
FINAL DRAFT CCP4 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SMCCP4-1 Total pages: 20 

 1 

Cross-Chapter Paper 4: Mediterranean Region 2 

Supplementary Material 3 

 4 
Cross-Chapter Paper Leads: Elham Ali (Egypt), Wolfgang Cramer (France) 5 
 6 
Cross-Chapter Paper Authors: Jofre Carnicer (Spain), Elena Georgopoulou (Greece), Nathalie Hilmi 7 
(Monaco), Gonéri Le Cozannet (France), Piero Lionello (Italy) 8 
 9 
Cross-Chapter Paper Contributing Authors: Ahmed Abdelrehim (Egypt), Mine Cinar (USA), Islam 10 
Abou El-Magd (Egypt), Shekoofeh Farahmand (Iran), François Gemenne (Belgium), Lena Reimann 11 
(Germany), Alain Safa (France), Sergio Vicente-Serrano (Spain), Francesca Spagnuolo (Italy), Duygu Sevgi 12 
Sevilgen (Monaco), Samuel Somot (France), Rémi Thiéblemont (France), Cristina Tirado (USA), Yves 13 
Tramblay (France) 14 
 15 
Cross-Chapter Paper Review Editors: Karim Hilmi (Morocco), Marta Rivera-Ferre (Spain) 16 
 17 
Cross-Chapter Paper Scientist: Duygu Sevgi Sevilgen (Monaco) 18 
 19 
Date of Draft: 1 October 2021 20 
 21 
Notes: TSU Compiled Version 22 
 23 

 24 
Table of Contents 25 
 26 
SMCCP4.1 Detection and Attribution of Climate Change Impacts in the Mediterranean Basin ............. 2 27 
SMCCP4.2 Projected Climate Risks ............................................................................................................... 3 28 
SMCCP4.3 Sustainable Development in the Mediterranean Basin ........................................................... 12 29 
SMCCP4.4 Mediterranean Sea-level Projections ........................................................................................ 12 30 
References  ....................................................................................................................................................... 13 31 
 32 
  33 

ACCEPTED V
ERSIO

N 

SUBJE
CT TO FIN

AL E
DITS



FINAL DRAFT CCP4 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SMCCP4-2 Total pages: 20 

SMCCP4.1 Detection and Attribution of Climate Change Impacts in the Mediterranean Basin 1 
 2 
 3 
Table SMCCP4.1: References supporting Figure CCP4.5 (Attribution of observed impacts of climate change in the 4 
Mediterranean region). 5 

Impact Supporting references 
Thermal discomfort Heatwaves are increasing due to climate change in the Mediterranean, and 

amplified in cities due to urbanization practices, ultimately increasing mortality 
and morbidity rates as well as energy consumption (high agreement, robust 
evidence in the north, medium evidence in the south) (WGI Chapters 10 and 
12;WGII Chapters 9 and 13; Kuglitsch et al., 2010; Salvati et al., 2017; Zinzi 
and Carnielo, 2017; Pyrgou and Santamouris, 2018; Salameh et al., 2019; 
Maggiotto et al., 2021) 

Pluvial and river flooding There is a mixed signal of increasing and decreasing flood trends in the 
Mediterranean (Gaume et al., 2016; Blöschl et al., 2017; Gudmundsson et al., 
2017; Kundzewicz et al., 2017; Siam and Eltahir, 2017), and there is low 
confidence in attribution to climate change due to the major impacts of human 
interventions such as land use change, groundwater exploitation, urbanization 
and non-optimal flood risk management (WGI Chapters 11 and 12 for extreme 
precipitation changes; Llasat et al., 2013; Mediero et al., 2014; Ziv et al., 2014; 
Baahmed et al., 2015; Polemio and Lonigro, 2015; Gaume et al., 2016; Llasat et 
al., 2016; Paprotny et al., 2018; Ribes et al., 2019; Tramblay et al., 2019; 
Vicente-Serrano et al., 2019; Argaman et al., 2020) ().  

Water availability and quality There is high confidence in detection and attribution of climate change impacts 
on water availability in the North-Western Mediterranean, and medium 
confidence in other subregions. There is emerging evidence on the impacts to 
water quality. (WGI Chapters 8 and 11; WGII Chapters 9 and 13; Hoerling et 
al., 2012; Ruffault et al., 2013; Vicente-Serrano et al., 2014; Aguilera et al., 
2015; Quintana-Seguí et al., 2016; Van Vliet et al., 2016; Gosling et al., 2017; 
Spinoni et al., 2017; Caloiero et al., 2018; Mathbout et al., 2018; Okkan and 
Kirdemir, 2018; Braca et al., 2019; Grillakis, 2019) 

Wildfires There is medium confidence that in Mediterranean Europe, wildfires are 
decreasing owing to good practices (Brotons et al., 2013; Turco et al., 2014; 
Turco et al., 2016), despite the increasing hazard caused by increased drought 
frequency and severity (WGI Chapter 11; Pausas and Fernández-Muñoz, 2012; 
Karali et al., 2014; Fernandes et al., 2016; Turco et al., 2017b; Ruffault et al., 
2018). There is low confidence in any trends on wildfire for the south 
Mediterranean due to the lack of attribution studies, limited monitoring of direct 
human interventions and also limited fuel availability in the south east 
Mediterranean (Meddour-Sahar, 2015; Turco et al., 2017a; Curt et al., 2020). 

Coastal flooding and erosion Chronic flooding in Venice (Box 13.1) and generally Mediterranean extreme 
water levels during storms increase consistently with sea-level rise (Marcos et 
al., 2009). Flood and erosion hazards and risks have not been attributed to 
climate change yet, as they highly depend on coastal management strategies 
(WGI Chapter 13Frihy et al., 2010). Pocket beaches in the Mediterranean might 
be early responders to sea-level rise (Brunel and Sabatier, 2009). Some 
permanent flooding is observed in subsiding areas such as the region near 
Thessaloniki (Greece) (Raucoules et al., 2008). 

Marine ecosystems New evidence published since AR5 (AR5 WGII Chapters 5 and 18) confirms 
that a shift in Mediterranean marine ecosystems, characterized by biodiversity 
decline and invasive species, has occurred since the 1980s, with high 
confidence of a major climate change imprint superimposed with the impacts of 
human activities ( Chapter 3;Fortibuoni et al., 2015; Stergiou et al., 2016; 
Corrales et al., 2017; Givan et al., 2018; Azzurro et al., 2019; Kim et al., 2019; 
Albano et al., 2021). 

Inland ecosystems New evidence since AR5 WGII Chapter 18 confirms that terrestrial and 
freshwater ecosystems are impacted by climate change in the Mediterranean, 
resulting in loss of habitats and biodiversity and range shifts (e.g. birds), 
including through cascading impacts such as drought and wildfires (high 
confidence in northern Mediterranean, medium confidence in Southern 
Mediterranean) (Chapters 9 and 13 and CCP1; Stefanescu et al., 2011; Peñuelas 
et al., 2018; Bartsch et al., 2020). 
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Fisheries New evidence published since AR5 WGII Chapter 18 (Sabatés et al., 2006; 
Lejeusne et al., 2010; Sabatés et al., 2012) further confirms that climate 
warming has had a negative impact on marine exploited fish stocks (high 
confidence), superimposed on the impacts of human activities such as 
overfishing. The economic value of proliferating species is generally less than 
that of declining species (high confidence) (Coll et al., 2014; Tsikliras and 
Stergiou, 2014; Stergiou et al., 2016; Azzurro et al., 2019). 

Agriculture and viticulture Changes in seasonality are attributed to climate change and the drying trends 
affect agriculture negatively (low confidence in the south-east Mediterranean 
and medium confidence in other sub-regions) (El-Maayar and Lange, 2013; 
Garcia-Mozo et al., 2015; Moore and Lobell, 2015; Oteros et al., 2015; Seif-
Ennasr et al., 2016; Di Lena et al., 2018). 

 1 
 2 
SMCCP4.2 Projected Climate Risks 3 
 4 
The following tables provide the quantitative basis and literature references for the “burning ember” 5 
illustrations in Figure CCP4.8. 6 
 7 
 8 
Table SMCCP4.2a: Supporting material for water availability and quality 9 

Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

Undetectable 
to Moderate 0.8 – 1.0 High 

• Increase of the fractional area under soil drought in the northern 
Mediterranean by 4-14% (Grillakis, 2019) 

• Reduction (median) in mean annual runoff in Spain by 5%, 
compared to 1980-2010 (Gosling et al., 2017) 

• Reduction of groundwater recharge in Italy by 7-12% from 1996-
2015 (Braca et al., 2019) 

• Reduction of reservoir inflows in Turkey by 15% from 1980-2005 
(Okkan and Kirdemir, 2018) 

• Change of gross hydropower potential by -5% up to +20% in the 
northern Mediterranean and by 5-60% in the southern 
Mediterranean, compared to 1971-2000 (Van Vliet et al., 2016) 

• Reduction of cooling water discharge capacity by 5-60%, from 
1971-2000 (Van Vliet et al., 2016) 

• The Standard Precipitation index (SPI) displays decreasing trends 
in the Mediterranean Basin (trends less clear in southern France). 
The typical characteristics of droughts (12-24 months SPI) mean 
that they have relevance for water management (Caloiero et al., 
2018). 

• The SPI (driven by precipitation) and SPEI (driven by precipitation 
and temperature) display remarkable drying trends in southern 
Europe, especially in summer and autumn during the last three 
decades, both in terms of frequency and intensity (Spinoni et al., 
2017).  

• Increased severity of droughts in Spain attributed to higher 
evaporative demand due to rising temperatures (Vicente-Serrano et 
al., 2014) 

• Increase in drought intensity and duration as well as seasonality 
changes are detected in subregions of Mediterranean France 
(Ruffault et al., 2013)  

• The Mediterranean drying after 1970 during the winter season is 
partly attributed to anthropogenic climate change (Hoerling et al., 
2012) 

• Identification of drought clusters in north-western Mediterranean in 
the 1940s since the 2000s, and in eastern Mediterranean since the 
1980s (Quintana-Seguí et al., 2016) 

• A drying trend is reported in the Eastern Mediterranean (Mathbout 
et al., 2018) 
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Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

• There is medium to high confidence that anthropogenic climate 
change increased drought severity in the Mediterranean (AR6 WGI 
Chapters 8 and 11) 

Moderate to 
High 1.4 – 2.0 High 

• High confidence in increase of hydrological, agricultural and 
ecological droughts in the Mediterranean between 1.5 and 2°C of 
GWL (WGI Chapter 11). 

• Aridity is projected to expand in the South Mediterranean ( CCP3) 
• Reduction of streamflow (90th percentile) by 12-16% in northern 

Mediterranean, compared to 1971-2000 (Marx et al., 2018) 
• Reduction of average annual discharge in Spain by 14-37% from 

1971-2000 (Marcos-Garcia et al., 2017) and by 13-14% from 2003-
2013 in Italy (Pumo et al., 2016) 

• Reduction (median) of mean annual runoff in Spain by 20% 
compared to 1980-2010 (Gosling et al., 2017) and of surface runoff 
in Turkey by 7-20% from 1970-2000 (Bucak et al., 2017)  

• Reduction of low flows in France by 12% from 1980-2009 
(Andrew and Sauquet, 2017) and by 15% or more over southern 
Europe (Roudier et al., 2016) 

• Reduction of inflow in Spanish dams by 15-17% from to 1992-
2011 (Zabalza-Martínez et al., 2018) 

• Reduction of groundwater recharge in Italy by 10-18% from 
baseline (Masia et al., 2018; Braca et al., 2019) 

• Reduction of reservoir inflows in Turkey by 21% from 1980-2005 
(Okkan and Kirdemir, 2018) and of reservoir maximum water level 
by 14-31% from 1970-2000 (Bucak et al., 2017) 

• Reduction of mean annual streamflow volume in Israel by 45-47% 
from 1996-2005 (Peleg et al., 2015) 

• Reduction of water availability in southwestern Mediterranean by 
up to 40% from to 1976-2005 (Tramblay et al., 2018) 

• Reduction of groundwater volume by 26-42% in a semi-arid 
catchment in Italy compared to baseline (Guyennon et al., 2017) 
and of groundwater availability in Greece by 12-18% from historic 
levels (Koutroulis et al., 2016) 

• Reduction of hydropower production in Spain by 13-33% from 
baseline (Lobanova et al., 2016; Solaun and Cerdá, 2017), and by 
10-20% on average over the entire Mediterranean (Turner et al., 
2017) 

• Reduction of gross hydropower potential by 60% or more from 
1981-2000 (Van Vliet et al., 2016; Zhang et al., 2018) 

• Reduction of available freshwater for cooling of thermal power 
plants by 6-18% from baseline in Spain and other northern 
Mediterranean locations (Payet-Burin et al., 2018; Tobin et al., 
2018) 

• In France, increase of area under risk of severe drought by 14-66% 
(EEA, 2017; Lozano et al., 2017; Peñuelas et al., 2017; Varela et 
al., 2019) 

• Increase of the highest probability of four consecutive drought 
years by 20-82% compared to 1967-2016 (Lehner et al., 2017) 

• Reduction of annual runoff by 9-37% (Schleussner et al., 2016; 
Sellami et al., 2016) 

High to 
Very High 2.7-3.2 High 

Warming at 2.7-3.2°C: 
• Reduction of hydropower production in Spain by 55% from 

baseline (Lobanova et al., 2016; Solaun and Cerdá, 2017) 
• Reduction (median) of mean annual runoff in Spain by 20% 

compared to 1980-2010 (Gosling et al., 2017) 
• Reduction (median) in groundwater water availability in Greece by 

27% (Koutroulis et al., 2016) 
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Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

• Reduction of streamflow (90th percentile) by 35% in northern 
Mediterranean compared to 1971-2000 (Marx et al., 2018) 

• In Turkey, reduction (median) of surface runoff by 52% and 
reservoir maximum water level by 75-78% from 1970-2000 (Bucak 
et al., 2017) 

Warming higher than 3.5°C: 
• Very likely increase of hydrological, agricultural and ecological 

droughts in the Mediterranean at 4°C of GWL (WGI Chapter 11).  
• In Italy, reduction of: a) groundwater volume by 57% in a semi-arid 

catchment compared to baseline (Guyennon et al., 2017), b) 
groundwater recharge by 42% from baseline (Braca et al., 2019), c) 
of average annual discharge by 32% from 2003-2013 (Pumo et al., 
2016). 

• Reduction of water availability in southwestern Mediterranean by 
up to 55% from to 1976-2005 (Tramblay et al., 2018) 

• Reduction of annual runoff in Portugal by 40-70% from 1961-1990 
(Mourato et al., 2015)  

• Reduction of annual discharge in Tunisia by 41-58% from 1970-
2000 (Dakhlaoui et al., 2020) 

• Reduction of surface runoff in Morocco by 55-63% from 1989-
2009 (Marchane et al., 2017) 

• Increase of the highest probability of four consecutive drought 
years by 220% compared to 1967-2016 (Lehner et al., 2017) 

• Reduction of gross hydropower potential by 20-60% in northern 
Mediterranean and by 40-60% or more in southern Mediterranean 
from 1981-2000 (Van Vliet et al., 2016) 

• Reduction of hydropower production in Spain by 30-55% from 
baseline (Lobanova et al., 2016; Solaun and Cerdá, 2017) 

• Reduction of cooling water discharge capacity by more than 60%  
from 1971-2000 (Van Vliet et al., 2016) 

 1 
 2 
Table SMCCP4.2b: Supporting material for wildfires 3 

Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

Undetectable 
to Moderate 0.8 - 1.5 Medium 

• Change of burnt area in northern Mediterranean by -5% to +54% 
(Wu et al., 2015; Turco et al., 2018) 

• In Italy, change of fire probability by -4.2% to +11.6%, of fire 
potential index by -5.5% to +11.8%, and of high flame length 
probability by -50% to +25% (EEA, 2017; Lozano et al., 2017; 
Peñuelas et al., 2017; Varela et al., 2019). 

• Wildfire hazard increasing due to increased drought frequency and 
severity (Pausas and Fernández-Muñoz, 2012; Karali et al., 2014; 
Fernandes et al., 2016; Turco et al., 2017b; Ruffault et al., 2018), 
but human interventions remain key driver of wildfire risk 
(Meddour-Sahar, 2015; Turco et al., 2017a; Curt et al., 2020), 
decrease of wildfire risk in the northern Mediterranean (Brotons et 
al., 2013; Turco et al., 2014; Turco et al., 2016) 

• Times of emergence of increased wildfire risk by the mid-21st 
century in the north-western Mediterranean (Lozano et al., 2017) 

Moderate to 
High 1.6 - 2.5 Medium 

• Increase of areas prone to fire risk by 53% in Corsica (Garbolino et 
al., 2016). 

• Area with 7 or more days with extreme fire weather increasing by 
82-217% in southern France (EEA, 2017; Lozano et al., 2017; 
Peñuelas et al., 2017; Varela et al., 2019). 

• Increase of fire risk in Turkey by 20% on average (Satir et al., 
2016) 
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Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

• Increase of the number of days in summer with Fire Weather Index 
(FWI) ≥ 15 by 20-50% in central-northern Italy and by 2-20% in 
southern Italy (Faggian, 2018). 

• Increase of burnt area in northern Mediterranean by 62-87% (Turco 
et al., 2018) 

High to 
Very High 3.0 - 3.7  Low • Increase of burnt area in northern Mediterranean by 37-187% (Wu 

et al., 2015; Turco et al., 2018) 
 1 
 2 
Table SMCCP4.2c: Supporting material for inland ecosystems 3 

Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

Undetectable 
to Moderate 0.7-1.2 Medium 

• New evidence since AR5 WGII Chapter 18 confirms that terrestrial 
and freshwater ecosystems are impacted by climate change in the 
Mediterranean, resulting in loss of habitats and biodiversity and 
range shifts (e.g. birds), including through cascading impacts such 
as drought and wildfires (high confidence in northern 
Mediterranean, medium confidence in Southern Mediterranean) 
(Chapters 4, 9 and 13 and CCP1;Stefanescu et al., 2011; Peñuelas et 
al., 2018; Bartsch et al., 2020). 

Moderate to 
High 1.5-2 High 

• Terrestrial ecosystems negatively impacted by drought and 
wildfires (Guiot and Cramer, 2016; Matías et al., 2019; Sánchez-
Salguero et al., 2020), and freshwater species and ecosystems 
(including fishes, insects, molluscs) negatively affected by reduced 
river flow and alteration of the water quality Chapters 2 and 4, 
CCP1; See Tables SMCCP4.2a and SMCCP4.2b;Jarić et al., 2019; 
Lefebvre et al., 2019) 

• Mediterranean island endemic species especially at risk due to low 
possibilities to migrate (CCP1).  

High to 
Very High 2-3 Medium 

• Terrestrial species such as land plants, insects, birds, reptiles, and 
mammals are projected to be negatively affected, with a steep 
increase projected risks between 2 and 3°C of warming 
(CCP1;Manes et al., 2021) 

• Arid conditions gaining space in the Mediterranean region, with 
e.g. 13-30% of Mediterranean Natura 2000 area and 15 to 23% of 
Natura 2000 sites projected to become arid above 3°C GWL 
(Barredo et al., 2016).  

• Substantial loss of habitat in freshwaters, e.g., 25% (RCP4.5) and 
40% (RCP8.5) for brown trout in 2100 (Santiago et al., 2016) 

 4 
 5 
Table SMCCP4.2d: Supporting material for marine ecosystems 6 

Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

Undetectable 
to Moderate 0.5-1 High 

• New evidence published since AR5 (AR5 WGII Chapters 5 and 18) 
confirms that a shift in Mediterranean ecosystems is detected since 
the 1980s with high confidence of a climate change imprint and 
continued tropicalization (high confidence) and mass mortality 
events (very high confidence) (Chapter 3) (Fortibuoni et al., 2015; 
Stergiou et al., 2016; Corrales et al., 2017; Givan et al., 2018; 
Azzurro et al., 2019; Kim et al., 2019; Albano et al., 2021) 

• New evidence published since (Sabatés et al., 2006; Lejeusne et al., 
2010; Sabatés et al., 2012) and AR5 WGII Chapter 18 confirms that 
climate warming has a negative impact on marine exploited fish 
stocks (high confidence), superimposed on direct human impacts. 
The value of proliferating species is generally less than those of 
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Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

declining species (high confidence) (Coll et al., 2014; Tsikliras and 
Stergiou, 2014; Stergiou et al., 2016; Azzurro et al., 2019). 

Moderate to 
High 1-1.5 High 

• Observed shift in marine ecosystems projected to continue and 
intensify, with e.g. loss of seagrass habitat ( WGI Chapter 3), 
decrease of primary production and biomass in the West 
Mediterranean (Macias et al., 2015; Moullec et al., 2019), 
decreasing biodiversity of meso-zooplankton (Benedetti et al., 
2018), continued tropicalization (high confidence) (Lloret et al., 
2015) (Corrales et al., 2018)  

• Mass mortality events due to marine heatwaves (very high 
confidence) (Chapter 3) and increased risks of extinctions as 
climate warms projected to continue ( CCP1;Ben Rais Lasram et 
al., 2010; Garrabou et al., 2021; Manes et al., 2021) 

High to 
Very High 1.5-2.5 High 

• Increased ecosystem shifts, mass mortality events and risks of 
extinction for endemic species between 1.5 and 2.5°C (Chapters 3 9 
and 13;Garrabou et al., 2021; Manes et al., 2021) 

• Loss of habitats and nesting areas for e.g. turtles due to beach losses 
induced by projected sea-level rise (WGI Chapter 3).  

• 25% of endemic marine species in the Mediterranean projected to 
be at high risk of extinction due to climate change (range of 
projections covered: from 1.5°C to 3°C) (CCP1; Manes et al., 2021) 

• Abundance of small to medium pelagic fish is projected to decline 
up to 33% by 2100 (Albouy et al., 2013; Burrows et al., 2014; 
Stergiou et al., 2016; Raybaud et al., 2017; Albano et al., 2021). 

 1 
 2 
Table SMCCP4.2e: Supporting material for food production and security 3 

Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

Undetectable 
to Moderate 1.0 – 1.4 High 

• Decrease of wheat yield by 5% in Egypt, by 0-25% in Italy, by 
18.8% in Morocco (Chourghal et al., 2016; Dettori et al., 2017; 
Iocola et al., 2017; Brouziyne et al., 2018; Kheir et al., 2019).  

• Decrease of sunflower crop water productivity by 15.7% in 
Morocco (Chourghal et al., 2016; Dettori et al., 2017; Iocola et al., 
2017; Brouziyne et al., 2018; Kheir et al., 2019). 

• Decrease of olive yield by 17% in Portugal, by up to 8% in 
Sardinia-Sicily in Italy, and by 15-18% in Spain (Fraga et al., 
2020).  

Moderate to 
High 1.5 – 2.1 High 

• Decrease of wheat yield by 9% in Egypt, by 4.5-25% in Italy 
(Chourghal et al., 2016; Dettori et al., 2017; Iocola et al., 2017; 
Brouziyne et al., 2018; Kheir et al., 2019), by 5-55% in Algeria 
(Bouregaa, 2019; Cammarano et al., 2019). Decrease of wheat crop 
water productivity in Morocco by 21.7% (Chourghal et al., 2016; 
Dettori et al., 2017; Iocola et al., 2017; Brouziyne et al., 2018; 
Kheir et al., 2019). 

• Decrease of maize yield by 20-29% in Italy (Chourghal et al., 2016; 
Dettori et al., 2017; Iocola et al., 2017; Brouziyne et al., 2018; 
Kheir et al., 2019), by 3-10% in Greece (Georgopoulou et al., 2017; 
Iocola et al., 2017) 

• Decrease of barley yield by 18-25% in Algeria (Bouregaa, 2019; 
Cammarano et al., 2019), by up to 12% in Greece (Georgopoulou et 
al., 2017; Iocola et al., 2017), and by 27% on average in the entire 
Mediterranean (Bouregaa, 2019; Cammarano et al., 2019). 

• Decrease of rice yield by 6.4% in France and by 19.6% in Italy 
(Bregaglio et al., 2017). 

• Decrease of sunflower crop water productivity by 44.7% in 
Morocco (Chourghal et al., 2016; Dettori et al., 2017; Iocola et al., 
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Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

2017; Brouziyne et al., 2018; Kheir et al., 2019). Decrease of 
sunflower yield by 65% in Greece (Georgopoulou et al., 2017; 
Iocola et al., 2017). 

• Decrease of olive yield by 20% in Portugal (Fraga et al., 2020), by 
3-8% in Italy (Fraga et al., 2020), by 19-21% in Spain (Fraga et al., 
2020), and by 10-60% in Algeria (Bouregaa, 2019; Cammarano et 
al., 2019). Decrease of net primary production of olive groves by 
0.02-11% in Italy (Brilli et al., 2019; Fraga et al., 2020). 

• Decrease of potato yield by up to -45% in northern Mediterranean 
(Zhao et al., 2015; Georgopoulou et al., 2017).  

• Decrease of various vegetable yields by 4-34% in Greece 
(Georgopoulou et al., 2017; Iocola et al., 2017).  

• Decrease of tomato yield by -19-81% over the entire Mediterranean 
(Saadi et al., 2015). 

• Apples at maturity in northeastern Spain could be of inferior 
quality, and chilling requirements may be unsatisfied (Funes et al., 
2016; Rodríguez et al., 2019). 

• By 2060, more than 20% of exploited fishes and invertebrates 
currently found in eastern Mediterranean could become locally 
extinct (Jones and Cheung, 2015; Cheung et al., 2016; MedECC, 
2020). High losses of clawed lobster production by the end of the 
century have also been projected under RCP4.5 (Boavida-Portugal 
et al., 2018). For much of the Mediterranean, fisheries’ revenue 
may decrease by 15-30% by 2050 relative to 2000 under RCP8.5 
(Lam et al., 2016). 

High to 
Very High 2.3 – 4.0 Medium 

• Decrease of wheat yield by 5-59% in Algeria (Chourghal et al., 
2016; Dettori et al., 2017; Iocola et al., 2017; Brouziyne et al., 
2018; Bouregaa, 2019; Cammarano et al., 2019; Kheir et al., 2019), 
by 13-17% in Egypt, by more than 14% in Italy (Chourghal et al., 
2016; Dettori et al., 2017; Iocola et al., 2017; Brouziyne et al., 
2018; Kheir et al., 2019). 

• Decrease of barley yield by 22-29% in Algeria (Bouregaa, 2019; 
Cammarano et al., 2019). 

• Decrease of olive yield by 15-64% in Algeria (Bouregaa, 2019; 
Cammarano et al., 2019). 

• Change of tomato yield by -94% to +12% in Tunisia, depending on 
soil type and sowing date, or even non-viable crops under some 
combinations of soil type-sowing date (Bird et al., 2016),  

• In northeastern Spain, 28-72% of the years after 2070 could have 
winters not fulfilling chilling requirements for apple trees (Funes et 
al., 2016; Rodríguez et al., 2019), while chilling requirements will 
be severely compromised for other fruit trees in Spain (Funes et al., 
2016; Rodríguez et al., 2019). 

• Early maturation may result in unbalanced wines through higher 
sugar and lower acids in the grape must after 2050 under RCP8.5 
(Fraga et al., 2016; Koufos et al., 2018). Reduction in table quality 
vines and wine grape production in southern Europe due to a future 
increase in the cumulative thermal stress and dryness during the 
growing season (Cardell et al., 2019). 

• Net irrigation requirements for date palms in Tunisia under RCP8.5 
are expected to increase by 34% in 2050 compared to 2018 to 
sustain date production (Haj-Amor et al., 2020). 
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Table SMCCP4.2f: Supporting material for health and wellbeing. 1 
Risk with 

no/low 
adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

Undetectable 
to Moderate 0.7-1.3 Medium 

• Population exposed to high or very high heat stress risk compared 
to 1986-2005 is expected to increase by 53 million people in 
northern Mediterranean and by 82 million people in southwestern 
Mediterranean (Gasparrini et al., 2017; Rohat et al., 2019). 

• 1.3-1.6 times higher heat-related excess mortality in Italy and Spain 
compared to 1987-2010 (Gasparrini et al., 2017; Rohat et al., 2019). 

• Increase of specific cooling demand by 50-143% in office buildings 
at northern Mediterranean cities (Cellura et al., 2018). 

Moderate to 
High 1.5-2.0 High 

• Population exposed to high or very high heat stress risk compared 
to 1986-2005 expected to increase by 93 million people in northern 
Mediterranean (Gasparrini et al., 2017; Rohat et al., 2019) 

• In northern Mediterranean, about 13-20,000 additional attributable 
deaths per warm season compared to the reference (i.e. apparent 
temperatures at the historical levels observed during the period 
1971–2001) (Kendrovski et al., 2017). 

• Heat-related excess mortality in Italy and Spain could increase by 
2.9-3.7 times compared to 1987-2010 (Gasparrini et al., 2017; 
Rohat et al., 2019). 

• Decadal mortality risk ratio compared to the historical mortality 
risk could equal 3-7 in southern Mediterranean (Ahmadalipour and 
Moradkhani, 2018). 

• More than 20,000 climate-related deaths over the entire 
Mediterranean due to sub-optimal fruit and vegetable consumption 
(Springmann et al., 2016). 

• The predicted probability of districts with West Nile Virus 
infections over the entire Mediterranean could range from 0.02 to 
more than 0.5, compared to an average of 0.0125 in 2014 (Semenza 
et al., 2016). 

• Increase of the epidemic potential of dengue fever in southern 
Europe (Liu-Helmersson et al., 2019) 

High to 
Very High 2.1-3.1 Medium 

Under warming levels of 2.1 – 3.1°C: 
• Increase of specific cooling demand by 50-278% in office buildings 

at northern Mediterranean cities (Cellura et al., 2018) 
• Heat-related excess mortality in Italy and Spain could increase by 

3.6-3.7 times compared to 1987-2010 (Gasparrini et al., 2017; 
Rohat et al., 2019). 

• Slight increase of the epidemic potential of dengue fever in 
southern Europe (Liu-Helmersson et al., 2019) 

• Supporting evidence from Chapter 13 (Figure 13.30 and SM13.10). 
Under warming levels exceeding 3.7°C: 
• Decadal mortality risk ratio compared to the historical mortality 

risk could equal 8-20 in southern Mediterranean (Ahmadalipour 
and Moradkhani, 2018). 

• In northern Mediterranean, about 50,000 additional attributable 
deaths per warm season compared to the reference (i.e. apparent 
temperatures at the historical levels observed during the period 
1971–2001) (Kendrovski et al., 2017). 

• Heat-related excess mortality in Italy and Spain could increase by 
6.3-6.8 times compared to 1987-2010 (Gasparrini et al., 2017; 
Rohat et al., 2019). 

• Increase of the epidemic potential of dengue fever in southern 
Europe (Liu-Helmersson et al., 2019) 

• Increase of specific cooling demand by 134-375% in office 
buildings at northern Mediterranean cities (Cellura et al., 2018). 

• Supporting evidence from Chapter 13 (Figure 13.30 and SM13.10). 
 2 
 3 

ACCEPTED V
ERSIO

N 

SUBJE
CT TO FIN

AL E
DITS



FINAL DRAFT CCP4 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SMCCP4-10 Total pages: 20 

Table SMCCP4.2g: Supporting material for coastal risks 1 
Risk with 

no/low 
adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

Undetectable 
to Moderate 0.7-1.5 Medium 

• Chronic flooding in Venice (Box 13.1)  
• Mediterranean extreme water levels during storms increase 

consistently with sea-level rise (Marcos et al., 2009).  
• Flood and erosion hazards and risks not attributed yet, highly 

depend on coastal management strategies (WGI Chapter 13; Frihy 
et al., 2010).  

• Pocket beaches in the Mediterranean might be early responders to 
sea-level rise (Brunel and Sabatier, 2009). 

• Some permanent flooding is observed in subsiding areas such as 
around Thessaloniki (Greece) (Raucoules et al., 2008). 

• Times of emergence of climate induced erosion after 2050 in 
Mediterranean beaches (Le Cozannet et al., 2016) 

Moderate to 
High 1.5-2.0 High 

• Multicriteria coastal risk analysis at the scale of the Mediterranean 
shows potential for high risks all around the basin, with more 
marked potential for high risk in the South-Eastern Mediterranean 
(Satta et al., 2017). 

• Chronic flooding taking place at high-tide significant concern in 
Venice (Box 13.1). The MOSE barrier will prevent such flooding, 
but the closure of the barrier is projected to reach 2 months per year 
with 50cm of sea-level rise, and adversely impacts ship traffic and 
lagoon water exchange (Box 13.1). Chronic flooding also projected 
to affect other low-lying areas in the Mediterranean such as the 
Ebro Delta (Sayol and Marcos, 2018), but a full picture of the 
problem is still missing at the scale of the Mediterranean. 

• Extreme water levels will change in response to two contrasting 
impacts of climate change in the Mediterranean: reduced storminess 
and increased or accelerating mean sea-level rise due to climate 
change, with the latter dominating over the farther by the mid-21st 
century (WGI Chapters 9 and 12;Lionello et al., 2017), possibly 
becoming the main driver of extreme changes e.g. in the North 
Western Mediterranean by 2050 (Le Cozannet et al., 2015; Sayol 
and Marcos, 2018). 

High to 
Very High 2.0-2.8 High 

• Hazards (e.g., extreme water levels amplification factors and 
allowances) and risks (e.g., economic average annual losses) 
projected to increase more quickly in the Mediterranean than in 
other regions of the world by 2050 (AR6 SROCC; Hallegatte et al., 
2013), when GWL exceed 1.6 to 2.4°C (best estimate; AR6 WGI 
SPM).  

• Shoreline retreat caused by permanent flooding projected to 
become widespread in the Mediterranean for RCP8.5 by the mid 
century, or for RCP4.5 during the second half of the century, and 
further aggravates for higher levels of climate forcing (Snoussi et 
al., 2008; Le Cozannet et al., 2016; Antonioli et al., 2017; Anzidei 
et al., 2017; Ciro Aucelli et al., 2017; Enríquez et al., 2017; Jiménez 
et al., 2017; Antonioli et al., 2020). Storm surge superimposed with 
a rise of 0.5 m in mean sea-level could result in the loss of up to 
90% of pocket beaches in the Aegean archipelago, at least 
temporarily (Monioudi et al., 2017). Sediment inputs from major 
rivers limited by upstream dams, reducing potential compensation 
of erosion by sediments (Besset et al., 2017). 

• Overtopping and other coastal risks induced by the combination of 
sea-level rise, storms and waves significant for Mediterranean ports 
and related activities above 50 cm of sea-level rise with respect to 
1986-2005, especially in the South-Western Mediterranean 
(Sánchez-Arcilla et al., 2016; Sierra et al., 2016; Izaguirre et al., 
2021). Wave agitations in ports increases due to sea-level rise 
despite projected decreasing offshore waves heights, reducing 
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Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

operability times in ports, with shallower ports being projected to 
be more severely affected (Sierra et al., 2017) 

• Groundwater salinization projected to increase with sea-level rise 
depending on the geological context and the processes through 
which aquifers are exploited and recharged. Sea-level rise not the 
only process causing salinization, but is projected to add another 
constraint to groundwater management and to sectors such as 
agriculture in a number of Mediterranean coastal floodplains and 
deltas, e.g. in some governorates of the Nile Delta for 1m of sea-
level rise by 2100 (Mabrouk et al., 2018; Mastrocicco and 
Colombani, 2021; Pisinaras et al., 2021).  

 1 
 2 
Table SMCCP4.2h: Supporting material for committed impacts of sea-level rise to cultural heritage, infrastructures 3 
and communities 4 

Risk with 
no/low 

adaptation 

Range of 
temperature 

transition 

Confidence 
level for 

transition 

Explanation (text & references) 

Undetectable 
to Moderate 0.5-1.2 Low 

• Mediterranean sea-levels controlled by sea-level changes in the 
Atlantic through Gibraltar Strait at multi-decadal timescales (Calafat 
et al., 2012), Mediterranean sea-level projections are close to global 
trends (Thiéblemont et al., 2019) (see SMCCP4.4). 

• Pre-industrial temperatures resulted in stable sea-level (AR5 WGI 
Chapter 13), whereas now recent greenhouse gas emissions have 
committed 0.7 to 1.1 m of sea-level rise by 2300 (AR6 WGI 
Chapter 9) (Nauels et al., 2019). 

• Compared to other regions, the Mediterranean Region is 
characterized by a very high number of cultural heritage sites 
exposed to sea-level rises, some of which have been preserved since 
more than 2,000 years (Marzeion and Levermann, 2014). 

• To date, 37 Mediterranean UNESCO World Heritage sites are at 
risk from flooding, and 42 at risk of erosion (Reimann et al., 2018). 
This includes Venice, where high-tide flooding has increased 
consistently with relative sea-level changes (Box 13.1). 

Moderate to 
High 1.2-1.5 Medium 

• Sea level projected to rise between 0.3 to 3.1 m by 2300 for SSP1-
2.6 (low confidence) (WGI, Chapter 9).  

• Sea level committed to rise by 2 to 3 m after 2,000 years, and by 6 
to 7 m after 10,000 years for 1.5°C of GWL, but these long term 
projections incorporate processes in which there is low confidence 
(WGI Chapter 9).  

• The number of UNESCO World Heritage sites exposed to flooding 
(erosion) increases from 37 to 40 (from 42 to 46) for a sea-level rise 
of 1.2 m (“high-end scenario” based on (Kopp et al., 2014) in 
(Reimann et al., 2018)). Flood frequencies, depths and erosion rates 
increase significantly in each of the cultural heritage sites already 
affected today (Reimann et al., 2018).  

High to 
Very High 1.5-2.0 High 

• Sea-levels projected to rise between 0.3 to 3.1 m by 2300 for SSP1-
2.6 (low confidence) (WGI, Chapter 9).  

• Sea-levels committed to rise by 2 to 6 m after 2000 years, and by 8 
to 13 m after 10,000 years for 2°C of GWL, but these long term 
projections incorporate processes in which there is low confidence 
(WGI, Chapter 9).  

• In at least 13 countries of the Mediterranean region, stabilization of 
global warming at about 2°C leads to drowning areas where at least 
10% of the population currently live (Clark et al., 2016). The South-
Eastern Mediterranean low-lying areas projected to be drowned are 
particularly densely populated (Clark et al., 2016).  

 5 
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SMCCP4.3 Sustainable Development in the Mediterranean Basin 1 
 2 
Table SMCCP4.3: Indicators for the achievement of the Sustainable Development Goals (SGDs) as illustrated in 3 
Figure CCP4.9 4 

SDG1 No poverty: (sdg1_320pov; Poverty headcount ratio at $3.20/day (% population) 
SDG2 Zero hunger: (sdg2_crlyld; Cereal yield (t/ha)) 
SDG3 Good health and well-being: (sdg3_uhc; Universal Health Coverage Tracer Index (0-100)) 
SDG4 Quality education: (sdg4_second; Lower secondary education completion rate (%)) 
SDG5 Gender equality: (sdg5_lfpr; Ratio of female to male labour force participation rate) 
SDG6 Clean water and sanitation: (sdg6_water; Population using at least basic drinking water services (%)) 
SDG7 Affordable and clean energy: (sdg7_co2twh; CO2 emissions from fuel combustion / electricity output 
(MtCO2/TWh)) 
SDG8 Decent work and economic growth: (sdg9_intuse; Population using the internet (%)) 
SDG9 Industry, innovation and infrastructure: (sdg9_rdex; Research and development expenditure (% GDP)) 
SDG10 Reduced inequalities: (sdg10_adjgini; Gini Coefficient adjusted for top income (1-100)) 
SDG11 Sustainable cities and communities: (sdg11_pm25; Annual mean concentration of particulate matter of less 
than 2.5 microns of diameter (PM2.5) (μg/m3)), 
SDG12 Responsible consumption and production: 
SDG13 Climate action: (sdg13_co2pc; Energy-related CO2 emissions per capita (tCO2/capita)) 
SDG14 Life below water: (sdg14_cpma; Mean area that is protected in marine sites important to biodiversity (%)) 
SDG15 Life on land: (sdg15_redlist; Red List Index of species survival (0-1)) 
SDG16 Peace, justice and strong institutions: (sdg16_homicides; Homicides (per 100,000 population)) 
SDG17 Partnerships for the goals: (sdg17_govex; Government Health and Education spending (% GDP)) 
The list of Northern Mediterranean countries (N) includes Bosnia and Herzegovina, Croatia, Cyprus, France, Greece, 
Italy, Malta, Monaco, Portugal and Spain. Southern Mediterranean countries (S) analysed are Algeria, Egypt, Jordan, 
Lebanon, Morocco, Syrian Arab Republic, Tunisia and Turkey.  
Data extracted from (Sachs et al., 2019). All analyses reported significantly different mean SDG indicator values 
between N and S regions with p<0.0001 (Tukey-Kramer test). 

 5 
 6 
SMCCP4.4 Mediterranean Sea-level Projections 7 
 8 
Mediterranean sea-level projections presented in the FAQ are downscaled from those presented in AR6 WGI 9 
Chapter 9 and Technical Summary, following the method presented in Thiéblemont et al. (2019) (Table 10 
SMCCP4.4). Until 2100, the Mediterranean sterodynamic sea-levels are assumed to follow sterodynamic 11 
sea-level changes in the Atlantic near Gibraltar. The procedure ignores intra-basin sterodynamic sea-level 12 
changes, but it avoids biases due to the resolution of models and the coarse representation of water 13 
exchanges through the Gibraltar straight (Landerer et al., 2014; Meyssignac et al., 2017; Parras-Berrocal et 14 
al., 2020). Furthermore, observational evidence indicates that multi-decadal sea-level changes in the 15 
Mediterranean basin follow the Gibraltar forcing (Section 4.1;Calafat et al., 2012). Beyond 2150, 16 
Mediterranean sterodynamic sea-levels are assumed to follow the mean global thermal expansion.  17 
 18 
 19 
Table SMCCP4.4: Mean sea-level projections in the Mediterranean relative to 1995-2014. There is medium confidence 20 
in the median values [likely range] shown for the five SSP scenarios. There is low confidence in the median values [17-21 
83rd percentiles] shown for SSP5-8.5-L, a scenario based on a Structured-Expert Judgement or assuming marine ice-22 
cliffs instabilities (See AR6 WGI Chapter 9 for details). Mediterranean projections include the mean Glacial Isostatic 23 
Adjustment in the Mediterranean, but not local vertical ground motions due to natural or anthropogenic processes such 24 
as tectonics or groundwater extractions.  25 

 2050 (m) 2100 (m) 2150 (m) 
SSP1-1.9 0.22 [0.15-0.30] 0.43 [0.31-0.61] 0.52 [0.32 - 0.81] 
SSP1-2.6 0.22 [0.16-0.30] 0.46 [0.34-0.66] 0.62 [0.39 - 0.95] 
SSP2-4.5 0.23 [0.17-0.31] 0.57 [0.44-0.79] 0.83 [0.57 - 1.23] 
SSP3-7.0 0.24 [0.18-0.31] 0.69 [0.56-0.94] 1.08 [0.80 - 1.57] 
SSP5-8.5 0.26 [0.20-0.33] 0.79 [0.64-1.06] 1.22 [0.91 - 1.78] 
SSP5-8.5-L 0.24 [0.18-0.33] 0.87 [0.65-1.38] 1.89 [0.96-5.01] 
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