28 29 | Cross-Chapter Paper 7: Tropical Forests | | | | | | |---|--|--|--|--|--| | | Supplementary Material | | | | | | Cross-Chante | er Paper Leads: Jean Pierre Ometto (Brazil), Felix Kanungwe Kalaba (Zambia) | | | | | | Cross Chapt | T upor Deuts. Vetar Frence Offictio (Brazin), Feira Randing We Randou (Zumora) | | | | | | Cross-Chapter Paper Authors: Gusti Zakaria Anshari (Indonesia), Noemí Chacón (Venezuela), Aid Farrell (Trinidad and Tobago/Ireland), Sharina Abdul Halim (Malaysia), Henry Neufeldt (Denmark/German | | | | | | | Raman Sukumar (India). | | | | | | | | | | | | | | _ | er Paper Contributing Authors: Christa Anderson (USA), Craig Beatty (United States of | | | | | | | da), Nirmal Bhagabati (USA), Ana Felicien (Venezuela), Gabrielle Kissinger (Canada), David | | | | | | • | razil), Felipe S. Pacheco (Brazil), Pablo Pacheco (USA/Bolivia), Sandeep Pulla (India), Yong | | | | | | Yut Trisurat (| Γhailand) | | | | | | Cross-Chante | er Paper Review Editor: Avelino Gumersindo Suarez Rodriguez (Cuba) | | | | | | стозэ спари | Traper Review Editor. Avenue Gamersinae Saarez Roarigaez (Gaoa) | | | | | | Date of Draft: 1 October 2021 | | | | | | | | | | | | | | Notes: TSU C | ompiled Version | | | | | | T. 1.1. C.C. | | | | | | | Table of Con | tents | | | | | | SMCCP7.1 | Details on the Table CCP7.2 Elaboration2 | | | | | | SMCCP7.2 | Countries by Continent and References Included in the Figure Box CCP7.1.12 | | | | | | References | 4 | | | | | 3 4 567 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Table SMCCP7.1: The Food and Agriculture Organization (FAO) Global Ecological Zone for 2010 | EZ Level 1 – Domain | | EZ Level 2 – Global Ecological Zone | | | | |---------------------|--|--|------|---|--| | Name | Criteria | Name | Code | Criteria | | | | (Equivalent to
Köppen-Trewartha
Climatic groups) | (Reflecting dominant zonal ^a
vegetation) | | (Approximate equivalent of Köppen – Trewartha
Climatic types, in combination with vegetation
physiognomy and one orographic zone within
each domain) | | | Tropical | All months
without frost:
in marine areas
over 18°C | Tropical rain forest | TAr | Wet: 0 – 3 months dryb. When dry period, during winter | | | | | Tropical moist forest | TAwa | Wet/dry: 3 - 5 months dry, during winter | | | | | Tropical dry forest | TAwb | Dry/wet: 5 - 8 months dry, during winter | | | | | Tropical shrubland | TBSh | Semi-Arid: Evaporation > Precipitation | | | | | Tropical desert | TBWh | Arid: All months dry | | | | | Tropical mountain systems | TM | Approximate > 1000 m altitude (local variations) | | CCP7 Supplementary Material ## SMCCP7.1 Details on the Table CCP7.2 Elaboration - 1) The data reported are based on information available in FRA 2020 (https://fradata.fao.org/WO/fra2020/home/). - 2) According to FRA 2020, the Net Loss rate was calculated as the difference in forest area between two points in time divided by the number of years (this is equivalent to the net change rate, all calculations made here were negative, indicating forest loss. To facilitate trend analysis, the negative sign was omitted and the column was called "net loss rate" instead of "net change rate"); Reforestation is the natural regeneration or restoration of the forest through planting or deliberate seeding on land that is already in forest use; Expansion refers to forest expansion on lands that, until that moment, were under another land use, implies a transformation in land use from non-forest to forest. - 3) For the estimation of tropical forests rates, the climatic domain classification by country used by FAO and summarized by Keenan (2015) was used. - 4) From the set of available data, those tropical countries for which information was available were selected. - 5) A total of 141 tropical countries were selected: Africa: Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Comoros, Congo, Democratic Republic of the Congo, Côte d'Ivoire, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Liberia, Libyan, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mayotte, Mozambique, Namibia, Niger, Nigeria, Reunion, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Tanzania (United Republic of), Togo, Uganda, Western Sahara, Zambia, Zimbabwe; Asia and Oceania: American Samoa, Bangladesh, Bhutan, Brunei Darussalam, Cambodia, Cook Islands, Fiji, French Polynesia, Guam, India, Indonesia, Kiribati, Lao People's Democratic Republic, Malaysia, Maldives, Marshall Islands, Micronesia (Federated States of), Myanmar, Nauru, New Caledonia, Niue, Northern Mariana Islands, Oman, Palau, Papua New Guinea, Philippines, Pitcairn, Samoa, Saudi Arabia, Singapore, Solomon Islands, Sri Lanka, Thailand, Timor-Leste, Tokelau, Tonga, Tuvalu, United Arab Emirates, Vanuatu, Viet Nam, Wallis and Futuna Islands, Yemen; Central America and Caribbean: Anguilla, Antigua and Barbuda, Aruba, Bahamas, Barbados, Belize, Bermuda, Bonaire, Sint Eustatius and Saba, British Virgin Islands, Cayman Islands, Costa Rica, Cuba, Curação, Dominica, Dominican Republic, El Salvador, Grenada, Guadeloupe, Guatemala, Haiti, Honduras, Jamaica, Martinique, Montserrat, Netherlands Antilles, Nicaragua, Panama, Puerto Rico, Saint Barthélemy, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Trinidad and Tobago, Turks and Caicos Islands, Virgin Islands(US); South America: Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela. ## SMCCP7.2 Countries by Continent and References Included in the Figure Box CCP7.1.1 ## 1 Countries included by continent: - **Africa**: Ethiopia, Ghana, and Kenya. - 3 Asia: Bangladesh, India, Nepal, Vietnam, Indonesia, Timor-Leste and Philippines. - Latin America: Ecuador, Mexico, Peru, Venezuela, Brazil and Guyana. 4 5 6 7 8 9 10 2 References: Ahmed and Atiqul Haq (2017); Akhter et al. (2013); Alamgir et al. (2014); Buffle et al. (2011); Diamond and Ansharyani (2018); Ellis et al. (2015); Galacgac and Balisacan (2009); Gyampoh et al. (2009); Hiwasaki et al. (2015); Kodirekkala (2018); Mistry et al. (2016); Pandey et al. (2016); Pulhin et al. (2017); Pulhin et al. (2017); Rahman and Alam (2016); Simane and Zaitchik (2014); Speranza et al. (2010); Torres et al. (2015); Uddin et al. (2019); Van Vleet et al. (2016); Zavaleta et al. (2018); (FAO 2020) ## References 1 2 - Ahmed, M.N.Q. and Atiqul Haq, S.M. (2017) 'Indigenous people's perceptions about climate change, forest resource management, and coping strategies: a comparative study in Bangladesh', *Environment, Development and Sustainability*, 1-30, available: http://dx.doi.org/10.1007/s10668-017-0055-1. - Akhter, S., Raihan, F., Sohel, M.S.I., Abu Syed, M., Das, S.K. and Alamgir, M. (2013) 'Coping with Climate Change by Using Indigenous Knowledge of Ethnic Communities from in and around Lawachara National Park of Bangladesh', *Journal of Forest and Environmental Science*, 29(3), 181-193, available: http://dx.doi.org/10.7747/JFS.2013.29.3.181. - Alamgir, M., Pretzsch, J. and Turton, S.M. (2014) 'Climate Change Effects on Community Forests: Finding Through User's Lens and Local Knowledge', *Small-scale Forestry*, 13(4), 445-460, available: http://dx.doi.org/10.1007/s11842-014-9264-8. - Buffle, P., Nguyen, T.Y. and Thomasen, M.F. (2011) 'Community-based Mangrove Reforestation and Management in Da Loc, Vietnam', *Ecosystem and Livelihoods Adaptation Network (ELAN)*. - Diamond, S.K. and Ansharyani, I. (2018) 'Mismatched priorities , smallholders , and climate adaptation strategies : landuse scientists , it 's time to step up', *Journal of Land Use Science*, 00(00), 1-7, available: http://dx.doi.org/10.1080/1747423X.2018.1537313. - Ellis, E., Kainer, K., Sierra-Huelsz, J., Negreros-Castillo, P., Rodriguez-Ward, D. and DiGiano, M. (2015) 'Endurance and adaptation of community forest management in Quintana Roo, Mexico', *Forests*, 6(11), 4295-4327. - FAO (2020) Global Forest Resources Assessment 2020: Main report, Rome. - Galacgac, E.S. and Balisacan, C.M. (2009) 'Traditional weather forecasting for sustainable agroforestry practices in Ilocos Norte Province, Philippines', *Forest Ecology and Management*, 257(10), 2044-2053, available: http://dx.doi.org/10.1016/j.foreco.2009.01.002. - Gyampoh, B., Amisah, S., Idinoba, M. and Nkem, J. (2009) 'Using traditional knowledge to cope with climate change in rural Ghana', *Unasylva*, 60. - Hiwasaki, L., Luna, E., Syamsidik and Mar??al, J.A. (2015) 'Local and indigenous knowledge on climate-related hazards of coastal and small island communities in Southeast Asia', *Climatic Change*, 128(1-2), 35-56, available: http://dx.doi.org/10.1007/s10584-014-1288-8. - Keenan, R.J. (2015) 'Climate change impacts and adaptation in forest management: a review', *Annals of Forest Science*, 72(2), 145-167, available: http://dx.doi.org/10.1007/s13595-014-0446-5. - Kodirekkala, K.R. (2018) 'Cultural adaptation to climate change among indigenous people of South India', *Climatic Change*, 147(1-2), 299-312, available: http://dx.doi.org/10.1007/s10584-017-2116-8. - Mistry, J., Bilbao, B.A. and Berardi, A. (2016) Community owned solutions for fire management in tropical ecosystems: Case studies from Indigenous communities of South America', *Philosophical Transactions of the Royal Society B: Biological Sciences*, 371(1696), available: http://dx.doi.org/10.1098/rstb.2015.0174. - Pandey, S.S., Cockfield, G. and Maraseni, T.N. (2016) 'Assessing the roles of community forestry in climate change mitigation and adaptation: A case study from Nepal', *Forest Ecology and Management*, 360, 400-407, available: http://dx.doi.org/10.1016/j.foreco.2015.09.040. - Pulhin, J.M., Gevaña, D.T. and Pulhin, F.B. (2017) 'Community-Based Mangrove Management in the Philippines: Experience and Challenges in the Context of Changing Climate' in, 247-262. - Rahman, H. and Alam, K. (2016) 'Forest Dependent Indigenous Communities' Perception and Adaptation to Climate Change through Local Knowledge in the Protected Area—A Bangladesh Case Study', *Climate*, 4(1), 12-12, available: http://dx.doi.org/10.3390/cli4010012. - Simane, B. and Zaitchik, B.F. (2014) 'The sustainability of community-based adaptation projects in the Blue Nile Highlands of Ethiopia', *Sustainability (Switzerland)*, 6(7), 4308-4325, available: http://dx.doi.org/10.3390/su6074308. - Speranza, C.I., Kiteme, B., Ambenje, P., Wiesmann, U. and Makali, S. (2010) 'Indigenous knowledge related to climate variability and change: Insights from droughts in semi-arid areas of former Makueni District, Kenya', *Climatic Change*, 100(2), 295-315, available: http://dx.doi.org/10.1007/s10584-009-9713-0. - Torres, B., Jadan Maza, O., Aguirre, P., Hinojosa, L. and Gunter, S. (2015) 'The Contribution of Traditional Agroforestry to Climate Change Adaptation in the Ecuadorian Amazon: The Chakra System', *Handbook of Climate Change Adaptation*, available: http://dx.doi.org/10.1007/978-3-642-38670-1. - Uddin, M.N., Hossain, M.M., Chen, Y., Siriwong, W. and Boonyanuphap, J. (2019) 'Stakeholders' perception on indigenous community-based management of village common forests in Chittagong hill tracts, Bangladesh', *Forest Policy and Economics*, 100(December 2018), 102-112, available: http://dx.doi.org/10.1016/j.forpol.2018.12.005. - Van Vleet, E., Bray, D.B. and Durán, E. (2016) 'Knowing but not knowing: Systematic conservation planning and community conservation in the Sierra Norte of Oaxaca, Mexico', *Land Use Policy*, 59, 504-515, available: http://dx.doi.org/10.1016/j.landusepol.2016.09.010. - Zavaleta, C., Berrang-Ford, L., Ford, J., Llanos-Cuentas, A., Cárcamo, C., Ross, N.A., Lancha, G., Sherman, M. and Harper, S.L. (2018) 'Multiple non-climatic drivers of food insecurity reinforce climate change maladaptation trajectories among Peruvian Indigenous Shawi in the Amazon', *PLoS ONE*, 13(10), 1-30, available: http://dx.doi.org/10.1371/journal.pone.0205714.