Cross-Chapter Paper 2: Cities and Settlements by the Sea
Supplementary Material

Cross-Chapter Paper Leads: Bruce Glavovic (New Zealand/South Africa), Richard Dawson (United Kingdom), Winston Chow (Singapore)

Cross-Chapter Paper Authors: Matthias Garschagen (Germany), Marjolijn Haasnoot (The Netherlands), Chandni Singh (India), Adelle Thomas (Bahamas)

Cross-Chapter Paper Contributing Authors: Jeroen Aerts (The Netherlands), Sophie Blackburn (United Kingdom), David Catt (USA), Eric Chu (USA), William Solecki (USA), Stijn-Temmerman (Belgium), Gundula Winter (Germany)

Cross-Chapter Paper Review Editor: Soojeong Myeong (Republic of Korea)

Cross-Chapter Paper Scientist: David Catt (USA)

Date of Draft: 1 October 2021

Notes: TSU Compiled Version

Table of Contents

SMCCP2.1 Climate Change Risks to Cities and Settlements by the Sea ... 2
 SMCCP2.1.1 Risks to Land and People ... 2
 SMCCP2.1.2 Risks to Livelihoods and Coastal Activities 3
 SMCCP2.1.3 Risks to the Built Environment .. 5
 SMCCP2.1.4 Risks to Ecosystems and their Services ... 6
 SMCCP2.1.5 Cascading and Compound Risks .. 7

References ... 37
SMCCP2.1 Climate Change Risks to Cities and Settlements by the Sea

This section provides an extended review of risks to C&S by the sea to complement the summary in CCP2.2.

The dynamic interaction between climate drivers and varied coastal geographies influences a number of physical impacts, including many that are unique to C&S by the sea (Figure CCP2.2). Interactions between climate and non-climate drivers of coastal change are increasing the frequency and intensity of many coastal hazards, with settlement archetypes and the wider coastal zone subject to escalating risk (Figure CCP2.3; Table SMCCP2.1 for examples of selected coastal C&S).

SMCCP2.1.1 Risks to Land and People

Sea-level rise (SLR) will increase coastal squeeze (Pontee, 2013), permanently erode or submerge inadequately protected coastal settlements and the surrounding land providing C&S with ecosystem services, and reduce freshwater availability through salinisation (Ellison, 2015; Ha et al., 2018; Oppenheimer et al., 2019). Before being permanently eroded or submerged, a coastal C&S could be subject to increased risk of episodic flooding arising from SLR, increasing frequency and intensity of storm surge and waves (Vousdoukas et al., 2018) and, in estuary settings, increased rain and river flooding (Moftakhari et al., 2017; Ward et al., 2018). In the Arctic, warming imperils coastal settlements, and is increasing geohazard activity along circum-Arctic coasts which could increase the frequency of tsunamigenic landslides (Fritz et al., 2017; Strzelecki and Jaskólski, 2020), posing a significant threat to Arctic coastal communities and built infrastructure (e.g., (Hatcher and Forbes, 2015; Radosavljevic et al., 2016; Gauthier et al., 2018; Jaskólski et al., 2018)).

Currently between 76-310 million people, and assets worth US$6,500-US$11,000 billion are on land in the coastal 1-in-100-year floodplain in C&S of all sizes (Neumann et al., 2015; Muis et al., 2016; Brown et al., 2018; Kulp and Strauss, 2019; Kirezci et al., 2020; Haasnoot et al., 2021b). Across these studies, there is high confidence that without further action, by 2100, 158-510 million people and US$7,919-12,739 billion of assets under RCP4.5, and 176-880 million people and US$8,813-14,178 billion of assets under RCP8.5, would be in the 1-in-100 year floodplain. Recent improvements in digital elevation data indicate that exposure is likely to be at the higher end of these estimates (Kulp and Strauss, 2019). SLR driven changes in wave characteristics and tides could further amplify risk (Arns et al., 2017). Human-induced subsidence (e.g., through groundwater abstraction) increases relative SLR locally in deltaic coastal cities in deltas having impacts same order of magnitude as SLR but can in some cases be mitigated or even stopped with appropriate management (Esteban et al., 2020; Herrera-García et al., 2021; Nicholls et al., 2021). There is limited evidence but high agreement from long-term studies that the rate of increase of land at risk accelerates after 2100 (Brown et al., 2018), with risk doubling between 2020-2100 but is 1.5 times faster from 2100-2150 under RCP8.5 (Haasnoot et al., 2021b).

Nicholls et al. (2018) report a 26% and 38% reduction, relative to RCP8.5, in people experiencing flooding each year by 2095 if global temperatures stabilise at 2 or 1.5°C respectively. Most people exposed to coastal flooding live in coastal C&S in least developed countries (Edmonds et al., 2020; Haasnoot et al., 2021b). Currently, about 17 million people from middle-income countries are at risk of flooding by a 10-year event, and about 65 million by a 100-year event; just accounting for SLR (i.e., population and protection stays at 2020 levels) this is projected to increase rapidly to 27 and 74 million respectively (a rate of ~0.5 million/year). This accelerates after 2050, with the number of people in the 100-year floodplain increasing at a rate of ~0.56 million/year under RCP4.5 and ~1 million/year under RCP8.5 up to 2100, and ~1.4 million/year between 2100-2150 for RCP8.5 (Haasnoot et al., 2021b).

These impacts are concentrated in cities. For example Abadie et al. (2020) calculate USD1,600-3,200 bn in damages in 136 major coastal cities. Impacts vary between regions (Schinko et al., 2020), and are the far greatest in absolute terms in South and Southeast Asia, with large relative changes in Africa and Small Island Development States (SIDS) and considerable absolute changes as well in Europe (e.g., (Le, 2020; Haasnoot et al., 2021b; Hooijer and Vernimmen, 2021)). Furthermore, even small changes (10cm) in SLR above present can double the frequency of the 1-in-50 year flood event in many regions, especially in equatorial coastal settlements and Pacific islands (Vitousek et al., 2017).
Worldwide, around a quarter of sandy beaches eroded at 0.5 m yr\(^{-1}\) between 1984-2016 (Luijendijk et al., 2018), and as many as 70\% of beaches experience erosion, which is expected to accelerate as global sea-level rises (Fitto et al., 2018). Between 1984-2015, the overall surface of eroded land is about 28,000 km\(^2\), twice that of gained land; and is predominantly driven by construction of coastal or inland water management structures, exploitation of coastal resources or clearing of coastal ecosystems (Mentaschi et al., 2018). Improved understanding of biophysical feedbacks has reduced global estimates of wetland losses (including mangrove, fresh and saltwater marsh), and consequently, by 2100, under RCP8.5, these losses are estimated to be up to 30\%, or 61,213 km\(^2\), compared to present day (Schuerch et al., 2018).

Analysis of C&S and infrastructure at risk of coastal erosion are analysed at a local or regional scale. In England, for example, 8,900 properties, of which 1,200 do not have coastal protection, are in areas at risk from coastal erosion, and by the 2080s this could increase to over 100,000 properties (CCC, 2017). There are limited global analyses of future erosion rates, but Hinkel et al. (2013) estimate 6,000-17,000 km\(^2\) of land could be lost due to SLR driven erosion of sandy beaches, displacing 1.6-5.3 million people; with economic impacts between US$300-US$1,000 billion. More recent analysis by Vousdoukas et al. (2020b) calculates 13.6-15.2\% of the world’s sandy beaches could face severe erosion by 2050, increasing to 35.7-49.5\% (95,061–131,745 km\(^2\)) by 2100 under RCP4.5 and RCP8.5 respectively. Where accommodation space exists (e.g., rural areas), migration of beaches may be possible (Cooper et al., 2020a).

Some observations and modelling of reef islands (including atolls) in the Pacific Ocean indicate they can adapt to SLR by sediment accretion (Kench et al., 2015; McLean and Kench, 2015; Kane and Fletcher, 2020; Masselink et al., 2020). Other studies suggest higher vulnerability to submergence due to SLR (Perry et al., 2018). For beaches and dunes, from 1984-2016, an estimated 24\% of the world’s sandy beaches eroded at rates exceeding 0.5 m yr\(^{-1}\), while 28\% are accreting and 48\% are stable (Luijendijk et al., 2018). Direct impacts and responses to SLR are difficult to assess, as beach and dune erosion or accretion are affected by several other factors such as sediment availability, wind-wave climate, and anthropogenic actions on or near the shore (Perkins et al., 2015; Toimil et al., 2020). A study in the Mediterranean estimated SLR will cause about 25\% increase in erosion volumes over this century (Enriquez et al., 2019).

SMCCP2.1.2 Risks to Livelihoods and Coastal Activities

There is high confidence about regionally differentiated but considerable and tangible climate change compounded impacts in coastal C&S, including damage and loss to lives and livelihoods (Tessler et al., 2015; Avelino et al., 2018), negative impacts on health and wellbeing (especially in extreme events) (McIver et al., 2016), and involuntary displacement and migration (Hauer et al., 2016; Hauer, 2017; Davis et al., 2018; Neef et al., 2018); as well as intangible impacts such as psychological impacts due to extreme events, heightened inequality based on gender/ethnicity/structural vulnerabilities, and loss of things of personal or cultural value, and sense of place or connection, including the existential risk of the demise of nations due to submergence (Allison and Bassett, 2015; Barnett, 2017; Weir et al., 2017).

Risks to key economic sectors: Key socio-economic sectors critical to coastal C&S - such as coastal tourism, fisheries and shipping - are already experiencing climate-related impacts and are projected to face escalating risk due to climate change (Weatherdon et al., 2016; Becker et al., 2018). Bindoff et al. (2019) noted with high confidence that fishery catches in many regions are already impacted by changes to the ocean and stated with medium confidence that further ocean changes are projected to reduce the maximum potential catches of fish stocks. Hoegh-Guldberg et al. (2018) notes coastal tourism risks, particularly in subtropical and tropical regions, will increase with climate change, or loss of beach and coral reef assets (high confidence). C&S reliant on coastal tourism are projected to experience reduced destination attractiveness as hazards intensify with climate change, with potential for negative effects on tourism demand and local economies (Seekamp et al., 2019; Arabadzhiyan et al., 2020), as well as greater erosion and flood risk from coastal squeeze (Lithgow et al., 2019).

Livelihoods: SLR, land subsidence, and flooding are increasing the rate of change of expected losses in deltaic coastal systems (Nicholls et al., 2021), with current impacts highest in South Asia and future risk increases being greatest in the Rhine and Mississippi (4-8 times increase), and Chao Phraya and Yangtze deltas (1.5-4 times increase) depending on risk-reducing investments and strategies (Tessler et al., 2015). Critically, although risks are distributed across deltaic systems at all levels of economic development, global
comparative studies show wealthier countries are more likely to limit current impacts through infrastructural coastal protection interventions (Tessler et al., 2015; Olazabal et al., 2019b), highlighting the uneven exposure and adaptive capacities in different coastal C&S archetypes. Ocean-dependent livelihoods of people living in coastal C&S are severely impacted by SLR, changing ocean temperatures, and shifts in the intensity and frequency of El Niño–Southern Oscillation (ENSO) events (Allison and Bassett, 2015; Barnett, 2017), with high confidence about the severity of coastal hazard risk in particular geographies such as the Arctic and small island states (Nunn, 2013; Schmutter et al., 2017; Weir et al., 2017). Ocean warming and acidification are projected to significantly affect communities dependent on fishing, aquaculture, and marine tourism through lowered incomes and disrupted livelihoods (Himes-Cornell and Kasperski, 2015; Avelino et al., 2018). Notably, these impacts will constrain coastal livelihoods in Africa, Oceania, and South and Southeast Asia more dramatically because of high exposure to climatic compounded coastal hazards, relatively lower levels of adaptive capacity, and higher dependence on fisheries for employment and livelihoods (Tessler et al., 2015; Ding et al., 2017).

The range of climate compounded hazards affecting coastal settlements also increases risks to livelihoods not directly dependent on the ocean (medium confidence). Increased soil salinity because of SLR threatens rice farming in low surface elevation deltas, with potential rice production decreasing substantially from 61% to 34% by 2100 with 1.8 m SLR (upper limit SLR for RCP8.5) in the Ebro Delta in the Mediterranean (Genua-Olmedo et al., 2016). Coastal erosion, cyclones, flooding, and drought drive vulnerability for agricultural livelihoods in coastal Bangladesh (Hoque et al., 2019), where insufficient adaptation constrains livelihood options available for the poorest (Islam et al., 2017; Ahmed et al., 2019).

Health and wellbeing impacts include trauma and fatalities from extreme weather events, increased heat-related illnesses and morbidity (Section 6.2.3.1), compromised water and food safety and security, the spread of vector-borne diseases and zoonoses, and psychosocial ill-health (McIver et al., 2016; Weir et al., 2017; Storlazzi et al., 2018; Pugatch, 2019). Without effective adaptation, increased intensity of extreme events, particularly tropical cyclones and flooding, are projected to result in increased human fatalities in coastal regions (medium evidence, high agreement) (Seo and Bakkensen, 2016; Yu et al., 2018a; Bakkensen and Mendelsohn, 2019; Pugatch, 2019). While there is medium confidence that climate change mediates exposure to and bioaccumulation of pollutants through the marine food chain (Bindoff et al., 2019) how this will cascade into impacts on human health and food systems remains less well understood (see Cross-Chapter Box ILLNESS in Chapter 2).

Human mobility: Decisions to migrate or not are mediated by climatic drivers (e.g., coastal flooding, cyclones) and non-climatic drivers (e.g., livelihood opportunities, conflict) (Cross-Chapter Box MIGRATE in Chapter 7; Boas et al., 2019). While ascertaining the projected numbers of migrants at different warming levels is constrained by attribution issues (how much movement is climate-driven) and the paucity of evidence on how multiple climatic risks interact (e.g., SLR, coastal flooding, and land subsidence) to drive mobility decisions and outcomes (Boas et al., 2019; Wrathall et al., 2019; McLeman et al., 2021), here, we present a summary of the current and projected evidence. While there is growing evidence on projected climate-driven migration in coastal settlements (Hauer et al., 2016; Rigaud et al., 2018; McMichael et al., 2020), there is low agreement on the actual numbers given the difficulties in attributing climate changes as a driver (Abubakar et al., 2018; Kelman, 2019) (Cross-Chapter Box MIGRATE in Chapter 7).

There is high confidence that climate change is already “reshaping the comparative advantages of regions, making some places less productive and liveable” (Adger et al., 2020), with impacts on observed migration (Cross-Chapter Box MIGRATE in Chapter 7 summarises this evidence). In coastal C&S, changing configurations of hazards, exposure, and vulnerability are already increasing human mobility necessitating a range of risk management strategies from involuntary displacement and forced migration, to planned relocation Oppenheimer et al. (2019) global; Maharjan et al. (2020) in South Asia; Koubi et al. (2016) in Vietnam.

There is limited evidence but high agreement that increased warming and hence accelerated SLR will increase future mobility-related risks in densely populated hazard-prone coastal settlements, in small islands and low-lying coastal zones, and among vulnerable populations increase (also see RKR H, Chapter 16; Hauer et al., 2020; Bell et al., 2021; Lincke and Hinkel, 2021). Global SLR, which is typically framed as a coastal risk solely, is projected to have cascading risks through inland displacement and migratory effects
Climate change already has, and is projected to have, increasingly severe impacts on ports, with major geopolitical and economic ramifications from the C&S to global scale (Section 16.5.4). Estimating coastal C&S are expected to rise considerably in this century across all RCPs (high confidence) (Hinkel et al., 2014; Abadie et al., 2016; Abadie, 2018; Abadie et al., 2020). Key sectors of the built environment including housing, transport and industry as well as other critical infrastructure such as for energy and communication systems (Section 16.5.2.3.4). Impacts to the built environment in coastal C&S therefore imply risks for societies and the global economy in general (Section 16.5.4).

SLR, land subsidence, continued infrastructure development in coastal floodplains, and the rise of asset values are major drivers of future risk in coastal C&S and, without adaptation, built environment risks in coastal C&S are expected to rise considerably in this century across all RCPs (high confidence) (Hinkel et al., 2014; Abadie et al., 2016; Abadie, 2018; Magnan et al., 2019; Oppenheimer et al., 2019). Estimating future flood losses in 156 of the largest coastal cities, (Hallegatte et al., 2013) find that average annual losses will increase from US$6 billion in 2005 to US $60-63 billion by 2050 due to SLR, land subsidence and socio-economic development even if current levels of flood probability are maintained through adaptation. Average annual losses could reach almost 1.5% of city-level GDP in Guangzhou and New Orleans (ibid.). Abadie (2018) finds, through an assessment of 120 coastal cities, that New Orleans and Guangzhou have the highest expected annual damage by 2100 under RCP 2.6, 4.5 and 8.5 projections, with around USD1.2 trillion in each city. Assessing 19 European cities, Abadie et al. (2016) find that under RCP8.5 average annual flood losses increase between four- and seven-fold by 2050 for the highest risk cities: Istanbul and Izmir (Turkey), Odessa (Ukraine), and Rotterdam (the Netherlands). Overall, the value of assets below the height of 100-year coastal flood events is US$17–180 trillion under RCP2.6, and US$21–210 trillion under RCP8.5 in 2100, the major fraction of which in cities (Hinkel et al., 2014).

Climate change already has, and is projected to have, increasingly severe impacts on ports, with major geopolitical and economic ramifications from the C&S to global scale (very high confidence) (Becker et al., 2018; Camus et al., 2019; Christodoulou et al., 2019; Walsh et al., 2019; Hanson and Nicholls, 2020; Yang and Ge, 2020; Izaguirre et al., 2021; León-Mateos et al., 2021; Ribeiro et al., 2021). Few ports have
implemented actions addressing risks to assets and operations (medium evidence, high confidence) (Becker et al., 2018; Randrianarisoa and Zhang, 2019; Panahi et al., 2020). Port expansion may need to double or even quadruple by 2050, relative to a 2010 baseline, with total global investment of US$223-768 billion (Hanson and Nicholls, 2020). Beyond adapting existing ports to rising SLR, new port development presents opportunities to increase coastal C&S climate-resilience (Hanson and Nicholls, 2020). Port responses that go well beyond terminal and operational considerations, and benefit from engagement of stakeholders and governance actors as part of wider C&S adaptation pathways, show the greatest potential for CRD (high confidence) (Mat et al., 2016; Becker et al., 2018; León-Mateos et al., 2021). Port cities are thus critical focal points – functioning as enablers or barriers to adapt to climate change and transition towards low-carbon, CRD pathways (high confidence) (Mat et al., 2016; Randrianarisoa and Zhang, 2019; Panahi et al., 2020; León-Mateos et al., 2021).

In terms of risks to particular types of the built environment (residential buildings, industry, transportation infrastructure, informal settlements, cultural heritage sites), limited evidence is available at the global scale but individual case-study assessments predict with high agreement that overall risks will increase with climate change across the built environment of coastal C&S (Jim W. Hall et al., 2019). The number of seaports in Europe exposed to inundation levels higher than 1m under RCP8.5 is projected to increase by 80% from 2030 to 2080 (Christodoulou et al., 2019). Global annual damages to road and rail infrastructure from coastal flooding are currently US$ 0.4-6.2 billion (Koks et al., 2019), in Vietnam alone, 1m SLR would destroy 12% of the road network and cost US$ 2.1 billion to rebuild (Chinowsky et al., 2015). There are 269 airports at risk of coastal flooding, and this increases to 413 under RCP8.5 and the expected disruption to flights increases by a factor of 17-69 even if global temperature is stabilised at 1.5°C or RCP8.5 respectively (Yesudian and Dawson, 2021). (Marzeion and Levermann, 2014; Reimann et al., 2018) suggest that at least 79–140 cultural and mixed world heritage sites are at risk of coastal flooding for global warming of 2°C, with a significant proportion of these concentrated in the Mediterranean, although it is likely this is an underestimate especially for the African continent (Brooks et al., 2020).

Informal settlements and slums are, in many cities, over-proportionally exposed to flooding; in Mumbai, the flood exposure of slum settlements is 71% above the city average (Hallegratte et al., 2017). These settlements also have increased vulnerability to flooding and coastal storms due to the low building quality, mostly of a semi-permanent nature (Roy et al., 2016). Projections or scenario assessments for future risks trends in slums are limited to a few case studies. For Ho Chi Minh City (Vietnam), for example, the exposure differential of currently 10-20% between slums vs. non-slums is projected to increase with ongoing climate change (Bangalore et al., 2019).

Lastly, cultural heritage sites in coastal cities are vulnerable to coastal hazards because there is often little to no option for relocation or adaptation. Comprehensive global studies on climate risk to cultural heritage sites are still lacking. An analysis of 49 UNESCO World Heritage sites in the Mediterranean concludes that flooding risks might increase by 50% on average until 2100 under RCP8.5, with much larger increases possible for some sites (Reimann et al., 2018).

SMCCP2.1.4 Risks to Ecosystems and their Services

Coastal C&S depend to a variable extent on ecosystem services provided by nearby habitats and ecosystems, such as shallow lagoons and estuaries, intertidal flats and marshes, mangrove forests, seagrass beds, coral reefs, beaches and dunes. These services include provisioning of materials and food e.g., wood, fishery habitat (Kok et al., 2021; zu Ermgassen et al., 2021), mitigation of coastal hazards e.g., attenuation of storm surges, waves, and reducing erosion (CCP2.3.2.3; Godfroy et al., 2019; Zhu et al., 2020), climate change mitigation e.g., through carbon sequestration (Macreadie et al., 2017; Rovai et al., 2018; Ward, 2020), water quality regulation e.g., nutrient, pollutant and sediment retention and cycling (Wilson et al., 2018; Zhao et al., 2018), and recreation and tourism (Pueyo-Ros et al., 2018).

There is high confidence that loss of coastal ecosystem services will expose millions of people and associated property to increased coastal hazard risk; in particular, flood risk. There is medium evidence and high agreement that loss of coral reefs and mangroves is expected to contribute to loss of fisheries production in adjacent waters (Mehvar et al., 2019; Sandoval Londoño et al., 2020; Seraphim et al., 2020). The economic value of mangroves, tidal marshes, coral reefs, seagrass beds is typically estimated to
be US$10,000-100,000/ha, higher than terrestrial or other marine ecosystems (Costanza et al., 2014; Macreadie et al., 2019). The value of services including art, food provision, amenity and recreation in Bangladesh and Indonesia are projected to decrease by 16-40% and 25%-90% respectively (Mehvar et al., 2018; Mehvar et al., 2019), in the USA benefits are as much as US$825 million in direct damage reduction and US$ 971 million indirect damage reduction (Storlazzi et al., 2019).

The impact of climate change on coastal ecosystems is significant, but depends on the ecosystem’s natural capacity to adapt to change and sustain its functioning; these depend upon local biophysical settings like tidal range, water quality, and species composition (Balke et al., 2016; Kirwan et al., 2016; Edmonds et al., 2020; Wiberg et al., 2020). Other climate change factors, such as increasing CO₂ concentrations and temperature effects on plant productivity, may affect these ecosystem functioning (Manea et al., 2020).

In many places, marshes and mangroves can adapt to relative SLR rates of 3-10 mm yr⁻¹ (Blankespoor et al., 2017; Horton et al., 2018b; Sainilitan et al., 2020; Törnqvist et al., 2020), but fail to survive SLR rates of just a few mm yr⁻¹ when suspended sediment concentrations are very low (1–10 mg l⁻¹) or where tidal range is <1m (Kirwan et al., 2016; Wiberg et al., 2020). Coastal ecosystem losses could be minor if warming stays below 1.7°C GWL, but at higher GWL or SLR above 0.5m expected to lead to large scale impacts and loss of ecosystem services including their ability to protect coastal C&S (Section 13.4; Key Risk 1; van der Spek, 2018; Jones et al., 2020; Triyanti et al., 2017).

Globally, coral reefs currently provide US$ 272 billion flood protection against 1-in-100 year storms (Beck et al., 2018). Yet, coral reefs are considered to be the marine ecosystem most at risk, even under an RCP2.6 scenario (Dasgupta et al., 2019; Díaz et al., 2019; Graham et al., 2020; Cornwall et al., 2021). Under RCP8.5, most coral reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100, which will increase high wave-energy exposure accelerating sediment mobility, shoreline change, and island overtopping (Perry et al., 2018). There is high confidence that 2°C or more GWL will lead to significant loss of coral cause by ocean warming and acidification, which induces coral bleaching and reduces coral calcification (Hoegh-Guldberg et al., 2018; Perry et al., 2018; Hughes et al., 2020; Cornwall et al., 2021). Cumulative impacts of SLR, acidification and anthropogenic damage reduce coral effectiveness of adapting to climate change (Hughes et al., 2017b; Perry and Morgan, 2017; Yates et al., 2017).

There is high confidence that anthropogenic interventions, such as river damming and coastal engineering interventions pose the greatest immediate risk to coastal ecosystems as they reduce sediment supply (Chapters 3 and 13; Cooper et al., 2020b; Sabour et al. 2020; Ranasinghe et al. (2019); Yang et al. (2020)), and limit lateral inland migration (e.g., blocked by dikes, buildings, roads). Up to 30% of the global marsh and mangrove area is at risk of disappearing by 2100 under RCP 8.5, with the Gulf of Mexico, Indonesia, and Mediterranean at greatest risk (Schuerch et al., 2018).

In summation, non-climatic anthropogenic drivers have already increased the exposure and vulnerability of coastal ecosystems and low-lying coastal C&S to climate change impacts and SLR and extreme sea level events in particular, and this is expected to continue into the distant future (very high confidence). To compound matters, coastal C&S are subject to both compound and cascading risks (see Section 6.2.5; Bevacqua et al., 2019; Lawrence et al., 2020; Zscheischler et al., 2018 for definitions).

SMCCP2.1.5 Cascading and Compound Risks

Most studies on C&S in this section have focused on adapting to a single, or limited set of risks, such as SLR, heat waves or water resources. Some (e.g., Nicholls et al., 2015; Estrada et al., 2017; Yin et al., 2020; Malagon Santos et al., 2017), but comparatively fewer studies, address the combined effects of multiple drivers, clustering of multiple events, or assess the consequences of having to adapt to multiple impacts and risks that cascade (Box 15.2).

Coastal C&S are particularly vulnerable to compound and cascading impacts due to severe storms (high confidence) that may be exacerbated by climate change. In late October 2012, Hurricane Sandy severely impacted the New York – New Jersey coast. Over 100 people were killed and damages incurred of approximately USD 65 billion in direct impacts due mainly to storm surge flooding (Rosenzweig and Solecki, 2014). In New York City, the event set off a series of cascading impacts with massive power...
outages causing extended disruptions of water, gasoline (for vehicles), communication (i.e., mobile phones),
and HVAC (for heating) for hundreds of thousands of residents (Haraguchi and Kim, 2016).

In 2017, parts of the Caribbean and Florida, USA, were devastated by compound and cascading impacts
from Hurricanes Irma and Maria, which caused devastation with compound and cascading impacts that
included significant rainfall and inland/street flooding, extreme winds, and storm surge flooding that caused
cumulative and compounded damage well beyond the storm surge zone (Kishore et al., 2018; Rey et al.,
2019; So et al., 2019; Raymond et al., 2020). Severe cascading impacts affected Puerto Rico’s settlements in
the aftermath of Maria; a public health crisis continued to spread and impact the well-being of residents for
over a year, resulting in thousands of excess deaths significantly greater than the official death toll of 64
(Kishore et al., 2018). Compound impacts from Hurricane Irma resulted in both Barbuda and Ragged Island,
Bahamas, being declared uninhabitable, requiring the evacuation of all residents, and leaving these islands
without human residents for the first time since being occupied (Look et al., 2019; Thomas and Benjamin,
2020).

The occurrence of compound risks from extreme events exacerbated by climate change can be further
complicated by non-climate related drivers, such the COVID-19 pandemic, that threaten population health
and hamper pandemic responses (Salas et al., 2020; Shultz et al., 2020a; Shultz et al., 2020b). In May 2020,
Cyclone Amphan brought extensive wind, rain, and storm surge damage to Kolkata, India. Storm
preparedness and response, including evacuation and sheltering, was considerably compromised by the
pandemic crisis. Evacuation and sheltering had to simultaneously respond to the storm impacts and public
health guidelines to prevent the further spread of the virus (Baidya et al., 2020; Ebrahim et al., 2020;
Majumdar and DasGupta, 2020).

Either separately or individually, compound and cascading risks can significantly alter the climate risk
profile and vulnerability of coastal C&S (Edmonds et al., 2020; Eilander et al., 2020; Ghanbari et al., 2021),
and population mobility (CCP2.2.2). Better understanding the probability of these compound events, and the
processes driving them, is essential to lessen, or adapt to these potentially high-impact risks; however,
difficulties in predicting concurrent climate and non-climate risks will risk reduction and resilience building
difficult (Ebrahim et al., 2020; Cross-Chapter Box COVID in Chapter 7). Individual coastal C&S, and
regional case studies (particularly for Europe, Australia, and the U.S.), illustrate an increasing likelihood of
compound risks with accelerating climate change (likely, medium confidence) (Wahl et al., 2015; Xu et al.,
2019; Kirezci et al., 2020).
<table>
<thead>
<tr>
<th>Geomorphology</th>
<th>City, country, population (2020, in millions)</th>
<th>Section CCP2.2 – Risks to coastal cities and settlements</th>
<th>Section CCP2.3 – Solution space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estuary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belém, Brazil</td>
<td>(1.5)</td>
<td>Urban heat island, Sea level rise, Flooding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40% of urban area is sited in low lying areas below mean sea level (Mansur et al., 2016)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coastal mangrove contraction due to sea level rise (Mansur et al., 2016)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large proportion of informal settlements in flood prone areas and inadequate peripheral areas for housing (Szlafsztein and de Araújo, 2021)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protect:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EbA:</td>
<td></td>
</tr>
<tr>
<td>Estuary</td>
<td></td>
<td>Conservation and restoration of mangrove forests along Para River to reduce coastal erosion (Borges et al., 2017)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accommodate:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enhance urban storm water drainage systems to reduce pluvial flood risk; raising of domestic bathroom and shower thresholds to reduce household flooding (Mansur et al., 2018)</td>
<td></td>
</tr>
<tr>
<td>Estuary</td>
<td></td>
<td>Protect:</td>
<td></td>
</tr>
<tr>
<td>Perth, Australia</td>
<td>(2.1)*</td>
<td>Urban heat island, Sea level rise, Drought, Flooding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exposure to sea level rise due to low elevation of densely populated metropolitan area</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elderly population in urban area; extensive coastal property and key infrastructure along coastline that potentially leads to conflict if coastal retreat from sea level rise is implemented (Grace and Thompson, 2020)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Western Australian Coastal Planning Policy allows for flexible coastal adaptation for sea level rise utilising a variety of approaches along a time frame (Grace and Thompson, 2020), including:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protect:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sea walls, groynes, levees and offshore breakwaters</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accommodate:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand nourishment and dune stabilisation for coastal erosion; desalination for drought (Morgan, 2020)</td>
<td></td>
</tr>
</tbody>
</table>

Table SMCCP2.1: Illustrative examples of 31 coastal cities and settlements detailing risks (as a function of hazard, exposure, and vulnerability) and adaptation actions. *Population estimates are for the entire metropolitan region population.
<table>
<thead>
<tr>
<th>City/Region</th>
<th>Key Climate Extremes</th>
<th>Climate Change Drivers</th>
<th>Adaptation Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shanghai, China (27)*</td>
<td>Fluvial, pluvial floods, Urban heat island, Sea level rise, Land subsidence</td>
<td>SLR-linked exposure to coastal inundation is very high, exacerbated by land subsidence and socioeconomic development (Du et al., 2020). Expected damages due to SLR - $16-212 billion (RCP 8.5, 2100) (Abadie et al., 2020).</td>
<td>Protect: Sea walls with 200-year coastal flood return level, seawalls with a 100-year coastal flood return level, flood walls with 1000-year riverine flood return level along the Huangpu River. EbA: Lingang Sponge City with green roofs, RWH wetlands, permeable pavements to store excess runoff (Temmerman et al., 2013; Yu et al., 2018b; Filho et al., 2019; Du et al., 2020)</td>
</tr>
<tr>
<td>Greater London, United Kingdom (8.9)*</td>
<td>Fluvial, pluvial floods, Storm surge, Sea level rise, Urban heat island, Drought</td>
<td>High intra-city inequality among neighbourhoods especially based on population age, built infrastructure, and migrant status (Gu et al., 2018). London includes some of the poorest areas in the UK. Considerable amount of ageing infrastructure (Caparros-Midwood et al., 2017)</td>
<td>Protect: Maintain current assets, and raise existing flood defences when needed. Longer term (from 2050), decide and construct the best option for the future of the Thames Barrier and adapt other assets. Accommodate (from 2035): Reshape riverside through development, to improve flood defences, create habitat and improve access to the river; Thames tideway large sewer tunnel to manage sewage and surface water. EbA: green infrastructure within the city to manage surface water flooding and UHI (Dawson et al., 2011; Pelling et al., 2016; Hall et al., 2019)</td>
</tr>
<tr>
<td>Venice, Italy (0.637)</td>
<td>Sea level rise, Subsidence, Air Pollution</td>
<td>Without adaptation, potential economic damages of USD$5.5-16 billion for the 21st century. Flood duration expected to increase from 2-3 weeks to 2-6 months/yr for RMSL rises of 30, 50 and 75cm, respectively. UNESCO World Heritage Site that is most at risk in Mediterranean >90% city is vulnerable to flooding. High dependence on tourism</td>
<td>Protect: System of mobile barriers (MoSE, Modulo Sperimentale Elettromeccanico), which close lagoon inlets during storm surges only. Accommodate: Locally: Wet and dry flood proofing of buildings. EbA: Present salt marshes also reduce flood risk, but protection is needed. (Ch13 Box 13.1)</td>
</tr>
<tr>
<td>Esmeraldas, Ecuador (0.16)</td>
<td>Flooding, Sea level rise, Landslides, Drought</td>
<td>Poverty, informal housing, and limited-service provision Majority of town informal settlement Inadequate financial, human or political resources (Gutierrez et al., 2020)</td>
<td>Accommodate: Spatial planning to limit urban expansion in at risk areas. Retreat: Relocation of high-risk communities. EbA: Green infrastructure for UHI. Improvements of sewer systems and water efficiency measures (UN-Habitat, 2012; Tietjens, 2016)</td>
</tr>
<tr>
<td>Location</td>
<td>Threats</td>
<td>Impacts</td>
<td>Protection Strategies</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Bangkok, Thailand</td>
<td>Sea level rise, Land subsidence, Flooding, Urban heat island, Air pollution</td>
<td>High exposure to SLR; expected SLR damage in 2100 ~ USD$312.5 billion (Abadie et al., 2020). Additional exposure from groundwater extraction for municipal use leading to land subsidence (Jevrejeva et al., 2016) (Berquist et al., 2015).</td>
<td>Rapid urbanisation and population growth with large proportion of informal settlements. Most population and key infrastructure contributing to economy are vulnerable to flooding and most of Bangkok is <1.5 m asl (Thanavisithpon et al., 2018). Protect: Flood control infrastructure (canals, drainage pipes) as well as a polder system integrated with drainage tunnels.</td>
</tr>
<tr>
<td>New York City, USA</td>
<td>Flooding, Urban heat island, Sea level rise, Land subsidence, Salinization</td>
<td>Approximately 10% of metropolitan region’s population lives in the coastal zone.</td>
<td>High inequality, poverty, Aging infrastructure. Protect, accommodate: Rebuild by Design integrated protection for high value sites like lower Manhattan; flood proofing and bulkheading, street level raising; minor overflow retention and detention efforts; shutting down salinized wells. EbA: For heat mitigation, passive cooling solutions along with NbS.</td>
</tr>
<tr>
<td>Dhaka, Bangladesh</td>
<td>Tropical cyclones, Sea level rise, Fluvial, pluvial floods, Heatwaves, Drought</td>
<td>By 2050, 0.9 and by 2100 2.1 million people could be displaced by direct inundation due to SLR in the country (Davis et al., 2018).</td>
<td>Poor public infrastructure, Unplanned urbanisation, ~40% population lives in informal settlements, high immigration and livelihood precarity (Araos et al., 2017; Rahman and Islam, 2019). Protect: bunds, embankments (Rahman and Islam, 2019; Lázár et al., 2020). Accommodate: Autonomous strategies by households such as raising floor height; urban land zoning away from low-lying areas (Araos et al., 2017); improving stormwater drainage infrastructure (Rahman and Islam, 2019). Bangladesh Delta Plan 2100.</td>
</tr>
<tr>
<td>Rotterdam, Netherlands</td>
<td>Sea level rise, Fluvial flooding, Subsidence, Salinization, Water scarcity, Urban heat island</td>
<td>~60% of The Netherlands is susceptible to large scale coastal and river flooding, of which 26% is below present msl.</td>
<td>Majority of the region lives below sea level. Protect: maintaining coastline with (mega)sand nourishment and flood defences (levees and storm surge barriers). Alternative solutions are explored for high SLR, including advance and a combination of protect city centers and accommodate/retreat.</td>
</tr>
<tr>
<td>Location</td>
<td>Hazards</td>
<td>Mitigation Strategies</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Can Tho City, Vietnam (0.4)</td>
<td>Tidal flooding, Pluvial flooding, Extreme rain, Flash floods</td>
<td>Flushing polders with fresh water. Locally experiment with air barriers to reduce salt intrusion. Water storage and water efficiency measure to address drought. Eba: Retention and greening in cities to avoid pluvial flooding (Kwadijk et al., 2010; Van Alphen, 2016)</td>
<td></td>
</tr>
<tr>
<td>Jakarta, Indonesia (10.8)</td>
<td>Sea Level Rise, Land subsidence, Pluvial flooding</td>
<td>Accommodate: Elevation of housing, canal dredging. Upgrading of drainage system to cope with heavy rains and flash floods. (Sudmeier-Rieux et al., 2015; Radhakrishnan et al., 2018)</td>
<td></td>
</tr>
<tr>
<td>Accra, Ghana (2.5)</td>
<td>Sea Level Rise, Extreme rainfall, Pluvial floods, Coastal erosion, Storm surge</td>
<td>Protect: Engineered sea walls and dikes e.g., Giant Sea Wall project – (Garschagen et al., 2018) Retreat: moving of new capital city of Indonesia to Borneo Island</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Egypt (5.2)</td>
<td>Sea Level Rise, Storm surge, Water scarcity, Tsunami</td>
<td>Protect (SLR): Reactive measures to reduce the erosion impacts through building sea defence structures on Ghana’s coast (e.g., Ada Sea Defense System in Kewunor fishing village). Includes seawalls, land reclamation technology such as groins, and revetments and roads to protect a coastline. Protect (pluvial flooding): Levees to redirect floodwaters Accommodate/retreat: Upgrading storm drains; reinforcement of houses, clearing of gutters, sandbagging and relocation by households (Twerefou et al., 2019)</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table provides a summary of the strategies used to mitigate the impacts of various hazards in different locations, focusing on coastal flooding, pluvial flooding, and extreme rainfall.
<table>
<thead>
<tr>
<th>Location</th>
<th>Threats</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagos, Nigeria (14)*</td>
<td>Sea Level Rise, Urban heat island, Extreme rain, Flash floods</td>
<td>High percentage of population living in slums with informal status and particularly high vulnerability in terms of health impacts, damage to assets as well as economic impacts. High evidence that women have higher vulnerability. (Adelekan, 2010; Ajibade et al., 2013; Ajibade and McBean, 2014; Jevrejeva et al., 2016; Abiodun et al., 2017; Ajibade, 2017)</td>
</tr>
<tr>
<td>Napier City (0.065), Hawkes Bay (0.1786), New Zealand</td>
<td>Tsunami, Coastal erosion, Storm surge, Sea Level Rise, Flooding, Land subsidence after earthquake</td>
<td>Critical infrastructure on low-lying shoreline exposed to SLR, including airport, port infrastructure, and small communities in the Hawkes Bay. Low cost of living but generally high standard of living. Low-lying coastal areas prone to coastal hazard risk. Coastal flooding during long-period swell events occurs more often, along with continued erosion in these areas. Peri-urban and holiday settlements built along the coast. Community concern over perceived inaction to ongoing damage at the coast to properties.</td>
</tr>
<tr>
<td>Happisburgh, United Kingdom (0.009)</td>
<td>Coastal erosion</td>
<td>Small population limits economic benefits of protection.</td>
</tr>
<tr>
<td>St Georges, Grenada (0.036)</td>
<td>Flooding, Sea level rise, Urban heat island, Tropical cyclones, Tsunami, Land subsidence, Drought</td>
<td>Lack of infrastructure, limited financial, human resource capacity. City centre and Grenadian national identity is coastal and subject to SLR related flooding.</td>
</tr>
<tr>
<td>Miami-Dade, USA (6.2)*</td>
<td>Flooding, Urban heat island, Sea level rise</td>
<td>Most of the region is at low elevation, increasingly subject to flooding. Extreme income inequality.</td>
</tr>
<tr>
<td>Location</td>
<td>Climate Hazards</td>
<td>Economic Impacts</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Utqiagvik (formerly Barrow), Alaska, USA (0.005)</td>
<td>Tropical cyclones, Land subsidence, Salinization</td>
<td>Inadequate infrastructure to respond to highly dynamic climate risks and urbanization</td>
</tr>
<tr>
<td>Nassau, Bahamas (0.275)</td>
<td>Storm surge, Coastal erosion, Thawing permafrost, Sea ice melt, Subsidence</td>
<td>$1bn of infrastructure at risk</td>
</tr>
<tr>
<td>Kingston, Jamaica (1.2)</td>
<td>Sea level rise, Flooding, Salinization, Ocean acidification and warming</td>
<td>60% tourism infrastructure within 100 m of the coastline and exposed to flooding and SLR. (Pathak et al., 2020)</td>
</tr>
<tr>
<td>Seychelles (0.1)</td>
<td>Sea level rise, Rainfall variability, Ocean warming</td>
<td>Densely populated settlements concentrated in low-lying and narrow</td>
</tr>
<tr>
<td>Location</td>
<td>Climate and extreme events</td>
<td>Exposure and impacts</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Singapore, Singapore</td>
<td>SLR-linked exposure high; mean SLR - 0.9 m (RCP4.5, 2100) to 1.5 m (RCP8.5, 2100) (Horton et al., 2018a) Vast majority of population reside in low-lying areas</td>
<td>Key infrastructure contributes to economy (e.g., rail, airport, ports) located <2 m above sea level and vulnerable to future SLR (Cannaby et al., 2016)</td>
</tr>
<tr>
<td>Manila, Philippines</td>
<td>Exposure from severe tropical cyclones and SLR. Land subsidence from groundwater extraction leads to additional SLR in Manila by 2025 (Jevrejeva et al., 2016). Risk from more intense tropical cyclones in West Pacific at 2C warming (Oppenheimer et al., 2019)</td>
<td>Low elevation, large proportion of informal settlements lining waterways, groundwater extraction for municipal use (Doberstein et al., 2020) Most population and key infrastructure vulnerable to flooding and storm surges from tropical cyclones (e.g., Haiyan in 2013).</td>
</tr>
<tr>
<td>Maputo-Matola, Mozambique</td>
<td>Population at risk due to climate compounded flooding and other perils ~50,000 people (2016-17) (Rodrigues, 2019)</td>
<td>Rapid urbanization, largely unregulated and chiefly informal settlements with high levels of poverty and absence of basic services (Rodrigues, 2019). Urban sprawl spreading into low-lying coastal areas causing environmental degradation that increases exposure to hazards compounded by climate change (Beja da Costa and Ribeiro, 2019)</td>
</tr>
<tr>
<td>Florianopolis, Santa Catarina Island, Brazil</td>
<td>City HDI of 0.847, one of the most liveable and safest places to live in Brazil.</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>Constraints</td>
<td>Adaptation Strategies</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Cape Town, South Africa (4.6)* | ~13.4% exposed to SLR by 2100 (Montanari et al., 2020)
High inequality; in informal settlements (favelas) HDI is 0.390.
Rapid urbanization, poor sanitation and water supply; major raw sewage contamination in coastal environment, extensive unregulated land occupation. | Protect: infrastructure measures to contain flooding.
Chiefly infrastructure provisions for reducing drought risk - proved inadequate in recent years.
Accommodate: Emergency management provisions like early warnings for flood and erosion/storm/wave damage |
| Mumbai, India (20.4)* | 88,000 informal households prone to flooding (Desportes et al., 2016)
19 sites on open coastlines exposed to impacts of SLR.
~125,000 people displaced by SLR by 2100
Apartheid legacy
Gini coefficient 0.59 (the lowest for a SA metropolitan area)
High inequality, unemployment, crime, violence
Inadequate public infrastructure, and poverty | Protect: infrastructure measures to contain flooding.
Chiefly infrastructure provisions for reducing drought risk - proved inadequate in recent years.
Accommodate: Emergency management provisions like early warnings for flood and erosion/storm/wave damage |

Table SMCCP2.2: Constraints and enablers to adaptation in coastal C&S: illustrative examples from 25 coastal cities and settlements. Constraints are categorised as economic (existing livelihoods, economic structures, and economic mobility); social/cultural (social norms, identity, place attachment, beliefs, worldviews, values, awareness, education, social justice, and social support); human capacity (individual, organizational, and societal capabilities to set and achieve adaptation objectives over time including training, education, and skill development; governance, institutions & policy (existing laws, regulations, procedural requirements, governance scope, effectiveness, institutional arrangements, adaptive capacity, and absorption capacity); financial (lack of financial resources); information/awareness/technology (lack of awareness or access to information or technology; physical (presence of physical barriers); and biological (temperature, precipitation, salinity, acidity, and intensity and frequency of extreme events including storms, drought, and wind) (categorization based on Ch 16.4).
<table>
<thead>
<tr>
<th>Geomorphology</th>
<th>City, country, population (2020, in millions)</th>
<th>Adaptation constraints</th>
<th>Enablers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estuary</td>
<td>Monkey River Village, Belize (0.0002) 200 people</td>
<td>Constrained livelihood opportunities, Tensions about development pathways, Limited adaptive capacity or resource to address erosion, Villagers disconnected from political power; self-reliant, Very limited</td>
<td>Remote, isolated, Erosion perceived by all to be a threat to collective interests, Intervention by journalists, researchers and local NGOS (bridging organizations) to secure media attention - especially after hurricane - and use window of opportunity to attract government investment in temporary protective works, Choices about future tourism development will reconfigure constraints and enablers.</td>
</tr>
<tr>
<td></td>
<td>Shanghai, China (27)*</td>
<td>High income inequality, can exacerbate differential vulnerability, Physical location makes it a high-risk city</td>
<td>Long-term planning up to 2100, Access to technical expertise, Strong national and municipal focus on climate change, Long term Thames Estuary 2100 planning</td>
</tr>
<tr>
<td></td>
<td>Greater London,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Development of the city - Strategic leadership with climate change embedded through the Greater London Spatial Development Plan, and London Climate Change Partnership - Access to technical expertise</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.9)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esmeraldas, Ecuador</td>
<td>Institutional capacity and incongruent coordination and planning between multi-level governments - Political resistance to implement and enforce zoning regulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Istanbul, Turkey</td>
<td>Ineffective coordination between institutions - Local and regional implementation plans do not adequately address climate change impacts and adaptation - Data limited as climate change research relatively new</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15.214)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bangkok, Thailand</td>
<td>High vulnerability due to difficulties in poor implementation and communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Issue</td>
<td>Building adaptive capacity, especially in informal settlements</td>
<td>Policies; lack of accounting or climate change</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>New York City, USA (23.5)*</td>
<td>Underlying social and environmental inequality that encourage distrust and lack of support of planning efforts, and worldview that argues for remaining in high-risk locations and resisting conditions of retreat</td>
<td>Lack of governance structures to deal with interjurisdictional issues</td>
<td>Assorted adaptation approaches without any centralized approach across three US states and hundreds of municipalities in the NY metropolitan region</td>
</tr>
<tr>
<td>Dhaka, Bangladesh (21)</td>
<td>High inequality can lead to inequitable risk management</td>
<td>Low human capacity for long-term adaptation</td>
<td>Reactive governance (earlier), somewhat fragmented approach to climate risks</td>
</tr>
</tbody>
</table>
Rotterdam, Netherlands (0.651)

- Delta program developed adaptive plan to anticipate (uncertain) climate change. The programme has its legislative foundation in the Delta Act, and has a Delta Fund with a budget of €1 billion per year. This yearly budget is reserved until 2029 (Bloemen et al., 2019b; Haasnoot et al., 2020).
- Present plan is able to address 1 m in 2100.

Can Tho City, Viet Nam (0.4)

- Poor households have limited resources to adapt (mostly upgrade and lift their houses).
- Land use planning is met with such high pressure to grow the city, that precautionary adaptation (e.g., flood retention areas) is difficult to implement. (Garschagen, 2015)
- Growing domestic policy attention to climate change adaptation and high attention by international donors and research organizations. (Radhakrishnan et al., 2018)

Jakarta, Indonesia (10.8)

- Reactive risk management that hinders adaptation (Neise et al., 2017)
- Cultural enablers in the community e.g., mutual assistance, social structures from self-organisation, networking for social-
<table>
<thead>
<tr>
<th>Location</th>
<th>Economic Support</th>
<th>Locality and government approaches to flood mitigation mediate household adaptation: "households living in communities in which houses built on waterways had been demolished appear less likely to adopt some protective action against flood damage".</th>
<th>Better early warnings for floods can reduce flood impacts.</th>
<th>Behavioural change to avoid clogging stormwater drains can mitigate flood risk.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accra, Ghana (2.5)</td>
<td>People are continually reclaiming lagoons and mining sand leading to more inundation and poor drainage.</td>
<td>Poor waste disposal practices and drainage systems, silting and choking of drains, land-use change and informal urbanization (Twererfou et al., 2019)</td>
<td>Inadequate money to undertake flood mitigation at HH level (Twererfou et al., 2019)</td>
<td>Inadequate drainage infrastructure</td>
</tr>
<tr>
<td>Lagos, Nigeria (14)*</td>
<td>Low resource base for households to do undertake accommodate adaptations.</td>
<td>Widespread lack of housing rights</td>
<td>Access to information for preparing for flood needs to be improved in all the localities (Yankson et al., 2017)</td>
<td></td>
</tr>
<tr>
<td>Napier City (0.065), Hawkes Bay (0.1786), New Zealand</td>
<td>Vested interests challenge provisions for public safety and sustainability</td>
<td>Eroding coastline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Issues</td>
<td>Leverage local knowledge, and historical precedent of transformative change in the past</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Happisburgh, United Kingdom (0.009)</td>
<td>Robust institutional provisions supported by national legislation and guidance, robust social capital and institutionalised commitment to Maori, strong environmental ethic</td>
<td>- Robust institutional provisions supported by national legislation and guidance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utqiagvik (formerly Barrow), Alaska, USA (0.005)</td>
<td>Undervalued coastal cultures and icons, unclear goals of adaptation, uncertainty about coastal change</td>
<td>- Leverage local knowledge, and historical precedent of transformative change in the past, better integration of community and scientific information e.g., real time sea ice analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absence of a lead entity for adaptation and lack of clear jurisdiction or protocols, focus of disaster response on rebuilding as opposed to risk-prevention activities, resource management regimes often ad hoc and fragmented, lack of integrated strategy and actions often short term</td>
<td>- Better integration of community and scientific information e.g., real time sea ice analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Problem</td>
<td>Adaptation Challenges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nassau, Bahamas</td>
<td>Government places responsibility for coastal protection with private sector and individuals while individuals expect government to be responsible for long-term projects.</td>
<td>Very limited national funding provided for adaptation. Inadequate data on climatic risks inhibits vulnerability assessments. Low perception of climate change risk among population and policymakers. (Petzold et al., 2018; Thomas and Benjamin, 2018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingston, Jamaica</td>
<td>Costs of adaptation critical infrastructure is high (Monioudi et al., 2018)</td>
<td>Relevant to climate change; climate change not integrated into development planning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seychelles</td>
<td>Customary practices such as parking cars in dune areas reduces adaptation effectiveness and increases costs (had to construct bollards to prevent parking).</td>
<td>Limited decision-makers and technical staff with climate change adaptation expertise; fragile institutions and inadequate governance related to climate change; climate change not integrated into development planning. Lack of national funding to support adaptation strategies; limited financial support from international agencies. Limited scientific knowledge that is useful for decision making; limited understanding of climate change risks; little investment in adaptation research; lack of quality data on impacts; data gaps at the sub-national scale. Land use patterns inhibit rainwater drainage and lead to flash flooding.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Increasing knowledge of climate change risks through evidence-based studies.
- Improving governance systems to identify responsibilities and plans for adaptation and gaining access to funding to supplement limited national budget.
- Promote individual behavior change through constructive and punitive measures.
- Promote synergies between adaptation and mitigation by connecting EbA projects with community-based adaptation; promote cross-sectoral and institutional collaboration to avoid duplication of projects; ensure that climate
<table>
<thead>
<tr>
<th>Location</th>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singapore, Singapore (5.6)</td>
<td>Small land area with no space for retreat from SLR</td>
<td>- Integrated whole of government approach across ministries committing to long-term climate adaptation (and mitigation) goals by 2030 (Angiello, 2021)</td>
</tr>
</tbody>
</table>
| Manila, Philippines (14) | Social and Livelihood risks, Jurisdictional conflicts between municipalities, lack of political will and corruption (Meerow, 2017; Doberstein et al., 2020) Uncoordinated top-down | - Bottom-up community-based actions that improve adaptive capacity exist and can be strengthened (Porio, 2014)
- Institutional reorientation towards metro-wide planning and infrastructure transformations that are climate-resilient and |
<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
<th>Key Challenges</th>
<th>Municipal Action</th>
<th>Equitable (Meerow, 2017)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maputo-Matola, Mozambique (3)*</td>
<td>Mixed</td>
<td>Deep poverty and precarity with minimal access to basic services</td>
<td>Weak government capacity; self-help is predominant coping mechanism for majority of urban poor</td>
<td>Limited capacity, and key role played by international donor community</td>
</tr>
<tr>
<td>Florianopolis, Santa Catarina Island, Brazil (1.2)</td>
<td>Strong economy, undermined by environmental degradation; rapid unregulated urbanization</td>
<td>Inequity but strong tradition of cultural heritage</td>
<td>Low access to good research capability</td>
<td>Inadequate government capacity and coordination to regulate development and land-use practices; poor leadership at federal level; no evidence of preparation for long-term SLR</td>
</tr>
<tr>
<td>Cape Town, South Africa (4.6)*</td>
<td>Marked inequity; reliance on key sectors impacted by climate change and Covid-19 e.g., tourism</td>
<td>Diverse and divergent socio-cultural realities; fractured along wealth and racial lines</td>
<td>Health, education, crime, housing, etc. highly differentiated driving vulnerability to climate change</td>
<td>Access to significant finances but unevenly spread; infrastructure and human development needs exceed available resources</td>
</tr>
</tbody>
</table>

Do Not Cite, Quote or Distribute

SMCCP2-25

Total pages: 53
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Option</th>
<th>Soft/hard limits</th>
<th>Potentially effective to low/medium/high SLR</th>
<th>Trade-offs and co-benefits</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geomorphology</td>
<td>Small islands with open coasts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrative cities</td>
<td>Kingston (Jamaica), Seychelles,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nassau (Bahamas), Singapore,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>South Tarawa (Kiribati), Funafuti (Tuvalu), Male (Maldives).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table SMCCP2.3. Adaptation options assessed for three selected coastal archetypes. Their soft (surpassable) and hard (unsurpassable) limits indicate reasons for adding more adaptation options or switching to alternative options. For each option the potential effectiveness to reduce risk to coastal flooding and erosion is assessed in terms of a relative sea-level rise: low (e.g., less than 0.3m), medium (e.g., 0.3–0.8m) and high (e.g., more than 0.8m). Trade-offs include synergies and conflicts with social goals, climate mitigation, and other hazards.
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Protection Measure</th>
<th>Description</th>
<th>Cost</th>
<th>Benefits</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Protect | Seawall, with possibly a drainage system | - Is already not sufficient to prevent flooding and erosion in several places
- In higher places it could delay flooding. | Low | Trade-offs: potential for negative ecological impacts and loss of ecosystem services; induced long-term loss of beaches has negative implications for neighbouring sediment cells, but also for coastal tourism and access to beaches for recreational and spiritual uses; has potential to be maladaptive as it could provide false sense of security that attracts developments in risky places and triggers a self-reinforcing protect pathway | SMCCP2.1, Chapter 16, (Logan et al., 2018; Brown et al., 2020) |
| Protect-NBS | Wetland, mangrove (restoration) | | Low | Co-benefits: provides new livelihood opportunities; supports healthy ecosystems and reliant livelihoods such as fisheries | CCP2.3, Chapter 2, (Oppenheimer et al., 2019) |
| Protect-NBS | Coral reef, (restoration) | - Coral reefs can keep up with 0.5 cm/year, constrained at 1.5C and lost at 2C in many places. | Medium | Co-benefits: provides new livelihood opportunities; supports healthy ecosystems and reliant livelihoods such as fisheries | CCP2.3, Chapter 2, (Oppenheimer et al., 2019) |
| Retreat/avoid | No-build zones | | Low | | |
| Retreat | Relocate landwards (national) | - Hard limit for SIDS sited on topographically challenged regions | Low in highly urbanized regions. | Trade-offs: increased population density in inland areas may lead to strain on resources (e.g., water availability reduced | |
| Retreat | Relocate international | - Requires receiving location
- Long lead time | High | Trade-offs: loss of sovereignty, significant non-economic loss and damage including loss of community, sense of place, traditional livelihoods, locations of cultural and spiritual significance. | Laurice Jamero et al., 2017; Magnan and Duvat, 2020 |
| --- | --- | --- | --- | --- | --- |
| Accommodate | Elevate infrastructure | - Option for household level
- Raising floor and ground of houses and roads has limited height and becomes increasingly unacceptable with higher frequency of flooding | Low | Trade-offs: does not prevent loss of ecosystem services (e.g., salinization of freshwater lenses); loss of land suitable for farming | Laurice Jamero et al., 2017 |
| Protect | Land raising | - Requires space to temporarily relocate to
- Material to raise land.
- Costs | Low | | Magnan and Duvat, 2020 |
| Advance | Land reclamation with ground elevation | - Costs, but can pay back through real-estate revenues
- Strong subsidence after construction
- Material to build land
- Potentially long lead time
- High costs, less feasible with large water depth > 30m | Low | Trade-offs: negative effects on ecosystems and biodiversity | SMCP2.1, (Hinkel et al., 2018; Sengupta et al., 2018; Brown et al., 2020; Wang and Wang, 2020) |
| Advance | Floating | - Experimental stage, implemented within a city in calm waters
- Provides opportunities for developments in land scarce cities | High | | Penning-Rowsell, 2020; Wang and Wang, 2020 |
Geomorphology Resource rich megacities in deltas, open coasts and estuaries

Illustrative cities: New York (USA), Greater London (UK), Shanghai (China), Bangkok (Thailand)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Option</th>
<th>Soft/hard limits</th>
<th>Potential effectiveness</th>
<th>Trade-offs and co-benefits</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect</td>
<td>Seawall and drainage/pump system</td>
<td>- With increasing SLR it becomes more difficult to drain excess water, in particular in regions with heavy monsoons or in river deltas.</td>
<td>Medium</td>
<td></td>
<td>Chapter 13, (Esteban et al., 2020; Vousdoukas et al., 2020a)</td>
</tr>
<tr>
<td>Protect</td>
<td>Levees and dunes</td>
<td>Residual risk. Long lead time for planning and implementation. Increasingly closes with higher SLR until permanently closed, hampering connection with hinterland</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protect</td>
<td>Storm surge barrier (for estuaries, and bays)</td>
<td>Residual risk. Long lead time for planning and implementation. Increasingly closes with higher SLR until permanently closed, hampering connection with hinterland</td>
<td>Medium - high</td>
<td></td>
<td>SMCCP2.1, Chapter 10, Chapter 13, (Scussolini et al., 2017; Du et al., 2020; Haasnoot et al., 2020; Yin et al., 2020)</td>
</tr>
<tr>
<td>Protect-EbA</td>
<td>Wetland, mangrove restoration</td>
<td>- Mangroves can keep up with 0.5-1 cm/yr, decreased effectiveness at 2C GWL. - Space: coastal squeeze. - Higher benefit-cost ratio than protect and less residual risk. - Time: require time to establish/grow</td>
<td>Low-medium</td>
<td>livelihood and ecosystem benefits (e.g., fish populations)</td>
<td>SMCCP2.1, Chapter 2, Chapter 10, (Oppenheimer et al., 2019; Du et al., 2020; Morris et al., 2020)</td>
</tr>
<tr>
<td>Accommodate</td>
<td>Wet-proofing Dry-proofing of infrastructure and buildings</td>
<td>Can be implemented faster and with less costs compared protect.</td>
<td>Medium</td>
<td></td>
<td>(Scussolini et al., 2017; Du et al., 2020)</td>
</tr>
<tr>
<td>Retract</td>
<td>No-build zones</td>
<td>Medium</td>
<td>High or Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retreat</td>
<td>Relocate (internal)</td>
<td>Space, sunk costs, lack of planning, time and public and political support. Can help to transform cities</td>
<td>Negative impacts on poor, marginalised groups in terms of exposure to new risks and reduced livelihood opportunities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protect</td>
<td>Land raising</td>
<td>Difficult in existing regions, easier in rebuild or newly build areas. Long lead time</td>
<td>(Ajibade, 2019; Haasnoot et al., 2021a; Jain et al., 2021; Lincke and Hinkel, 2021; Mach and Siders, 2021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advance</td>
<td>Land reclamation with ground elevation</td>
<td>Costs, material, potentially long lead time. Lifetime can be extended with levees. Can experience large subsidence</td>
<td>(Scussolini et al., 2017; Storbjörk and Hjerpe, 2021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advance</td>
<td>Floating seawards</td>
<td>Within a city, experiments occur in calm waters</td>
<td>Uncertain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table SMCCP2.4: Governance challenges, enablers and lessons learned in the face of escalating coastal hazard risk: [This assessment builds upon and extends Oppenheimer, et al., 2019: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner, et al., (eds.) and integrates CCP2 assessment of archetypal cities and settlements by the sea (Table SMCCP2.1; Table SMCCP2.2)]

<table>
<thead>
<tr>
<th>Key governance challenges</th>
<th>Critical enablers and lessons</th>
<th>Illustrative lessons from around the world</th>
<th>Illustrative archetypal cities and settlements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity: Climate change compounds non-climatic hazard risks facing coastal cities and settlements (C&S) in interconnected, dynamic and emergent ways for which there are no simple solutions</td>
<td>Draw on multiple knowledge systems to co-design and co-produce more acceptable, effective and enduring responses (Dannevig and Aall, 2015; Dutra et al., 2015; Sovacool et al., 2015; Desportes and Colenbrander, 2016; Ziervogel et al., 2016; Adger et al., 2017; Lessons learned in C&S from Australia, the Comoros, Arctic, Canada, Portugal, Brazil, and New Zealand to Norway and the USA (Costas et al., 2015; Dannevig and Aall, 2015; Betzold and Mohamed, 2017; Chouinard et al., 2017; Elrick-Barr et al., 2017; Carter, 2018; Flynn et al., 2018; Lawrence et al., 2018; Huntington et al., 2019; Marengo et al., 2019; St. John III and Yusuf, 2019)</td>
<td>Seychelles (0.1mill): Partnerships being created between science and policy, with local knowledge, to co-produce usable information for decision-making but major awareness and information constraints to overcome. Dhaka (21mill), Bangladesh: Climate change is national priority. Partnering with the Netherlands to develop long-term data plans, but challenge to overcome governance and institutional constraints, marked inequity and differential risk, and low human capacity for long-term adaptation given severe escalating risk.</td>
<td></td>
</tr>
</tbody>
</table>
and compounding impacts and risks, with responses at times deepening risk - SLR introduces novel compound problems, with complex connections between biophysical and socio-economic, cultural and political aspects that challenge conventional science and public planning, decision-making and implementation - The rapid pace, complexity and novelty of SLR is already challenging conventional decision-making in some localities, e.g., some Arctic and Pacific Island communities

<table>
<thead>
<tr>
<th>Betzold and Mohamed, 2017; Onat et al., 2018; Warner et al., 2018; St. John III and Yusuf, 2019; Fayombo, 2020</th>
<th>- Bridge gaps between science, policy and practice by experimenting with novel approaches supported by governance actors and stakeholders working across organisational, sectoral and institutional boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build governance capacity to tackle complex problems (Moser et al., 2012; Head and Alford, 2013; Head, 2014; Dewulf and Termeer, 2015; Kwakkel et al., 2016; Termeer et al., 2016; Alford and Head, 2017; Chu et al., 2017; Daviter, 2017; Cinner et al., 2018; McConnell, 2018; Valdivieso and Andersson, 2018; Fink, 2019; Head, 2019; Ndebele-Murisa et al., 2020; Wijaya et al., 2020; Angiello, 2021)</td>
<td>Lessons learned in the Dutch Delta Programme to future-proof the Netherlands (Dewulf and Termeer, 2015; Bloemen et al., 2018; Bloemen et al., 2019a): - Joined up visionary leadership is key, e.g., make Cabinet- and city-level commitments to long-term policy implementation - Translate political will into substantial dedicated budgets to build government capacity to tackle complex problems - Use flexible approaches that build resilience, e.g., create an independent agency alongside traditional administrative body - Use an adaptation pathways approach to make short-term decisions consistent with long-term goals, given future uncertainty - Translate national requirements into local action by having enabling provisions for tailored local-level policy and practice - Tackle emergent problems by setting up enduring monitoring and lesson-learning processes - Governance arrangements reconcile competing demands in an inclusive, timely and legitimate manner - Counter policy deadlocks due to short-term priorities and vested interests with a long-term perspective (e.g., 100 years), considering plausible scenarios, and incentivising novel solutions</td>
</tr>
<tr>
<td>Jakarta (10.8mill), Indonesia: Community-based efforts foster mutual assistance and self-organisation, but reactive measures predominate, and severe adaptation constraints.</td>
<td>Singapore (5.6 mill), Singapore: Integrated whole of government approach across ministries committing to long-term climate adaptation (and mitigation) goals by 2030 (Angiello, 2021)</td>
</tr>
<tr>
<td>Rotterdam (0.65mill), Netherlands: Delta Programme, supported by law, administrative arrangements, and €1bil pa budget to 2029.</td>
<td>Florianopolis, Santa Catarina Island (1.2mill), Brazil: Building a knowledge hub through public-private-civil society partnerships, but constrained by inequity and challenge of unregulated development, and need to reconcile short-term infrastructure and service imperatives with long-term climate goals.</td>
</tr>
<tr>
<td>Nassau, (0.275mill) Bahamas: Identifying responsibilities, accessing funding, and preparing adaptation plans drawing on evidence-based studies to overcome constraints of limited funding, inadequate data, and low governance capacity.</td>
<td>Shanghai (27mill), China: Combination of long-term planning, political will and national and municipal provisions to address climate change, and strong technical capability, has contained risk in short- to medium-term. But longer-term prospects daunting, given no room to retreat.</td>
</tr>
<tr>
<td>Shanghai (27mill), China: Combination of long-term planning, political will and national and municipal provisions to address climate change, and strong technical capability, has contained risk in short- to medium-term. But longer-term prospects daunting, given no room to retreat.</td>
<td>Can Tho City (0.4 mill), Vietnam: Emerging focus on adaptation, engaging international donors and research community, but immense urban growth pressure, and poor households have limited capacity to take long-term actions.</td>
</tr>
</tbody>
</table>
Time horizon and uncertainty: The future is uncertain but climate change will continue for generations and cannot be addressed by short-term (e.g., 1-10 years) responses.

- Coastal C&S face a dilemma: Delayed action imposes a huge burden on future generations but there is a fine line between under- and over-investing in risk reduction, especially for at-risk C&S.
- SLR is certain to continue for many centuries, with deep uncertainty about the magnitude and timing of SLR beyond 2050.
- SLR and coastal hazard risk challenges standard planning and decision-making practices, which strive for certainty and predictability.
- Coastal hazard risk goes beyond short-term bureaucratic, political, electoral and budget cycles.
- SLR and coastal hazard risk is dynamic and difficult to address in an adaptive manner given the inflexibility of laws and institutions like private property rights.
- Given its long time horizon, it is hard to adopt a long-term view but take action now and keep options open to adjust responses as sea level rises and circumstances change.

<table>
<thead>
<tr>
<th>Avoid new development commitments in high-risk locations</th>
<th>Adopt a long-term view but take action now and keep options open to adjust responses as sea level rises and circumstances change</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Hurlimann and March, 2012; Glavovic and Smith, 2014; Hurlimann et al., 2014; Tuts et al., 2015; Berke and Stevens, 2016; Butler et al., 2016b; OECD, 2019)</td>
<td>(Haasnoot et al., 2013; Hurlimann et al., 2014; Dewulf and Termeer, 2015; Stephens et al., 2018; OECD, 2019; Fu, 2020)</td>
</tr>
</tbody>
</table>

Lessons learned in diverse C&S from Nigeria to Bangladesh, Brazil, the Arctic, Indonesia, China, Netherlands and New Zealand (Termeer et al., 2013; Broto et al., 2015; Tuts et al., 2015; Ajibade et al., 2016; Brown et al., 2016; Butler et al., 2016b; Francesch-Huidobro et al., 2017; Ahmed et al., 2018; Cradock-Henry et al., 2018; Flood et al., 2018; Flynn et al., 2018; Bloemen et al., 2019a; Lawrence et al., 2019; Marengo et al., 2019; OECD, 2019):

- Establish national policies and guidance that takes a long-term view (e.g., 100 years) but compels action now.
- Seek buy-in from key stakeholders in government, the private sector and civil society.
- Develop a shared medium- (10-50 years) to long-term vision (100+ years).
- Meaningfully involve stakeholders in adaptation planning, e.g., by involving representatives in decision-making.
- Reconcile divergent perspectives through tailored responses.
- Address power imbalances and human development needs, e.g., in goal-setting and process design.
- Draw on local, indigenous and scientific knowledges.

Napier (0.065 mill), Hawkes Bay, (0.178 mill) New Zealand: National law compels local authorities to take 100-year perspective, and local 2100 Strategy to address coastal hazard risk explicitly accounts for dynamic complexity and uncertain future through adaptation pathways logic.

Shanghai (27mill), China: Plans up to 2100, strong national and municipal focus on climate change, and access to technical expertise, helps to address escalating risk, despite high income inequality and differential exposure and vulnerability.

Dhaka (21mill), Bangladesh: Long term adaptation plans in place through to 2100, but challenge to translate national prioritisation of climate change into local reality.

Avoid new development commitments in high-risk locations:

Lessons learned in diverse C&S from Australia to the USA (Dyckman et al., 2014; Hurlimann et al., 2014; Kousky, 2014; Tuts et al., 2015; Butler et al., 2016a; Gibbs, 2016; Vella et al., 2016; Koslov, 2019; OECD, 2019; Siders, 2019):

- Use spatial planning to regulate coastal development in exposed localities.
- Take advantage of the window of opportunity created by extreme events.
- Adopt tailored risk reduction and resilience building measures post-disaster.
- Understand and address political risks and local opposition to enable managed retreat when risk is intolerable and inundation is unacceptable.

Rotterdam (0.65 mill), Netherlands: Delta Programme promotes ‘living with water’, which simultaneously allows for and manages urban flooding.

Napier (0.065 mill), Hawkes Bay, (0.178 mill), New Zealand: Regulatory provisions discourage new development in high-risk locations, and addressed through coastal hazard strategy that provides for sequenced adaptation interventions in the face of unfolding climate change impacts.

Florianopolis, Santa Catarina Island (1.2 mill), Brazil: Unregulated ad hoc development in at-risk locations hampers effective adaptation.
Cross-scale and cross-domain coordination:

Decisions bound by jurisdictional and sectoral boundaries fail to address linkages within and between coastal ecosystems and C&S facing interconnected climate change compounded impacts and risk

- SLR impacts extend across scales and levels of governance
- SLR and coastal hazard impacts extend across sectors, policy domains and functional areas of governance (e.g., planning, emergency services, asset management, etc.)
- Tackling coastal hazard risk exceeds the capacity of many local governments, communities and property owners
- A ‘joined-up’ response to coastal hazard risk is vital, especially coherence between national policy and local competency

| Build shared understanding and enable locally appropriate responses through experimentation, innovation and social learning (Dyckman et al., 2014; Glavovic and Smith, 2014; Lassa et al., 2015) | Lessons learned in diverse C&S from India to Brazil, USA, Europe and east Asia (Blok and Tschötschel, 2016; Chu, 2016; Hughes et al., 2017a; Chu et al., 2018a; Bellinson and Chu, 2019; Duvat and Magnan, 2019; Fink, 2019; Marengo et al., 2019; Wolfram et al., 2019):
- Take account of local history, culture and politics through engagement, experimentation and innovation
- Prioritise social learning and shared understanding, e.g., make information accessible to all irrespective of level of education, language, etc. |

Seychelles (0.1mill): Cross-sectoral and institutional collaboration being explored to improve effective and efficient use of limited financial resources and community-based adaptation and EbA explored to bridge adaptation and mitigation and improve coordination. But governance constraints are severe and climate change not well integrated into development planning.

Florianopolis, Santa Catarina Island (1.2mill), Brazil:
Effective local climate action hampered by governance constraints and weak federal leadership.

Cape Town (4.6mill), South Africa: Enabling multi-level climate governance is advanced at the local-provincial level, but political turf-battles hamper national-provincial-local progress. Enabling effective municipal-informal settlement action is challenging given the apartheid legacy and scale of poverty and inequity.

Utqiagvik (formerly Barrow), Alaska, USA (0.04 mill): Leveraging local knowledge and historical precedent of transformative change, and better integrating local and scientific knowledge. But severe governance and institutional capacity constraints, with ad hoc actions focused on short-term, and lack of clarity about responsibilities.

Cape Town (4.6mill), South Africa: Capable local leaders together with effective collaboration between
<table>
<thead>
<tr>
<th>Equity and social vulnerability: Climate change compounds everyday inequity and vulnerability in coastal C&S, making it difficult to disentangle and address social drivers of risk</th>
<th>Recognise political realities and address vulnerability and equity concerns to achieve just, impactful and enduring outcomes</th>
<th>Lessons learned in diverse C&S from Mozambique to Australia, Cambodia, India, Thailand, Pacific Islands, the Arctic and the USA (Archer and Dodman, 2015) (Brotto et al., 2015) (Hardy et al., 2017) (Nunzi et al., 2017) (Siipporananon and Visuthismajam, 2018) (Romero Manrique et al., 2018) (Torabi et al., 2018):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal hazard impacts and responses affect people in diverse ways, with costs and benefits unevenly spread</td>
<td>- Expose the drivers and root causes of injustice, structural inequity and vulnerability</td>
<td>- Expose the drivers and root causes of injustice, structural inequity and vulnerability</td>
</tr>
<tr>
<td>- These responses can compound vulnerability and inequity</td>
<td>- Link human development concerns, risk reduction, resilience and adaptation</td>
<td>- Link human development concerns, risk reduction, resilience and adaptation</td>
</tr>
<tr>
<td>- SLR and coastal hazards can undermine societal aspirations, like SDGs</td>
<td>- Raise awareness and public support for actions that are just and equitable</td>
<td>- Raise awareness and public support for actions that are just and equitable</td>
</tr>
<tr>
<td>- Private responses can cause public harm</td>
<td>- Address discriminatory drivers (e.g., on racial grounds) of coastal land-use patterns and risk</td>
<td>- Address discriminatory drivers (e.g., on racial grounds) of coastal land-use patterns and risk</td>
</tr>
<tr>
<td>- Responses can deepen vulnerability, risk and marginalisation through elite capture of coastal resources and assets</td>
<td>- Address the barriers marginalised groups face in participating in risk reduction and adaptation planning</td>
<td>- Address the barriers marginalised groups face in participating in risk reduction and adaptation planning</td>
</tr>
<tr>
<td>Strengthen community capabilities to respond to SLR and coastal hazard risk, drawing on external assistance and government</td>
<td>Use inclusive planning, decision-making and implementation processes to give voice to marginalised people</td>
<td>Use inclusive planning, decision-making and implementation processes to give voice to marginalised people</td>
</tr>
</tbody>
</table>

Lessons learned in diverse C&S from Belize to small island states in the Pacific and Caribbean, and rural coastal communities in the USA (Karlsson and Hovelsrud, 2015; Joseph, 2017; Robinson, 2017; Warrick et al., 2017; Weir et al., 2017; Jurjonas and Seekamp, 2018; Kelman, 2018; Petzold and Magnan, 2019):

Monetary River village (200 people), Belize: Remote indigenous community capacity to tackle erosion enabled by interventions by researchers, journalists and local NGOs to secure media and political attention after hurricane damage. Enduring action hampered by severe adaptation constraints, limited climate researchers and municipal authority have initiated range of community-based adaptation initiatives. Translating plans into action is challenging given scope of poverty and inequity, and ‘everyday’ vulnerability challenges, exacerbated by climate change.

New York City (23.5mill), USA: State and city government reaching out to communities to build adaptive capacity and resilience, and draw on strong technical capabilities but challenge given available financial resources and challenges of multi-level governance together with marked inequality and differential exposure and vulnerability, and private property rights prioritization.
Social Conflict: Coastal C&S Will Be the Locus of Contending Views About Appropriate Climate Responses; and Face the Challenge of Avoiding Destructive Conflict and Realising Its Productive Potential

<table>
<thead>
<tr>
<th>Social conflict: Coastal C&S will be the locus of contending views about appropriate climate responses; and face the challenge of avoiding destructive conflict and realising its productive potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design and facilitate tailor-made participation processes, involving stakeholders early and consistently through to implementation of agreed responses and subsequent adjustments (Burton and Mustelin, 2013; Berke and Stevens, 2016; Gorddard et al., 2016; Webler et al., 2016; Schlosberg et al., 2017; Chu et al., 2018a; Lawrence et al., 2018; Mehring et al., 2018; Nkoana et al., 2018; Schernewski et al., 2018; Yusuf et al., 2018; Uittenbroek et al., 2019; Kim et al., 2020)</td>
</tr>
<tr>
<td>Lessons learned in diverse C&S from South Africa to Reunion Island and Australia (Sowman and Gawith, 1994; Celliers et al., 2013; Pasquini et al., 2013; Colenbrander and Sowman, 2015; Leck and Roberts, 2015; Pasquini et al., 2015; Chu et al., 2016; Desportes and Colenbrander, 2016; Ziervogel et al., 2016; Colenbrander and Bavinck, 2017; Glavovic et al., 2018; Magnan and Duvat, 2018; Torabi et al., 2018; Colenbrander, 2019):</td>
</tr>
<tr>
<td>- Create opportunities for integrative solutions by involving key interests and affected parties in adaptation planning</td>
</tr>
<tr>
<td>- Use conflict resolution mechanisms in participatory processes</td>
</tr>
<tr>
<td>- Appoint independent facilitators/mediators and involve officials as ‘bureaucratic activists’ to improve inclusivity and iterative and reflexive engagement</td>
</tr>
<tr>
<td>- Align informal participatory processes with statutory processes and government practices</td>
</tr>
<tr>
<td>- Sustain engagement by securing resources for local use, and aligning activities with political and bureaucratic cycles</td>
</tr>
<tr>
<td>- Involve historically disadvantaged and socially vulnerable groups, e.g., using accessible meeting locations/venues, local languages and culturally appropriate meeting protocols</td>
</tr>
<tr>
<td>- Involve local leaders who will champion risk reduction and adaptation and help mainstream findings into C&S decision-making</td>
</tr>
<tr>
<td>- Inclusive processes help address conflict and drivers of vulnerability, and promote just adaptation</td>
</tr>
</tbody>
</table>

Lessons Learned

- **Accra (2.50 mill), Ghana:** Household adaptation mediated by local government approaches to flood mitigation, with need for better early warning system and measures to maintain local stormwater and related infrastructure to prevent flooding. Severe adaptation constraints.
- **Lagos, Nigeria:** Building adaptive capacity to overcome ‘everyday’ vulnerability and poverty is severely challenging.
- **Napier (0.065 mill), Hawkes Bay, (0.178 mill), New Zealand:** Enabling national regulatory and non-regulatory provisions, together with collaboration between local authorities and indigenous people, involving stakeholders, led to co-designed long-term strategy with commitment to implementation. Translating plans into action is challenging given contending interests.
- **Manila (14 mill), Philippines:** Metro-wide planning and infrastructure provisions for climate change foster climate justice and resilience being explored; with community-based actions. But severe challenges with extent of exposure and vulnerability, and limited political will, corruption and uncoordinated top-down municipal actions.
<table>
<thead>
<tr>
<th>and key livelihood, public health, identity, security and sovereignty concerns - SLR could compound socio-political stressors and challenge prevailing legal provisions and processes</th>
<th>Create safe settings for inclusive, informed and meaningful deliberation and collaborative problem-solving (Susskind et al., 1999; Laws et al., 2014; Hiwasaki et al., 2015; Susskind et al., 2015) (Glavovic, 2016; Ung et al., 2016; Nursey-Bray, 2017; Sultana and Thompson, 2017; Magnan and Duvat, 2018; Fayombo, 2020)</th>
<th>Lessons learned in diverse C&S in villages from Bangladesh to communities in South Africa, Australia, and Louisiana and New England, USA, (Rumore; Susskind et al., 2015; Glavovic, 2016; Nursey-Bray, 2017; Sultana and Thompson, 2017; Fayombo, 2020): - Use flexible and enabling processes based in local institutions judged to be robust and fair, supported by governing authorities - Pay attention to local social dynamics and reduce elite domination - Use local and indigenous knowledges and science to inform responses - Encourage institutional improvisation to address local concerns - Use trusted independent facilitators - Incentivise participation of disadvantaged groups - Focus on improving risk literacy, optimism and capacity for joint problem-solving - Use joint fact-finding, scenario planning, negotiate trade-offs, facilitate public dialogue, and secure institutional support for action - Enable ongoing public deliberation and social learning - Commit to continual adjustments as circumstances change over time, e.g., build shared understanding about locally relevant thresholds beyond which alternative courses of action need to be actioned</th>
</tr>
</thead>
</table>

Napier (0.065 mill), Hawkes Bay, (0.178 mill), New Zealand: Active involvement of local communities, Indigenous People (Māori) and research community to co-produce fit-for-purpose long-term coastal hazard risk strategy.

Rotterdam (0.65 mill), Netherlands: Delta Programme, has institutionalised multi-level adaptation governance approach with strong accountability mechanisms.

London (8.9 mill), United Kingdom: Long term provisions for at-risk Thames Estuary, including major protective works, are embedded in Greater London Spatial Development Plan and London Climate Change Partnership that is championed by strategic leadership, and supported by the public and strong technical capability.
References

CCC, 2017: Managing the coast in a changing climate, Committee on Climate Change, London.

Chu, E., T. Schenk and J. Patterson, 2018a: The dilemmas of citizen inclusion in urban planning and governance to enable a 1.5°C climate change scenario. doi:http://dx.doi.org/10.17645/up.v3i2.1292.

Cinner, J. E. et al., 2018: Building adaptive capacity to climate change in tropical coastal communities. Nature Climate Change, 8 (2), 117-123, doi:10.1038/s41558-017-0065-x.

Dutra, L. X. et al., 2015: Organizational drivers that strengthen adaptive capacity in the coastal zone of Australia. Ocean & Coastal Management, 109, 64-76.

Gorddard, R. et al., 2016: Values, rules and knowledge: adaptation as change in the decision context. Environmental Science & Policy, 57, 60-69.

Hoque, M. Z. et al., 2019: Assessing Agricultural Livelihood Vulnerability to Climate Change in Coastal Bangladesh. *International Journal of Environmental Research and Public Health*, 16 (22), 4552.

OECD, 2019: *Responding to Rising Seas*.

Ranasinghe, R. et al., 2019: Disentangling the relative impacts of climate change and human activities on fluvial sediment supply to the coast by the world’s large rivers: Pearl River Basin, China. Scientific Reports, 9 (1), 9236, doi:10.1038/s41598-019-45442-2.

Rumore, D., Building the Capacity of Coastal Communities to Adapt to Climate Change through Participatory Action Research. Collaborations in Planning, 16.

Seekamp, E., M. Jurionas and K. Bitsura-Meszaros, 2019: Influences on coastal tourism demand and substitution
behaviors from climate change impacts and hazard recovery responses. *Journal of Sustainable Tourism*, 27 (5),

Sengupta, D., R. Chen and M. E. Meadows, 2018: Building beyond land: An overview of coastal land reclamation in 16

Sengupta, D., R. Chen, M. E. Meadows and A. Banerjee, 2020: Gaining or losing ground? Tracking Asia’s hunger for

Seo, S. N. and L. A. Bakkenes, 2016: Did adaptation strategies work? High fatalities from tropical cyclones in the
North Indian Ocean and future vulnerability under global warming. *Natural Hazards*, 82 (2), 1341-1355,

Seraphim, M. J. et al., 2020: Interactions between coral restoration and fish assemblages: implications for reef

Shultz, J. M., C. Fugate and S. Galea, 2020a: Cascading Risks of COVID-19 Resurgence During an Active 2020

Shultz, J. M. et al., 2020b: Superimposed threats to population health from tropical cyclones in the prevcane era of

Siders, A. R., 2019: Managed Retreat in the United States. *One Earth*, 1 (2), 216-225,

Singh, C., M. Madhavan, J. Arvind and A. Bazaz, 2021: Climate change adaptation in Indian cities: a review of existing

Siriporananon, S. and P. Visutthismajarn, 2018: Key success factors of disaster management policy: A case study of the
(2), 269-276, doi:https://doi.org/10.1016/j.kjss.2018.01.005.

So, S., B. Juarez, A. Valle-Levinson and M. E. Gillin, 2019: Storm surge from Hurricane Irma along the Florida

Sovacool, B. K., 2018: Bamboo Beating Bandits: Conflict, Inequality, and Vulnerability in the Political Ecology of
Climate Change Adaptation in Bangladesh. *World Development*, 102, 183-194,
doi:https://doi.org/10.1016/j.worlddev.2017.10.043.

Change*, 5 (7), 616-618, doi:10.1038/nclimate2665.

Sowman, M. and M. Gawith, 1994: Participation of disadvantaged communities in project planning and decision‐
doi:10.1080/03768359408439772.

Town: City of Cape Town.

Adaptation for Sea Level Rise: Implications for Multisectoral Readiness and Boundary Spanning. *Coastal

Storbjörk, S. and M. Hjerpe, 2021: Climate-proofing coastal cities: What is needed to go from envisioning to enacting
multifunctional solutions for waterfront climate adaptation? *Ocean & Coastal Management*, 210, 105732,

Storlazzi, C. D. et al., 2010: Most atolls will be uninhabitable by the mid-21st century because of sea-level rise

Strzelecki, M. C. and M. W. Jaskólski, 2020: Arctic tsunamis threaten coastal landscapes and communities – survey of
Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland.

Sudeime-Kieux, K. et al., 2015: Opportunities, incentives and challenges to risk sensitive land use planning: Lessons
from Nepal, Spain and Vietnam. *International Journal of Disaster Risk Reduction*, 14, 205-224,
doi:https://doi.org/10.1016/j.ijdrr.2014.09.009.

Sultana, P. and P. M. Thompson, 2017: Adaptation or conflict? Responses to climate change in water management in

Surtiari, G. A. K., R. Djialante, N. J. Setiadi and M. Garschagen, 2017: Culture and community resilience to flooding:

Susskind, L., D. Rumore, C. Hulet and P. Field, 2015: Managing Climate Risks in Coastal Communities
Strategies for Engagement, Readiness and Adaptation. Anthem Press.

to reaching agreement. Sage Publications.

Yang, Y.-C. and Y.-E. Ge, 2020: Adaptation strategies for port infrastructure and facilities under climate change at the Kaohsiung port. Transport Policy, 97, 232-244, doi:https://doi.org/10.1016/j.tranpol.2020.06.019.

Zickgraf, C., 2019: Keeping People in Place: Political Factors of (Im)mobility and Climate Change. *Social Sciences, 8* (8), 228.

