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SM14.1 Table for 14.4 Indigenous Peoples and 
Climate Change

Table SM14.1 |  Summary of the observed impacts and projected risks and adaptation for Indigenous Peoples in North America, with evidence assessed

Impact, risk and/or 
adaptation

References

Indigenous knowledge and 
science
Indigenous knowledge and 
science are resources for 
understanding climate-change 
impacts and adaptive strategies 
(very high confidence).

Battiste and Henderson (2000); Houser et al. (2001); Maynard (2002); Trosper (2002); Davidson-Hunt and Berkes (2003); Hassol (2004); Simpson (2004); 
Barrera-Bassols and Toledo (2005); Mustonen (2005); Berkes et al. (2007); Dodson (2007); Cochran et al. (2008); Sakakibara (2008); Toledo et al. (2008); 
Turner and Clifton (2009); Wildcat (2009); Lemelin et al. (2010); Sakakibara (2010); Weatherhead et al. (2010); Alexander et al. (2011); McNeeley and 
Shulski (2011); Sánchez-Cortés and Chavero (2011); Colombi (2012); Ford (2012); McCarty et al. (2012); Campos et al. (2013); Cunningham Kain et al. 
(2013); Gearheard et al. (2013); Nancy and Spalding (2013); Sena and UN Permanent Forum on Indigenous Issues Secretariat (2013); Toledo (2013); 
Bennett et al. (2014); CTKW (2014); Intergovermental Panel on Climate Change (2014); Maynard (2014); Sena (2014); Gadamus et al. (2015); Kootenai 
Culture Committee (2015); Quispe and UNPFII (2015); UNGA (2015); Council of Athabascan Tribal Governments (2016); Daniel et al. (2016); Dockry et al. 
(2016); Ford et al. (2016); Johnson et al. (2016a); Johnson et al. (2016b); Kermoal and Altamirano-Jiménez (2016); Hiza-Redsteer and Wessells (2017); 
Merculieff et al. (2017a); Merculieff et al. (2017b); Raymond-Yakoubian and Angnaboogok (2017); UNGA (2017); Behe et al. (2018); David-Chavez and 
Gavin (2018); Ikaarvik (2018); Jantarasami et al. (2018); McGregor (2018); Nelson and Shilling (2018); Sheremata (2018); UNGA (2018); Bachelet (2019); 
Bering Sea Elders Group (2019); Billiot et al. (2019); Carter et al. (2019); FAQI (2019); Greenwood and Lindsay (2019); Ijaz (2019); Mikraszewicz and 
Richmond (2019); Ratima et al. (2019); Thompson et al. (2019); Tom et al. (2019); Donatuto et al. (2020); Ford et al. (2020); Gift Lake Métis Settlement 
(2020); Kenote (2020); Latulippe and Klenk (2020); Lewis et al. (2020); Metcalfe et al. (2020); Popp et al. (2020); Timler and Sandy (2020); Vogel and 
Bullock (2020); Atlas et al. (2021); BIA (2021b); Camacho-Villa et al. (2021); Cameron et al. (2021); Fast et al. (2021); Fischer et al. (2021); Hauser et al. 
(2021); Jones et al. (2021); Lake (2021); Yua et al. (2021)

Indigenous livelihoods and 
economies
Current and projected 
climate-change impacts 
disproportionately harm 
Indigenous Peoples’ livelihoods 
and economies (very high 
confidence).

Ford et al. (2006); ICC Canada (2008); Ellis and Brigham (2009); Ford (2009); Meakin and Kurtvits (2009); Swinomish Indian Tribal Community (2009); 
Hori (2010); Kronik and Verner (2010); Wesche and Chan (2010); Confederated Salish and Kootenai Tribes of the Flathead Reservation (2013); Cozzetto 
et al. (2013); Dittmer (2013); Ford et al. (2013); Grah and Beaulieu (2013); Lynn et al. (2013); St. Regis Mohawk Tribe (2013); Tam et al. (2013); The Navajo 
Nation Department of Fish and Wildlife et al. (2013); Barbaras (2014); Brubaker et al. (2014b); Brubaker et al. (2014c); Chapin et al. (2014); Donatuto 
et al. (2014); Nania et al. (2014); Parlee et al. (2014); Durkalec et al. (2015); Berner et al. (2016); Brinkman et al. (2016); Stults et al. (2016); Yakama et al. 
(2016); Lewis and Peters (2017); Medeiros et al. (2017); Melvin et al. (2017); Nyland et al. (2017); Petersen et al. (2017); Scott et al. (2017); Angel et al. 
(2018); Conant et al. (2018); Dupigny-Giroux et al. (2018); Great Lakes Indian Fish and Wildlife Commission (2018); Hori et al. (2018a); Hori et al. (2018b); 
Jantarasami et al. (2018); Markon et al. (2018); May et al. (2018); McGregor (2018); Oficina Internacional del Trabajo (2018); Wall (2018b); Agnew::Beck 
(2019); Heeringa et al. (2019); ITK (2019); Kapp (2019a); Khalafzai et al. (2019); Marushka et al. (2019); Shinbrot et al. (2019); Anderzén et al. (2020); 
Centre for Indigenous Environmental Resources et al. (2020); Cold et al. (2020); Hasbrouck et al. (2020); Human Rights Watch (2020); ICC Alaska (2020); 
Ross and Mason (2020b); Ross and Mason (2020a); Segal et al. (2020); Settee (2020); Tangen (2020); Gibson et al. (2021)

Indigenous Peoples’ health
Climate-change impacts have 
harmful effects on Indigenous 
Peoples’ public health, physical 
health and mental health, 
including harmful effects 
connected to the cultural and 
community foundations of 
health (very high confidence).

Norgaard (2007); Pfeiffer and Huerta Ortiz (2007); Pfeiffer and Voeks (2008); Sakakibara (2009); Bell et al. (2010); Swinomish Indian Tribe Community 
(2010); Riley et al. (2011); Vanderslice (2011); Ford (2012); Cozzetto et al. (2013); Doyle et al. (2013); EPA (2013); Jamestown S’Klallam Tribe and 
Adaptation International (2013); Redsteer et al. (2013a); Redsteer et al. (2013b); Voggesser et al. (2013); Brubaker et al. (2014c); Ford et al. (2014); 
Hanrahan et al. (2014); Cunsolo Willox et al. (2015); Bad River Band of Lake Superior Tribe of Chippewa Indians and Abt Associates Inc. (2016); Chief et al. 
(2016); Confederated Salish and Kootenai Tribes of the Flathead Reservation (2016); Gamble et al. (2016); Grand Traverse Band of Ottawa Chippewa 
Indians (2016); Norton-Smith et al. (2016); Puyallup Tribe of Indians (2016); Rosol et al. (2016); Yakama et al. (2016); Alexander et al. (2017); Scott et al. 
(2017); Udall and Overpeck (2017); Bell and Brown (2018); Blackfeet (2018); Campo Caap (2018); Chavarria and Gutzler (2018); Conant et al. (2018); 
Edwin and Mölders (2018); Gonzalez et al. (2018); Jantarasami et al. (2018); Kloesel et al. (2018); Markon et al. (2018); May et al. (2018); Meadow et al. 
(2018); Mihychuk (2018); Peacock et al. (2018); Ratelle et al. (2018); Reo and Ogden (2018); Rioja-Rodríguez et al. (2018); Stevenson (2018); Tom et al. 
(2018); Wilson (2018); Bisbal and Jones (2019); Christianson et al. (2019); EPA (2019); FAQI (2019); Horn and Webel (2019); ITK (2019); Lac du Flambeau 
(2019); Lee et al. (2019); Marks-Marino (2019c); Mashpee Wampanoag (2019); Norgaard and Tripp (2019); Peralta and Scott (2019); Ristroph (2019); 
Tlingit and Haida (2019); Billiot et al. (2020a); Billiot et al. (2020b); Cunsolo et al. (2020); Gobler (2020); Kirezci et al. (2020); Marks-Marino (2020); Martin 
et al. (2020a); Middleton et al. (2020a); Middleton et al. (2020b); Mottershead et al. (2020); Palinkas (2020); Stewart et al. (2020); Ute Mountain Ute 
Tribe (2020); Woo et al. (2020); Adams et al. (2021); Arsenault (2021); Donatuto et al. (2021); National Tribal Air Association (2021); Preece et al. (2021); 
Schlinger et al. (2021); United States Federal Emergency Management (2021); Walker (2021); Whyte et al. (2021a); Whyte et al. (2021b); Wiecks et al. 
(2021)
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Impact, risk and/or 
adaptation

References

Climate-related disasters and 
extreme environmental events
Indigenous Peoples are affected 
dramatically by climate hazards 
and other climate-related 
extreme environmental events 
(very high confidence).

Delta Environmental Services and Wilbur Smith Associates (2005); Knutson et al. (2007); Hennessy et al. (2008); ITF (2008); GAO (2009); Karl et al. 
(2009); Papiez (2009); Swinomish Indian Tribal Community (2009); Redsteer et al. (2010); Riley et al. (2011); Steinman and Vinyeta (2012); Ballard and 
Thompson (2013); Cohen et al. (2013); Cozzetto et al. (2013); Crimmins et al. (2013); Doyle et al. (2013); Jamestown S’Klallam Tribe and Adaptation 
International (2013); Madrigano et al. (2013); Redsteer et al. (2013a); Redsteer et al. (2013b); Shinnecock Indian Nation (2013); Southern Ute Indian Tribe 
and GAP Consulting LLC (2013); Voggesser et al. (2013); Brubaker et al. (2014a); Brubaker et al. (2014b); Johnson and Gray (2014); Maldonado et al. 
(2014); Nania et al. (2014); Druen et al. (2014); Thompson et al. (2014); DOE (2015); Golden et al. (2015); Maldonado (2015); Marino (2015); Chief et al. 
(2016); Citizen Potawatomi Nation et al. (2016); Confederated Salish and Kootenai Tribes of the Flathead Reservation (2016); Confederated Tribes of the 
Umatilla Indian Reservation (2016); Hoh Indian Tribe (2016); Jamestown S’Klallam Tribe (2016); Norton-Smith et al. (2016); Oneida Nation Pre-Disaster 
Mitigation Plan Steering Committee and Bay-Lake Regional Planning Commission (2016); Peterson et al. (2016); Port Gamble S’Klallam Tribe (2016 2021); 
Puyallup Tribe of Indians (2016); Yakama et al. (2016); Burkett et al. (2017); Keene (2017); Krueger (2017); McNeeley (2017); Patrick (2017); Quinault 
Indian Nation (2017); Wall (2017); Bronen et al. (2018); Carter et al. (2018); Conant et al. (2018); Crepelle (2018); Doyle et al. (2018); EPA (2018); GAO 
(2018); Goode (2018); Haynes et al. (2018); IHS (2018); Jantarasami et al. (2018); Kloesel et al. (2018); Maldonado (2018); Markon et al. (2018); May 
et al. (2018); McNeeley et al. (2018); Patrick (2018); Pershing et al. (2018); Redsteer et al. (2018); Wall (2018a); Collins et al. (2019); Dannenberg et al. 
(2019); Emanuel (2019); Jeo Consulting Group (2019); Kapp (2019b); La Jolla Band of Luiseno Indians (2019); Lac du Flambeau (2019); Marks-Marino 
(2019a); Marks-Marino (2019b); Marks-Marino (2019c); Mashpee Wampanoag (2019); McKinley et al. (2019); Pala Band of Mission Indians (2019); 
Ristroph (2019); Sharp (2019); Sioui (2019); University of Alaska Fairbanks Institute of Northern Engineering et al. (2019); Ute Mountain Ute Tribe and 
Wood Environment Infrastructure Solutions Inc (2019); Affiliated Tribes of Northwest Indians (2020); Bamford et al. (2020); Beym and Jones (2020); 
Billiot et al. (2020a); Billiot et al. (2020b); Centre for Indigenous Environmental Resources et al. (2020); Cheung and Frölicher (2020); Comardelle (2020); 
Congressional Research Service (2020); Cooley (2020); Crepelle (2020); Cunsolo et al. (2020); Fayazi et al. (2020); Hoell et al. (2020); LaDuke and Cowen 
(2020); Laufkötter et al. (2020); Low (2020); Lummi Indian Business (2020); Marks-Marino (2020b); McNeeley et al. (2020); NIFC (2020); NWAC (2020); 
Palinkas (2020); Port Gamble S’Klallam Tribe (2020 2021); Sauchyn et al. (2020); State of Alaska (2020a); State of Alaska (2020b); Thistlethwaite et al. 
(2020); Bridgeview Consulting LLC (2021); Cozzetto et al. (2021a); Cozzetto et al. (2021b); Donatuto et al. (2021); Gaughen et al. (2021); Indigenous 
Climate Action et al. (2021); Jurkowski et al. (2021); Maldonado et al. (2021); Marks-Marino (2021); Morales et al. (2021); Muckleshoot Tribal Council 
(2021); National Tribal Air Association (2021); Schlinger et al. (2021); United States Federal Emergency Management (2021); Walker (2021); Whyte et al. 
(2021a); Whyte et al. (2021b); Wiecks et al. (2021); Yellow Old Woman-Munro et al. (2021); Zambrano et al. (2021)

Indigenous self-determination 
and self-governance
Indigenous self-determination 
and self-governance are 
the foundations of adaptive 
strategies that improve 
understanding and research 
on climate change, develop 
actionable community plans 
and policies on climate change, 
and have demonstrable 
influence in improving 
the design and allocation 
of national, regional and 
international programmes 
relating to climate change (very 
high confidence).

Clinton (2000); Grossman (2008); Wildcat (2008); Doolittle (2010); Wilson and Smith (2010); McInerney-Lankford et al. (2011); Sorenson (2011); Kuslikis 
(2012); Parker and Grossman (2012); Campos et al. (2013); Kronk Warner and Abate (2013); Callison (2015); Warner (2015a); Warner (2015b); Maldonado 
et al. (2016); Angel et al. (2018); Dupigny-Giroux et al. (2018); Tribal Climate Adaptation Guidebook Writing Team et al. (2018); Whyte et al. (2018); Hepler 
and Kronk Warner (2019); National Congress of American Indians (2019); Reyes (2019); Thompson et al. (2019); Tribal Adaptation Menu Team (2019); AFN 
(2020); Centre for Indigenous Environmental Resources et al. (2020); Donatuto et al. (2020); Ferguson and Weaselboy (2020); Irlbacher-Fox and MacNeill 
(2020); Metcalfe et al. (2020); Sloan Morgan (2020); Whitney et al. (2020); BIA (2021a); Cozzetto et al. (2021a); Cozzetto et al. (2021b); Huntington et al. 
(2021); Jones et al. (2021); Maldonado et al. (2021); McClain (2021); Morales et al. (2021); Sawatzky et al. (2021); Singletary et al. (2021); STACCWG 
(2021); Whyte et al. (2021a); Whyte et al. (2021b); Wiecks et al. (2021); Wildcat et al. (2021)

Table SM14.2 |  Summary of observed impacts of, and adaptation to, climate change in agriculture in Mexico

Region Impacted crop Observed change Comments Adaptation References

National
Soil
(environmental 
enabler)

Droughts, reduced soil fertility

Temperature in soil will 
increase, suitability loss from 
22 to 18%
Soil erosion and degradation

Galloza et al. (2017)

National/south All
ENSO has never been as variable as 
during the past few decades.

Li et al. (2013);

National Wheat (–5.5%) since 1980 increase planted area
Hernandez-Ochoa et al. 
(2018)

National Maize (production)
Low precipitation during 1997–1998 
led to a 25% decrease in the total 
production of maize

Use of genomic estimates 
for rapid breeding of 
drought-tolerant varieties; a 
shift in cultivation practices, 
particularly the planting time

Murray-Tortarolo et al. 
(2018)

SM14.2 Tables for Section 14.5.4 Food and 
Fibre
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Region Impacted crop Observed change Comments Adaptation References

South (Oaxaca) Maize
Changing rainfall patterns; soil had 
lost its ability to retain soil moisture

TK Traditional system that 
retains water (cajete)

Agroecological resilience, 
agrobiodiversity, minimise 
risk from climate and pests

Rogé and Astier (2015)

Central 
(Guanajuato)

Maize
Maximum temperature rise of 0.092°C 
yr–1 (1961–2009)

Urban and peri-urban 
agriculture

Change of crop, use of 
native seeds, incorporation 
of organic matter and 
reforestation with native 
species

Vélez-Torres et al. (2016)

Central (State of 
Mexico, Puebla, 
Veracruz)

Maize, wheat, 
barley

Integrates climate change, 
soil degradation and water 
balance scenarios

Two adaptation actions were 
evaluated:
changing planting date and 
increase of organic mulches.

Monterroso-Rivas et al. 
(2018b)

Central 
(Guanajuato, 
Jalisco, State of 
Mexico,
Michoacán and 
Querétaro)

Maize

Tmax (0.8°C),
Tmin (0.74°C)
Precipitation (131 mm) June and 
September
Hailstorm increase in frequency

Seasonal climate changes 
coincide with the most 
vulnerable stage or flowering 
period of maize

Use of local, 
water-deficit-tolerant 
varieties, polycultives, 
opportune weeding or 
agroforestry

Altieri and Nicholls (2009); 
Mastachi-Loza et al. (2016)

Central (Veracruz) Coffee
During 1980–2011 decrease in tonnes 
per ha harvested from 3.0 to 2.3 t/ha
(–23%)

Loreto et al. (2017)

North and South 
America

Maize, soybean, 
wheat

72, 30 and 57%, respectively

During ENSO
(same directional response of 
each crop for North America 
and South America)

Anderson et al. (2017)

Chiapas, Oaxaca, 
Veracruz

Coffee

Tendency of the average annual 
temperature of the principal coffee 
production states in Mexico: Chiapas, 
Oaxaca and Veracruz are the states 
evaluated from1985 to 2019. Since 
2006, a marked increase in the 
temperature (over the average 
24–25°C) has been observed, and it 
remains above average.

Climate driven instability 
in the flowering and fruit 
generation cycles and a rise 
in temperature and irregular 
rainfall has favoured the 
proliferation of Hemileia 
vastatrix (coffee rust) 
in coffee-growing areas 
>1400 m above sea level

Fundamental role of native 
biodiversity in Hemileia 
vastatrix management, 
agroforestry systems and 
organic production schemes; 
soil and plant nutrition for 
crop reinforcement

Torres Castillo et al. (2020)

Central (Veracruz) Coffee
During 1980–2011 decrease in tons 
per ha harvested from 3.0 to 2.3 t/
ha (–23%)

Loreto et al. (2017)

Coffee Droughts, heavy rains Flowering reduction Soil management Manson (2018)

Note:

ENSO: El Niño–Southern Oscillation

Table SM14.3 |  Projected impacts of climate change on agriculture in Mexico

Region Crop
Projected impact

(change in suitability, percent-
age of surface)

Models (GCMs) and Scenarios Comment References

Semiarid region of 
Central Mexico

Water
Decline of up to 9.16% in the available 
water for groundwater recharge and 
runoff

7 models; 2 scenarios
2050s and 2080s

B1 and A1B
Herrera-Pantoja and 
Hiscock (2015)

National Soil
Soil moisture deficit, shift to the next 
drier regime

3 models; 2 scenarios (RCP4.5 and 
RCP8.5)

1.5°C warming scenario
Gomez Diaz et al. 
(2019)

National Maize suitability −57 to −2.4%
2 models (HADGEM2-ES and 
MPI-ESM-LR); 1 scenario (RCP8.5) by 
2075–2099

Land suitability
López-Blanco et al. 
(2018)

National
Maize in 
agricultural land 
suitability

−18 to 5% (RCP4.5)
−16 to 11% (RCP8.5)

3 models (GFDL, HAGDEM, and REA); 2 
scenarios (RCP4.5 and RCP8.5)

Agricultural land suitability
Gómez Díaz et al. 
(2020)



14SM

14SM-6

Chapter 14 Supplementary Material North America

Region Crop
Projected impact

(change in suitability, percent-
age of surface)

Models (GCMs) and Scenarios Comment References

National
Sorghum in 
agricultural land 
suitability

−16 to 12% (RCP4.5)
−11 to 7% (RCP8.5)

3 models (GFDL, HAGDEM and REA); 2 
scenarios (RCP4.5 and RCP8.5)

Agricultural land suitability
Gómez Díaz et al. 
(2020)

National
Wheat in 
agricultural land 
suitability

−34 to −23% (RCP4.5)
−38 to −15% (RCP8.5)

3 models (GFDL, HAGDEM and REA); 2 
scenarios (RCP4.5 and RCP8.5)

Agricultural land suitability
Gómez Díaz et al. 
(2020)

Central (Tlaxcala) Barley −16 to 2%
2 models; 3 scenarios (RCP4.5, RCP6.0, 
and RCP8.5)

Calderón-García 
et al. (2015)

Veracruz Coffee

Change (% in yields)

National
Maize 
(production)

0.05 to −30%
14 models from the CMIP5 ensemble; 
4 scenarios ( RCP2.6, RCP4.5, RCP6.0, 
and RCP8.5)

Murray-Tortarolo 
et al. (2018)

North (Durango) Maize −55 to −70%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Arce Romero et al. 
(2020)

Central West
(Jalisco, State of 
Mexico )

Maize 10 to −55%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Method includes climate 
change, soil degradation and 
water balance scenarios.

Montiel-González 
et al. (2017); Reyer 
et al. (2017); 
Monterroso-Rivas 
et al. (2018a); Arce 
Romero et al. (2020)

South (Oaxaca) Maize 5 to −10%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Arce Romero et al. 
(2020)

North (Zacatecas) Beans 8 to −51%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Arce Romero et al. 
(2020)

Central (State of 
Mexico)

Beans −80 to −100%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Arce Romero et al. 
(2020)

North (Sonora) Wheat −28 to 2%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Arce Romero et al. 
(2020)

Central
(Guanajuato, 
Puebla)

Wheat −25 to −82%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Puebla includes climate 
change, soil degradation and 
water balance scenarios.

Monterroso-Rivas 
et al. (2018a); Arce 
Romero et al. (2020)

National Wheat −6. 9 to −7.9%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2050

CO2 effect
Hernández-Ochoa 
(2018)

South (Chiapas, 
Campeche)

Soybean −8 to 57%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Arce Romero et al. 
(2020)

Northeast
(Tams)

Sorghum −81 to 31%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Arce Romero et al. 
(2020)

Central 
(Guanajuato)

Sorghum −60 to −14%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Arce Romero et al. 
(2020)

Central (State of 
Mexico, Hidalgo, 
Veracruz, Tlaxcala)

Barley −92 to 56%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Tlaxcala includes economic 
impacts
. Veracruz includes climate 
change, soil degradation and 
water balance scenarios.

Monterroso-Rivas 
et al. (2018a); Arce 
Romero et al. (2020)
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Region Crop
Projected impact

(change in suitability, percent-
age of surface)

Models (GCMs) and Scenarios Comment References

Central (State of 
Mexico, Veracruz)

Potato −61 to 2%
5 models; 2 scenarios (RCP4.5 and 
RCP8.5)
2015–2039, 2045–2069 and 2075–2099

Arce Romero et al. 
(2020)

Veracruz Coffee 3 GCMs,

Southeast 
(Tabasco)

Coffee

The mean potential yields would 
decrease by 41% by the year 2050 
due to the effect of the increase in 
daytime temperatures on the maximum 
photosynthetic ratio.

An ensemble of 23 models; 3 scenarios 
(SRES A2, B1 and A1B)

Increase Coffea canephora P 
(robusta variety)

Navarro-Estupinan 
et al. (2018)

Veracruz Coffee −34%
3 models; 2 scenarios (RCP4.5 and 
RCP8.5)

Soil fertility and coffee 
production

Brigido and Herrera 
(2015)

−7 to −10% 3 scenarios (A2, A1B, B1)
Includes soil and water 
balance

Rivera-Silva et al. 
(2013)

Table SM14.4 |  Impacts to crops from climate-impact drivers from recenta greenhouse, field and modelling studies in North America

Climate-impact driver Impact to crops Location References

Decreased irrigation water
(simulated −25% reduction) for irrigated 
crops (projected)

Change in yield from 25% water supply reduction: alfalfa (−4%), apples (−4%), 
barley (−9%), broccoli (−0.5%), cauliflower (−0.3%), citrus (−1%), corn (−1.5%), 
cotton (−23.6%), grapes (−0.5%), lettuce (−1%), melons (−0.7%), onions 
(−0.2%), potatoes (−0.5%), sugar beets (−2.4%), wheat (−9.2%)

Southern mountain 
region, USA

Frisvold and Konyar 
(2012)

−50% water availability
(greenhouse experiment)

Bell pepper (Capsicum annuum L.) (−65%) Canada
Aladenola and 
Madramootoo (2014)

−50% water availability
(deficit irrigation field experiment)

Onion (−22%) Southern plains, USA Leskovar et al. (2012)

Extreme heat: increase in daily maximum 
temperatures and heat waves (projected)

Maize (−18 to −27%)
Cotton (−26 to −38%)

Southwest USA Elias et al. (2018)

Increased ozone (+25%)
Increased CO2 (+250 ppm)

Snap bean: −24.4% (O3)
+6.5% (CO2)

USA Burkey et al. (2012)

Increased CO2 (+250 ppm)
Increased temp (+4°C)
(greenhouse experiment)

Habanero pepper: changes in flowering and fruiting of habanero pepper in 
response to higher temperature and CO2

CO2: +32.4%
Temperature: −36.4%

Mexico
Garruña-Hernández 
(2012)

Weather extremes impacting crops 
(observed)

Crop losses and insurance payments to compensate farmers for drought, heat, 
hail, frost and other extreme events

Midwest
USA

Kistner et al. (2018); 
Reyes and Elias (2019)

Longer growing seasons and warmer 
winters (projected)

Increased weed and pest pressure Northern USA Wolfe et al. (2018)

Note:

(a) The literature is from 2012 to 2020.

Table SM14.5 |  Projected changes in North American livestock

Climate-impact driver Impact to livestock Location References

Extreme heat: increase in daily 
maximum temperatures and 
heatwaves

Livestock heat stress (according to the Temperature–Humidity index 
(THI)); slow livestock growth, reduced profitability, reduced fertility, 
increased parasites and pathogens

Southeastern USA, southern Great 
Plains, Northeast USA, Puerto Rico

St-Pierre et al. (2003); Key and 
Sneeringer (2014); Hristov et al. 
(2018); Ortiz-Colón et al. (2018)

Drought: increase in drought area, 
intensity and severity

Diminished water sources; diminished forage production
Varies across North America, varies 
seasonally and annually

Havstad et al. (2018)

Increased CO2 concentrations Reduced forage quality and benefit to invasive plant species North Central USA Derner et al. (2018)

Increased frequency and magnitude 
of weather extremes

Requires greater adaptive capacity to maintain viable production 
systems

Northern Great Plains Derner et al. (2018)

Temperature and precipitation 
changes

Reduced net primary production and biomass for livestock feeding Mexico Monterroso Rivas et al. (2011)
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Table SM14.6 |  Observed and projected climate-change impacts on aquaculture

Region

Time period 
of impact/
reference 

period

Stressor Taxa
Environ-

ment
Impact Evidence/source Type of studya References

North 
America; 
USA and 
Canada

Past OA
Molluscs
(calcifying)

Marine

Growth, 
calcification, 
mortality, 
reduced 
attachment

Negative responses 
reported in the majority 
of experiments and in the 
industry; also agreement 
across climate change 
modelling in vulnerability 
and production assessments; 
robust

Review; current 
risk assessment; 
RCP8.5 (2100); 
future risk 
assessment

Handisyde et al. (2017); 
Froehlich et al. (2018); Food 
Agriculture Organization 
of the United Nations 
(2019); Reid et al. (2019); 
Stewart-Sinclair et al. 
(2020)

Global Experimental OA Finfish Both Metabolism Limited Review

Froehlich et al. (2018); Food 
Agriculture Organization of 
the United Nations (2019); 
Reid et al. (2019); Clements 
et al. (2020)

Global Past OA Seaweed Marine

Mixed: 
calcifiers likely 
impacted, 
non-calcifiers 
benefit

Limited (largely 
experimental); more solution/
mitigation than impact 
oriented in the literature of 
farmed production

Review and 
experimental

Food Agriculture 
Organization of the United 
Nations (2019); Froehlich 
et al. (2019); Reid et al. 
(2019)

North 
America; 
USA and 
Canada; 
global

Past, current, 
future (i.e., 2100)

Temperature 
increase

Finfish Both
Growth and 
mortality

Lots of literature on the 
effects of temperature, 
but the exact response, 
positive or negative, is 
mixed; new ENSO/La Niña 
extreme temperature 
marine declines, cooler 
temperature production 
declines; freshwater no effect. 
Large-scale climatic effects 
on traditional Hawaiian 
fishpond aquaculture; new 
farmed cobia experiments of 
marine heatwaves and HAB, 
heatwaves driving impact of 
growth and feeding; robust

Review; 
time-series 
estimation; 
model 
projections; 
vulnerability 
assessments

McCoy et al. (2017); 
Froehlich et al. (2018); 
Ahmed et al. (2019); Food 
Agriculture Organization of 
the United Nations (2019); 
Reid et al. (2019); Bertrand 
et al. (2020); Le et al. (2020)

North 
America; 
USA and 
Canada; 
global

Past, current, 
future (i.e., 2100)

Temperature 
increase

Mollusc Both
Growth and 
mortality

Lots of literature on the 
effects of temperature, but 
the exact response, positive 
or negative, is mixed; robust

Review

Food Agriculture 
Organization of the United 
Nations (2019); Froehlich 
et al. (2019); Reid et al. 
(2019); Weiskerger et al. 
(2019)

North 
America; 
USA and 
Canada; 
global

Past, current, 
future (i.e., 2100)

Temperature 
increase

Seaweed Marine
Growth and 
mortality

Some literature on the effects 
of temperature, but the 
exact response, positive or 
negative, is mixed; robust

Review

Food Agriculture 
Organization of the United 
Nations (2019); Froehlich 
et al. (2019); Reid et al. 
(2019)

Global/
regional

Past
Storms/
extremes

All Freshwater
Growth and 
mortality

Extremes from current 
and past events (e.g., 
extreme ENSO events), 
limited evidence of impact 
on freshwater declines, 
aquaculture and vulnerability 
comparatively low

Vulnerability 
assessment; 
review

Handisyde et al. (2017); 
Froehlich et al. (2018); Food 
Agriculture Organization of 
the United Nations (2019); 
Froehlich et al. (2019)

Global/
regional

Past
Storms/
extremes

All Freshwater
Growth and 
mortality

Extremes from current 
and past events (e.g., 
extreme ENSO events), 
limited evidence of impact 
on freshwater declines, 
aquaculture and vulnerability 
comparatively low

Vulnerability 
assessment; 
review

Handisyde et al. (2017); 
Froehlich et al. (2018); Food 
Agriculture Organization of 
the United Nations (2019)
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Region

Time period 
of impact/
reference 

period

Stressor Taxa
Environ-

ment
Impact Evidence/source Type of studya References

Global/
regional

Past
Storms/
extremes

All Freshwater
Growth and 
mortality

Extremes from current 
and past events (e.g., 
extreme ENSO events), 
limited evidence of impact 
on freshwater declines, 
aquaculture and vulnerability 
comparatively low

Vulnerability 
assessment; 
review

Handisyde et al. (2017); 
Froehlich et al. (2018); Food 
Agriculture Organization of 
the United Nations (2019); 
Froehlich et al. (2019)

Global/
regional

Past SLR/floods All Marine
Growth and 
mortality

Increased events and 
vulnerability, especially 
low-lying pond systems and 
hatcheries

Vulnerability 
assessment; 
review

Handisyde et al. (2017); 
Froehlich et al. (2018); Food 
Agriculture Organization of 
the United Nations (2019); 
Reid et al. (2019)

Global/
regional

Past SLR/floods Seaweed Marine
Growth and 
mortality

Limited evidence Review Froehlich et al. (2018)

Global/
regional

Past
Storms/
extremes

Finfish Marine
Growth and 
mortality

Extremes from current and 
past events (e.g., extreme 
ENSO events) have negatively 
impacted marine aquaculture.

Review
Bertrand et al. (2020); 
Sippel et al. (2020)

Global/
regional

Past

Global/
regional

Past
Storms/
extremes

Mollusc Marine
Growth and 
mortality

Extremes from current and 
past events (e.g., extreme 
ENSO events) have negatively 
impacted marine aquaculture.

Review
Froehlich et al. (2018); 
Sippel et al. (2020)

Global/
regional

Past
Storms/
extremes

Seaweed Marine
Growth and 
mortality

Limited evidence Review
Froehlich et al. (2018); 
Sippel et al. (2020)

Global Future Hypoxia Mollusc
Growth and 
mortality

Limited evidence Review

Froehlich et al. (2018); Food 
Agriculture Organization of 
the United Nations (2019); 
Reid et al. (2019)

Global Future Hypoxia Seaweed Marine
Growth and 
mortality

Limited evidence Review

Froehlich et al. (2018); Food 
Agriculture Organization of 
the United Nations (2019); 
Reid et al. (2019)

Global Future HAB Finfish
Growth and 
mortality

Limited evidence Review

Handisyde et al. (2017); 
Froehlich et al. (2018); Food 
Agriculture Organization of 
the United Nations (2019); 
Reid et al. (2019)

Global Future HAB Mollusc
Growth and 
mortality

Limited evidence Review

Handisyde et al. (2017); 
Froehlich et al. (2018); Food 
Agriculture Organization of 
the United Nations (2019); 
Reid et al. (2019)

Global Future HAB Seaweed Marine
Growth and 
mortality

Limited evidence Review

Froehlich et al. (2018); Food 
Agriculture Organization of 
the United Nations (2019); 
Reid et al. (2019)

Notes:

OA: ocean acidification; SLR: sea level rise; HAB: harmful algal blooms; ENSO: El Niño–Southern Oscillation

(a) Experimental, risk/vulnerability assessment, adaptation evaluation; review, time-series estimation; model projections
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Table SM14.7 |  Adaptation in aquaculture

Sub-region

Time period 
of impact/
reference 

period

Type Adaptation Taxa
Agree-
ment

Evidence
Language 

to use
Source

USA, Canada, 
global

Past (recent 
decade)

Aquaculture

Clear 
adaptive and 
integrated 
policy

All High

Review of social and policy literature; 
surveys and interviews of stakeholders 
and experts; farm-level and community 
technical coping most common; focused 
on US ocean acidification (OA); knowledge 
sharing needed

Medium

Sanchez-Jerez 
et al. (2016); 
Froehlich et al. 
(2018); Brugère 
et al. (2019); 
Food Agriculture 
Organization of 
the United Nations 
(2019); Ford et al. 
(2020); Galparsoro 
et al. (2020)

Global
Experimental 
future conditions

Aquaculture Genetic Bivalve Medium

Limited for OA; some evidence of long-term 
adaptive potential exists (e.g., epi-genetics, 
cryopreservation, selective breeding); 
some evidence of short-term coping 
(e.g., hybridisation and polyploidisation); 
evidence that technologies exist but uptake 
slow; linked consideration for disease and 
growth

Low

Sae-Lim et al. 
(2017); Food 
Agriculture 
Organization of 
the United Nations 
(2019); Reid et al. 
(2019); Clements 
et al. (2020)

Global
Past (recent 
decade) and 
future

Aquaculture Genetic Finfish Medium

Temperature and associated extremes most 
studied; hybridisation and polyploidisation 
short-term coping; longer-term selective 
breeding and technologies exist but uptake 
slow; linked consideration for disease and 
growth

Medium

Food Agriculture 
Organization of 
the United Nations 
(2019)

North 
America, 
global

Current Aquaculture Mitigation
Farmed 
seaweed

Emerging
Local buffering of OA and hypoxia; high 
biophysical potential, cost and scale 
prohibitive

Low
Duarte et al. (2017); 
Froehlich et al. 
(2019)

North 
America, 
global

Current (2050) Aquaculture
Set 
production 
goals

All High
Aquaculture will fill climate-driven 
‘production gaps’ in the future.

Medium

Food Agriculture 
Organization of 
the United Nations 
(2019); Gentry et al. 
(2019); Costello 
et al. (2020)

Global 2100 Aquaculture Expansion Finfish Medium
Conditions to support finfish production in 
artic regions will expand.

Medium

Troell et al. (2017); 
Klinger et al. 
(2018); Froehlich 
et al. (2019)

Global Future Aquaculture All

(a) Provide incentives (e.g., flexible leasing 
and permitting, increase access to ‘crop’ 
insurance) for aquaculture enterprises 
to assess risks to infrastructure so that 
farming operations and facilities can 
be ‘climate-proofed’ and relocated if 
necessary; (b) strengthen environmental 
impact assessments for coastal 
aquaculture activities to include the 
additional risks posed by climate change; 
(c) develop partnerships with regional 
technical agencies to provide support for 
development and monitoring of sustainable 
aquaculture

AR5 Table 30-2 
Oceans chapter 
(Hoegh-Guldberg 
et al. 2014)
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Table SM14.8 |  Observed and projected climate-change impacts on fisheries

Climate 
driver

Type Summary Observed change
Ev-

idence
Agree-
ment

Summary Projected changes

Climate 
shocks; 
variability

Flatfish

Climate 
change and 
extreme 
events have 
impacted 
fisheries.

Climate shocks reduce catch, 
revenue and county-level wages 
and employment among commercial 
harvesters in US-NE; climate variability 
1996–2017 is responsible for a 
16% (95% CI: 10–22%) decline in 
county-level fishing employment in 
New England; impacts are mediated by 
local biology and institutions (Oremus, 
2019).

Robust High

Extreme 
heat

Multiple 
species

Climate 
change and 
extreme 
events have 
impacted 
fisheries.

In the EBS, GOA and N-CC, declines in 
fish biomass and shifts in distribution 
were four times higher and greater 
during MHWs than those of general 
warming over the same period; pelagic 
fish showed largest decrease in 
biomass (7%), as did sockeye salmon 
and California anchovy (Cheung and 
Frölicher, 2020).

Robust High

Marine 
heatwaves 
amplify 
climate-change 
impacts on 
fisheries.

Doubling of impact levels is projected by 2050 
among the most important fisheries species over 
previous assessments that focus only on long-term 
climate change (Cheung and Frölicher, 2020).

HAB; climate 
shocks

Shellfish

Climate 
change and 
extreme 
events have 
impacted 
fisheries.

Fishery closures during the 2014–2016 
MHW and HAB event closed multiple 
fisheries along the west coast (US-NW, 
US-SW), differentially impacted 
small and large vessels with greatest 
impacts on small-vessel revenue 
and participation in the fishery; 
impacts were highest for ports in 
the N-CC region and least for fishing 
communities; diverse harvest portfolios 
and livelihoods supported adaptation 
(Jardine et al., 2020; Fisher et al., 2021).

Robust High

Mean 
temperature 
increase

Fish and 
shellfish

Climate 
change 
has caused 
declines in 
fisheries 
yield and 
productivity.

Changes in mean maximum 
sustainable yield of fisheries in multiple 
regions are associated with warming 
temperatures over the past century 
(2001–2010 to 1930–1939) including 
declines along the entire west coast 
of North America that range from 
−14% in the EBS to −29% in the S-CC. 
Along the east coast, declines of −3 to 
−9% were observed in the GOMX and 
US-SE, while increases of 8–15% were 
observed in the US-NE and CA-CQ (Free 
et al., 2019).

High High

Climate 
change will 
reduce fishery 
catches 
and North 
American 
subsistence 
resources; 
impacts will be 
higher under 
high-emission 
scenarios.

Estimated 17% decrease in (CA-WA) Arctic cod 
populations due to habitat loss by 2100 under 
RCP8.5 (high-emission scenario), and greater 
declines in catch under RCP8.5 relative to SSP2.6, 
but potential increases in abundance for other 
Arctic and subarctic species (Steiner (2019). In 
CA-BC, projected declines in abundance of key 
Indigenous subsistence resources (e.g., salmon, 
halibut, herring, rockfish and shellfish) are greater 
for RCP8.5 than RCP2.6 (−20.8 to −15.0%, 
respectively) (Weatherdon et al., 2016).

Mean 
temperature 
increase

Shellfish

Climate 
change 
has caused 
declines in 
fisheries 
yield and 
productivity.

Juvenile red king crab survival 
decreased significantly with exposure 
to higher temperatures; after 150 d, 
only 3% of crabs survived treatments 
of ambient temperature plus 4°C and 
7.8 pH (Swiney et al., 2017). American 
Lobster abundances declined (78%) 
in southern New England and have 
increased (515%) in the Gulf of Maine 
due to water temperature changes 
and differing conservation measures 
(between 1985 and 2014 for GOM, 
and 1997 and 2014 for southern New 
England) (Le Bris et al., 2018).

Climate 
change will 
reduce the 
yield and 
productivity 
of fish and 
shellfish 
with greater 
impacts at 
RCP8.5 than 
RCP2.6.

Modest increases (up to 10%) are projected in 
landings of CA-QC and CA-AT surf clams and 
shrimp under RCP2.6 by 2100, while projected 
declines in snow crab up to 16% (RCP2.6, RCP8.5); 
minor changes projected for lobster and scallop, 
while mussels projected to increase 21% (Wilson 
et al., 2020).
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Climate 
driver

Type Summary Observed change
Ev-

idence
Agree-
ment

Summary Projected changes

Mean 
temperature 
increase

Shellfish

Climate 
change will 
shift fisheries 
poleward and 
to depth.

Projected redistributions poleward and changes 
to access including decreases in access to 
shellfisheries in CA-QC (Wilson et al., 2020). 
Poleward distributional shifts (10.3–18.0 km per 
decade) are greater under RCP8.5 than RCP2.6 for 
multiple important Indigenous subsistence species 
in CA-BC and reduce availability of subsistence 
species by 28% under RCP8.5 by 2100), with 
impacts declining poleward (Weatherdon et al., 
2016).

Multiple
Fish and 
shellfish

Climate 
change 
will impact 
fisheries 
livelihoods and 
increase fishery 
losses.

By end of century, under RCP2.6, higher are North 
American fish biomass (9.1%), fishery catch 
potential (9.7%) and fishery revenue (9.1%), 
while household costs are lower (by 3.4%) under 
low-emission scenarios (relative to RCP8.5); gains 
under lower emissions are greatest for US fisheries 
(Sumaila et al., 2019).

Multiple Flatfish

Climate 
change 
will alter 
transboundary 
stocks.

Climate change (RCP8.5) is projected to shift 
the relative percentage of catch and profits 
for US–Canada transboundary stocks of 
Atlantic cod (higher in Canada than USA) and 
yellowfin flounder (Much higher in Canada than 
USA), but has little effect on Pacific halibut; 
effects are reduced or minimal under RCP2.6 
(Palacios-Abrantes et al., 2020; Sumaila et al., 
2020).

Multiple
Fish and 
shellfish

Climate 
change will 
reduce the 
yield and 
productivity 
of fish and 
shellfish 
with greater 
impacts at 
RCP8.5 than 
RCP2.6.

Climate change drives declines in productivity 
and catch potential for 24 of 25 evaluated fishery 
species in Mexico with largest declines for abalone 
and pacific sardine (−35 and −44%, respectively). 
Impacts are greatest for artisanal species 
(Cisneros-Mata et al., 2019). Climate-driven 
changes to food webs and marine conditions 
are associated with declines in fish community 
biomass across all North American coasts except 
US-SW and the Canadian Arctic. Declines are 
greatest from CA-BC to the EBS (Carozza et al., 
2019).

Multiple Flatfish

Climate 
change will 
shift fisheries 
poleward and 
to depth.

Of flatfish in the North Atlantic and North Pacific, 
67% are projected to shift poleward 39.1 km per 
decade under RCP8.5 (Cheung, 2018).

Multiple Flatfish

Climate 
change will 
reduce the 
yield and 
productivity 
of fish and 
shellfish 
with greater 
impacts at 
RCP8.5 than 
RCP2.6.

Declines in North American catch potential of 
flatfish species are projected under RCP8.5 for 
the EBS, GOA, GOMX, US-SE and US-NE (Cheung, 
2018).
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Climate 
driver

Type Summary Observed change
Ev-

idence
Agree-
ment

Summary Projected changes

Multiple
Multiple 
species

Climate 
change will 
reduce the 
yield and 
productivity 
of fish and 
shellfish 
with greater 
impacts at 
RCP8.5 than 
RCP2.6.

Projected biomass of historically large fisheries 
in the US-NA and CA-QC regions increased until 
~2030 after which declines were observed; under 
RCP8.5, declines of 5–40% were projected by 
2090 for most NAFO divisions; biomass increases 
between 20 and 70% were projected for Arctic and 
subarctic divisions with lower historical landings 
(Bryndum-Buchholz et al., 2020).

Multiple
Multiple 
species

Climate 
change will 
reduce the 
yield and 
productivity 
of fish and 
shellfish 
with greater 
impacts at 
RCP8.5 than 
RCP2.6.

Assuming status quo management, declines are 
projected in multiple groundfish species in the 
EBS due to climate effects on fish and food webs 
with most groups near or below recent historical 
(1991–2017) biomass levels by 2080 (Whitehouse 
and Aydin, 2020).

Multiple
Multiple 
species

Climate 
change will 
reduce the 
yield and 
productivity 
of fish and 
shellfish 
with greater 
impacts at 
RCP8.5 than 
RCP2.6.

Under RCP8.5, end-of-century (2080–2100 
average) community spawner stock biomass, 
catches and mean body size decreased by 
36% (±21%), 61% (±27%) and 38% (±25%), 
respectively. Climate variability drove uncertainty 
in projections for 85% of species (Reum et al., 
2020).

Multiple 
drivers

Shellfish

Climate 
change will 
shift fisheries 
poleward and 
to depth.

Shifting distributions poleward and changes 
to access, including decreases in access to 
shellfisheries in CA-QC, are projected (Wilson 
et al., 2020).

Multiple 
drivers

All

Climate 
change has 
altered the 
distribution 
of fish and 
fisheries.

Species distributions have shifted 
poleward and phenology has shifted 
earlier with the strongest effects on 
bony fish (Poloczanska et al., 2016; 
Miller et al., 2018).

Very 
high

High

Multiple 
drivers

Shellfish

Climate 
change will 
reduce the 
yield and 
productivity 
of fish and 
shellfish 
with greater 
impacts at 
RCP8.5 than 
RCP2.6.

Declines in landings are twice as high under 
RCP8.5 as RCP2.6 and include 54, 48 and 42% 
declines in landings of lobster, sea scallop and 
northern shrimp, respectively, under RCP8.5 by 
2090. Total shellfish landings (primarily that of 
snow crab) are projected to decline in CA-QC and 
CA-QT, and increase after 2050; declines under 
RCP8.5 are double those of RCP2.6 (Wilson et al., 
2020). Climate change reduced the probability of 
observing recovery in simulations of blue king crab 
in the Bering Sea (Reum et al., 2019).
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Climate 
driver

Type Summary Observed change
Ev-

idence
Agree-
ment

Summary Projected changes

Multiple 
drivers (O2, 
temperature, 
NPP)

Multiple

Climate 
change will 
reduce the 
yield and 
productivity 
of fish and 
shellfish 
with greater 
impacts at 
RCP8.5 than 
RCP2.6.

Projected declines of global catch of 3 mt °C−1 of 
GMWL with disparities in magnitude and direction 
across North American regions and the strongest 
benefits of RCP2.6 relative to RCP8.5 (>30%) 
along the coasts of Mexico; species turnover is 
more than halved between RCP8.5 and RCP2.6 
(Cheung et al., 2016). Using the same modelling 
approach (DBEM), increases of 70% in catch 
potential in the Canadian Arctic were projected 
under RCP8.5 versus minimal increases under 
RCP2.6; however, the present catch potential is 
more than tenfold higher than actual catch and 
estimates are sensitive to model assumptions (Tai 
et al., 2019).

Multiple 
drivers (SLR, 
warming, 
OA)

Fisheries 
and 
fisheries 
Man-
agement

Climate 
change will 
increase fishery 
management 
challenges.

Multiple effects of climate change on fisheries 
(e.g., fish distributions, productivity, declines 
in catch, novel opportunities for new fisheries, 
changes in fish growth) can result in increased 
conflict drivers including changes in fishery yields, 
more or less fishers, opportunistic exploration, food 
insecurity, resource allocation trade-offs, changing 
fishery locations and changes to fishing livelihoods 
(Mendenhall et al., 2020).

Multiple 
drivers (tem-
perature, 
OA)

Shellfish

OA will 
negatively 
impact future 
fisheries catch.

Climate change reduces the probability of 
observing recovery in projection simulations of 
blue king crab in the Bering Sea (Reum et al., 
2019).

Ocean 
and lake 
acidification

Shellfish

OA has 
reduced 
yield and 
impacted 
fish and 
shellfish 
fisheries.

Survival of larval and juvenile red 
king crab (RKC) in the lab decreased 
97–100% with decreasing pH (Long 
et al., 2013; Swiney et al., 2017).

Limited Medium

OA will 
negatively 
impact future 
fisheries catch.

Ocean acidification reduces maximum sustainable 
yield, catch and profits of EBS Tanner crab in 
projection simulations, with projected declines 
>50% over 20 years due to OA impacts on larval 
hatching and survival (Punt et al., 2016). Projected 
economic impacts of OA on Bering Sea RKC 
fisheries are sensitive to assumptions around OA 
effects and global RKC prices (Seung et al., 2015); 
OA declines projected for some shellfisheries but 
are less than impacts of temperature (Wilson et al., 
2020).

Ocean 
and lake 
acidification

Mollusc Limited Medium

OA will 
negatively 
impact future 
fisheries catch.

Projected OA conditions under RCP8.5 are 
anticipated to reach critical risk thresholds for 
mollusc harvests earlier in northern regions than 
southern areas, that is, between present day and 
2030 in northern regions of North America (US-AK, 
US-NW and northern US-NE) and after 2099 in the 
Gulf of Mexico and Hawaiian Islands; combined 
risk is highest in the N-CC (Ekstrom et al., 2015).

Ocean 
and lake 
acidification

Ground-
fish

OA has 
reduced 
yield and 
impacted 
fish and 
shellfish 
fisheries.

There are no appreciable effects of pH 
on larval growth of walleye pollock in 
the lab (Hurst et al., 2013)

Limited Low

OA will 
negatively 
impact future 
fisheries catch.

Population declines of 17% were projected due 
to temperature, while an additional 1% decline 
in Arctic cod populations by 2100 under RCP8.5 
was due to the effects of OA (Steiner, 2019); OA 
influenced biological reference points used for 
setting target harvest limits for northern rock sole 
(Punt et al., 2021). Projected declines of flatfish 
declined up to 20–80% in California Current 
ecosystem projections with OA due to loss of 
shelled prey items.

Temperature Shellfish

Climate 
change will 
shift fisheries 
poleward and 
to depth.

Projected increases in suitable thermal habitat 
for American lobster in Nova Scotia (CA-QC) are 
greater under RCP2.6 than RCP8.5 (note different 
base models used for each projection) (Greenan 
et al., 2019).

Temperature
Multiple 
species
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Climate 
driver

Type Summary Observed change
Ev-

idence
Agree-
ment

Summary Projected changes

Temperature
Multiple 
species

Climate 
change will 
shift fisheries 
poleward and 
to depth.

Poleward shifts of ~20.6 km per decade are 
projected for multiple North American fisheries 
based on changes in thermal habitat under RCP2.6 
and RCP8.5; changes were greater under RCP8.5 
than RCP2.6 and largest along the west coast of 
North America (Morley et al., 2018).

Multiple 
drivers

Fish and 
shellfish

Seafood is an important source of 
nutrients and protein for Indigenous 
Peoples in CA-BC (Section 14.5.6; 
Marushka, 2019). Polices that 
incorporate nutrition in fisheries 
management are limited in North 
America (Kohen, 2021).

Robust High

Climate 
change poses 
a risk to the 
health and 
nutrition of 
Indigenous 
Peoples in 
North America.

Projected climate change (2050) reduces essential 
nutrient intake by Indigenous Peoples in CA-BC 
by 21 and 31% under RCP2.6 and RCP8.5, 
respectively. Substitution of seafood with selected 
alternative non-traditional foods did not meet 
nutritional needs (Marushka et al., 2019); In 
CA-BC, projected declines in abundance of key 
Indigenous subsistence resources (e.g., salmon, 
halibut, herring, rockfish and shellfish) are 
greater for RCP8.5 than RCP2.6 (−20.8 to 15.0%, 
respectively) (Weatherdon et al., 2016).

Notes:

HAB: harmful algal bloom; NPP: net primary production; SLR: sea level rise; OA: ocean acidification; MHW: marine heatwave; NAFO: Northwest Atlantic Fisheries Organization

See Figure 14.1 for additional acronym definitions.

SM14.3 Supplemental Table of Case Studies for 
Section 14.6, Figure 14.11

Table SM14.9 |  Key risk assessment for North America. Results were used to identify topic areas for burning embers and the full risk assessment of available literature; see 
corresponding section text for full assessment.

Key risk Sector References Sub-region
Climate 
scenario

Time
period

Hazard
score

Vulner-
ability
score

Exposure
score

Risk
assessment

KR1

Bolsen and Shapiro 
(2018)

3 High

Ding et al. (2011) High

Drews and Van den 
Bergh (2016)

3 High

Morton et al. 
(2017)

0 High

Supran and Oreskes 
(2017)

3 High

van der Linden 
et al. (2015)

High

Aklin and 
Urpelainen (2014)

High

KR2

Cities and 
infrastructure: cities

Castro and De 
Robles (2019)

Mexico: all Current 2 3 3 High

Terrestrial and 
freshwater: land 
species

EPA (2017)

USA: all RCP4.5
2099 (cumulative 
costs)

3 Med

USA: all RCP8.5
2099 (cumulative 
costs)

3 Med
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Key risk Sector References Sub-region
Climate 
scenario

Time
period

Hazard
score

Vulner-
ability
score

Exposure
score

Risk
assessment

KR3

Health and 
communities: 
morbidity

Greene (2018)

California
During the 2012–
2016 California 
drought

3 3 3 Higha

California
During the 2012–
2016 California 
drought

3 3 3 Higha

Health and 
communities: mortality

Mach et al. (2019) Global RCP8.5 2100 2 2 Undetectable

Conflict, crime, 
violence, security

Mach et al. (2019) Global RCP4.5 2100 1 1 Undetectable

Terrestrial and 
freshwater: land 
species

Hope et al. (2016)

Canada: 
Ontario

RCP8.5 2070–2100 3 High

Canada: 
Ontario

RCP2.6 2070–2100 1 Low

KR4

Oceans: coastal 
ecosystem

Vousdoukas et al. 
(2020)

USA: 
northwest

RCP4.5 2050 Medium

Poverty and 
livelihoods: marine 
transportation

Smith and 
Stephenson (2013)

Arctic: all RCP4.5 2040–2059 Medium

Arctic: all RCP8.5 2040–2059 High

KR5

Food and fibre:
fisheries and 
aquaculture

Tables SM14.5–
14.7

Potential risk 
evaluated in 
Tables 14.5–
14.7

Higha

Terrestrial and 
freshwater: land 
species

Allen et al. (2015) Global 2 3 3 Very higha

Gauthier et al. 
(2015)

Canada: 
Ontario

2 2 3 High

McIntyre et al. 
(2015)

USA: 
southwest

2 3 3 Very higha

Weiskopf et al. 
(2019)

2 2 2 Higha

Zaifman et al. 
(2017)

2 2 Undetectable

Terrestrial and 
Freshwater: Mountain 
ecosystem

Halofsky et al. 
(2020)

USA: 
northwest

2 2 2 Higha

KR6

Energy resources: 
fossil resources

Bartos and Chester 
(2015)

USA: 
southwest

2040–2060 1 2 3 Medium

Energy resources: 
hydro resources

Bartos and Chester 
(2015)

USA: 
northwest

2040–2060 1 2 3 Medium

Terrestrial and 
freshwater: mountain 
ecosystem

Fell et al. (2017) Global Future 2 3 3 Very higha

Water: freshwater 
resource

Bonsal et al. (2019) Canada: all
Current and 
mid-century

1 1 1 Medium

Brown et al. (2019)

USA: 
southwest

RCP4.5
2046–2070 and 
2071–2095

2 2 Medium

USA: 
southwest

RCP8.5
2046–2070 and 
2071–2095

3 3 High

Cook et al. (2019)
USA: 
southwest

RCP8.5 2048–2057 Low

Duran-Encalada 
et al. (2017)

Mexico: 
northeast

2010–2080 3 3 3 Higha

Li et al. (2017)
USA: 
southwest

RCP4.5 2100 2 3 2 High
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Key risk Sector References Sub-region
Climate 
scenario

Time
period

Hazard
score

Vulner-
ability
score

Exposure
score

Risk
assessment

KR6

Water: freshwater 
resource

Paredes-Tavares 
et al. (2018)

Mexico: north RCP4.5

1980–2009 
base period as 
compared with 
2075–2099 
future

2 3 3
Medium to 
higha

Mexico: north RCP8.5

1980–2009 
base period as 
compared with 
2075–2099 
future

3 3 3 Higha

Schwarz (2018)
USA: 
southwest

2050 2 3 3 High

Water: water quality

Chapra et al. (2017)

USA: all RCP8.5
2050 (2040–
2059)

3 3 2 Medium

USA: all RCP4.5
2090 (2080–
2099)

3 3 2 High

USA: all RCP8.5
2050 (2040–
2059)

2 3 2 Medium

USA: all RCP4.5
2090 (2080–
2099)

2 3 2 High

Duran-Encalada 
et al. (2017)

Mexico: 
northeast

2010–2080 3 2 2 High

KR7
Health and 
communities: 
morbidity

Cunsolo Willox 
et al. (2012)

Arctic: Canada

Lifetime of 
community 
members, 
conducted 
2009–2010

3 2 3 High

Cunsolo Willox 
et al. (2013)

Arctic: Canada

Lifetime of 
community 
members, 
conducted 
2009–2010

3 3 High

Dodd et al. (2018) Arctic: Canada
Lived experiences 
of the 2014 
wildfire season

3 3 High

Durkalec et al. 
(2015)

Arctic: Canada 3 3 High

Greene (2018) California
During the 2012–
2016 California 
drought

3 3 3 High

Obradovich et al. 
(2018)

USA: all RCP8.5 2002–2012 3 3 High

Schwartz et al. 
(2017)

New York 2012–2016 3 3 2 High

Vida et al. (2012)
Canada: 
Quebec

1995–2007 3 2 Medium

Yusa et al. (2015) 1993–2013 3 High
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Key risk Sector References Sub-region
Climate 
scenario

Time
period

Hazard
score

Vulner-
ability
score

Exposure
score

Risk
assessment

KR7
Health and 
communities: mortality

Burke et al. (2018)

USA: all RCP8.5

2000 (reference 
period) to 2050 
(projection time 
frame)

3 3 High

Mexico: all RCP8.5

2000 (reference 
period) to 2050 
(projection time 
frame)

3 3 High

Fernández-Arteaga 
et al. (2016)

Mexico: all 2005–2012 3 3 High

Ford et al. (2018)
USA: 
northwest

RCP4.5 2100 3 3 3 Higha

KR8

Food and fibre: 
fisheries and 
aquaculture

Gaichas et al. 
(2014)

USA: northeast RCP8.5 2075–2100 2 2 3 High

Health and 
communities: 
morbidity

Dodd et al. (2018) Arctic: Canada
Lived experiences 
of the 2014 
wildfire season

3 3 High

Greene (2018) California
During the 2012–
2016 California 
drought

3 2 3 High

Health and 
communities: mortality

Kohler et al. (2014)
USA: 
southwest

600–1760 CE 1 3 3 High

KR9

Cities and 
infrastructure: 
transportation

Espinet et al. (2016)

Mexico: 
northeast

2031–2050 High

Mexico: 
northwest

2031–2050 Low

Mexico: 
central

2031–2050 Low

Mexico: 
southwest

2031–2050 Medium

Mexico: 
southeast

2031–2050 Medium

Poverty and 
livelihoods: marine 
transportation

Smith and 
Stephenson (2013)

Arctic: Canada RCP8.5 2075–2100 3 1 2 High

Poverty and 
livelihoods: recreation 
and tourism

Lithgow et al. 
(2019)

Mexico: all Current/present 3 3 3 Higha

KR10

Cities and 
infrastructure: cities

Dunning et al. 
(2012)

Mexico: 
southeast

100–900 CE 2 2 2 Medium

Mexico: 
southwest

100–900 CE 2 2 2 Medium

Hauer et al. (2016) USA: All 2100 3 2 3 High

Health and 
communities: 
morbidity

Harp and 
Karnauskas (2018)

Global 1979–2016 2 1 1 Medium

Mares (2013) USA: Midwest
1990–2009 
monthly

1 1 1 Low

Ranson (2014) USA: all 1960–2009 1 2 2 Medium
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Key risk Sector References Sub-region
Climate 
scenario

Time
period

Hazard
score

Vulner-
ability
score

Exposure
score

Risk
assessment

KR10

Poverty and 
livelihoods: recreation 
and tourism

Dundas and Haefen 
(2020)

USA: all RCP2.6 2020–2049 1 1 3 Low

USA: all RCP4.5 2020–2049 1 1 3 Low

USA: all RCP8.5 2020–2049 1 1 3 Low

USA: all RCP2.6 2050–2079 1 1 3 Low

USA: all RCP4.5 2050–2079 1 1 3 Low

USA: all RCP8.5 2050–2079 1 1 3 Low

USA: all RCP2.6 2080–2099 1 1 3 Low

USA: all RCP4.5 2080–2099 1 1 3 Low

USA: all RCP8.5 2080–2099 1 1 3 Low

Fisichelli et al. 
(2015)

USA: all RCP4.5 2041–2060 2 1 3 Medium

USA: all RCP8.5 2041–2060 3 1 3 High

Groulx et al. (2017)
Canada: 
Prairies

3 3 3 High

Hestetune et al. 
(2018)

USA: Midwest RCP4.5 2035 0 1 Low

Hestetune et al. 
(2018)

USA: Midwest RCP8.5 2035 0 1 Low

Hewer and Gough 
(2019)

Canada: 
Ontario

RCP4.5

2050 (autumn 
only; September, 
October, 
November)

2 1 3 Low

Jedd et al. (2018)
USA: 
northwest

Current 1 Low

Rutty et al. (2015)

Canada: 
Ontario

3 1 3 Medium

Canada: 
Ontario

RCP8.5 2050 3 3 3 High

Poverty and 
livelihoods: recreation 
and tourism 
(continued)

Scott et al. (2019)

Canada: 
Ontario

RCP2.6 2050 3 3 3 High

Canada: 
Ontario

RCP4.5 2050 3 3 3 High

Canada: 
Ontario

RCP8.5 2050 3 3 3 High

Canada: 
Ontario

RCP2.6 2080 3 3 3 High

Canada: 
Ontario

RCP4.5 2080 3 3 3 High

Canada: 
Ontario

RCP8.5 2080 3 3 3 High

Scott et al. (2020)

Canada: 
Ontario

RCP4.5 2050 3 3 3 Very high

Canada: 
Ontario

RCP8.5 2050 3 3 3 Very high

Canada: 
Quebec

RCP4.5 2050 3 3 3 Very high

Canada: 
Quebec

RCP8.5 2050 3 3 3 Very high

USA: northeast RCP4.5 2050 3 3 3 Very high

USA: northeast RCP8.5 2050 3 3 3 Very high

Canada: 
Ontario

RCP4.5 2080 3 3 3 Very high
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Key risk Sector References Sub-region
Climate 
scenario

Time
period

Hazard
score

Vulner-
ability
score

Exposure
score

Risk
assessment

KR 10

Poverty and 
livelihoods: recreation 
and tourism 
(continued)

Scott et al. (2020)

Canada: 
Ontario

RCP8.5 2080 3 3 3 Very high

Canada: 
Québec

RCP4.5 2080 3 3 3 High

Canada: 
Québec

RCP8.5 2080 3 3 3 High

USA: northeast RCP4.5 2080 3 3 3 High

USA: northeast RCP8.5 2080 3 3 3 High

Seekamp et al. 
(2019)

USA: 
southeast

Low

Wilkins et al. (2018) USA: northeast 2050 1 3 Medium

Poverty and 
livelihoods: recreation 
and tourism 
(continued)

Wobus et al. (2017)

USA: all RCP4.5 2050 3 3 3 High

USA: all RCP8.5 2050 3 3 3 High

USA: all RCP4.5 2090 3 3 3 High

USA: all RCP8.5 2090 3 3 3 High

USA: all RCP4.5 2050 3 3 3 High

USA: all RCP4.5 2090 3 3 3 High

USA: all RCP8.5 2050 3 3 3 High

USA: all RCP8.5 2090 3 3 3 High

Note:

(a) Weighting of risk assessment is based on confidence assessment of papers (i.e., level of agreement, robustness, quality of methods, etc.).

SM14.4 Detailed Methods for Burning Ember 
Diagrams

The burning embers diagrams in Chapter 14 outline risks associated 
with climate change as a function of global warming by degrees 
warming above pre-industrial levels. The first two burning embers, 
which cover water (Section 14.3) and economic sectors (Section 14.10), 
focus only on risk by global warming level without adaptation, whereas 
the third burning ember, which covers tourism activities (Section 14.11), 
includes risk without adaptation and risk with adaptation. The exclusion 
of risk with adaptation in the first two embers is due to a lack of 
available literature that would enable valid assessment. The method 
used to develop the embers was adapted from Zommers et al. (2020) 
to include an extensive analysis of key risks and the development of 
a risk assessment database that helped to reveal appropriate ember 
focus areas. Once focus areas for ember development were established 
within the author team, a formal expert elicitation protocol adapted 
from previous methods outlined in Zommers et al. (2020), Oakley and 
O’Hagen (2016) and Gosling et al. (2018) was used to develop threshold 
judgements on risk transitions. Figure SM14.1 outlines the formal five-
step process used to generate the burning ember diagrams.

Using the expert opinion of a subset of the Chapter 14 author team 
(six authors across a range of expertise), we conducted a rapid risk 
assessment of sectors by WGI hazards in order to identify potential 
key risks. Authors were asked to identify the risk of a (climate change) 
caused by increase in a hazard in a given sector for all of North America. 
These key risks were then evaluated further during the assessment, 
and results of the rapid assessment are given in Figure 14.11. A subset 

of case studies from the rapid assessment were evaluated for burning 
ember diagrams. For each unique combination, the hazard-by-sector 
risk was ranked as very high (very high risk and high confidence); high 
(significant impacts and risk, high to medium confidence); medium 
(impacts are detectable and attributable to climate change, medium 
confidence); low, not detected or positive (risk is low or not detectable). 
Blank cells are those where the assessment was not applicable or not 
conducted.

Based on chapter team risk assessment and key risk identification 
protocols (SM14.3) it was decided that existing literature would enable 
robust assessments of risks to (a) freshwater, (b) major economic 
sectors, and (c) key tourism activities across North America. References 
for the current and past assessments are listed in Table SM14.10 (also 
see Table SM14.9).

SM14.4.1 Freshwater

SM14.4.1.1 Water Scarcity

There is large literature on projected declines in water availability for 
portions of North America, primarily in the southwest USA, northern 
Mexico and the Canadian Prairies. Other research focuses on more 
widespread increases in water scarcity relative to projected future 
water demands (Brown et  al., 2019). Assessment for this ember 
considered the latter type of scarcity while focusing primarily on the 
consequences of increased physical aridification. Papers providing 
explicit assessments of risks for different climate-change scenarios 
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informed the calculations of risk transitions with respect to changes 
in global average temperatures. For Mexico, Paredes-Tavares et  al. 
(2018) project increasing water-shortage conditions in the Rio Bravo 
basin over the 21st century, while Molina-Navarro et  al. (2016) 
project roughly a 60% decline in streamflow by the end of the century 
for the Guadalupe River basin. For the Canadian Prairies, Bonsal 
et  al. (2020) used multiple general circulation models (GCMs) and 
emissions scenarios to estimate projected increases in the frequency 
of severe droughts, and Dibike et al. (2017) assessed changes in the 
summer water balance (P-PET) across western Canadian river basins, 
further supporting projections of greater drought severity. Material 
for the USA includes an analysis of climate-change impacts on the 
major multi-purpose water projects operated by the US Bureau of 
Reclamation across the 17 western states (Bureau of Reclamation, 
2021). Projections of aridification in the US-SW are summarised 
by Overpeck and Udall (2020). A study of the Missouri River 
basin documents the increasing role of extreme heat and higher 
evapotranspiration in driving low flows (Martin et al., 2020b), and an 
analysis by Prein et al. (2016) uses the observed relationship between 
specific weather types and droughts in the US-SW to support GCM 
projections of future US-SW drying due to poleward extension of the 
subtropical dry zones leading to increasing anticyclonic conditions.

SM14.4.1.2 Snow/Ice Decline, Streamflow and Summer Water

Many North American rivers are characterised by strong streamflow 
seasonality that is driven by the accumulation of snow and ice 
over the winter season, followed by spring and summer melting. 
Water use and management are tuned to this natural cycle. The 

likelihood of both early-season riverine flooding and low summer 
water availability will increase as warming erodes natural snow 
and ice reservoirs. This presents difficult challenges for management 
of human-constructed reservoirs that are operated for both winter 
flood protection and summer water deliveries. The risk assessment 
for this ember reflects these dual risks while following the available 
literature in emphasising the significance of low summer streamflows 
in areas heavily dependent on irrigated agriculture. Earlier snowmelt 
runoff is projected to harm small communities relying on traditional 
irrigation systems (acequias) in the US-SW by reducing the availability 
of both irrigation water and upland forage (Bai et al., 2019). Milly and 
Dunne (2020) evaluated the combined impacts of changes in snow 
albedo, precipitation and temperature on Upper Colorado River flows, 
to estimate annual flow reductions of 5–24% by mid-century under 
RCP4.5. Ray (2020) uses a decision scaling approach in combination 
with GCM projections to evaluate the likely future performance of 
California’s Central Valley Water System across a range of potential 
future climate conditions. The approach finds a 93% likelihood of 
diminished water exports through the Sacramento–San Joaquin Delta 
to cities and farms in central and southern California by 2050. Ullrich 
(2018) assessed how a mid-century (2042–2046) drought in California 
would differ if the same dynamic conditions emerged as those for 
the 2012–2016 drought, finding much larger losses in snow water 
storage and total water availability. Bonsal (2020) evaluated the 
impacts of earlier snowmelt and declining glacier mass on seasonal 
streamflow patterns and water availability in western Canada. Late-
century impacts under RCP4.5 are projected to include 60% summer 
streamflow declines on Vancouver Island, while winter flows will 
possibly double for the Fraser and Columbia rivers.

1 3 5

2 4

Expert elicitation process for burning ember development

Confidence level

Risk/impact

Low Very high

Very high
High
Moderate
Undetectable

• ••
•

•• ••
••

Transition range

0°C

2°C

3°C

4°C

1°C ••
•••

••

2. Expert elicitation round A: Independent assessment
• Identification of author team lead and team members per ember and 2–3 

external experts  (as needed) 
• Inventory of additional literature and infusion into RAAD database
• Independent assessment of risk transitions, no discussion between 

experts
• Results anonymized and disseminated to group

3. Expert elicitation round B: Group Discussion 
(Refinement)

• Review results and engage in group discussion where 
incongruencies were identified

• External experts solicited when discrepancy remained 
after expert group discussion and additional literature 
examined where needed

4. Expert elicitation round C: Group Discussion and (Validation)
• Review results again and engage in group discussion including 

new expert members 
• Build consensus for final risk transition levels

1. Identification of ember focus
• Chapter Team analysis of key risks (from what to what) 

in North America including extensive literature review 
and risk assessment protocols outlined in SM 14.2 via 
RAAD database 

5. IPCC review process and ember finalization
• Review all peer review comments and revisit embers 

where necessary
• Repeat steps 3 and 4 if needed
• Finalize consensus for 
  final risk transitions

Burning ember
(example)

Figure SM14.1 |  Expert elicitation protocol for burning ember development
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Table SM14.10 |  Authors and references associated with the burning embers figures in Chapter 14

Burning ember Main authors involved Key referencesa

Freshwater
Kathleen Miller, Linda Mortsch, 
Dave Gutzler

Scarcity:
Molina-Navarro et al. (2016); Prein et al. (2016); Dibike et al. (2017); Paredes-Tavares et al. (2018); Brown et al. (2019); 
Bonsal et al. (2020); Martin et al. (2020b); Overpeck and Udall (2020); Bureau of Reclamation (2021)

Snow/ice decline, streamflow and summer water:
Schwarz (2018); Ullrich et al. (2018); Bai et al. (2019); Bonsal et al. (2020); Milly and Dunne (2020); Ray et al. (2020)

Pluvial and flash flooding:
Emanuel (2017); Mahoney, et al. (2018); Prein, et al. (2017); Thistlethwaite, et al. (2018); Wobus, et al. (2019)

Water quality:
Chapra et al. (2017); Lee et al. (2018); Ballard et al. (2019); Coffey et al. (2019)

Economic sectors
Jackie Dawson, Libby Jewett, 
Kirstin Holsman, Michelle Rutty, 
Jeff Hicke

Energy and mining:
Cruz and Krausmann (2013); Kinniburgh et al. (2015); Leong and Donner (2015); McFarland et al. (2015); Clark et al. (2017)

Construction:
Kinniburgh et al. (2015); Rogers et al. (2015); Schulte et al. (2016); Hsiang et al. (2017)

Forestry:
Brecka et al. (2018); D’Orangeville et al. (2018); Chaste et al. (2019)

Agriculture:
Lant et al. (2016); Janssens et al. (2020b)

Fisheries:
Beaugrand et al. (2015); Lam et al. (2016); Holsman et al. (2020)

Transportation:
EPA (2017); Palko and Lemmen (2017); Chinowsky et al. (2019); Koks et al.); Lemmen et al. (2021)

Tourism activities
Jackie Dawson, Michelle Rutty, 
Chris Lemieux

Nordic skiing and snowmobiling:
Wobus et al. (2017); Chin et al. (2018)

Alpine skiing:
Dawson et al. (2009); Rutty et al. (2017); Scott et al. (2019); Scott et al. (2020)

Beach tourism and coral reef snorkelling:
EPA (2017); Groulx et al. (2017); Atzori et al. (2018); Lithgow et al. (2019); Seekamp et al. (2019)

Parks and protected areas visitation:
Fisichelli et al. (2015); Lemieux et al. (2015); Hestetune et al. (2018); Jedd et al. (2018); Wilkins et al. (2018); Hewer and 
Gough (2019); Dundas and Haefen (2020)

Notes:

(a) The North America risk assessment RAAD database also was utilised for all risk transition assessments (SM14.3; Table SM14.9). A summary of analysis is provided below. Other 
analysis notes are also available upon request.

SM14.4.1.3 Pluvial and Flash Flooding

Heavier precipitation events are projected for many parts of North 
America, increasing the potential for flooding, including flash flooding 
in areas distant from existing stream channels. Papers estimating 
projected damages from flooding and/or changes in precipitation 
intensity as a function of climate change were used to inform 
construction of this ember. Emanuel (2017) presents projections of 
end-of-century changes in the frequency of heavy precipitation events 
over the Houston, Texas, metropolitan area for the RCP8.5 scenario. 
Results indicate that the current 100-yr return frequency event would 
increase to a 1 in 5-yr frequency, while the frequency of extremely 
destructive rainfall akin to that produced by Hurricane Harvey would 
increase from an estimated 1 in 2000 year to a 1 in 100-year event. 
Thistlethwaite (2018) used an existing insurance-industry catastrophe 
model for Halifax, Canada, to estimate changes in damages that 
would be produced by increasingly heavy rainfall events. The study 
found that: ‘…average annual losses could increase by 137% by 
mid-century and 300% by late-century due to climate change alone. 
But increasing exposure and value of capital at risk could more than 

double those figures’. Prein (2017) examines future changes in total 
rain volume delivered by mesoscale convective systems (MCS) over 
North America, finding that increases in MCS size and maximum 
precipitation rates will combine to result in large increases in total 
rainfall and potential for flooding. Wobus (2019) calculates current 
and projected future expected annual flood damages (EAD) for 
hydrological basins across the continental USA (CONUS) based on 
current-day exposed assets and projected changes in return intervals 
for floods of various magnitudes. Increased expected damages occur 
in all regions, with the largest impacts in US-NE, US-MW, US-SP and 
US-NP: ‘EAD from flooding typically increases by 25–50% under a 1°C 
warming scenario and in most regions more than double under a 3°C 
warming scenario’. Gaur and Simonovic (2018) assessed changes in 
the return frequency of major fluvial floods across Canada, focusing 
on current 100- and 250-year events based on multiple end-of-century 
GCM projections. They found increased frequencies for northern 
Canadian river basins, with current 100-year events becoming 1 in 
~50-year events, while estimated frequencies tended to decrease 
for southern Canadian basins. A survey of methods for estimating 
probable maximum precipitation (PMP) for dam safety is presented 
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by Mahoney (2018), concluding that: ‘Multiple modeling studies have 
produced results…showing increases of 15 to 50% in PMP later in 
the 21st century’

SM14.4.1.4 Water Quality

The majority of the papers published on the impacts of climate 
change on water quality focus on the USA with results for individual 
and regional watersheds, and CONUS (see synthesis by Coffey et al., 
2019; Paul et al., 2019). Coffey et al. (2019) provide an authoritative 
survey of the effects of climate drivers (e.g., temperature increase 
and more intense precipitation) on water quality (i.e., increase in 
issues related to nutrients, algal blooms, sediments, pathogens) and 
summarises climate-change assessments (primarily SRES scenarios 
and some RCPs) into maps of impacts for much of CONUS. This 
research provides a strong foundation for the linkage between 
current observed and modelled climate as well as the relationship 
to water quality and future impact-assessment modelling based 
on scenarios. Sinha (2019) produced an assessment of projected 
increase in nitrogen loading for CONUS for mid-century (2031–2060) 
and end of century (2071–2100). Results, given as the percentage 
of change in mean total nitrogen flux from the base period 1976–
2005 (Figure  SM14.1), were based on climate scenarios (all four 
RCPs) interacting with historical land use, and show the mean 
percentage increase in nutrient flux mid-century (5–9%) and end 
of century (9–15%). Chapra (2017) addressed the issue of harmful 
algal blooms (HABs) and reported on current conditions (i.e., the 
strong relationship between cyanobacteria growth and temperature) 
and assessed future impacts using RCP4.5- and RCP8.5-based 
scenarios from five GCMs. The 100,000  cells ml−1 threshold (WHO 
guidance) represents a ‘very high’ risk of harmful consequences to 
people. This assessment for CONUS (300 reservoirs and 10 natural 
lakes important for recreation) reported a projected increase from 
0 d for the base period 1986–2005 to 10.4 d (RCP4.5) and 11.2 d 
(RCP8.5) for 2050, and for 2090 11 d (RCP4.5) and 18.2 d (RCP8.5). 
Wagena and Easton (2018) used multi-model climate scenarios to 
assess the effect on water quality in the Susquehanna River basin for 
the base period 1990–2014 and future scenario periods (2041–2065 
and 2075–2099). Compared with the historical baseline and with 
no conservation practices, there were increases in flow and surface 
runoff linked with increases in mid-century total nitrogen export of 
9% (4–14%) and sediment of 26% (9–60%), and late-century total 
nitrogen of 12% (5–20%) as well as sediment of 31% (14–72%). 
Average nitrate, dissolved phosphorus and total phosphorus export 
decreased⎯not a consistent finding across modelling assessments in 
the literature; see Coffey et al. (2019)⎯but reflects local hydrology, 
geology and land use. The water quality burning ember was 
developed using the studies discussed above, all using RCP scenarios 
with three of five based on CONUS assessments.

SM14.4.2 Economic Sectors

Risks to economic sectors and activities were sometimes assessed 
across all of North America within specific regions, and for specific 
crops or species (corn and soybean, cod and pollock). The assessment is 
informed by literature on economic damage projections (see Box 14.6; 

Cross-Working Group Box ECONOMIC in Chapter 16). However, these 
risks are not translated into estimates of economic damages and do 
not address interactions between sectors nor adjustments due to 
future shifts in demand that could amplify or moderate economic 
impacts across an economy. The economic impact of the changes in 
any given sector depends on the relative importance of that sector to a 
national, regional or local economy.

SM14.4.2.1 Energy and mining

Analysis was focused on several case studies (observed and modelled) 
in remote regions of operational mines (onshore oil fields in Mexico as 
well as Texas, Kansas and Oklahoma in the USA, Athabasca oil sands 
and mines in the northern and Prairie regions in Canada) (Cruz and 
Krausmann, 2013; Leng, 2015; OCCIAR 2015; Clark, 2017) and urban 
and rural regions of energy generation and transmission (northwest, 
northeast and southeast USA) (Kinniburgh et  al., 2015; McFarland 
et al., 2015). Increased average temperature will lead to an increase 
in cooling degree days (which will outweigh the decrease in heating 
degree days), creating more pressure on energy systems to meet 
peak demands (high confidence). In turn, costs will increase (both in 
terms of production and supply, transmission and energy prices for 
consumers) (high confidence). Changes in hydrological regimes will 
have negative implications (e.g., decreased streamflow, flooding, 
storm surges, SLR) for energy infrastructure and generation in the 
future (medium confidence). Elevated temps diminish thermal power 
plant efficiency and capacity (including transmission lines) (medium 
confidence).

SM14.4.2.2 Construction

Existing literature is mostly focused on the USA and suggests that 
warming temperatures will reduce labour productivity (medium 
confidence) (Kinniburgh et  al., 2015; Rogers et  al., 2015; Schulte 
et al., 2016) and could negatively impact the health and well-being 
of workers (Hsiang et  al., 2017) especially in the southern USA and 
Mexico (medium confidence) (also see Dong et al., 2019).

SM14.4.2.3 Forestry

Forestry in North America will be disproportionately impacted by 
geographic region. Analysis here is focused on case studies of the USA, 
eastern Canada, northern Canada and the Boreal Forest, including 
changes due to biome shifts, reduced productivity, drought events, 
insects, elevated ozone levels and fire for forestry. Changes in the quality 
and quantity of timber yields are expected whereby total yield could 
potentially increase until 2°C warming in conjunction with increased 
CO2 and fertilisation, but the quality could decrease depending on 
the extent of disturbance from insects, drought and extreme events 
(medium confidence) (Attavanich and McCarl, 2014; Tian et al., 2016; 
Brecka et  al., 2018; D’Orangeville et  al., 2018; Chaste et  al., 2019). 
After 2°C warming, most models reveal a reversal of total yield trends 
and continuation of potential reductions in yield quality exacerbated 
by reductions in water availability and increased disturbance events 
from fire, insects and other events (medium confidence) (Beach et al., 
2015; McKenney et al., 2016; D’Orangeville et al., 2018; Chaste et al., 
2019).
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SM14.4.2.4 Agriculture

Similar to forestry in North America, agricultural crop yields and 
quality will be highly dependent on local geography and vary across 
the region. Warming temperatures and lack of freshwater availability 
are key hazards for crop production and can lead to economic loss. 
Analysis here is focused on corn and soybeans, which are two of the 
largest crops in North America (Lant et al., 2016). Modelling studies 
indicate that high risk to the agricultural sector begins just before 2°C 
warming, which is expected to occur mid-century and beyond (medium 
confidence). The high relative importance of agriculture to the North 
American economy and the role food exports play in the global food 
system was considered in the risk transition analysis (see Janssens 
et al., 2020a).

SM14.4.2.5 Fisheries

Risk transition analysis was focused on cod and pollock species in 
the Bering Sea under scenarios that include status quo ecosystem-
based measures including a limit on total groundfish yields (Holsman 
et al., 2020). These fisheries represent the largest (pollock), and one 
of the most valuable (Pacific cod), fisheries in the USA. Warming 
temperatures and change in sea ice, circulation and shifts in trophic 
pathways to less energy-efficient food chains (Huntington et al., 2020; 
Suryan et al., 2021) were used to drive changes in survival (predation), 
growth and recruitment, as well as subsequent catch, under future 
scenarios.

SM14.4.2.6 Transportation

The focus of this assessment was on road (including ice roads in the 
Arctic) and rail and transportation infrastructure such as bridges, 
airstrips, pipelines and port facilities. Extreme events, warming, 
storm surge, flooding and SLR are expected to present high risks to 
transportation infrastructure, especially in coastal and Arctic areas of 
North America, by 2°C global warming (EPA, 2017; Chinowsky et al., 
2019; Koks et al., 2019). North America is a large geographic region 
that relies heavily on transportation infrastructure for economic 
sustainability as well as health and well-being. Near-term impacts 
to transportation infrastructure are expected to be incremental and, 
albeit expensive to repair, are not anticipated to present irreversible 
or catastrophic risks. However, in the absence of strong adaptation 
planning, transportation-related infrastructure will be at high risk 
before 4°C global warming and could amount to hundreds of billions of 
USD in needed repairs (EPA 2017; Palko and Lemmen, 2017; Chinowsky 
et al., 2019; Lemmen et al., 2021; also see Koetse and Rietveld, 2009; 
Markolf et al., 2019).

SM14.4.3 Tourism Activities (with and without 
adaptation)

SM14.4.3.1 Nordic Skiing and Snowmobiling

Nordic skiing and snowmobiling are at the highest risk to climate 
change compared with other tourism activities considering that there 
are hard limits to adaptation for participating in the activity. Reduction 
in natural snowfall and increased precipitation events falling as rain 

Table SM14.11 |  Burning ember risk transitions for freshwater resources

Risk transition Global mean surface temperature change above pre-industrial levels (°C) Confidence

Snow and ice decline 
(seasonal flows)

Undetectable to moderate
Min 0.6

Medium
Max 0.9

Moderate to high
Min 1.2

Medium
Max 2

High to very high
Min 3.2

Medium
Max 4

Heavy precipitation 
(flooding)

Undetectable to moderate
Min 0.9

Medium
Max 1.5

Moderate to high
Min 2.5

Medium
Max 3

High to very high
Min 3.7

Medium
Max 4

Water quality impacts

Undetectable to moderate
Min 0.20

Medium
Max 1.30

Moderate to high
Min 1.45

Medium
Max 2.90

High to very high
Min 2.95

Medium
Max 4.20
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will severely limit nordic skiing and snowmobiling activities. Chin et al. 
(2018) project the following season length reductions: RCP4.5, 2050s 
(1.5°C) = 14 d and RCP4.5, 2080s (2°C) = 13 d; RCP8.5, 2050s (1.8°C) 
= 10 d and RCP8.5, 2080s (4°C) = 5 d. Wobus et al. (2017) project the 
following snowmobiling season lengths: 139 of 247 (56%) sites would 
have a snowmobile season of <75 d. RCP4.5, 2050s (1.5°C) = 179 of 
247sites (72%) would have <75 d and RCP4.5, 2080s (2°C) = 192 of 
247 (78%) sites would have <75 d; RCP8.5, 2050s (1.8°C) = 190 sites 
of 247 (77%) would have <75 d and RCP8.5, 2080s (4°C) = 228 of 247 
(92%) sites would have <75 d.

SM14.4.3.2 Alpine Skiing

There is high agreement that winter/snow-based tourism is already 
experiencing negative impacts from climate change even with 
adaptation efforts through machine-made snow. As conditions warm, 
further impacts are anticipated given the high dependence on natural 
snowfall and low temperatures (e.g., for snowmaking, snow farming, 
etc.). High-altitude mountains are not as impacted as low-lying resorts 
(of which there are more) and we are already seeing impacts (e.g., 
resort closures, shortened season lengths, etc.). The threshold for 
economic viability is a 100-d season length in North America (Scott 
et al., 2020), and this was used to assess overall risk with and without 
adaptation. Making machine-made snow is economical up to a 5°C 
temperature increase for 171 ski areas in Ontario, Quebec and the 
northeast USA, even with advanced snowmaking, as only 29 ski areas 
in Quebec and high-elevation areas of the northeast USA will be able 
to maintain a 100-d ski season (Scott et al., 2020).

SM14.4.3.3  Beach Tourism and Coral Reef Snorkelling

Impacts on beach and coral reef tourism are highly location dependent. 
There is limited literature linking climate change and beach tourism 
specifically, but many papers outline impacts on coral reefs, coastal 
regions and tourism generally that can be assessed collectively in order 
to understand sector risks. Based on this literature, Mexico is at high risk 
(e.g., coastal squeeze and flooding) (Litgow, 2019), with the USA at risk 
to coral bleaching. ‘Extensive loss of shallow corals is projected by 2050s 
for major US reef locations [South Florida, Puerto Rico]...near complete 
loss by 2100...modest loss in Hawaiian coral cover with declines from 
38% in 2010 to 11% by 2050 with further declines thereafter’ (EPA, 
2017). Loss is greater for RCP8.5 compared with RCP4.5. Demand may 
diminish with proposed adaptation strategies because it can reduce 
perceived naturalness (e.g., glacier tourism, beach tourism, etc.) (Groulx 
et al. 2017; Atzori et al., 2018; Seekamp et al., 2019).

SM14.4.3.4 Parks and Protected Areas Visitation

Adaptation options for parks and protected areas are numerous, 
but it has been found that intrusive structures or infrastructure 
limiting access to natural environments is undesirable for tourists 
and therefore may have limited effect in impacting future visitation 
(Lemieux et al., 2015). The impact of climate change on nature-based 
tourism (e.g., parks) and outdoor recreation in protected areas is 
dependent on geographic location. Overall, it is widely agreed that 
shoulder seasons (spring and autumn) will improve as temperatures 
warm and increase the tourism season; however, increased 

Table SM14.12 |  Burning ember risk transitions for economic sectors in North America

Name
Risk 

transition
Global mean temper-

ature change (°C)
Confidence

Agriculture

Undetectable 
to moderate

Min 0
Low

Max 1

Moderate to 
high

Min 1
Medium

Max 1.6

High to very 
high

Min 4.2
Medium

Max 6

Forestry

Undetectable 
to moderate

Min 0
High

Max 1.5

Moderate to 
high

Min 1.7
Medium

Max 2

High to very 
high

Min 2.2
Low

Max 4

Tourism

Undetectable 
to moderate

Min 0.5
High

Max 0.9

Moderate to 
high

Min 1.7
High

Max 2.2

High to very 
high

Min 2.3
Low

Max 3.9

Transportation

Undetectable 
to moderate

Min 0.8
High

Max 1.1

Moderate to 
high

Min 1.8
Medium

Max 2.2

High to very 
high

Min 2.5
Low

Max 3.8

Fisheries

Undetectable 
to moderate

Min 1.1
High

Max 1.8

Moderate to 
high

Min 2
Medium

Max 2.5

High to very 
high

Min 3
Medium

Max 4.2

Energy and 
mining

Undetectable 
to moderate

Min 0
Medium

Max 1.1

Moderate to 
high

Min 1.5
Low

Max 2.5

High to very 
high

Min Does not reach 
this thresholdMax

Construction

Undetectable 
to moderate

Min 0
Medium

Max 1.5

Moderate to 
high

Min Does not reach 
this thresholdMax

High to very 
high

Min Does not reach 
this thresholdMax
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precipitation and storm events, particularly in spring, could limit 
opportunities for longer seasons (e.g., Wilkins et al., 2018; Hewer and 
Gough, 2019; Dundas and Haefen, 2020). It is also possible that the 
summer season could be longer and more ideal (particularly in upper-
latitude locations) but decline in southern and mid-latitude locations 
(as it becomes ‘too hot’) (e.g., Fisichelli et al., 2015) or where there is 
increased risk for drought (Jedd et al., 2018) and fire (e.g., Hestetune 
et al., 2018). Time-series analysis of climate and visitation data for 
US-NW national parks (1991–2012) reveal that visitors are more 
sensitive to extreme dry (drought) conditions, although findings are 

mixed (e.g., during a climatically dry season, visitor numbers declined 
in Yellowstone in 2001 but increased in 2012) (Jedd et  al., 2018). 
Fisichelli (2015) suggests that as temperatures increase, the overall 
growth in visitor numbers across the parks system is projected to 
increase (8–23%), noting that visitation strongly declines at temps 
>25°C (which represents a small portion of parks across the system). 
Wilkins (2018) showed, through regression analysis between weather 
variables and tourism spending in Maine (USA), that increasing 
temperatures is an opportunity for increased tourism spending in 
summer and autumn.

Table SM14.13 |  Burning ember risk transitions for tourism activities in North America

Nordic skiing and snowmobiling

Risk transition Global mean temperature change (°C) Confidence

Without adaptation

Undetectable to moderate
Min 0.2

High
Max 0.5

Moderate to high
Min 0.8

High
Max 1.5

High to very high
Min 1.8

Low
Max 2

With adaptation

Undetectable to moderate
Min 0.2

High
Max 0.5

Moderate to high
Min 0.8

High
Max 1.5

High to very high
Min 1.8

Low
Max 2

Alpine skiing

Risk transition Global mean surface temperature change (°C) Confidence

Without adaptation

Undetectable to moderate
Min 0.5

High
Max 0.8

Moderate to high
Min 1.2

Medium
Max 1.8

High to very high
Min 2.5

Medium
Max 3

With adaptation

Undetectable to moderate
Min 0.5

High
Max 1.1

Moderate to high
Min 2

High
Max 2.5

High to very high
Min 3

Medium
Max 4

Beach tourism and coral reef snorkelling

Risk transition Global mean surface temperature change (°C) Confidence

Without adaptation

Undetectable to moderate
Min 0.5

High
Max 1.1

Moderate to high
Min 2.5

Low
Max 3

High to very high
Min 3.2

Low
Max 5.5
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Nordic skiing and snowmobiling

With adaptation

Undetectable to moderate
Min 0.8

High
Max 1.1

Moderate to high
Min 3

Medium
Max 3.5

High to very high
Min 3.5

Low
Max 6

Parks and protected areas visitation

Risk transition Global mean surface temperature change (°C) Confidence

Without adaptation

Undetectable to moderate
Min 0.5

Medium
Max 1.1

Moderate to high
Min 2

Low
Max 3

High to very high
Min 3.5

Low
Max 6

With adaptation

Undetectable to moderate
Min 0.5

Medium
Max 1.1

Moderate to high
Min 2

Low
Max 3

High to very high
Min 3

Low
Max 5
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