al., 2016; van Oldenborgh et al., 2017), or China (Burke et al., 2016; Zhou et al., 2017; Sun and 15 
Miao, 2018; Yuan et al., 2018b). Other studies, however, suggested  a lack of evidence about anthropogenic 16 
influences (Imada et al., 2013; Schaller et al., 2014; Otto et al., 2015c; Siswanto et al., 2015). Yet, there are 17 
also studies whose results are inconclusive because of limited reliable simulations (Christidis et al., 2013b; 18 
Angélil et al., 2016). Overall, both the spatial and temporal scale on which extreme precipitation eventrs are 19 
defined are important for attribution, event with large spatial scale has larger signal to noise ratio and thus 20 
signal is more readily detectable. At the current level of global warming, there is strong enough signal to be 21 
detectable for large scale extreme precipitation events but the chance to detect such signal for smaller scale 22 
events becomes smaller (Kirchmeier‐Young et al., 2019). 23 
 24 
Anthropogenic influence may have affected the large scale meteorological processes necessary for extreme 25 
precipitation and the localized thermodynamic and dynamic processes, both contributing to changes in 26 
extreme precipitation events. There are differences between attributing the causes of seasonal (or longer) 27 
extreme precipitation events and individual extreme storms (see Section 11.6) as the relative roles of these 28 
two factors can vary greatly and appropriate attribution methods may also be different (see Section 11.2.5). 29 
Several new methods have been proposed to disentangle these effects by either conditioning on the 30 
circulation state or attributing analogues. In particular, the extremely wet winter of 2013/2014 in the UK can 31 
be attributed, approximately to the same degree, to both temperature-induced increases in saturation vapor 32 
pressure and changes in the large scale circulation (Vautard et al., 2016; Yiou et al., 2017). There are 33 
multiple cases indicating an increase in very extreme precipitation in relation to temperature above 6-7%/ °C, 34 
the Clausius-Clapeyron rate (Pall et al., 2017;Risser and Wehner, 2017; van der Wiel et al., 2017; van 35 
Oldenborgh et al., 2017;Wang et al., 2018). Overall, the events in question in these cases are exceedingly 36 
rare and the attribution statements are highly conditional on the observed large scale factors (Wehner et al., 37 
2018d). Yet, it is not known if and to what extent the large scale properties have changed (see Section 38 
11.4.1).  39 
 40 
Almost all existing event attribution studies on extreme precipitation are motivated by the need to understand 41 
the causes of a recent event that caused flooding (Section 11.5) leading to loss and damages. As precipitation 42 
is only one of the multiple factors, albeit an important one, that affects floods and as floods are only one of 43 
multiple factors causing damages, attribution of human influence to the probability of a precipitation event 44 
does not by itself directly attribute human influence to the flood or to the related damages. For example, 45 
Teufel et al. (2017) showed that while human influence increased the odds of the flood-producing rainfall for 46 
the 2013 Alberta flood in Canada, it was not detected to have influenced the probability of the flood itself. 47 
Similarly, Schaller et al.(2016) showed human influence in the increase in the probability of heavy 48 
precipitation and its resulting flood of the river Thames in winter 2014, but its contribution to the additional 49 
properties at risk was inconclusive.  50 
 51 
In summary, it is likely that anthropogenic influence is the main cause of the observed intensification 52 
of heavy precipitation in land regions. Multiple lines of new evidence since the AR5 have improved the 53 
confidence for human influence. The observed global increase in annual maximum one-day and five-54 
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day precipitation can be attributed to human influence. A large fraction of land showed enhanced 1 
extreme precipitation and a larger probability of record-breaking one-day precipitation than expected 2 
by chance, both of which can only be explained when anthropogenic greenhouse gas forcing is 3 
considered. At continental and regional scales, human influence on extreme precipitation is less 4 
detectable because of higher variability, but evidence is emerging. There is evidence of human 5 
influence on intensification of extreme precipitation in North America. There is also new evidence of 6 
human contributions to the increase in the probability or magnitude for some individual events in 7 
different parts of the world. 8 
 9 
 10 
11.4.5 Projections 11 
 12 
The AR5 concluded that it is very likely that extreme precipitation events will be more frequent and more 13 
intense over most of the mid-latitude land masses and wet tropics in a warmer world (Collins et al., 2013a). 14 
Post-AR5 studies using either GCMs and/or RCMs provide more lines of evidence supporting previous 15 
assessments. Projections based on CMIP5 model simulations show that the rate of change of Rx1day with 16 
warming is independent of the forcing scenario (Pendergrass et al., 2015). This is confirmed by (Sillmann et 17 
al., 2017a). (Sillmann et al., 2019) further showed, based on Precipitation Driver and Response Model 18 
Intercomparison Project (PDRMIP) simulations, that the rate of change in extreme precipitation that occurs 19 
once a year or less frequently, in relation to surface warming, is similar across all forcing agents including 20 
CO2,  CHAPTER 4, SOL, and black carbon. Both Lin et al. (2016) and Lin et al. (2018) found that that the 21 
rate of change for annual extremes is independent of the forcing agent, but the rate of change for moderate 22 
extreme precipitation may depend on the forcing agent. The moderate extreme precipitation used in Lin et al. 23 
(2016) and Lin et al. (2018) includes maximum one-day precipitation in each of 12 calendar months. As 24 
precipitation can have a distinct annual cycle in many parts of the world, their results may also be 25 
compounded by the effect of this annual cycle, and it is thus unclear if the difference in the rate of change for 26 
that moderate extreme precipitation truly reflects the difference in the responses to greenhouse gases and 27 
aerosols. There is thus high confidence that extreme precipitation that occurs once a year or less frequently 28 
scales with surface warming and is independent of the forcing agents. 29 
 30 
Changes in Rx1day during the historic period for half-a-degree warming are consistent with the difference in 31 
the projected changes for 1.5°C and 2°C warming scenarios, as simulated by global models (Fischer and 32 
Knutti, 2015). While the magnitudes of projected changes differ according to different levels of warming, 33 
with larger changes under higher levels of global warming, the spatial patterns of the projected changes are 34 
quite similar, as shown in Figure 11.14. Changes in extreme precipitation across land areas are nearly always 35 
positive and increase with global warming level. This is different from projected changes in mean 36 
precipitation, which show a decrease over land in low latitudes. Decreases in extreme precipitation are 37 
confined mostly to subtropical ocean areas and are highly correlated to decreases in mean precipitation due 38 
to storm track shifts. These subtropical decreases can propagate to nearby land areas in individual 39 
realizations. Projected long-period Rx1day return value changes are larger than changes in mean Rx1day and 40 
increase with increasing rarity (Li et al., submitted; (Wehner, submitted). These differences amongst mean 41 
and extreme precipitation projected changes illustrate that the complicated interaction of dynamic and 42 
thermodynamic mechanisms varies locally and with the rarity considered.  43 
 44 
 45 
[START FIGURE 11.14 HERE] 46 
 47 
Figure 11.14: Projected  percentage changes (%) in annual maximum one-day precipitation at 1.5°C, 2°C, 3°C, and 4°C 48 

of global warming compared to the early-industrial baseline (1851-1900), based on simulations by 21 49 
CMIP5 and 11 CMIP6 models. Stippling indicates where the multi-model average change is larger than 50 
the across-model standard deviation (Note to reviewers: stippling scheme will be changed in the FGD to 51 
be consistent with other chapters, maps will be updated if additional simulations from CMIP6 models 52 
become available) 53 

 54 
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[END FIGURE 11.14 HERE] 1 
 2 
 3 
Changes in Rx1day during the historic period for half-a-degree warming are consistent with the difference in 4 
the projected changes for 1.5°C and 2°C warming scenarios as simulated by the global models (Fischer and 5 
Knutti, 2015). This appears to also be the case even for higher levels warming. As showed in Li et al., 6 
(submitted) and Seneviratne and Hauser (submitted) an increase in extreme precipitation seems to scale 7 
linearly with the level of global warming. Figure 11.15 shows changes in the 50-year return values of 8 
Rx1day and Rx5day in relation to global warming levels as simulated by the CMIP6 models. The scaling of 9 
extreme precipitation is independent of the forcing scenarios or climate sensitivities of the models. The 10 
median value of the scaling over the land, across all SSP scenarios and all models, is close to 7% per °C for 11 
the 50-year return value of Rx1day and it is just slightly smaller for the 50-yr return value of Rx5day (note to 12 
the reviewers: this part will be updated with additional CMIP6 simulations in FGD). These indicate that a 13 
small increment such as 0.5°C in global warming can result in an increase in extreme precipitation. This may 14 
even be the case at continental and regional scales (Seneviratne and Hauser, submitted). Similar to changes 15 
in the response of extreme temperature to warming, the changes in the magnitude of extreme precipitation 16 
scale with global warming level linearly but the changes in the probability of extreme precipitation of fixed 17 
magnitude are a rate faster than linear, with more rapid increase for more rare events. For example, the 18 
frequency for present-day climate 20-year extreme precipitation is projected to increase by 10% at 1.5°C 19 
global warming level and by 22% at 2.0°C global warming level, while the increase in the frequency for 20 
present-day climate 100-year extreme precipitation is projected to increase by 20% and more than 45% at the 21 
1.5°C and 2.0°C warming levels, respectively (Kharin et al., 2018). Dosio and Fischer, (2018) have shown a 22 
marked projected change in extreme precipitation in comparison to mean precipitation in Europe. In a 3°C 23 
warmer world, there will be a robust increase in extreme rainfall over 80% of land areas in north Europe. An 24 
additional half degree of warming from 1.5°C to 2°C would result in an increase in regional extreme 25 
precipitation over China, irrespective of the return periods (Li et al., 2018f). Projections with the HAPPI 26 
project show that extreme precipitation will amplify in the Asian-Australian monsoon region with an 27 
additional half degree of warming, though there is uncertainty in the projections for Australia (Chevuturi et 28 
al., 2018). The frequency of extreme precipitation will increase in east Asia and India. Increased daily 29 
extreme precipitation is projected for Africa with an additional half degree of warming by the CORDEX 30 
regional models and these projections are similar to the simulations by coarse-resolution global climate 31 
models (Nikulin et al., 2018).   32 
 33 
 34 
[START FIGURE 11.15 HERE] 35 
 36 
Figure 11.15: Global land median changes in the 50-year return values of annual maximum 1-day precipitation 37 

(Rx1day; A-B) and 5-day precipitation (Rx5day; C-D) against changes in global annual mean surface air 38 
temperature (GMST) in the CMIP6 multi-model ensemble projections under different future forcing 39 
scenarios. At each land grid cell, the corresponding return values are first estimated in each of the six 40 
overlapping 30-year periods (i.e., 2021-2050, 2031-2060, …, 2071-2100) for each model and forcing 41 
scenario. Then the global land median relative changes in the estimated return values from one period to a 42 
later period and the corresponding GMST changes are plotted as scatter points, with these scatter points 43 
marked according to forcing scenarios (A and C) or climate models (B and C). The black solid lines mark 44 
the median regression lines of the scatter points, while the grey shading bounds the 5-95% regression 45 
lines of the scatter points. The black dashed lines show the 7% per °C (CC-scaling rate) reference line. 46 
Adapted from (Li et al., submitted). 47 
 48 

[END FIGURE 11.15 HERE]  49 
 50 
 51 
In north Africa and the Sahara, there is low confidence in the changes in extreme precipitation, either due to 52 
a lack of agreement among studies on the sign of changes (Sillmann et al., 2013a; Giorgi et al., 2014) or due 53 
to insufficient evidence. There is high confidence that heavy precipitation is likely projected to increase by 54 
the end of the century under RCP8.5 in west Africa (Diallo et al., 2016; Dosio, 2016; Sylla et al., 2016; 55 
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Abiodun et al., 2017; Akinsanola and Zhou, 2018; Dosio et al., 2019) and medium confidence for an increase 1 
in central Africa (Fotso-Nguemo et al., 2018, 2019; Sonkoué et al., 2019) and east Africa (Ongoma et al., 2 
2018). Over southern Africa there is high confidence that heavy precipitation is likely projected to increase 3 
by the end of the century and RCP8 (Dosio, 2016; Pinto et al., 2016; Abiodun et al., 2017; Dosio et al., 4 
2019). However, over western South Africa, heavy rainfall amounts are projected to decrease. This is mainly 5 
due to a decrease in the frequency of the prevailing westerly winds south of the continent, which translates 6 
into fewer cold fronts and closed mid-latitudes cyclones (Engelbrecht et al., 2009; Pinto et al., 2018). The 7 
pattern of change in heavy precipitation under RCP4.5 in the majority of African regions is very similar to 8 
the pattern of change under RCP8.5, however the magnitude is smaller. With increases in global warming 9 
levels, there is high confidence that extreme precipitation is likely projected to increase in the majority of 10 
land regions in Africa (Pfahl et al., 2017; Diedhiou et al., 2018; Akinyemi and Abiodun, 2019; Giorgi et al., 11 
2019). 12 
 13 
There is high confidence that extreme precipitation is projected to increase in most parts of Asia under both 14 
RCP4.5 and RCP8.5 scenarios. An increase in heavy rainfall is projected in most parts of Asia together with 15 
increases in rainfall intensity (Zhou et al., 2014; Guo et al., 2016, 2018; Xu et al., 2016; Endo et al., 2017; 16 
Han et al., 2018; Kim et al., 2018b; Fujita et al., submitted). The precipitation extreme indices, including 17 
RX5day, R95p, and days of heavy precipitation (i.e.,R10mm), are all projected to increase under RCP4.5 and 18 
RCP8.5 scenarios in central and northern Asia (Xu et al., 2017; Han et al., 2018). A general wetting across 19 
the whole Tibetan Plateau is projected, with increases in heavy precipitation in the 21st century (Zhou et al., 20 
2014; Zhang et al., 2015c; Gao et al., 2018). There is high confidence that the future rainfall extremes will 21 
increase in the Himalaya under warming scenarios (Palazzi et al., 2013; Rajbhandari et al., 2015; Wu et al., 22 
2017; Paltan et al., 2018) despite limited evidence of a future decreasing trend of WDs (Hunt et al., 2018). 23 
The extreme daily precipitation is also projected to increase in south Asia (Shashikanth et al., 2018Han et al., 24 
2018; Xu et al., 2017). In east Asia, there is medium confidence in the projected intensification of extreme 25 
precipitation (Guo et al., 2018; Li et al., 2018a; Seo et al., 2014; Sui et al., 2018; Wang et al., 2017b, 2017c; 26 
Xu et al., 2016; Zhou et al., 2014, Nayak et al., 2017).  27 
 28 
Over Australia, there is low confidence in the projected changes in extreme rainfall. This is due to a lack of 29 
consistency among climate models and no significant future changes in extreme rainfall (Alexander and 30 
Arblaster, 2017; Evans et al., 2017). Future projected changes in extreme precipitation over north Australia 31 
are uncertain and do not show agreement among models. (Perkins et al., 2014b; Alexander and Arblaster, 32 
2017; Evans et al., 2017; Dey et al., 2018). In south Australia, extreme precipitation is projected to increase, 33 
but the agreement among models is quite low (Alexander and Arblaster, 2017; Evans et al., 2017).  34 
 35 
There is medium confidence in increases in rainfall extremes in boreal winter and summer over Europe 36 
(Madsen et al., 2014; OB et al., 2015; Nissen and Ulbrich, 2017). Over central and southern Europe, there is 37 
low to medium confidence in the changes in extreme rainfall manly due to discrepancies among studies and 38 
strong seasonal differences (Argüeso et al., 2012; Croitoru et al., 2013; Rajczak et al., 2013; Casanueva et 39 
al., 2014; Patarčić et al., 2014; Paxian et al., 2014; Roth et al., 2014; Fischer and Knutti, 2015; Monjo et al., 40 
2016). In the Alps region, the intensity of precipitation extremes is projected to increase in all seasons 41 
(Gobiet et al., 2014), particularly in winter (Fischer et al., 2015). Projected increases in sub-daily extreme 42 
precipitation are lower compared to the daily scale in northeastern Europe, whereas opposite intensification 43 
is projected for western Europe near the sea (Scoccimarro et al., 2015). 44 
 45 
Over North America, likely increases in the frequency and intensity of heavy rainfall are projected 46 
(Easterling et al., 2017; Wu, 2015; Zhang et al. 2018f)(Innocenti et al., 2019) for most of the continent. 47 
Projections of extreme precipitation over Mexico and Central America are more uncertain, with decreases 48 
possible (Sillmann et al., 2013b; Alexandru, 2018) 49 
 50 
Over South America, in general there is a decrease in heavy rainfall amount (Chou et al., 2014b) with 51 
increases in southeastern South America and the Amazon (Chou et al., 2014b; Giorgi et al., 2014). 52 
 53 
The number of studies on the projections of heavy hourly precipitation are limited due to high computing 54 
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requirements for long-term simulations of the climate at a very high temporal resolution. The hourly 1 
precipitation extremes over CONUS are projected to increase, as shown by Andreas F Prein et al. (2016). 2 
Model simulations at a scale permitting convection project increases in extreme sub-daily precipitation over 3 
Africa (Kendon et al., 2019). Studies on the projections of longer-term extremes are also few in number. 4 
Climate simulations with the CESM large ensemble show a 3-fold increase in the frequency of the 100-yr 5 
precipitation accumulation in the future under RCP 8.5 (Norris et al., 2019b). In Japan, monthly extreme 6 
precipitation is projected to increase under 4°C global warming for around 80% of stations in the summer 7 
(Hatsuzuka and Sato, 2019).  8 
 9 
Summary: Over almost all land regions, it is very likely that extreme precipitation will be more intense 10 
and more frequent in a warmer world. The increase in the magnitude of extreme precipitation will be, 11 
in general, proportional to the global warming level, with an increase of 7% and a slightly smaller rate 12 
in the 50-yr event of annual maximum 1-day and 5-day precipitation per 1°C warming, respectively 13 
(high confidence). The increase in the likelihood of extreme precipitation will very likelyaccelerate with 14 
increased global warming, with larger incremental increases at higher global warming levels and for 15 
rarer events. There can be large differences in the increase regionally. 16 
 17 
 18 
11.5 Floods 19 
 20 
There are different flood types (e.g., flash floods, river floods, groundwater floods, surge floods, coastal 21 
floods) due to differences in major drivers and processes involved (Nied et al., 2014; Aerts et al., 2018). 22 
Floods can be influenced by one or multiple drivers. Rainfall intensity is an important driver, in particular for 23 
flash floods; other drivers such as antecedent soil moisture, snow depth, and groundwater level are also 24 
important for some types of floods (Sikorska et al., 2015). In the case of surge floods or coastal floods, 25 
flooding may be affected by both heavy precipitation and sea level rise (Wahl et al., 2015, 2017) (see also 26 
Section 11.8). Floods as natural hazards are difficult to measure or quantify and, for this reason, many of the 27 
existing studies on changes in floods focus on flood indicators that can be measured, such as runoff or 28 
streamflow. Thus, the assessment of changes in floods in this section considers literature on changes in flow. 29 
 30 
 31 
11.5.1 Mechanisms and drivers 32 
 33 
Since the AR5, the number of studies on understanding changes in flooding has substantially increased. 34 
Several studies have highlighted basin-scale, complex interactions between hydrology and climate, including 35 
snow processes; temperature that affects soil freezing, evapotranspiration and snowmelt; and characteristics 36 
of precipitation such as timing, intensity, duration, and total amount. In addition, basin characteristics ( e.g., 37 
topography, soil types, basin size), antecedent moisture conditions (Berghuijs et al., 2016; Paschalis et al., 38 
2014), and plant-physiological effects (Kooperman et al., 2018) have also been assessed. The role each of 39 
these drivers play can be quite different for different flood types.   40 
 41 
The main drivers for river floods include precipitation, antecedent soil moisture (Paschalis et al., 2014; 42 
Berghuijs et al., 2016; Fitsum and Ashish, 2016; Grillakis et al., 2016), and snow cover (Berghuijs et al., 43 
2019). Additionally, other factors also play an important role. These include physiographic characteristics 44 
(e.g., hydraulic structures, stream morphology)  (Nakayama and Shankman, 2013; Borga et al., 2014),  land-45 
use and land-cover characteristics (Aich et al., 2016; Rogger et al., 2017), water management (Pisaniello et 46 
al., 2012; Kim and Sanders, 2016), feedbacks between climate, soil, snow, vegetation etc. (Hall et al., 2014; 47 
Ortega et al., 2014; Berghuijs et al., 2016; Buttle et al., 2016; Teufel et al., 2019). The complexity of the 48 
factors involved as well as their interplay means that an extreme precipitation event does not necessarily 49 
translate into a flood event and an increase in precipitation extremes may not result in an increase in river 50 
floods (Sharma et al., 2018). Nevertheless, at the regional scale, there seems to be some correspondence 51 
between long-term changes in flooding and precipitation in some regions such as the US (Berghuijs et al. 52 
2016; Peterson et al. 2013), China (Zhang et al., 2015a), and the western Mediterranean (Llasat et al., 2016). 53 
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It has been speculated that the physiology of plants could influence river floods in the future because of CO2 1 
fertilizing effects that improve water-use efficiency by plants (Roderick et al., 2015; Milly and Dunne, 2016; 2 
Swann et al., 2016; Swann, 2018) thereby reducing evapotranspiration and contributing to the maintenance 3 
of soil moisture and streamflow levels (Yang et al., 2019). It has been suggested that this mechanism could 4 
increase the magnitude of floods driven by heavy precipitation (Kooperman et al., 2018). Yet, an increase in 5 
leaf area index and vegetation coverage could also limit the fertilizing effects, as larger vegetation coverage 6 
is also related to larger water consumption overall (Mátyás and Sun, 2014; Evaristo and McDonnell, 2019). 7 
Therefore, there is low confidence in the overall effects on future floods caused by the physiological 8 
responses of plants to an increase in CO2 concentration in the atmosphere.  9 
 10 
Flash floods can be caused by different factors, such as extreme precipitation (Cho et al., 2016; Archer and 11 
Fowler, 2018), glacier lake outbursts (Schneider et al., 2013; Schwanghart et al., 2016), or dam breaks 12 
(Biscarini et al., 2016). Urban flash floods are often caused by brief, but very intense rainfall, along with a 13 
high fraction of impervious surfaces (Hettiarachchi et al., 2018). Because of this direct connection, changes 14 
in very intense precipitation translate to changes in urban flood potential. Many factors, such as the overland 15 
flow rate and the design of urban (Falconer et al., 2009) and storm water drainage systems (Maksimović et 16 
al., 2009) affect flood generation. Therefore, there can be a spectrum of responses in flood intensities to a 17 
similar magnitude of change in rainfall extremes (Smith et al., 2013).  18 
 19 
Mechanisms involved in coastal floods can be more complicated than those of inland floods, involving 20 
precipitation, winds, tides, tropical cyclones (Reed et al., 2015a), storm surges (Möller et al., 2014; Little et 21 
al., 2015; Muis et al., 2016), and sea level rise (Chapter 9) (Woodruff et al., 2013). In fact, coastal flood 22 
water during tropical cyclones can come from a mix of fresh water and salt water when large storm surges 23 
co-occur with heavy precipitation (Wahl et al., 2015) (Section 11.7). Additionally, coastal topography and 24 
physiography (Vousdoukas et al., 2016; Paprotny et al., 2019), protective infrastructures, and the economic 25 
development (Chakraborty et al., 2014; Felsenstein and Lichter, 2014; Hinkel et al., 2014; Muis et al., 2015; 26 
Vousdoukas et al., 2018a) are all relevant.  27 
 28 
Summary: Heavy precipitation is an important factor causing flooding, but floods are affected by 29 
many other factors, including antecedent soil moisture, snow pack and snow-melting in cold regions, 30 
surge and tides in coastal regions, and human water management, depending on the type of floods. 31 
Because of the complex relationship between hydrology and climate, there is not always a one-to-one 32 
correspondence between an extreme precipitation event and a flood event, or between changes in 33 
extreme precipitation and changes in floods. However, flash floods are more directly related to 34 
extreme precipitation.  35 
 36 
 37 
11.5.2 Observed trends 38 
 39 
The SREX report (SREX Ch. 3) assessed low confidence for changes in the magnitude or frequency of 40 
floods at the global scale due to limited available records and confounding effects of changes in land use and 41 
engineering. This assessment was consistent with the AR5 report (AR5 Ch. 2), which stressed a lack of 42 
evidence and strong spatial heterogeneity. The recent SR15 report (SR15 Ch. 3) found increases in flood 43 
frequency and extreme streamflow in some regions, but decreases in other regions. The number of studies 44 
analysing flood trends has increased since the AR5 report, and there are also new analyses available since the 45 
SR15 (Berghuijs et al., 2017; Blöschl et al., 2019; Gudmundsson et al., 2019). The vast majority of studies 46 
focus on river floods, while studies on changes in urban or coastal floods are lacking. Streamflow 47 
measurements are not evenly distributed over space, and coverage in many regions of Africa, South 48 
America, and parts of Asia is poor ( e.g., Do et al., 2017). Here we assess changes i) in the magnitude of 49 
peak flow, ii) in the frequency of high flows, and iii) in the seasonality of peak flows. 50 
 51 
 52 
11.5.2.1 Changes in the magnitude of peak flow 53 
 54 
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Do et al. (2017) analysed trends in annual maximum peak flow in more than 3500 streamflow stations in the 1 
US, central and north Europe, Africa, Brazil, and Australia for 1961-2005. They found 7.1% of global 2 
stations with sufficient data showed a significant positive trend and 11.9% of stations showed a significant 3 
negative trend. They also found statistical evidence of decreasing trends in North and South America and in 4 
Australia, and statistical evidence of increasing trends in Europe and parts of South America. This suggests 5 
that there may be regionality in peak flow trends. As shown in Figure 11.16, Gudmundsson et al. (2019) 6 
have found that trends in the indicators of mean and extreme streamflow are regionally consistent, with 7 
drying in some regions ( e.g., in the Mediterranean) and wetting in other regions (e.g., north Asia). Ishak et 8 
al. (2013) showed that in Australia, negative trends dominate in annual maximum flow (at 22% of stations) 9 
and that stations with significant negative trends were mostly located in the southeast and southwest. At 10 
continental and sub-continental scales, there can also be regional differences. Bai et al. (2016) showed a 11 
negative trend in annual maximum flow in central China that is linked to a decrease in precipitation intensity 12 
and an increase in the number of dams. Yet, Zhang et al. (2015) showed that there are no changes in peak 13 
flow in the Pearl river basin in southern China. In the Amazon basin, there is a significant increase in 14 
extreme flow associated with the strengthening of the Walker circulation (Barichivich et al., 2018), but no 15 
trends were found in annual maximum flow in west Africa (Nka et al. (2015)). Peterson et al., (2013a) 16 
documented strong spatial differences in the trends over North America, with an increase in the northwest 17 
US and a decrease in the southeast US. Their finding is consistent with other studies for North America 18 
(Armstrong et al., 2014; Archfield et al., 2016; Mallakpour and Villarini, 2015; Burn and Whitfield, 2016; 19 
Wehner et al., 2018). In Europe, the long-term high flow data do not show clear trends (Hall et al., 2014; 20 
Mediero et al., 2015; Kundzewicz et al., 2018). Mangini et al. (2018) found strong spatial heterogeneity, 21 
with a similar percentage of stations showing significant positive (10%) and significant negative (8%) trends 22 
in the peak flow across central and north Europe for the period 1961-2015. Mudersbach et al. (2017) 23 
examined changes in a 138-year daily streamflow records for the Elbe River and did not find a long term 24 
trend in peak flow. Blöschl et al. (2019) suggested a spatial pattern of an increase in annual peak flow 25 
records over 1960 to 2000 in northwestern Europe and a decrease in south and eastern Europe.  26 
 27 
 28 
[START FIGURE 11.16 HERE] 29 
 30 
Figure 11.16: Trends in annual maximum daily streamflow during 1971-2010 for IPCC SREX regions with at least 50 31 

streamflow gauge stations with sufficient data (from Gudmundsson et al. 2019). 32 
 33 
[END FIGURE 11.16 HERE] 34 
 35 
 36 
11.5.2.2 Trends in the frequency of high flows 37 
 38 
Mallakpour and Villarini (2015) examined trends in the magnitude of annual maximum daily flow and in the 39 
frequency of high daily flow events that occurred twice-a-year on average over the central US. They found 40 
that while there is evidence of significance changes in the annual peak flow, strong evidence points to an 41 
increasing frequency of high flows. The apparent inconsistency between changes in the magnitude of annual 42 
peak flow and in the frequency of high flows should be interpreted in the proper context. The methods for 43 
trend detection for the magnitude and the frequency are different, and the analysis of changes in frequency 44 
also involves events less extreme than the annual peak flow. Analyses of European high flow using the same 45 
approach did not find coherent trends across Europe, except in the UK (Mangini et al., 2018; Mediero et al., 46 
2015). There was a reduction in the frequency of high flows in the Segre basin of south Europe during 1950-47 
2013 that seems to be related to water management practices, though extreme precipitation events also 48 
reduced during the period (Vicente-Serrano et al., 2017b). Increased water use was also suggested by 49 
Mallakpour and Villarini (2015) as a possible cause of the decrease in high flow frequency in Nebraska and 50 
Kansas, since the frequency of heavy rainfall days increased but the water table decreased as a consequence 51 
of a higher groundwater withdrawal. There is low confidence in the trends in peak flow frequency because 52 
there are only limited studies and because flows in many places are heavily affected by water management 53 
and thus excluded from analyses.  54 
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11.5.2.3 Changes in the seasonality of peak flows 1 
 2 
Changes have been observed in the seasonality of peak flows in some regions, in particular in regions where 3 
snowmelt dominates. Burn and Whitfield (2016) analyzed spring peak flow timing in Canada. They showed 4 
that, because of warming, the spring peak flow has become earlier in catchments that are predominately fed 5 
by snowmelt. They also found that the timing of peak flow becomes more irregular in other catchments, 6 
suggesting a shift from a snowmelt flood regime to a more mixed flood regime, with an increasing 7 
importance of rainfall events in the generation of high flows. Blöschl et al. (2017) analysed changes in the 8 
timing of floods in Europe, using a dataset of more than 4000 gauging stations from 1960 to 2010. They 9 
found clear changes in the timing of winter and spring floods, including earlier snowmelt floods in 10 
northeastern Europe, earlier winter floods in western Europe, and later winter floods around the North Sea 11 
and parts of the Mediterranean coast. The earlier peak spring flood is due to warming-induced snowmelt, 12 
while changes in the flood timing in other European regions are related to changes in the timing of winter 13 
storms.   14 
 15 
Summary: There is high confidence the seasonality of floods has changed in cold regions where 16 
snowmelt is involved. There is high confidence that significant trends in a flood proxy represented by 17 
peak streamflow have been observed in some regions over the past decades, including increases in 18 
parts of northern Asia, southern South America, the northeast US, the UK, and the Amazon and 19 
decreases in parts of the Mediterranean, northeast Brazil, south Australia, central China, and the 20 
southeast US. Estimation of past changes in floods is still challenging in many parts of the world 21 
because of gaps in observational data. 22 
 23 
 24 
11.5.3 Model evaluation 25 
 26 
Several studies have assessed the capability of hydrological and hydrodynamic models to reproduce flow 27 
peaks and flood area using observational meteorological data and terrain information. These studies mostly 28 
focus on river flow (Keller et al., 2019; Li et al., 2019b), river flooded area (Tehrany et al., 2014; Nyaupane 29 
et al., 2018; Gangrade et al., 2019), and, to lesser extent, urban (Gori et al., 2019) and coastal floods (Yin et 30 
al., 2019b). Studies that evaluate the performance of models in the simulation of urban and coastal floods are 31 
limited.  32 
 33 
The quality of the flood simulations strongly depends on the spatial scale of the analysis, since flooding 34 
processes and interactions among them are different in small catchments compared to the large basins. The 35 
reproduction of the flood processes in large basins is more difficult, as larger basins involve more complex 36 
water management and water use. Regional-scale hydrological models perform better than global-scale 37 
hydrological models. However, over-fitting of complex hydrological models is an important source of 38 
uncertainty. A good statistic in hydrological model calibration does not guarantee a good reproduction of 39 
hydrological processes under forced climate conditions. Studies that use different regional hydrological 40 
models show wide spread in flood simulations (Dankers et al., 2014; Roudier et al., 2016; Trigg et al., 2016; 41 
Krysanova et al., 2017). Huang et al. (2017) investigated performance of nine hydrological models in 42 
different large basins of the world. They showed that the regional models reproduced moderate and high 43 
flows (0.02 – 0.1 flow exceedance probabilities) well, but for the most extreme flows (0-0.02 flow 44 
exceedance probability) there are large biases, independent of the climatic and physiographic characteristics 45 
of the basins. Global-scale hydrological models have even more challenges. The models struggle to 46 
reproduce the timing or magnitude of the seasonal cycle. Additionally, the ensemble mean of multiple 47 
models performs worse than any individual model (Zaherpour et al., 2018).  48 
 49 
The use of hydrological models for assessing changes in floods, especially for future projections, adds 50 
another dimension of uncertainty. In addition to differences in hydrological models (Roudier et al., 2016; 51 
Thober et al., 2018), there is also a cascading of uncertainty from different sources, including emission 52 
scenarios, the driving climate models’ (both RCMs and GCMs) structure and parameters (Hundecha et al., 53 
2016; Krysanova et al., 2017), and natural climate variability, as well as the way climate model data is 54 
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processed (or downscaled) as input for the hydrological models (Muerth et al., 2013). For example, (Maier et 1 
al., 2018) used a modeling framework, including outputs from two GCMs forced with three emission 2 
scenarios, a rainfall-runoff model, and a coupled surface water-groundwater model to study the impact of 3 
climate change on the inundation characteristics of a floodplain of the Rhine River in Hesse, Germany. They 4 
found large uncertainties in the simulated inundation characteristics that can be attributed mainly to the 5 
different GCMs. Overall, a shift in the inundation pattern, possibly in both directions, and an increase in 6 
inundation extent are simulated. Arnell and Gosling (2016) downscaled simulations by 21 GCMs under the 7 
CMIP3 A1B scenario to force a hydrological model at the global scale. They showed low consistency among 8 
projections in large parts of the world.  9 
 10 
Summary: Regional hydrological models, using reliable atmospheric input variables, are able to 11 
reproduce moderate and high flows (0.02 – 0.1 flow exceedance probabilities) well, but their 12 
simulation for the most extreme flows (0-0.02 flow exceedance probability) can have large biases. 13 
Global-scale hydrological models still struggle with reproducing the timing or magnitude of the 14 
seasonal cycle of flow. Projections of future floods are hampered by these difficulties and cascading 15 
uncertainties from different sources, including emission scenarios and the reliability of climate models 16 
that generate inputs. 17 
 18 
 19 
11.5.4 Attribution 20 
 21 
There are very few studies focused on the attribution of flood events. It is difficult to assess the confidence in 22 
attribution from these studies since structural differences in hydrological models are very large compared to 23 
climate models. Thus, it is difficult to employ the same multi-method approach to individual event 24 
attribution studies (Section 11.2.5), but this does allow for an estimate of modeling uncertainty. Most of the 25 
studies focus on flash floods and urban floods, which are closely related to intense precipitation events 26 
(Hannaford, 2015). In other cases, event attribution focused on runoff using hydrological models, and 27 
examples include river basins in the UK (Schaller et al., 2016; Kay et al., 2018) (see Section 11.4.4), the 28 
Okavango river in Africa (Wolski et al., 2014), and the Brahmaputra in Bangladesh (Philip et al., 2019). The 29 
existing model uncertainties and the lack of studies overall suggest a low confidence in general statements to 30 
attribute flood events to anthropogenic climate change. 31 
 32 
Furthermore, the anthropogenic signal is different in different regions and basins. For some flood events, the 33 
probability of high floods in the current climate is lower than in a climate without an anthropogenic 34 
influence (Wolski et al., 2014; Teufel et al., 2017), while in other cases the results are opposite and 35 
anthropogenic influence leads to more intense floods (Cho et al., 2016; Pall et al., 2017; van der Wiel et al., 36 
2017; Philip et al., 2018b; Teufel et al., 2019). Drivers such as land cover change and river management can 37 
also increase the likelihood of high floods (Ji et al., 2020). Some individual regions have been well studied, 38 
which allows for high confidence in the attribution of increased flooding in these cases (Section 11.9 Table, 39 
and summary Figure Section 11.2). For example, flooding in the UK following increased winter precipitation 40 
(Schaller et al., 2016; Kay et al., 2018) can be attributed to anthropogenic climate change (Schaller et al., 41 
2016; Vautard et al., 2016; Yiou et al., 2017; Otto et al., 2018b) (Section 11.4.4).  42 
 43 
Gudmundsson et al. (2019) compared the spatial pattern of the observed regional trends in mean and high 44 
river flows over 1971-2010 with those simulated by global hydrological models driven by outputs of climate 45 
models under all historical forcing or by climate model pre-industrial simulations. They found complex 46 
spatial patterns of extreme river flow trends. They also found that the observed trend pattern can be 47 
reproduced only if anthropogenic climate change is considered. The simulated effects of water and land 48 
management cannot reproduce the observed trend pattern. This study provides evidence of human influence 49 
on extreme river flow trends on the global scale. As there is only one study and multiple caveats, including 50 
relatively poor observational data coverage, there is low confidence about human influence on the global 51 
scale.  52 
 53 
Summary: Warming has affected spatial trend patterns of extreme river flow on the global scale (low 54 
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confidence). There is low confidence in attributing changes in the probability or magnitude of some 1 
studied flood events to human influence because of different results and important differences between 2 
models and methods used. For some recent flood events that are driven mainly by extreme 3 
precipitation, there is high confidence in human influence on the occurrence or intensity of these 4 
events.  5 
 6 
 7 
11.5.5 Future projections 8 
 9 
The SREX report (SREX Ch. 3) stressed the low availability of studies on flood projections under different 10 
emission scenarios and concluded there was low confidence in projections of flood events given the 11 
complexity of the mechanisms driving floods at the regional scale. The AR5 report (WG II, Ch. 3) justified a 12 
medium confidence statement on the pattern of future flood changes, that includes flood hazards increasing 13 
over about half of the globe (parts of south and Southeast Asia, tropical Africa, northeast Eurasia, South 14 
America) and flood hazards decreasing in other parts of the world, despite uncertainties in GCMs and their 15 
coupling to hydrological models. SR15 (SR15 Ch. 3; IPCC 2018) assessed that there was medium confidence 16 
that a global warming of 2°C would lead to an expansion of the fraction of global area affected by flood 17 
hazards, compared to conditions at 1.5°C of global warming, as a consequence of changes in heavy 18 
precipitation.  19 
 20 
The majority of new studies that produce future flood projections based on hydrological models driven with 21 
outputs of climate models focus on changes in a flood proxy, i.e., the magnitude of peak flow and the 22 
frequency of high flows in rivers. They do not typically consider aspects that are also important to actual 23 
flood severity or flood damage such as flood prevention measures (Neumann et al., 2015; Şen, 2018), flood 24 
control policies (Barraqué, 2017), and future changes in land cover. As a result, our assessment also focuses 25 
on these flood proxies. At the global scale, Alfieri et al., (2016) used downscaled projections from seven 26 
GCMs as input to drive a hydrodynamic model. They found successive increases in the frequency of high 27 
floods in all continents except Europe, associated with increasing levels of global warming (1.5°C, 2°C, 28 
4°C). These results are supported by (Paltan et al., 2018), who applied a simplified runoff aggregation model 29 
forced by outputs from four GCMs. Huang et al. (2018) used three well-established hydrological models 30 
forced with bias-corrected outputs from four GCMs to produce projections for four river basins including the 31 
Rhine, Upper Mississippi, Upper Yellow, and Upper Niger under 1.5, 2.0, and 3.0°C global warming. These 32 
basins were chosen because they represent different geographic, land cover, and hydro-climatic 33 
characteristics and their flood characteristics can be well reproduced by the hydrological models. This study 34 
found diverse projections for different basins, including a shift towards earlier flooding for the Rhine and the 35 
Upper Mississippi, a substantial increase in flood frequency in the Rhine only under the 1.5 and 2.0°C 36 
scenarios, and a decrease in flood frequency in the Upper Mississippi under all scenarios.  37 
 38 
The projected changes in floods are uneven in different parts of the world, although studies generally show a 39 
larger fraction of regions with an increase than with a decrease. Dankers et al. (2014) used nine hydrological 40 
models forced by GCMs. They found an increase in peak flow in more than half of the global land grids, 41 
with a consistent signal in central and eastern Siberia, southeast Asia, and India. Hirabayashi et al. (2013) 42 
used outputs from 11 climate models in combination with a global river routing model with an inundation 43 
scheme to investigate global flood risk under a changing climate. They found large increases in the flood 44 
frequency (defined as the exceedance probability of the 100-yr return levels from the late 20th century) in 45 
southeast Asia, peninsular India, eastern Africa, and the northern half of the Andes, and a decrease in Europe 46 
(except for the British Isles), southern South America, and the southern US by the end of the 21st century 47 
under the RCP8.5 scenario. The patterns of change are similar under other forcing scenarios though the 48 
magnitude of changes are smaller. Arnell and Gosling (2016) examined changes in river flood risk using a 49 
global hydrological model driven by outputs from 21 CMIP3 GCMs under the A1B scenario. Despite the use 50 
of earlier climate models and different emission scenarios, their findings are generally similar to those of 51 
Hirabayashi et al. (2013). In particular, they found an increase in flood magnitude across humid tropical 52 
Africa, south and east Asia, the majority of South America, and the high latitudes of Asia and North 53 
America, but a decrease in the 100-year peak flow in the Mediterranean and in large areas of central and 54 
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eastern Europe, southwest Africa, and Central America. Based on seven-day flood magnitudes and using 1 
four GCMs, Döll et al. (2018) compared changes in mean and high flows under the 1.5°C  and 2.0°C global 2 
warming worlds with the climate of 2006-2015. They showed an increase in high flow in some regions and a 3 
decrease in other regions. These changes include a decrease in flood frequency in east Europe and south 4 
Canada and an increase in southeast Asia, although the agreement between models was low, except in 5 
eastern Europe. These results suggest medium confidence in flood trends at the global scale, in agreement 6 
with projections of extreme precipitation, but low confidence in projected regional changes.  7 
 8 
At regional and local scales, projected changes in river floods are characterized by high uncertainty. In 9 
Europe, two studies (Alfieri et al., 2015; Roudier et al., 2016) projected an increase in the frequency of high 10 
flows, consistent with the projected increase in extreme precipitation (Rajczak and Schär, 2017). Yet, 11 
agreement for the future projections among studies is poor. Roudier et al.(2016) and Alfieri et al. (2015) 12 
projected an increase in the magnitude of floods in South Europe, yet Giuntoli et al. (2015) projected no 13 
change and Dankers et al., (2014) and (Guerreiro et al., 2018a) projected a decrease. Inconsistencies in the 14 
future projections also exist for other regions, including the Alps (Köplin et al., 2014; Thober et al., 2018), 15 
Scandinavia (Alfieri et al., 2015; Arheimer and Lindström, 2015; Hall et al., 2014), central and eastern 16 
Europe (Hall et al., 2014; Roudier et al., 2016; Shkolnik et al., 2018), and the British Isles (Dankers et al., 17 
2014; Hall et al., 2014; Thober et al., 2018; Guerreiro et al. 2018). Projected changes in the magnitude of 18 
annual peak flow for east Asia differ among studies, including an increase (Hirabayashi et al., 2013; Dankers 19 
et al., 2014; Gu et al., 2014; Liu et al., 2017) or no changes (Arnell and Gosling, 2016). Yet, there seems to 20 
be a consistent increase in the annual peak flow projected for northern Eurasia (Shkolnik et al., 2018).   21 
 22 
Studies based on the use of regional hydrological models show a general increase in the magnitude of high 23 
flows in the United States. Naz et al. (2016) forced a hydrological model with dynamically downscaled and 24 
bias corrected outputs from 10 GCMs. They showed a general increase in the magnitude or frequency of 25 
high flows in the conterminous US, though the agreement among the models is low in the west and the east. 26 
Wobus et al (2017) examined the projected changes in the frequency of the 100-yr flow in more than 50,000 27 
streams in the conterminous US, using a hydrological model driven by statistically downscaled and bias-28 
corrected outputs from 29 GCMs under the RCP 8.5 scenario. They found a substantial increase in the 29 
frequency of high flows over the entire US. Results of these studies based on regional hydrological models 30 
can have large differences with those based on global hydrological models, which indicate a decrease in the 31 
magnitude or frequency of floods over a large portion of North America (e.g., Hirabayashi et al., 2013; 32 
Arnell and Gosling, 2016). Over South America, most studies based on global and regional hydrological 33 
models show an increase in the magnitude and frequency of high flows in the western Amazon (Sorribas et 34 
al., 2016; Langerwisch et al., 2013; Guimberteau et al., 2013; Zulkafli et al., 2016) and the Andes (Bozkurt 35 
et al., 2018).  36 
 37 
Projected changes in the magnitude or frequency of high river flows on a regional scale show a wide spread. 38 
These diverse projections need to be placed in the proper context, considering the difficulty in obtaining a 39 
robust estimate of the future changes at such spatial scales. Several factors may have contributed to the 40 
apparent disagreement among projections for the same region or locality Kundzewicz et al. (2017). These 41 
include the use of hydrological models of differing scales (global or regional), different emission scenarios, 42 
outputs from different climate models, and different flood definitions. A large and quite coherent picture 43 
emerges from studies based on various global hydrological models forced with output from different GCMs. 44 
This includes high agreement that a larger fraction of the land will see an increase in the magnitude and 45 
frequency of high flows than will see a decrease. An increase in found in southeast and north Asia, North 46 
America, the Andes and western Amazonia. Yet, many small processes that are important at the regional and 47 
local scales are not well represented in global models, making it difficult to interpret projections of a global 48 
hydrological model at regional and local levels. Regional hydrological models, especially when used in 49 
combination with regional climate models, provide better representations of regional processes, including 50 
orography, land cover, and storms. They provide more a realistic simulation of river flow, but the added 51 
complexity predictably increases the level of uncertainty in the projections. The wide range of changes in the 52 
projections of river floods in Europe clearly illustrate this (Kundzewicz et al. (2017). 53 
 54 
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Studies on urban flood projections are limited, but available studies project an increase in urban flood 1 
potential, for example in cities of North America (Kermanshah et al., 2017; Hettiarachchi et al., 2018), in 2 
northern China (Zhou et al., 2018b), and in India (Vemula et al., 2019). Because of the direct connection 3 
between extreme precipitation and urban flood potential in developed urban areas, there is high confidence in 4 
an increase in flood potential in these areas where extreme precipitation is projected to increase, especially at 5 
high global warming levels. There are few direct projections for changes in coastal floods, but flood risk 6 
should increase in the coastal regions where sea level is projected to rise (Kulp and Strauss, 2017; Pellikka et 7 
al., 2018; Rojas et al., 2018; Yin et al., 2019b). At the global scale, unprecedented coastal flood risk is 8 
projected for the second half of the 21st century (Vousdoukas et al., 2018b). Jevrejeva et al. (2018) suggest 9 
an important increase in coastal floods, with a dramatic increase in the associated economic costs; the upper-10 
middle income countries, and particularly China, would be the most affected. Thus, the projections needed in 11 
developing countries (Roberts et al., 2017; Ruckert et al., 2017). For example, Takagi et al. (2016) suggested 12 
that coastal flood extent from 2000 - 2050 could increase by 110.5 km2 in Jakarta and the rate of increase in 13 
2025-2050 would be 3.4 times faster than during the 2000-2025 period. Similar projections are suggested for 14 
Singapore (Cannaby et al., 2015). In northeast China, the coastal floods are projected to increase by 6.6% 15 
and 7.8% for the period 2050-2099 under RCP 4.5 and RCP 8.5 scenarios, respectively (Zhang et al., 2019f). 16 
 17 
Summary: There is high confidence in an increase in flood potential in developed urban areas where 18 
extreme precipitation is projected to increase, especially at high global warming levels. 19 
Global hydrological models project a larger fraction of the land areas to be affected by an increase in 20 
river floods than by a decrease in river floods (medium confidence). There is medium confidence that 21 
river floods will increase in the west Amazon, the Andes, and northern Eurasia. Regional changes in 22 
river floods are more uncertain because complex hydrological process are involved.   23 
 24 
 25 
11.6 Droughts 26 
 27 
Drought refers to a period of time with anomalies from average moisture conditions during which limitations 28 
in water availability result in negative impacts for various components of natural systems and economic 29 
sectors. Depending on the systems or sectors being impacted, drought may be classified in different types ( 30 
e.g., Fig. 11.17 and Table 11.3) such as agricultural (e.g., crop yield reductions or failure, often related to soil 31 
moisture deficits), ecological (e.g., tree mortality), or hydrological (e.g., water shortage in streams or 32 
storages such as reservoirs, lakes, lagoons, and groundwater) droughts. Obviously, the distinction of drought 33 
types is not absolute as a drought can impact different sectors at the same time. Because of this, drought 34 
cannot be characterized using a single universal definition (Lloyd-Hughes, 2014) or directly measured based 35 
on a single variable (SREX  Chapter 3, Wilhite and Pulwarty, 2017). Drought can happen on a wide range of 36 
timescales - from "flash droughts" on a scale of weeks (Hunt et al., 2014; Otkin et al., 2018) to multi-year or 37 
decadal rainfall deficits (Ault et al., 2014; Cook et al., 2016b; Garreaud et al., 2017). Droughts are often 38 
analysed using indices, which are measures of drought severity, duration and frequency, addressing different 39 
types of drought characteristics. There are several drought indices published in the scientific literature, as 40 
also highlighted in the IPCC SREX report (SREX  Chapter 3). These can range from anomalies in single 41 
variables ( e.g., precipitation, soil moisture, runoff, evapotranspiration) to complex indices combining 42 
different drought aspects. Table 11.3 provides a list of indices used to characterize different types of 43 
droughts. 44 
 45 
 46 
[START FIGURE 11.17 HERE] 47 
 48 
Figure 11.17: Sketch of processes and drivers related to different drought types. Note that all relationships are indicated 49 

under the dry range of the given variable and may not apply to humid conditions ( e.g., impacts of soil 50 
moisture on evapotranspiration). The asterisk (*) denotes that under conditions of critical soil moisture 51 
deficits, plant water deficits are generally critically affected by high levels of atmospheric evaporative 52 
demand (only a + relationship); however the effects can be limited outside the growing season and under 53 
humid soil moisture but dry atmospheric conditions (see text for details). The double asterisk (**) denotes 54 
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that under critical soil moisture deficits CO2 effects on plant water savings can be limited as evidenced by 1 
experimental studies in which water and CO2 effects are controlled (see text for details).  2 

 3 
[END FIGURE 11.17 HERE] 4 
 5 
 6 
[START TABLE 11.3 HERE] 7 
 8 
Table 11.3: Different types of droughts, associated metrics, general description and associated references 9 
 10 

Drought 
type 

Further 
information 

Drought metric Comments Key references 

Critical 
precipitation 
deficits 

sometimes 
referred to as 
“meteorologi
cal drought” 

Standardized 
Precipitation 
Index (SPI), 
Consecutive 
Dry Days 
(CDD) 

SPI is defined for given time scales in 
order to identify precipitation deficits 
over different periods. CDD is usually 
based on daily precipitation records. 
Dry-spell length is another commonly 
used term. 

(Donat et al., 2013a; 
Orlowsky and 
Seneviratne, 2013; 
Sillmann et al., 
2013a; Spinoni et al., 
2014; Kingston et al., 
2015; Stagge et al., 
2017) 

Critical 
increase in 
atmospheric 
evaporative 
demand 

high levels 
of potential 
evaporation; 
is related 
(but not 
only) to 
“atmospheric 
dryness” 

Potential 
evaporation, 
Evaporative 
Demand 
Drought Index 
(EDDI), which 
is the 
standardization 
of the Potential 
evaporation 
(Hobbins et al., 
2012, 2016; 
McEvoy et al., 
2016) 
. 

In most regions atmospheric water 
demand/potential evaporation is not 
measured, but there are few direct 
observations by means of evaporation 
pans. There is low confidence in 
estimates based on observations of 
temperature only for the estimation of 
trends (Sheffield et al., 2012; Vicente-
Serrano et al., 2020). Nevertheless, there 
is medium confidence (because of the 
limited number of pan evaporation 
observations) that physically-based 
models (e.g., Penman-Monteith) using all 
aerodynamic and radiative drivers from 
observations can reproduce the observed 
magnitude and variability potential 
evaporation (Azorin-Molina et al., 2015; 
Stephens et al., 2018; Sun et al., 2018c; 
Vicente-Serrano et al., 2018a). 

(Hobbins et al., 2012, 
2016; Sheffield et al., 
2012; Wang et al., 
2012; McEvoy et al., 
2016; Stephens et al., 
2018) 

Critical soil 
moisture 
deficits 

sometimes 
referred to as 
“agricultural 
drought” 

Soil moisture 
anomalies 
(SMA), 
Standardized 
Soil Moisture 
Index (SSMI) 

Networks of ground-based soil moisture 
measurements are available in different 
regions, but sparse (Dorigo et al., 2011). 
Surface soil moisture can be monitored 
from satellite, but only since the 1980s at 
the earliest (Dorigo et al., 2017), and 
they are affected by important temporal 
inhomogeneities (Dorigo et al., 2015). 
There is medium confidence in soil 
moisture derived from physically-based 
land surface models using all relevant 
observations- or reanalysis-based 
meteorological variables (precipitation, 
radiation, wind, temperature, humidity) 
as input (Hanel et al., 2018; Moravec et 
al., 2019; Seager et al., 2019), although 
soil moisture simulations are affected by 
uncertainties when compared with the 
magnitude and temporal variability of 

(Orlowsky and 
Seneviratne, 2013; 
Seneviratne et al., 
2013; AghaKouchak, 
2014; Sohrabi et al., 
2015; Zhao and Dai, 
2015; Berg and 
Sheffield, 2018; 
Samaniego et al., 
2018) 
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soil moisture measurements (Stillman et 
al., 2016; Yuan and Quiring, 2017; Ford 
and Quiring, 2019).    

Critical 
hydrological 
deficits 

sometimes 
referred to as 
“hydro-
logical 
drought” 

SRI 
(Standardized 
Runoff Index), 
SSI 
(Standardized 
Streamflow 
Index), low 
flows 

Usually based on monthly records (SRI 
and SSI) although daily streamflow is 
also used to quantify hydrological 
deficits (low flows). Observational data 
is available but not in all regions ( e.g., 
missing in many parts of Africa) 

(Van Lanen et al., 
2013; Wada et al., 
2013; Forzieri et al., 
2014; Prudhomme et 
al., 2014; Schewe et 
al., 2014; Van Loon 
and Laaha, 2015; 
Gosling et al., 2017) 

Combined 
synthetic 
measures of 
drought 

Synthetic 
metrics of 
drought 
based on 
meteorologic
al data 

Precipitation 
Evapotranspirati
on Index 
(SPEI), Palmer 
Drought 
Severity Index 
(PDSI), 
Standardized  

These drought indices are generated 
using precipitation and estimates of 
atmospheric evaporative demand. The 
quality of the outputs depend on the 
methods used to determine the 
atmospheric demand. These indices have 
limitations to be considered proxies of 
soil moisture deficits (in the case of the 
SPEI, because of the use of Epot instead 
of actual evapotranspiration; in the case 
of PDSI, because of its oversimplified 
form compared to state-of-the-art land 
surface models), whereby SPEI is easier 
to physically interpret. Given these 
limitations, the SPEI is not intended to 
be a soil moisture proxy but can allow to 
identify vegetation stress conditions in 
which atmospheric evaporative demand 
plays an important role.  

(Dai, 2013; Beguería 
et al., 2014; Cook et 
al., 2014a; Vicente-
Serrano et al., 2015; 
Dai et al., 2018) 

 1 
[END TABLE 11.3 HERE] 2 
 3 
 4 
11.6.1 Mechanisms and drivers 5 
 6 
Similar to many other extreme events (see Box 11.1), droughts occur as a combination of thermodynamical 7 
and dynamical processes. Thermodynamical processes contributing to drought, which are mostly related to 8 
heat and moisture exchanges and also in part modulated by plant coverage and physiology, can be affected 9 
by greenhouse gas forcing both at global and regional scale. They affect for instance atmospheric humidity, 10 
temperature, radiation, which in turn lead to modified precipitation and/or evapotranspiration in some 11 
regions and time frames. On the other hand, dynamical processes are particularly important to explain 12 
drought variability on several time scales, from few weeks (flash droughts) to multiannual (decadal 13 
droughts). Nevertheless, there is limited evidence of circulation changes attributable to greenhouse gas 14 
forcing that are affecting long-term changes in drought. 15 
 16 
 17 
11.6.1.1 Precipitation deficits 18 
 19 
Overall, precipitation is generally the main driving factor controlling drought development. There is high 20 
confidence that atmospheric dynamic, which varies on interannual, decadal and longer time scales, is the 21 
main contributor to precipitation deficits in the majority of the world regions (Schubert et al., 2016), but 22 
anomalies in the moisture transport also contribute to trigger and intensify them (Drumond et al., 2019; 23 
Herrera-Estrada et al., 2019). In some regions and time frames,  e.g., in the US Great Plains in summer 24 
(Koster et al., 2011) or the warm season in the greater Alpine region (Haslinger et al., 2019), soil moisture-25 
precipitation feedbacks may also play a substantial role in affecting precipitation deficits, and possibly even 26 
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a dominant role (Gimeno et al., 2012). Nevertheless, in the vast majority of the world regions precipitation 1 
deficits are driven by dynamic mechanisms recorded on different spatial scales (including synoptic –2 
atmospheric rivers and extratropical cyclones, blocking and ridges- (Sousa et al., 2017), dominant 3 
hemispheric circulation patterns (Kingston et al., 2015) and global ocean-atmosphere coupled patterns like 4 
ENSO (Dai and Zhao, 2017).  5 
 6 
El Niño-Southern Oscillation (ENSO) is an important driver of drought in large regions of the world (e.g., 7 
North and South America, South Africa, Australia) (Dai, 2013; Seager and Hoerling, 2014; Burgman and 8 
Jang, 2015; Schubert et al., 2016; Baek et al., 2019). In other areas, droughts are affected by the combination 9 
of ENSO and other mechanisms ( e.g., the Indian Ocean Dipole in East Africa and Indonesia) (Funk et al., 10 
2018b; Lestari et al., 2018). Precipitation in other regions such as Northern Eurasia, Europe and North 11 
Africa, central and eastern Canada and the middle East are not SST-driven and other circulation patterns 12 
affect precipitation deficits (Schubert et al., 2016; Kingston et al., 2015; Raymond et al., 2018). In tropical 13 
and subtropical regions precipitation deficits have been linked to expansions and contractions of the Hadley 14 
cell (Nguyen et al., 2015; Davis and Birner, 2016; Feldl and Bordoni, 2016). However, multi-decadal 15 
changes in the position of the Hadley cell are part of the natural climate variability (Bronnimann et al., 16 
2015), and there is still low confidence in a climate change signal independent of the natural climate 17 
variability (Staten et al., 2018). Nonetheless, there is low confidence that changes in large scale circulation 18 
patterns drive trends in precipitation deficits (see Chapter 2). In future projections, there is a strong regional 19 
disagreement between models regarding teleconnections between ENSO and regional precipitation (Yeh et 20 
al., 2018). Similar uncertainties are recorded in continental circulation modes, as with the future role of the 21 
North Atlantic Oscillation on Europe’s precipitation (Deser et al., 2017). There is high confidence that 22 
precipitation is also affected by soil moisture feedbacks in some regions (SREX  Chapter 3, Koster et al. 23 
2011; Taylor et al. 2012; Guillod et al. 2015; Tuttle and Salvucci 2016), whereby the sign of the feedbacks 24 
may be either positive or negative and either local or non-local (Taylor et al., 2012; Guillod et al., 2015; 25 
Tuttle and Salvucci, 2016). State-of-the-art Earth System Models tend to underestimate non-local negative 26 
feedbacks (Taylor et al. 2012). Positive soil moisture-precipitation feedbacks are shown to contribute to 27 
decreases in precipitation in some regions in climate model projections (Vogel et al., 2017, 2018).  28 
 29 
 30 
11.6.1.2 Atmospheric evaporative demand 31 
 32 
Potential evaporation (Epot), also known as atmospheric evaporative demand (AED), is the amount of 33 
evaporation that would occur from an open surface water given actual meteorological conditions; it is also 34 
close to potential evapotranspiration, which is the highest evapotranspiration that can occur from a given 35 
land surface if soil moisture is unlimited. Epot is affected by atmospheric dryness, often quantified with the 36 
vapor pressure deficit (VPD). But other drivers are also highly relevant, including solar radiation and wind 37 
speed (Hobbins et al., 2012; Mcvicar et al., 2012; Sheffield et al., 2012).  38 
 39 
Epot can be estimated using different methods (McMahon et al., 2013) and those solely based on air 40 
temperature usually overestimate it in magnitude and time trends (Tomas-Burguera et al., 2017). Epot is by 41 
definition different to actual evapotranspiration (ET), which is the water flux from soil and vegetation to the 42 
atmosphere, and for which Epot represents an upper bound. ET is a key hydrological variable and it is often 43 
much smaller than Epot (in particular in arid environments). An increase in Epot does not necessarily lead to 44 
increased ET (Milly and Dunne, 2016), since if soil moisture is limited, soil evaporation and/or plant 45 
transpiration cannot supply the atmospheric demand (Box 11.1). Nevertheless, under low soil moisture 46 
conditions, it strongly contributes to agricultural/ecological drought impacts (Anderegg et al., 2013, 2016; 47 
Williams et al., 2013), and if it leads to ET changes, during periods of drought deficits, also to hydrological 48 
droughts (Seneviratne et al., 2012a; Teuling et al., 2013). The influence of Epot on drought depends on the 49 
drought type, the environmental conditions and the moisture availability (Vicente-Serrano et al., 2020). The 50 
dynamic of Epot is controlled by circulation variability (Park Williams et al., 2014; Chai et al., 2018; 51 
Martens et al., 2018). Thermodynamic processes also play a fundamental role. Increased atmospheric CO2 52 
concentrations have warmed the atmosphere and in the absence of other influences, this increases Epot by 53 
means of enhanced VPD. Land-atmosphere feedbacks are also important in affecting atmospheric moisture 54 
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content (Seneviratne et al. 2010; Berg et al. 2016; Haslinger et al. 2019; Zhou et al. 2019; Box 11.1), 1 
including the differential warming between ocean and continental areas that affect the water vapor saturation 2 
of the oceanic air masses that bring moisture to the continents (Sherwood and Fu, 2014; Byrne and 3 
O’Gorman, 2018). Finally, given land-atmosphere coupling and actual ecosystem properties, in vegetated 4 
areas maximum evapotranspiration, or “potential evapotranspiration”,  is also affected by a vegetation 5 
resistance (Maes et al., 2019) and high CO2 concentration may lead to increased evapotranspiration given its 6 
influences on plant stomatal conductance (Milly and Dunne, 2016), plant functional traits (Anderegg et al., 7 
2019), and water use efficiency (Roderick et al. 2015; Berg et al. 2016; Swann et al. 2016; Box 1.1). 8 
 9 
 10 
11.6.1.3 Soil moisture deficits 11 
 12 
Soil moisture shows an important correlation with precipitation variability (Khong et al., 2015; Scaini et al., 13 
2015; Seager et al., 2019), but ET also plays a substantial role in further depleting moisture from soils in 14 
particular in humid regions during droughts (Seneviratne et al., 2012a; Teuling et al., 2013). In addition, soil 15 
moisture may play a role in drought self-intensification under dry conditions in which ET is decreased and 16 
leads to higher atmospheric evaporative demand (see Section 11.1.1.3) , an effect that can also contribute to 17 
“flash droughts” (Otkin et al., 2016, 2018). If soil moisture becomes limited, ET is reduced, which on one 18 
hand may decrease the rate of soil drying, but on the other hand can lead to further atmospheric drying 19 
through various feedback loops (Seneviratne et al., 2010; Teuling, 2018; Vogel et al., 2018; Miralles et al., 20 
2019). The process can be complex since vegetation coverage plays a role in modulating albedo and in 21 
providing access to deeper stores of water (both in the soil and groundwater), and land cover changes may 22 
alter ET (Sterling et al., 2013; Döll et al., 2016; Woodward et al., 2014). Thus, vegetation coverage can be 23 
critical to assess soil moisture variations. In the US Great Plains woodlands are characterised by lower soil 24 
moisture content in comparison to neighbouring pastures (Hao et al., 2019) and earlier spring greening 25 
contributes to summer soil drying in the Northern Hemisphere (Lian et al., 2020). In addition, boundary-26 
layer feedbacks are also involved (Miralles et al., 2014). Soil moisture limitations is often more relevant than 27 
atmospheric dryness to explain gross primary production anomalies or vegetation stress, mostly in sub-28 
humid and semi-arid regions (Stocker et al. 2018; Liu et al. submitted). 29 
 30 
While CO2 concentrations are shown to potentially affect plant evapotranspiration and increase plant water-31 
use efficiency (see 11.1.1.2), there is evidence that under critical soil moisture deficits CO2 effects on plant 32 
water savings are limited, given results of recent experimental studies in which water and CO2 effects are 33 
controlled. The effect would be different to that observed under normal/humid conditions. For 34 
environmental/agricultural drought conditions under higher warming, the role of CO2 effects on actual 35 
evapotranspiration could be different to that under humid or normal conditions (or even than for mild 36 
drought conditions) (Morgan et al. 2004; Xu, Jiang, Jia, & Zhou, 2016). Different experiments based on 37 
enriched CO2 conditions have indeed shown that elevated CO2 does not necessarily reduce nor delay tree 38 
mortality under drought (Bachofen et al. 2018; Duan et al., 2014, 2015), a response also shown in pastures 39 
and shrubs (Nackley et al., 2018) and in crops (Dikšaitytė, Viršilė, Žaltauskaitė, Januškaitienė, & 40 
Juozapaitienė, 2019). On the other hand, Morgan et al. (2011)report a substantial alleviation of drought 41 
conditions for crops under enhanced CO2, but also highlight that these effects would be likely to be limited 42 
under very intense drought conditions. Hence we assess that there is medium confidence that CO2 effects 43 
would reduce water needs by plants under non-extreme droughts but not under very extreme soil moisture 44 
drought conditions. 45 
 46 
 47 
11.6.1.4 Hydrological deficits 48 
 49 
Drivers of hydrological droughts are complex. On the one hand, there are soil hydrological processes, which 50 
control the propagation of meteorological droughts throughout different parts of the hydrological cycle (Van 51 
Loon and Van Lanen, 2012) that are spatially and temporally complex (Herrera-Estrada et al., 2017; Huang 52 
et al., 2017d) and difficult to quantify (Apurv et al., 2017; Konapala and Mishra, 2017; Hasan et al., 2019). 53 
On the other hand, hydrological droughts are affected by land cover, groundwater and soil characteristics 54 
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(Van Lanen et al., 2013; Van Loon and Laaha, 2015; Barker et al., 2016) as well as human activities (water 1 
management and demand, damming and land use changes (Van Loon et al., 2016; He et al., 2017; Veldkamp 2 
et al., 2017; Wu et al., 2018a; Xu et al., 2019b). Wada et al. (2013) estimate that human water consumption 3 
has intensified the magnitude of hydrological droughts by 20%-40% over the last 50 years. Thus, these 4 
authors suggesteded that in the Mediterranean, and the central US, as well as in parts of Brazil, the human 5 
water use contribution to hydrological droughts was more important than climatic factors (see also Martins et 6 
al., 2017; Otto et al., 2015; Vicente-Serrano et al., 2017, 2019c). On the other hand, a study from 7 
Gudmundsson et al. (submitted) based on the latest version of the ISIMIP multi-model experiment suggests 8 
that the contribution of human water use is smaller than that of anthropogenic climate change. Groundwater 9 
abstractions may also affect streamflow drought duration (Tijdeman et al., 2018).  10 
 11 
 12 
11.6.1.5 Combined synthetic measures of drought 13 
 14 
Given difficulties for drought quantification and data constrains for hydrological variables (e.g., soil 15 
moisture, streamflow, groundwater), but also environmental (e.g., forest growth and mortality, biomass 16 
production) and agricultural impacts (i.e., crop failure, yield reduction), simplified synthetic drought metrics 17 
that combine both precipitation and Epot have been developed. These indices have the advantage of being 18 
based on meteorological information, which is available worldwide. However, they have also some 19 
limitations in their suitability (e.g., usually they are poor estimation approaches of the soil moisture 20 
variability).  21 
 22 
The PDSI has been widely used to monitor and quantify drought severity, but it is affected by several 23 
constrains, which questions its applicability (see further details in SREX  Chapter 3 and in Berg and 24 
Sheffield 2018). Its main limitation is that it is not based on a robust water balance model as it oversimplifies 25 
soil surface hydrological processes (SREX  Chapter 3). In addition, its calibration is targeted on present 26 
climate and can perform poorly under warmer climates (SREX  Chapter 3). Even calculated using a self-27 
calibration approach, the PDSI has strong problems of spatial comparability since it is an index that 28 
represents different drought frequencies among sites. Finally, it cannot be calculated on different time-scales 29 
(Ma et al., 2014; Peña-Gallardo et al., 2018b, 2018a; Tian et al., 2018), which is essential to evaluate drought 30 
impacts on a variety agricultural, environmental, hydrological and socioeconomic systems. Because of the 31 
numerous limitations of the PDSI, we only provide limited consideration to recent trends and projections 32 
based on this index.  33 
 34 
The SPEI combines precipitation and Epot on different time scales, being equally sensitive to these two 35 
variables (Vicente-Serrano et al., 2015), although given statistical characteristics of precipitation series, SPEI 36 
variability is mostly driven by precipitation variability. SPEI is not intended to be a proxy of soil moisture, 37 
but rather a flexible metric of vegetation water stress. In the SPEI the soil moisture limitation does not exist, 38 
and increased AED always reduces SPEI, independently of ET. While this means that SPEI cannot provide 39 
an estimate of soil moisture condition, the resulting estimates are nonetheless of relevance for vegetation 40 
stress since during periods of low precipitation, although ET is limited, the AED enhances the 41 
evapotranspiration deficit (ET-AED), particularly in dry regions and in humid regions during periods of 42 
critical soil moisture deficits. This implies water stress for vegetation (i.e., the inability to photosynthesize 43 
because the atmosphere is too dry for stomata to open) that may lead to fatal ecosystem impacts (e.g., forest 44 
mortality, Williams et al. 2013; Allen et al. 2015; Anderegg et al. 2016). This explains why in dry climates 45 
and in humid regions during dry periods, the SPEI is well correlated with impacts on crop yields (Potopová 46 
et al., 2015; Wang et al., 2016a; Zipper et al., 2016; Parsons et al., 2019; Shekhar and Shapiro, 2019), 47 
vegetation activity (Huang et al., 2015; Bachmair et al., 2018) and forest growth (Peña-Gallardo et al., 48 
2018b). Interestingly, even under these conditions, some studies report a correlation of SPEI with soil 49 
moisture deficits (Scaini et al., 2015; Wang et al., 2015; Tian et al., 2018; Zhang et al., 2018e). On the 50 
contrary, under humid conditions AED effects are negligible given sufficient soil water availability. This 51 
would imply overestimations of the drought stress caused by the AED in the SPEI (Cook et al., 2014a; Berg 52 
and Sheffield, 2018; Scheff, 2018; Vicente-Serrano et al., 2020).  53 
 54 
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Summary:  There are several drought types that may affect assessments regarding their changes 1 
under increased greenhouse gas forcing (high confidence). It is important to distinguish precipitation 2 
deficits from soil moisture deficits, streamflow deficits, increased atmospheric evaporative demand, 3 
and other measures of drought conditions and land water deficits. Drought events are both the result 4 
of dynamical and thermodynamical processes.  5 
 6 
 7 
11.6.2 Observed trends 8 
 9 
The SREX report (SREX  Chapter 3) and the AR5 (AR  Chapter 2) assessed that there was low to medium 10 
confidence in trends in global droughts. Natural climate variability driven by large-scale mechanisms (e.g., 11 
ENSO, PDO) may mask drought trends (Trenberth et al., 2014; Dai et al., 2018). Estimating drought trends 12 
has limitations given large uncertainties in publicly available data products (Trenberth et al., 2014; Beguería 13 
et al., 2016; Dai and Zhao, 2017). Some key climate variables ( e.g., relative humidity, wind speed) show 14 
high uncertainties (Trenberth et al., 2014), low spatial coverage (Willett et al., 2014), and temporal 15 
inhomogeneities (Azorin-Molina et al., 2014). Measurements of soil moisture are also limited. Ground-based 16 
soil moisture observations are available in some regions but still scarce (Dorigo et al., 2011; Quiring et al., 17 
2016). Long-term satellite-based estimates are mostly available for surface soil moisture based on 18 
microwave remote sensing and only since the 1980s (Dorigo et al. 2017), and they are also affected by 19 
important uncertainties (Dorigo et al., 2015); in addition, surface soil moisture and root-zone soil moisture 20 
(which is more relevant to plants), are found to substantially differ in climate models (Berg et al., 2017) and 21 
show low temporal agreement with soil moisture observations (Ford and Quiring, 2019). There are, however, 22 
less limitations in the availability of streamflow observations for assessing hydrological drought trends. 23 
Global databases of streamflow observations have been recently compiled (Do et al., 2018; Gudmundsson et 24 
al., 2018), although large regions are not yet covered (Central and South America, Africa and Asia) and in 25 
others the time series are relatively short for assessments of trends. 26 
 27 
 28 
11.6.2.1 Precipitation deficits 29 
 30 
Strong precipitation deficits have been recorded in recent decades in the Amazon (2005, 2010), southwestern 31 
China (2009-2010), southwestern North America (2011-2014), Australia (2001-2009), California (2014), the 32 
middle East (2012-2016), Chile (2010-2015), among others (van Dijk et al., 2013; Mann and Gleick, 2015; 33 
Rowell et al., 2015; Marengo and Espinoza, 2016; Dai and Zhao, 2017; Garreaud et al., 2017, 2019; 34 
Marengo et al., 2017; Brito et al., 2018; Cook et al., 2018). Global studies show no significant trends in time 35 
series of the Standardized Precipitation Index (SPI) (Orlowsky and Seneviratne, 2013; Spinoni et al., 2014), 36 
and in derived drought frequency and severity data (Spinoni et al., 2019), with very few exceptions in West 37 
Africa consistent with studies based on trends in the CDD (Chaney et al. 2014; Donat et al. 2014; Barry et al. 38 
2018; Dunn et al. submitted), and South America (Figure 11.19). Regional studies suggest an increase of 39 
precipitation deficits in East Africa (Funk et al., 2015a; Nicholson, 2017). An upward trend in CDD has been 40 
suggested in Northeastern Brazil, the South America Monsoon, Southeastern South America and 41 
Northwestern South America (Skansi et al., 2013; Donat et al., 2016a) and a more general drying trend in 42 
Chile (30-48°S) (Saurral et al., 2017; Boisier et al., 2018). Also an increase in CDD is suggested in northern 43 
China since 1990s (Zhang et al., 2019a) and in Southeastern Asia (Dunn et al., submitted). In North 44 
America, there are no long-term trends in precipitation deficits (Spinoni et al., 2019). In Australia, with the 45 
exceptions of southwest Western and south Australia, droughts have become less frequent, shorter and less 46 
intense (Gallant et al., 2013). In Nigeria there is a noticeable increase of the SPI, indicative of less drought 47 
conditions (Ogunrinde et al., 2019), and no changes in the SPI have been recorded in the mountain areas of 48 
Morocco (Zkhiri et al., 2019). In South Africa there is an increase in the CDD (Dunn et al., submitted). In 49 
central Europe there are no relevant changes in the frequency of dry spells (Zolina et al., 2013) and in the 50 
SPI (Hauser et al., 2017; Spinoni et al., 2017), although in the Alps there is a decrease in wet days (Gobiet et 51 
al., 2014). In Northern Europe there are no changes in drought severity (Spinoni et al., 2014, 2017; Kay et 52 
al., 2018). In Southern Europe, some studies suggest an increase of precipitation deficits (Hoerling et al., 53 
2012; Gudmundsson and Seneviratne, 2016; Spinoni et al., 2017), but other studies suggest that at least in 54 
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the western Mediterranean there are no significant trends in SPI drought duration and magnitude since 1960 1 
(Domínguez-Castro et al. 2019). The characteristic pattern in the Mediterranean area is a high spatial 2 
diversity in the precipitation deficits and important temporal variability (Vicente-Serrano et al., submitted). 3 
While weak drying trends in precipitation are found over the whole Southern European regions since 1950, 4 
there are no identifiable trends when considering timeseries going back to 1850 (Vicente-Serrano et al., 5 
submitted), in agreement with precipitation reconstructions over the last 250 years (Hanel et al., 2018).     6 
 7 
 8 
11.6.2.2 Atmospheric evaporative demand 9 
 10 
Increases in Epot have intensified recent drought events (Park Williams et al., 2014; Seager et al., 2015; 11 
Basara et al., 2019; García-Herrera et al., 2019), enhanced vegetation stress (Allen et al., 2015; Sanginés de 12 
Cárcer et al., 2018; Yuan et al., 2019), and contributed to the depletion of soil moisture promoting enhanced 13 
ET (Teuling et al., 2013). Studies suggest that atmospheric dryness records earlier than other metrics drought 14 
onset and flash droughts (Hobbins et al., 2016; McEvoy et al., 2016; Yao et al., 2018; Basara et al., 2019). 15 
Trends in Epot based on measurements (Evaporation pans) and physical models (i.e., the Penman-Monteith 16 
equation (Pereira et al., 2015)) provide indication of possible trends in the influence of atmospheric dryness 17 
on drought. Given the observed global temperature increases (see Chapter 2 and Section 11.3) and dominant 18 
decrease in relative humidity (Simmons et al., 2010; Willett et al., 2014; Vicente-Serrano et al., 2018b), VPD 19 
has increased globally (Barkhordarian et al., 2019; Yuan et al., 2019). In some world regions, pan 20 
evaporation (Epan) has increased as a consequence of VPD changes [e.g., in China (Li et al., 2013; Sun et 21 
al., 2018c; Yang et al., 2018b), the Western Mediterranean (Azorin-Molina et al., 2015) and Australia 22 
(Stephens et al., 2018)]. Nevertheless, there is an important regional variability and in other areas Epan has 23 
decreased [ e.g., Mexico (Breña-Naranjo et al., 2016) or the Tibetean Plateau (Zhang et al., 2018a)] or it did 24 
not show substantial changes [e.g., in Uruguay, Vicente-Serrano et al., 2018a]. Physical models also show an 25 
important regional diversity, with an increase in New Zealand (Salinger, 2013) or the Mediterranean (Gocic 26 
and Trajkovic, 2014; Vicente-Serrano et al., 2014a; Piticar et al., 2016), a decrease in India (Jhajharia et al., 27 
2015), and strong spatial variability in North America (Seager et al., 2015). This variability is driven by the 28 
role of other meteorological variables that affect Epot. Among them wind speed is very relevant (McVicar et 29 
al., 2012), and studies suggest a relevant reduction of the wind speed (Zhang et al., 2019h) that could 30 
compensate the role of the VPD increase. Nevertheless, VPD trends would dominate over wind speed trends 31 
to explain Epot changes (Wang et al., 2012), which are dominantly positive worldwide (Vicente-Serrano et 32 
al., 2020).      33 
 34 
 35 
11.6.2.3 Soil moisture deficits 36 
 37 
There are limited measurements of soil moisture from ground observations (Dorigo et al., 2011; Qiu et al., 38 
2016; Quiring et al., 2016), which impedes their use in the analysis of trends. Among the few existing 39 
observational studies covering at least two decades, Liu et al. (2015) identified a general declining trend in 40 
North China between 1983 and 2012, but in central China trends are dominantly positive (Qiu et al., 2016). 41 
Alternatively, satellite measurements may be used. Dorigo et al. (2012) analysed global remote sensing soil 42 
moisture from 1988 to 2010, and suggested drying trends in the Southern US, central South America, central 43 
Eurasia, northern Africa and the Middle East, Mongolia and northeast China, northern Siberia, and Western 44 
Australia. Nevertheless, these trends must be considered very carefully since satellite soil moisture is 45 
affected by strong uncertainties when compared with in-situ soil moisture observations (Dorigo et al., 2015; 46 
Rodell et al., 2018). Reanalysis datasets have also been used to analyse soil moisture trends, although the 47 
different reanalysis products strongly differ and show important limitations in reproducing soil moisture 48 
variability (Liu et al., 2014). There are also several studies that have modelled long-term soil moisture 49 
deficits using meteorological data and land-atmosphere models (see uncertainties associated to these models 50 
in 11.6.3.3). In regions such as South-Eastern North America there are no long-term trends, with soil 51 
moisture deficits in the last decades comparable to those recorded in the 20th century (Park Williams et al., 52 
2017). A similar temporal pattern characterised by no changes is found in central North America (Seager et 53 
al., 2019) and East Africa (Kew et al., 2019a). Nevertheless, the majority of studies suggest an increase in 54 
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the frequency and areal extent of soil moisture deficits with examples in East Asia from 1948 to 2010 1 
(Cheng et al., 2015), India between 1980 and 2008 (Mishra et al., 2014b), North China between 1960 and 2 
2010 (Qin et al., 2015b; Jia et al., 2018), Northwest North America between 1950 and 2013 (Ahmadalipour 3 
and Moradkhani, 2017) and the Czech Republic between 1961 and 2012 (Trnka et al., 2015b). In Central 4 
Europe and the Mediterranean, soil moisture models suggest an increase in the frequency of soil-moisture 5 
deficits (Hanel et al., 2018; Moravec et al., 2019). Given that precipitation deficits do not show general 6 
trends in the last decades in these areas (See 11.6.2.1), the possible explanation of the dominant negative 7 
trends recorded in the modeled soil moisture could be related to the increase in Epot (See 11.6.2.2), which 8 
would enhance ET. This would contribute to deplete soil moisture during droughts (Seneviratne et al., 2012a; 9 
Teuling et al., 2013), as suggested by modeling approaches in China (Cheng et al., 2015; Li et al., 2019c) 10 
and central Europe (Trnka et al., 2015a; Van Der Linden et al., 2019).  11 
 12 
 13 
11.6.2.4 Hydrological deficits 14 
 15 
There are few studies analysing trends in hydrological drought but there is evidence of increased 16 
hydrological droughts in the Mediterranean (Giuntoli et al., 2013; Lorenzo-Lacruz et al., 2013; 17 
Gudmundsson et al. 2019), China (Zhang et al., 2018b) and southern Africa (Gudmundsson et al., 2019). In 18 
Northwestern Europe there is no evidence of changes in the severity of hydrological droughts during the 20th 19 
century (Barker et al., 2019). In the US, depending on the methods, datasets and study periods, there are 20 
differences between studies that suggest an increase (Shukla et al., 2015; Udall and Overpeck, 2017) vs a 21 
decrease in hydrological drought frequency (Mo and Lettenmaier, 2018), but in general there is strong spatial 22 
variability (Poshtiri and Pal, 2016). Shukla et al. (2015) suggested that the high temperatures observed in 23 
2014 in California increased hydrological drought severity, and Udall and Overpeck (2017) estimated that 24 
between 1/6 and ½ of the flow reduction in the Colorado river between 2000-2014 was related to the 25 
unprecedented high temperatures (Xiao et al., 2018). In the Mediterranean region there is also hydrological 26 
drought intensification, which could be either explained by human uses and land cover changes (Vicente-27 
Serrano et al., 2019b), or related to the influence of precipitation trends (Giuntoli et al., 2013; Gudmundsson 28 
et al., 2017) and increased Epot (Vicente-Serrano et al., 2014b). The Epot effects on hydrological droughts 29 
would be associated to increased ET in the humid headwaters due to large natural revegetation processes 30 
(García-Ruiz et al., 2011; Teuling et al., 2019), and the increase in the length of the vegetation active period 31 
(Frank et al., 2015), but also to the water evaporated from water bodies and from large irrigated lands 32 
(Martínez-Granados et al., 2011; Vicente-Serrano et al., 2017a).   33 
 34 
 35 
11.6.2.5 Combined synthetic measures of drought 36 
 37 
Drought trend analysis have often been based on drought indices that combine precipitation and Epot, such 38 
as the PDSI (Dai, 2013; Dai and Zhao, 2017; Dai et al., 2018) or the SPEI (Spinoni et al., 2019). Given the 39 
limitations of the PDSI stated above, we limit the assessment of drought trends based on this index in the 40 
report.  41 
 42 
SPEI suggests slightly higher increases in the regions affected by drying over the last decades in comparison 43 
to the SPI (Spinoni et al., 2019), mainly in regions of West and South Africa, the Mediterranean and West 44 
China (Figure 11.18). A number of regional studies based on the SPEI have also showed SPEI-based drying 45 
trends in the Amazon (Marengo and Espinoza, 2016b; Fu et al., 2013), central America (Hidalgo et al., 46 
2017), Iran (Tabari and Aghajanloo, 2013), South Asia (Niranjan Kumar et al., 2013), the Fertile Crescent 47 
(Kelley et al., 2015; Mathbout et al., 2018), regions of China (Yu et al., 2014; Chen and Sun, 2015b; Wu et 48 
al., 2019b) and Southern Europe (Cook et al., 2014a; Ozturk et al., 2015; Roudier et al., 2016; Gudmundsson 49 
et al., 2017; Stagge et al., 2017; González-Hidalgo et al., 2018).Nevertheless, it is necessary to carefully 50 
evaluate these SPEI-based drying trends, given that Epot effects on soil moisture (Manning et al., 2018) and 51 
on agricultural/ecological droughts (Yang et al., 2016), can be different under humid and dry conditions and 52 
between drought types (see further discussion in Section 11.6.1.1). Although SPEI in humid regions are not 53 
very sensitive to Epot variability (Vicente-Serrano et al., 2015), this metric could potentially overestimate 54 
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Epot effects in these regions. Nevertheless in water-limited regions, Epot has potentially contributed to 1 
increase the drought severity during low rainfall periods (Vicente-Serrano et al., 2020), given the sustained 2 
decrease of the SPEI in the Mediterranean region over the last decades (Stagge et al., 2017).  3 
 4 
 5 
[START FIGURE 11.18 HERE] 6 
 7 
Figure 11.18:  Observed trends in drought severity and frequency obtained from 3-month SPEI and SPI based on 8 

Global Precipitation Climatology Centre (GPCC) precipitation using the Climate Research Unit (CRU) 9 
Epot datasets from 1981 to 2016. The threshold to identify drought episodes was set at -1 SPI/SPEI units, 10 
which represents 20% of probability (1 event in 5 years).Based on (Spinoni et al., 2019). 11 

 12 
[END FIGURE 11.18 HERE] 13 
 14 
 15 
[INSERT FIGURE 11.19 HERE] 16 
 17 
Figure 11.19:  Observed linear trend over 1951-2018 in the annual consecutive dry days (CDD) from the most recent 18 

HadEX3 data set. Units: days/decade. (from Dunn et al., submitted)  19 
 20 
[END FIGURE 11.19 HERE] 21 
 22 
 23 
Summary: There is high confidence that atmospheric evaporative demand has increased on average 24 
on continents, contributing to increase water stress during precipitation deficits. Trends in 25 
precipitation deficits are regionally variable and not significant when averaged at global scale (high 26 
confidence). There is high confidence that precipitation deficits have increased since the mid 20th 27 
century in West Africa and Southern Africa. There is medium confidence in trends in soil moisture 28 
deficits based on observations-driven land surface models, which suggest an increase in the frequency 29 
of soil moisture deficits in some regions (North China, Northwest North America and the 30 
Mediterranean). There is medium confidence that some regions show more frequent hydrological 31 
droughts (e.g., South Africa, South North America, the Mediterranean). There is medium confidence 32 
that trends in potential evapotranspiration have exceeded trends in precipitation in some regions and 33 
seasons.   34 
 35 
 36 
11.6.3 Model evaluation 37 
 38 
Assessment of model performance for drought is difficult given the different drought types, impacts and 39 
metrics used to assess drought. In addition, assessing the reliability of drought trends in model outputs is also 40 
difficult given observational constrains for most of modeled drought metrics. Finally, there are uncertainties 41 
associated to the internal climate variability, which is very large for droughts, and model divergences.  42 
 43 
 44 
11.6.3.1 Precipitation deficits 45 
 46 
Models show limited performance and large spread in identifying precipitation deficits and associated long-47 
term trends in comparison with observations (Nasrollahi et al., 2015). Orlowsky and Seneviratne (2013) 48 
compared drought trends using three different observation precipitation datasets and simulations by 32 49 
CMIP5 models from 1950 to 2009 and showed agreement only in high latitudes (i.e., > 55° degrees North 50 
from the equator). Knutson and Zeng (2018) found a strong tendency for CMIP5 historical runs to simulate a 51 
drying precipitation trend bias compared to observed trends (1901-2010), particularly in mid- to high 52 
latitudes, where the observed increasing precipitation trends were significantly undersimulated by models. 53 
Models generally underestimate the severity of the precipitation deficits in comparison to the observations 54 
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(Ukkola et al., 2018). In addition, future projections show an important spread among models in the 1 
projected frequency of precipitation deficits (Touma et al., 2015; Zhao et al., 2016; Engström and Keellings, 2 
2018). There are important spatial differences in the spread, which is higher in the regions where an 3 
enhanced drought condition is projected and under high-emission scenarios (Orlowsky and Seneviratne, 4 
2013). The spread among models is the lowest in East North America but very high in the Mediterranean or 5 
Central America (Touma et al., 2015). Nonetheless, some event attribution studies have concluded that very 6 
wet seasons and droughts at regional scales can be adequately simulated by some climate models (Schaller et 7 
al., 2016; Otto et al., 2018c). 8 
 9 
 10 
11.6.3.2 Atmospheric evaporative demand 11 
 12 
Scheff and Frierson (2015) analysed average Epot in 17 CMIP5 GCMs for the period 1981-1999 and 13 
although the spatial patterns of the model outputs resemble with the observations, the magnitude of Epot 14 
showed strong divergence among models globally and regionally. The most comprehensive evaluation study 15 
was by Liu and Sun (2016) that compared the atmospheric evaporative demand obtained from 12 CMIP5 16 
GCMs in China with Epan observations for the period 1961-2000. They showed that although the GCMs 17 
captured well seasonal cycles, regional averages were underestimated given bias in air temperature and VPD. 18 
Sheffield et al. (2013) stressed the low capability of the models to provide realistic values of the latent heat. 19 
In addition Liu and Sun (2016) found strong bias among the different models, both in the agreement with the 20 
observations and in the physical drivers that control both aerodynamic and radiative Epot drivers. Although 21 
the bias recorded in the different variables tend to be compensated in the Penman-Monteith equation (Liu 22 
and Sun, 2017), the GCMs did not capture well the dominant Epan negative trends recorded by observations 23 
between 1961 and 2000, and most of the models showed a dominant positive trend. In summary, there is low 24 
confidence that models may identify anomalous atmospheric drying given the lack of studies and model 25 
limitations.  26 
 27 
 28 
11.6.3.3 Soil moisture deficits 29 
 30 
Modeling soil moisture deficits shows more uncertainty than modeling precipitation deficits since in addition 31 
to the uncertainties related to cloud and precipitation processes, there is uncertainty related to the soil 32 
hydrological processes (Lu et al., 2019). The spatial resolution of models is a limitation since representation 33 
of some land-atmosphere feedbacks and topographical effects requirest detailed resolution (Van Der Linden 34 
et al. 2019; Nicolai‐Shaw et al. 2015).  35 
 36 
Overall, there are contrasting results on the performance of land surface models in representing soil 37 
moisture. Anomalies are generally reasonably well captured by models driven with observations-based 38 
forcing ( e.g., Dirmeyer et al. 2006; Albergel et al. 2013; Xia et al. 2014; Balsamo et al. 2015; Reichle et al. 39 
2017), but there can be substantial intermodel spread, also for trends (Albergel et al. 2013). Some studies 40 
comparing modeled soil moisture and observations show that models with good skill can nonetheless display 41 
substantial biases in absolute soil moisture (Xia et al., 2014; Gu et al., 2019a), although this is to be expected 42 
given the nature of soil moisture and the fact that it is best assessed as water-balance anomalies (Koster et 43 
al., 2009). Other studies report limited agreement in the interannual variability of soil moisture 44 
representation (Stillman et al., 2016; Yuan and Quiring, 2017) and noticeable seasonal differences in the 45 
model skill (Xia et al., 2014, 2015). Ford and Quiring (2019) have compared the temporal variability of soil 46 
moisture observations and model outputs in different regions of North America showing very low shared 47 
variance in the series (< 30%), independently of the region, model and the depth at which the soil moisture is 48 
measured/modeled.  49 
 50 
There are also varying results regarding the performance of climate models in representing soil moisture 51 
variability and properties. Stegehuis et al., (2013) used an ensemble of regional climate model simulations 52 
for Europe and showed that models dry the soil too much in early summer, resulting in an excessive decrease 53 
of the latent heat fluxes, with potential implications for more severe drought in dry environments (Teuling, 54 
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2018; Van Der Linden et al., 2019). Moreover, the spread of the soil moisture outputs among different 1 
models is more important than internal variability and scenario uncertainty (Ukkola et al., 2018; Lu et al., 2 
2019) and the bias is strongly related to the sign of the projected change. Vogel et al., (2018) identified a 3 
trimodal distribution of hydrological and temperature projections in CMIP5 global climate models in Central 4 
Europe, whereby the driest climate models which project the most warming are found to have substantial 5 
bias in soil moisture-temperature coupling in present climate. Recently, Humphrey et al. (2018) identified a 6 
possible systematic bias in climate models in the representation of soil moisture drought effects on carbon 7 
uptake on land, which appears related to a too limited soil moisture range compared to observations.  8 
 9 
Despite the mentioned limitations, the (land surface and climate) model representation of soil moisture 10 
processes is based on long-standing developments in the climate research community and uses physical and 11 
biological understanding of the underlying processes. Overall, we assess that there is medium confidence in 12 
the representation of soil moisture deficits in land surface and climate models.  13 
 14 
 15 
11.6.3.4 Hydrological deficits 16 
 17 
The simulation of hydrological deficits is much more problematic than simulating mean streamflow or peak 18 
flows (Fundel et al., 2013; Stoelzle et al., 2013; Velázquez et al., 2013; Staudinger et al., 2015) since models 19 
tend to be too responsive to the climate forcing and they do not satisfactory capture low flows (Tallaksen and 20 
Stahl, 2014). Simulations of hydrological drought metrics show uncertainties related to the contribution of 21 
both GCMs and hydrological models (Bosshard et al., 2013; Giuntoli et al., 2015; Samaniego et al., 2017; 22 
Vetter et al., 2017), but hydrological models forced by the same climate input data also show a large spread 23 
(Van Huijgevoort et al., 2013; Ukkola et al., 2018). In a very comprehensible study, Tallaksen and Stahl 24 
(2014) analysed the simulations of streamflow droughts in seven global (hydrological and land surface) 25 
models and compared the results with observations in near-natural catchments of Europe for the period 26 
1963-2000. This study showed an important spread among models and a tendency to overestimate the 27 
number of drought events and to underestimate drought duration and drought-affected area.  28 
 29 
 30 
11.6.3.5 Combined synthetic measures of drought 31 
 32 
A number of studies have analysed the capacity of models to determine drought severity and trends based on 33 
synthetic drought indices. Logically, given the limitations to reproduce the dynamic of precipitation deficits 34 
and atmospheric dryness stated in 11.6.3.1 and 11.6.3.2, the modeled drought indices based on these two 35 
variables are also affected by uncertainties and biases. Zhao and Dai (2017) analysed trends in the PDSI 36 
using observations and CMIP3 and CMIP5 model ensembles between 1950 and 2014 and suggested a 37 
consistent signal between models and observations at the global scale, with a general increase of the PDSI. 38 
However, they showed low spatial agreement in the trends with the exception of some regions like the 39 
Mediterranean, South Asia and Northwest US (Abatzoglou and Rupp, 2017). There is an important spread in 40 
PDSI and SPEI projections among different models (Cook et al., 2014). With the exception of the 41 
Mediterranean, South North America and Central America, in which the majority of the models simulate a 42 
drying trend in the SPEI, in the rest of the world the models strongly differ, with the most important spread 43 
in the Sahel (Touma et al., 2015), one of the most critical regions for drought projections. 44 
 45 
Summary: There is overall medium confidence in the ability of climate models to simulate trends and 46 
anomalies in precipitation deficits, atmospheric dryness, soil moisture deficits, streamflow deficits on 47 
global and regional scale. There is also overall medium confidence in the ability of land surface models 48 
and hydrological models to simulate trends and anomalies in soil moisture deficits or streamflow 49 
deficits on global and regional scale. However, the evaluation of climate, land surface and hydrological 50 
models for the simulation of droughts is complex, due to the regional scope of observed drought 51 
trends, the high interannual variability (and thus low signal-to-noise ratio) in trends of drought-52 
related measures, and the lack of relevant measurements in several regions, in particular for soil 53 
moisture and streamflow.  54 
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11.6.4 Attribution 1 
 2 
Anthropogenic influence on drought and water scarcity is complex. This includes both human influence to 3 
the climate and climate system that indirectly affect drought as well as other influences due to land use and 4 
other socio-economical activities (Van Loon et al., 2016). Studies attributing changes in drought are limited, 5 
and they typically fall into two main types. One type is concerned about human influence on the probability 6 
or magnitude of recent drought conducted in the event attribution framework. Many of this type of studies 7 
focus on human influence on the lack of precipitation that leads to drought condition. Another type studies 8 
focus on long-term trend, most often focusing on soil moisture. These studies may not analyse changes in 9 
drought per se, but changes in mean soil moisture that can be inferred to be related to the occurrence of 10 
events with high soil moisture deficits. These two type of studies are assessed in the following two 11 
subsections on precipitation deficits and soil moisture, respectively. In both cases, studies are limited by 12 
attribution techniques and observed data sources, both of them varying among studies. Many drought-13 
focused attribution studies can be inconclusive due to lack of observational data ( e.g., Philip et al., 2017) 14 
and a lack of sufficiently reliable model simulations to determine the reliability of the attributable signal 15 
(Uhe et al., 2017; Otto et al., 2018a; Philip et al., 2018a). Furthermore, the attributable signal varies 16 
depending on the region, event timescale considered and the attributable signal of large-scale modes of 17 
variability, such as ENSO.  18 
 19 
 20 
11.6.4.1 Precipitation deficits 21 
 22 
There have been a number of attribution studies of recent drought events in various regions with a focus on 23 
meteorological drought. Some studies have determined that human influence has increased the severity or 24 
likelihood of recent droughts but others find the results to be inconclusive (García-Herrera et al., 2019).  25 
 26 
In Europe, human influence was found to have enhanced the magnitude of the 2011-2012 winter drought 27 
over the Iberian Peninsula where winter precipitation decreased between the 1960s and 2000s (Trigo et al., 28 
2013; Angélil et al., 2017). A multi-method and multi-model attribution study on the 2015 Central European 29 
drought did not find conclusive evidence whether human-induced climate change was a driver of the rainfall 30 
deficit, as the results depended on model and method used (Hauser et al., 2017). While there is not a clear 31 
trend in precipitation records over Mediterranean region during 1850-2018 (Vicente-Serrano et al., 32 
submitted), there is evidence of drying, contributed by human emissions of greenhouse gases (Hoerling et 33 
al., 2012; Knutson and Zeng, 2018), mostly as a consequence of the enhanced Epot (Vicente-Serrano et al., 34 
2014b; Stagge et al., 2017; González-Hidalgo et al., 2018).  35 
 36 
Two studies showed that greenhouse gases forcing worsened the 2016 southern African drought. One study 37 
found that the likelihood of flash drought over southern Africa was tripled during the last 60 years mainly 38 
due to anthropogenic climate change (Yuan et al., 2018a). Another was a multi-step attribution study. It 39 
showed that climate change likely increased the intensity of the 2015/16 El Niño, contributing to further 40 
decreases in southern African precipitation, crop production and food availability (Funk et al., 2018a). 41 
However, there is only low confidence in the results, as the study was based on a single model. A study on 42 
the three-year 2015-2017 drought in the Western Cape region of South Africa also found a threefold increase 43 
in the likelihood of the lack of rainfall (Otto et al., 2018c). Several studies have focused on recent droughts 44 
in East Africa. An attributable signal in the lack of rainfall was not found in droughts occurred in different 45 
years with different spatial extents in the last decade over the region (Marthews et al., 2015; Uhe et al., 2017; 46 
Otto et al., 2018a; Philip et al., 2018a; Kew et al., 2019a). In terms of dependence on event timescales, Lott 47 
et al. (2013) examined East African drought and found no evidence for human influence on the 2010 short 48 
rain failure, but an attributable increase in 2011 long rain failure, although the magnitude of increase 49 
depended on the estimated pattern by which human influence changed observed SSTs. Further studies have 50 
provided attribution statements of African drought events to large-scale modes of variability, such as the 51 
strong 2015 El Niño (Philip et al., 2018a) and increased SSTs overall (Funk et al., 2015c, 2018b). In a single 52 
model study of the 2014 southern Levant drought (Bergaoui et al., 2015) found an anthropogenic influence 53 
on both magnitude of the event and its likelihood. 54 
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In addition to investigating drought in different locations and of varying duration, drought attribution studies 1 
in North America (Wehner et al., 2017) also explore different drought types (meteorological, agricultural and 2 
hydrological). This re-examination demonstrates that, in addition to the region and event definition, 3 
attribution statements are potentially dependent on the system examined, model treatment of human 4 
influence on observed SSTs and overall attribution framework used. Overall, the anthropogenic influence on 5 
US droughts is complex, with limited evidence for an attributable anthropogenic signal on observed 6 
precipitation deficits.  7 
 8 
An attributable anthropogenic signal in observed droughts has not been found in regions of Asia and South 9 
America. No climate change signal was found in the record dry spell over Singapore-Malaysia in 2014 10 
(Mcbride et al., 2015) or the drought in central southwest Asia in 2013/2014 (Barlow and Hoell, 2015). 11 
Similarly, in recent droughts occurring in South America, specifically in the southern Amazon region in 12 
2010 (Shiogama et al., 2013) and in northeast Brazil in 2014 (Otto, et al. 2015) and 2016 (Martins, E.S.P.R., 13 
Coelho, C.A.S., Haarsma, R., Otto, F.E.L., King, A.D., van Oldenborgh, G.J., Kew, S., Philip, S., 14 
Vasconcelos Junior, F.C. and Cullen, 2017; Quan et al., 2018) anthropogenic climate change was not a 15 
dominant influence.  16 
 17 
Results of drought event attribution studies in Australia show either an increase in drought likelihood or no 18 
change depending on methods, regions and season. While the meteorological conditions associated with the 19 
2013 New Zealand drought were attributed by Harrington et al. (2014) using the fully coupled CMIP5 20 
models to be more probable as a result of anthropogenic climate change, Angélil et al. (2017) did not find a 21 
corresponding change in the dry end of simulated precipitation from a stand-alone atmospheric model. 22 
Several studies of Australian droughts of varying length demonstrate no significant change in meteorological 23 
droughts in the region related to anthropogenic climate change based on analysis of precipitation deficits 24 
(Cai et al., 2014b; King et al., 2014). However, co-occurring hot and dry conditions, such as in 2006 across 25 
southeast Australia are likely to have increased due to climate change (King et al., 2017). 26 
 27 
Studies also highlight a complex interplay of anthropogenic and non-anthropogenic climatological factors. 28 
For example, anthropogenic warming contributed to the 2014 east African drought by increasing east 29 
African and west Pacific temperatures, and increasing the gradient between standardized western and central 30 
Pacific SST causing reduced rainfall, evapotranspiration, and soil moisture (Funk et al., 2015c). Several 31 
events have been independently re-examined using a single analytical approach and climate model datasets 32 
(Angélil et al., 2017), identifying several instances of diverging claims of the anthropogenic attributable 33 
change. 34 
 35 
 36 
11.6.4.2 Soil moisture deficits 37 
 38 
Detection and attribution analyses of long-term changes on drought are limited, focusing mostly on soil 39 
moisture. Mueller and Zhang (2016) evaluated trends in reconstructed historical soil moisture for 1951-2005 40 
and compared them with those in the CMIP5 simulations. They concluded that anthropogenic forcing 41 
contributed significantly to the observed drying and that the increases in the land surface area affected by 42 
drought (defined by soil moisture deficits) can be reproduced by CMIP5 models only if anthropogenic 43 
forcings are involved. Gu et al. (2019b) compared reconstructed soil moisture in the root zone layer during 44 
1948-2005 with those simulated by CMIP5 models; they concludedthat observed global soil moisture drying 45 
can be explained by human influence and cannot be explained by the influence of natural external forcing. 46 
Padrón et al. (2019) analyzed reconstructed and CMIP5 simulated dry season water availability, defined as 47 
precipitation minus evapotranspiration (i.e. equivalent to soil moisture and runoff availability), over 1902-48 
2014. They found consistent changes towards drying in the average water availability during the driest 49 
month of the year in the recent three decades when compared with that in the first half of the 20th century. 50 
Model simulations under anthropogenic forcing can explain such changes while those under natural external 51 
forcing cannot.The drying is mainly caused by increase in  evaporation  (induced by increased temperature 52 
and radiation) rather than by reduction in precipitation. Because of the lack of observed soil moisture or 53 
PDSI, a common feature of these studies is the use of reconstructed data partly based on observations either 54 
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through dynamical assimilation or statistical means, making it difficult to quantify the amount of drying and 1 
lowering our confidence in the identified drying for the historical time. Yet, all studies point to warming 2 
induced drying in the soil moisture and warming has been attributed to human influence. While it is difficult 3 
to assess the quantitative contribution of human influence to the assessed soil moisture drying, the balance of 4 
evidence leads us to conclude that that is high confidence that human influence has contributed to a global-5 
scale tendency towards soil moisture drying in the dry season, mostly related to increased evaporative 6 
demand rather than changes in precipitation.  7 
 8 
 9 
11.6.4.3 Hydrological deficits 10 
 11 
There is limited evidence on the attribution of trends in hydrological deficits, A recent study of 12 
Gudmundsson et al. (submitted) suggests that anthropogenic climate change has impacted the magnitude of 13 
low flows at the global scale in simulations of the ISIMIP ensemble. Human water use could play a role on 14 
local scale and Wada et al. (2013) estimate that human water consumption has intensified the magnitude of 15 
hydrological droughts by 20%-40% over the last 50 years.  16 
 17 
 18 
11.6.4.4 Combined synthetic measures of drought 19 
 20 
Marvel et al. (2019) compared tree ring based reconstruction of the Palmer drought severity index (PDSI) 21 
over the past millennium with PDSI estimates driven with CMIP5 models. Their results suggest that the 22 
signal of greenhouse gases forcing is present in the reconstruction in the recent decades (1980 to present) but 23 
cannot be robustly detected. Their findings also suggest that a signal of greenhouse gases forcing can be 24 
robustly detected in the first half of the 20th century. The results from this study need to be placed in context 25 
as PDSI has known limitations in representing drought response to warming, and the uncertainty in the use 26 
of proxy-based reconstructed PDSI also needs to be accounted for. Additionally, a robust detection of 27 
anthropogenic signal in the first half of the 21st century when warming was relatively weak does not seem to 28 
be consistent with a lack of robust detection of anthropogenic since 1980 for which warming is stronger. 29 
 30 
Summary 31 
 32 
With the exception of attribution studies assessing changes in precipitation deficits, a common feature 33 
of drought attribution studies is the use of reconstructed data partly based on observations either 34 
through dynamical assimilation or statistical means, making it difficult to quantify the amount of 35 
drying and lowering our confidence in the identified drying for the historical time. Yet, all available 36 
studies point to an evapotranspiration-driven drying in soil moisture (or water availability, which 37 
encompasses soil moisture) when aggregated on global scale, which is related to increased warming 38 
and radiation, both of which have been attributed to human influence. While it is difficult to assess the 39 
quantitative contribution of human influence to the assessed soil moisture drying, the balance of 40 
evidence leads us to conclude that there is high confidence that human influence has contributed to a 41 
global-scale tendency towards soil moisture drying in the dry season, mostly related to increased 42 
evaporative demand rather than changes in precipitation. The human contribution to trends in 43 
precipitation or runoff is more uncertain, as is the attribution of regional changes in drought. 44 
 45 
Overall, there is high confidence that human influence has increased the potential for worsening of 46 
drought conditions and increased the tendency towards drying in the dry season since the beginning of 47 
the 20th century, when aggregated on the global scale. The drying tendency is dominated by warming- 48 
and radiation-induced increase in evaporative demand rather than by changes in precipitation. At 49 
local to regional scales, human influence on drought and water scarcity is complex, as it includes 50 
climate forcing, land use changes, water management, and socio-economical influences. There is low 51 
confidence in the contribution of greenhouse gas forcing to changes in atmospheric circulation 52 
processes affecting drought. 53 
 54 
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11.6.5 Projections 1 
 2 
The SREX report (SREX  Chapter 3) highlighted medium confidence in projections of increased drought 3 
severity in some regions, including southern Europe and the Mediterranean, central Europe, Central America 4 
and Mexico, northeast Brazil, and southern Africa. The report stressed low confidence elsewhere given large 5 
spread between models and scenarios. The AR5 (AR5  Chapter 11 and 12) also stressed large uncertainties in 6 
drought projections at the regional and global scales. The assessment of drought mechanisms under future 7 
climate change scenarios is hampered by the limited availability of reliable model simulations, which is both 8 
the result of a large climate model dependency of drought projections in some regions (Section 11.6.3). 9 
Moreover, uncertainties in drought projections are affected by statistical issues related to the way of 10 
calculating drought metrics for future scenarios given the use of different time scales and changes to 11 
distribution functions but also vegetation-CO2 feedbacks (Vicente‐Serrano et al., 2019). Overall, there are 12 
substantial increases in risks of drying from 1.5°C to 2°C global warming as well as for further additional 13 
increments of global warming (Figs. 11.20 and 11.21). These findings, which are based on CMIP6 analyses 14 
are consistent with CMIP5 analyses (see Appendix), the conclusions of the SR15  Chapter 3, Greve et al. 15 
(2018), and Xu et al. (2019).   16 
 17 
 18 
11.6.5.1 Precipitation deficits 19 
 20 
Studies based on CMIP5 projections show a consistent signal in the sign and spatial pattern of projections of 21 
precipitation deficits in some regions. Orlowsky and Seneviratne (2013) and Martin (2018) showed that the 22 
model ensemble displayed robust signal-to-noise ratio in the Mediterranean, South Africa, Southern North 23 
America, Central America and Northeast Brazil, regions in which more frequent and severe droughts are 24 
projected, although in South Africa recent studies also suggest a weak shift in the probability distribution 25 
functions of precipitations series both at 1.5 and 2°C warming levels (Nangombe et al., 2018). Projections 26 
for the number of CDDs in CMIP6 (Figure 11.20) for different levels of global warming relative to 1850-27 
1900 show similar projected patterns. The robustness of the patterns in projected precipitation deficits 28 
identified in the global studies is also consistent with results from regional studies (Giorgi et al., 2014; Pinto 29 
et al., 2016; Maúre et al., 2018). In Africa, a strong increase in the length of dry spells (CDD) is projected by 30 
the end of the 21st century over most of the continent with the exception of central and eastern Africa 31 
(Sillmann et al., 2013a; Giorgi et al., 2014; Han et al., 2019) and in West Africa, where there is lack of 32 
agreement in sign of change between studies (Sillmann et al., 2013a; Akinsanola and Zhou, 2018; Han et al., 33 
2019), although CDD would increase with stronger global warming levels (Klutse et al., 2018). In Asia there 34 
are expected large regional differences in the drought projections. In the middle East, an increase of the dry 35 
days and the drought duration is projected in about 80% of the region (Tabari and Willems, 2018). Whereas 36 
in central Asia there are projected small changes in CDD (Han et al., 2018), this metric is projected to 37 
increase in south China but to decrease in north China (Zhou et al., 2014; Han et al., 2018), in agreement 38 
with projections of the SPI (Huang et al., 2018a). In the Tibetan Plateau there is a general projected decrease 39 
in drought, but with large uncertainty (Zhou et al., 2014). Frequency and area extents of severe, extreme, and 40 
exceptional precipitation droughts based on the CDD are projected to increase in India in the near-term and 41 
until the mid 21st century (Salvi and Ghosh, 2016). In Southeast Asia, an increasing frequency of 42 
precipitation deficits is projected as a consequence of increasing frequency of extreme El Niño (Cai et al., 43 
2014a, 2015, 2018). In central America, projections suggest an increase in mid-summer drought (Imbach et 44 
al., 2018) and increased CDD (Chou et al., 2014a; Giorgi et al., 2014). In the Amazon, there is also a 45 
projected increase in dryness (Marengo and Espinoza, 2016), which is however the combination of a 46 
projected increase in the frequency and geographic extent of meteorological drought in the eastern Amazon, 47 
and an opposite trend in the West (Duffy et al., 2015). In Southwestern South America, there is a projected 48 
increase of the CDD (Chou et al., 2014a; Giorgi et al., 2014) and in Chile drying is projected to prevail 49 
(Boisier et al., 2018). In the South America monsoon region, an increase in CDD is projected(Chou et al., 50 
2014a; Giorgi et al., 2014), but a decrease is projected in South Eastern South America and Southern South 51 
America (Giorgi et al., 2014). In Central America, mid summer drought is expected to intensify during 2071-52 
2095 for the RCP8.5 scenario (Corrales-Suastegui et al., 2019). In Canada and most of the US, and based on 53 
the SPI, Swain and Hayhoe (2015)identified drier summer conditions in projections over most of the region, 54 
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and there is a consistent signal toward an increase in duration and intensity of droughtsin southern North 1 
America (Pascale et al., 2016; Escalante-Sandoval and Nuñez-Garcia, 2017). In California, more 2 
precipitation variability is projected, characterised by increased frequency of consecutive drought and humid 3 
periods (Swain et al., 2018). Finally, in Southern Europe model projections display a consistent drying 4 
among models (Hertig and Tramblay, 2017; Guerreiro et al., 2018a; Raymond et al., 2019), and in Central 5 
Europe there is substantial spread in projections, with some models projecting very strong drying and others 6 
close to no trend (Vogel et al., 2018). Vogel et al. (2018) identified that the driest (and wettest) models did 7 
not present land-atmosphere coupling features consistent with observations, and that an observationally-8 
constrained ensemble displayed weaker drying. On the other hand, the driest models of the ensemble are the 9 
ones perfoming best in capturing the driest conditions in observations, despite a poorer performance for 10 
interannual variability(Orth et al., 2016b). 11 
 12 
 13 
11.6.5.2 Atmospheric evaporative demand 14 
 15 
Effects of atmospheric evaporative demand on droughts is a critical issue under future projections (Vicente-16 
Serrano et al., 2020). Considering a purely atmospheric demand, the CMIP5 models project strong increase 17 
in Epot over the majority of the world under the RCP8.5 scenario (Scheff and Frierson, 2015). The role of 18 
the Epot on drought severity in future projections may vary considering physical and plant physiological 19 
processes, including the possible role of CO2 fertilization on vegetation water use efficiency (Roderick et al., 20 
2015; Milly and Dunne, 2016; Swann et al., 2016; Greve et al., 2017; Scheff et al., 2017; Lemordant et al., 21 
2018; Swann, 2018). Soil moisture also contribute to these trends given effects on ET and land-atmosphere 22 
feedbacks (Berg et al., 2016; Teuling, 2018). Nonetheless, increases in ET could be limited compared to the 23 
increased Epot due to soil moisture limitation (Berg et al., 2016), with implications for hydrological drought 24 
projections. CO2 fertilization could reduce Epot in vegetated areas, explaining why some studies suggest 25 
small runoff reduction in future climate scenarios (Roderick et al., 2015; Yang et al., 2019). Overall, there 26 
are some uncertainties since, on the one hand, fertilizing CO2 effects will not enterely compensate 27 
atmospheric dryness associated to enhanced temperature and VPD (Liu and Sun, 2017); in large tropical and 28 
subtropical regions ( e.g., South Africa, the Amazon, the Mediterranean and South North America), 29 
maximum evapotranspiration is projected to strongly increase even when considering CO2 fertilization 30 
(Vicente-Serrano et al., 2020). On the other hand, Huang et al. (2017) showed that humid areas warmed at 31 
60-80% of the rate of the dry regions, and stressed that this differential warming is not well represented in 32 
GCMs. This issue could imply underestimated warming in dry areas, reinforcing thermodynamic processes 33 
in water-limited environments and enhancing Epot (Dai et al., 2018). Moreover, there is a number of 34 
ecophysiological and anatomical processes that may reduce the role of the CO2 fertilization on plant 35 
processes (Menezes-Silva et al., 2019) and the benefit of the CO2 fertilization could be minimal during low 36 
precipitation periods given stomatal closure in response to low soil moisture (Allen et al., 2015).  37 
 38 
 39 
11.6.5.3 Soil moisture deficits 40 
 41 
Areas with projected soil moisture decreases do not fully coincide with areas with projected precipitation 42 
decreases, although there substantial consistency in the respective patterns (Dirmeyer et al., 2013; Berg and 43 
Sheffield, 2018). Moisture in the top soil layer (10 cm., surface soil moisture) is projected to decline more 44 
than precipitation at all warming levels (Lu et al., 2019), extending the regions affected by severe soil 45 
moisture deficits over most of South and Central Europe (Lehner et al., 2017; Ruosteenoja et al., 2018; 46 
Samaniego et al., 2018; Van Der Linden et al., 2019), South North America by 2050 (Cook et al., 2019), and 47 
South America (Orlowsky and Seneviratne, 2013), South Africa (Lu et al., 2019), East Africa (Rowell et al., 48 
2015), India (Mishra et al., 2014b) and East Asia (Cheng et al., 2015) (Figure 11.21), possibly as a 49 
consequence of enhanced Epot and associated increased ET as highlighted by some studies (Orlowsky and 50 
Seneviratne, 2013; Dai et al., 2018). Projected changes in total soil moisture display less widespread drying 51 
than those for surface soil moisture (Berg et al., 2017), but still more than for precipitation (Fig. 11.20). The 52 
severity of droughts based on surface soil moisture in future projections is stronger than projections based on 53 
precipitation, runoff and the combined synthetic climate drought indices (Dai et al., 2018; Vicente‐Serrano et 54 
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al., 2019). In some areas the signal to noise ratio among models is low and only in the Mediterranean and 1 
Europe, the southwestern United States, and southern Africa the projections show a substantial signal to 2 
noise ratio in soil moisture projections (Lu et al., 2019).  3 
 4 
 5 
11.6.5.4 Hydrological deficits 6 
 7 
Some studies support wetting tendencies as a response to a warmer climate when considering globally-8 
averaged changes in runoff over land (Roderick et al., 2015; Greve et al., 2017; Yang et al., 2018d), and 9 
streamflow projections respond to enhanced CO2 concentrations in CMIP5 models (Yang et al., 2019). 10 
Nevertheless, when focusing on low-runoff periods the model projections also show a reinforcemet in large 11 
world regions (Dai et al., 2018; Vicente‐Serrano et al., 2019). Global averages of hydrological drought are 12 
projected to display an increase in drought severity and duration (Wanders and Van Lanen, 2015). The 13 
regions that are more affected are the Mediterranean, the middle East, South Africa, South Australia and 14 
Southern South America (Prudhomme et al., 2014; Wanders and Van Lanen, 2015). Models have smaller 15 
spread in future projections for northern latitudes, the Horn of Africa and Indonesia where a reduction of 16 
drought severity is projected. In Northern China, although the drought frequency is expected to be reduced, 17 
hydrological drought severity would rise dramatically given increased variability in precipitation and 18 
evapotranspiration (Jiao and Yuan, 2019). Streamflow droughts are projected to become more severe in 19 
Europe, except for north and northeast Europe. Streamflow in southern Europe is projected to be reduced by 20 
10-30% (Forzieri et al., 2014; Roudier et al., 2016).Based on high-resolution (5km) simulations for Europe 21 
with 3 hydrological models, driven by 5 global climate models, for 3 different scenarios, Marx et al., (2018) 22 
identify that low-flow signal in Europe amplifies with increasing warming levels. This includes a drying in 23 
the Mediterranean region (lower low flows) and a wetting in the Alpine and Northern region (higher low 24 
flows). In the Mediterranean, the level of warming amplifies the signal from −12 % under 1.5 °C, compared 25 
to the baseline period 1971–2000, to −35% under global warming of 3°C, largely due to the projected 26 
decreases in annual precipitation, while the signal is amplified from +22 (1.5 °C) to +45% (°C) in the Alpine 27 
region due to changes in snow accumulation. In Southern North America, an increase of hydrological 28 
drought severity is projected for 2050 as a consequence of reduced precipitation and enhanced 29 
evapotranspiration (Cook et al., 2019). There is, however, only medium confidence in these projections due 30 
to large uncertainties in the hydrological/impact model used (Prudhomme et al., 2014; Schewe et al., 2014; 31 
Gosling et al., 2017) and uncertainty in the projection of future human activities including water demands, 32 
land cover changes, etc., which may represent more than 50% of the projected changes in hydrological 33 
droughts (Wanders and Wada, 2015). In addition, regions dependent on mountainous snowpack as a 34 
temporary reservoir are at risk of severe hydrological droughts in a warmer world. For instance, in the 35 
western United States, a 22% reduction in winter snow water equivalent is projected under a high emissions 36 
scenario by 2050 relative to historical levels with a further decrease to a 70% reduction by 2100 (Rhoades et 37 
al. 2018). The exact magnitude of the influence of higher temperatures on snow-related droughts is, 38 
however, difficult to estimate (Mote et al., 2016) since the streamflow changes could affect the timing of 39 
peak streamflows but not necessarily their magnitude. In addition, projected changes in hydrological 40 
droughts downstream of declining glaciers can be very complex to assess (Chapter 9 and the SROCC). 41 
 42 
 43 
11.6.5.5 Combined synthetic measures of drought 44 
 45 
Global drying tendencies are identified in future projections when focusing on drought indices calculated 46 
from precipitation and Epot as the PDSI or the SPEI (Zhao and Dai, 2017; Dai et al., 2018). In general, the 47 
inclusion of a purely atmospheric evaporative demand in the drought indices expands the spatial extent of 48 
drought conditions based on precipitation deficits (expanded to regions in the Amazon, most of North 49 
America, Europe, central Asia and East China) (Cook et al., 2014a; Touma et al., 2015; Lehner et al., 2017; 50 
Dai et al., 2018; Naumann et al., 2018; Potopová et al., 2018; Spinoni et al., 2018b; Senatore et al., 2019; 51 
Vicente-Serrano et al., 2019b). A number of regional studies based on these drought indices also suggest a 52 
reinforcement of drought in East Asia (Rhee and Cho, 2016; Chen and Sun, 2017a, 2017b; Gao et al., 2017b; 53 
Wang et al., 2018c), South Australia (Olson et al., 2016; Herold et al., 2018), South Africa (Abiodun et al., 54 
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2019), South North America (Venkataraman et al., 2016) and Canada (Tam et al., 2019). There is, however, 1 
some uncertainty in these findings given the complex role of Epot on drought, which depends on the drought 2 
type, the environmental conditions and the anomalies in precipitation (Vicente-Serrano et al., 2020), so in 3 
humid regions or in those that show a projected increase in precipitation, these indices could overestimate 4 
the influence of Epot on drought trends (Vicente-Serrano et al., 2020). Also, in dry regions, since Epot is an 5 
overestimate for actual evapotranspiration these projected changes cannot be equated with soil moisture 6 
drought, but could still be relevant for vegetation stress (Table 11.3).Milly and Dunne (2016) show that a 7 
purely meteorological metric of atmospheric dryness  overestimates the projections of soil moisture and 8 
streamflow deficits given the decoupling of ET and Epot when ET is reduced due to soil moisture limitation 9 
or/and possible CO2 fertilizing effects (Berg et al., 2016). Nevertheless, in water-limited regions the effect of 10 
Epot on drought projections is coherent with an enhanced vegetation water stress. Thus the projections by 11 
these drought indices could be representative of some forms of vegetation stress despite a decoupling to soil 12 
moisture.  In addition, depending on processing, projections in PDSI or SPEI can be consistent with 13 
projected soil moisture and runoff deficits globally (Dai et al., 2018; Lu et al., 2019; Vicente‐Serrano et al., 14 
2019). In addition, the the fertilizing CO2 effects on vegetation processes under limited soil moisture are very 15 
uncertain (Allen et al., 2015; Menezes-Silva et al., 2019).   16 
 17 
Summary 18 
 19 
There is high confidence that atmospheric evaporative demand will continue to increase with 20 
increasing global warming and lead to further drying tendencies in some regions. There is medium 21 
confidence in projected increases in the frequency and severity of precipitation deficits in the 22 
Mediterranean region, Southern Africa, Southern North America, Central America and Northeastern 23 
Brazil. The confidence is assessed to be medium because while there is high agreement among climate 24 
models, there are uncertainties in drought representation in the climate models, the use of drought 25 
metrics in the projections, and lack of observations in several regions to evaluate models. In addition, 26 
there is medium confidence that soil moisture and streamflow droughts may also be affected by 27 
physiological CO2 effects on plants’ transpiration under enhanced CO2 concentrations. Projections of 28 
soil moisture deficits show stronger increase in drought area and severity than projections of changes 29 
in precipitation deficits (medium confidence). There is medium confidence for an increase in 30 
hydrological droughts in the Mediterranean, Southern Africa, South Australia and Southern South 31 
America. Drought indices that consider the relative changes in precipitation vs Epot show a general 32 
increase in drought severity but there are uncertainties in these trends given the complex influence of 33 
Epot on drought severity depending on drought types and climate characteristics. These projections 34 
are strongly dependent on the warming scenario considered, with stronger drought trends for higher 35 
warming levels in some regions, even for changes as small as 0.5°C in global warming (high 36 
confidence). Some regions with humid or transitional climate characteristics in the 20th century are 37 
projected to become drier (medium confidence). 38 
 39 
 40 
[INSERT FIGURE 11.20 HERE] 41 
 42 
Figure 11.20: Projected changes in Consecutive Dry Days for projections at 1.5°C, 2°C, 3°C and 4°C of global 43 

warming compared to pre-industrial conditions (1850-1900), using empirical scaling relationship based 44 
on transient CMIP6 simulations.. [Stippling will be added for FGD] 45 

 46 
[END FIGURE 11.20 HERE] 47 
 48 
 49 
[INSERT FIGURE 11.21 HERE] 50 
 51 
Figure 11.21: Projected changes in surface soil moisture for projections at 1.5°C, 2°C, 3°C and 4°C of global warming 52 

compared to pre-industrial conditions (1850-1900), using empirical scaling relationship based on 53 
transient CMIP6 simulations. [Stippling will be added for FGD] 54 
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 1 
[END FIGURE 11.21 HERE] 2 
 3 
 4 
11.7 Extreme storms 5 
 6 
Extreme storms, such as tropical and extratropical cyclones, severe convective storms, and atmospheric 7 
rivers often have substantial societal impacts. Quantifying the relationship between climate change and 8 
extreme storms is challenging, partly because extreme storms are rare, short-lived, and local, and individual 9 
events are largely influenced by stochastic variability. The high degree of random variability makes 10 
detection and attribution of extreme storm trends more uncertain than detection and attribution of trends of 11 
other aspects of the environment in which the storms evolve (e.g., larger-scale temperature trends). 12 
Projecting changes in extreme storms is also challenging because of constraints in the models' ability to 13 
accurately represent the small-scale physical processes that can drive these changes. Despite the challenges 14 
though, good progress has been since the AR5. 15 
 16 
A capsule summary of the most relevant assessment and confidence statements from previous reports is 17 
provided here.  18 
 19 
The SREX (chapter 3) stated: 20 
1) There is low confidence in observed long-term (40 years or more) trends in tropical cyclone (TC) 21 
intensity, frequency, and duration, and any observed trends in phenomena such as tornadoes and hail.  22 
2) It is likely that extratropical storm tracks have shifted poleward in both the Northern and Southern 23 
Hemispheres and that heavy rainfalls and mean maximum wind speeds associated with TCs will increase 24 
with continued greenhouse gas (GHG) warming. 25 
3) It is likely that the global frequency of TCs will either decrease or remain essentially unchanged while it is 26 
more likely than not that the frequency of the most intense storms will increase substantially in some ocean 27 
basins. 28 
4) There is low confidence in projections of small-scale phenomena such as tornadoes and hail storms. 29 
5)There is medium confidence that there will be reduced frequency and a poleward shift of mid-latitude 30 
cyclones due to future anthropogenic climate change.  31 
 32 
The AR5 maintained an assessment of low confidence in observed long-term trends in TC metrics but 33 
modified this statement from the SREX to state that it is virtually certain that there are increasing trends in 34 
North Atlantic TC activity since the 1970s with medium confidence that anthropogenic aerosol forcing has 35 
contributed to these trends. Unchanged from the SREX, the AR5 concluded that it is likely that TC 36 
precipitation and mean intensity will increase and more likely than not that the frequency of the strongest 37 
storms increase with continued GHG warming. Confidence in projected trends in overall TC frequency 38 
remained low. Confidence in observed and projected trends in hail storm and tornado events also remained 39 
low.  40 
 41 
The SROCC assessment of past and projected tropical and extratropical cyclones essentially follows the 42 
conclusions of the AR5 with some additional detail. Literature subsequent to the AR5 adds support to the 43 
likelihood of increasing trends in TC intensity and precipitation and frequency of the most intense storms 44 
while some newer studies have added uncertainty to projected trends in overall frequency. A growing body 45 
of post-AR5 research on the poleward migration of TCs led to a new assessment in the SROCC of low 46 
confidence that the migration in the western North Pacific represents a detectable climate change 47 
contribution from anthropogenic forcing. 48 
 49 
The conclusions of the SR1.5 essentially mirror the AR5 assessment of tropical and extratropical cyclones 50 
adding that heavy precipitation associated with TCs is projected to be higher at 2°C compared to 1.5°C 51 
global warming (medium confidence). 52 
 53 
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The SREX, AR5, SROCC, and SR1.5 do not provide assessments of the atmospheric river literature and the 1 
SROCC and SR1.5 do not assess severe convective storms and extreme winds. In this section, we assess the 2 
state of knowledge on the four phenomena of tropical cyclones, midlatitude storms, severe convective 3 
storms, and extreme winds. Extreme aspects of atmospheric rivers are also included in midlatitude storms. In 4 
this respect, our report will closely mirror the SROCC assessment of tropical and extratropical cyclones 5 
while updating the SREX and AR5 assessment of severe convective storms and extreme winds and 6 
introducing an assessment of atmospheric river literature. 7 
 8 
 9 
11.7.1 Tropical cyclones 10 
 11 
11.7.1.1 Mechanisms and drivers 12 
 13 
Tropical cyclones (TCs) respond to their ambient environment in a number of ways. For example, latent and 14 
sensible surface heat fluxes provide moist enthalpy that can be converted to wind, upper-level atmospheric 15 
temperatures modulate the thermodynamic limit on the peak winds that can be achieved, mid-to-upper-level 16 
winds steer the TCs and largely determine their translation speed (which strongly affects local rainfall 17 
amounts), and vertical wind shear generally inhibits TC genesis and intensification. Changes in these and 18 
other environmental factors, whether as natural variability or by external forcing, are expected to manifest in 19 
changes in TC characteristics. This is true for both past and future changes. 20 
 21 
The genesis, development, and tracks of TCs depend on conditions of the larger-scale circulations of the 22 
atmosphere and ocean (Christensen et al., 2013). Large-scale atmospheric circulations, such as the Hadley 23 
and Walker circulations and the monsoon circulations, and internal variability acting on various time-scales, 24 
from intra-seasonal (e.g., the Madden-Julian and Boreal Summer Intraseasonal oscillations, and equatorial 25 
waves) and inter-annual (e.g., the El Niño-Southern Oscillation and Pacific and Atlantic meridional modes), 26 
to inter-decadal (e.g., the Atlantic meridional overturning circulation and inter-decadal Pacific oscillation) 27 
can all significantly affect TCs. This broad range of natural variability makes detection of anthropogenic 28 
effects difficult, and it is uncertain how the projected changes of these various modes of variability will 29 
affect future changes in TC activity. Aerosol forcing also affects SST patterns and cloud microphysics, and it 30 
is likely that observed changes in TC activity are partly caused by changes in aerosol forcing (Evan et al., 31 
2011; Sobel et al., 2016; Takahashi et al., 2017; Zhao et al., 2018a). Among possible changes from these 32 
drivers, there is medium confidence that the Hadley cell has widened and will continue to widen in the future 33 
(Chapter 3, 4, and 5). This likely causes latitudinal shifts of TC tracks (Sharmila and Walsh, 2018). Regional 34 
TC activity changes are also strongly affected by projected changes in SST warming patterns (Yoshida et al., 35 
2017), which are highly uncertain (Chapter 4, 9). 36 
 37 
 38 
11.7.1.2 Observed trends 39 
 40 
Identifying past trends in TC metrics remains a challenge due to the heterogeneous character of the historical 41 
instrumental data, which are known as “best-track” data (Schreck et al., 2014), and there is low confidence 42 
that any reported long-term (multidecadal to centennial) trend in TC frequency- or intensity-based metrics 43 
are not affected by changes in technology used to collect the best-track data. This should not be interpreted 44 
as implying that no physical (real) trends exist, but rather as indicating that either the quality or the temporal 45 
length of the data is not adequate to provide robust trend detection statements, particularly in the presence of 46 
multidecadal variability. Further uncertainty is introduced by an incomplete understanding of the 47 
mechanisms driving the observed multidecadal variability (Knutson et al., 2019a). For example, the relative 48 
contributions of internal variability and external forcing to observed Atlantic multidecadal variability is still 49 
a question of heightened debate (Sobel et al., 2016; cross-ref chapter 3). 50 
 51 
There are ongoing efforts to homogenize the best-track data (Elsner et al., 2008; Emanuel et al., 2018;   52 
Kossin, 2019; Kossin et al., 2013; Landsea, 2015; Kossin et al., 2020) and there is substantial literature that 53 
finds positive trends in intensity-related metrics in the best-track during the “satellite period”, which is 54 
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generally limited to the past 40 years or so (e.g., Kang and Elsner 2012; Kishtawal et al. 2012; Kossin et al. 1 
2013; Mei and Xie 2016; Zhao et al. 2018; Tauvale and Tsuboki 2019). When best-track trends are tested 2 
using homogenized data, the trends generally remain positive but are smaller in amplitude, sometimes to the 3 
point of becoming statistically insignificant (Kossin et al., 2013; Holland and Bruyère, 2014). However, 4 
there is evidence that the ~40-year period of highest quality satellite era data is near the timescale required 5 
for TC intensity trends to emerge from the noise, given the observed changes in the environment (Bender et 6 
al., 2010; Kossin et al., 2013). Based on observed trends in the background environment, and our theoretical 7 
understanding of how these trends affect TC intensity, it is expected that a trend in TC intensity might 8 
become detectable over the past 40 years or so, but might also be sensitive to shortening the period of 9 
analysis. Consistent with this, Kossin et al. (2020) extended the homogenized TC intensity record to the 10 
period 1979–2017 and identified significant global increases in major TC exceedance probability of about 11 
8% per decade, but the significance of the increase was marginal. This is consistent with numerical modeling 12 
simulations, which generally indicate an increase in mean TC peak intensity and the proportion of very 13 
intense TCs in a warming world (Knutson et al., 2015, 2019b; Walsh et al., 2015, 2016). In addition to trends 14 
in TC intensity, there is evidence that TC intensification rates have increased within the satellite era 15 
(Balaguru et al., 2018; Bhatia et al., 2018) and TC intensification rates simulated by a high-resolution 16 
coupled model provide support that natural variability alone is unlikely to explain the magnitude of the 17 
observed upward trend in the Atlantic basin since the early 1980s (Bhatia et al., 2019; Murakami, submitted). 18 
 19 
A subset of the best-track data corresponding to hurricanes that have directly impacted the United States 20 
since 1900 is considered to be reliable, and shows no trend in the frequency of U.S. landfall events (Knutson 21 
et al., 2019a). However, in this period since 1900, an increasing trend in normalized U.S. hurricane damage 22 
(Grinsted et al., 2019) and a decreasing trend in TC translation speed over the U.S. (Kossin, 2019) has been 23 
identified. A similarly reliable subset of the data representing TC landfall frequency over Australia shows a 24 
decreasing trend since the late 1800s (Callaghan and Power, 2011; Knutson et al., 2019a) and a paleoclimate 25 
proxy reconstruction shows that recent levels of TC interactions along parts of the Australian coastline are 26 
the lowest in the past 550–1,500 years (Haig et al., 2014). As with all regional analyses of TC frequency, it is 27 
generally unclear whether any identified changes are due to a basin-wide change in TC frequency, or to 28 
systematic track shifts (or both). From an impacts perspective, however, these changes over land are highly 29 
relevant and emphasize that large-scale changes in TC behavior can have a broad spectrum of impacts on a 30 
regional scale. 31 
 32 
Subsequent to the AR5, two metrics that are argued to be comparatively less sensitive to data issues than 33 
frequency- and intensity-based metrics have been analysed, and trends in these metrics have been identified 34 
over the past ~70 years or more (Knutson et al., 2019a). The first metric, the mean latitude where TCs reach 35 
their peak intensity, exhibits a global and regional poleward migration during the satellite period (Kossin et 36 
al., 2014). The poleward migration can influence TC hazard exposure and risk (Kossin et al., 2016a) and is 37 
consistent with the independently-observed expansion of the tropics (Lucas et al., 2014). The migration has 38 
been linked to changes in the Hadley circulation (Altman et al., 2018; Sharmila and Walsh, 2018; Studholme 39 
and Gulev, 2018). The migration is also apparent in the mean locations where TCs exhibit eyes (Knapp et al., 40 
2018), which is when TCs are most intense. Part of the northern hemisphere poleward migration is due to 41 
interbasin changes in TC frequency (Kossin et al., 2014, 2016b; Moon et al., 2015, 2016) and the trends, as 42 
expected, can be sensitive to the time period chosen (Tennille and Ellis, 2017; Kossin, 2018; Song and 43 
Klotzbach, 2018) and to subsetting of the data by intensity (Zhan and Wang, 2017).  44 
 45 
The poleward migration is particularly pronounced and well-documented in the western North Pacific basin 46 
(Kossin et al., 2016a; Oey and Chou, 2016; Liang et al., 2017; Nakamura et al., 2017; Altman et al., 2018; 47 
Daloz and Camargo, 2018; Sun et al., 2019a; Yamaguchi and Maeda, submitted) and a significant poleward 48 
trend remains after accounting for the known modes of dominant interannual to decadal variability in the 49 
region (Knutson et al., 2019a). A poleward trend in the western North Pacific is also found in CMIP5 model-50 
simulated TCs (in the recent historical period 1980–2005) although it is weaker than observed and is not 51 
statistically significant (Kossin et al., 2016a). However, the trend is significant in 21st century CMIP5 52 
projections under the Representative Concentration Pathway8.5 scenario, with a similar spatial pattern and 53 
magnitude to the past observed changes in that basin over the period 1945–2016, supporting a possible 54 
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anthropogenic contribution to the observed trends (Kossin et al., 2016a; Knutson et al., 2019a). A 1 
pronounced poleward shift in the western North Pacific is also found in HighResMIP projected simulations 2 
(Roberts et al., 2019b). 3 
 4 
 5 
[START FIGURE 11.22 HERE] 6 
 7 
Figure 11.22: Summary schematic of past and projected changes in tropical cyclone (TC), extra-tropical cyclone (ETC), 8 

atmospheric river (AR), and severe convective storm (SCS) behaviour and their associated confidence 9 
levels. Changes are shown at the global scale (statements 1–5) and regional scale (statements 6, 7).  10 

 11 
[END FIGURE 11.22 HERE] 12 
 13 
 14 
A second metric that is argued to be comparatively less sensitive to data issues than frequency- and intensity-15 
based metrics is TC translation speed (Kossin, 2018a), which exhibits a global slowdown in the best-track 16 
data over the period 1949-2016. TC translation speed is a measure of the speed at which TCs move across 17 
the Earth’s surface and is very closely related to local rainfall amounts (i.e., slower translation speed causes 18 
greater local rainfall). TC translation speed also affects structural wind damage and coastal storm surge by 19 
changing hazard event duration. The slowdown is observed in the best-track data from all basins except the 20 
Northern Indian Ocean and is also found in a number of regions where TCs interact directly with land. The 21 
slowing trends identified in the best-track data by Kossin (2018) have been argued to be largely due to data 22 
heterogeneity. Moon et al. (2019) and Lanzante (2019) provide evidence that meridional TC track shifts 23 
project onto the slowing trends and argue that these shifts are due to the introduction of satellite data. Kossin 24 
(2019) provides evidence that the slowing trend is real by focusing on Atlantic TC track data over the 25 
coterminous United States in the 118-year period 1900–2017, which are generally considered reliable. In this 26 
period, TC translation speed has decreased by 17% and the slowing trend is robust and significant after 27 
removing multidecadal variability from the time series. Yamaguchi et al. (2019) use large ensemble 28 
simulations to argue that part of the slowdown is due to actual latitudinal shifts of TC tracks, rather than data 29 
artefacts, in addition to atmospheric circulation changes. 30 
 31 
The slowing TC translation speed is expected to increase local rainfall amounts, which would increase 32 
coastal and inland flooding. In combination with slowing translation speed, abrupt TC track direction 33 
changes – that can be associated with track “meanders” or “stalls” – have become increasingly likely along 34 
the North American coast since the mid-20th century leading to more rainfall in the region (Hall and Kossin, 35 
2019). It is not yet clear, however, what the cause of the observed slowdown is. It is consistent with the 36 
physical linkage between warming and slowing circulation (Held and Soden 2006, see also Sections 8.2.1.3 37 
and 8.2.2.1.2), and with expectations of arctic amplification and weakening circulation patterns through 38 
weakening meridional temperature gradients (Coumou et al., 2018) or through changes in planetary wave 39 
dynamics (Mann et al., 2017). But slowing trends have not been unambiguously observed in circulation 40 
patterns that steer TCs such as the Walker and Hadley circulations (Chemke and Polvani, 2019), although 41 
these circulations generally slow down in numerical simulations under global warming (He and Soden, 42 
2015;Vecchi and Soden, 2007;Vecchi et al., 2006).  43 
 44 
In summary, there is mounting evidence that a variety of TC characteristics have changed over 45 
various time periods. It is likely that the proportion of stronger TCs has increased globally over the 46 
past 40 years. This is consistent with theoretical understanding and numerical simulations, which 47 
provides medium confidence that the increase has become detectable. It is very likely that the average 48 
location where tropical cyclones reach their peak wind-intensity has migrated poleward in the western 49 
North Pacific Ocean since the 1940s, and there is medium confidence that this migration lies outside 50 
the range of natural variability. There is medium confidence that TC translation speed has slowed 51 
detectably over the U.S. since 1900, but low confidence for a global signal because of the potential for 52 
data heterogeneity. There is low confidence in the cause of the slowdown in any region due to a lack of 53 
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robust agreement among models that simulate TCs, although the slowdown is consistent with theory 1 
and modelling studies that indicate a general slowing of atmospheric circulation with warming. 2 
 3 
 4 
11.7.1.3 Model evaluation 5 
 6 
Accurate projections of future TC activity have two principal requirements: accurate representation of 7 
changes in the relevant environmental factors ( e.g., SST) that can affect TC activity, and accurate 8 
representation of actual TC activity in a given environmental condition. For evaluation of projections of TC-9 
relevant environmental variables, the confidence statements of the AR5 were based on global temperature 10 
and moisture, but not on the detailed regional structure of SST and atmospheric circulation changes such as 11 
steering flows and vertical shear, which affect characteristics of TCs (genesis, intensity, tracks, etc). Various 12 
aspects of TC metrics are used to evaluate how models are capable at simulating present-day TC 13 
climatologies and variability ( e.g., TC frequency, wind-intensity, precipitation, size, tracks, and their 14 
seasonal and interannual changes) (Walsh et al., 2015; Camargo and Wing, 2016; Knutson et al., 2019a, 15 
2019b). Other examples of TC climatology/variability metrics are spatial distributions of TC occurrence and 16 
genesis (Walsh et al., 2015) and  seasonal cycles and interannual variability of basin-wide activity  (Zhao et 17 
al., 2009; Shaevitz et al., 2014; Kodama et al., 2015; Murakami et al., 2015b; Yamada et al., 2017) or 18 
landfalling activity (Lok and Chan, 2017). 19 
 20 
CMIP5/6 class climate models (~100-200 km grid spacing) cannot simulate TCs of Category 4-5 intensity. 21 
They do simulate storms of relatively high vorticity that are at best described as “tropical cyclone-like” but 22 
metrics like storm counts are highly dependent on tracking algorithms (Wehner et al., 2015; Zarzycki and 23 
Ullrich, 2017; Roberts et al., submitted, b).  HighResMIP-class global models (~10-60 km grid spacing) 24 
begin to capture some structures of TCs more realistically as well as produce intense TCs of Category 4-5 25 
despite the effects of parameterized deep cumulus convection processes (Murakami et al., 2015b; Wehner et 26 
al., 2015; Yamada et al., 2017; Roberts et al., 2018). Convection-permitting models (~1-10 km grid-spacing) 27 
such as used in some dynamical downscaling studies provide further realism (Tsuboki et al., 2015). Model 28 
characteristics besides resolution, especially details of convective parameterization, can influence a model’s 29 
ability to simulate intense TCs (Reed and Jablonowski, 2011; Zhao et al., 2012; He and Posselt, 2015; Kim 30 
et al., 2018a; Zhang and Wang, 2018). However, models’ dynamical cores also affect simulated TC 31 
properties (Reed et al., 2015b). Both wide-area regional and global convection-permitting models without 32 
the need for parameterized convection are becoming more useful for TC projection studies [regional model 33 
projection studies (Tsuboki et al., 2015; Kanada et al., 2017a; Gutmann et al., 2018) and global model 34 
projection studies (Satoh et al., 2015, 2017; Yamada et al., 2017)], as they capture more realistic eye-wall 35 
structures of TCs (Kinter et al., 2013) and are becoming more useful for investigating changes in TC 36 
structures (Kanada et al., 2013; Yamada et al., 2017). Large ensemble simulations of global climate models 37 
with 60 km grid spacing provide TC statistics that allow more reliable detection of changes in the 38 
projections, which are not well captured in any single experiment (Yoshida et al., 2017).  39 
 40 
Operational forecasting models are very good at simulating TCs, and their use for climate projection studies 41 
shows promise. However, there is limited application for future projections as they are highly tuned for 42 
operational purposes. Intercomparison of operational models indicates that enhancement of horizontal 43 
resolution can provide more credible projections of TCs (Nakano et al., 2017). 44 
 45 
Atmosphere-ocean interaction is an important process in TC evolution, and atmosphere-ocean coupled 46 
models are generally better than atmosphere-only models at capturing realistic processes related to TCs 47 
(Murakami et al., 2015b; Kanada et al., 2017b). Higher resolution ocean models improve simulation of TCs 48 
by reducing SST climatology bias (Ogata et al., 2015, 2016; Roberts et al., 2019). For example, in a case 49 
study of Hurricane Harvey, Trenberth et al. (2018) suggested that the lack of realistic hurricane activity 50 
within coupled climate models hampers the models’ ability to simulate SST and ocean heat content and their 51 
changes.  52 
 53 
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Even with higher resolution atmosphere-ocean coupled models, TC projection studies still rely on 1 
assumptions in experimental design that introduce uncertainty. Computational constraints often limit the 2 
number of simulations, resulting in relatively small ensemble sizes and an incomplete analysis of possible 3 
future SST magnitude and pattern changes (Zhao and Held, 2011; Knutson et al., 2013). Uncertainties in 4 
aerosol forcing also are reflected in TC projection uncertainty (Wang et al., 2014). 5 
 6 
 7 
11.7.1.4 Detection and attribution, event attribution 8 
 9 
There is general agreement in the literature that anthropogenic greenhouse gases and aerosols have 10 
measurably affected observed oceanic and atmospheric variability in TC-prone regions (chapter 3). This led 11 
to the AR5 assessment of medium confidence that humans have contributed to the observed increase in 12 
Atlantic hurricane activity since the 1970s. Literature subsequent to the AR5 lends further support to this 13 
statement (Knutson et al., 2019a). However, there is still no consensus on the relative magnitude of human 14 
and natural influences on past changes in Atlantic hurricane activity, and particularly which factor has 15 
dominated the observed increase. A recent result using high-resolution dynamical model experiments 16 
showed that the observed spatial contrast in TC trends cannot be explained only by multi-decadal natural 17 
variability, and external forcing also played an important role (Murakami, submitted). 18 
 19 
The recent active TC seasons in some basins, particularly in 2015, have been tested for an anthropogenic 20 
influence. Murakami et al., 2017 explored the unusually high TC frequency near Hawaii and in the eastern 21 
Pacific basin. Zhang et al. (2016) considered unusually high Accumulated Cyclone Energy (ACE) in the 22 
western North Pacific. Yang et al. (2017) and Yamada et al. (2019) looked at TC intensification in the 23 
western North Pacific. These studies suggest that the anomalous TC activity in 2015 was not solely 24 
explained by the effect of a super El Nino (see BOX 11.3), and that there was an anthropogenic contribution. 25 
Takahashi et al. (2017) suggested that a decrease in sulfate aerosol emissions caused about half of the 26 
observed decreasing trends in TC genesis frequency in the south-eastern region of the western North Pacific 27 
during 1992–2011. Murakami et al. (2018) concluded that the active 2017 Atlantic hurricane season was 28 
mainly caused by pronounced SSTs in the tropical North Atlantic and that these types of seasonal events will 29 
intensify with projected anthropogenic forcing.   30 
 31 
In a case study of Hurricane Sandy (2012), Lackmann (2014) finds no statistically significant impact of 32 
anthropogenic climate change on intensity while projection in a warmer world showed significantly 33 
increased intensity. In typhoon Haiyan, which struck the Philippines on 8 November 2013, Takayabu et al. 34 
(2015) took an event attribution approach with cloud system-resolving (~1km) downscaling ensemble 35 
experiments to evaluate the anthropogenic effect on typhoons, and showed that the intensity of the simulated 36 
worst case storm in the actual conditions was stronger than that in a hypothetical condition without historical 37 
anthropogenic forcing. However, in a similar approach with two coarser parameterized convection models, 38 
Wehner et al. (2018) found conflicting human influences on Haiyan’s intensity. Kanada et al. (2017) 39 
obtained robust anthropogenic intensification of a strong typhoon using 5-km mesh multi-models to simulate 40 
realistic rapid intensification of a TC (Kanada and Wada,  2016). In contrast to these convection permitting 41 
simulations, Patricola and Wehner (2018) found little evidence of an attributable change in intensity in 15 42 
different TCs using a regional climate model configured between 3 and 4.5 km resolution. They did however 43 
find attributable increases in heavy precipitation totals for some of the 15 TCs that could be traced to 44 
changes in storm structure.  45 
 46 
The dominant factor in the extreme rainfall amounts during Hurricane Harvey’s passage onto the U.S. in 47 
2017 was its slow translation speed. But studies published after the event have argued that anthropogenic 48 
climate change contributed to an increase in rain rate, which compounded the extreme local rainfall caused 49 
by the slow translation. Emanuel (2017) used a large set of synthetically-generated storms and showed that 50 
the occurrence of extreme rainfall as observed in Harvey was substantially enhanced by anthropogenic 51 
changes to the larger-scale ocean and atmosphere characteristics. Trenberth et al. (2018) linked Harvey’s 52 
rainfall totals to the anomalously large ocean heat content from the Gulf of Mexico. van Oldenborgh et al. 53 
(2017) and Risser and Wehner (2017) applied extreme value analysis to extreme rainfall records in the 54 
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Houston, Texas region and both attributed large increases to climate change. Large precipitation increases 1 
during Harvey due to global warming were also found using climate models (van Oldenborgh et al., 2017; 2 
Wang et al., 2018b). Harvey precipitation totals were estimated in these papers to be 3 to 10 times more 3 
likely due to climate change. A best estimate from a regional climate and flood model is that urbanization 4 
increased the risk of the Harvey flooding by a factor of 21 (Zhang et al., 2018d). Precipitation increases 5 
greater than expected from Clausius-Clapeyron scaling were predicted in advance from a forecast model for 6 
Hurricane Florence in 2008 by Reed et al., (2019), and were linked to anthropogenic factors.  7 
 8 
 9 
11.7.1.5 Projections 10 
 11 
A summary of studies on TC projections for the late 21st century, particularly studies since the AR5, is given 12 
by (Knutson et al., 2019b), which represents an assessment report mandated by the World Meteorological 13 
Organization (WMO). Studies subsequent to Knutson et al. (2019b) are generally consistent and the 14 
confidence assessments here closely follow theirs, although there are some differences due to the different 15 
confidence calibrations between the IPCC and WMO reports.  16 
 17 
There is not an established theory for the drivers of future changes in the frequency of TCs. Most but not all 18 
high resolution global simulations project significant reductions in the total number of tropical cyclones with 19 
the bulk of the reduction at the weaker end of the intensity spectrum as the climate warms (Knutson et al., 20 
2019b). Recent exceptions based on high-resolution coupled model results are noted in  Bhatia et al., 2018 21 
and Vecchi et al., 2019). Vecchi et al. (2019) showed that the representation of synoptic-scale seeds for TC 22 
genesis in their high-resolution model causes different projection of global TC frequency, and there is 23 
evidence for a decrease in seeds in some projected TC simulations (Sugi et al., 2019). A Genesis Potential 24 
Index (GPI) derived from climate models is generally projected to increase as the climate warms (Zhang et 25 
al., 2010). However, while GPI well describes the observed interannual variability of current TC frequency 26 
(Camargo et al., 2007), it fails to predict the decreased TC frequency found in high resolution model 27 
simulations (Wehner et al., 2015), suggesting a limitation of the use of the empirical GPI for projections of 28 
TC genesis. In a different approach, a seeded downscaled multi-model projection (Emanuel, 2013) exhibits 29 
increases in TC frequency consistent with GPI-based projections. This disparity in the sign of the projected 30 
change in global TC frequency further emphasizes the lack of process understanding of tropical cyclogenesis 31 
(Walsh et al., 2015).  32 
 33 
Changes in SST and atmospheric temperature and moisture play a role in tropical cyclogenesis (Walsh et al., 34 
2015). Reductions in vertical convective mass flux due to increased tropical stability have been associated 35 
with a reduction in cyclogenesis (Held and Zhao, 2011; Sugi et al., 2012). Satoh et al. (2015a) further posits 36 
that the robust simulated increase in intense TCs, and hence increased vertical mass flux, must lead to a 37 
decrease in TC frequency because of this association. GPI can be modified to mimic the TC frequency 38 
decreases of a model by altering the treatment of humidity (Camargo et al., 2014) supporting the idea that 39 
increased mid-tropospheric saturation deficit (Emanuel et al., 2008) controls TC frequency, but the approach 40 
remains empirical. Other possible controlling factors, such as a decline in the number of seeds (held constant 41 
in Emanuel’s downscaling approach) caused by increased atmospheric stability have been proposed, but 42 
questioned as an important factor (Patricola et al., 2018). The resolution of atmospheric models affects the 43 
number of seeds, hence TC genesis frequency (Vecchi et al., 2019; Sugi et al., submitted). The diverse and 44 
sometimes inconsistent projected changes in global TC frequency by high-resolution models indicate that 45 
better process understanding and improvement of the models are needed to raise confidence in these 46 
changes.  47 
 48 
Most model simulations are consistent in their projection of increases in the proportion of intense TC 49 
(Category 4-5) as well as an increase in the intensity of the strongest TCs (Wehner et al., 2018a; Murakami 50 
et al., 2012; Tsuboki et al., 2015). The general reduction in the total number of TCs, which is concentrated in 51 
weaker storms (Category 0-1), contributes to this increase. The models are somewhat less consistent in 52 
projecting an increase in the frequency of Category 4-5 TCs (Wehner et al., 2018a). The projected increase 53 
in the intensity of the strongest TCs is consistent with theoretical understanding (e.g., Emanuel 1987) and 54 



Second Order Draft Chapter11 IPCC AR6 WGI 
 

Do Not Cite, Quote or Distribute 11-99 Total pages: 271 

 

observations (e.g., Kossin et al., 2020). A summary of projections of TC characteristics is shown in Fig. 5 of 1 
Knutson et al., 2019c, and in Roberts et al., 2019b). [Note to reviewers: HighResMIP results to be included 2 
in the FGD]. For a 2oC global warming, the median proportion of Category 4–5 TCs increases by 13%, while 3 
the median global TC frequency decreases by 14%, which infers that the median of the global Category 4–5 4 
TC frequency is slightly reduced by 1% or almost unchanged (Knutson et al., 2019b).  5 
 6 
The increase in global TC maximum surface wind speeds is about 5% for a 2oC global warming across a 7 
number of high resolution multi-decadal studies (Knutson et al., 2019b). TCs are also measured by quantities 8 
such as Accumulated Cyclone Energy (ACE) and power dissipation index (PDI), which conflate TC 9 
intensity, frequency, and duration (Murakami et al., 2014). Several TC modeling studies (Yamada et al., 10 
2010; Kim et al., 2014; Knutson et al., 2015) project little change or decreases in global accumulated value 11 
of PDI or ACE, which is due to the decrease in the total number of TCs. These projections can vary 12 
substantially between ocean basins, possibly due to differences in regional SST warming and warming 13 
patterns (Sugi et al., 2017; Yoshida et al., 2017). 14 
 15 
Existing studies generally agree on a projected increase in global average TC rainfall rates with a consensus 16 
increase of about 12% for a 2oC global warming consistent with Clausius-Clapeyron scaling (Knutson et al., 17 
2019b). Increases substantially greater than Clausius-Clapeyron scaling are projected in some regions, which 18 
has been shown to be caused by increased low-level moisture convergence due to projected intensity 19 
increases in those regions (Knutson et al., 2015;Liu et al., 2019;Phibbs and Toumi, 2016).Projections of TC 20 
precipitation using large-ensemble experiments (Kitoh and Endo, 2019) show that the annual maximum 1-21 
day precipitation total is projected to increase, except for the western North Pacific where there is only a 22 
small change or even a reduction is projected, mainly due to a projected decrease of TC frequency in the 23 
western North Pacific. They also show that the 10-year return value of extreme Rx1day associated with TCs 24 
will greatly increase in a region extending from Hawaii to the south of Japan.  25 
 26 
Projected changes in TC tracks or TC areas of occurrence vary considerably among available studies, 27 
although there is better agreement in the western North Pacific. Several studies project either poleward or 28 
eastward expansion of TC occurrence over the western North Pacific region, and more TC occurrence in the 29 
central North Pacific (Yamada et al., 2017; Yoshida et al., 2017; Wehner et al., 2018a). A poleward 30 
expansion of the latitude of maximum TC intensity in the western North Pacific is consistent with 31 
observations (Kossin et al., 2014, 2016a). In the North Atlantic, while the location of TC maximum intensity 32 
does not show clear poleward migration observationally (Kossin et al., 2014; Kossin 2018b), it tends to 33 
migrate poleward in projections (Garner et al., 2017). The poleward migration is less robust among models 34 
and observations in other regions (e.g., Tauvale and Tsuboki, 2019). There is presently no clear consensus in 35 
projected changes in TC translation speed (Knutson et al., 2019b), although recent studies suggest a 36 
slowdown outside of the tropics (Yamaguchi et al., 2019;Zhang et al., In review) . 37 
 38 
The spatial extent, or “size”, of the TC wind-field is an important determinant of storm surge and damage. 39 
No detectable anthropogenic influences on TC size have been identified to date. However, projections by 40 
high resolution models indicate future broadening of TC wind-fields when compared in TCs of similar 41 
intensity (Yamada et al., 2017) although the details may be basin dependent (Knutson et al., 2015). A 42 
plausible mechanism is that as the tropopause height becomes higher with global warming, the eye wall 43 
areas become wider because the eye walls are inclined outward with height to the tropopause. This effect is 44 
only reproduced in high resolution convection-permitting models capturing eye walls, and such modeling 45 
studies are not common. Moreover, the projected TC size changes are generally of the order of 10% or less, 46 
and these size changes are still highly variable between basins and studies. Thus, the projected change in TC 47 
size is uncertain.  48 
 49 
The coastal effects of TCs depend on TC intensity, size, track, and translation speed. Projected increases in 50 
sea level, average TC intensity, and TC rainfall rates each generally act to further elevate future storm surge 51 
and fresh-water flooding risk. Changes in TC frequency could contribute toward increasing or decreasing 52 
future storm surge risk, depending on the net effects of changes in weaker vs stronger storms. Several studies 53 
(McInnes et al., 2014, 2016; Little et al., 2015; Garner et al., 2017; Timmermans et al., 2017, 2018) have 54 



Second Order Draft Chapter11 IPCC AR6 WGI 
 

Do Not Cite, Quote or Distribute 11-100 Total pages: 271 

 

explored future storm surge risk in the context of anthropogenic climate change with the influence of both 1 
sea level rise and the changes in future TC changes. Garner et al. (2017) investigated the near future changes 2 
in risks of New York City coastal flooding, and suggested a small change in storm-surge height because 3 
effects of TC intensification are compensated by the offshore shifts in TC tracks, but concluded that the 4 
overall effect due to the rising sea levels would likely increase of the flood risk. For the Pacific islands, 5 
McInnes et al. (2014) find that the future projected increase in storm surge risk in Fiji is dominated by sea 6 
level rise, and projected TC changes cause only a minor contribution. Among various storm surge risk 7 
factors, there is high confidence that sea level rise will lead to higher risk of extreme coastal water levels in 8 
most regions, of all other factors assumed equal.  9 
 10 
In the North Atlantic, vertical wind shear – which inhibits TC genesis and intensification – varies in a quasi-11 
dipole pattern with one center of action in the tropics and another along the U.S. southeast coast (Vimont and 12 
Kossin, 2007). This pattern of variability creates a protective barrier of high shear along the U.S. coast 13 
during periods of heightened TC activity in the tropics (Kossin, 2017), and appears to be a natural part of the 14 
Atlantic ocean-atmosphere climate system (Ting et al. 2019). Greenhouse gas forcing in CMIP-5 and 15 
Community Earth System Model Large Ensemble (CESM-LE; Kay et al., 2015) simulations, however, 16 
erodes the pattern and degradesthe natural shear barrier along the U.S. coast. Following the Representative 17 
Concentration Pathway 8.5 (RCP8.5) emission scenario, the magnitude of the erosion of the barrier equals 18 
the amplitude of past natural variability (time of emergence) by the mid-twenty-first century (Ting et al., 19 
2019). The projected reduction of shear along the U.S. east coast with warming is consistent among studies 20 
(e.g., Vecchi and Soden, 2007b). 21 
 22 
In summary, there is high confidence that average peak tropical cyclone wind speeds and the 23 
proportion of Category 4-5 tropical cyclones will increase globally with warming. There is medium 24 
confidence that the frequency of Category 4-5 TCs will increase. There is high confidence that average 25 
tropical cyclone rain-rates will increase with warming, and there is medium confidence that the peak 26 
rain-rates will increase at greater than the Clausius-Clapeyron scaling rate of 7% per °C of warming 27 
in some regions due to increased low-level moisture convergence caused by regional increases in wind-28 
intensity. There is medium confidence that the average location where tropical cyclones reach their 29 
peak wind-intensity will migrate poleward in the western North Pacific Ocean as the tropics expand 30 
with warming. There is medium confidence that the global frequency of TCs over all categories will 31 
decrease or remain unchanged. There is low confidence that the spatial extent of the TC wind-field will 32 
increase within fixed intensity categories. 33 
 34 
 35 
11.7.2 Midlatitude storms 36 
 37 
This section assesses synoptic scale storms that affect midlatitude regions including extratropical cyclones 38 
(ETCs) and atmospheric rivers (ARs). The focus is on midlatitude storms that are either classified as 39 
extreme, based on some measure of their intensity, or are associated with the occurrence of extremes in 40 
weather variables such as precipitation or near-surface wind speeds (Seneviratne et al., 2012b). Since the the 41 
AR5, the high relevance of ETCs and ARs for extreme precipitation events has been well established (Pfahl 42 
and Wernli, 2012; Catto and Pfahl, 2013; Utsumi et al., 2017) with 80% or more of hourly and daily 43 
precipitation extremes being associated with either ETCs or fronts over oceanic midlatitude regions, and 44 
somewhat smaller but still very large proportions of events over midlatitude land regions (Utsumi et al., 45 
2017). The emphasis in this section is on individual midlatitude storms that have been identified using some 46 
detection and tracking algorithm. The midlatitude storm tracks, referring to those regions where the main 47 
tracks of extratropical disturbances occur as sequences of low (cyclonic) and high (anticyclonic) pressure 48 
systems, are not directly assessed in this section. Detection and attribution of changes in storm tracks are 49 
assessed in Chapter 3 (Section 3.3.3.3), observed trends in Chapter 2 (Section 2.3.1.4.3) and projected 50 
changes in Chapter 4 (Section 4.5.1.6). More on storm tracks and ETCs can be found in Section 8.3.2.8. 51 
 52 
 53 
11.7.2.1 Definitions, mechanisms and drivers 54 
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ETCs are usually defined as synoptic-scale (~1000 km) low pressure systems with cyclonic rotation that 1 
develop over middle and high latitudes (Seneviratne et al., 2012b; Hartmann et al., 2013). ETCs exhibit a 2 
variety of sizes, shapes, durations, vertical structures and translation speeds which translates into substantial 3 
ambiguity when designing algorithms to detect and track ETCs (Neu et al., 2013). Detection and tracking 4 
methods can differ in a number of aspects including, but not limited to, the choice of the variable used for 5 
detection (e.g., mean sea level pressure, lower-tropospheric vorticity, etc), thresholds used to decide when a 6 
cyclone is present (detection) and hypotheses about how to group cyclones as part of the same event 7 
(tracking). In addition, contrary to tropical cyclones for which the Saffir-Simpson scale is commonly used to 8 
classify their intensity, there is no consensus on a single scale to define the intensity of ETCs. Weak, 9 
moderate and strong ETCs are instead defined using some dynamical aspect of the storm based on the 10 
specific variable (mean sea level pressure, winds, vorticity, etc) employed by detection and tracking method 11 
(Neu et al., 2013). Uncertainties across methods have been shown to decrease as stronger ETCs are 12 
considered, as most methods are able to capture the strongest and longer duration ETCs (Neu et al., 2013; 13 
Pepler et al., 2015). 14 
 15 
The frequency and intensity of ETCs vary spatially and on monthly, interannual and interdecadal time scales 16 
due to several large-scale drivers, including the strength of horizontal temperature gradients at different 17 
altitudes, static stability, and amount of water vapour. Changes in these environmental factors, whether 18 
associated with natural variations or with changes in external forcings, are expected to influence the local 19 
intensity and frequency of ETCs and associated precipitation. Modes of variability such as El Niño-Southern 20 
Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the North Atlantic oscillation (NAO) induce 21 
substantial interannual and interdecadal variability, complicating the identification of trends over 20 or 30 22 
year periods (Reboita et al., 2015; Varino et al., 2018).  23 
 24 
 25 
11.7.2.2 Observed trends 26 
 27 
The SREX stated that “it is likely that there has been a poleward shift in the main Northern and Southern 28 
Hemisphere extratropical storm tracks during the last 50 years” (Seneviratne et al., 2012b) although there 29 
was low confidence “due to inconsistencies between studies or lack of long-term data in some parts of the 30 
world (particularly in the Southern Hemisphere (SH))”. Since the AR5 and SREX, new reanalysis products 31 
have been made available including the European Centre for Medium-Range Weather Forecasts 20th century 32 
reanalysis (ERA20C, Poli et al., 2013) but the study of trends in midlatitude storms remains difficult due to 33 
the large interannual and decadal variability (Reboita et al., 2015; Varino et al., 2018)and due to temporal 34 
and spatial heterogeneities in the number and type of assimilated reanalysis data, particularly before the 35 
satellite era (Krueger et al., 2013; Tilinina et al., 2013; Befort et al., 2016; Chang and Yau, 2016; Wang et 36 
al., 2016b). 37 
 38 
There is low confidence that the total number of deep ETCs (systems with central pressure <980 hPa) has 39 
increased over the Southern Hemisphere during the satellite era (since 1979) with 8 reanalyses showing 40 
positive trends and 5 of them showing statistically significant trends (Reboita et al., 2015; Wang et al., 41 
2016b). However, characterising ETC’s intensity using the absolute central pressure can be problematic to 42 
identify historical trends or changes because of its dependence on the background mean sea level pressure 43 
which varies in time (seasonal and decadal) and space (Chang, 2014). For example, positive trends in the 44 
number of very deep cyclones (central pressure <960 hPa) were identified in both the ERA-20C and the 45 
NOAA-20CR reanalyses since 1960 in the Southern Hemisphere but only the ERA-20C reanalysis showed 46 
an increase in the number of systems with strong near-surface wind speeds (windstorms; defined using the 47 
local 98th percentile) over the same period (Befort et al., 2016). There is low confidence in decadal trends of 48 
the number of very deep cyclones (<960 hPa) over the North Atlantic and North Pacific. In 5 reanalysis 49 
products including the some of the latest high-resolution reanalyses (ERA-Interim, MERRA, NCEP-CFSR), 50 
Tilinina et al. (2013) showed that the number of very deep cyclones (<960 hPa) increased from 1979 to 1990 51 
and then declined until 2010 in the North Atlantic while the number reached a peak in about 2000 and then 52 
decreased until 2010 over the North Pacific. 53 
 54 



Second Order Draft Chapter11 IPCC AR6 WGI 
 

Do Not Cite, Quote or Distribute 11-102 Total pages: 271 

 

In summary, there is low confidence in past changes in the frequency and intensity of extratropical 1 
cyclones due to heterogeneities in the data and inconsistent results between studies.  2 
 3 
 4 
11.7.2.3 Model evaluation 5 
 6 
The AR5 stated that CMIP5 climate models “are able to capture the general characteristics of storm tracks 7 
and extratropical cyclones, and there is some evidence of improvement since the AR4” (Flato et al., 2013). 8 
Since the AR5, a large number of studies have evaluated the ability of climate models to simulate several 9 
characteristics of midlatitude storms including the frequency and intensity of ETCs (Colle et al., 2013; Zappa 10 
et al., 2013a; Pithan et al., 2016), ARs (Placeholder: to be completed for the FGD) and fronts (Catto et al., 11 
2013, 2015). In addition, an increasing number of studies have evaluated fields associated with midlatitude 12 
storms including precipitation, clouds and near-surface winds (Catto, 2016; Hawcroft et al., 2016, 2017, 13 
2018; Trzeciak et al., 2016). 14 
 15 
The evaluation of the frequency and intensity of ETCs commonly employs reanalyses data because the 16 
identification and tracking of ETCs require evenly distributed data in time and space. The comparison 17 
between ETC characteristics obtained from different datasets (simulations or reanalyses) is complicated 18 
because they depend not only on the “quality” of the model but also on their horizontal resolution, with 19 
higher horizontal resolution data usually leading to more and stronger ETCs (Blender and Schubert, 2000; 20 
Shkolnik and Efimov, 2013; Di Luca et al., 2015b). To assess common spatial scales in both reanalysis and 21 
simulated datasets, data are either preprocessed (e.g., Di Luca et al., 2015b; Neu et al., 2013; Zappa et al., 22 
2013b) or tracking algorithms are tuned (e.g., Nissen et al., 2014). For example, Zappa et al. (2013a) and 23 
Seiler and Zwiers (2016) identified and tracked ETCs in 850-hPa vorticity fields derived from CMIP5 24 
models and reanalysis data after removing fine-scale spatial variability from the vorticity field. 25 
 26 
There is high confidence that CMIP-class models underestimate the dynamical intensity of ETCs as 27 
measured using a variety of metrics (mean pressure gradient, mean vorticity, near-surface winds, etc) over 28 
several regions (Colle et al., 2013; Zappa et al., 2013a; Di Luca et al., 2016b; Trzeciak et al., 2016; Seiler et 29 
al., 2018). Over the Northern Hemisphere, Seiler and Zwiers (2016) evaluated the performance of CMIP5 30 
models to simulate ETCs undergoing explosive development (i.e., showing a decrease in mean sea level 31 
pressure of at least 24 hPa in 24 hours) against three reanalyses products. They found that models well-32 
simulate the spatial distribution of explosive systems over the North Atlantic and North Pacific but showed 33 
that three quarters of the models underestimate their frequency. The general underestimation of the intensity 34 
of ETCs has been linked with the horizontal resolution of CMIP-type models, with the models’ performance 35 
improving as horizontal resolution increases (Colle et al., 2013; Zappa et al., 2013a; Di Luca et al., 2016b; 36 
Trzeciak et al., 2016; Seiler et al., 2018). The systematic bias in the intensity of ETCs has also been 37 
associated with the inability of coarse resolution models to well-resolve diabatic processes particularly those 38 
related to the release of latent heat (Willison et al., 2013; Trzeciak et al., 2016). While Trzeciak et al. (2016) 39 
argued that horizontal resolution of about 100 km might be sufficient to remove most of biases, Willison et 40 
al. (2013) showed that the positive diabatic feedback is significantly enhanced when simulated with 20-km 41 
relative to 120-km grid spacing. 42 
 43 
Since the AR5, several studies have evaluated ETC’s associated precipitation by compositing the 44 
precipitation field around the detected ETCs. Hawcroft et al. (2018) showed that CMIP5 models well-45 
simulate the spatial distribution of precipitation related with an average ETC over the Northern Hemisphere 46 
together with some of the main features of ETC life cycle. These include the peak in precipitation occurring 47 
just before the maximum in dynamical intensity (e.g., vorticity) as observed in reanalysis and observations. 48 
There is, however, large observational uncertainty in ETC’s associated precipitation (Hawcroft et al., 2018). 49 
Hawcroft et al. (2016) evaluated the ETC’s associated precipitation using a high-resolution climate model 50 
(HiGEM; about 1° latitude by 1° longitude) against the ERA-Interim reanalysis and Global Precipitation 51 
Climatology Project (GPCP) observations, and found that HiGEM overestimates the proportion of the total 52 
precipitation falling from the most intensely precipitating ETCs. Catto et al (2015) evaluated the contribution 53 
of frontal precipitation to the total precipitation in winter and found that CMIP5 models systematically 54 
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produce too many fronts with too low precipitation intensity over midlatitude oceanic areas in both 1 
hemispheres.  2 
 3 
In summary, there is evidence that CMIP-class models are able to well-simulate some aspects of ETCs 4 
and the associated fronts, but their coarse horizontal resolution together with their limited ability to 5 
resolve diabatic processes such as latent heat release leads to a systematic underestimation of the 6 
intensity of the strongest ETCs (high confidence). This limits our confidence in CMIP models to 7 
predict future changes in the intensity of ETCs because the contribution from diabatic processes is 8 
expected to increase in the future due to the increase in water vapour. In addition, there is substantial 9 
evidence that the response of extreme precipitation water vapour increases differs between climate 10 
models with parameterized and with explicit convection (Section 11.4). 11 
 12 
 13 
11.7.2.4 Projections 14 
 15 
The frequency of ETCs is expected to change following changes in the storms tracks as discussed in sections 16 
4.5.1.6 and 8.3.2.8. In agreement with earlier reports (Christensen et al., 2013), recent studies project that 17 
changes in the dynamical intensity of ETCs (e.g., wind speeds) will be small showing increases or decreases 18 
that follow changes in the storm tracks. Yettella and Kay (2017) detected and tracked ETCs in an ensemble 19 
of 30 CESM-LE simulations, differing only in their initial conditions, and found that the averaged wind 20 
speeds around ETC centres (i.e., dynamical intensity) changes little between present (1986-2005) and future 21 
(2081-2100) periods. Using historical reanalysis data, Li et al. (2014) evaluated changes in a cold and warm 22 
period of the Atlantic Multidecadal Variability and found no robust change in the intensity of cyclones as 23 
measured by quantities such as vorticity or wind speed over the North Atlantic. Using CMIP5 models, Zappa 24 
et al. (2013b) found an overall reduction in the number of cyclones associated with 850-hPa wind speed 25 
larger than 25 m/s over the North Atlantic and Europe with the number of the 10% strongest cyclones 26 
decreasing by about 8 and 6% in DJF and JJA. Over the North Pacific, Chang (2014) showed that CMIP5 27 
models project a decrease of the frequency of the strongest ECTs by the end of the century according to 28 
simulations using the RCP8.5 scenario. Strong ETCs were defined using the central pressure perturbation 29 
(i.e., depth, largely related with low-level wind speeds). Using projections from CMIP5 GCMs under the 30 
RCP85 scenario (1981-2000 to 2081-2100), Seiler and Zwiers (2016b) projected a northward shift of the 31 
number of explosive ETCs in the northern Pacific, with fewer and weaker events south, and more frequent 32 
and stronger events north of 45°N. In the Atlantic, the total number of explosive cyclones is projected to 33 
decrease by about 17% with the largest changes over the North America’s east coast. The decrease of the 34 
frequency of explosive North America’s east coast ETCs was also found using a higher-resolution RCM 35 
driven by a single GCM (Seiler et al., 2018)while maximum wind speeds showed slight increases or no 36 
changes depending on the model considered. 37 
 38 
Over the Southern Hemisphere, future changes (RCP8.5 scenario; 1980-1999 to 2081-2100) in extreme 39 
ETCs were studied by Chang (2017) using 26 CMIP5 models and a variety of intensity metrics (850-hPa 40 
vorticity, 850-hPa wind speed, mean sea level pressure and near-surface wind speed). They showed an 41 
overall decrease of about 6% in the total number of ETCs over the 30-60°S latitude-band between historical 42 
and future periods. However, they found that the number of extreme cyclones is projected to increase by at 43 
least 20% but as much as 50% depending on the specific metric used defined extreme ETCs. Increases in the 44 
number of strong cyclones appear to be robust across models and for most seasons although they show 45 
strong regional variations with increases occurring mostly over the southern flank of the storms track, 46 
consistent with a shift and intensification of the storm track.Using a high-resolution regional climate model 47 
ensemble, Pepler et al. (2016)small changes or decreases of the number of ETCs with strong winds over the 48 
eastern coast of Australia. 49 
 50 
As reported in the AR5, despite small or negligible changes in the dynamical intensity of ETCs, there is high 51 
confidence that the precipitation associated with ETCs will increase in the future (Zappa et al., 2013b; 52 
Marciano et al., 2015; Pepler et al., 2016; Michaelis et al., 2017; Yettella and Kay, 2017; Zhang and Colle, 53 
2017; Hawcroft et al., 2018; Kodama et al., 2019). Based on a large ensemble of GCM simulations, Yettella 54 



Second Order Draft Chapter11 IPCC AR6 WGI 
 

Do Not Cite, Quote or Distribute 11-104 Total pages: 271 

 

and Kay (2017) found that the mean precipitation associated with ETCs will increase in the future following 1 
the increase in water vapour (i.e., due to thermodynamic effects; See Box 11.1) with the exception of the 2 
Mediterranean and some areas in North America in winter. Using 16 CMIP5 models, Hawcroft et al. (2018) 3 
showed substantial increases in the number of heavy precipitating extratropical cyclones over most regions 4 
of the Northern Hemisphere with a tripling in the frequency of events above the present day 99th percentile of 5 
6-hourly accumulated precipitation. Studies performed using higher resolution models also showed 6 
systematic increases in precipitation rates around ETC centres (Marciano et al., 2015; Pepler et al., 2016; 7 
Michaelis et al., 2017; Kodama et al., 2019). Using a single global high-resolution climate model with an 8 
explicit representation of convection, Kodama et al. (2019) showed that, in both hemispheres, the 9 
precipitation associated with strong (10% deepest MSLP anomalies) oceanic ETCs increases in simulations 10 
following the increase in water vapour (i.e., about 7% per degree of surface warming) while the average ETC 11 
only increases by about 3% per degree of near-surface warming. The strong relation found between changes 12 
in precipitation associated with ETCs and the increase in water vapour suggests that changes in precipitation 13 
are dominated by changes in thermodynamic processes with little influence from changes in the dynamical 14 
structure (Kodama et al., 2019).  15 
 16 
The intensification of precipitation is likely to show regional and seasonal differences due to distinct changes 17 
in atmospheric humidity and dynamical conditions (Zappa et al., 2015; Hawcroft et al., 2018) with even 18 
some decreases in specific regions such as the Mediterranean (Zappa et al., 2015). There is some evidence 19 
that changes in the dynamical intensity of ETCs might be dependent on the horizontal resolution of climate 20 
models with some studies showing different projections for weak, moderate and strong ETCs (Booth et al., 21 
2013; Michaelis et al., 2017). In the North Atlantic region, Michaelis et al. (2017) used a 20-km resolution 22 
model to show that the increased precipitation around moderate and strong ETCs results in enhanced latent 23 
heat release leading to a strengthening of low-tropospheric wind speeds, and for strong ECTs, also increases 24 
in near-surface wind speeds. A modelling study by Booth et al. (2013) showed that the higher availability of 25 
moisture in the future led to a more rapid development of ETCs and a higher frequency of extreme winds. 26 
 27 
Recent advances in the science of atmospheric rivers are discussed in detail in Section 8.3.2.8. These 28 
midlatitude storms can produce extreme winds and precipitation with significant impacts but also are 29 
primary sources of water in some regions. Very large ARs or sequential occurrences of multiple but less 30 
severe ARs in the same region may trigger landslides and/or floods and are an example of a compound 31 
extreme event (Section 11.8). While a qualitative AR definition has been accepted (AMS2018), quantitative 32 
definitions vary considerably and are currently being compared in the Atmospheric River Intercomparison 33 
Project (Rutz et al.,  2020). An AR category scale based on vertically integrated water vapor transport and 34 
storm duration describes their intensity and impacts with 5 levels ranging from beneficial to hazardous 35 
(Ralph et al., 2019). However, application of this scale at the time of the AR6 is still limited. 36 
 37 
In summary, there is high confidence that average and maximum ETC rain-rates will increase with 38 
warming, mostly due to increases in atmospheric water vapour. There is medium confidence that wind 39 
speeds associated with ETCs will change following changes in the storm tracks, with 40 
increases/decreases depending on the region being considered. There is medium confidence that 41 
changes in the intensity of ETCs, including wind speeds and precipitation, depend on the horizontal 42 
resolution of climate models and whether they include an explicit representation of convective 43 
processes. 44 
 45 
 46 
11.7.3 Severe convective storms 47 
 48 
Severe convective storms are convective systems that are associated with extreme phenomena such as 49 
tornadoes, hail, heavy precipitation (rain or snow), strong winds, and lightning. The assessment of changes in 50 
severe convective storms in the SREX and AR5 is limited and focused mainly on tornadoes and hail storms. 51 
In Chapter 3 of SREX (Seneviratne et al., 2012b), it is assessed as low confidence in observed trends in 52 
tornadoes and hail because of data inhomogeneities and inadequacies in monitoring systems. Subsequent 53 
works assessed in the Climate Science Special Report (Kossin et al., 2017) led to the assessment on the 54 
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observed tornado activity over the 2000s in the United States with a decrease in the number of days per year 1 
with tornadoes and an increase in the number of tornadoes on these days (medium confidence). However, 2 
there is low confidence in past trends for hail and severe thunderstorm winds. Climate models consistently 3 
project environmental changes that would support an increase in the frequency and intensity of severe 4 
thunderstorms that combines tornadoes, hail, and winds (high confidence), but there is low confidence in the 5 
details of the projected increase. Regional aspects of severe convective storms are also assessed in Chapter 6 
12 (Section 12.3.3.2 for climatic impact drivers, Section 12.4.5.3 for Europe, Section 12.4.6.3 for North 7 
America, and Section 12.7.2 for regional gaps and uncertainties). 8 
 9 
 10 
11.7.3.1 Mechanisms and drivers 11 
 12 
Severe convective storms are sometimes embedded in synoptic-scale weather systems such as tropical and 13 
extratropical cyclones and fronts (Kunkel et al., 2013). They are also generated as individual events as meso-14 
scale convective systems (MCSs) and mesoscale convective complex (MCC) (a special type of a large-15 
organized and long-lived MCS) without clearly embedded within larger-scale weather systems.  In addition 16 
to general vigorousness of precipitation, hails, and winds associated with MCSs, characteristics of MCSs are 17 
viewed in new perspectives in recent years, probably because of both development of dense meso-scale 18 
observing networks and advances in high-resolution meso-scale modelling (Sections 11.7.3.2 and 11.7.3.3). 19 
The horizontal scale of MCSs is discussed with their organization of the convective structure and it is 20 
examined with a concept of "convective aggregation" in recent years (Holloway et al., 2017). MCSs 21 
sometimes take a linear shape and stay almost stationary with successive production of cumulonimbus on the 22 
upstream side (back-building type convection), and cause heavy rainfall (Schumacher and Johnson, 2005). 23 
Many of recent severe rainfall events in Japan are associated with line-shaped precipitation systems (Kunii et 24 
al., 2016; Oizumi et al., 2018; Tsuguti et al., 2018), suggesting common characteristics of severe 25 
precipitation at least in the Eastern Asia. The convective modes of severe storms in the United States can be 26 
classified into rotating or linear modes and preferable environmental conditions such as vertical shear for 27 
these modes are identified (Trapp et al., 2005; Smith et al., 2013; Allen, 2018). Cloud microphysics 28 
characteristics of MCSs are examined and roles of warm rain processes on extreme precipitations are also 29 
stressed recently (Hamada et al., 2015; Sohn et al., 2013). Idealized studies also suggests importance of ice 30 
and mixed phase processes of cloud microphysics on extreme precipitation (Sandvik et al., 2018; Bao and 31 
Sherwood, 2019). However, it is unknown whether these types of MCSs are becoming more frequent in 32 
recent periods nor observed ubiquitously all over the world. 33 
 34 
Severe convective storms occur under conditions preferable for deep convection, that is, conditionally 35 
unstable stratification, sufficient moisture both in lower and middle levels of the atmosphere, and a strong 36 
vertical shear. These large-scale environmental conditions are viewed as necessary conditions for the 37 
occurrence of severe convective systems, or the resulting tornadoes and lightning, and relative relevance of 38 
these factors strongly depends on regions (e.g., Allen, 2018; Tochimoto and Niino, 2018). Frequently used 39 
metrics are atmospheric static stability, moisture content, convection available potential energy (CAPE) and 40 
convective inhibition (CIN), wind shears or helicity including storm-relative environmental helicity (SREH) 41 
(Tochimoto and Niino, 2018; Elsner et al., 2019). These metrics, largely controlled by large-scale 42 
atmospheric circulations or synoptic weather systems such as TCs and ETCs, are then generally used to 43 
examine severe convective systems. The uncertainty however arises from the balance between factors 44 
affecting severe storm occurrence; for example, the warming of mid-tropospheric temperatures likely leads to 45 
an increase in the freezing level, which leads to increased melting of smaller hailstones, while there may be 46 
some offset by stronger updrafts driven by increasing CAPE which would favour the growth of larger 47 
hailstones, leading to less melting when falling (Allen, 2018).  48 
 49 
In early June of the Eastern Asia, associated with the Baiu/Changma/Mei-yu, severe precipitations are 50 
frequently caused with MCSs. Severe precipitations are also caused by remote effects of TCs known as 51 
predecessor rain events (PREs) (Galarneau et al., 2010). Atmospheric rivers and other coherent types of 52 
enhanced water vapor flux also have the potential to induce severe convective systems (Kamae et al., 2017a; 53 
Waliser and Guan, 2017; Ralph et al., 2018). Combined with the above drivers, topographical effects also 54 
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enhances intensity and duration of severe convective systems and associated precipitation (Ducrocq et al., 1 
2008; Piaget et al., 2015). 2 
 3 
 4 
11.7.3.2 Observed trends 5 
 6 
Observed trends of severe convective storms or MCSs are not so much documented, but climatology of 7 
MCSs are analysed in specific regions (North America, South America, Europe, Asia). As definition of 8 
severe convective storms varies depending on literatures, it is not straightforward to make a synthetic view 9 
of observed trends of severe convective storms in different regions. However, analysis using satellite 10 
observations provides global view of MCSs (Kossin et al., 2017). Global distribution of thunderstorms are 11 
captured (Zipser et al., 2006; Liu and Zipser, 2015)  by using the satellite precipitation measurements by the 12 
Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) (Hou et al., 2014). 13 
The climatological characteristics of MCSs are provided by using satellite analysis in South America 14 
(Durkee and Mote, 2010; Rasmussen and Houze, 2011; Rehbein et al., 2018) and those of MCC in marine 15 
time continent by Trismidianto and Satyawardhana (2018). Analysis of the environmental condition 16 
favourable for severe convective events indirectly indicates climatology and trends of severe convective 17 
events (Allen et al., 2018), though favourable conditions depends on locations, such as the difference for 18 
tornadoes associated with extratropical cyclones between the United States and Japan (Tochimoto and Niino, 19 
2018). 20 
 21 
The observed trends of severe convective storms in the United States indicate that there is no significant 22 
increase of convective storms, and hails and severe thunderstorms (Kossin et al., 2017; Kunkel et al., 2013). 23 
It is likely that tornado activity has increased in the United States particularly over the 2000s, with a decrease 24 
in the number of days per year where tornadoes are observed but an increase in the number of tornadoes on 25 
days when they occur (Elsner et al., 2015, 2019; Kossin et al., 2017; Allen, 2018). Trends of MCSs are 26 
relatively more visible for particular aspects of MCSs such as activities in seasons and dependency on 27 
duration. MCSs have increased in occurrence and precipitation amounts since 1979 (Easterling et al., 28 
2017).Feng et al. (2016) analysed that the observed increases in springtime total and extreme rainfall in the 29 
central United States are dominated by MCSs, with increased frequency and intensity of long-lasting MCSs.  30 
 31 
Studies on trends of severe convective storms and their ingredients out of the United States are limited. 32 
Westra et al. (2014) found that there is an increase in the intensity of short-duration convective events 33 
(minutes to hours) over the whole world. In Europe, climatology of tornadoes shows increase of detected 34 
tornadoes between 1800 to 2014, but this trend might be affected by density of observations (Antonescu et 35 
al., 2016b, 2016a). Increase in trend of extreme daily rainfall in south eastern France, where MCSs play a 36 
key role in this type of event(Blanchet et al., 2018; Ribes et al., 2019). Thunderstorm climatology in the 37 
Mediterranean analysed for the period from 2005 to 2014 did not show a clear trend (Galanaki et al. 2018). 38 
In Sahelian region, Taylor et al. (2017) analysed MCSs using satellite observations since 1982 and showed 39 
increase in frequency of extreme storms. In Bangladesh, the annual number of propagating MCSs decreases 40 
significantly during 1998-2015 based on TRMM precipitation data (Habib et al., 2019). Prein and Holland 41 
(2018) estimated hail hazard from large-scale environmental conditions using a statistical approach and 42 
showed increase trends in the United States, Europe, and Australia. However, trends of hail on regional 43 
scales are difficult to validate because of insufficient length of observations and inhomogeneous record 44 
(Allen, 2018). The high spatial variability of hail suggests it is reasonable that there would be local signals of 45 
both positive and negative trends and the trends that are occurring in hail globally is uncertain.  46 
 47 
In summary, it is likely that tornado activity has increased in the United States over the 2000s with a decrease 48 
in the number of days per year where tornadoes are observed. Detected tornadoes are also increased in 49 
Europe, but its trend depends on density of observation. It is very likely that extreme precipitation associated 50 
with severe convective storms has increased. 51 
 52 
 53 
 54 



Second Order Draft Chapter11 IPCC AR6 WGI 
 

Do Not Cite, Quote or Distribute 11-107 Total pages: 271 

 

11.7.3.3 Model evaluation 1 
 2 
The explicit representation of severe convective storms requires non-hydrostatic models with horizontal grid 3 
spacings below 5 km denoted as convection-permitting models or storm resolving models (Section 10.3.3). 4 
Convection-permitting models are becoming available to run over a wide domain such as a continental scale 5 
or even over the global area and show realistic climatological characteristics of MCSs (Prein et al., 2015; 6 
Satoh et al., 2019). Such high-resolution simulations are computationally too expensive to perform at the 7 
larger domain and for long periods and alternative methods by using a regional climate model with 8 
dynamical downscaling are generally used (Section 10.3.1). Convection-permitting models are used as the 9 
flagship project of CORDEX to particularly study projections of thunderstorms (Section 10.3.3). North 10 
American MCSs simulations by a convection-permitting model conducted by Prein et al. (2017a) shows that 11 
the simulation is able to capture the main characteristics of the observed MCSs such as their size, 12 
precipitation rate, propagation speed, and lifetime.Cloud-permitting model simulations in Europe also show 13 
sub-daily precipitation realistically (Ban et al., 2014; Kendon et al., 2014). Evaluation of precipitation 14 
conducted using convection-permitting simulations around Japan shows that finer resolution improves 15 
intense precipitation (Murata et al., 2017).MCSs over the African region simulated using convection-16 
permitting models shows better extreme rainfall (Kendon et al., 2019) and diurnal cycle and convective 17 
rainfall over land than the coarser resolution RCMs or GCMs (Stratton et al., 2018; Crook et al., 2019). 18 
 19 
 20 
11.7.3.4 Detection and attribution, event attribution 21 
 22 
It is extremely difficult to detect differences in time and space of severe convective storms (Kunkel et al., 23 
2013). Although some ingredients that are favourable for severe thunderstorms have increased over the 24 
years, others have not; thus, overall, changes in the frequency of environments favourable for severe 25 
thunderstorms have not been statistically significant. Event attribution studies on severe convection events 26 
are now undertaken for some of cases, such as the case of the July 2018 heavy rainfall event in Japan (BOX 27 
11.3) and the December 2015 extreme rainfall event in Chennai, India (van Oldenborgh et al., 2016; Boyaj et 28 
al., 2018). 29 
 30 
 31 
11.7.3.5 Projections 32 
 33 
Future projections of severe convective storms are usually studied using a time slice approach by comparing 34 
simulations performed using historical conditions with those using future hypothesized conditions (Kendon 35 
et al., 2017). Up to now, individual studies using convection-permitting models gives projection of extreme 36 
events associated with severe convective storms. Prein et al. (2017b) investigated future projection of North 37 
American MCSs simulations and show increase in MCS frequency and increase in total MCS precipitation 38 
volume by the combined effect of increases in maximum precipitation rates associated with MCSs and 39 
increases in their size. Rasmussen et al. (2017) investigated future changes in the diurnal cycle of 40 
precipitation by capturing organized and propagating convection and showed that weak to moderate 41 
convection will decrease and strong convection will increase in frequency in the future. Ban et al. (2015) 42 
found the day-long and hour-long precipitation events in summer intensify in the European region covering 43 
the Alps. Kendon et al. (2019) showed future increases in extreme 3-hourly precipitation in the Africa. 44 
Murata et al. (2015) investigated future projection of precipitation around Japan and showed a decrease of 45 
monthly mean precipitation in the eastern Japan Sea side region in December, suggesting convective clouds 46 
become shallower in the future in the winter of the Japan Sea. 47 
 48 
The other approach is projection of environmental conditions which control characteristics of severe 49 
convective storms. Severe convective storms are generally formed in environments with large CAPE and 50 
tornadic storms are in particular formed with a combination of large CAPE and strong vertical wind shear. 51 
There are large differences within the CMIP5 ensemble for these environmental conditions, which 52 
contributes to some degree of uncertainty (Allen, 2018). Despite this limitation, projected change of the 53 
environmental conditions in the United States shows an increase in CAPE and no changes or decreases in the 54 
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vertical wind shear, suggesting favourable conditions for an increase in tornadoes and hails in the future 1 
(Brooks, 2013). It is medium confidence that the frequency of severe convective storms increases in the 2 
spring, accompanied by a less significant increase in the summer months (Diffenbaugh et al., 2013; Gensini 3 
and Mote, 2015; Hoogewind et al., 2017). Future changes in severe convection environments likely shows 4 
enhancement of instability with less robust change in frequency of strong vertical wind shear in Europe 5 
(Púčik et al. 2017)and in Japan (Muramatsu et al. 2016). In Japan, the frequency of conditions favourable for 6 
strong tornadoes likely increase in spring and partly in summer. 7 
 8 
 9 
Summary 10 
 11 
Severe convective storms are convective systems that associate with severe weather events such as 12 
tornadoes, hail, heavy precipitation (rain or snow), strong winds, and lightning.  Because definition of 13 
severe convective storms varies depending on literatures and regions, it is not straightforward to make 14 
a synthetic view over the world. However, characteristics of severe convective storms and their 15 
changes are being analysed by satellite observation and dense and wide ground observation networks. 16 
They are also analysed by new viewpoints such as convective aggregation, convective modes including 17 
line-shaped convective systems, or cloud microphysics like warm rain processes. Observation shows 18 
that there is medium confidence that tornado activity has increased in the United States over the 2000s 19 
with a decrease in the number of days per year when tornadoes are observed. Detected tornadoes are 20 
also increased in Europe, but its trend depends on density of observation. It is very likely that extreme 21 
precipitation associated with severe convective storms has increased. For projections, there is medium 22 
confidence that the frequency of severe convective storms increases in the spring with enhancement of 23 
CAPE, leading extension of seasons of occurrence of severe convective storms. There is high 24 
confidence of future intensification of precipitation associated with severe convective storms.  25 
 26 
 27 
11.7.4 Extreme Winds 28 
 29 
In previous IPCC reports, near-surface wind (including extremes), has not been assessed as a variable in its 30 
own right but rather in the context of other extreme atmospheric or oceanic phenomena. The exception was 31 
the SREX report (Seneviratne et al., 2012b), which specifically examined past changes and projections of 32 
mean and extreme near-surface wind speeds . For observed wind trends, several studies reported declining 33 
trends in mean 10-m anemometer wind speeds over the continental northern mid-latitudes and Australia and 34 
increasing trends in Alaska, the Canadian Arctic and Antarctica. A stronger decline in extreme winds 35 
compared to mean winds was also reported for the continental northern mid-latitudes. Due to the small 36 
number of studies and uncertainties in terrestrial-based surface wind measurements, the findings were 37 
assigned low confidence in the SREX. Projections of mean and 99th percentile wind speed in the CMIP3 38 
multi-model ensemble indicated an increase in mean winds over Europe, parts of Central and North 39 
America, the tropical South Pacific, and the Southern Ocean. Mean wind speed declines were found along 40 
the equator and the subtropical ridge in both hemispheres and positive trends in winds further poleward but 41 
with low confidence. the AR5 similarly reported a weakening of mean and maximum winds from the 1960's 42 
or 1970's to the early 2000's in the tropics and midlatitudes and increases in high latitudes but with low 43 
confidence in changes in observed surface winds over land noting that upper air winds were less studied 44 
(Hartmann et al., 2013).  In terms of future climate, the mid-latitude jets were projected with medium 45 
confidence to move polewards in both hemispheres by 1 to 2 degrees under high emissions scenarios with 46 
stronger shifts in the SH (Collins et al., 2013a). IPCC SROCC concluded that extreme winds in some 47 
tropical cyclones had increased as a result of climate change based on event attribution methodologies and 48 
that there was emerging evidence for an increase in the annual global proportion of Category 4 or 5 tropical 49 
cyclones with low confidence. 50 
 51 
A contributing factor to the low confidence in observed wind speed changes is the changes in observing 52 
systems over time and the different observing systems that are typically used for marine winds (e.g., 53 
satellite-derived winds over the oceans, (Hartmann et al., 2013; Zieger et al., 2014) compared to anemometer 54 
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winds over land. Inhomogeneity in terrestrial wind measurements (e.g., anemometer heights (Troccoli et al., 1 
2012) and type of measurement (e.g., the average of four daily measurements or 24-hour wind runs (Azorin-2 
Molina et al., 2017) contribute to the low confidence in wind trends. An additional source of uncertainty is 3 
the sensitivity of anemometer data to changes in site characteristics such as surrounding vegetation or 4 
buildings, instrument elevation and instrument age (e.g., Troccoli et al. 2012)). Also, length of record 5 
determines the extent to which long term trends can be determined from natural climate variability (McVicar 6 
et al., 2012).   7 
 8 
Although not specifically addressing extreme wind speed changes, a review of 148 studies examining 9 
terrestrial surface wind change found negative wind speed trends (stilling) in the tropics and mid-latitudes of 10 
both hemispheres across the globe of -0.014 m s-1 a-1, while positive trends were reported at high-latitudes 11 
poleward of 70 (McVicar et al., 2012). An earlier study attributed the stilling to both changes in atmospheric 12 
circulation and an increase in surface roughness due to an overall increase in vegetation cover [Vautard et 13 
al., 2010].  Since then, a number of additional studies have mostly confirmed these general negative mean-14 
wind trends  based on anemometer data for Spain (Azorin-Molina et al., 2017); Turkey, (Dadaser-Celik and 15 
Cengiz, 2014); Netherlands, (Wever, 2012); Saudi Arabia, (Rehman, 2013); Romania, [Marin et al., 2014] 16 
and China, (Chen et al., 2013a). [Lin et al., 2012] note that wind speed variability over China is greater at 17 
high elevation locations compared to those closer to mean sea level. (Hande et al., 2012) using radiosonde 18 
data found an increase in surface wind speed on Macquarie Island.  19 
 20 
A number of new studies have examined surface wind speeds over the ocean based on satellite observations 21 
from altimeters or Special Sensor Microwave/Imagers (SSM/I) (Tokinaga and Xie, 2010). It has been noted 22 
that wind speed trends tend to be stronger in the altimeters although the spatial patterns of change by both 23 
instruments are qualitatively similar (Zieger et al., 2014). Liu et al. (2016) found positive trends in surface 24 
wind speeds over the Arctic in 20 years of satellite observations. Small positive trends in mean wind speed 25 
were found in 33 years of satellite data together with larger trends in 90th percentile values over global 26 
oceans (Ribal and Young, 2019). These results were consistent with an earlier study that found a positive 27 
trend in 1-in-100 year wind speeds (Young et al., 2012). A positive wind change was found for the Arabian 28 
Sea and Bay of Bengal (Shanas and Kumar, 2015) and (Zheng et al., 2017) found the positive wind speed 29 
trends over the ocean were larger during winter seasons than summer seasons. 30 
 31 
Extreme cyclonic windstorms that share some characteristics with both tropical and extra-tropical cyclones 32 
occur regularly over the Mediterranean Sea and are often referred to as “Medicanes” (Emanuel, 2018; 33 
Ragone et al., 2018). Medicanes pose substantial threat to regional islands and coastal zones. A growing 34 
body of literature consistently finds that the frequency of medicanes decreases under warming while the 35 
strongest medicanes become stronger (González-Alemán et al., 2019; Tous et al., 2016; Romero and 36 
Emanuel, 2017; Romera et al., 2017; Cavicchia et al., 2014; Romero and Emanuel, 2013; Gaertner et al., 37 
2007). This is also consistent with expected global changes in tropical cyclones under warming (11.7.1). 38 
Based on the consistency of these studies, it is likely that medicanes will decrease in frequency while the 39 
strongest medicanes become stronger under warming scenario projections (medium confidence). 40 
 41 
 42 
11.8 Compound events 43 
 44 
The IPCC SREX first defined compound events as “(1) two or more extreme events occurring 45 
simultaneously or successively, (2) combinations of extreme events with underlying conditions that amplify 46 
the impact of the events, or (3) combinations of events that are not themselves extremes but lead to an 47 
extreme event or impact when combined (Seneviratne et al., 2012b). Further definitions of compound events 48 
have emerged since SREX. Zscheischler et al. (2018) define compound events broadly as “the combination 49 
of multiple drivers and/or hazards that contributes to societal or environmental risk”. We use this definition 50 
in the present assessment, because of its clear focus on the risk framework established by the IPCC, and also 51 
highlighting that compound events may not necessarily result from dependent drivers. This definition of 52 
compound events includes concurrent climate extremes, but also includes events with extreme impacts 53 
associated with climate drivers that might not be extremes themselves. Drivers include processes, variables, 54 
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and phenomena in the climate and weather domain that may span over multiple spatial and temporal scales. 1 
Hazards (such as floods, heatwaves, wildfire) are usually the immediate physical precursors to negative 2 
impacts, but can occasionally have positive outcomes (Flach et al., 2018). 3 
 4 
The combination of two or more – not necessarily extreme – weather or climate events that occur i) at the 5 
same time, ii) in close succession, or iii) concurrently in different regions, can lead to extreme impacts that 6 
are much larger than the sum of the impacts due to the occurrence of individual extremes alone. This is 7 
because multiple stressors can exceed the coping capacity of a system more quickly. The contributing events 8 
can be of similar types (clustered multiple events) or of different types. Many major weather- and climate-9 
related catastrophes are inherently of a compound nature (Zscheischler et al., 2018). This has been 10 
highlighted for a broad range of hazards such as droughts, heatwaves, wildfires, coastal extremes, and floods 11 
(Westra et al., 2016). Co-occurring extreme precipitation and extreme winds can result in infrastructural 12 
damage (Martius et al., 2016); the compounding of storm surge and precipitation extremes can cause coastal 13 
floods (Wahl et al., 2015); and the combination of drought and heat can lead to tree mortality (Allen et al., 14 
2015). Extremes may occur at different locations but affect the same system, for instance, spatially-15 
concurrent climate extremes affecting crop yields and food prices (Anderson et al., 2019; Singh et al., 2018).  16 
 17 
Finally, impacts may occur because of large multivariate anomalies in the climate drivers, if systems are 18 
adapted to historical multivariate climate variability (Flach et al., 2017). For instance, ecosystems are 19 
typically adapted to the local covariability of temperature and precipitation such that a bivariate anomaly 20 
may have a large impact even though neither temperature nor precipitation may be extreme based on a 21 
univariate assessment (Mahony and Cannon, 2018). Given that almost all systems are affected by weather 22 
and climate phenomena at multiple space-time scales, it is natural to consider extremes in a compound event 23 
framework. Despite this recognition, the literature on past and future changes in compound events is limited. 24 
This section assesses examples of types of compound events in available literature.  25 
 26 
 27 
11.8.1 Concurrent extremes at coastal and estuarine regions 28 
 29 
Coastal and estuarine zones are prone to a number of meteorological extreme events and also to concurrent 30 
extremes. A major hazard in coastal regions around the world is floods, and flood risk may be influenced by 31 
the dependence between storm surge, extreme rainfall, and river flow. Floods with multiple drivers are often 32 
referred to as “compound floods” (Moftakhari et al., 2017; Wahl et al., 2015).  33 
 34 
At US coasts, the likelihood of co-occurring storm surge and heavy precipitation is higher for the 35 
Atlantic/Gulf coast relative to the Pacific coast (Wahl et al., 2015). Furthermore, all 6 studied locations at the 36 
US coast with long overlapping time series show an increase in the dependence between heavy precipitation 37 
and storm surge over the last century, leading to more frequent co-occurring storm surge and heavy 38 
precipitation events at the present day (Wahl et al., 2015). Storm surge and extreme rainfall are also 39 
dependent in most locations at the Australian coasts (Zheng et al., 2013) and in Europe along the Dutch 40 
coasts (Ridder et al., 2018), along the Mediterranean Sea, the Atlantic coast and the North Sea (Bevacqua et 41 
al., 2019). Flood risk can be assessed via the dependence between storm surge and river flow. For instance, 42 
the occurrence of a North Sea storm surge in close succession with an extreme Rhine or Meuse river 43 
discharge is much more likely due to their dependence compared to if both events would be independent 44 
(Kew et al., 2013; Klerk et al., 2015). Significant dependence between high sea levels and high river 45 
discharge are found for more than half of the available station observations, which are mostly located around 46 
the coasts of North America, Europe, Australia, and Japan (Ward et al., 2018). Combining global river 47 
discharge with a global storm surge model, hotspots of compound flooding have been discovered that are not 48 
well covered by observations, including Madagascar, Northern Morocco, Vietnam, and Taiwan (Couasnon et 49 
al., 2019, in review). In the Dutch Noorderzijlvest area, there is more than a two-fold increase in frequency 50 
of exceeding the highest warning level compared to the case if storm surge and heavy precipitation were 51 
independent (van den Hurk et al., 2015). In other regions and seasons, the dependence can be insignificant 52 
(Wu et al., 2018b) and there can be significant seasonal and regional differences in the storm surge-heavy 53 
precipitation relationship. Flood risk may also be influenced by the dependence between storm surge and 54 
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river flow. Assessments of flood likelihoods are often not based on actual flood measurements and instead 1 
flood risk is estimated from its main drivers including astronomical tides, storm surge, heavy precipitation, 2 
and high streamflow. Such single driver analyses might underestimate flood risk if multiple correlated 3 
drivers contribute to the risk (e.g., van den Hurk et al., 2015).  4 
 5 
Many coastal areas are also prone to the occurrence of compound precipitation and wind extremes, which 6 
can cause damage, including to infrastructure and natural environments. A high percentage of co-occurring 7 
wind and precipitation extremes are found in coastal regions and in areas with frequent tropical cyclones. 8 
Finally, the combination of extreme wave height and duration is also shown to influence coastal erosion 9 
processes (Corbella and Stretch, 2012).  10 
 11 
Aspects of concurrent extremes in coastal and estuarine environments have increased in frequency and/or 12 
magnitude over the last century in some regions. These include an increase in the dependence between heavy 13 
precipitation and storm surge over the last century, leading to more frequent co-occurring storm surge and 14 
heavy precipitation events in the present day along US coastlines (Wahl et al., 2015). In Europe, the risk of 15 
compound flooding increases most strongly along the Atlantic coast and the North Sea under strong 16 
warming. The increasing risk of compound flooding is mostly driven by an intensification of precipitation 17 
extremes and aggravated flooding risk due to sea level rise (Bevacqua et al., 2019). Sea level extremes and 18 
their physical impacts in the coastal zone arise from a complex set of atmospheric, oceanic, and terrestrial 19 
processes that interact on a range of spatial and temporal scales and will be modified by a changing climate, 20 
including sea level rise (McInnes et al., 2016). Interactions between sea level rise and storm surges (Little et 21 
al., 2015), and sea level and fluvial flooding (Moftakhari et al., 2017) are projected to lead to more frequent 22 
and more intense compound coastal flooding events as sea levels continue to rise. 23 
 24 
Summary 25 
 26 
There is medium confidence that the probability of compound flooding has increased in some locations, 27 
including along the US coastline, over the last century. There is medium confidence that the risk of 28 
compound flooding in coastal regions will increase due to both sea level rise and increases in heavy 29 
precipitation. 30 
 31 
 32 
11.8.2 Concurrent droughts and heatwaves 33 
 34 
Concurrent droughts and heatwaves have a number of negative impacts on human society and natural 35 
ecosystems. Studies since the SREX and AR5 show several occurrences of observed combinations of 36 
drought and heatwaves in various regions. 37 
 38 
Over most land regions, temperature and precipitation are strongly negatively correlated during summer 39 
(Zscheischler and Seneviratne, 2017), mostly due to land-atmosphere feedbacks (Seneviratne et al., 2010) 40 
but also because synoptic-scale weather systems favourable for extreme heat are also unfavourable for rain 41 
(Berg et al., 2015). This leads to a strong correlation between droughts and heatwaves (Zscheischler and 42 
Seneviratne, 2017), which is amplified by drought conditions (including low antecedent rainfall and soil 43 
moisture) enhancing summer temperature extremes (Mueller and Seneviratne, 2012, Whan et al., 2015) as 44 
well as an amplification of heatwave conditions through upwind drought (Schumacher et al., 2019). Drought 45 
events characterized by low precipitation and extreme high temperatures have occurred, for example, in 46 
California (AghaKouchak et al., 2014), inland eastern Australia (King et al., 2014), and large parts of Europe 47 
(Orth et al., 2016b). Concurrent droughts and heat can lead to crop failure (Barnabas et al., 2007), a 48 
reduction of carbon uptake potential of ecosystems (Ciais et al., 2005; Zscheischler et al., 2014; von Buttlar 49 
et al., 2018; Sippel et al., 2018b), tree mortality (Allen et al., 2010, 2015), increased wildfire risk (Brando et 50 
al., 2014; Ruffault et al., 2018), and higher risk of failure of electric power plants (Bartos and Chester, 2015; 51 
Cook et al., 2015).  52 
 53 
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The likelihood of co-occurring meteorological droughts and heatwaves has increased in the observational 1 
period in many regions and will continue to do so under unabated warming (Hao et al., 2013; Herrera-2 
Estrada and Sheffield, 2017; Zscheischler and Seneviratne, 2017). Overall, projections of increases in co-3 
occurring drought and heatwaves are reported in northern Eurasia (Schubert et al., 2014), Europe (Manning 4 
et al., 2019; Sedlmeier et al., 2018), and multiple regions of the United States (Diffenbaugh et al., 2015; 5 
Herrera-Estrada and Sheffield 2017), northwest China (Li et al., 2019c; Kong et al., 2019, submitted) and 6 
India (Sharma and Mujumdar, 2017).The dominant signal is related to the increase in heatwave occurrence, 7 
which means that even if drought occurrence is unaffected, compound hot and dry events will be more 8 
frequent.  9 
 10 
Drought and heatwaves are also associated with wildfires, related through high temperatures, low soil 11 
moisture, and low humidity. Concurrent hot and dry conditions amplify wildfire risks in southern Europe 12 
(Russo et al., 2017), northern Eurasia (Schubert et al., 2014), the US (Littell et al., 2016), and Australia 13 
(Hope et al., 2019). Wildfire occurrence in California has been linked to anthropogenic climate change via a 14 
significant increase in vapour pressure deficit, a primary driver of wildfires (Williams et al., 2019). A study 15 
of the western US examined the correlation between historical water-balance deficits and annual area 16 
burned, across a range of vegetation types from temperate rainforest to desert (McKenzie and Littell, 2017). 17 
The relationship between temperature and dryness, and wildfire, varied with ecosystem, and the fire-climate 18 
relationship was both nonstationary and vegetation-dependent. 19 
In many fire-prone regions, such as the Mediterranean and China’s Daxing’anling region, projections for 20 
increased severity of future drought and heatwaves may lead to an increased frequency of wildfires relative 21 
to observed (Ruffault et al., 2018;Tian et al., 2017). However, at the global scale, the total burned area has 22 
been decreasing over the last 18 years due to human activities mostly related to changes in land use (Andela 23 
et al., 2017). 24 
 25 
 26 
Summary 27 
 28 
There is high confidence that concurrent heatwaves and droughts have increased in frequency over the 29 
last century at a global scale due to human influence. There is medium confidence that wildfire risk has 30 
increased in some regions over the last century. There is high confidence that compound hot and dry 31 
conditions become more likely in nearly all land regions as global mean temperature increases. 32 
 33 
 34 
11.8.3 Other types of compound events 35 
 36 
Humans are very susceptible to extremely hot and humid conditions, which can induce hyperthermia in 37 
humans and other mammals, as dissipation of metabolic heat becomes impossible. The effect of extremely 38 
hot and dry conditions on humans is often measured with combined indicators such as the Wet Bulb Globe 39 
Temperature (WBGT) or variants thereof, which integrate temperature and relative humidity. WBGT has 40 
had a detectable anthropogenic increase over many land regions since the 1970s, driven by anthropogenic 41 
increases in temperature (Knutson and Ploshay, 2016; Li et al., 2017a). By 2080, the relative frequency of 42 
present-day extreme WBGT events could rise by a factor of 100–250 in the tropics and parts of the mid-43 
latitudes, areas which are projected to contain approximately half the world’s population (Coffel et al., 44 
2018). This is approximately double the frequency change projected for temperature alone. 45 
 46 
High temperatures and droughts are also often strongly correlated with high ozone concentrations (Tai and 47 
Val Martin, 2017; Tai et al., 2014; Wang et al., 2017c; Zhang et al., 2018b). Ozone can negatively affect 48 
ecosystem carbon uptake (Oliver et al., 2018c; Franz et al., 2018). As future heat waves become more 49 
intense, in regions where ozone precursors are going down, such as North America and Europe, future heat 50 
waves are projected to have lower surface ozone; however, in areas of Asia and Africa where ozone 51 
precursors are not projected to decrease, future more intense heat waves produce even more severe surface 52 
ozone events (Meehl et al., 2018).  53 
 54 
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Heavy rainfall on saturated soil during the summer months (SES) and concurrent heavy rainfall and 1 
snowmelt, also called rain-on-snow events (ROS), are often the main flood-generating process in high 2 
latitudes (Cohen et al., 2015) and mountainous areas (Merz and Blöschl 2003; McCabe et al., 2007). In 3 
southern Norway, the probability of occurrence of SES events during the summer is projected to increase by 4 
38% until 2070-2099 under a high emission scenario (Poschlod et al., 2019, submitted). In contrast, the 5 
frequency of ROS is projected to decrease by 48% on average, which is largely driven by decreases in 6 
snowfall. In mid-latitude regions, the interaction between antecedent moisture conditions ( e.g., soil moisture 7 
stores and/or reservoir levels) and flood-producing rainfall is often a key determinant of flood hazards ( e.g., 8 
(Bennett et al., 2018)), with the interaction between these multiple drivers potentially explaining the 9 
observed decrease in flood hazards (Do et al., 2017) in many regions globally despite observed increases in 10 
precipitation extremes (Sharma et al., 2018). 11 
 12 
Climate change can affect the clustering of some hazards and will lead to the emergence of new types of 13 
compound events. For instance, climate models suggest that the serial clustering of extratropical cyclones 14 
may decrease in the North Atlantic and parts of western Europe while increasing near Newfoundland (Pinto 15 
et al., 2013). Furthermore, successive heatwaves can compound the impacts of a tropical cyclone and pose a 16 
serious threat to humans. Climate change could increase the number of people that may experience at least 17 
one such event in a 30-year period from currently 0.4 million to 2 million at 2 °C global warming and 11.8 18 
million at 4 °C (Matthews et al., 2019).  19 
 20 
 21 
[START BOX 11.3 HERE] 22 
 23 
BOX 11.3: Case study: Global-scale concurrent climate anomalies at the example of the 2015/2016 24 

Super El Niño and the 2018 boreal spring/summer extremes 25 
 26 
Occurrence of concurrent or near-concurrent extremes in different parts of a region, or in different places of 27 
the world challenges adaptation and risk management capacity (Box 11.4). This can occur as a result of 28 
natural climate variability, as climates in different parts of the world are inter-connected through 29 
teleconnections. In addition, in a warming climate, the probability of having several locations being affected 30 
simultaneously by  e.g., temperature hot extremes and heatwaves increases strongly as a function of global 31 
warming, with detectable changes even for changes as small as 0.5°C of additional global warming (Sections 32 
11.2.6 and 11.3; Box 11.3, Figure 1). Recent articles have highlighted the risks associated with concurrent 33 
extremes over large spatial scales ( e.g., Boers et al., 2019; Lehner and Stocker, 2015;Gaupp et al., 2019). 34 
There is evidence that such global-scale extremes associated with hot temperature extremes are increasing in 35 
occurrence (Sippel et al., 2015; Vogel et al., 2019). Hereafter, we focus on two recent global-scale events 36 
that featured concurrent extremes in several regions across the world The first focuses on concurrent 37 
extremes driven by variability in tropical Pacific SSTs associated with the 2015/2016 Super El Niño, while 38 
the second is a case study of the impacts of global warming combined with abnormal atmospheric circulation 39 
patterns in the 2018 boreal spring/summer. 40 
 41 
 42 
[START BOX 11.3, FIGURE 1 HERE]  43 
 44 
Box 11.3, Figure 1:Analysis of the percentage of land area affected by temperature extremes larger than a) two or b) 45 

three standard deviations in June-July-August (JJA) between 30°N and 80°N using an approach 46 
using a standard normalization (orange) and a corrected normalization (grey). The more 47 
appropriate estimate is the corrected normalization. These panels show for both estimates a 48 
substantial increase in the overal land area affected by very high hot extremes since 1990 onward. 49 
From Sippel et al. 2015.  50 

 51 
[END BOX 11.3, FIGURE 1 HERE] 52 
 53 
 54 
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2015/2016 El Niño or “Super El Niño” 1 
 2 
El Niño-Southern Oscillation (ENSO) is one of the phenomena that have the ability to bring multitudes of 3 
extremes in different parts of the world, especially in the extreme cases of El Niño. Additionally, the 4 
background climate warming associated with greenhouse gas forcing can significantly exacerbate extremes 5 
in parts of the world even under normal El Niño conditions. According to some measures, the 2015/2016 El 6 
Niño was the strongest El Niño over the past 145 years (Barnard et al., 2017), with Sea Surface Temperatures 7 
(SST) warmer than 29°C at Niño 3.4 (Funk et al., 2016). Newman et al. (2018) found that the 2015/2016 8 
warmth was unprecedented at the central equatorial Pacific (Niño4: 5°N–5°S, 150°E–150°W) and that this 9 
exceptional warmth was unlikely to have occurred entirely naturally, appearing to reflect an 10 
anthropogenically-forced trend. There is medium confidence that both the ENSO amplitude and the 11 
frequency of high-magnitude events since 1950 is higher than over the pre-industrial period (Chapter 2; 12 
Section 11.1.5), suggesting that global extremes similar to those associated with the 2015/2016 El Niño 13 
would occur more frequently under further increases in global warming. A brief summary of what happened 14 
that year is provided hereafter. We provide some highlights illustrating extremes that occurred in different 15 
parts of the world during the 2015/2016 El Niño event, hereafter referred to as “Super El Niño”.   16 
 17 
The state of the climate in 2015 reviewed by Blunden and Arndt (2016) and World Meteorological 18 
Organization (2016) summarized extreme aspects due to the super El Niño: in combination with modified 19 
hydrological conditions induced by global warming (enhanced moistening or drying of the air depending on 20 
the region; Chapter 8 and Box 11.1), the strong El Niño enhanced precipitation variability around the world 21 
and drought conditions prevailed across many areas for most of the year. Emissions from tropical Asian 22 
biomass burning in 2015 were also severely enhanced (Cross-Chapter Box 11.3, Figure 2).  23 
 24 
Several regions were strongly affected by droughts in 2015, including Indonesia, the Amazon region,  25 
Ethiopia, Southern Africa, and Europe. As a result, global measurements of land water anomalies were 26 
particularly low in that year (Humphrey et al., 2018). In 2015, Indonesia experienced a severe drought and 27 
forest fire causing pronounced impact on economy, ecology and human health due to haze crisis (Hartmann 28 
et al., 2018). The extent of the drought season in Indonesia during 2015 has intensified the flammability of 29 
forest and peatlands leading to a severe fire season (Field et al., 2016). During 2015, forest and peatland fires 30 
have released 227 ± 67 Tg C (Huijnen et al., 2016; Patra et al., 2017), which was in between the 2013 CO2 31 
emission from fossil fuel in Japan and India (Field et al., 2016). The Amazon region experienced the most 32 
intense droughts of this century in 2015/2016. This drought was more severe than the previous major 33 
droughts that occurred in the Amazon in 2005 and 2010 (Erfanian et al., 2017; Panisset et al., 2018), which 34 
had been both assessed as 1-in-100 year types of events (Lewis et al., 2011). The 2015/2016 Amazon drought 35 
impacted the entirety of South America north of 20°S during the austral spring and summer (Erfanian et al., 36 
2017). According to Panisset et al. (2018), 80% of the Amazon Basin area was stricken by precipitation 37 
deficits during this drought, which spanned from September 2015 to May 2016 (Ribeiro et al., 2018). 38 
Jiménez-Muñoz et al. ( 2016), using the self-calibrating Palmer Drought Severity Index (van der Schrier et 39 
al., 2013; note, however, some limitations with this index, Section 11.6), showed that the 2015/2016 El Niño 40 
event, combined with the regional warming trend, was associated with unprecedented warming and a larger 41 
extent of extreme drought in Amazonia compared to the earlier strong El Niño events in 1982/1983 and 42 
1997/1998. The 2015/2016 anomalous dryness increased the forest fire incidence by 36% compared to the 43 
preceding 12 years (Aragão et al., 2018). The active fires occurred over an area of 799,293 km2, impacting 44 
areas in central Amazonia barely affected by fires in the past (Aragão et al., 2018). As a consequence, forest 45 
fires increased the biomass burning outbreaks and the carbon monoxide (CO) concentration in the area, 46 
affecting air quality (Ribeiro et al., 2018). This out-of-season drought affected the water availability for 47 
human consumption and agricultural irrigation and it also left rivers with very low water levels, without 48 
conditions of ship transportation, due to large sandbanks, preventing the arrival of food, medicines, and 49 
fuels. Eastern African countries were impacted by drought in 2015. The drought in Ethiopia was the worst in 50 
several decades. It was found that the Ethiopian drought was associated with the super El Niño in 2015/2016 51 
that developed early in the year (Blunden and Arndt, 2016; Philip et al., 2018a). Because the Ethiopian 52 
drought is well correlated with ENSO in the observations, it is suggested that the strong 2015/2016 El Niño 53 
did increase the severity of the drought in Ethiopia (Philip et al., 2018a). Extremely dry conditions were 54 
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experienced across most of southern Africa during October 2015–March of 2016(Funk et al., 2016), 1 
associated with one of the super El Niño (Blamey et al., 2018). It was suggested that anthropogenic warming 2 
contributed to the 2015 Ethiopian and southern African droughts by increasing SSTs associated with the 3 
super El Niño and local air temperatures (Funk et al., 2016, 2018b). According to Yuan et al. (2018) flash 4 
drought over Southern Africa increased by 220% from 1961 to 2016, mainly due to anthropogenic climate 5 
change and it was intensified during the super El Niño in the midst of heat waves. The 2015/2016 super El 6 
Niño also induced drying in western, eastern and even southern Europe (King et al., 2020). It should be 7 
noted that 2015 was a year that displayed a particularly high CO2 growth rate, possibly related to some of the 8 
mentioned droughts, in particular in Indonesia and the Amazon region, leading to higher CO2 release in 9 
combination with less CO2 uptake from land areas (Humphrey et al. 2018). The impact of the super El Niño 10 
on vegetation systems via drought was also shown from satellite data (Kogan and Guo, 2017). 11 
 12 
In 2015, the activity of tropical cyclones was notably high in the North Pacific (Blunden and Arndt, 2016). 13 
Over the western North Pacific, the number of category 4 and 5 Tropical Cyclones (TCs) was 13, which is 14 
more than twice its typical annual value of 6.3 (Zhang et al., 2016a). Similarly, a record-breaking number of 15 
TCs was observed in the eastern North Pacific, particularly in the western part of that domain (Collins et al., 16 
2016; Murakami et al., 2017). These extraordinary TC activities were related to the average SST anomaly 17 
during that year, which were associated with the super El Niño event in 2015 and the positive phase of the 18 
Pacific Meridional Mode (PMM) (Murakami et al., 2017). However, it has been suggested that the intense 19 
TC activities in both the western and the eastern North Pacific in 2015 were not only due to the El Niño, but 20 
also to a contribution of anthropogenic forcing (Murakami et al., 2017; Yang et al., 2018c). In the 2015/2016 21 
super El Niño years, the TC activities were similarly strong in the western Pacific as in the 1997/1998 strong 22 
El Niño. However, differences in possible TC characteristics between the two super El Niño years in 1997 23 
and 2015 were suggested to be due to the additional effect of PMM (Hong et al., 2018; Yamada et al., 2019). 24 
It was suggested that the impact of the Indian Ocean SST also contributes to the extreme TC activity in 2015 25 
(Zhan et al., 2018). 26 
 27 
[START BOX 11.3, FIGURE 2 HERE]  28 
 29 
Box 11.3, Figure 2: Geographical distribution of notable climate anomalies and events occurring around the world in 30 

2015. The warm/cold/dry/wet categories are defined according to precipitation and temperature 31 
anomalies for the period DJF 2015/2016 which coincides with the highest magnitude of ENSO. 32 

 33 
[END BOX 11.3, FIGURE 2 HERE] 34 
 35 
 36 
[START BOX 11.3, TABLE 1 HERE] 37 
 38 
Box 11.3, Table 1: List of events related to the 2015/2016 Super El Niño in the literature. 39 
 40 

Region Period Events References 
Indonesia July 2015 to June 

2016 
droughts, forest fire (Field et al., 2016; Huijnen et al., 

2016; Patra et al., 2017; Hartmann et 
al., 2018) 

Amazon September 2015 
to May 2016 

droughts, forest fire (Jiménez-Muñoz et al., 2016; Erfanian 
et al., 2017; Aragão et al., 2018; 
Panisset et al., 2018; Ribeiro et al., 
2018) 

The entirety of 
South America 
north of 20°S 

the austral spring 
and summer 
2015/2016 

droughts (Erfanian et al., 2017) 
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Ethiopia February-
September 2015 

droughts (Blunden and Arndt, 2016; Philip et 
al., 2018a) 

Southern Africa November 2015–
April 2016 

droughts (Funk et al., 2016, 2018a; Blamey et 
al., 2018; Yuan et al., 2018a) 

Eastern North 
Pacific 

Boreal summer 
2015 

a record-breaking 
number of tropical 
cyclones 

(Collins et al., 2016; Murakami et al., 
2017) 

Western North 
Pacific 

Boreal summer 
2015 

the large number (13) of 
category 4 and 5 tropical 
cyclones 

(Blunden and Arndt, 2016; Mueller et 
al., 2016a; Zhang et al., 2016b; Hong 
et al., 2018; Yamada et al., 2019) 

 1 
Global-scale temperature extremes in boreal 2018 spring and summer 2 
 3 
In the 2018 boreal spring-summer season (May-August), wide areas of the mid-latitudes in the Northern 4 
Hemisphere experienced heat extremes and in part enhanced drought (Kornhuber et al., 2019; Vogel et al., 5 
2019; Box 11.3, Figure 3). Between May and August 2018, the reported impacts included the following 6 
(Vogel et al., 2019): 90 deaths from heat strokes in Quebec (Canada), 1469 deaths from heat strokes in Japan 7 
(Shimpo et al., 2019), 48 heat-related deaths in South Korea (Min et al., 2020), heat warning affecting 8 
90’000 students in the USA, fires in numerous countries (Canada (British Columbia), USA (California), 9 
Lapland, Latvia), crop losses in the UK, Germany and Switzerland (Vogel et al., 2019) and overall in central 10 
and northern Europe (leading to yield reductions of up to 50% for the main crops, (Toreti et al., 2019), fish 11 
deaths in Switzerland, and melting of roads in the Netherlands and the UK, among others. In addition to the 12 
numerous hot and dry extremes, an extremely heavy rainfall event occurred over wide areas of Japan from 13 
28 June to 8 July 2018 (Tsuguti et al., 2018), which was followed by a heatwave (Japan Meteorological 14 
Agency, 2018). The heavy precipitation event caused more than 230 deaths in Japan, and was named as “the 15 
Heavy Rain Event of July 2018”. The heavy precipitation event was characterized by unusually widespread 16 
and persistent rainfall and locally anomalous total precipitation led by line-shaped precipitation systems, 17 
which are frequently associated with heavy precipitation events in East Asia (Kunii et al., 2016; Oizumi et 18 
al., 2018; Tsuguti et al., 2018; Section 11.7.3). This precipitation event and the subsequent heatwave are 19 
related to abnormal condition of the jet and North Pacific Subtropical High in this month (Shimpo et al., 20 
2019), which caused extreme conditions from Europe, Eurasia, and North America (Kornhuber et al., 2019; 21 
Cross-Chapter Box 11.3, Figure 3). An event attribution study showed that the anomalous North Pacific 22 
Subtropical High could not be simulated without greenhouse gas forcing in an ESM, suggesting that it would 23 
have been extremely unlikely (i.e, less than 1% chance) to happen without human-induced global warming 24 
(Imada et al., 2019). A role of Atlantic SST anomaly on the meandering jets and the subtropical high have 25 
been suggested (Liu et al., 2019a). The extreme rainfall in Japan was caused by anomalous moisture 26 
transport with a combination of abnormal jet condition (Takemi and Unuma, 2019; Takemura et al., 2019; 27 
Tsuji et al., 2019; YOKOYAMA et al., 2020), which can be viewed as an atmospheric river (Yatagai et al., 28 
2019; Sections 8.2.2.8, 11.7.2). This moisture flux was caused by intensified inflow velocity and high SST 29 
around Japan (Kawase et al., 2019; Sekizawa et al., 2019). Kawase et al. (2019) showed that the extreme 30 
rainfall in Japan during this event was increased by approximately 7% due to recent rapid warming around 31 
Japan. These dynamic and thermodynamic components generally have substantial influence on extreme 32 
rainfall in East Asia (Oh et al., 2018), but it is under investigation whether these factors were due to 33 
anthropogenic forcing. 34 
 35 
[START BOX 11.3, FIGURE 3 HERE]  36 
 37 
Box 11.3, Figure 3: Global extreme climate events in July 2018 (Japan Meteorological Agency, 2018). This figure 38 

shows overlaid climate extremes (warm, cold, wet and dry) from weekly reports for July 2018. 39 
[FGD PLACEHOLDER: WILL INCLUDE AN UPDATED FIGURE PROVIDING 40 
ANOMALIES OVER THE WHOLE DURATION OF THE EVENT, I.E. AT LEAST MAY-41 
AUGUST 2018] 42 
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 1 
[END BOX 11.3, FIGURE 3 HERE]  2 
 3 
Regarding the hot extremes that occurred across the Northern Hemisphere in the 2018 boreal May-July time 4 
period, Vogel et al. (2019) found that the event was unprecedented in terms of the total area affected by hot 5 
extremes (on average about 22% of populated and agricultural areas in the Northern Hemisphere) for that 6 
period, but was consistent with a +1°C climate which is the estimated present-day global mean temperature 7 
anomaly (SR15). Indeed, the probability of such an event was about 16% under a 1°C global warming (Box 8 
11.3, Figure 4). This study also found that events similar to the 2018 May-July temperature extremes would 9 
approximately occur 2 out of 3 years under +1.5°C global warming, and every year under +2°C of global 10 
warming (Box 11.3, Figure 4). Imada et al. (2019) also suggests that the mean annual occurrence of 11 
extremely hot days in Japan will be expected to increase by 1.8 times under a global warming level of 2°C 12 
above pre-industrial levels. Hence, while the 2018 event had a strong circulation component (Box 11.3, 13 
Figure 3), the widespread temperatures anomalies that occurred in that year should not have been unexpected 14 
given climate simulations for present-day warming, and it is virtually certain that these concurrent events 15 
would not have occurred without  human-induced global warming (Vogel et al., 2019). Concurrent events of 16 
this type are also projected to happen more frequently under higher levels of global warming (Box 11.3, 17 
Figure 4). On the other hand, there is currently low confidence in projected changes in the frequency or 18 
strength of the anomalous circulation patterns leading to concurrent extremes ( e.g., Cross-Chapter Box 19 
10.1).  20 
 21 
 22 
[START BOX 11.3, FIGURE 4 HERE] 23 
 24 
Box 11.3, Figure 4: (left) Probabilities for exceeding concurrent hot day areas in the reference period 1958–1988 (p0) 25 

for the multimodel ensemble (gray range) and observations (black line). The 2018 area is 26 
highlighted by a purple vertical dashed line in each subpanel. (right) CMIP5-based multi-model 27 
range of probabilities for exceeding concurrent hot days areas experienced in May-July 2018 for 28 
global warming of +1°C (orange), +1.5°C (red) and +2°C (dark red) with respect to 1870-1900.  29 
From Vogel et al. (2019).  30 

 31 
[END BOX 11.3, FIGURE 4 HERE]  32 
 33 
 34 
The case studies presented in this Box 11.3 illustrate the current state of knowledge regarding the 35 
contribution of human-induced climate change to recent concurrent extremes in the global domain. Recent 36 
years have seen a more frequent occurrence of such events. The heatwave in Europe in the 2019 boreal 37 
summer and its coverage in the global domain is an additional example (Vautard et al., submitted). However, 38 
there are still very few studies investigating which types of concurrent extreme events could occur under 39 
increasing global warming. It has been noted that such events could also be of particular risk for concurrent 40 
impacts in the world’s breadbaskets (Zampieri et al., 2017;(Kornhuber et al., 2020). 41 
 42 
 43 
[END BOX 11.3 HERE] 44 
 45 
 46 
11.9 Regional information on extremes 47 
 48 
This section complements and expands the regional assessments provided for specific extremes in Sections 49 
11.3, 11.4, 11.5, 11.6 and 11.7. The regional assessment is presented here using a separate table for Africa 50 
(Table 11.4), Asia (Table 11.5), Australasia (Table 11.6), Central and South America (Table 11.7), Europe 51 
(Table 11.8), and North America (Table 11.9). Tables contain regional information for observed trends, 52 
detection and attribution and event attribution and future projections for all types of extremes based on the 53 
AR6 reference set of regions (see Section 1.5.2.2 for a description). 54 
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[START TABLE 11.4 HERE] 1 
 2 
Table 11.4: Regional assessments for Africa. 3 
 4 

Temperature extremes Precipitation extremes and flooding (including effects of TC, ETC and 
atmospheric rivers)  

Droughts, dryness and aridity  

Observed trends Detection and 
attribution; 
event 
attribution 

Projections Observed trends Detection and 
attribution; 
event attribution 

Projections Observed trends Detection and 
attribution; 
event attribution 

Projections 

North Africa 
(S.MED) 
 

High confidence: 
Increase in 
frequency of  
warm 
extremes(TX90P,
TN90P) and 
decrease in 
frequency of  cold 
extremes 
(TX10P,TN10P) 
since 1981 
(Donat et al., 
2013a, 2014a, 
2016a; Filahi et 
al., 2016; 
Driouech et al., 
submitted) 
 
Low confidence: 
Insufficient 
evidence to assess 
trends on heat and 
cold waves   
 

Low 
confidence: 
High 
temperature 
extremes in 
context of dry 
events are 
attributable to 
anthropogenic 
climate 
change 
(Bergaoui et 
al., 2015) 

High confidence: 
Increase of heat 
waves by end of 
the 21st century) 
(Giorgi et al., 
2014) 
 
Increase in 
frequency of 
warm 
extremes(TX90P,
TN90P) 
(Lelieveld et al., 
2016) 

Low confidence: 
Increase in heavy 
precipitationin the 
West (Donat et al., 
2014a) 
Decrease in heavy 
precipitation in the 
East (Donat et al., 
2014a; Mathbout et 
al., 2018b) 
 
 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed trends 
and events. 

Low confidence: 
Lack of agreement in sign 
of change of R95p 
(Sillmann et al., 2013a; 
Giorgi et al., 2014). 

Low confidence: 
Increase in dryness 
(CDD) in the East 
(Donat et al., 2014a; 
Mathbout et al., 
2018b) 
and decrease in the 
West (Donat et al., 
2014a) 
 
Increase in dryness 
(SPEI) over NW 
Africa (Morocco) 
(Driouech et al., 
submitted) 

Low 
confidence:  
 
Drying 
attributable to 
climate change 
(Bergaoui et al., 
2015) 

Medium confidence: 
Increase in dryness 
(CDD)  (Sillmann et 
al., 2013a; Giorgi et 
al., 2014; Han et al., 
2019) 
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Sahara (SAH) Medium  
confidence: 
Increase in 
frequency of 
warm extremes 
(TX90P,TN90P,
WSDI) and 
decrease in cold 
extremes (TX10P, 
TN10P, CSDI), 
since 1981. 
(Donat et al., 
2014a; Moron et 
al., 2016). 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed 
trends and 
events. 

High confidence: 
Increase of heat 
waves by end of 
the 21st century) 
(Giorgi et al., 
2014) 
Increase in 
frequency of 
warm extremes 
(TX90P, TN90P). 
(Dosio, 2017). 

Low confidence: 
Increase in heavy 
precipitation in west 
Sahara and Sudan 
(Donat et al., 2014a). 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed trends 
and events. 

Low confidence: 
insufficient evidence to 
assess trends. 

Low confidence: 
insufficient evidence 
to assess trends 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed trends 
and events. 

Low confidence: 
Lack of agreement in 
sign of change of CDD   
(Sillmann et al., 
2013a; Giorgi et al., 
2014; Han et al., 2019) 
 
 
 

West Africa 
(WAF) 

Medium 
confidence: 
Increase in 
frequency of 
warm 
extremes(TX90P,
TN90P ,WSDI) 
decrease in  cold 
extremes (TX10P, 
TN10P) 
(Mouhamed et al., 
2013; Chaney et 
al., 2014; Barry et 
al., 2018). 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed 
trends and 
events. 

High confidence: 
Increase in heat 
waves by end of 
the 21st century) 
(Giorgi et al., 
2014). 
Increase in 
frequency of 
warm extremes 
(TX90P,TN90) in  
boreal summer 
and winter 
(Dosio, 2017). 

Medium confidence: 
Increase in heavy 
precipitation but varies 
spatially (Mouhamed 
et al., 2013; Chaney et 
al., 2014; Sanogo et 
al., 2015; Zittis, 2017; 
Barry et al., 2018) 
 
Increased frequency of 
storms over western 
Sahel since  1982 
causing torrential 
precipitation (Taylor et 
al., 2017).  

Low 
confidence: 
 
No attributable 
change in 
extreme rainfall 
(Parker et al., 
2017). 
 
 

High confidence: 
Increase in intensity of  
heavy precipitation by the 
by end of the 21st century 
(Sillmann et al., 2013a; 
Giorgi et al., 2014; Sylla et 
al., 2016; Akinsanola and 
Zhou, 2018; Dosio et al., 
2019). 

Medium confidence: 
Decrease of CDD 
since 1980 
(Chaney et al., 2014; 
Barry et al., 2018). 
 

Low confidence 
that late onset 
of the rainy 
season is not 
attributable to 
climate change 
(Lawal et al., 
2016) 

Low confidence: 
Lack of agreement in 
sign of change of CDD  
(Sillmann et al., 
2013a; Akinsanola and 
Zhou, 2018; Han et al., 
2019) 
 
High confidence: 
Increase in dryness 
CDD over Guinea 
coast under 1.5C and 
2C of global warming 
(Klutse et al., 2018) 
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Central Africa 
(CAF) 

Low confidence: 
Insufficient 
evidence to assess 
trends because the 
ground-based 
datasets are 
sporadic and 
sparse 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed 
trends and 
events. 

High 
confidence(Mba 
et al., 2018) for 
local change in 
RCMs 

Low confidence: 
Insufficient evidence 
to assess trends 
because the ground-
based datasets are 
sporadic and sparse 

Low 
confidence: 
There is no 
attributable 
signal to 
changes in 
extreme 
precipitation  
(Otto et al., 
2013) 

High confidence:  
Increase in heavy 
precipitation (Diedhiou et 
al. 2018; Fotso-Nguemo et 
al. 2018; Sonkoué et al. 
2019), particularly RCMs  

High confidence  
Decrease in mean 
rainfall. More 
evidence to assess 
the trends and its 
variability (Aguilar 
et al., 2009; Hua et 
al., 2016) 

Low 
confidence: 
There is no 
attributable 
signal to 
changes in low 
precipitation  
(Otto et al., 
2013) 
 
Long-term 
(1979-2014) 
drought over 
Central Africa 
can be 
explained by the 
large-scale 
response of the 
atmosphere to 
tropical sea 
surface 
temperature 
variations(Hua 
et al., 2016) 

High confidence: 
Decrease in CWD 
(Fotso-Nguemo et al., 
2018; Kendon et al., 
2019; Sonkoué et al., 
2019) 

North East 
Africa (NEAF) 
and Central 
East Africa 
(CEAF) 

Medium 
confidence: 
Increases in 
frequency of 
warm days 
(TX90P)  

Medium  
confidence: 
Increased 
temperature 
attributable to 
climate 
change (Otto 
et al., 2015a; 
Philip et al., 
submitted) 

High confidence: 
Likely increases 
in  frequency of 
warm days 
(TX90P) and 
decreases in 
frequency of cold 
days (TX10P)  
 

Low confidence: 
Insufficient evidence 
to assess trends 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed trends 
and events. 

Low confidence: 
insufficient evidence to 
assess trends 

Medium confidence: 
Increase in 
frequency of 
meteorological 
droughts (Funk et 
al., 2015a; 
Nicholson, 2017) 

Low confidence 
high evidence 
that observed 
drying is not 
attributable to 
anthropogenic 
climate 
change(Uhe et 
al., 2017; Funk 
et al., 2018b; 
Otto et al., 
2018a; Philip et 
al., 2018a) 

Low confidence: lack 
of agreement in the 
sign of change 
(SREX suggest 
decreases in CDD but 
(Osima et al., 2018, 
Dosio el al 2019) 
suggest in increases)  
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South 
WestAfrica 
(SWAF) 

High confidence : 
likely increases in  
frequency of 
warm days 
(TX90P), and 
decreases in cold 
days (TX10P) 
(Donat et al., 
2013a) 
 
Medium 
confidence: 
Increases in 
heatwaves 
frequency (Russo 
et al., 2016) 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed 
trends and 
events. 

High confidence: 
likely increases in  
frequency of 
warm days 
(TX90P) and 
decreases in 
frequency of cold 
days (TX10P) 
(Donat et al., 
2013a) 
 
High confidence: 
very likely   
increases in the 
frequency of heat 
waves 
(Engelbrecht et 
al., 2015; Russo 
et al., 2016; 
Dosio, 2017) 

Medium confidence: 
increases in heavy 
precipitation but with 
spatially varying 
trends. Increases in 
precipitation intensity 
(SDII) (Donat et al., 
2013a) 
 
 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed trends 
and events. 

Medium confidence: 
increases in the frequency 
of heavy precipitation but 
varying spatially (Pinto et 
al., 2016) 
High confidence: increases 
in precipitation intensity 
(Pinto et al., 2016, Dosio el 
al 2019) 

Medium confidence: 
increase in dryness 
(CDD) 

Medium 
confidence: 
Recent 
meteorological 
drought 
attributable to 
anthropogenic 
climate change 
(Otto et al., 
2018c)Ch.	
17,18:	(Herring	
et	al.,	2018) 

High  confidence: 
Likely increases in 
dryness (Giorgi et al. 
2014; Pinto et al. 
2016;Maúre et al., 
2018, Dosio el al 2019  
) (CDD and SPEI, 
SPI*) 

South East 
Africa (SEAF) 

High confidence : 
likely increases in 
frequency of 
warm days 
(TX90P), and 
decreases in cold 
days (TX10P) 
(Donat et al., 
2013a) 
 
Medium 
confidence: 
Increases in the 
frequency of  heat 
waves (Russo et 
al., 2016) 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed 
trends and 
events. 

High confidence: 
likely increases in 
warm days and 
decreases in cold 
days 
very likely   
increases in the 
frequency of  heat 
waves 
(Engelbrecht et 
al., 2015; Russo 
et al., 2016; 
Dosio, 2017) 

Medium confidence: 
increases in heavy 
precipitation but with 
spatially varying 
trends. Increases in 
precipitation intensity 
(SDII) (Donat et al., 
2013a) 
 
 

Low 
confidence: 
Insufficient 
evidence to 
attribute 
observed trends 
and events. 

Medium confidence: 
increases in heavy 
precipitation but varying 
spatially (Pinto et al., 
2016) 
High confidence: 
likely increases in 
precipitation intensity 
(Pinto et al., 2016, Dosio el 
al 2019) 

Medium confidence: 
increase in dryness 
(CDD) 

Medium 
confidence: 
Recent 
meteorological 
drought 
attributable to 
anthropogenic 
climate change 
(Bellprat et al., 
2015) 

High confidence: 
Likely increases in 
dryness (Giorgi et al. 
2014; Pinto et al. 
2016; Maúre et al., 
2018, Dosio el al 2019  
) (CDD and SPEI, 
SPI*) 

 1 
[END TABLE 11.4 HERE] 2 
  3 
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[START TABLE 11.5 HERE] 1 
 2 
Table 11.5: Regional assessments for Asia 3 
 4 

 Temperature extremes Precipitation extremes and flooding Droughts, dryness and aridity 

Observed trends Detection and 
attribution;event 

attribution 

Projections  Observed trends Detection and 
attribution;event 

attribution 

Projections Observed trends Detection and 
attribution;event 

attribution 

Projections  

Arabian 
Peninsula 
(ARP)  

High 
confidence:Increase 
in frequency and 
magnitude of warm 
extremes, decrease 
in frequency and 
severity of cold 
extremes  
(Almazroui et al., 
2014; Donat et al., 
2014a; Nazrul Islam 
et al., 2015; Dunn et 
al., submitted) 

 High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in 
frequency and 
severity of cold 
exremes (Xu et al., 
2017; Han et al., 
2018; Almazroui, 
2019) 

 

 

Low confidence: 

Decreases in the 
frequency of 
extreme 
precipitation (Donat 
et al., 2014a) 

Low confidence: 

Surface heating and 
topography 
intensified 2009 
Jeddah extreme 
precipitation event 
(Almazroui et al., 
2018). 

Low confidence : 

Changes in 
extreme 
precipitation are 
uncertain for 
much of the 
region, though an 
increase in 
precipitation 
extremes is 
projected for the 
south  (Sillmann 
et al., 2013b; Han 
et al., 2018; 
Kharin et al., 
2018)(Almazroui 
and Saeed, 2020) 

Low confidence : 

Increase in 
drought 
conditions due to 
decreased rainfall 
and increased dry 
days (Donat et al., 
2014a; Amin et 
al., 2016; 
Rajsekhar and 
Gorelick, 2017) 

 Low confidence : 

Increase in drought 
conditions, 
especially in the 
north (Barlow et al., 
2016; Rajsekhar and 
Gorelick, 2017; 
Tabari and Willems, 
2018).  

West 
Central 
Asia 
(WCA) 

High confidence: 

Increase in 
frequency and 
magnitude of warm 
extremes, decrease 
in frequency and 
severity of cold 
extremes (Soltani et 
al., 2016; Alizadeh-
Choobari and 

 High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in 
frequency and 
severity of cold 
exremes (Xu et al., 
2017; Han et al., 

Low confidence: 

Trends in extreme 
precipitation vary by 
index and location 
(Soltani et al., 2016; 
Alizadeh-Choobari 
and Najafi, 2018; 
Rahimi and Fatemi, 

 Low confidence: 

Increase in 
extreme 
precipitation 
(Sillmann et al., 
2013b; Han et al., 
2018; Kharin et 
al., 2018). 

Low confidence: 

Decrease in CDD 
(Soltani et al., 
2016), decrease in 
soil moisture (Li 
et al., 2017c) and 
increase in 
drought severity 
and frequency in 
some regions 

Low confidence: 

No attribution 
found for the 
winter 2013/14 
drought (Barlow 
and Hoell, 2015) 

Low confidence: 

Increase in dry days 
(Han et al., 2018; 
Tabari and Willems, 
2018) 
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Najafi, 2018; Feng 
et al., 2018; Rahimi 
and Hejabi, 2018; 
Fallah-Ghalhari et 
al., 2019; Zhang et 
al., 2019c). 

2018; 
AshrafVaghefi et al., 
2019) 

2019; Dunn et al., 
submitted).  

(Modarres et al., 
2016; Hameed et 
al., 2018) 

Russian-
Far-East 
(RFE) 

 

High confidence: 

Increase in 
frequency and 
magnitude of warm 
extremes, decrease 
in frequency and 
severity of cold 
extremes (Donat et 
al., 2016a; Zhang et 
al., 2019c; Dunn et 
al., submitted) 

 High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in 
frequency and 
severity of cold 
exremes (Xu et al., 
2017; Han et al., 
2018; Khlebnikova 
et al., 2019a) 

  Low confidence: 

Increase in 
precipitation 
extremes 
(Sillmann et al., 
2013b; Xu et al., 
2017; Han et al., 
2018; Kharin et 
al., 2018) 

Low confidence: 

Increase in dry 
days 
(Khlebnikova et 
al., 2019b) 

 Low confidence: 

Decreases in CDD 
are projected in 
most regions (Han et 
al., 2018) 

E. Siberia 
(ESB) 

High confidence: 

Increase in 
frequency and 
magnitude of warm 
extremes, decrease 
in frequency and 
severity of cold 
extremes (Dashkhuu 
et al., 2015; Donat et 
al., 2016a; Zhang et 
al., 2019c; Dunn et 
al., submitted) 

Low confidence: 

Attribution of 
changes in 
temperatures 
extremes for a 
broader region of 
Asia mid-to-high 
latitudes (Dong et 
al., 2018) 

High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in 
frequency and 
severity of cold 
exremes (Xu et al., 
2017; Han et al., 
2018; Khlebnikova 
et al., 2019a) 

  Medium 
confidence: 

Increase in 
precipitation 
extremes 
(Sillmann et al., 
2013b; Xu et al., 
2017; Han et al., 
2018; Kharin et 
al., 2018; 
Khlebnikova et 
al., 2019b) 

Low confidence: 

Decrease in dry 
days for much of 
the region, but 
parts of the south 
show increases 
(Khlebnikova et 
al., 2019b) 

  

W. Siberia 
(WSB) 

High confidence: 

Increase in warm 
extremes and 
decrease in cold 
extremes (Degefie et 

Low confidence: 

Attribution of 
changes in 
temperatures 
extremes for a 

High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 

Low confidence: 

No siginifcant trends 
in precipitation 
extremes found in 
the north (Degefie et 

 Medium 
confidence: 

Increase in 
precipitation 
extremes 

Low confidence: 

Decrease in CDD 
for much of the 
region (Zhang et 
al., 2017, 2019b; 
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al., 2014; Salnikov 
et al., 2015; Donat et 
al., 2016a; Zhang et 
al., 2019c, 2019b; 
Dunn et al., 
submitted) 

broader region of 
Asia mid-to-high 
latitudes (Dong et 
al., 2018) 

decrease in 
frequency and 
severity of cold 
exremes (Xu et al., 
2017; Han et al., 
2018; Khlebnikova 
et al., 2019a) 

al., 2014), but an 
increase in extreme 
precipitation in the 
south (Zhang et al., 
2017) 

(Sillmann et al., 
2013b; Xu et al., 
2017; Han et al., 
2018; Kharin et 
al., 2018; 
Khlebnikova et 
al., 2019b) 

Khlebnikova et 
al., 2019b) and 
soil moisture in 
the south (Li et 
al., 2017c) 

Russian-
Arctic 
(RAR) 

High confidence: 

Decrease in the 
frequency and 
severity of cold 
extremes (Donat et 
al., 2016a; Sui et al., 
2017; Dunn et al., 
submitted) 

 High confidence 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in 
frequency and 
severity of cold 
exremes (Xu et al. 
2017; Han et al. 
2018;Khlebnikova 
et al. 2019a) 

  Medium 
confidence: 

Increase in 
precipitation 
extremes 
(Sillmann et al., 
2013b; Han et al., 
2018; Kharin et 
al., 2018; 
Khlebnikova et 
al., 2019b) 

  Low confidence: 

Decrease in dry 
spells (Khlebnikova 
et al., 2019b) 

Tibetan 
Plateau 
(TIB) 

High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in the 
frequency and 
severity of cold 
extremes. (Donat et 
al., 2016a; Hu et al., 
2016; Sun et al., 
2017; Yin et al., 
2019a; Zhang et al., 
2019c; Dunn et al., 
submitted) 

Medium confidence: 

Most of the 
observed changes in 
temperature 
extremes are 
attributable to 
anthropogenic 
forcing (Yin et al., 
2019a) 

High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in 
frequency and 
severity of cold 
exremes (Zhou et 
al., 2014; Singh and 
Goyal, 2016; Zhang 
et al., 2016a; Xu et 
al., 2017; Han et al., 
2018; Li et al., 
2018a) 

Low confidence: 

Increase in extreme 
precipitation over 
most of the region, 
(Jiang et al., 2013; 
Hu et al., 2016; Ge 
et al., 2017; Zhan et 
al., 2017; Liu et al., 
2019b)but decreases 
at some locations in 
the east/southeast 
(Ge et al., 2017) 

 Medium 
confidence: 

Increase in heavy 
precipitation 
(Zhou et al., 2014; 
Zhang et al., 
2015c; Gao et al., 
2018; Han et al., 
2018) 

Low confidence: 

Decrease in CDD 
(Jiang et al., 2013; 
Donat et al., 
2016a; Hu et al., 
2016),  

Decrease in 
drought 
occurrence and 
severity based on 
other metrics 
(Chen and Sun, 
2015b; Liu et al., 
2019b; Wu et al., 
2019b) but 
drought frequency 
increased in more 

 Low confidence: 

A general decrease 
is projected but with 
large uncertainty 
(Zhou et al., 2014) 



Second Order Draft Chapter11 IPCC AR6 WGI 
 

Do Not Cite, Quote or Distribute 11-125 Total pages: 271 

 

recent decades 
(Wu et al., 2019b) 

South Asia 
(SAS) 

Medium confidence: 

Some increases in 
the frequency and 
severity warm 
extremes and 
decreases in the 
frequency and 
severity of cold 
extremes, but trends 
vary seasonally, 
regionally, and by 
index. (Sheikh et al., 
2015; Donat et al., 
2016a; Chakraborty 
et al., 2018; Dimri, 
2019; Roy, 2019; 
Dunn et al., 
submitted) 

Increase in the 
intensity and 
frequency of 
heatwaves (Zahid 
and Rasul, 2012; 
Rohini et al., 2016) 

Medium confidence: 

Observed changes in 
minimum 
temperature over 
Mahandi river basin 
during the pre-
monsoon and 
monsoon season can 
be attributed to an 
anthropogenic effect 
(Kumar, 2017). 

High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in 
frequency and 
severity of cold 
exremes (Sillmann 
et al., 2013b; Xu et 
al., 2017; Han et al., 
2018; Kharin et al., 
2018; Ali et al., 
2019) 

More intense 
heatwaves of longer 
duration at a higher 
frequency in India 
(Murari et al., 2015) 
and in Pakistan  
(Nasim et al., 2018) 
. 

High confidence: 

Increasing trends in 
extreme 
precipitation over 
most of South Asia 
(Pai et al., 2015; 
Sheikh et al., 2015; 
Malik et al., 2016; 
Rohini et al., 2016; 
Roxy et al., 2017; 
Kim et al., 2019), 
but some northern 
regions show 
decreases (Hussain 
and Lee, 2013; 
Malik et al., 2016; 
Kim et al., 2019) 

Low confidence: 

Broadly, 
anthropogenic 
forcing has 
increased the 
frequency of 
extreme 
precipitation(Mukhe
rjee et al., 2018), but 
no robust attribution 
found for individual 
events (Singh et al., 
2014; van 
Oldenborgh et al., 
2016) 

Medium 
confidence: 

Increase in 
extreme 
precipitation 
(Sillmann et al., 
2013b; Xu et al., 
2017; Han et al., 
2018; Mukherjee 
et al., 2018; Ali et 
al., 2019; Rai et 
al., 2019) 

 

Low confidence: 

Increase in 
drought 
conditions for 
many regions 
(Niranjan Kumar 
et al., 2013; Malik 
et al., 2016; 
Guhathakurta et 
al., 2017). 

Low confidence: 

Aerosol loadings 
contribute to an 
increase the 
severity of 
droughts 
(Fadnavis et al., 
2019) 

Medium confidence: 

Increase in the 
frequency of dry 
spells and droughts 
(Mishra et al., 
2014b; Salvi and 
Ghosh, 2016), 
though increases are 
weaker at the end of 
the century (Mishra 
et al., 2014b) 

 

East Asia 
(EAS) 

High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in the 
frequency and 
severity of cold 
extremes. (Wang et 
al., 2013a; Lu et al., 

High confidence: 

Anthropogenic 
influences on 
extreme temperature 
including their 
magnitude, 
frequency, and 
duration  (Lu et al., 
2016, 2018; 
Takahashi et al., 

High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in 
frequency and 
severity of cold 
exremes (Seo et al., 
2014; Zhou et al., 

High confidence: 

Strong regional 
differences of 
annual total 
precipitation 
amount, average 
daily precipitation 
rate, and the 
proportion of heavy 
precipitation; 

Low confidence: 

Human influence 
has increased daily 
precipitation 
extremes  over 
China in recent 
decades (Chen and 
Sun, 2017c; Li et al., 
2017b), and 
contribution to the 

Medium 
confidence: 

Intensification in 
extreme 
precipitation 
(Kusunoki and 
Mizuta, 2013; 
Zhou et al., 2014; 
Seo et al., 2014; 
Xu et al., 2016; 

Medium 
confidence: 

Since the 1950s 
some regions of 
China have 
experienced a 
trend to more 
intense and longer 
droughts, although 
the nortwestern 

Medium 
confidence: 

There is evidence 
that the droughts 
have changed as a 
result of 
anthropogenic 
influences, 
including the 
drought 

Medium confidence: 

CDD is projected to 
increase in south 
China and decrease 
in north China 
(Zhou et al., 2014; 
Kusunoki, 2018a) 

The occurrence 
probability of hot 
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2016, 2018; Zhou et 
al., 2016a; Lin et al., 
2017; Yin et al., 
2017) 

2016; Zhou et al., 
2016a; Yin et al., 
2017; Imada et al., 
2019) 

 

2014; Xu et al., 
2016; Wang et al., 
2017a, 2017c; Guo 
et al., 2018; Li et al., 
2018c; Sui et al., 
2018) 

negative trends in a 
southwest–northeast 
belt, while positive 
trends in eastern and 
northwestern China 
(Zhou et al., 2016a). 
Observed increase in 
extreme 
precipitation 
intensity (Baek et 
al., 2017; Nayak et 
al., 2017; Ye and Li, 
2017) . 

 

shift from light to 
heavy precipitation 
over eastern China 
(Ma et al., 2017). 

Nayak et al., 
2017; Wang et al., 
2017c, 2017a; 
Guo et al., 2018; 
Kusunoki, 2018a; 
Li et al., 2018c; 
Sui et al., 2018; 
Ohba and 
Sugimoto, 2019) 

The heavy 
snowfall is 
projected to 
increase in 
northern China 
(Zhou et al., 
2018a) and central 
Janpa (Kawase et 
al., 2016) 

 

part of China 
experienced less 
frequent, less 
intense, or shorter 
drought (Yu et al., 
2014; Chen and 
Sun, 2015b; Qin 
et al., 2015a) 

occurrences, 
severity, and the 
drought regimes 
(Chen and Sun, 
2017a, 2017b). 
Less precipitation 
combined with 
high temperature 
during boreal 
winter is one of 
major contributor 
for drought in 
southwest China 
(Qin et al., 2015a) 

drought events 
(SPEI < -1.0) will 
increase to nearly 
100% by the year 
2050 (Chen and 
Sun, 2017a, 2017b) 

Southeast 
Asia (SEA) 

High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in the 
frequency and 
severity of cold 
extremes.(Donat et 
al., 2016a; Supari et 
al., 2017; Cheong et 
al., 2018; Zhang et 
al., 2019c; Dunn et 
al., submitted).  

Low confidence: 

Increase in the 
likelihood of hot 
conditions 
attributable (King et 
al., 2016b) 

 

High confidence: 

Increase in the 
frequency and 
magnitude of warm 
extremes and 
decrease in 
frequency and 
severity of cold 
exremes (Sillmann 
et al., 2013b; Xu et 
al., 2017; Han et al., 
2018; Kharin et al., 
2018). 

Low confidence: 

Increase in extreme 
precipitation for 
much of the region 
(Siswanto et al., 
2015; Villafuerte 
and Matsumoto, 
2015; Supari et al., 
2017; Cheong et al., 
2018; Li et al., 
2018g), but decrease 
in the southeast 
(Villafuerte and 
Matsumoto, 2015; 
Cheong et al., 2018) 

Low confidence: 

Trends in extreme 
precipitation are 
linked to the 
increasing global 
mean temperature 
(Villafuerte and 
Matsumoto, 2015).  

Medium 
confidence: 

Increase in 
extreme 
precipitation 
(Basconcillo et al., 
2016; Xu et al., 
2017; Han et al., 
2018; Tangang et 
al., 2018; Ge et 
al., 2019). 

 Low confidence: 

Increase in 
drought 
conditions 
attributable (King 
et al., 2016b) 

Drought in 
Indonesia was 
found to be made 
more likely by El 
Niño and climate 
change (King et 
al., 2016c; 
Hariadi, 2017) but 
no link to climate 
change could be 
made for the 2015 

Medium confidence: 

Increase in CDD 
and drought risk for 
much of the region, 
but decrease in the 
northwest (Tangang 
et al., 2018) 

Changes in ENSO 
and IOD patterns 
favourable for 
increased drought 
(Cai et al., 2014a, 
2015, 2018) 
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drought in 
Singapore/Malays
ia (Mcbride et al., 
2015). 

 1 
[END TABLE 11.5 HERE] 2 
 3 
 4 
[START TABLE 11.6 HERE] 5 
 6 
Table 11.6: Regional assessments for Australasia 7 
 8 
 Temperature extremes Precipitation extremes and flooding (including effects of TC, ETC and 

atmospheric rivers)  
Droughts, dryness and aridity  

Observed 
trends 

Detection and 
attribution; event 
attribution 

Projections Observed trends Detection and attribution; 
event attribution 

Projections Observed trends Detection and 
attribution; event 
attribution 

Projections 

Northern 
Australia 
(NAU)  

High 
confidence: 
Increase in the 
frequency of 
warm days 
(TX90p) and 
warms nights 
(TN90p) and 
decrease in the 
frequency of 
cold days 
(TN10p) and 
cold nights 
(TX10p) 
(Alexander and 
Arblaster, 
2017; Wang et 
al., 2013b; 
Jakob and 
Walland, 2016; 
Lewis and 
King, 2015).  
 

High confidence: 
Increase in trends 
of temperature 
extremes, and in 
the likelihood of 
extremes events on 
daily to annual 
timescales due to 
anthropogenic 
warming (Lewis 
and Karoly, 2013; 
Perkins et al., 
2014a; Lewis and 
King, 2015). 
 

High confidence: 
Increase in the 
frequency of warm 
temperature 
extremes and 
decrease in the 
frequency of cold 
temperature 
extremes 
(Alexander and 
Arblaster, 2017; 
Lewis et al., 2017; 
Herold et al., 
2018). 
 

Low- to-medium 
confidence: 
 
Positive trends are 
observed over the 
northwest for various 
rainfall extreme indices 
(Dey et al., 2019) for 
daily and hourly data 
(Guerreiro et al., 2018b).  
 
Negative trends observed 
in the number of TCs 
over North Australia 
(Dowdy, 2014). 

Low confidence:  

Trends in northwest 
Australia rainfall 
attributable to 
anthropogenic aerosols, 
but large spread in 
models (Dey et al., 2019) 

 
 

Medium confidence:  
Extreme precipitation 
is projected to increase 
mainly over the 
northern part of NAU 
(Perkins et al., 2014b; 
Alexander and 
Arblaster, 2017; Evans 
et al., 2017; Dey et al., 
2018). 

Low confidence: 
Decrease in the 
number, duration and 
intensity of droughts 
over northwest 
Australia (Gallant et 
al., 2013). 
 

Low confidence:  

No evidence has 
been found. 

Low confidence: 
Projections do not 
show significant 
trends in this 
region (Herold et 
al., 2018). 
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Central 
Australia 
(CAU) 

High 
confidence. 
Increase in the 
frequency of 
warm days 
(TX90p) and 
warms nights 
(TN90p) and 
decrease in the 
number of cold 
days (TX10p) 
and cold nights 
(TN10p) 
(Alexander and 
Arblaster, 
2017; Wang et 
al., 2013b; 
Jakob and 
Walland, 
2016). 

High confidence: 
Increase in trends 
of temperature 
extremes, and in 
the likelihood of 
extreme events on 
daily to annual 
timescales due to 
anthropogenic 
warming (Lewis 
and Karoly, 2013; 
Perkins et al., 
2014a; Lewis and 
King, 2015). 
 

High confidence: 
Increase in the 
frequency of warm 
temperature 
extremes and 
decrease in the 
frequency of cold 
temperature 
extremes 
(Alexander and 
Arblaster, 2017; 
Lewis et al., 2017; 
Herold et al., 
2018). 
 

Low confidence: 
Over the central 
Australia trends in 
extreme precipitation 
indices are usually 
positive (Alexander and 
Arblaster, 2017). 
 

 Low confidence: 
Extreme precipitation 
is projected to increase 
but the agreement 
among models is low 
(Alexander and 
Arblaster, 2017; Evans 
et al., 2017). 
 

Low confidence: 
Decrease in the 
frequency of CDD 
(Alexander and 
Arblaster, 2017). 
 

 Low confidence: 
Increase in CDD 
(Alexander and 
Arblaster, 2017; 
Herold et al., 
2018). 
 

Eastern 
Australia 
(EAU) 

High 
confidence: 
Increase in the 
number of 
warm days 
(TX90p) and 
warms nights 
(TN90p) and 
decrease in the 
number of cold 
days (TX10p) 
and cold nights 
(TX10p) 
(Alexander and 
Arblaster, 
2017; Wang et 
al., 2013b; 
Jakob and 
Walland, 2016; 
Lewis and 
King, 2015). 
 

High confidence: 
Increase in trends 
of temperature 
extremes, and in 
the likelihood of 
extreme events on 
daily to annual 
timescales due to 
anthropogenic 
warming (Lewis 
and Karoly, 2013; 
Perkins et al., 
2014a; Lewis and 
King, 2015). 
 

High confidence: 
Increase in the 
frequency of warm 
temperature 
extremes and 
decrease in the 
frequency of cold 
temperature 
extremes 
(Alexander and 
Arblaster, 2017; 
Lewis et al., 2017; 
Herold et al., 
2018). 
 

Low confidence: 
Increase in the magnitude 
of extreme precipitation 
over most of the region 
with more significant 
trends during summer 
(Evans et al., 2017). 
 

Low confidence: 
Anthropogenic 
greenhouse gas influence 
on extreme rainfall 
events in eastern 
Australia is highly 
uncertain  
(Christidis et al., 2013a; 
King et al., 2013; Lewis 
and Karoly, 2014a) 
 
 

Low confidence: 
Extreme precipitation 
is projected to increase 
but the agreement 
among models is low 
(Alexander and 
Arblaster, 2017; Evans 
et al., 2017). 
 

 Low confidence: 
Single study 
shows probability 
of drought 
conditions in 2013 
in Queensland 
were not 
significantly 
altered by 
anthropogenic 
forcings 
(King et al., 2014) 
 
 

Medium 
confidence: 
Increase in the 
frequency of CDD 
(Alexander and 
Arblaster, 2017). 
Increase in SPEI in 
summer/autumn 
over eastern 
Australia and 
decrease in 
winter/spring, 
though 
significance of 
trends is variable 
(Herold et al. 
2018). 
 

Southern 
Australia 
(SAU)  

High 
confidence: 
Increase in the 
number of 
warm days 

High confidence: 
Increase in trends 
of temperature 
extremes, and in 
the likelihood of 

High confidence: 
Increase in warm 
temperature 
extremes and 
decreases in cold 

Low confidence: 
Increase over southeast 
Australia, although 
trends are generally not 
significant for several 

Low confidence: 
Anthropogenic 
greenhouse gas influence 
on extreme rainfall 
events in southern and 

Low confidence: 
Extreme precipitation 
is projected to increase 
but the agreement 
among models is low 

Low confidence: 
Across much of 
south Australia, 
droughts became less 
frequent, 

 Medium 
confidence: 
Robust decrease in 
precipitation, soil 
moisture and SPEI 
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(TX90p) and 
warms nights 
(TN90p) and 
decrease in the 
number of cold 
days and cold 
nights 
(Alexander and 
Arblaster, 
2017; Wang et 
al., 2013b; 
Jakob and 
Walland, 2016; 
Lewis and 
King, 2015). 
 
Medium 
confidence: 
Increase in the 
number of frost 
days in early 
spring over 
southeast 
Australia and in 
winter over 
southwest  
Australia 
(Crimp et al., 
2016; Dittus et 
al., 2014;Pepler 
et al. 2018). 

extreme events on 
daily to annual 
timescales due to 
anthropogenic 
warming (Lewis 
and Karoly, 2013; 
Perkins et al., 
2014a; Lewis and 
King, 2015). 
 

temperature 
extremes 
(Alexander and 
Arblaster, 2017; 
Lewis et al., 2017; 
Herold et al., 
2018).  
 
Decrease in the 
number of frost 
days in southeast 
and southwest 
Australia 
regardless of the 
region and season 
considered 
(Gobbett et al., 
2018; Herold et 
al., 2018) 
 

extreme rainfall indices 
including RX1day 
(Evans et al., 2017) 
 
As many positive as 
negative significant 
trends (Westra et al., 
2013). 
 
Extreme precipitation 
increases are larger and 
more robust in hourly 
compared to daily data 
(Guerreiro et al., 2018b).  
 
The number of heavy 
snowfall events has 
remain unchanged over 
the Snowy Mountains 
(Fiddes et al., 2015). 
 

eastern Australia is 
highly uncertain  
(Christidis et al., 2013a; 
King et al., 2013; Lewis 
and Karoly, 2014a). 
 
 

(Alexander and 
Arblaster, 2017; Evans 
et al., 2017). 
 
Robust decrease in 
ETCs in winter in the 
Australian east coast 
based on GCMs and 
RCMs (Dowdy et al., 
2013b, 2013a; Ji et al., 
2015; Pepler et al., 
2016) 

shorter and less 
intense. Exceptions 
include far southwest 
Western Australia, 
which has had 
statistically 
significant increases 
in drought intensity 
and southeast 
Australia 
which has shown a 
significant increase 
in the average length 
of droughts (Gallant 
et al., 2013). 

in spring over all 
southern Australia 
and in 
winter/summer 
mainly over the 
southwest (Olson 
et al., 2016; Zhao 
and Dai, 2017; 
Herold et al., 
2018). 
Southwest 
Australia 
identified as a hot 
spot for drought 
risks in the future 
(Prudhomme et al., 
2014). 

New 
Zealand 
(NZE) 

High 
confidence: 
Most stations 
show positive 
and generally 
significant 
trends for 
monthly 
minimum and 
maximum 
temperatures. 
All daily 
temperature 
extremes show 
warming trends  
with cold 

  Low confidence: 
Some evidence of 
changes in the frequency 
of heavy rain days with 
mostly decreases 
(Harrington and 
Renwick, 2014; Caloiero, 
2015) 

Low confidence: 
Single study of extreme 
2011 rainfall in northern 
South Island indicates  
that amount was higher 
as a result of the 
emission of 
anthropogenic 
greenhouse gases (Dean 
et al., 2013) 

Medium confidence: 
Extreme rainfall is 
likely to increase 
everywhere with larger 
increases for higher 
warming scenarios and 
more pronounced for 
shorter duration events 
(NIWA, 2018).  

Low confidence: 
Some evidence of a 
trend towards more 
drought in most 
areas of NZ 
(Salinger, 2013) 

Low confidence: 
Single study of 
2013 North Island 
drought found dry 
conditions more 
favourable as a 
result of 
anthropogenic 
climate change 
(Harrington et al., 
2014) 

Low confidence: 
Drought severity 
(measured using 
potential 
evapotranspiration 
deficit, PED) is 
projected to 
increase in most 
areas of the 
country, except for 
Taranaki-
Manawatu, West 
Coast and 
Southland (NIWA, 
2018) 
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extremes 
(TN10 and 
TX10) 
increasing 
faster than 
warm extremes 
(TN90 and 
TX90) 
(Caloiero, 
2017).  

Western 
Pacific 
Islands 
 

High 
confidence: 
Western Pacific 
islands show 
warming 
trends, mostly 
significant, for 
all temperature 
extreme indices 
including 
TN10, TX10, 
TN90 and 
TX90 (Whan et 
al., 2014; 
McGree et al., 
2019). Largest 
warming trends 
are found in the 
hottest day 
(night) 
of the year with 
weaker 
warming trends 
in the coolest 
day (night) of 
the year (Whan 
et al., 2014) 

  Low Confidence: 
Western Pacific Islands 
show decreases in both 
total and extreme 
precipitation 
(southwestern French 
Polynesia and the 
southern subtropics). 
There was a decrease in 
moderate- to high-
intensity precipitation 
events (southwestern 
French Polynesia from 
December to February). 
Strong drying trends 
have also been identified 
in the low- to moderate-
extreme indices in the 
June–August and 
September–November 
periods (McGree et al., 
2019) 

     

 1 
[END TABLE 11.6 HERE] 2 
 3 
 4 
 5 
 6 
 7 
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[START TABLE 11.7 HERE] 1 
 2 
Table 11.7: Regional assessments for Central and South America 3 
 4 

 Temperature extremes  Precipitation extremes and flooding (including effects of TC, 
ETC and atmospheric rivers)  

Droughts, dryness and aridity 

Observed trends Detection and 
attribution; 
event 
attribution 

Projections Observed trends Detection and 
attribution; 
event 
attribution 

Projections Observed trends Detection and 
attribution; event 
attribution 

Projections 

South 
Central 
America 
(SCA) 

High confidence: 
Increase in surface air 
temperature in most of 
SCA, bu decrease in 
parts of Honduras and 
northern Panama 
(Hidalgo et al., 2017).  
 
Increase in the frequency 
of warm extremes 
(TX90p, and TN90p) 
and decrease in the 
frequency of cold 
extremes (TX10p, and 
TN10p) (Donat et al., 
2016a).  

 

 High confidence: 
 
Increase in the 
frequency warm 
extremes (TX90p, 
and TN90p)  and 
decrease in the 
frequency of cold 
extremes ( 
TX10p, and 
TN10p) (Stennett-
Brown et al., 
2017; Yang et al., 
2018a). 
 
Massive heat 
waves events 
projected at the 
end of the 21st 
century (Angeles-
Malaspina et al., 
2018). 
 

Low confidence: 
Increase in the 
frequency (R10mm), 
and magnitude 
(R95p) of 
precipitation 
extremes (Donat et 
al., 2016a). 
 
 

 
 

Low confidence: 
 
General decrease in 
the magnitude of 
precipitation 
extremes (Chou et 
al., 2014a; Giorgi et 
al., 2014), especially 
in the north 
(Stennett-Brown et 
al., 2017; Imbach et 
al., 2018) but 
increase in the 
frequency of 
extreme 
precipitation 
(R50mm) in the 
eastern coast 
(Imbach et al., 2018) 
 
Strong declines in 
mean daily rainfall 
are projected for 
July in Belize 
(Stennett-Brown et 
al., 2017). 
 
 
 

Low confidence: 
Mostly decrease in the 
frequency of CDD (Donat 
et al., 2016a). 

 Low confidence: 
Mostly increase in the 
frequency of CDD  
(Kitoh et al., 2011; 
Chou et al., 2014a; 
Giorgi et al., 2014; 
Stennett-Brown et al., 
2017). 
 
 

Caribbean 
(CAR) 

Medium confidence: 
Warmer conditions over 
the north and cooler 
conditions over the 
eastern Caribbean 
(McLean et al., 2015). 

 High confidence: 
Increase in the 
frequency of 
warm extremes 
(TX90p, and 
TN90p)  and 

Medium confidence: 
Negative trends in 
R95p over the 
northern and eastern 
Caribbean (McLean 
et al., 2015). 

 Low confidence: 
Declines in R10mm, 
RX1day and R95p 
over central 
Caribbean with 
increases for 

Medium confidence: 
Positive trends in CDD 
over some locations in the 
northern and eastern 
Caribbean (McLean et al., 
2015). 

 Low confidence: 
Increases in CDD over 
most stations, with 
decreases over eastern 
Caribbean and 
Bahamas (Stennett-
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decrease in the 
frequency of cold 
extremes (TX10p, 
and TN10p) 
(Jones et al., 
2016; Stennett-
Brown et al., 
2017).  
 
Massive heat 
waves events 
projected at the 
end of the 21st 
century (Angeles-
Malaspina et al., 
2018). 
 
 

northern Caribbean 
(Stennett-Brown et 
al., 2017; Yang et 
al., 2018a). 

Brown et al., 2017; 
Yang et al., 2018a). 
 

North 
South 
America 
(NSA) 

High confidence: 
Increase in the frequency 
of warm extremes 
(TX90p, TN90p, and 
WSDI) and decrease in 
the frequency of cold 
extremes (TX10p, and 
TN10p). Increase in the  
magnitude of 
temperature extremes 
(TXx, TXn, TNn and 
TNx) (Skansi et al., 
2013). 
 
Increase in the  
magnitude of  maximum 
and minimum 
temperatures (Almeida et 
al., 2017). 
 
Increase in the frequency 
and length of heat waves  
(Bitencourt et al., 2016; 
Geirinhas et al., 2018). 

 High confidence: 
Increase in the 
frequency of 
warm extremes 
(TX90p, and 
TN90p) and 
decrease in the 
frequency of cold 
extremes (TX10p, 
and TN10p) 
(López-Franca et 
al., 2016). 
 
 

High confidence: 
Increase in the 
frequency (R20mm) 
and magnitude  
(RX1day, RX5day, 
and R95p) of 
precipitation 
extremes  
(Skansi et al., 2013; 
Valverde and 
Marengo, 2014). 
 
Increase in the 
frequency of 
anomalous severe 
floods (Gloor et al., 
2015). 
 

Increase in 
extreme 
precipitation 
with warming 
(Li et 
al.,2019) 

Low confidence: 
Decrease in the 
frequency of CWD 
(Seiler et al., 2013; 
Chou et al., 2014a) 
Inconsistent trends 
in the magnitude of 
precipitation 
extremes (R95p) 
with both decreases 
(Seiler et al., 2013; 
Chou et al., 2014a) 
and increases 
(Giorgi et al. 2014).  
 

Low confidence: 
Decrease in the frequency 
of CDD  (Skansi et al., 
2013) over NSA while 
(Valverde and Marengo, 
2014) show increase over 
southeastern Amazon. 
 
No evidence of significant 
trend in drought frequency, 
intensity, and duration, 
although the areal-extent 
show increasing trends 
(Awange et al., 2016). 
 
Increase in the frequency 
of anomalous severe 
droughts (Gloor et al., 
2015). 

 Medium confidence: 
Increase in dryness  
(Marengo and 
Espinoza, 2016; 
Menéndez et al., 2016; 
Zaninelli et al., 2019) 
 
Increase in the 
frequency and 
geographic extent of 
meteorological 
drought in the eastern 
Amazon, and the 
opposite in the West 
(Duffy et al., 2015). 
 

North 
Eastern 
South 
America 
(NES) 

High confidence: 
 
Increase in the frequency 
of warm extremes: 
TX90p, TN90p, and 

 High confidence: 
Increasein the 
frequency of 
warm extremes: 
TX90p, and 

Medium confidence: 
Decrease in the 
frequency (R50mm) 
and  magnitude 
(RX1day, RX5day, 

Medium 
confidence: 
Increase in 
extreme 
precipitation 

Low confidence: 
Decrease in the 
magnitude of 
precipitation 
extremes (R95p) 

Medium confidence: 
Mostly increases in the 
frequency of CDD (Skansi 
et al., 2013). 
 

 Medium confidence: 
Increase in dryness,  
(Marengo and 
Bernasconi, 2015; 
Zaninelli et al., 2019) 
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WSDI and decrease in 
the frequency of cold 
extremes: TX10p, and 
TN10p). Increase in the  
magnitude of 
temperature extremes 
(TXx, TXn, TNn and 
TNx) (Skansi et al., 
2013). 
 
Increase in the frequency 
and length of heat waves 
(Bitencourt et al., 2016; 
Geirinhas et al., 2018). 
 
 

TN90p and 
decrease in the 
frequency of cold 
extremes: TX10p, 
and TN10p 
(López-Franca et 
al., 2016). 
 

R95p and R99p) of 
precipitation 
extremes  
(Skansi et al., 2013; 
Bezerra et al., 2018; 
Luiz Silva et al., 
2018).  
 

with warming 
(Li et al., 
2019) 

(Chou et al., 2014a; 
Giorgi et al., 2014). 
 

The percentage of area 
affected by drought 
exhibits an increasing trend 
for SPI (Brito et al., 2018). 

 
Increase in the 
frequency of CDD 
(Sillmann et al., 
2013a; Chou et al., 
2014a; Giorgi et al., 
2014). 
 

North 
Western 
South 
America 
(NWS) 

High confidence: 
 
Increase in the frequency 
of warm extremes: 
TX90p, TN90p, and 
WSDI and decrease in 
the frequency of cold 
extremes: TX10p, and 
TN10p. Increase in the  
magnitude of 
temperature extremes 
(TXx, TXn, TNn and 
TNx)(Skansi et al., 
2013). 
 
 

 High confidence: 
Increase in the 
frequency of 
warm extremes: 
TX90p, and 
TN90p and 
decrease in the 
frequency of cold 
extremes: TX10p, 
and TN10p 
(López-Franca et 
al., 2016). 
 

Low confidence: 
Increase in the 
magnitude of 
precipitation 
extremes (RX1day, 
R95p and R99p) 
(Skansi et al., 2013). 

Medium 
confidence: 
Increase in 
extreme 
precipitation 
with warming 
(Li et al., 
2019) 

Low confidence: 
Decrease in the 
frequency of CWD 
(Chou et al., 2014a) 
Inconsistent trends 
in the magnitude of 
precipitation 
extremes (R95p) 
with both decreases 
() and increases 
(Giorgi et al. 2014 
and Seiler et al. 
2013) found 

Low confidence: 
Mostly increases in the 
frequency of CDD (Skansi 
et al., 2013; Donat et al., 
2016a). 

 Low confidence: 
Increase in the 
frequency of CDD 
(Chou et al., 2014a; 
Giorgi et al., 2014) 
 

South 
Western 
South 
America 
(SWS) 

High confidence: 
 
Increase in the frequency 
of warm extremes: 
TX90p, TN90p, and 
WSDI and decrease in 
the frequency of cold 
extremes: TX10p, and 
TN10p. Increase in the  
magnitude of 
temperature extremes 
(TXx, TXn, TNn and 
TNx) (Skansi et al., 
2013; Meseguer-Ruiz et 
al., 2018).  

 High confidence: 
Increase in the 
frequency of 
warm extremes: 
TX90p, and 
TN90p and 
decrease in the 
frequency of cold 
extremes: TX10p, 
and TN10p 
(López-Franca et 
al., 2016). 
 

Low confidence: 
Increase in extreme 
rainfall (Skansi et 
al., 2013). 

Medium 
confidence: 
Increase in 
extreme 
precipitation 
with warming 
(Li et al., 
2019) 

Low confidence: 
Inconsistent trends 
in the magnitude of 
precipitation 
extremes (R95p) 
with both decreases 
(Chou et al., 2014a). 
And increases 
(Giorgi et al., 2014) 
found. 
 

Medium confidence: 
Robust drying trend in 
Chile (30-48°S) (Saurral et 
al., 2017; Boisier et al., 
2018) 

Low confidence: 
Anthropogenic 
forcing responsible 
for drying signal in 
Chile (Boisier et al., 
2018). 
 

Low confidence: 
Increase in CDD 
(Chou et al., 2014a; 
Giorgi et al., 2014). 
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South 
America 
Monsoon 
(SAM) 

Medium confidence: 
Decrease in the 
frequency of cold 
extremes - TN10p 
(Donat et al., 2016a). 
 
Increase in the frequency 
and length of heat waves 
(Bitencourt et al., 2016). 
 

 High confidence: 
Increase in the 
frequency of 
warm extremes: 
TX90p, and 
TN90p and 
decrease in the 
frequency of cold 
extremes: TX10p, 
and TN10p 
(López-Franca et 
al., 2016). 
 

Low confidence: 
Mostly increases in  
extreme 
precipitation 
(RX1day, R95p, 
R99p) (Skansi et al., 
2013). 

Medium 
confidence: 
Increase in 
extreme 
precipitation 
with warming 
(Li et al., 
2019) 

Low confidence: 
Inconsistent trends  
in the magnitude of 
precipitation 
extremes (R95p) 
with both decreases 
(Chou et al., 2014a). 
and increases 
(Giorgi et al., 2014) 
found. 

Low confidence: 
Mostly increases in the 
frequency of CDD (Skansi 
et al., 2013). 

 Medium confidence: 
Mostly increase in the 
frequency of CDD 
(Chou et al., 2014a; 
Giorgi et al., 2014).  
 
Drier conditions 
related to a decrease in 
water availability 
(Zaninelli et al., 2019). 

South 
Eastern 
South 
America 
(SES)  
 

High confidence: 
 
Increase in the frequency 
of warm extremes and 
decrease in the frequency 
of cold extremes over 
most of SES (Skansi et 
al., 2013), especially in 
October and November 
(Rusticucci et al., 2017). 
 
Decrease in warm 
extremes (TXx) over 
south western SES 
(Skansi et al., 2013; 
Donat et al., 2016a; Wu 
and Polvani, 2017), 
mainly during summer 
(Rusticucci et al., 2017).  
 
Increase in intensity and 
in frequency of heat 
waves (Barros et al., 
2015; Bitencourt et al., 
2016; Ceccherini et al., 
2016). 
 

Low 
confidence: 
Anthropogeni
c forcings 
increased the 
risk of the 
Argentinian 
heat wave of 
Dec/2013 
(Hannart et 
al., 2015). 
 
 
Over 
Southeast 
Brazil, the 
observed 
warming 
trend is 
mostly 
attributed to 
greenhouse 
gases (Abreu 
et al., 2019). 

High confidence: 
Increase in the 
frequency of 
warm extremes: 
TX90p, and 
TN90p and 
decrease in the 
frequency of cold 
extremes: TX10p, 
and TN10p 
(López-Franca et 
al., 2016). 
 

High confidence: 
Increase in the 
magnitude  (Wu and 
Polvani, 
2017)(Barros et al., 
2015)(Lovino et al., 
2018)and frequency 
(Zandonadi et al. 
2016;Valverde and 
Marengo 2014)of 
extreme 
precipitation in 
many regions 

Medium 
confidence: 
Anthropogeni
c climate 
change has 
increased the 
risk of the 
April-May 
2017 extreme 
rainfall in the 
Uruguay 
River basin 
(de Abreu et 
al., 2019). 
 
Increase in 
extreme 
precipitation 
with warming 
(Li et al., 
2019) 

Medium confidence: 
Increase in the 
magnitude (R95p) 
(Chou et al., 2014a; 
Giorgi et al., 2014) 
and  frequency ( 
RX5day) (Kitoh et 
al., 2011) of 
precipitation 
extremes 
 
 
 

Low confidence: 
Inconsistent trends in 
annual CDD with both 
decreases (Rivera et al., 
2013). 
 
and increases noted 
(Skansi et al. 
2013;Valverde and 
Marengo 2014). 
 

 Medium confidence: 
Mostly decreases in 
CDD (Chou et al., 
2014a; Giorgi et al., 
2014).  
 
Tendency toward 
wetting in 
SES(Zaninelli et al. 
2019;Menéndez et al. 
2016; Mourão et al. 
2016). 

Southern 
South 
America 
(SSA) 

Medium confidence: 
 
Increase in the frequency 
of warm extremes: 
TX90p, TN90p, and 
WSDI and decrease in 
the frequency of cold 

 High confidence: 
Increase in the 
frequency of 
warm extremes: 
TX90p, and 
TN90p and 
decrease in the 

Low confidence: 
Increase in 
maximum 
precipitation 
extremes (Skansi et 
al., 2013). 
 

Low 
confidence: 
Antropogenic 
forcing 
partially 
explains the 
precipitation 

Low confidence: 
Increase in the 
magnitude of 
precipitation 
extremes (R95p) 
(Giorgi et al., 2014). 
 

Low confidence: 
Decrease in CDD (Skansi 
et al., 2013). 

 Low confidence: 
Projected decreasing 
in CDD (Giorgi et al., 
2014).  
 
Drier conditions 
related to a decrease in 
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extremes: TX10p, and 
TN10p. Increase in the  
magnitude of 
temperature extremes 
(TXx, TXn, TNn and 
TNx) (Skansi et al., 
2013). 
 

frequency of cold 
extremes: TX10p, 
and TN10p 
(López-Franca et 
al., 2016). 

changes 
observed in 
southern 
Andes (Vera 
and Díaz 
2015;Li et al., 
2019) 

water availability 
(Zaninelli et al., 2019). 

 1 
[END TABLE 11.7 HERE] 2 
 3 
 4 
[START TABLE 11.8 HERE] 5 
 6 
Table 11.8: Regional assessments for Europe  7 
 8 

 Temperature extremes  Precipitation extremes and flooding  Droughts 

Observed trends Detection and 
attribution; 
event 
attribution 

Projections 

 

Observed trends Detection and 
attribution; 
event 
attribution 

Projections 

 

Observed trends Detection and 
attribution; 
event attribution 

Projections 

 

Greenland/Iceland 
(GIC) 

Medium 
confidence: 

Increase in 
frequency and 
magnitude of warm 
extremes, decrease 
in frequency and 
severity of cold 
extremes  (Mernild 
et al., 2014; Donat 
et al., 2016a; Sui et 
al., 2017) 

 High confidence 

Increase in the 
frequency and 
magnitude of 
warm extremes 
and decrease in 
frequency and 
severity of cold 
exremes 
(Sillmann et al., 
2013b; Kharin et 
al., 2018; Wehner 
et al., 2018b) 

  Medium confidence: 

Increase in 
precipitation extremes 
(Sillmann et al., 2013b; 
Kharin et al., 2018) 

   

North Europe 
(NEU) 

High confidence: 
Strong increase in 
extreme winter 
warming events 

High 
confidence: 
Attribution 
studies of 

High confidence: 
strong decrease 
in heating degree 
days (Spinoni et 

High confidence: 
Change in flood 
seasonality in 
Scandinavia (Matti et 

High 
confidence: 
Wet summer 
of 2012 not 

High confidence: 
Reduction of flows 
from snow melt but 
increase river flow 

High confidence: 
No important 
changes in 
drought severity 

Medium 
confidence: 
Decrease of dry 
years in 

Low confidence: 
Increase in droughts in 
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(Matthes et al., 
2015; Vikhamar-
Schuler et al., 
2016).  

 

temperature 
extremes in 
Central England 
(King et al., 
2015; Roth et 
al., 2018). 

High 
confidence:  

Cold winter of 
2009/2010 has 
become less 
likely due to 
anthropegenic 
climate 
change(Otto et 
al., 
2012)(Massey 
et al., BAMS 
2012, 
(Christiansen et 
al., 2018)). 

Low 
confidence: 
evidence of 
detectable 
circulation 
change 
attributable to 
climate change 
(Nilsen et al., 
2017). 

al., 2018a). 
Medium 
confidence: 
Frequent ice-free 
arctic summers 
projected even 
under moderate 
warming 
scenarios 
(Laliberté et al., 
2015; Sigmond et 
al., 2018). 

al., 2017). Extreme 
rainfall trends are 
different depending on 
season(Irannezhad et 
al., 2017). Evidence  for 
more extreme 
precipitation in summer 
and winter but not other 
seasons (Yiou and 
Cattiaux 2013, BAMS, 
Dong et al. 2013 
BAMS, (Held and 
Soden, 2006; Grams et 
al., 2014; Madsen et al., 
2014; Helama et al., 
2018). Medium 
confidence: Snow cover 
is declining but by how 
much and how it effects 
large scale 
teleconnections not 
straightforward (Cohen 
et al., 2014; Bokhorst et 
al., 2016). High 
confidence: Increased 
extreme snow-melt 
events (Hansen et al., 
2014; Pedersen et al., 
2015) 

attributable to 
climate change 
(Schaller et 
al., 2014; Otto 
et al., 2015c; 
Wilcox et al., 
2018). High 
confidence: 
Recent 
extreme wet 
winters are 
attributable to 
climate change 
(Schaller et 
al., 2016; 
Vautard et al., 
2016; Otto et 
al., 2018b).  

through increased 
precip(Madsen et al., 
2014; Donnelly et al., 
2017; Thober et al., 
2018).  

High confidence: Shift 
of strong ETCs and 
ARs closer to 
Scandinavia (Ramos et 
al., 2016; Romero and 
Emanuel, 2017). 

based on 
different metrics 
(Orlowsky and 
Seneviratne, 
2013; Spinoni et 
al., 2014, 2017; 
Dai et al., 2018). 
High confidence: 
Small changes in 
drought 
frequency (Kay 
et al., 2018) 

Scandinavia 
(Gudmundsson 
and 
Seneviratne, 
2016). 

Northern Scandinavia 
(Spinoni et al., 2018b) 

Medium confidence: 
decrease in droughts 
in NEU (Spinoni et al., 
2015). 

Central Europe 
(CEU) (without 
Alps) 

High confidence: 
Increase in the 
maximum 
temperatures and 
the frequency of 
heat waves. 
Consistent signal 
among studies and 
regions (Twardosz 

High 
confidence: 
Human-induced 
climate change 
has contributed 
to the increase 
in the frequency 
and intensity of 
short-term heat 

High confidence: 
Increase of 
extreme 
temperatures and 
increased 
frequency of heat 
waves similar to 
2003 and 2010 
(Lau and Nath, 

Medium confidence: 
Increase of extreme 
precipitation events. 
Large discrepancies 
among studies and 
regions and strong 
seasonal differences 
(Croitoru et al., 2013; 
Willems, 2013; 

Low 
confidence: 
Attribution of 
extreme wet 
events to 
human climate 
signal (Wilcox 
et al., 2018). 

Medium confidence: 
Increase in extreme 
precipitation events, 
although important 
seasonal differences 
(Rajczak et al., 2013; 
Rajczak and Schär, 

High confidence: 
No relevant 
changes in the 
frequency of dry 
spells (Zolina et 
al., 2013) and in 
drought severity 
(Orlowsky and 
Seneviratne, 

Medium 
confidence: 
Attribution of 
the 2017 
drought event to 
climate change 
(García-Herrera 
et al., 2018). 

Low confidence: 
Drought projections in 
central Europe based 
on precipitation 
(Orlowsky and 
Seneviratne, 2013). 

High confidence: 
drought projections 
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and Kossowska-
Cezak, 2013; 
Shevchenko et al., 
2014; Christidis et 
al., 2015; Scherrer 
et al., 2016). 

waves and heat 
stress (Sippel et 
al., 2017, 
2018a). 

2014; Russo et 
al., 2015; Vogel 
et al., 2017; 
Lhotka et al., 
2018; Rasmijn et 
al., 2018). 

Casanueva et al., 2014; 
Roth et al., 2014; 
Fischer et al., 2015). 

2017; Tölle et al., 
2018) 

2013; Cook et 
al., 2014a; 
Spinoni et al., 
2017).  

based on soil moisture 
and drought indices 
(Lehner et al., 2017; 
Zhao and Dai, 2017; 
Dai et al., 2018; 
Samaniego et al., 
2018). 

Alps High confidence: 
Increase in 
temperature 
extremes (Gobiet 
et al., 2014; Stoffel 
and Corona, 2018).  

High confidence: 
Strong increase in 
heatwave duration 
and intensity  and 
decrease in cold 
spells (Brugnara et 
al., 2016) 

 High confidence: 
Projected 
increase in 
temperature 
extremes in all 
seasons (Gobiet 
et al., 2014). 

High confidence: 
Negative trends in snow 
cover below 2000m 
(Beniston et al., 2018) 
and glaciers (Gardent et 
al., 2014; Fischer et al., 
2015; Roudier et al., 
2016; Beniston et al., 
2018). Medium 
confidence: increase in 
Rain on snow events 
that lead to flood 
(Beniston and Stoffel, 
2016).  

Low confidence:floods 
increase (Roudier et al., 
2016). 

 High confidence: 
Intensity of 
precipitation extremes 
increase in all seasons 
(Gobiet et al., 2014) 
particularly winter 
(Fischer et al., 2015).  

Medium confidence: 
flood increase(Roudier 
et al., 2016) despite 
declining snow 
amounts (Frei et al., 
2018; Hanzer et al., 
2018).  

High 
confidence:Elevation 
increase of the snow 
lines (Beniston et al., 
2018)(Marty et al., 
2017).  

Medium confidence: 
decrease in snowfall 
extremes (Vries et al., 
2014). Medium 
confidence: Changes in 
rainfall seasonality  
(Brönnimann et al., 
2018) 

Medium 
confidence: Wet 
days decrease in 
summer, (Gobiet 
et al., 2014). 
Runoff decreases 
in particular in 
summer (Hanzer 
et al., 2018).  

 

 Medium confidence: 
Decrease in wet days 
in summer projected 
to continue (Fischer et 
al., 2015).  
Mediumconfidence: 
Drought probabilities 
increase in summer 
(Haslinger et al., 
2016) 

Mediterranean 
(MED) 

High confidence: 
Increase of heat 
waves, tropical 
nights with few 

High 
confidence: 
Human 
attribution of 

High confidence: 
Projected 
increase in 
summer heat 

Medium confidence: 
Evolution of 
precipitation events, 
with strong regional 

Medium 
confidence: 
Extreme 
events 

Low confidence: 
Increase of extreme 
precipitation events. 
High spread between 

High confidence:  
Increased 
dryness caused 
by an increase in 

Medium 
confidence: 
Attribution of 
the 2014 eastern 

High confidence: 
Increase of climatic 
and hydrological 
droughts based on 
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*See Africa table 
for portions of this 
region in Africa 

differences among 
studies and 
regions, No 
important 
differences 
between West and 
East Mediterranean 
(Croitoru and 
Piticar, 2013; El 
Kenawy et al., 
2013; Christidis et 
al., 2015; Nastos 
and Kapsomenakis, 
2015; Fioravanti et 
al., 2016; Kawase 
et al., 2016; Ruml 
et al., 2017; Türkeş 
and Erlat, 2018) 

extreme 
temperature 
events (Sippel 
and Otto, 2014; 
Wilcox et al., 
2018). 

waves and 
maximum 
temperature 
extremes (Nastos 
and 
Kapsomenakis, 
2015; Ozturk et 
al., 2015; 
Schoetter et al., 
2015; Cardoso et 
al., 2019). 

differences even at the 
local scale. Dominant 
decrease in the Western 
Mediterranean and 
some increase in 
Eastern Mediterranean 
(Rajczak et al., 2013; 
Casanueva et al., 2014; 
de Lima et al., 2015; 
Gajić-Čapka et al., 
2015; Sunyer et al., 
2015; Pakalidou and 
Karacosta, 2018; Ribes 
et al., 2019). 

associated to 
natural 
variability 
(Añel et al., 
2014; U.S. 
Department of 
Agriculture 
Economic 
Research 
Service, 
2016). 

studies and regions 
(Argüeso et al., 2012; 
Rajczak et al., 2013; 
Patarčić et al., 2014; 
Paxian et al., 2014; 
Monjo et al., 2016; 
Zollo et al., 2016; 
Samuels et al., 2018) 

atmospheric 
evaporative 
demand and 
increase of 
hydrological 
droughts (Cook 
et al., 2014a; 
Ozturk et al., 
2015; Roudier et 
al., 2016; 
Gudmundsson et 
al., 2017; Stagge 
et al., 2017; 
González-
Hidalgo et al., 
2018). 

Mediterranean 
drought events 
to climate 
change 
(Bergaoui et al., 
2015). 

precipitation, soil 
moisture, runoff and 
drought indices 
(Orlowsky and 
Seneviratne, 2013; 
Cook et al., 2014a; 
Prudhomme et al., 
2014; Schewe et al., 
2014; Ozturk et al., 
2015; Dai et al., 2018; 
Samaniego et al., 
2018). 

EEU (move to 
Europe table) 

High confidence: 

Increase in 
frequency and 
magnitude of warm 
extremes, decrease 
in frequency and 
severity of cold 
extremes  (Donat et 
al., 2016a; Zhang 
et al., 2019c; Dunn 
et al., submitted) 

 High confidence: 

Increase in the 
frequency and 
magnitude of 
warm extremes 
and decrease in 
frequency and 
severity of cold 
exremes 
(Sillmann et al., 
2013b; Kharin et 
al., 2018; Wehner 
et al., 2018b; 
Khlebnikova et 
al., 2019a) 

Low confidence: 

Increase in extreme 
precipitation (Donat et 
al., 2016a; Dunn et al., 
submitted) but can vary 
spatially (Ashabokov et 
al., 2017) 

 Medium confidence: 

Increase in 
precipitation extremes 
(Sillmann et al., 2013b; 
Kharin et al., 2018; 
Khlebnikova et al., 
2019b) 

Low confidence: 

Increase in CDD 
and number of 
dry days 
(Khlebnikova et 
al., 2019b) 

 Low confidence: 

Increase in CDD 
(Khlebnikova et al., 
2019b) 

 1 
[END TABLE 11.8 HERE] 2 
 3 
 4 
 5 
 6 
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[START TABLE 11.9 HERE] 1 
 2 
Table 11.9: Regional assessments for North America 3 
 4 

 Temperature extremes Precipitation extremes and flooding (including effects of TC, ETC and 
atmospheric rivers)  

Droughts, dryness and aridity  

Observed trends Detection and 
attribution; 
event 
attribution 

Projections Observed trends Detection and 
attribution; event 
attribution 

Projections Observed 
trends 

Detection and 
attribution; event 
attribution 

Projections 

North 
Central 
America 

(NCA) 

High confidence: 
Increase in the frequency 
and magnitude of hot 
extremes  and decrease in 
the severity of cold 
extremes (Martinez-
Austria and Bandala, 
2017; Montero-Martínez 
et al., 2018; García-Cueto 
et al., 2019), particularly 
in the northern arid region 

 High confidence: 
Increase in temperature 
extremes and the 
length of warm spells 
(Kharin et al., 2013; 
Sillmann et al., 2013b; 
Alexandru, 2018; 
Wehner et al., 2018b) 

Low confidence: 
Increase in the frequency 
and the magnitude of 
precipitation extremes 
(Donat et al., 2016a; 
García-Cueto et al., 
2019). 
 
 

 Low confidence: 
Possible decrease in 
extreme precipitation 
but uncertainty is 
high(Sillmann et al., 
2013b; Alexandru, 
2018). 

Low 
confidence: 
Mostly 
decrease in the 
frequency of 
CDD (Donat et 
al., 2016a). 

 Low confidence: 

Increase in duration 
and intensity of 
droughts over northern 
and northwestern 
Mexico (Feng and Fu, 
2013; Escalante-
Sandoval and Nuñez-
Garcia, 2017). 

N. W. North 
America 
(NWN) 

High confidence: 

Increases in extreme hot 
temperatures and larger 
increases in extreme cold 
temperatures (Vincent et 
al., 2018; Zhang et al., 
2019d). 

Medium 
confidence: 
Most of the 
observed 
warming 
attributed to 
anthropogenic 
forcing (Wan et 
al., 2019). 

High confidence: 

Increases in the 
magnitude and 
frequency of hot 
extremes and decreases 
in the frequency and 
severity of cold 
extremes (Bennett and 
Walsh, 2015; Li et al., 
2018d; Zhang et al., 
2019d).  

Medium confidence: 
No detectable trend in 
observed annual 
maximum daily (or 
shorter duration) 
precipitation (Shephard 
et al., 2014; Mekis et al., 
2015; Vincent et al., 
2018). 

Low confidence: 
 
Anthropogenic 
climate change 
increased the 
likelihood of 
extreme rainfall 
like that 
contributing to 
the 2013 Alberta 
flood (Teufel et 
al., 2017) and 
other extremes 
(Kirchmeier-
Young and 

High confidence: 
 

Increase in the 
frequency and 
magnitude of 
precipitation 
extremes (Bennett 
and Walsh, 2015; 
Zhang et al., 2019d). 

 

Low 
confidence: 
Periodic 
droughts have 
occurred across 
much of 
Canada, but no 
long-term 
changes are 
evident 
(Bonsal et al., 
2019). 

 Medium confidence: 
Increased drought risk 
during summer, 
especially in the 
south(Swain and 
Hayhoe, 2015; Bonsal 
et al., 2019; Tam et al., 
2019) 
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Zhang, 
submitted). 

N. E. 
Canada 
(NEC) 

High confidence: 

Increases in extreme hot 
temperatures and larger 
increases in extreme cold 
temperatures  (Vincent et 
al., 2018; Zhang et al., 
2019d) 

 

Medium 
confidence: 
Most of the 
observed 
warming 
attributed to 
anthropogenic 
influence (Wan 
et al., 2019). 

High confidence: 

Increases in the 
magnitude and 
frequency of hot 
extremes and decreases 
in the frequency and 
severity of cold 
extremes(Li et al., 
2018d; Zhang et al., 
2019d) 

Medium confidence: 
No detectable trend in 
observed annual 
maximum daily (or 
shorter duration) 
precipitation (Shephard 
et al., 2014; Mekis et al., 
2015; Vincent et al., 
2018). 

 High confidence: 
Increase in the 
frequency and 
magnitude of 
precipitation 
extremes (Zhang et 
al., 2019d). 

 

Low 
confidence: 
No long-term 
changes in 
drought are 
evident 
(Bonsal et al., 
2019). 

 Medium confidence: 
Wetter during spring 
but drier in summer for 
much of the region 
based on SPI (Swain 
and Hayhoe, 2015) and 
SPEI (Tam et al., 
2019).  

C. North 
America 
(CNA) 

High confidence: 
 

Increase in the frequency 
of heat waves and hot 
extremes and decrease in 
the frequency of cold 
waves and cold extremes. 
Increase in the coldest 
daily temperature of the 
year (TNn)(Vose et al., 
2017) 

Medium 
confidence: 
 

Anthropogenic 
warming 
detectable over 
northern 
regions (Vose 
et al., 2017) 
 
Anthropogenic 
forcing has 
increased the 
risk of many 
hot events 
(Vose et al., 
2017). 

High confidence: 
 

Increase in 
temperatures of both 
extremely warm and 
extremely cold days. 
More severe heat 
waves and less severe 
cold waves. (Vose et 
al., 2017; Wehner et 
al., 2018b). 

High confidence: 
Increase in precipitation 
extremes(Wu, 2015; 
Easterling et al., 2017). 

Increase in extreme 
hurricane rainfall events 
(Emanuel, 2017; Risser 
and Wehner, 2017; van 
Oldenborgh et al., 2017; 
Trenberth et al., 2018; 
Wang et al., 2018b). 

 

Medium 
confidence: 
The probability 
of extreme 
precipitation 
events has 
increased due to 
anthropogenic 
forcing 
(Easterling et al., 
2017; 
Kirchmeier-
Young and 
Zhang, 
submitted). 

The influence of 
external forcing 
is detected in the 
intensification of 
precipitation 
extremes over 
North America 
(Kirchmeier-
Young and 

High confidence: 
Increase in 
precipitation 
extremes (Easterling 
et al., 2017) 

Increase in hurricane 
rain rates (medium to 
high confidence) 
(Knutson et al., 2015; 
Kossin et al., 2017) 

 

High 
confidence: 
Drought has 
decreased over 
much of the 
continental 
United States 
(Easterling et 
al., 2017). 

Medium 
confidence: 
Little evidence is 
found for a human 
influence on 
observed 
precipitation 
deficits, but much 
evidence is found 
for a human 
influence on 
surface soil 
moisture deficits 
due to increased 
evapotranspiration 
caused by higher 
temperatures. 
(Easterling et al., 
2017) 

High confidence: 

Under higher scenarios 
and assuming no 
change to current 
water-resources 
management, chronic, 
long-duration 
hydrological drought is 
increasingly possible 
by the end of this 
century (Easterling et 
al., 2017). 

Drier conditions (SPI) 
over most of U.S. 
during spring and 
summer (Swain and 
Hayhoe, 2015). 
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Zhang, 
submitted) 

Hurricane Harvey 
increased rate of 
occurrence 
associated with 
anthropogenic 
warming 
(Emanuel, 2017; 
Risser and 
Wehner, 2017; 
van Oldenborgh 
et al., 2017; 
Trenberth et al., 
2018; Wang et 
al., 2018b) 

E. North 
America 
(ENA) 

High confidence: 
 

Increase in the frequency 
of heat waves and hot 
extremes and decrease in 
the frequency of cold 
waves and cold extremes. 
Increase in the coldest 
daily temperature of the 
year (TNn)(Vose et al., 
2017; Vincent et al., 2018; 
Zhang et al., 2019d). 

Medium 
confidence: 
 
Anthropogenic 
warming 
detectable over 
northern 
regions(Vose et 
al., 2017; Wan 
et al., 2019).  
 
Anthropogenic 
forcing has 
increased the 
risk of many 
hot events 
(Vose et al., 
2017) 

High confidence: 
 

Increase in 
temperatures of both 
extremely warm and 
extremely cold days. 
More severe heat 
waves and less severe 
cold waves. (Vose et 
al., 2017; Wehner et 
al., 2018b; Zhang et 
al., 2019d). 

Medium confidence: 
Increase in precipitation 
extremes across the 
United States (Wu, 2015; 
Easterling et al., 2017), 
but no detectable trend in 
observed annual 
maximum daily (or 
shorter duration) 
precipitation in Canada 
(Shephard et al., 2014; 
Mekis et al., 2015; 
Vincent et al., 2018). 

High confidence: 
Increase in extreme 
hurricane rainfall events 
(Emanuel, 2017; Risser 
and Wehner, 2017; van 
Oldenborgh et al., 2017; 
Trenberth et al., 2018; 
Wang et al., 2018b). 

Medium 
confidence: 
The probability 
of extreme 
precipitation 
events has 
increased due to 
anthropogenic 
forcing 
(Easterling et al., 
2017; Teufel et 
al., 2019; 
Kirchmeier-
Young and 
Zhang, 
submitted). 

The influence of 
external forcing 
is detected in the 
intensification of 
precipitation 
extremes 
(Kirchmeier-

High confidence: 
Increase in 
precipitation 
extremes (Easterling 
et al. 2017, Zhang et 
al. 2018f) 

Increase in hurricane 
rain rates (medium to 
high confidence) 
(Knutson et al., 2015; 
Kossin et al., 2017) 

 

High 
confidence: 
Drought has 
decreased over 
much of the 
continental 
United States 
(Easterling et 
al., 2017). 

Medium 
confidence: 
Little evidence is 
found for a human 
influence on 
observed 
precipitation 
deficits, but much 
evidence is found 
for a human 
influence on 
surface soil 
moisture deficits 
due to increased 
evapotranspiration 
caused by higher 
temperatures. 
(Easterling et al., 
2017) 

High confidence: 

Under higher scenarios 
and assuming no 
change to current 
water-resources 
management, chronic, 
long-duration 
hydrological drought is 
increasingly possible 
by the end of this 
century (Easterling et 
al., 2017). 

Drier conditions (SPI) 
over most of U.S. 
during spring and 
summer (Swain and 
Hayhoe, 2015). 
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Young and 
Zhang, 
submitted) 

 

W. North 
America 
(WNA) 

High confidence: 
 

Increase in the frequency 
of heat waves and 
decrease in the frequency 
of cold waves. Increase in 
the coldest daily 
temperature of the year 
(TNn) (Vose et al., 2017). 

 

Medium 
confidence: 
 
Anthropogenic 
warming 
detectable 
(Vose et al., 
2017). 

High confidence: 
 

Increase in 
temperatures of both 
extremely warm and 
extremely cold days. 
More severe heat 
waves and less severe 
cold waves. (Vose et 
al., 2017; Palipane and 
Grotjahn, 2018; 
Wehner et al., 2018b). 

High confidence: 
 

Increase in precipitation 
extremes (Easterling et 
al. 2017; Wu 2015). 

 

Medium 
confidence: 
The probability 
of extreme 
precipitation 
events has 
increased due to 
anthropogenic 
forcing 
(Easterling et al., 
2017; 
Kirchmeier-
Young and 
Zhang, 
submitted) 

The influence of 
external forcing 
is detected in the 
intensification of 
precipitation 
extremes over 
North America 
(Kirchmeier-
Young and 
Zhang, 
submitted) 

High confidence: 
Increase in 
precipitation 
extremes (Easterling 
et al., 2017) 

High 
confidence: 
Drought has 
decreased over 
much of the 
continental 
United States 
(Easterling et 
al., 2017). 

Medium 
confidence: 
Little evidence is 
found for a human 
influence on 
observed 
precipitation 
deficits, but much 
evidence is found 
for a human 
influence on 
surface soil 
moisture deficits 
due to increased 
evapotranspiration 
caused by higher 
temperatures. 
(Easterling et al., 
2017) 

High confidence: 

Under higher scenarios 
and assuming no 
change to current 
water-resources 
management, chronic, 
long-duration 
hydrological drought is 
increasingly possible 
by the end of this 
century (Easterling et 
al., 2017). 

Drier conditions (SPI) 
over most of U.S. 
during spring and 
summer (Swain and 
Hayhoe, 2015). 

 

 1 
[END TABLE 11.9 HERE] 2 
 3 
  4 
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[START BOX 11.4 HERE] 1 
 2 
BOX 11.4: Reasons for concern related to weather and climate extremes: Informing on changes in 3 

extremes supporting related adaptation assessments 4 
 5 
The AR5 WG2 chapter 19 (Oppenheimer et al., 2014, IPCC AR5 WG2) included an assessment of risk as 6 
function of global warming for five identified “Reasons For Concern” (RFCs). The risk assessment was 7 
subdivided in four categories (Box 11.4, Fig. 1): undetectable (white), moderate (yellow), high (red), very 8 
high (purple). Very high risk indicates a level of risk at which limits to adaptability may be reached (O’Neill 9 
et al., 2017). One of the five RFCs are Risks associated with extreme weather events (RFC2; Box 11.4, 10 
Fig.1).  11 
 12 
 13 
[START BOX 11.4, FIGURE 1 HERE] 14 
 15 
Box 11.4, Figure 1:“Reasons for concerns” (RFCs), highlighting RFC2 on “Risks associated with extreme weather 16 

events. From Oppenheimer, M. et al (2014), IPCC AR5 WG2). 17 
 18 
[END BOX 11.4, FIGURE 1 HERE] 19 
 20 
 21 
The RFCs have been further developed in the SR1.5, where it has been recognized that even an apparently 22 
small increase of +0.5°C of global warming compared to +1.5°C would substantially increase the frequency 23 
and severity of extremes (also consistent with more recent analyses, see  e.g., Section 11.2.6). In the SROCC 24 
two alternative versions of the RFCs have additionally been presented, one under a high adaptation scenario, 25 
the other one with current adaptation levels, highlighting the fact that limits to adaptation strongly depend on 26 
other factors than just the hazard. Research published since has demonstrated that a key indicator for 27 
adaptation and thus limits to it is the governance of a country (Andrijevic et al., 2019). This is very relevant 28 
to the Reason For Concern #2 on climate extremes in several respects. For RFC2,  “high risk” for global 29 
warming at 1.5°C and above was assessed in the IPCC AR5 WG2 (Oppenheimer et al., 2014, IPCC AR5 30 
WG2), but no assessment was provided for a possible transition to “very high risk” at higher warming levels 31 
which would correspond to conditions at which societies could no longer adapt. The reason for not assigning 32 
this transition was because there was not enough literature at the time to determine the global warming level 33 
at which the limits of adaption were reached (Oppenheimer et al., 2014, IPCC AR5 WG2). 34 
 35 
While still limited, there is now new literature available to better estimate the reasons for concerns arising 36 
from extremes, building on the assessment conducted in this chapter and providing new physical evidence on 37 
changes in extremes at different global warming levels. These show large incremental increases in extremes 38 
that should inform the assessment of limits to adaptation in the upcoming IPCC AR6 Working Group 2 39 
report (synthesized in Chapter 16 of that report). In particular, there is an emerging body of research on the 40 
attribution of extreme weather events occurring today, at 1°C of global warming, highlighting an emerging 41 
occurrence of unprecedented events to which societies were not well prepared (Section 11.2.5; see also Box 42 
11.3). Furthermore, new literature on compound events shows the potential risks associated with increased 43 
probabilities of multi-variate extremes,  e.g., cluster of events and/or extremes happening at the same 44 
time/location or affecting similar sectors in different regions simultaneously and that can lead to more 45 
impacts than if they had happened in isolation (Section 11.8, Box 11.3). This means that in many regions 46 
societies are not adapted to today’s climate (also called “adaptation deficit”) or would be already very 47 
challenged. Thus the rate of change poses a crucial barrier to adaptation in particular when the potential to 48 
adaptation depends strongly on socio-economic factors such as governance that improve slowly. We note 49 
that the adaptation deficit can be expected to be stronger for extreme events, which are rarer and which 50 
society has less opportunity to adapt to. 51 
 52 
Concretely, this means that even in the most optimistic scenario for socio-economic development, SSP1, 53 
many countries would in 2050 live under a government struggling to provide disaster preparedness and thus 54 
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face difficulties to adapt to changing hazards (Schleussner et al., submitted). At the same time, it is in 1 
particular in these countries that extreme events and foremostly heat extremes are strongly emerging already 2 
(Harrington and Otto, 2018b), demonstrating that only in SSP1 and with slowly increasing temperatures, 3 
necessary adaptation cannot be reached for billions of people. For higher warming levels,  e.g., at ca 4°C 4 
(RCP8.5), near 75% of the world population could be affected by extreme hot days of up to 5 standard 5 
deviations (Lehner and Stocker, 2015). At 4°C of global warming, countries representing more than 70% of 6 
the global population and global gross domestic product could also face increases in flood risk in excess of 7 
500% (Alfieri et al., 2017). 8 
 9 
These assessments only focus on one type of extreme events occurring. As highlighted in Section 11.8 and 10 
Box 11.3, further research shows that several locations under moderate warming levels could be affected 11 
simultaneously, or very repeatedly by different types of extremes (Mora et al., 2018, Gaupp et al., 2019; 12 
Vogel et al. 2019)Box 11.3 shows that concurrent events at different locations, which can lead to major 13 
impacts across the world, can also result from the combination of anomalous circulation or natural variability 14 
(ENSO) patterns with amplification of resulting responses by human-induced global warming. Also multi-15 
variate extremes at single locations pose specific challenges to adaptation (Section 11,8), whereby the 16 
probability of occurrence of such compound events strongly increases with increasing global warming levels 17 
(Vogel et al., submitted, a). Therefore, in order to estimate whether and at what level of global warming very 18 
high risks arising from extremes would occur that could challenges limits to adaptation, the spatial extent of 19 
extremes and the potential of compounding extremes need to be assessed. Sections 11.3, 11.7 and 11.8 20 
highlight increasing evidence that temperature extremes, higher intensity precipitation accompanying 21 
tropical cyclones, and compound events such as dry/hot conditions conducive to fire or storm surges 22 
resulting from sea level rise and heavy precipitation events, pose widespread threats to societies already at 23 
relatively low warming levels. Studies have already shown that the probability for some recent extreme 24 
events is so small in the undisturbed world such that such that these event may not have been possible 25 
without human influence (Section 11.2.6). With additional warming, such events would become more 26 
frequent and wide spread. Some recent extreme heat events that are historical have become once in 5 years 27 
event in the current climate and will become annual event with an additional 1°C of global warming (Sun et 28 
al., 2018a). There is robust evidence that the magnitude of extreme temperature and precipitation increases 29 
proportionally to the level of global warming (Section 11.2.6; Section 11.3, 11.4). 30 
 31 
Recent literature also provides a better understanding of impacts of extremes on different sectors. This 32 
includes impacts on : 33 

 health (Ayeb-Karlsson et al., 2019) 34 
 food security, for instance through the concomitant impacts of extremes on several breadbaskets 35 

(Gaupp et al., 2019; Zampieri et al. 2017) 36 
 unique and threatened systems,  e.g., through the strong increase in marine heatwaves (Frölicher, et 37 

al., 2018) 38 
This new evidence shows that changes in extremes lead to high risks for a large number of people, even at 39 
low levels of global warming. It remains however the case, that the evidence of changing hazards is highly 40 
uncertain in particular in those areas where vulnerability and exposure are high (Otto et al. submitted). While 41 
the identification of the exact thresholds at which extremes could exceed the limits of adaptation will be 42 
addressed in the IPCC AR6 Working Group 2 report, it is important that this assessment considers the new 43 
dimensions of risks associated with climate extremes assessed in the most recent literature, as well as the 44 
available evidence regarding how extremes are changing at different global warming levels (Box 11.4, 45 
Table1; see also Section 11.2.6 and Table 1.1). 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
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[START BOX 11.4, TABLE 1 HERE] 1 
 2 
Box 11.4, Table 1: Examples of changes in extreme conditions (single extremes, compound events) potentially 3 

challenging adaptation at different global warming levels 4 
 5 

 +1°C (present-
day) 

+1.5°C +2°C +3°C +4°C 

Risk ratio for annual hottest 
daytime temperature (TXx) 
with 1% of probability 
under present-day warming 
(+1°C) (Kharin et al., 
2018): Global land 

1 3.3 (i.e. 230% 
higher 
probability) 

8.2 (i.e. 720% 
higher 
probability) 

Not assessed Not assessed 

Risk ratio for heavy 
precipitation events 
(Rx1day) with 1% of 
probability under present-
day warming (+1°C) 
(Kharin et al., 2018): 
Global land 

1  1.2 (i.e. 20% 
higher 
probability) 

1.5 (i.e. 50% 
higher 
probability) 

Not assessed Not assessed 

Probability of “extremes 
extremes”  hot days with 
1/1000 probability at the 
end of 20th century (Vogel 
et al., submitted, a): Global 
land 

~20 days over 
20 years in most 
locations 

about ~50 
days in 20 
years in most 
locations 

about ~150 
days in 20 
years in most 
locations 

about ~500 
days in 20 
years in most 
locations 

Not assessed 

Probability of co-
occurrence in the same 
week of hot days with 
1/1000 probability and dry 
days with 1/1000 
probability at the end of 
20th century (Vogel et al., 
submitted, a): Amazon 

0% probability ~1 week 
within 20 
years 

~4-5 weeks 
within 20 
years 

>9 weeks 
within 20 
years 

Not assessed 

Projected soil moisture 
drought duration per year 
(Samaniego et al., 2018): 
Mediterranean region 

41 days (+46% 
compared to 
late 20th 
century) 

58 days 
(+107% 
compared to 
late 20th 
century) 

71 days 
(+154% 
compared to 
late 20th 
century) 

125 days 
(+346% 
compared to 
late 20th 
century) 

Not assessed 

 6 
[END BOX 11.4, TABLE 1 HERE] 7 
 8 
[END BOX 11.4 HERE] 9 
 10 
 11 
[START BOX 11.5 HERE] 12 
 13 
BOX 11.5: Climate extremes in small islands territories 14 
(James Kossin, Sergio Vicente-Serrano, and other authors) 15 
 16 
In general, paleoclimatic reconstructions show that small island territories have been substantially affected 17 
by floods and droughts (De Boer et al., 2014; Lane et al., 2014; Margalef et al., 2014; de Boer et al., 2015) 18 
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and human communities have developed strategies to cope with extreme climate events that have been 1 
passed on over generations (McNamara and Prasad, 2014; Weir et al., 2017). Climate change could 2 
dramatically reduce the capacity of the current adaptive measures and force large migrations (Weir et al., 3 
2017). This is already observed in some small islands that experience recurrent freshwater crises (Pearce et 4 
al., 2018). 5 
 6 
In the small islands of the Pacific, drought is a major natural hazard given their precarious water resources. 7 
In these islands, groundwater is the main freshwater source, which strongly depends on rainfall variability 8 
(Post et al., 2018). Pumping of groundwater plays an additional role by increasing the salinity of the aquifer 9 
and reinforcing the negative effects of droughts. In 54% of the Marshall Islands, Barkey and Bailey (2017) 10 
showed a high vulnerability of groundwater to drought episodes. Bailey et al. (2016) projected a 20% in 11 
groundwater availability by 2050 in Coral Atoll islands of the Federal States of Micronesia, but stressed that 12 
under high sea level rise the decrease can be higher than 50% because the intrusion of marine water in the 13 
aquifer, as well as drought events, increases the salinity of the freshwater sources. Groundwater resources are 14 
expected to be substantially reduced in other small island territories such as the Maldives, in which Bailey et 15 
al. (2015) projected by 2030 a reduction of 34% as a consequence of more severe drought events. This is 16 
consistent with global models that project a dramatic increase of dry conditions in the small islands of the 17 
central Indian Ocean, associated with increased frequency of extreme Indian Ocean dipole events. The 18 
frequency of dry events could change from one event every 17.3 years to one event every 6.3 years at the end 19 
of the twenty-first century (Cai et al., 2014c). 20 
 21 
Other studies have analysed recent drought trends in small island territories worldwide based on 22 
meteorological observations. McGree et al. (2016) analysed a vast territory in the West Pacific region 23 
covering a large number of archipelagos using the Standardized Precipitation Index (SPI) and other 24 
meteorological metrics from 1951 to 2010. The main finding was the strong spatial variability between the 25 
different archipelagos, with strong decadal variability of droughts controlled by the Interdecadal Pacific 26 
Oscillation and interannual variability largely determined by ENSO, but no significant trends (Ludert et al., 27 
2018). McGree et al. (2016) found a robust strong positive trend in the drought frequency and severity in the 28 
Hawaiian islands, in agreement with studies that have analysed precipitation trends. In Hawaii, Frazier and 29 
Giambelluca (2017) showed that between 1920 and 2012, over the 90% of the islands showed a rainfall 30 
reduction, which has caused a clear decrease in the canopy greenness (Barbosa and Asner, 2017), and a 31 
streamflow decrease and increase in the frequency of zero flow days (Strauch et al., 2015). In the Caribbean 32 
Islands, Herrera and Ault (2017) developed a Palmer Drought Severity Index (PDSI) dataset from 1950 to 33 
2016 and showed a clear drying trend in the region. The 2013-2016 period showed the most severe drought 34 
during the period and it is suggested that this event was strongly related to anthropogenic warming, which 35 
would have increased the severity of the event by 17% and the spatial extent by 7% (Herrera et al., 2018). 36 
These trends in the Caribbean are consistent with future projections. Karmalkar et al. (2013) analysed 37 
drought projections in the Caribbean islands using CMIP3 models and found evidence for an increase in 38 
drought severity at the end of the century, mainly due to precipitation decrease during the early wet season.  39 
Trends are also observed in Atlantic Islands, as in Madeira, where there have been changes in drought 40 
severity with a trend toward more frequent and severe drought episodes since 2001 (Espinosa et al., 2019). 41 
The drought that affected this island in 2012 was the most extreme in the last 150 years (Liberato et al., 42 
2017). Studies have also found drought trends in Mauritius (Dhurmea et al., 2019), and the Fiji islands 43 
(Kumar et al., 2014).  44 
 45 
There are limited studies of coastal flooding trends in small island territories, although the existing studies 46 
suggest an increased risk as a consequence of sea level rise. This would increase the flood intensity 47 
associated with wind-waves and tropical and extra-tropical storms. Examples of this increased risk are found 48 
in the Maldives (Wadey et al., 2017), the Solomon (Albert et al., 2016) and the Pacific islands in general 49 
(Hoeke et al., 2013). Recent unprecedented coastal floods were recorded in December 2008 in the Marshall 50 
islands (Merrifield et al., 2014; Gingerich et al., 2017). Future projections show robust increases in hazard 51 
probability of extreme wave events and related floods in small islands. For example, Shope et al. (2016) 52 
suggested that islands of the Western Tropical Pacific will experience a noticeable increase of coastal 53 
flooding events at the end of the twentieth century under the RCP 8.5 scenario. 54 



Second Order Draft Chapter11 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 11-147 Total pages: 271 

 

 1 
River flood trends in small island territories are much more difficult to assess due to limited data in these 2 
island sub-regions, and there are very few studies on this topic. McAneney et al. (2017) analysed 122-year 3 
flood depths in the Ba river on Viti Levu Island (Fiji) using data from a colonial sugar refining company and 4 
although they found high interannual variability with strong control by ENSO, they did not find significant 5 
trends in the frequency and magnitude of floods. Nevertheless, unprecedented flash flood events have been 6 
observed in small island territories. A representative example was the flood recorded on 20 October 2011 in 7 
the Sumiyo river basin in the Amami Oshina Island (Subtropical Japan), when 130 mm of rain was reported  8 
over two hours, which caused unprecedented flood inundation accompanied by landslides and debris flows 9 
(Hashimoto et al., 2013). 10 
 11 
Many small island territories experience tropical cyclone (TC) impacts (Gould et al. 2018; Keener et al. 12 
2018). These impacts can be beneficial (as important contributions to freshwater supplies) or deleterious 13 
(e.g., damage and mortality from extreme wind and storm surge). Sea level rise is expected to compound the 14 
effects of TC surge events impacting small island territories. In general, TCs are expected to become 15 
stronger and produce more flooding rain with warming, both of which will increase TC risk, but the detailed 16 
effects of climate change on TCs vary by region (Knutson et al. 2019 and Section 11.7.1). For example, 17 
projected warming of sea surface temperature (SST) in the tropical North Atlantic (tNA), which intensifies 18 
TC wind and rainfall, is expected to be accompanied by increased vertical atmospheric wind shear (Vecchi 19 
and Soden 2007; Ting et al. 2019) in the tNA, which offsets the effects of warming SST. Additionally, the 20 
mean position where TCs reach peak intensity migrates poleward as the tropics expand due to warming 21 
(Kossin et al. 2014; section 11.7.1), which may decrease TC exposure in small island territories in the 22 
tropics. In summary, the effects of climate change on TCs is expected to increase impacts on small island 23 
territories, but these increases are expected to vary by region. 24 
 25 
[SUMMARY TO BE ADDED FOR FGD] 26 

 27 
[END BOX 11.5 HERE] 28 
 29 
 30 
11.10 Limits to the assessment 31 
 32 
There are some remaining areas associated with knowledge gaps in extremes research at present. Some 33 
topics are still unsufficiently investigated such as hail. Also, possible changes associated with global and 34 
regional tipping points (high-risks low-probability events) are associated with low confidence, but cannot be 35 
excluded, especially at high global warming levels (>3°C). Finally, there are still remaining important 36 
observational gaps in several world’s regions, in particular in Africa.  37 
  38 
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Frequently Asked Questions 1 
 2 
FAQ 11.1: How do changes in climate extremes compare with changes in climate averages? 3 
 4 
Climate extremes, such as heat waves and extreme precipitation events, can significantly impact ecosystems 5 
and societies, so it is important to understand how global warming may alter the frequency and severity of 6 
such events. For near-surface temperature, increases in extreme heat events are expected to be larger in 7 
magnitude  extremes will occur on the backdrop of global mean warming.   8 
 9 
One way to illustrate both averages and extremes for a given aspect of climate or weather (e.g., extreme heat 10 
relative to average temperature) is by showing a probability density function (PDF), which approximates the 11 
relative frequency of occurrence of the full range of possible values for a given variable, such as daily 12 
maximum temperatures. The extreme values at either end of the PDF may have much lower probabilities, 13 
and would thus be rare events. In the case of near-surface temperature, the distribution of observed 14 
temperatures is commonly approximated by the familiar bell curve, or Gaussian PDF—this is a symmetric 15 
distribution where both low and high extreme values are equally likely (FAQ 11.1, Figure 1.a). Precipitation, 16 
however, is usually better approximated by a distribution with a skewed shape—one that is asymmetrical, 17 
where extremes with low precipitation amounts occur with a greater probability than high-precipitation 18 
extremes (FAQ 11.1, Figure 1.b).  19 
 20 
In this context, changes can be viewed in terms of how the shape and average values of a PDF for a given 21 
aspect of climate change as a result of global warming. For example, Figure 1 illustrates hypothetical PDFs 22 
for temperature and rainfall and how those distributions might change in the future compared to historical 23 
conditions. As shown in the figure, the probability of a historical extreme may change as a result of a simple 24 
shift in  the average, but it is also possible that the variability or shape of the distribution may change in more 25 
complex ways 26 
 27 
Climate model simulations show that, at local scales, changes in the daily temperature PDF are dominated by 28 
a shift in which all values, including the mean and the extremes, are displaced towards warmer temperatures. 29 
In most places, land regions warm more than global average. These changes arise due to both the increase of 30 
greenhouse gases and local processes that can either amplify or offset the overall warming influence of 31 
increasing greenhouse gase concentrations. As a result, changes in local mean temperatures can vary greatly 32 
across regions and throughout the year, though most land regions warm more than the global average. In 33 
some cases, local processes may have little effect on changes in average conditions but can influence 34 
extreme events when they are moderated or exacerbated by specific weather conditions. For example, daily 35 
hot extremes can be more likely or more severe in situations where there is limited availability of soil 36 
moisture. Also changes in surface albedo (the fraction of incoming solar energy reflected by the surface) 37 
have been shown to have more effect on hot extremes than on average temperatures. This is because there 38 
tends to be more incident shortwave radiation on hot days, so an increased surface reflectivity associated 39 
with higher albedo will result in a stronger net cooling.  40 
 41 
Likewise, the absence of increases in the maximum temperatures observed on hot days may be explained by 42 
processes affecting extremes rather than averages. Notably, the absence of warming in India has been 43 
ascribed to cooling from increased concentrations of aerosols (small particles in the atmosphere) as a result 44 
of burning fossil fuels and in the U.S. Midwest to local land management practices, including irrigation and 45 
cropland intensification. 46 
 47 
Rainfall changes are generally more complicated than a simple shift in the distribution and also result from 48 
the combined effects of various processes occurring at different temporal and spatial scales. FAQ 11.1, 49 
Figure 1.b illustrates a case where the future PDF is more skewed (that is, more asymmetrical) than the 50 
historical PDF, with a larger mean value together with a higher probability of heavy precipitation events and 51 
a lower probability of light precipitation events. Heavy precipitation events are expected to increase in 52 
severity and frequency in a warming climate because water vapour increases 7% for every degree Celsius 53 
increase in surface temperature, meaning there is more water available to fall as precipitation. 54 
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However, at regional scales, changes in the dynamics of the climate system, including atmospheric 1 
circulation, can modulate, or even reverse the increases in extreme precipitation. Annual average 2 
precipitation amounts will only increase at rates of about 2–3% per degree Celsius of warming due to 3 
limitations from the rate at which the associated energy dissipates in the atmosphere, mostly at global scales.  4 
 5 
 6 
[START FAQ 11.1, FIGURE 1 HERE] 7 
 8 
FAQ 11.1, Figure 1: Schematic representations of the probability density function of (a) daily temperature, which 9 

tends to be approximately Gaussian, and (b) daily precipitation, which has a skewed 10 
distribution. Solid lines represent a previous (historical) distribution and dashed lines a changed 11 
(future) distribution. The probability of occurrence, or frequency, of extremes is denoted by the 12 
shaded areas. In the case of temperature (red and blue shade), changes in the frequencies of 13 
extremes can be affected either by changes only in the mean, or average (shift) or in both the 14 
mean and the variance, or shape (shift+var). For example, the wider distribution of the 15 
shift+var case means that both cold and warm extremes are more common relative to the 16 
average than in the historical or future (shift) cases. But combined with the increase in average, 17 
this increase in variability means a higher probability of extremely warm temperatures 18 
compared to the future (shift) case, where the variability does not increase. Similarly, in a 19 
skewed distribution such as that of precipitation (green shaded), a change in the mean of the 20 
distribution generally affects its variability or spread, and thus an increase in mean 21 
precipitation would also imply an increase in heavy precipitation extremes, and vice-versa. In 22 
addition, the shape of the right-hand tail could also change, affecting extremes. Furthermore, 23 
climate change may alter the frequency of precipitation and the duration of dry spells between 24 
precipitation events. (Parts a–c modified from Folland et al., 2001, and modified from Peterson 25 
et al., 2008, as in Zhang and Zwiers, 2012.) 26 

 27 
[END FAQ 11.1, FIGURE 1 HERE] 28 
 29 
  30 
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FAQ 11.2: Could unprecedented extremes occur as a result of human-induced climate change? 1 
 2 
As the climate changes, associated unusual or extreme events will also change. Future extreme events will be 3 
similar to those experienced in the past, but some will occur with much larger magnitudes than before and 4 
some events will occur much more frequently, possibly resulting in events or impacts that are 5 
unprecendented. Some locations may experience events (such as wildfires) not previously observed in those 6 
areas, with possible concerns for impacts on human and natural systems. The occurrence of multiple extreme 7 
events simultaneously or in close succession may also change the severity of events and impacts relative to 8 
what has been experienced in the past. 9 
 10 
Human and natural systems have generally adapated to the climate of the last few decades and centuries, 11 
where extreme and rare events occured. As human-induced changes shift the climates of the future, the 12 
climate moves away from the state to which local human and natural systems are currently adapated.  13 
Extreme events already test, and sometimes exceed, the limits of those human and natural systems, so 14 
changes in the frequency or severity of some types of extreme events may result in different impacts than in 15 
the past.  16 
 17 
In a warmer climate, extreme events may occur with differing characteristics to what we have experienced in 18 
the past. Characteristics of the same events types (e.g., heatwaves, floods or droughts) may change: future 19 
extremes may be more severe, may occur more frequently or may occur for differing durations.   20 
We have experienced heatwaves in the past and we will experience heatwaves in the future, but in a warmer 21 
climate, the heatwaves will generally have hotter temperatures and last longer than past heatwaves. For 22 
example, the 2013 severe heatwave event in China today is projected to occur, of be exceeded, in 50% of 23 
future summers in even the moderate RCP4.5 scenario.  24 
 25 
Human-induced changes could result in extreme events that have unprecedented impacts. However, the 26 
impact of an event depends not just on its physical attributes but also on the exposure and vulnerability of 27 
systems, and these may also change. Changes in heat extremes in the future, for example, could lead to 28 
unprecedented severity or duration of heat events and coral reef bleaching in novel locations. Coral reef heat 29 
stress depends on the magnitude and duration of temperatures above a certain threshold. Either a short-30 
duration, high-magnitude event or a long-duration, lower-magnitude event can cause bleaching. Such impact 31 
thresholds also exist for human and animal physiologies, suggesting that some new climates may lead to 32 
serious health concerns. While these extreme events types (e.g., heatwaves) are similar to those already 33 
experienced, future extreme events may be considered a new type of event because of their unprecedented 34 
impacts.  35 
 36 
Compound events – where multiple hazards combine to elevate risks and impacts – are also an important 37 
consideration for future extremes and unprecedented impacts (FAQ 11.2, Figure 1). For example, the 38 
occurrence of drought combined with extreme heat will increase the risk of wildfires and agriculture losses. 39 
Another example is a drought followed by extreme rainfall, which exacerbates the runoff as well as 40 
introducing multiple impacts. A changing climate may alter the interaction between hazards or result in the 41 
combination of multiple unprecedented events. It is possible that compound events will exceed the adaptive 42 
capacity or resilience of the human and natural systems more quickly than individual events. The result 43 
could include types or levels of impacts (societal, economic, ecological, etc.) not seen at all previously.  44 
 45 
There is also the possibility of the future occurrence of extreme events that have not been anticipated. In 46 
many regions, observational data are limited to 50–60 years, which means that we may not have a complete 47 
understanding of what sort of extremes (such as the hottest maximum temperatures or the maximum amount 48 
of rainfall) are possible for some areas, even in a stable climate. The shortness of the observational record 49 
may mean that events that are very rare, but not impossible, are difficult to anticipate or plan for. When such 50 
rare or unprecedented extreme events occur, they may be suprising and have particularly large impacts. As 51 
warming continues, the climate moves further away from the historical state that we are familiar with, and 52 
unprecedented or suprising events, become more likely. Additionally, landscapes that are changing rapidly or 53 
at risk of crossing important thresholds, such as areas currently covered by perennial ice or permafrost, may 54 
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be at higher risk of unique or locally unprecedented events. 1 
 2 
 3 
[START FAQ 11.2, FIGURE 1 HERE] 4 
 5 
FAQ 11.2, Figure 1: Illustration of enhanced risks associated with compound events (from Zscheischler et al., 2018b), 6 

The hypothetical present-day distribution of two climatic drivers and their potential future 7 
distribution, together with a critical region in which impacts are induced. Continuous lines depict 8 
the 50th and 80th percentiles, dashed lines denote the 95th percentiles. The coloured points denote 9 
different possibilities to generate potentially critical events. The critical region is shown in orange 10 
with a blurred border to illustrate uncertainty in the estimation of its extent. The critical region can 11 
only be known if enough critical events have occurred (or can be simulated) to characterize it. This 12 
figure illustrates that climate change is modifying the envelope of the distribution of climate 13 
extremes we have at the moment, which possibly could yield new unprecedented extremes which 14 
are within some “critical region” in which new impacts could happen. 15 

 16 
[END FAQ 11.2, FIGURE 1 HERE] 17 
  18 
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FAQ 11.3: Did climate change cause that recent extreme event in my country? 1 
 2 

The climate and weather we experience varies from day to day and from year to year. As a result, we have 3 
always experienced extreme weather and climate events. However, there is strong evidence that 4 
characteristics of many individual extreme events have already changed because of human driven changes to 5 
the climate system. Some types of highly impactful extreme weather events have occurred more often and 6 
have become more severe due to these human influences. As the climate continues to warm, the frequency or 7 
severity of some extreme weather events will continue to change as the human influences on these events 8 
increase.   9 
 10 
Many factors contribute to the occurrence of complex, rare events. Attributing the causal influence of 11 
climate change on current extreme weather events requires considering both natural and human influences. 12 
Recent developments have allowed scientists to quantify the human influence on the magnitude or frequency 13 
of specific extreme weather events. For a wide variety of recent extreme weather events, an influence from 14 
global warming has been demonstrated. Borrowing methods from epidemiology, this influence is often 15 
expressed as a change in the likelihood of an extreme event of the observed magnitude and/or as a change in 16 
the magnitude of the event for a fixed estimated probability of occurrence. 17 
 18 
 19 
[START FAQ 11.3, FIGURE 1 HERE] 20 
 21 
FAQ 11.3, Figure 1:Examples of how temperature extremes differ in cooler and warmer climates. Changes in extreme 22 

events can be thought of as either changes in the frequency of events of a given magnitude or as 23 
changes in the magnitude of events that occur at the same frequency. These two concepts are 24 
closely related, as illustrated in this example for (a) hot extremes and (b) cold extremes. The 25 
vertical axis shows the range of extreme temperatures on a logarithmic scale, while the horizontal 26 
axis shows the estimated average time between events, referred to as the return period of an event. 27 
In a warmer climate, extreme hot events of the same magnitude occur more frequently (that is, the 28 
return period for a given temperature decreases) and cooler events occur less frequently (return 29 
period increases) as indicated by the horizontal arrows between curves. If we look at events of a 30 
fixed rarity (constant return period), we see that in a warmer climate, both hot and cold extreme 31 
temperature events of a given return period are warmer (vertical arrows), although not necessarily 32 
by the same amount. 33 

 34 
[END FAQ 11.3, Figure 1 HERE] 35 
 36 
 37 
The change in temperature extremes as the climate warms is illustrated in FAQ 11.3, Figure 1: a depiction of 38 
the magnitude of extreme temperature events versus their frequency. Both cooler and warmer worlds 39 
experience hot and cold temperature extremes, but with different frequencies and magnitudes. In a warmer 40 
climate, the cold events of a given temperature occur less often than in the cooler climate, while hot events 41 
of a given temperature occur more frequently. For example, a “once every 50 years” cold event in the cooler 42 
climate is more rare in the warmer climate, while the “once every 50 years” hot event is less rare. Similarly, 43 
when comparing the magnitude of events of a constant rarity between these two worlds, both hot and cold 44 
temperature events are warmer in the warmer world. 45 
 46 
Many individual heat waves and extreme precipitation events have been intensified by human changes to the 47 
composition of the atmosphere. The causes of any specific extreme climate or weather event are complex 48 
mix of human and natural factors. The science of extreme event attribution quantifies the relative 49 
contributions of human and natural influences on these events. Hence, on a case by case basis, scientists can 50 
produce a quantitative estimate of the contribution of human influences to the severity or likelihood of an 51 
extreme event. However, other human activities also contribute to changes in some types of extreme weather 52 
events. For instance, urbanization can also lead to increased flood and heat wave risks, while high levels of 53 
air pollution can reduce observed high temperatures. In some cases, large natural variability in the climate 54 
system prevents making a conclusive attribution statement about the human influence on an extreme event. 55 
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Additionally, attribution of certain classes of extreme weather (e.g., tornadoes) is beyond our current 1 
modelling and theoretical capabilities. 2 
 3 
A related question is whether some recent extreme events would have actually been impossible had humans 4 
not altered the climate system. While we have seen climate and weather events that are unprecedented in the 5 
historical record, we do not yet have convincing evidence that any of these events would have actually been 6 
impossible in the absence of climate change. However, some events that would have been very rare are now 7 
relatively common place. As the climate continues to warm, high temperatures and precipitation 8 
accumulations that were impossible prior to human intervention in the climate system are expected to occur. 9 
 10 
  11 
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Appendix 11.A 1 
 2 
[START TABLE 11.A.1 HERE] 3 
 4 
Table 11.A.1: This table gives an overview of the attribution studies of individual extreme events in the IPCC regions 5 

that have been published since 2013, the cut-off date of the AR5 report. The third column provides an 6 
assessment of the confidence of the signals of anthropogenic climate change that have been found in the 7 
different regions (column 1) for different types of extreme events (column 2) for which studies exist. 8 
The final column provides the references and column 4 gives an assessment of the quality of the 9 
evidence provided in these references following the assessment steps described in Section 11.2.5 and 10 
the flow diagram included in Fig. 11.4. 11 

 12 
Region Type of 

event 
Anthropogenic 
Signal 

Confidence Quality 
of 
evidence 

Reference 

CNA drought No sig change Medium 
(because of 
other studies 
in same 
region) 

low (Rupp et al., 
2013) 

CNA & ENA Heat wave increase medium medium (Diffenbaugh & 
Scherer 2013) , 
(Cattiaux & Yiou 
2013)(Knutson et 
al., 2014a) 

ENA Hurricane 
Sandy 

Increase in 
inundation 

low low (Peterson et al., 
2013b; Garner et 
al., 2017) 

ARO Sea ice 
extend 

decrease medium low (Peterson et al., 
2013b) 

NEU Summer 
extreme 
rainfall 

No change medium  (Peterson et al., 
2013b) 

MED Winter 
drought 

increase medium Medium  (Peterson et al., 
2013b) 

NEAF/CEAF drought No change  low medium (Funk et al., 2013, 
2015c; Marthews 
et al., 2015)(Funk 
et al., 2016)(Uhe 
et al., 2017; Philip 
et al., 2018a; Kew 
et al., 2019a) 

EAS Extreme 
precip  

Mixed signal low low (Peterson et al., 
2013b) 

SAU Extreme 
precip  

No change/small 
increase 

low medium (Peterson et al., 
2013b) 
 

NCA drought No change/ Low, Signal 
depends on 
definition 

high (Swain et al., 
2014; Wang and 
Schubert, 2014) 
Funk et al., in 
(Herring et al., 
2014) 

CNA  Extreme 
rainfall 

Mixed signal low  Hoerling in 
(Herring et al., 
2014) Wolter et 
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al., in (Herring et 
al., 2016) 

ENA Snowfall decrease low low Edwards in 
(Herring et al., 
2014) 

NAU Heat wave Increase high High (Knutson et al., 
2014c; Lewis and 
Karoly, 2014b; 
Perkins et al., 
2014a) Arblaster 
et al. in (Herring 
et al., 2014)(King 
et al., 2014)king 
et al., in (Herring 
et al., 2015) Hope 
et al. in, Perkins 
& Gibson in  
(Herring et al., 
2015) Black & 
Karoly in , Hope 
et al in (Herring et 
al., 2016) 

SAU Heat wave  Increase high high (Knutson et al., 
2014c) Black et 
al., in; Hope et al. 
in, Perkins & 
Gibson in  
(Herring et al., 
2015) 
Black & Karoly 
in , Hope et al in 
(Herring et al., 
2016) 

SAU drought increase medium medium (Harrington et al. 
2014) Karoly et 
al., in (Herring et 
al., 2016) 

EAS Heat wave increase high high Min et al.; Imada 
et al.; Zhou et al.,  
in (Herring et al., 
2014) Min et al., 
in, Song et al., in 
(Herring et al., 
2015) Miao et al., 
in , Sun et al., in , 
Takahashi et al., 
in (Herring et al., 
2016) 

SAS Extreme 
precipitation 

No change medium Medium  Singh et al., in 
(Herring et al., 
2014)(van 
Oldenborgh et al., 
2016) 

CEU Heat wave increase high high Dong et al., in 
(Herring et al., 
2014)(Sippel et 
al., 2016) Dong et 
al., in (Herring et 
al., 2016) 
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Jezequel et al., in  
(Herring et al., 
2018)(Christidis 
et al., 2015; 
Cattiaux and 
Ribes, 2018; 
Wilcox et al., 
2018) 

 
SAS floods increase low low ( Philip et al. 

2019) 
      
CEU Extreme 

summer 
precip 

increase low low (Schaller et al., 
2014; Philip et al., 
2018b) 

NEU Cold wave decrease high medium (Christidis et al., 
2014; 
Christiansen et 
al., 2018) 

CNA Fire risk increase low low Yoon et al., in 
(Herring et al., 
2015) 

CNA Cold wave decrease high medium (Wolter et al., 
2015) 

NES drought No change medium low ( Otto et al. 2015) 
Martins et al., in 
(Herring et al., 
2018) 

 
SES Heat wave increase medium low (Hannart et al., 

2015) 
NEU Winter 

extreme 
rainfall 

increase medium high Christidis & Stott 
in (Herring et al. 
2015)(Schaller et 
al., 2016; Vautard 
et al., 2016; Yiou 
et al., 2017; Otto 
et al., 2018b) 

CEU Extreme 
wingter 
precip 

increase medium low Vautard et al., in 
(Herring et al., 
2015) 

MED drought increase low low (Bergaoui et al., 
2015) 

WCA Drought No change Low sing. 
Dep. On def 

low (Barlow and 
Hoell, 2015) 

EEU drought No change low Low (Barlow and 
Hoell, 2015) 

TIB Snow storm increase low low  Simon Wang et 
al., in (Herring et 
al., 2015) 

NEA drought No signal low low Wilcox et al., in 
(Herring et al., 
2015) 

NPO Hurricane 
activity 

Increase low low (Murakami et al., 
2015a) 
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SEA drought increase low low (Mcbride et al., 
2015)(King et al., 
2016c) ch 25  in 
(Herring et al., 
2018) 

SEA Extreme 
precip 

increase medium low (Siswanto et al., 
2015) 

SAU Winter 
extreme 
precip 

increase low low (Rosier et al., 
2015) 

SAU High 
pressure 

increase low low (Grose et al., 
2015) 

WNA Extreme 
rainfall 

Increase medium Low Walter et al., in 
(Herring et al., 
2016) 

SWN Extreme 
rainfall 

Increase Medium Low Walter et al., in 
(Herring et al., 
2016) 

ENA Extreme 
rainfall 

increase Medium low Walter et al., in 
(Herring et al., 
2016) 

NWN fire increase low low Partain et al., in 
(Herring et al., 
2016) 

WNA drought increase low low Fosu et al., in 
(Herring et al., 
2016)(Szeto et al., 
2016) 

ENA Cold wave decrease high medium (Trenary et al., 
2016; van 
Oldenborgh et al., 
2019) 

NEU Sunshine 
hours 

increase medium low Christidis et al., in 
(Herring et al., 
2016) 

WAF Low precip/ 
drought 

No change low low (Lawal et al., 
2016) 

MED heatwave increase high medium Mitchell in 
(Herring et al., 
2016) 

SAS Heat wave Mixed signal low medium (Wehner et al., 
2016) 

EAS Extreme 
precip 

Mixed signal low low (Burke et al., 
2016) 

SEA Heat wave increase medium medium (King et al., 
2016c) Christidis 
et al., in (Herring 
et al., 2018) 

 
ARO Heat wave increase medium low Quian et al., in 

(Herring et al., 
2018) 
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EAS Cold wave decrease high medium Qian et al., & Sun 
et al., in  (Herring 
et al., 2018) 

 
SWAF Drought increase medium Medium Yuan et al., & 

Funk et al., in  
(Herring et al., 
2018) 

( Otto, Wolski, et 
al. 2018) 

 
SEAF drought Increase medium low Yuan et al., & 

Funk et al., in  
(Herring et al., 
2018) 

 
CEU Stagnant air No change low low Vautard et al., in 

(Herring et al., 
2018) 

 
WNA Fire  increase low medium Tett et al., in  

(Herring et al., 
2018) 

(Kirchmeier-
Young et al., 
2017) 

SAU/NAU/CAU Fire  increase low low Tett et al. in 
(Herring et al., 
2018) 

 
CAU/NAU Fire increase low low (Lewis et al., 

2019a) 
SEA Extreme 

rainfall 
increase medium medium (Otto et al., 

2018a) 
NWS Cold wave decrease high medium (Otto et al., 

2018a) 
CEAF drought No signal low low ( Otto, Philip, et 

al. 2018) 
NWS Extreme 

rainfall 
decrease low medium (Otto et al., 

2018a) 
CNA Extreme 

rainfall (in 
land) 

No signal low high (Eden et al., 2016; 
Pall et al., 2017; 
Cattiaux and 
Ribes, 2018) 

CNA Hurricane 
associated 
rainfall 

increase medium high (Risser and 
Wehner, 2017; 
van der Wiel et 
al., 2017; van 
Oldenborgh et al., 
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2017; Wang et al., 
2018b) 

CEU drought No change medium Medium (Hauser et al., 
2017) 

CAR Tropical 
cyclone 

increase medium low (Patricola and 
Wehner, 2018) 

EEU Heat wave increase high high (Otto et al., 2012; 
Sippel and Otto, 
2014; Hauser et 
al., 2016) 

SWN flood increase low low (Huang et al., 
2018c) 

NZE drought increase low low (Harrington et al., 
2016) 

NZE Marine 
heatwave 

increase high medium (Oliver et al., 
2017) 

WAF Extreme 
rainfall 

No signal low low (Parker et al., 
2017) 

CAM Heat wave increase low low (Rupp et al., 
2015) 

SWN fire increase low low (Abatzoglou and 
Williams, 2016) 

CEU Cold wave decrease high low (Christiansen et 
al., 2018) 

SOO/NPO/AROO Marine heat 
wave 

increase high low (Frölicher et al., 
2018) 

CAF Extreme 
precipitation  

No signal low low ( Otto et al. 2013) 

CAF drought No signal low low ( Otto et al. 2013) 
SAS  Cold wave  decrease high Medium  (Kumar and 

Kumar, 2017) 
NAU Extreme 

rainfall 
No signal low low (Dey et al., 2019) 

NZE Extreme 
rainfall 

increase medium low (Rosier et al., 
2015) 

NZE drought increase low Low (Harrington et al., 
2014) 

CEU drought increase medium low (García-Herrera et 
al., 2019) 

MED Extreme 
snowfall 

No signal low low (Añel et al., 2014) 

NEU drought decrease low low (Gudmundsson 
and Seneviratne, 
2016) 

NSA Extreme 
rainfall 

increase medium low (Li et al., 2019) 

SAM Extreme 
rainfall 

increase medium low (Li et al., 2019) 

NES Extreme 
rainfall 

increase medium low (Li et al., 2019) 

SWS Extreme 
rainfall 

increase medium low (Li et al., 2019) 

NWS Extreme 
rainfall 

increase medium low (Li et al., 2019) 

SES Extreme 
rainfall 

increase medium medium (Li et al.,  2019; 
Díaz and Vera 
2018) 
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SSA Extreme 
rainfall 

increase medium medium (Li et al.,  2019; 
Díaz and Vera 
2018) 

SWS drought increase medium low (Minetti et al., 
2014) 

SWN fire increase medium low (Brown et al., 
2020) 

SEAF Extreme 
rainfall 

decrease low medium (Fuckar et al., 
2020) 

 1 
[END TABLE 11.A.1 HERE] 2 
 3 
 4 
[START FIGURE 11.A.1 HERE] 5 
 6 
Figure 11.A.1 : Regional mean changes in annual minimum nighttime temperature (TNn) for land regions, the global 7 

land and global ocean, against changes in global mean surface temperature (Tglob) as simulated by 8 
CMIP5 models for historical conditions (black) and different forcing scenarios including RCP2.6 9 
(light blue), RCP4.5 (blue), RCP6.0 (light red), and (red) RCP8.5. The black line indicates the 1:1 10 
reference scaling. The grey shading indicates the range over all RCPs. [Note to reviewers: the figure 11 
will be updated to include CMIP6 simulations for the FGD, as well as the final selected AR6 regions]. 12 

 13 
[END FIGURE 11.A.1 HERE] 14 
 15 
 16 
[START FIGURE 11.A.2 HERE] 17 
 18 
Figure 11.A.2. : Regional mean changes in regional mean warming (Tmean) for land regions, the global land and 19 

global ocean, against changes in global mean surface temperature (Tglob) as simulated by CMIP5 20 
models for historical conditions (black) and different forcing scenarios including RCP2.6 (light blue), 21 
RCP4.5 (blue), RCP6.0 (light red), and (red) RCP8.5. The black line indicates the 1:1 reference 22 
scaling. The grey shading indicates the range over all RCPs. [Note to reviewers: the figure will be 23 
updated to include CMIP6 simulations for the FGD, as well as the final selected AR6 regions]. 24 

 25 
[END FIGURE 11.A.2 HERE] 26 
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Figures 1 

 2 
Figure 11.1: Time series of temperature anomalies (relative to 1979-2018 mean) for global average annual mean 3 

temperature (T_global), land average annual mean temperature (T_land) and extreme temperatures from 4 
CMIP5 and CMIP6 simulations, and from observations and a reanalysis data product. Extreme 5 
temperatures include annual maximum daily maximum temperature (TXx) and the annual 95th percentile 6 
of daily maximum temperature (TXp95). Grey shading mark the reference period 1979-2018. (a) and (b), 7 
temperatures from CMIP5 and CMIP6 simulations, respectively. Solid lines are multi-model averages 8 
while the blue shading shows the multiple range of global mean temperature by all models. CMIP5 9 
temperatures include the models’ historical simulations and future projection under RCP4.5 forcing 10 
scenario. CMIP6 temperatures include the models’ historical simulations and future projections under the 11 
SSP2-4.5 forcing scenario (note that RCP4.5 and SSP2-4.5 do not share the same forcing). (c) Observed 12 
temperatures based on HadCRUT4 and temperatures computed from ERA–Interim reanalysis. 13 

 14 
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 2 
Figure 11.2: Synthesis of event attribution literature. The symbols depict types of extreme events for which one or 3 

more such events have been studied in the event attribution framework (see Appendix Table 11.A.1). The 4 
location of symbols does not indicate the places of the event occurrence as the symbols represent the 5 
synthesized assessment of all studies for the same type of events occurring in the region. The arrows 6 
indicate the direction of changes in the intensity and likelihood of the events due to anthropogenic climate 7 
change. A “mixed signal” indicates that different studies found different results regarding the direction of 8 
changes in magnitude and frequency, depending on the definition of the event (Section 11.2.5). 9 
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Box 11.1, Figure 1: Multi-model mean fractional changes in % per degree of warming for (a) annual maximum 2 
precipitation (Rx1day), (b) thermodynamic contributions and (c) dynamic contributions estimated 3 
using the difference between full changes and changes in thermodynamic contributions. Changes 4 
were derived from a linear regression for the period 1950–2100. Stippling indicates that at least 5 
80% of the models agree on the sign of the signal. A more detailed description of the estimation of 6 
dynamic and thermodynamic contributions is given in Pfahl et al. (2017).  7 
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Figure 11.3: Synthesis of confidence in attribution of extremes vs confidence in projection of extremes 3 

 4 
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 5 
Figure 11.4: Flowchart, adapted from (Otto et al., submitted), depicting the assessment process to identify the quality 6 

of evidence in attribution studies and illustrating the different decision steps when assing the quality of 7 
evidence.  8 
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Figure 11.5: Global warming level (°C) for the emergence of a robust increase in the probability of extremes 3 

attributable to anthropogenic forcing. The temperature displayed is from the 10‐year period when the 4 
lower bound (5th percentile) of the risk ratio for 20-year TXx (a,b) and Rx1day (c,d) events first exceeds 5 
1.0 and remains above 1.0 for all subsequent periods. The first column calculates extremes from each grid 6 
box, while the second column first calculates the mean of the surrounding 25 grid boxes (5 x 5) to 7 
represent larger-scale extremes. A perfect-model approach was used with the CanESM2 large ensemble 8 
and areas in grey indicate emergence did not occur before +4.7 °C. Adapted from Kirchmeier‐Young et 9 
al. (2019). 10 
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 2 
Figure 11.6: Regional-scale analysis of the global mean temperature of emergence for temperature extremes and 3 

precipitation extremes based on the CMIP5 and CMIP6 ensembles. For definition of regions, see Atlas 4 
[adapted from Seneviratne and Hauser (submitted)], for a detection compared to pre-industrial time rather 5 
than late 20th century conditions]. 6 
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 3 
Figure 11.7: Linear trends over 1950-2018 in the annual maximum daily maximum temperature (TXx, top), the annual 4 

number of days when daily maximum temperature exceeds its 90th percentile during a base period 1961-5 
1990 (TX90p, middle), and the annual minimum daily minimum temperature (TNn, bottom) based on the 6 
HadEX3 data set. Units are °C/decade for TXx and TNn and days/decade fir TX90p. HadEX3 is gridded 7 
product at 2.5° latitude x 3.75 ° longitude resolution. Linear trends are calculated only for grids with at 8 
least 66% annual values over the period. Areas without sufficient data are shown in grey. (adapted from  9 
Dunn et al. submitted) 10 
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 1 
Figure 11.8: Top panel: A portrait diagram of relative spatially averaged root mean square errors (RMSEs) in the 2 

1981–2000 climatologies of temperature indices simulated by the CMIP6 models with respect to the 3 
ERA‐5 reanalysis (upper triangle), and HadEX3 (right triangle). The RMSEs are spatially averaged over 4 
global land 531 grid points. The top row indicates the mean relative RMSE across all indices for a 5 
particular model.  The  grey‐shaded  columns  and  blue-red  columns  on  the  right  side  indicates  the 6 
standardized median RMSEmedian,std for CMIP6 and CMIP5 and their differences. Adapted from Kim 7 
et al., (submitted). Middle panel: Difference between CMIP6 multi-model average and ERA5 in their 8 
respective averages over 1979-2014. Bottom panel: Difference between CMIP6 multi-model average and 9 
HadEX3 in their respective averages over 1979-2014. The left in both middle and bottom panels is for 10 
TXx and the right for TNn. Unit is °C. Adapted from Kim et al., (submitted), Li et al., (submitted) and 11 
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Wehner et al., (submitted).  1 
 2 
 3 

 4 
Figure 11.9: Projected  changes (°C) in annual maximum daily maximum temperature (TXx) at 1.5°C, 2°C, 3°C, and 5 

4°C of global warming compared to the early-industrial baseline (1851-1900), based on simulations by 21 6 
CMIP5 and 11 CMIP6 models. Stippling indicates where the multi-model average change is larger than 7 
the across-model standard deviation (Note to reviewers: stippling scheme will be changed in the FGD to 8 
be consistent with other chapters, maps will be updated if additional simulations from CMIP6 models 9 
become available).  10 
 11 
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 4 
Figure 11.10: Projected  changes (°C) in annual minimum daily minimum temperature (TNn) at 1.5°C, 2°C, 3°C, and 5 

4°C of global warming compared to the early-industrial baseline (1851-1900), based on simulations by 6 
21 CMIP5 and 11 CMIP6 models. Stippling indicates where the multi-model average change is larger 7 
than the across-model standard deviation (Note to reviewers: stippling scheme will be changed in the 8 
FGD to be consistent with other chapters, maps will be updated if additional simulations from CMIP6 9 
models become available).  10 
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 1 
Figure 11.11: Regional mean changes in annual maximum daily temperature (TXx) for land regions, the global land 2 

and global ocean, against changes in global mean surface temperature (Tglob) as simulated by CMIP5 3 
models for historical conditions (black) and under different forcing scenarios including RCP2.6 (light 4 
blue), RCP4.5 (blue), RCP6.0 (light red), and (red) RCP8.5. The black line indicates the 1:1 reference 5 
scaling. The grey shading indicates the range over all RCPs. [Note to reviewers: the plot will be updated 6 
to include CMIP6 simulations for the FGD, as well as the final selected AR6 regions].  7 
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 3 
Figure 11.12: (a) Trends in annual maximum amount of one-day precipitation (Rx1day) during 1950–2018 at 8345 4 

stations with sufficient data for the calculate data to estimate. Light blue dots indicate increases and 5 
light red dots mark decreases. Solid blue and red dots indicate statistically significant increases and 6 
decreases, respectively, as determined by a two-tailed test conducted at the 5% level. (b) Summary 7 
statistics of the percentage of stations with statistically significant trends in Rx1day in the observations 8 
during the same period and in 1000 bootstrap samples. The blue and red colors indicate significant 9 
positive and negative trends, respectively, in the observations. Box-and-whisker plots summarize the 10 
breadth of the distribution from 1000 bootstrap realizations under the no-trend null hypothesis. In the 11 
plots, the upper and lower edges of the boxes mark the 25th and the 75th percentiles and the red lines 12 
indicate the median values. The upper and lower whiskers show the 97.5th and the 2.5th percentiles, 13 
respectively. Adapted from (Sun et al., submitted).  14 

 15 
  16 



Second Order Draft Chapter11 IPCC AR6 WGI 

Do Not Cite, Quote or Distribute 11-251 Total pages: 271 

 

 1 
 2 

Figure 11.13: Top panel (matrix): A portrait diagram of relative spatially averaged root mean square errors (RMSEs) 3 
in the 1981–2000 climatologies of precipitation indices simulated by the CMIP6 models with respect to 4 
the ERA‐5 reanalysis (upper triangle), and HadEX3 (right triangle). The RMSEs are spatially averaged 5 
over global land 531 grid points. The top row indicates the mean relative RMSE across all indices for a 6 
particular model.  The  grey‐shaded  columns  and  blue-red  columns  on  the  right  side  indicates  the 7 
standardized median RMSEmedian,std for CMIP6 and CMIP5 and their differences. Adapted from Kim 8 
et al., (submitted). Other panels (maps): Percent errors in the CMIP6 multimodel mean Rx1day (1979-9 
2014) relative to ERA5 (top), HadEX3 (middle) and REGEN (bottom). Brown indicate that models are 10 
too dry, while blue indicates that they are too wet. Adapted from Kim et al., (submitted), Li et al., 11 
(submitted) and Wehner et al., (submitted).  (top), HadEX3 (middle), and REGEN (bottom) 12 

13 
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Figure 11.14: Projected percentage changes (%) in annual maximum one-day precipitation at 1.5°C, 2°C, 3°C, and 3 

4°C of global warming compared to the early-industrial baseline (1851-1900), based on simulations by 4 
21 CMIP5 and 11 CMIP6 models. Stippling indicates where the multi-model average change is larger 5 
than the across-model standard deviation (Note to reviewers: stippling scheme will be changed in the 6 
FGD to be consistent with other chapters, maps will be updated if additional simulations from CMIP6 7 
models become available)  8 
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Figure 11.15: Global land median changes in the 50-year return values of annual maximum 1-day precipitation 3 

(Rx1day; A-B) and 5-day precipitation (Rx5day; C-D) against changes in global annual mean surface 4 
air temperature (GMST) in the CMIP6 multi-model ensemble projections under different future forcing 5 
scenarios. At each land grid cell, the corresponding return values are first estimated in each of the six 6 
overlapping 30-year periods (i.e., 2021-2050, 2031-2060, …, 2071-2100) for each model and forcing 7 
scenario. Then the global land median relative changes in the estimated return values from one period to 8 
a later period and the corresponding GMST changes are plotted as scatter points, with these scatter 9 
points marked according to forcing scenarios (A and C) or climate models (B and C). The black solid 10 
lines mark the median regression lines of the scatter points, while the grey shading bounds the 5-95% 11 
regression lines of the scatter points. The black dashed lines show the 7% per °C (CC-scaling rate) 12 
reference line. Adapted from (Li et al., submitted). 13 
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Figure 11.16:  Trends in annual maximum daily streamflow during 1971-2010 for SREX regions with at least 50 3 

streamflow gauge stations with sufficient data (from Gudmundsson et al. 2019). 4 
  5 
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 3 
Figure 11.17: Sketch of processes and drivers related to different drought types. Note that all relationships are 4 

indicated under the dry range of the given variable and may not apply to humid conditions (e.g. impacts 5 
of soil moisture on evapotranspiration). The asterisk (*) denotes that under conditions of critical soil 6 
moisture deficits, plant water deficits are generally critically affected by high levels of atmospheric 7 
evaporative demand (only a + relationship); however the effects can be limited outside the growing 8 
season and under humid soil moisture but dry atmospheric conditions (see text for details). The double 9 
asterisk (**) denotes that under critical soil moisture deficits CO2 effects on plant water savings can be 10 
limited as evidenced by experimental studies in which water and CO2 effects are controlled (see text for 11 
details).  12 
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 5 
Figure 11.18: Observed trends in drought severity and frequency obtained from 3-month SPEI and SPI based on 6 

Global Precipitation Climatology Centre (GPCC) precipitation using the Climate Research Unit (CRU) 7 
Epot datasets from 1981 to 2016. The threshold to identify drought episodes was set at -1 SPI/SPEI 8 
units, which represents 20% of probability (1 event in 5 years). Based on (Spinoni et al., 2019). 9 
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 4 
Figure 11.19: Observed linear trend over 1951-2018 in the annual consecutive dry days (CDD) from the most recent 5 

HadEX3 data set. Units: days/decade. (from Dunn et al., submitted)  6 
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Figure 11.20: Projected changes in Consecutive Dry Days for projections at 1.5°C, 2°C, 3°C and 4°C of global 3 

warming compared to pre-industrial conditions (1850-1900), using empirical scaling relationship based 4 
on transient CMIP6 simulations. [Stippling will be added for FGD] 5 
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 1 
Figure 11.21: Projected changes in surface soil moisture for projections at 1.5°C, 2°C, 3°C and 4°C of global 2 

warming compared to pre-industrial conditions (1850-1900), using empirical scaling relationship based 3 
on transient CMIP6 simulations. [Stippling will be added for FGD] 4 
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 3 
Figure 11.22: Summary schematic of past and projected changes in tropical cyclone (TC), extra-tropical cyclone 4 

(ETC), atmospheric river (AR), and severe convective storm (SCS) behaviour and their associated 5 
confidence levels. Changes are shown at the global scale (statements 1–5) and regional scale 6 
(statements 6, 7).  7 
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 1 
Box 11.3, Figure 1: Analysis of the percentage of land area affected by temperature extremes larger than a) two or b) 2 

three standard deviations in June-July-August (JJA) between 30°N and 80°N using an approach 3 
using a standard normalization (orange) and a corrected normalization (grey). The more 4 
appropriate estimate is the corrected normalization. These panels show for both estimates a 5 
substantial increase in the overal land area affected by very high hot extremes since 1990 onward. 6 
From Sippel et al.   7 
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 3 
Box 11.3, Figure 2: Geographical distribution of notable climate anomalies and events occurring around the world in 4 

2015. The warm/cold/dry/wet categories are defined according to precipitation and temperature 5 
anomalies for the period DJF 2015/2016 which coincides with the highest magnitude of ENSO. 6 

 7 
  8 
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Box 11.3, Figure 3: Global extreme climate events in July 2018 (Japan Meteorological Agency, 2018). This figure 3 

shows overlaid climate extremes (warm, cold, wet and dry) from weekly reports for July 2018. 4 
[FGD PLACEHOLDER: WILL INCLUDE AN UPDATED FIGURE PROVIDING ANOMALIES 5 
OVER THE WHOLE DURATION OF THE EVENT, I.E. AT LEAST MAY-AUGUST 2018] 6 
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 2 
Box 11.3, Figure 4: (left) Probabilities for exceeding concurrent hot day areas in the reference period 1958–1988 (p0) 3 

for the multimodel ensemble (gray range) and observations (black line). The 2018 area is 4 
highlighted by a purple vertical dashed line in each subpanel. (right) CMIP5-based multi-model 5 
range of probabilities for exceeding concurrent hot days areas experienced in May-July 2018 for 6 
global warming of +1°C (orange), +1.5°C (red) and +2°C (dark red) with respect to 1870-1900.  7 
From Vogel et al. (2019).  8 
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 1 
Box 11.4, Figure 1:“Reasons for concerns” (RFCs), highlighting RFC2 on “Risks associated with extreme weather 2 

events. From Oppenheimer, M. et al (2014), IPCC AR5 WG2). 3 
 4 
 5 
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(b)

 
 1 
FAQ 11.1, Figure 1: Schematic representations of the probability density function of (a) daily temperature, which 2 

tends to be approximately Gaussian, and (b) daily precipitation, which has a skewed distribution. 3 
Solid lines represent a previous (historical) distribution and dashed lines a changed (future) 4 
distribution. The probability of occurrence, or frequency, of extremes is denoted by the shaded 5 
areas. In the case of temperature (red and blue shade), changes in the frequencies of extremes 6 
can be affected either by changes only in the mean, or average (shift) or in both the mean and the 7 
variance, or shape (shift+var). For example, the wider distribution of the shift+var case means 8 
that both cold and warm extremes are more common relative to the average than in the historical 9 
or future (shift) cases. But combined with the increase in average, this increase in variability 10 
means a higher probability of extremely warm temperatures compared to the future (shift) case, 11 
where the variability does not increase. Similarly, in a skewed distribution such as that of 12 
precipitation (green shaded), a change in the mean of the distribution generally affects its 13 
variability or spread, and thus an increase in mean precipitation would also imply an increase in 14 
heavy precipitation extremes, and vice-versa. In addition, the shape of the right-hand tail could 15 
also change, affecting extremes. Furthermore, climate change may alter the frequency of 16 
precipitation and the duration of dry spells between precipitation events. (Parts a–c modified 17 
from Folland et al., 2001, and modified from Peterson et al., 2008, as in Zhang and Zwiers, 18 
2012.) 19 
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 1 
FAQ 11.2, Figure 1.: Illustration of enhanced risks associated with compound events (from Zscheischler et al., 2018b), 2 

The hypothetical present-day distribution of two climatic drivers and their potential future 3 
distribution, together with a critical region in which impacts are induced. Continuous lines depict 4 
the 50th and 80th percentiles, dashed lines denote the 95th percentiles. The coloured points 5 
denote different possibilities to generate potentially critical events. The critical region is shown 6 
in orange with a blurred border to illustrate uncertainty in the estimation of its extent. The 7 
critical region can only be known if enough critical events have occurred (or can be simulated) to 8 
characterize it. This figure illustrates that climate change is modifying the envelope of the 9 
distribution of climate extremes we have at the moment, which possibly could yield new 10 
unprecedented extremes which are within some “critical region” in which new impacts could 11 
happen. 12 
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FAQ 11.3, Figure 1: Examples of how temperature extremes differ in cooler and warmer climates. Changes in 3 

extreme events can be thought of as either changes in the frequency of events of a given 4 
magnitude or as changes in the magnitude of events that occur at the same frequency. These two 5 
concepts are closely related, as illustrated in this example for (a) hot extremes and (b) cold 6 
extremes. The vertical axis shows the range of extreme temperatures on a logarithmic scale, 7 
while the horizontal axis shows the estimated average time between events, referred to as the 8 
return period of an event. In a warmer climate, extreme hot events of the same magnitude occur 9 
more frequently (that is, the return period for a given temperature decreases) and cooler events 10 
occur less frequently (return period increases) as indicated by the horizontal arrows between 11 
curves. If we look at events of a fixed rarity (constant return period), we see that in a warmer 12 
climate, both hot and cold extreme temperature events of a given return period are warmer 13 
(vertical arrows), although not necessarily by the same amount. 14 
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Figure 11.A.1.: Regional mean changes in annual minimum nighttime temperature (TNn) for land regions, the global 3 

land and global ocean, against changes in global mean surface temperature (Tglob) as simulated by 4 
CMIP5 models for historical conditions (black) and different forcing scenarios including RCP2.6 5 
(light blue), RCP4.5 (blue), RCP6.0 (light red), and (red) RCP8.5. The black line indicates the 1:1 6 
reference scaling. The grey shading indicates the range over all RCPs. [Note to reviewers: the figure 7 
will be updated to include CMIP6 simulations for the FGD, as well as the final selected AR6 regions]. 8 
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 1 
Figure 11.A.2.: Regional mean changes in regional mean warming (Tmean) for land regions, the global land and 2 

global ocean, against changes in global mean surface temperature (Tglob) as simulated by CMIP5 3 
models for historical conditions (black) and different forcing scenarios including RCP2.6 (light blue), 4 
RCP4.5 (blue), RCP6.0 (light red), and (red) RCP8.5. The black line indicates the 1:1 reference scaling. 5 
The grey shading indicates the range over all RCPs. [Note to reviewers: the figure will be updated to 6 
include CMIP6 simulations for the FGD, as well as the final selected AR6 regions]. 7 
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