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Table SM2.1: Attribution and assessment of uncertainties associated with key statements on observed impacts. Many human activities, in addition to greenhouse gas
emissions, are affecing wild species and biome transition zones and can confound attribution of an observed change to climate change in high human impact areas. The principal
non-climatic drivers are LULCC, mainly habitat destruction when natural lands are converted for agricultural use or development. The best attribution studies for observed changes
in wild species and ecosystems, then, use data from areas with very little (or no) LULCC so that this effect is minimized. Lines of evidence that support confidence statements for
attribution of a particular observed change to local or regional climate change (including increased atmospheric COz). Paleo data provides documentation of responses of species and
biomes during past large climatic changes (e.g. across glacial/interglacial cycles of the Pleistocene). Long term observations are at least 20 years of data, ideally >50 years, such that
long-term trends in biological changes can be teased apart from natural variability of both climate and of biological responses to climate variability. Experiments range from small
scale laboratory studies in controlled environmental chambers, to larger mesocosm studies of manipulated communities in greenhouses or artificial ponds to large-scale
manipulations of temperature, precipitation, COz and other non-climatic drivers (e.g. nitrogen additions) in outdoor manipulated (planted/placed) communities and in completely
natural communities to which manipulations of different drivers have been applied. Fingerprints of climate change response are a'set of responses that are uniquely expected from
climate change and not from other potential confounded drivers (e.g. LULCC); these are fully described in”(Parmesan and Yohe, 2003)). One type of fingerprint is temporal sign-
switching, in which, for example, a species' northern boundary in Europe expanded northward during the two twentieth-century warming periods (1930—45 and 1975-99), and
southward during the intervening cooling period (1950-70) - a pattern that is expected from that species' responded to decadal temperature trends but not expected from documented
habitat loss. Another type of temporal sign switching is found when onset of spring (leaf unfolding, flowering, breeding) follows decadal spring temperature trends, occurring earlier
in warm years, later in cool years, and above and beyond yearly variability, tracking a long-term trend in spring temperatures. Sign-switching among species in a single location can
also provide a fingerprint of climate change impacts when the site is at a climate zone boundary. Forexample, in Monteray Bay, California, where temperate and boreal species
overlap, southern species were increasing in abundances and northern speces were declining over a 70 year period. Modeling approaches comprise a wide diversity of both process-
based and distribution-based models. They can be back-cast and compared with observed trends,- when modeled changes based upon climate as the primary driver agree with
observed changes, climate change attribution is supported. Statistical analyses include those from WGI‘that-provide attribution of regional and global climate change to greenhouse
gas forcing. When biological datasets have very large sample sizes, are gathered over very long time periods and/or over large areas, in concert with complementary datasets on
LULCC, meteorological data, or other drivers of interest collected over the same time.periods and spatial area, statistical analyses can tease apart effects of differnt drivers and their
interactions, thus providing a quantitative assessment of the role of climate change.

Lines of evidence for@hange @ ing increased atmospheric CO; as 1° driver of observed Levels of
Non-climatic hange) evidence,
Drivers: @ agreement
. | Land Use and and References
Geograp s Land Cover & & confidence
Key statement region and f
(LULCC) or attribution
C(l:ther Fyco z%nd q N\ Fingerprint of climate Statistical
anges -te, Experiments hange response Models analvses
0 ions S v
About half of all  Global - Minimised by, Polewards and Translocation of Very long-term records Species Yes. Warming robust (1) (Parmesan
species where Varies by study designs “upward ranges temperature-limited (>50 years) demonstrate  distribution seasonal and evidence, and Yohe,
land use change study. Range (1) shifts have been species outside the "sign-switching" in models, annual high 2003) (Cross-
has been a typically 20 - common historic range bound ~ which a species poleward Phenological temperatures have  agreement, Working Group
minimal driver 250 years, but responses to past  aries has been boundary shifts polewards models, and been linked to very high Box ATTRIB in
and with long- longest major climatic unsuccessful in the during warming periods other process- GHG forcing at confidence Chapter 1); (2)
term (>20 years)  dataset is 800 shifts (2): absence of warming and towards the equator ~ based models  both regional and (Coope, 1995),
of records have years. Yearly variability and successful during  during cooling periods (5) driven by global scales (8). (Cross-Chapter
shifted their in‘polewards warming periods (3) climate Multiple global Box PALEO in
ranges, with 80- range boundaries parameters meta-analyses of Chapter 1);
90% of for mobile birds have high >4,000 species for (3)(Ford, 1945,
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movements being and butterflies predictive which attribution Willis et al.,
in the direction highly power in back-  to climate change 2009)(2.6.5.1);
expected from significantly casting was medium to (4) (Dennis,
regional warming correlated with observed very high 1993; Parmesan
trends - i.e. annual distributional confidence show and Yohe,
poleward and temperature changes (6) from 40%:to 60% 2003); (5)
upward. variability (4) of species ina (Parmesan and
Conclusions from given region or Yohe, 2003);
prior ARs are taxonemic group (6) (Chuine and
further supported having shifted their Régniere, 2017,
with new poleward range Platts et al.,
literature for boundary further 2019); (7)
butterflies, birds, poleward over the (WGI AR6
plants, freshwater past 20-120 years 2021); (8)
fish. ®) (2.4.2, Table
2.2)
About 2/3 of all Global - NA/ Yearly variability ~ Controlled Very:long-term records Phenological Yes. Warming robust (1) (Piao et al.,
species with long-  Varies by Photoperiod is  in spring experiments (>50 years) demonstrate. medels based  spring evidence, 2019; Ettinger
term (>20 years)  study. Range animportant  emergence,flight demonstrate that "sign-switching" in on temperature  temperatures have  high etal., 2021); (2)
of records have =20-400 cue for some  and migrationof  temperature has large _whichua species shifts to.  have good been linked to agreement, E.g. (Craufurd
shifted the timing  years species, which  birds and effects on timing of earlier spring ‘events predictive GHG forcing at very high and Wheeler,
of spring events in would show butterflies and spring events for many during warming periods  power in back- both regional and  confidence 2009;
directions up as either no leaf-out and, species (2) and later spring.events casting global scales (6). Wolkovich et
expected from change in flowering of during cooler periods (4)  observed Multiple global al., 2012; Piao
regional winter phenology plants is highly phenological meta-analyses all etal., 2019); (3)
and spring over time, or  significantly change; model  show from 48% to (Dennis, 1993;
warming. where both correlated with performance is  92% of species in a Gordo, 2007;
photoperiod spring improved if given region or Amano et al.,
and temperature photoperiod is  taxonomic group 2010; Piao et
temperature variability (3) included, and  having shifted al., 2019), (4)
are drivers, even better if towards earlier (Parmesan and
photoperiod abiotic factors  spring timing in Yohe, 2003);
cues may tend are included (5) recent decades; (5) (Piao et al.,
to counter exception is 2019); (6)
temperature seabirds that have {WGI AR6
cues (1) been stable (7) 2021%; (7)
(Section 2.4.2.4,
Table 2.2)
Freshwater:
(Adrian et al.,
2006;
Blenckner et al.,
2007; Adrian et
al., 2009)
For species that Northern NA/ NA. orange tip, Models based ~ Yes. Fall and medium (1) (Gill et al.,
require winter Europe and Photoperiod Yearly variability  vernalization of plants on seasonal winter warming evidence, 2015; Piao et
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chilling, winter USA - Varies and in break of (UEA group) - temperature has been linked to  high al., 2019;
warming has by study (>20 vernalization  diapause and demonstrate high sensitivities of GHG forcing at agreement, Ettinger et al.,
countered spring  years) requirements  dormancy highly heritability (strong individual both regional and  high 2021); (2) E.g.:
warming, interact (1) significantly genetic basis). species have global scales (5). confidence (Friedman and
resulting in either correlated with Metabolic pathways good predictive None to date. Willis, 2013;
delayed spring variability of fall  understood for some power in back- Stalhandske et
events or no and winter species (2) casting al., 2017); (3)
change. When temperatures (3) observed (Cook et al.,
these species are phenological 2012a; Cook et
taken into change (4) al., 2012b;
account, it is Stalhandske et
estimated that al., 2017); (4)
92% of species in (Cook et al.,
these studies have 2012a; Cook et
responded to al., 2012b; Xie
regional warming etal., 2015); (5)
trends {WGI AR6
2021};
(Section
2.4.2.5)
Wildfire has Western Population Field and remote Numerical Increased high (Abatzoglou
burned North density, roads, sensing models of temperature and evidence, and Williams,
increasingly America - built area, measurements of wildfire as a decreased summer  high 2016; Partain et
extensive areas, 1984-2017 analysed but burned area: function of precipitation agreement, al., 2016;
increasing nine- less important Western USA climate and detected and high Holden et al.,
fold in 32 years, burned area non-climate attributed to confidence 2018;
driven more by increased >900%, variables, anthropogenic Kirchmeier-
the increased heat 1984-2015; calibrated by greenhouse gas Young et al.,
and aridity of Alaska burned historical data, forcing. 2019; Mansuy
anthropogenic area in 2015.was run for actual ~ Anthropogenic etal., 2019;
climate change the second highest observed climate change Williams et al.,
than by non- in the1940-2015 values and accounts for half 2020) + refs in
climate factors record; British compared to the magnitude of a section
Columbia, model runs in  regional drought, {2.4.4.2}
Canada; burned which 2000-2020,
area in 2017 was temperature reducing soil
the‘highest in the remains moisture to its
1950-2017 record. unchanged. lowest levels since
Weather station Western USA:  the 1500s.
measurements of anthropogenic  Correlation of
climate; Western climate change burned area to
USA temperature doubled burned climate variables
increased 1.5°C, area over (temperature,
1920-2018, natural precipitation,
summer burning, relative humidity,
precipitation accounting for  evapotranspiration
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decreased 12%,
1984-2016

49% (32-76%,

95%

confidence
interval) of
cumulative
burned area,
1984-2016;
Alaska:
Anthropogenic
climate change
accounted for
34-60% of:
2015 burned
area;British
Columbia:
Anthropogenic
climate change
increased 2017
burned area 7
to 11 times
over the area of
natural burning

) outweighed local
human factors
(population
density, roads, and
built-area)

Tree mortality has
increased
substantially, as
much as doubling
in 52 years, driven
more by the
increased heat and
aridity of
anthropogenic
climate change
than by non-
climate factors

North
America,
Africa - ca.
1945-2007

Multivariate
and bivariate
statistical
analyses of
population
density, roads,
timber
harvesting,
livestock
grazing,
increased tree
density, fire
suppression,
toppling of
large trees,
analysed but
less. important

Field surveys of
trees: western
U.S. tree mortality
doubled, 1955-
2007; African
Sahel tree
mortality 18%;
1954-2002;
southwest
Moroeco tree
mortality 44%,
1970-2007;
weather station
measurements
show significant
increases in
temperature and
decreases‘in

Increases in
temperature and
changes in
precipitation
detected and
attributed to
anthropogenic
greenhouse gas
forcing.
Canonical
correlation
analyses of climate
and non-climate
factors found
climate change
outweighed other
factors; other
cases correlation

medium
evidence,
high
agreement

(Desanker et al.,
2001; van
Mantgem et al.,
2009; Gonzalez
etal., 2012; le
Polain de
Waroux and
Lambin, 2012)
[many other
cases detected
(Allen et al.,
2010; Allen et
al., 2015;
Bennett et al.,
2015; Martinez-
Vilalta and
Lloret, 2016;
Greenwood et

precipitation analyses of climate al., 2017,
factors significant, Hartmann et al.,
non-climate factors 2018) but not
non-significant. formally

attributed + refs
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in section
{2.4.4.3}
Vegetation Global - Research in Field surveys see section text Increases in high (Beckage et al.,
biomes have 1500-2008 some areas show significant temperature and evidence, 2008) (Brink,
shifted conducted changes of changes in high 1959)
significantly multivariate vegetation species precipitation agreement, (Desanker et al.,
towards the poles statistical locations and detected and high 2001; Lloyd
or the Equator or analyses of densities, boreal attributed to confidence and Fastie,
upslope at 19 sites climate and forest shifting into anthropogenic 2003; Danby
in boreal, other factors,  tundra, subalpine greenhouse gas and Hik; Dial et
temperate, and population forest shifting into forcing. al., 2007; Devi
tropical density, roads, alpine grassland, Canonical et al., 2008;
ecosystems, other non- broadleaf forest correlation Kullman and
caused more by climate factors shifting into analyses of climate Oberg, 2009;
increased analysed but  coniferous forest, and non-climate Gonzalez et al.,
temperatures and less important; grassland shifting factors in some 2010; Leonelli
changes in research at into woodland; areas; correlation etal., 2011;
precipitation of other areas Weather station analyses of climate Gonzalez et al.,
anthropogenic selected sites ~ measurements factors significant, 2012;
climate change with no show significant non-climate factors Kirdyanov et
than by non- substantial increases in non-significant in al., 2012)
climate factors human land temperature and some areas; no (Luckman and
use change changes in substantial local Kavanagh,
precipitation human land use 2000) (Payette
change in some et al., 1985;
areas. Wardle and
Coleman, 1992;
Suarez et al.,
1999; Penuelas
and Boada,
2003; Millar et
al., 2004;
Walther et al.,
2005; Payette,
2007; Settele et
al., 2014) + refs
in section
{2.4.3.1;
24.3.2;2.4.3.3-
9;2.4.5}
Beetles & moths  North Not directly Direct controlled temperature see section text  see section text refs in section
shifting poleward ~ America, assessed, but  observations of experiments link {24.2.1;
and upward has Europe and occurring in insect-pest warming winters to 2.4423;
brought new pest  Eurasia. Time both areas of " outbreaks have lower insect mortality, particularly
species into some  period varies high LUC and «.been recorded and increased growing 24433}
forests by study. protected areas since the mid- season length to
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Datasets start 1800s for many increased number of

in mid-1800s temperate and generations per year,

to present boreal forests in which leads to large

the northern increases in insect
hemisphere abundances in late
growing season

Shift in forest see section see section see section text see section text  see section.text (Anderegg et
composition has  fext text al., 2016)
occurred due to
species-specific
differences in
response to
increasing drought
Increased tree Global - For many tree-rings provide see section text  see section text high refs in section
mortality has Timespan studies, land very long-term evidence, {2.4.4.3}
occurred globally, varies by use change is  data, that overlaps high
in boreal, study. an important ~ with observational agreement,
temperate and Observational driver. For data starting in high
tropical systems,  datasets some studies, mid-1800s confidence
in response to available LUC s
increased drought, from mid- minimal (1)
wildfire and insect 1800s to pest outbreaks
pest outbreaks present. are important

Treerings drivers, but

provide data  impacts have

going back been

hundreds of  exacerbated by

years heat/drought

induced tree
stress (2)

Diseases
wildlife/humans
Newly emerging ~ South Asia JE has + Dengue:1st Dengue: EIP =15 Dengue: Increased _ Higher warming high (Dahal, 2008;
vector-borne (Nepal) - association reported case in days at 25°C & 6.5 number of cases in rates in high- confidence Lambrechts et
diseases (dengue, Dengue with irrigated £/ Nepal in2004, days at:30°C (Rohani  highlands of Himalayan elevation areas al., 2011;
chikungunya, (2004- land, outbreak in 2006, . et al.,.2009) / region in temperate to compared to Dhimal et al.,
Japanese present) / agriculture, then expansion to, Narrower DTR subalpine areas (Acharya lowlands -- 2014a; Pun et
encephalitis, Chikungunya land use/ new areas.in 2008, decreases EIP or et al., 2020) / min temp warming rate of al., 2014;
malaria, visceral ~ (2013- Malaria: spread.to increases highly sig correlated with Nepal is higher Dhimal et al.,
leishmaniasis) and present) / incidence highlands‘in 2010. susceptibility of dengue cases in Chitwan than global average 2015a; Pandey
their vectors Japanese decreased in Chikungunya: The mosquitoes to district (Tuladhar et al., / decreasing trends et al., 2015;
(An.spp., Aedes Encephalitis  lowlands with __ first infection (Lambrechts 2019) / increased nightly of cool days & Pandey et al.,
albopictus, Ae. (1995- free autochthonous etal., 2011) temps during the increasing trends 2017; Shrestha
aegypti, Culex present) / distribution of * cases of monsoon months of warm days in etal., 2018;
quinquefasciatus,  Visceral long-lasting chikungunya virus correlated with increased higher elev. / Shrestha et al.,
C. Leishmaniasi were reported in transmission (p<0.05) increasing trends 2019; Tuladhar
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tritaeniorhynchus) s (2009- insecticidal 2013 (Pun et al., from 2010-2019 (Gyawali of max temps & etal., 2019;
are appearing in  present) nets (LLINs)  2014) and have et al., 2020). more warming in Gyawali et al.,
higher elevation expanded their winter compared to 2020; Liu et al.,
and non-endemic geographic range other seasons 2020; Phuyal et
regions of Nepal. in Nepal (Pandey /statistically sig. al., 2020;
Climate change etal., 2015; warmind trend of Dhimal et al.,
will intensify Pandey et al., max temps /.sig 2021a; Dhimal
VBD epidemics in 2017) Japanese increase in annual et al., 2021b)
mountain regions Encephalitis: mean temp highly
of Nepal. introduced in influenced by max

1970s to S. Nepal temp / increasing

but 1st epidemic trends in heavy

in 1995 in prec. events.

Kathmandu Dengue: Chitwan

valley, shifted to district, Nepal

mountain districts study 2010-2017:

after 2005. Max temp sig

Visceral correlated with

Leishmaniasis: 1st cases through lag

case in hilly non- 1-3 month lag /

endemic region in Min temp sig

2011, now found correlated with

in hill & mountain cases 0-3 month

regions previously lag w/ strongest

considered non- correlation at lag 2

endemic. Malaria: / min temp strength

reported in 1969 corr. higher than

at 1800+ m., and max temp / rainfall

An. maculatus sig correlated with

recorded up.to cases 1-3 mos. lag

3100 m.jmost & highest a lag 2

malaria cases mo. (Tuladhar et

below 1200 m. in al., 2019)

1978-80

(originally

confined to forest

areas of

lowlands); now in

hills and

mountains

2000+m
Haemonchosis Northeastern  No Sig increase in Optimal temps for Sig increase in diagnosis  Increases in Mean annual robust (Smith, 1990;
(Haemonchus Europe (UK, intensification —diagnesis rates development and rates in northern study summer temps  temperature evidence, O’Connor et al.,
contortus) worm  Scotland), of sheep from 1989-2006  growth are between regions (Scotland, N UK, increase increased w/ temp  high 2006; van Dijk
of sheep / H. 1989-2006 farming found «.(p = 0.001) but 25-37°C (more & Midlands) from 1977-  mortality and  increasing earlier  agreement, et al., 2008; van
contortus was up to 2006 also showed some adapted to sub-tropics  2006; Sig positive trend  offset the and more Dijk et al.,
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endemic to during time periods of and tropics) but it can  for Nov & Dec suggesting increased significantly in high 2010; Rose et
southern England period of significant survive from 10-40°C  greater autumn development spring months; sig  confidence al., 2015)
but is now increased decrease (1992- (O'Connor, 2006). The haemonchosis recently rate (Rose et increase in rainfall
documented in disease 1996, 2002-2006) min. dev time (van Dijk et al., 2008). al., 2015). in April (van Dijk
Scotland and has incidence (van meaning thereis  decreased as temp et al., 2008).
an extended Dijk et al., high variability in  increased from 16 "Overall, the
transmission 2008). the system (van days at 10°C to 2.5 observed
season. Benefits Effective Dijk et al., 2008).  days at 37 C (Smith, temperature-
of increased anthelmintics ~ Highly sig 1990). mediated increases
developmental were still increase in disease in cercatial output
rates outstrip the available incidence starting are:much more
disadvantages of during the in late 1990s-2006 substantial than

increased death latter years of  (p <= 0.005, those expected
rates during some the study and  Spearman's rho > from basic

times of the year, antihelminthic  0.450) (van Dijk physiological
particularly resistance etal., 2010). processes, for
benefiting from would not which 2- to 3-fold
increased affect the increases are
developmental seasonality of normally seen"
opportunities in the disease was stated in an
spring and early (van Dijk et analysis examining
summer; besides al., 2010). Sig cercarial

climate, increases in production of
interaction with parasite different species of
hosts will be very abundance trematodes in
important (van documented in temperature

Dijk et al., 2010). colder experiments -

northern parts review paper of 20

of Great studies (Poulin,

Britain but not 2006). Sig positive

warmer relationship

southern parts between GIN

(anthelmintic infection level

resistance (GIN: Nematodirus

would be spp., Haemonchus
expected to contortus,

increase Teladorsagia

abundance in circumcincta,

the south as Trichostrongylus

well) (van spp., Chabertia

Dijket al., ovina,

2010). Bunostomum spp.)
with max humidity
and sig negative
relationship with
solar radiation
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during 30 day

period preceding

prepatency (when

free-living stages

are developing in

the field).

(Martinez-

Valladares et al.,

2013)
Teladorsagia Northwestern No Sig increase in Accumulation of Mean peak month became Increase in Mean annual robust (Levine and
circumcincta Europe (UK, intensification diagnosis rates infective stages from  sig later in southern most™ ““temps resulted™* temperature evidence, Andersen,
(brown stomach Scotland), of sheep from 1975-2006 successive generations region showing later'shift, in increased increased w/temp  high 1973; Armour,
worm), 1975-2006 farming found (p <0.001), of adult parasites is in seasonality (1977- development increasing earlier  agreement, 1974; Gibson
Trichostrongylus ~ (van Dijket  up to 2006 Highest rate of accelerated at higher ~ 2006) and sig.declines in  ratesdor 7 and more very high and Everett,
vitrinus, Tr. al., 2008) during time increase occurred  temps, leading to the spring'months (1977-  circumecincta significantly in confidence 1976; Southcott
colubriformis, Tr. period of between 1997- higher parasite 2006) (vanDijk et al., leading to year- spring months; sig etal., 1976;
axei (round increased 2006; sig abundance and 2008): round increase in rainfall Salih and
worms) found in disease increases in increased risk of development.  in April (van Dijk Grainger, 1982;
sheep and goats incidence. diagnostic rates disease from (Rose et al., et al., 2008). Beveridge et al.,
are spreading Effective over most of the midsummer onwards 2015). "Overall, the 1989; Barger,
northward in anthelmintics UK except the (Armour, 1986; observed 1997; Poulin,
Europe and were still most northern part Barger, 1997). Low temperature- 2006; van Dijk
expanding their available (Scotland); Sig temperatures (<10.C) mediated increases et al., 2008; van
transmission during the positive trend reduce development of in cercarial output Dijk et al.,
season. latter years of  from north to larvae' & reduce are much more 2010; Martinez-

the study and
antihelminthic
resistance
would not
affect the
seasonality of
the disease.
(van Dijk et
al., 2008)

south (van Dijk et
al., 2008).
Transmission
opportunities
extended into
autumn in
Scotland while sig
decreases in
disease were
observedin the
spring in the areas
south of Scotland
(van Dijk et al.,
2010). Highly.sig
increase in disease
incidenge starting
inlate 1990s-2006

hatching of 7.
colubriformis, Tr.
rugatusswhile Tr,
virtrinus could
develop sucecessfully
to the infective stage
in temps <10.C
(Beveridge, 1989); 30
C reduced number of
larvae.ftom 3
Trichostrongylus spp.
(Beveridge, 1989). Tr.
colubriformis does not
develop when soil
temps <10 C and air
temps <13 C (Gibson
and Everett, 1976;

substantial than
those expected
from basic
physiological
processes, for
which 2- to 3-fold
increases are
normally seen"
was stated in an
analysis examining
cercarial
production of
different species of
trematodes in
temperature
experiments -
review paper of 20

Valladares et
al., 2013; Rose
etal., 2015)

(p <=0:005, Levine and Andersen, studies (Poulin,
Spearman's tho >  1973). Tr. 2006). Sig positive
0/450) (van Dijk  colubriformis was relationship
etal., 2010). recovered in low between GIN
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numbers when temps
were between 1.3-15
C (Southcott, 1976).

Mean time until
hatching took 19.1
days at 10 C and
increased with
warming temps to 1

day at 25 C (Salih and

Grainger, 1982)

infection level
(GIN: Nematodirus
spp., Haemonchus
contortus,
Teladorsagia
circumcineta,
Trichostrongylus
spp.s' Chabertia
ovina,
Bunostomum spp.)
with max humidity
and sig negative
relationship with
solar radiation
during 30 day
period preceding
prepatency (when
free-living stages
are developing in

the field).

(Martinez-

Valladareset al.,

2013)
Fasciolosis risk Europe: Antihelminthic East Anglia, UK:  Lymnaea viridus _ _ Avg annual rainfall medium- (Lee et al.,
caused by F. 1977-2006, drug resistance New outbreaks snails‘infected with in East Anglia robust 1995; Pritchard
hepatica UK (van Dijk may be and increased Fasciola hepatica from 1970-2000 evidence, et al., 2005; van
(exposure, etal.,, 2010), contributing to disease incidence _shed.cercariae more (605.6 mm) high Dijk et al.,
prevalence, 2006-2001, disease from 2001-2003 quickly;for longer compared to agreement, 2010; Martinez-
outbreaks, Spain increases in occurred on farms  durations, and in outbreak years of  high Valladares et
geographic (Martinez- some areas; with no priox higher numbers 2001-2002 (781.1) confidence al., 2013; Bosco
emergence) Valladares et however, drug history of disease; (p<0.001)‘at higher increased by 175.5 et al., 2015;
significantly al., 2013); resistance only sporadic temperatures (Lee et mm and was Caminade et al.,
increased or 2000-2013, would not be  disease sinceithe  al.,1995). higher in summer 2015)
appeared innew  Italy (Bosco  expected to 1960s: Disease months of July and
areas over time. etal, 2015)  alter the was only first August [no stat

There are broad

seasonality by

recorded in 1996

testing] (Pritchard

trends towards extending the during the study et al., 2005).
increased risk. fall grazing, period of 1993- Increasing min
Fasciola hepatica transmission « 2003 (Pritchard et humidity and
is a liver fluke that season. The al., 2005)¢ Highly precipitation was
infects many government sig increase;in associated with
different animal funded the disease incidence increases in epg in
species (domestic installation of  starting'in late Spanish study from
primary hosts: modern 1990s-2006 (p <= 2006-2011 during
sheep, cattle; irrigation 0:005, Spearman's 30 day period
other domestic systems in rho > 0.450) (van preceding
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hosts: goats, Castilla and Dijk et al., 2010). prepatency (when
alpacas; wild Leon, Spain, Spanish province free-living stages
hosts: rabbits, since the of Ledn showed are developing in
nutria, red deer 1990s which ~ prevalence the field
(Cervus elephus). may be increasing in )(Martinez-

increasing sheep flocks from Valladaresset al.,

humidity (not  14.67% (1986-87) 2013). Sig increase

statistical t0 26.7% (1992- in temperature,

analysis 93) to 60.5% rainfall, and #

carried out) (2011) (Martinez- rainy days during

(Martinez- Valladares et al., outbreak in Italy (p

Valladares et  2013). <0.001) (Bosco et

al., 2013). al., 2015).

However, No

intensification

of sheep

farming found

up to 2006

during time

period of

increased

disease

incidence in

UK (van Dijk

et al., 2008).
Nematodirosis Northeastern  No Sig increase in Sigiincrease in Scotland Mean annual medium- {van Dijk,
(Nematodirus Europe (UK, intensification 2002-2006 (most northern portion of temperature robust 2008; van Dijk,
battus, N. Scotland), of sheep compared to study area) w/ no increased w/ temp evidence, 2010
filicollis, N. 1975-2006 farming (van  diagnosis rates significant or only increasing earlier  high
spathiger) in Dijk et al., from 1975-2002 marginal rises in and more agreement,
sheep is 2008). (p <=0.011) (van diagnostic rates in significantly in high
increasing. Effective Dijk et al';,2008). southern areas (Wales, spring months; sig  confidence

anthelmintics ~ Highly sig SW Britain) from 1975- increase in rainfall

still available  increase indisease 2006. Sig positive trend in April (van Dijk

during the incidenee starting from south to north; Cases et al., 2008).

latter years of

in late 1990s-2006

were first recorded in

the study'and ~(p.<=0.005, December in 1999 (van
antihelminthic |\ Spearman's rho >
resistance 0.450)(van Dijk
would not et aly; 2010).
affect the
seasonality of
the disease.
There has been
no
antihelminthic
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resistance
recorded for
N. battus (van
Dijk et al.,
2010). Sig
increases in
parasite
abundance
documented in
colder
northern parts
of Great
Britain but not
warmer
southern parts
(anthelmintic
resistance
would be
expected to
increase
abundance in
the south as
well) (van
Dijk et al.,
2010).
Midge-borne Northern BTV spreading A limited- (Thornley and
bluetongue virus  Europe (2006 northward in comprehensive medium France, 2016;
is expanding into  and later) Europe during the deterministic evidence, Tryland et al.,
new geographical 2000s (Carpenter model set takes medium 2018)
areas as higher et al., 2009). into account agreement,
temperatures multiple vector low
make new areas and host state confidence
habitable for both variables
the vectors and (incubating,
virus. Bluetongue infectious,
virus infects susceptible,
ruminants (sheep, recovered) and
cattle, deer, and other
goats) and is vector/host
vectored bu population
midges of the parameters
genus Culicoides. (birth rate,
mortality rate),
air temperature
(seasonality),
host immunity,
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and vertical
tranmission to
offspring over
time on a farm
hypothetically
set in aouthern
England.
Climate
warming
increases air
temperature
and reduces
vector
mortality
(Thornley and
France, 2016).

The roundworm Nordic
Setaria tundra, a regions of
species of filaroid Europe:
nematode, is a Finland
vector-borne (1961-2004);
disease spread by  Lapland
Aedes and (1979-2015)
Anopheles

mosquitos, which

infects reindeer

(Rangifer

tarandus), roe deer

(Capreolus

capreolus) and

moose (Alces

alces). Outbreaks

were found to be

driven by mean

Outbreaks
recorded back to
the 1970s in
cervids in Nordic
regions of Europe.
Meat inspections
dating back to the
2000s in Finland
show reindeer
meat
condemnation
increased from
4.9% in 2001 to
40.1% in 2003 in
Oulu province
with the outbreak
moving northward
by 100 km. There

"Warmth decreases
the time required for
larval development of.
S. tundra larvae"
(Laaksonen et al.;
2009)

GLMs showed
that the
occurrence of
an epidemic
lagged and
increased with
mean summer
temperatures( b
=6.60 £3.39
(s.e.); P=
0.0004) but
"moribidity
manifests the
following
summer only if
the weather
conditions are
still favorable"

medium
evidence,
high
agreement,
medium
confidence

Filariasis
(Laaksonen,
2010;
Laaksonen and
Oksanen, 2010;
Laaksonen et
al., 2010;
Haider et al.,
2018; Tryland
et al., 2018)

summer was a massive (Laaksonen et
temperatures of increase in al., 2010). "In
14°C or higher reindeer viscera southern and
with increasing condemned in central
morbidity and both nerthern.and Lapland, our
mortality lagging southern Lapland model
to the following (Laaksonen; predicted an
year. These high 2010). increasing
summer tredn from
temperatures 1979-2015 for
reflect a tipping both the
point that impacts duration oif the
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Aedesvector effective
abundance, transmission
Setaria period of
tundrainfection, S.tundra
and reindeer (P<0.001) and
flocking behavior for the
to mosquito rich potential
wetlands. number of L3

S. tundra larvae

being

transmitted

from an

infectious

reindeer

(P<0.001)"

(Haider etal.,

2018)
Elaphostrongylosi Nordic E. rangiferi Norwegian outbreak over  Cross limited- (Halvorsen et
s is a snail-borne  regions of development in snails +* warm summer in 2018 correlation medium al., 1979;
helminthiasis Europe is dependent on affected more age classes  time series evidence, Halvorsen,
caused by (1974-1988) temperature and and'had unusual analysis found medium 2012;
Elaphostrongylus increases with phenological timing E. rangiferi agreement, Handeland et
rangiferi, which increasing (Deksne et al., 2020) abundance low al., 2019;
infects reindeer temperatures increased with confidence Deksne et al.,
(Rangifer (Halyorsen and increases in 2020)
tarandus) has Skorping, 1982). summer
caused recent temperature
outbreaks and has (Halvorsen,
development 2012).
increase with
temperature.
Tick-borne Northern Increases in No uptrendfound Entomological and An entomological and Simple 2 and 3 Warmer and high (Lindgren and
encephalitis virus  Europe: human in TBE virus weather survey plots  epidemiological analysis  parameter time prolonged warm evidence, Gustafson,
and its vector tick  Stockholm population prevalencedn ticks of ticks in southern of monthly tick survey series models  seasons increase high 2001; Kutz et
species have and Uppsala, were not examined from Prague;:Czech data from 1992-2009 of Ixodes TBE incidence agreement, al., 2005;
expanded to 1984-2008 analyzed in 1996-1999 & Republic from 2001-  found ticks expanded ricinus host- (Multiple very high Daniel et al.,
higher altitudes (Haernig et some studies 2002-2009. BIR, 2004 tracking tick northward and eastward  seeking regression model  confidence 2006;
and latitudes al., 2008); but in others, | (tick-bite behavior and air and and increased in behavior and results: R2 =0.58, Tokarevich et
because of Sweden, for.instance, incidence rate) soil temp., humidity,  population size in AO, weather were  p<0.0001, Full al., 2011;
phenological Stockholm the Komi and TBE prec., soil moisture, Russia (Tokarevich et al., constructed in  model: increases in Hoberg et al.,
changes: warmer  county, 1960- Repbulic study incidence wind speed - temp 2011). Tick bite season Czech disease incidence 2013; Kutz et
autumns, milder 1998 by Tokarevich examined from good predictor as long increased from 4 to 6 Republic, associated with 2 al., 2013;
winters, and (Lindgrenet  (2017) found™ 1980-2009: TBE  as extreme months and substantial N R>0.612(Danie mild winters, Tokarevich et
earlier spring. The al., 2001) and only a 4% incidence found to prec/humidity/moistur  shift of tick bites l et al., 2006) temperatures al., 2017)
expansion of Asia: Russia, population increase 40-fold in e conditions not reported(Tokarevich et favouring spring
Ixodes persulcatus Archangelsk  increase 30 years from 0.1 al., 2017). development (8-
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is the primary
driver for increase
TBE incidence in
the Arkhangelsk
olast region of
Russia even while
overal TBE
incidence
decreased for all
of Russia.
Northern regions
are documenting
new cases of
disease and
vectors while
southern and
central areas in
the north are
experiencing
drastically higher
disease incidence
rates and biting
rates. Ixodes
ricinus ticks and
TBE incidence
increased in the
Czech Republic
and appeared in
high elevation
areas (Sumava
and Krkonose
Mountains) not
previously
observed.

Oblast (AO),
1980-2009
(Tokarevich
etal, 2011),
Komi
Republic,
1970-2011
(Tokarevich
etal., 2017) ;
Czech
Republic:
1953-1976,
1982, 1992,
(tick
surveys),
1965-2001:
TBE
incidence
(Daniel et al.,
2004)

between 1970-
2011.

in the 1980s to 9.9
in 2009. Tick-
bitten inhabitants
increased from
284 in the 1980s
to ~4000 in the
2000s. Tick bites
were newly
reported in central
and northern
districts after
2000. Length of
tick-bite reporting
period increased
20-fold in N
region, 2-fold in
Central, and 1.5
fold in S region.
(tick bites are
mandatory
reporting)
(Tokarevich et al.,
2011). Monthly
tick abundance
data collected
from 1970-2011
in windows from
1970-71, 1974-80;
1982-84, 1986492,
200-2003, 2005-
2011. TBEV only
foundin ticks in S
and'C regions of
Komiin 2011 but
not before. 23-
fold increase in
patients seeking
care for tick bites
from 1992-
2011.TBE
incidence
increased from
0.12:¢1970-83) to
2.17 (2009-2011)
(Tokarevich et al.,
2017).

encountered (Daniel et
al., 2006)

10°C) and
extended autumn
activity in the year
prior to incidence
year, and
temperatures
allowing tick
activity (5-8°C)
early into the
incidence year)
(Lindgren and
Gustafson, 2001).
Mean annual
temperature
change in AO,
Russia: +2.0°C in
2000s compared to
1960-1989;
regression analysis
of temperature and
TBE incidence (R
ranging from 0.5-
0.77 depending on
region and
exclusion criteria,
p<0.01) found
strong correlation
between increases
in temperature and
TBE incidence rate
(Tokarevich et al.,
2011). Sig
increase in avg
annual air temp
between 1989-95
resulted in a 0.25
TBE incidence rate
increase / strong
correlation
coefficient of 0.77
for all RK
(p<0.0001)
(Tokarevich et al.,
2017).
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West Nile disease  (eastern Decreased WND first Temp increases Mean temp in limited (Platonov et al.,
incidence Europe) incidence was  reported in Russia  shorten gonotrophic winter (Dec- evidence, 2008; Platonov
increased due to Russia - observed in in 1999. period (GP), and March) (R=0.59), med-high etal., 2014;
temperature and 1999-2012 the year Outbreaks were increases reproduction mean temp in agreement, Mihailovi¢ et
has moved further following an  associated with of Culex spp., and summer (July-Sep) low-medium  al., 2020)
north in Eurasia. outbreak. higher summer decreases extrinsic (R=0.67), hours confidence
temperatures and  incubation period temp above 25°C
mild winters. (EIP) of the virus. (R=0.70), mean
humidity.in 2nd
and\3rd quarters
(R=-0.51), mean
atm. pressure in
3rd quarter (R= -
0.71)
Taxonomic- _ _ _ _
specific
statements
Climate change Boreal - Past  Eutrophication In situ monitoring Polymictic lakes yes, observed ~ One dimensional  Robust (1) (Shatwell et
induced warming ~ >40 years / Trophic state  in real time; (regularly mixed changes based  lake model, evidence that al., 2016); 2
leads to shifts in of lakes(1) decadal throughout summer).may on long-term statistical analysis, climate (Kirillin, 2010;
thermal regime of observations >40 become dimietic more empirical data  numerical models. change is one Kirillin and
lakes years frequently; dimictic lakes match model of the Shatwell, 2016;
(regulatly stratify projections; primary Wood et al.,
throughout.summer) may  Kirillin 2010, driver. 2016; Ficker et
havea greater tendency to  Kirillin & Planktonic al., 2017,
become monomictic; and  Shatwell, 2016 events can Shatwell et al.,
monomictic lakes (differ contribute to  2019; Woolway
to dimictic lakes in that polymictic- and Merchant,
they do not freeze over in dimictic 2019)
winter) may tend to regime shifts
become oligomictic ( in temperate
thermally almost stable, lakes, high
mixing only rarely; confidence
mostly tropical lakes) (2)
Climate change Global - Water Water storage Global surface water Until the (1) (Pekel et al.,
causes gains and ~ 1984-2015 abstraction, increases in the extents have been mapped influence of  2016) (2) (Ma
losses in dams / Recent | Tibetan Plateau using Landsat, which climate etal., 2010) (3)
freshwater water (2002-2016) can beore showed that from 1984 to change on all (Rodell et al.,
level changes'in confidently 2015, 90,000 km?2 of water fluxes  2018)
terrestrial attributed to permanent surface water (precipitation,
water'storage  climate change, has disappeared globally, ET, runoft)

in Australia
and Sub-
Saharan Africa
have been

since'they are
corroborated by
half-century old
ground survey

while 184,000 km2 of
lake surface area has

formed elsewhere (Figure

##a). Most of these

relevant to
specific lake
water budgets
can be
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attributed to
the passage of
natural
drought and
precipitation
cycles, not
climate change
(Rodell et al.,
2018). The
complexities
of lake water
storage

data (Ma et al.,
2010), and recent
observations from
the GRACE
satellite mission
(Rodell et al.,
2018), and
because there are
minimal irrigated
agriculture
operations or
water diversions

changes are thought to be

attributable to background

climate variability, water
extractions, and reservoir
filling, rather than climate
change per se (Pekel et
al., 2016).

adequately
resolved, the
magnitude of
climate
change
effects on
global lake
water storage
will remain
highly
uncertain,
particularly in

to become more
productive while
nutrient limitation
may increase in

oligotrophic lakes.

algal biomass (2), while
global warming reinforces
eutrophication of already
eutrophic lakes via
oxygen depletion in the
sediment near water
layers which triggers
release of nutrients
previously bound in the
sediment (3,4).

n in eutrophic
lakes.
Limited
evidence for
climate-
change driven
enhanced
nutrient
limitation in
deep

responses to which may the presence

climate change confound the of interannual

and the trend (Rodell et climate

challenges al., 2018). variability,

associated low

with its confidence

detection and

attribution are

reflected in the

ongoing

debate about

the influence

of climate

change effects

on lake water

storage

(Muller,

2018).
Warming may Global - Land-use Long-term In nutrient poor lakes yes, ecosystem multivariate High 1(Moojj et al.);
amplify the Varies by changes, observations prolongation of thermal model PCLake statistical analysis, Agreement 2 (Kraemer et
trophic state lakes study. Range agriculture past>40.years, stratification limits 1) machine learning  for al.), 3(Adrian et
are already in. 20-50 years remote sensing nutrient entrainments via tools amplification al.), 4(De
Eutrophic lakes data vertical mixing which of Senerpont
have been shown leads to a reduction in eutrophicatio Domis et al.)
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oligotrophic
lakes,
medium-high
confidence
In lakes weather ~ Global - Past ~ Antecedent In situ monitoring Depending on lake type, Agreement is  (1)(Havens et
extremes in wind, >40 years conditions in real time; the severity and timing of high that the  al., 2016) (Kuha
temperature, decadal the extreme event, and the increase in etal., 2016)
precipitation and observations >40 nature of entrainment the number (Kasprzak et al.,
loss of ice years from run-off (e.g. DOM) and severity | 2017)
foremost affect and internal nutrient of extreme (Bergkemper et
the thermal loads, algal biomass and events can be ' al., 2018)
regime with biodiversity has either. attributed to  (Stockwell et
repercussions on declined or increased (1). climate al., 2020);
water temperature, A once in 250-year flood change, low- ' (2)(de Eyto et
transparency, event in 2009 caused the medium al., 2016);
oxygen and water column of Cough confidence (3)(Bartosiewic
nutrient dynamics, Feeagh, a large nutrient z et al., 2016);
affecting poor lake in Ireland, to (4)(Kangur et
ecosystem destabilise, followed by al., 2016)
functionality reduced primary
production (2). The
dominant. CH4 emission
pathway in a shallow
productive lake, shifted
from gas ebullition to
diffusion following high
CH4 release from
sediments that was driven
by colder deep water
temperatures during a
heatwave (3). Oxygen
depletion in the cold deep
water body of lakes
during heat extremes has
forced fish to move
upwards into the warm
upper water layers where
thermal stress and
metabolic costs increase.
Summer fish kills have
been related to summer
temperature extremes and
near-bottom oxygen
depletion (4).
Severe floods and  Global Antecedent Duration of droughts in mathematical High (1) (Colls et al.,
droughts are conditions. Mediterranean streams in modelling, Agreement 2019)(2)
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major threads for (1) urban NE Iberian Peninsula has literature review, that the (Zlatanovi¢ et
river ecosystems development, been linked to a observations, increase in al., 2018), (3)
farming on significant decrease of boosted regression  the number | (Nilsson et al.,
floodplains, autotrophic biomass, tree analysis and severity  2015),
river flow gross primary production of extreme (4)(Abatzoglou
disruptions (1) and net primary events can be and Williams,
production in streams (2) . attributed to  2016),
The predicted effects of climate (5)(Cooper et
permafrost thaw include change, al., 2015),
increased inputs of medium-high  (6)(Dahm et al.,
nitrogen, phosphorus and confidence 2015).
carbon into riversswhich
are predicted to affect
primary and secondary
productionsand hence the
species communities (3).
Increased forest fire
activity in the surrounding
catchment of freshwater
gcosystems (4) in riparian
zones can lead toreduced
canopy cover.and
increased water
temperatures, increased
stream flow and
suspended sediment
concentrations. Increased
algallevels can hence
alter stream food webs
(5)and lead to water
quality degradation (6).
In boreal, Boreal - Past  Forestry Long-term Mesocosm Browning has been shown An increase in Agreement is  (1)(de Wit et
coniferous areas  decades practice, observations experiments (3) to drive a shift from auto- browning by high that al., 2016),
changes in planting of during past to factor 1.3 climate (2)(Kritzberg et
forestry practices spruce (2); decades (1,4), for heterotrophic/mixotrophic based on a change al., 2020), (3)
and climate Land-use review see (2) -based production (2,5) worst case induced (Urrutia-
change have changes (2). / with a subsequent decline climate hydrological  Cordero et al.,
caused an increase Non.climate in energy transfer scenario was intensificatio  2017), (4)
in terrestrial related efficiency and a reduction predicted for n and (Creed et al.,
derived dissolved proposed of biomass at higher 6347 lakes and greening of  2018), (5)
organic matter drivers of trophic levels (6). Mild rivers in the the northern  (Zwart et al.,
(DOM) transport browning are browning may accelerate  boreal region hemisphere 2016),
into rivers and the strong primary production and of Sweden until are major (6)(Ellison et
lakes leading to decline in favour fish production 2030, which drivers of al., 2017), (7)
their browning. atmospheric (2014) through input of  match observed browning (Finstad et al.,
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sulphur nutrients associated with  trends in the (Solomon et  2014),
deposition DOM in nutrient poor past decades al., 2015) (de  (8)(Thrane et
since the lakes(6,8,9) and increase  (13). Wit et al., al., 2014), (9)
1980ties, cyanobacteria growth 2016) (Seekell et al.,
reducing (cyanobacteria better cope (Finstad et 2015) (10)
acidification with low light al., 2016) (Huisman et al.,
and by that intensities(10) and toxin (Catalan et 2018)
increasing the levels (11,12). al., 2016; (11)(Hansson et
solubility and Creed etal., ' al.,2013)(12)
transport of 2018), (Urrutia-
DOC from {Hayden, Cordero et al.,
soils (1,2). 2019, from 2016), (13)
clear lakes}. (Weyhenmeyer
high etal., 2016)
confidence
Greenhouse gas Global - Past  Eutrophication Fine sediment fraction CO2 and CH4'emissions Uncertainty  (1)(Bodmer et
emissions from decades , agriculture and organic carbon fromfreshwater primarily al., 2020), (2)
freshwater content were ecosystems are likely to stems from (Aben et al.,
ecosystems are important drivers of increase due to the the large site  2017), (3)
equivalent to methane production imbalance between losses specific (Marcé et al.,
around 20% of and potential methane and'gains of CO2:by. heterogeneity 2019); (4)
global burning oxidation in rivers- photosynthesis and of CO2and  (Keller et al.,
fossil fuel CO2 based on respiration, enhanced CH4 2020); (5)
emission field/laboratory emissions/from exposed dynamics (6), (Sanches et al.,
studies (1); CH4 sediments during droughts seasonality of 2019);
ebullition due to (3,4); enhanced CH4 their (6)(DelSontro et
temperature induced | ebullition of seasonally sediment- al., 2018); (7)
increase’in sediment hypoxic lakes ( 2,5,6,7,8), water—air (Beaulieu et al.,
CH4 production will,  increased matter transport fluxes (6,9), 2019);
increase in freshwater » from land to water the exclusion  (8)(Bartosiewic
ecosystem; literature  (particularly permafrost of ponds and ' zetal., 2019),
data combined with thaw) (6) are key the winter (9) (Denfeld et
mesocosm mechanisms which season in al., 2018)
experiments (2). contribute to rising GHG global carbon
emissions from freshwater flux estimates
ecosystems to the (6,9),
atmosphere. procedures of
upscaling (6)
and
measuring
techniques
(5), medium
to low
confidence
Climate change North Antecedent Lowland rivers Robust (1) (Piccolroaz
induced warming  America, conditions evidence, etal., 2018) (2)
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leads to shiftsin ~ Europe - Past observed to be high (Isaak et al.,
thermal regime of ~decades extremely confidence 2016)
rivers and sensitive to
streams; lowland heatwaves while
rivers show a high-altitude
stronger thermal snow-fed rivers
response than and regulated
high-altitude, rivers receiving
cold-water cold water from
receiving streams higher altitude

showed a damped

thermal response

(1); small

mountain streams

do not warm

linearly with

increasing air

temperature

because of strong

local temperature

gradients

associated with

topographic

controls (2)
Loss of Global - Past  Antecedent Observed long- high (1)(Daufresne et
biodiversity in decades conditions term trends in agreement, al., 2007),
streams can be stream very high (2)(Chessman,
directly attributed macroinvertebrate confidence 2009), (3)
to climate change s have shown that (Death et al.,
through increased changes in species 2015), (4)(Jaric
water composition and etal., 2019),
temperatures, community (5)(Mouthon
hydrological structure can'be and Daufresne,

changes such as
increased peak
discharges, flow
alteration and
droughts

attributed to
climate,change
triggered by hydro
climatic changes
(1,2). In the
Meditetranean
climate change
may increase'the
occurrence of
droughts and
reduce small
floods needed to
guarantee habitat

2015).
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diversity (3)
particularly
threatening fish
species of small
body size, small
range size and low
dispersal abilities
(4). Heat waves
have shown to
alter the density,
species richness
and structure of
mollusc
communities,
favouring more
resilient species
with a slow pace
of recovery (5).

Climate change is
causing range
shifts of
freshwater fish

North
America -
Past decades

Antecedent
conditions

Systematic shifts
towards higher
elevation and
upstream were
found for 32
stream fish
species in France
following
geographic
variation in
climate change
(1). Stream fish
are currently
responding; to
recent climate
warming ata
greaterrate than
many terrestrial
organisms,
although not as
much as needed to
copewith future
climate
medifications (1).
Range
contractions have
been found for
Bull trout

high
agreement,
high
confidence

(1) (Comte and
Grenouillet,
2013), (2)
(Isaak et al.,
2010), (3) (Eby
etal, 2014).
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(Salvelinus
confluentus) (2,3)
Whole biome Global Mixed. add
shifts have detail
occurred. Boreal
forests have
shifted into arctic
tundra, treeline
has shifted
upward into
alpine tundra,
temperate
deciduous shrubs
and forests
upwards into
conifer forest, xx
Woody Global Yes - lossof  yes-emergence  Experiments yes - indicating  Yes - consistent Robust (1)(Smit and
encroachment into browsing of grasslands after manipulating CO2 co2 driven encroachment evidence that  Velthof; Bond
open (grassland, herbivores; CO2 came down  benefit woody plants inerease in across all savannas climate and Midgley,
desert) systems fire below ~500ppm  (4) woody cover (8). change is one ' 2012; Bakker et
has occurred suppression. 3) 6) of the al., 2016) (3)
globally, with Reviews of yes -Long-term primary (Ehleringer et
climate change as long term fire and grazing drivers, but al., 2002)
one of the primary experiments trials show woody LUC also (Beerling and
drivers demonstrate encroachment primary Osborne,
impacts (1)/  occurs even when driver. 2006)(4)
yes - (2) land use is held Robust (Polley et al.,
constant or evidence (lots ' 1997; Bond and
accounted for of studies) Midgley, 2000;
indicating a.global but medium  Kgope et al.,
driver. (5) agreement on | 2010)
climate- (Hoffmann and
change Jackson) (Quirk
attribution et al., 2019)(5)
because of (Buitenwerf et
complex al., 2012;
drivers. Venter et al.,
medium 2018; Zhang,
confidence 2019) (6)
(Scheiter and
Higgins, 2009;
Moncrieff et al.,
2014; Scheiter
et al., 2018) (8)
(Stevens et al.,
2017)
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Widespread High artic yes - satellite and  yes - network of Yes - widespread ~ robust (4) (Elmendorf
greening and and mountain long term repeat ~ warming experiments shrubbification (8). evidence, etal., 2012a;
shrubbification of tundra - data photos (5) link warming to high Elmendorf et
tundra starting in increases in shrub, agreement, al., 2012b;
1900 grass and sedge high Elmendorf et
species (4) confidence al., 2015;
Bjorkman et al.,
2018; Bjorkman
etal., 2019;
Myers-Smith et
al., 2019) (5)
(Tape et al.,
2006; Phoenix
and Bjerke,
2016) (8)
(Myers-Smith et
al., 2011)
Tropical forests  Tropical
region
Drought and Mediterranea Insect yes - Field yes - increase in medium (1) (Mclntyre et
warming induced n ecosystems outbreaks surveys of long extreme droughts  evidence al., 2015; Fettig
diversity shifts in associated term monitoring in regions (8) changes are etal., 2019) (5)
Mediterranean with drought  show reduced mediated by  (Mclntyre et al.,
type ecosystems (1); loss of diversity or shift an increase in  2015; Slingsby
fish species in functional due extreme etal., 2017,
(Jaric et al., to increasing droughts. Harrison et al.,
2019) (9) prevalence of Changes are 2018 2018;
extreme hot and not always Smithers et al.,
dry weather often direct but 2018;
the post-fire interact Stephenson et
regeneration through al., 2018; Fettig
phase(5) altering the etal., 2019) (8)
fire regime (AghaKouchak
and post-fire  etal., 2014;
recovery Robeson; Otto
etal., 2018;
Sousa et al.,
2018), (9) (Jaric
etal., 2019)
Deserts
Med shrublands Mediterranea Human driven Long-term (1) (Lambrinos,
shifting to n ecosystems, fragmentation 2006; Fenn et
grasslands arid and nitrogen al., 2011)
shrublands deposition
benefits
grasses (1)
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Terrestrial varies by (5) (Jacobsen
carbon stocks region and and Pratt, 2018;
ecosystem Syphard et al.,
type 2019 2019;
Young et al.,
2019) see
section
{2.4.4.4}
Droughts Southeast Long term high (Herawati and
associated with E1 ~ Asia - Past monitoring and confidence Santoso, 2011;
Nino lead to an decades remote sensing Page and

increase of
anthropogenic fire
in drained tropical
peatlands

show grass
invasions (5)

Hooijer, 2016)

Table SM2.2: Assessment of uncertainties associated with key statements on Projected Impacts. See SM2.1 caption for descriptions of lines of evidence. Where evidence is

rovided in main text, only the relevant section is noted.

rainforests, projected increases of
drought under continued climate

Non-climatic u esign \\‘
Drivers: Nu of vel of Levels of
Land Use dies and/or ent Independent evidence,
Geographic region and Landy, Qb among G PPTEITEN
Key statement and Period Cover ifferen tudies paleo data and and
Change models‘us &/ long term confidence
(EULCO)I"  to te an do; observations for
or Other rojecte mo et attribution
/ Changes & impacts outputs

Continued climate change under high medium {2.4.4.2;
emissions scenarios could increase confidence  2.5.5.2}
future wildfire frequency on one-third
to two-thirds of global land by 2100
and decrease fire frequency on one-
fifth of global land, with a net global
fire frequency increase of ~30% per
century
Increased wildfire, combined with medium {2.4.4.2;
erosion due to deforestation, could confidence  2.5.5.2}
degrade water supplies
For ecosystems with historically low medium {2.4.4.2;
fire frequencies, particularly tropical confidence  2.5.5.2}
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change increase risks of fire, which
could cause biome shifts, e.g., potential
conversion of over half the area of
Amazon rainforest to grassland.

Terrestrial ecosystems protect globally high {2.4.4.4;2.5.1}
critical stocks of carbon and provide an confidence
essential service of sequestration of
carbon from the atmosphere but are at
risk of carbon losses from
deforestation and climate change
Percentages of species projected to Global yes for some 178 studies. medium to Ever-increasing  Differences, {2.5.1.3.3,;
suffer extinction vary from zero to studies Each study is of  high evidence of in estimates  2.5.4}
64% with a threshold for extinction of a variable agreement current impacts " of extinction
>80% of the species' climate space number of for same of climate risk stem
disappeared. With a threshold for species, ranging  species‘or change on wild . from
extinction of >50% climatic range lost, from a few to dataset,dlow, species in turn differing
under 3.2 °C warming, 49% of insects, >100,000 agreement gives us higher . assumptions
44% of plants, and 26% of vertebrates species. across confidence in of thresholds
are projected to be at risk of extinction. Modeling studies of future for
At 2°C, this falls to 18% of insects, approaches multiple projections of extinction
16% of plants, and 8% of vertebrates include arange . Species biodiversity risk,
and at 1.5°C, to 6% of insects, 8% of of biological changes that are  differing
plants, and 4% of vertebrates. models (SDMs based upon geographic
as well as known regions and
process-based relationships taxonomic
models) and between species  groups, as
multiple GCMs and climate. well as
and warming differing
scenarios. modeling
approaches
and
emissions
scenarios,
Confidence
highly
dependent
upon
statement of
range of
species'
extinctions
Climate change induced warming leads Global - high {2.3.3.6;
to shifts in thermal regime of lakes Representative 2.5.1.3.2;
concentration pathway 2.5.3.6.2}
8.5
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Substantial changes in vegetation
structure and ecosystem processes are
expected to for already relatively small
temperature increases (<2°C above
pre-industrial), in particular in cold
(boreal, tundra) regions, as well as in
dry regions [high confidence]. Land-
use change will exacerbate projected
impacts on ecosystems and will alter
ecosystem function and vegetation
cover in addition to climate change.
Models agree on impacts increasing
rapidly with level of global mean
temperature change; models also agree
that these impacts will be visible the
earliest in boreal/tundra regions, as
well as in dry areas. Nonetheless there
are discrepancies regarding the
regional patterns of impacts, not only
for climate change but also for land-
use change.

Global, Tropical
boreal - 2100,

Yes for some
experiments,

climate/CO: as in RCP  from

2.6,45,8.5

Global - 2100,

LUH/CMIP5
N/A

Yes, for some

climate/CO: as in RCP experiments,

2.6,4.5,6.0

Global - 2100,

from
LUH/CMIP5
N/A

No

climate/CO- as.in RCP N/A

2.6,4.546, 8.5

Factorial model
experiment
(HadGEM2-
ESM

DGVM (LPJ)
with multiple
CMIP5 ESM
climates,
caclulate
"gamma metric"
which expresses
strenght'of
change in biome
shifts and
bieogeochemical
cycles/ecosystem
services

Seven global
vegetation
models, driven
by ISIMIP
climate
projections

Greening and
browning
observed in
satellite remote
sensing studies,
and attributed to
LUC and climate
change/CO:..
their relative
impacts vary
widely over the
globe == see E:G:
Piao et al., 2016

Projected
changes at the
biome level
{2.5.2.2} See
also SM2.3 and
Figure 2.9

Projected
changes at the
biome level
{2.5.2.2} See
also SM2.3 and
Figure 2.9

(Davies-Barnard et al.,
2015) Forest fraction
change: global & boreal--
increasing with CC/CO»,
most strongly in RCP8.5;
tropical -- impacts are
small, slight decline in
RCP2.6;
global/boral/tropical --
decline in response to LUC
for 2.6 and 8.5, increase in
4.5.

(Ostberg et al., 2013;
Ostberg et al., 2018)

For RCP2.6, still >20% of
land surface notably
impacted by climate
change (mostly tundra,
boreal regions, but also dry
grasslands/deserts).
Increasing to >30% (RCP
4.5) and >40% (6.0) of the
land surface, and
increasingly including now
also tropical seasonal
forests expanding into
tropical forests and into
savannas. In a RCP8.5
world, >50% of land
sirface affected by climate
change alone. LUC
substantially enhances the
land surface transformation
in addition to climate
change but areas of largest
climate change impacts
and largest LUC impacts
do not necessarily overlap
in many places.
(Warszawski et al., 2013)
At 20C warming above
1980-2010 levels, 5-19%
of land surface at risk of
severe change; extend of
regions at risk more or less
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doubles between 20C and
30C mean global warming,
at 40C warming ca. 35% of
land surface projected to

be notably impacted.
Vegetation models to some
extend disagree on

regional patterns of
impacts are largest, but

agreement that high
northern latitudes will be
strongly affected.
Global - 2100, No DGVM LPJ- (Warlind et al., 2014)
climate/CO: as in N/A GUESS & MPI- Shifts in vegetation
RCPS8.5 ESM climate composition in many
regions, for instance wood
vegetation increase in
tundra, larger component
of evergreens in
mediterranean regions,
more drought-tolerant
woody vegetation in
savanna.
Novel abiotic conditions are expected  Global - ca. 2050, No Uses projections medium Projected (Radeloff et al., 2015) T
to also result in no-analogue vegetation RCP6.0 N/A of abiotic confidence changes at the (and N deposition) largest
composition [medium confidence) conditions (R, that novel biome level driver of novelty; large
precip., N abiotic {2.5.2.2} See degree of novelty in tropics
depositien) plus conditions also SM2.3 and  and subtropics because
human will also be  Figure 2.9 temperatures reach levels
population seen in novel that haven't been seen in
density. Relative ecosystems, the recent past; despite of
to an.estimated but low overproportional warming
present-day confidence level of novelty in high
baseline. as to where latitudes in some regions
Measure: these will smaller because these
minimum emerge. temperatures also occur
dissimilarity elsewhere globally, so not
scores. Climate: novel.
ensemble of
12ESMs
Global - 2100, SRES. " No Vegetation medium Projected (Reu et al., 2014) Find no-
BI, 42 N/A model JeDi, confidence  changes at the analogue climate in
identify that novel biome level (sub)tropical regions,
distribution of abiotic {2.5.2.2} See mostly of the northern
simulated no- conditions also SM2.3 and  hemisphere and non-
analogue will also be  Figure 2.9 analogue vegetation in
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vegetation and

seen in novel

Finland and western

tropical forest is projected to shift
increasingly towards vegetation with
traits that correspond to drier and
hotter climate [high confidence]

N/A

functional traits
plus vegetation
census data
(plots) along a
rainfall gradient;
calculate
community-level
weighted mean
for each trait and
plots, CWM is
indicator of

forest {2.5.2.6}

compare to no- ecosystems, Siberia. Effects stronger in
analogue but low A2.
climate. Does confidence
not consider CO2 as to where
impacting these will
photosynthesis. emerge.
Climate
analogues
obtained from
seven
GCMs/AR4.
At least part of what is now humid Tropical/Ghana - NA  No Species Risk to tropical ~ (Aguirre-Gutiérrez et al.,

2019) Drier tropical
forests increased their
deciduous species
abundance and generally
changed more functionally
than forests growing in
wetter conditions,
suggesting an enhanced
ability to adapt
ecologically to a drying
environment.

mean canopy
properties.
Explore
empirical
relationship,with
soil water
deficit.
Tropical/Amazon= NA,No Calculate (Anderson et al., 2018;
N/A exposure as Bartlett et al., 2019)
meteorological Minimum and maximum
drought, using AEVI indicate that
the standardized droughts tend to increase
precipitation the variance of the
index (SPI) and photosynthetic capacity of
the maximum Amazonian forests;
cumulative water intensity of negative AEVI
deficit increased with time (2005-
(MCWD) from 2016), forest may become
1981 to 2016 & more vulnerable to
assess changes in droughts.
enhanced
vegetation index
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Tropical - Stylised No
droughts; 400 and 8§00 N/A

ppm CO:

Tropical, global - NA  No

N/A
Tropical/Amazon - No
NA N/A

anomalies
(AEVI, from
MODIS).
Empirical model,
linking
photosynthesis
and stomatal
conductance and
other drought-
related traits to
soil water
content.
Parameterised
with field data.
Evolutionary
stable state
analysis to
identify shifts in
competitively
optimal
hydrauli¢ traits.
Reviews,
published
literature on
observed
drought-impacgts.

Forest cencus
data in humid

(Anderson et al., 2018)
Drought impacted
competition more than
CO,, with elevated CO,
reducing but not reversing
drought-induced shifts
towards more tolerant
strategies --> shifts
towards drought adapted
vegetation.

(Bonai et al., 2016) Wide
range of responses, seen in
e.g. mortality, growth,
LAI, carbon fluxes, shifts
in traits. While responses
are variable seem to
support projected shifts
towards initial mortality of
trees and then shift to more
xeric vegetation. Large
uncertainties w.r.t. changes
in phenology and carbon
fluxes.

(da Silva et al., 2018)
Reduced forest biomass

forests, and enhanced post-fire
chronosequences mortality that might last
after fire, years/decades after fire.
compared to
surrounding
unburned plots.

Tropical/Central/South No Review, (Stan and Sanchez-

America="NA N/A published Azofeifa, 2019) Climate
literature on along a latitudinal gradient
observed
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Tropical/Amazon - No
2050, climate/CO2as N/A
in RCPs2.6, 4.5, 8.5

Tropical/Latin yes, in some
America - 2100, experiments
climate/CO: as in N/A

RCP2.6 and 8.5

Tropical - 2100, No
climate/CO: as in N/A
SRES A2

Tropical/Amazon - No

2100, climate/CO2as N/A

climate-impacts
in tropical dry
forest.

Review,
published
literature of
climate change
and land-use
chage impacts &
simulations with
vegetation model

CPTEC-PVM2

with nine CMIP5

GCMs

Projections with

DGVM LPJmL,

driven by five

ISIMIP climate

projections.

Land-use change

from CLUE;

combined with

SSPs.

DGVM Moses-  Agreement

Trifid &22 that forest

GCM (from: gain

AR4), emulated  biomass, but

with pattern- very large

scaler model variability in

IMOGEN projected
tropical
forest
biomass,
depending
on which
GCM used,
despite of
only using a
single
emission
scenario

Trifid +

HadCM3

indicates drought
tolerance.

(Nobre et al., 2016) 4°C
warming or deforestation
exceeding 40% of the
forest area estimated as
tipping point towards
"savannisation".

(Boit et al., 2016) Across
all scenarios 5—6% of the
total area will undergo
biome shifts that can be
attributed to climate
change until 2099, even in
the RCP8.5. Changes
clearly dominated by
land.use change. CO,
fertilisation helps to buffer
negative climate change
impacts.

(Huntingford et al., 2013)
Agreement that forest gain
biomass, but very large
variability in projected
tropical forest biomass,
depending on which GCM
used, despite of only using
a single emission scenario.
Towards end of 21st
century peak in biomass-
gain and downturn. Only
one of all 22 simulations
forest projected to loose
biomass, and this only in
the South American
tropics.

(Boulton et al., 2017) Little
change in Amazon forest
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in SRES A1B, RCP
2.6, RCP 8.5

cover for A1B and RCP
2.6, decline in some of the
ensemble runs under RCP
8.5. Impacts get stronger in
time periods beyond 2100
(‘comitted')

On different continents, and from Savanna - 2070, No Thornley Risk to'savannas  (Moncrieff et al., 2016)
mesic to dry savannah sub-regions, the RCP4.5 N/A transport {2.5.2.5§ 2070: DVM project
relative importance of climate, fire and resistance reduced extent of savannah
other factors in shaping savannah statistical at boundary with forests,
vegetation and distribution varies, distribution while the TTR-SDM
which makes projections of the change model & three projects savannah decrease
of the biome’s extend challenging. Due versions of at boundary with
to the continued strong effect of CO- aDGVM + MPI grassland. TTR does not
on tree to grass ratio in future, models ESM-LR include CO, impacts.
suggest both a loss of savannah extend  Savanna/Africa - No aDGVM + (Higgins and Scheiter,
and conversion into dry forestand an 2700, SRES A1B N/A climate from 2012) (woody) C3
expansion of savannah-type vegetation ECHAMS vegetation increases in
into arid grasslands. from dominating less then
5% of study area surface in
2020 to ca. 20% at end of
century.
Models of vegetation response to Tundra - 2070, RCP no SDMs, 116 Risk to tundra (Mod and Luoto, 2016)
climate project that the observed 4.5 yes? vascular plants, and boreal forest Abundance of woody
increases in shrub dominance and in based on plot {2.5.2.9} plants will expand,
boreal forest encroachment driven by observation data decreasing predicted
recent warming are to accelerate in -=presumably no species richness,
coming decades, especially under the CO: impact on amplifying species
higher greenhouse gas emissions plants turnover and increasing the
scenarios, leading to a shrinking of the local extinction risk for
area of tundra globally ambient vegetation
Tundra - 2050 and no statistical (Gang et al., 2017) Area
2070, climate as in vegetation model of tundra declines in
RCPs 2.6- 8.5 CSCS + basically all future
enesmble 33 projections, highest impact
GCMs, unclear in high emission scenarios.
if model
accounts for CO2
Tundra -2074; 0, 25, ' No vegetation model (van der Kolk et al., 2016)
5, 8°C. warming N/A NUCOM-tundra Abrupt permafrost thaw
compared to 1994 + 16 different initiating thaw pond
climate formation led to complete
scenarios; domination of graminoids:
unclear if model shrub growth limited by
accounts for CO: very wet soil conditions
and low nutrient
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supply/graminoids can
grow in wide range of soil
moistures & access
nutrients in deeper soil
layers.

Boreal tree species are expected to Boreal forest/Siberia - No DGVM LPJ- (Arneth et al., 2016) Areas
move northwards (or in mountain 2100, climate/CO: as N/A GUESS & dominated by 16arch shift
regions: upwards) into regions in RCPS8.5 ECHAMS.5- northwards, overall area of
dominated by tundra, unless HAM2 climate larch-dominateed forest
constrained by edaphic features, and declines. Expansion of
temperate species are projected to grow deciduous vegetation at
in regions currently occupied by southern edge.
southern boreal forest. In both biomes, Global/boreal regions No HadCM3C Falloon et al., 2012
deciduous trees are simulated to (45-800N) - 2100, N/A Increases in shrub and
increasingly grow in regions currently  SRES A1B and climate needleleaf trees at high
dominated by conifers. stabilisation scenario latitudes.
While the future of the global land Permafrost region - No Empirical Risk to terrestrial (Chadburn et al., 2017)
carbon sink is highly iuncertain, 2300, Stabilisation for N/A relationship to carbon {2.5.3.4} Simulations under two
possibly enhanced carbon losses from  RCP4.5 and 8.5 (no determine future climate scenarios
terrestrial systems further will limit the changes after 2100). permafrostiarea show near-surface
available carbon budget for global No CO: impacts from MAAT: permafrost loss per degree
warming staying below 1.50C [high included. Develop of warming between 1.1
confidence] relationships and 1.2 million km? (in the
between mean new model version). If the
annual air T and climate is stabilized at 2°C
nine CMIP5 estimate are that the
GCMs. Estimate permafrost area would
future air eventually be reduced by
temperatures by over 40%. Stabilizing at
increasing 1.5°C rather than 2°C
historical air (above PI) would save
temperatures by approximately 2 million
the global mean km? of permafrost.
warming,
multiplied by an
Arctic
amplification
factor, using
CMIP5 models.
Permafrost region - No Ecosystem (Comyn-Platt et al., 2018)
2100, 1.50 and 20 N/A model Jules + By 2100, the model
warming trajectories, Climate change ensemble estimates a
incl. 1.50C with emulator median 138 Mha loss of
overshoot; include IMOGEN permafrost area at 3 m
CO: depth for the 1.5°C
asymptote pathway, and a
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Permafrost region - No
2300, RCP8.5 & 4.5 N/A

Inventory
models +
CCSM4 climate

median 239 Mha loss for
the 2.0°C pathway.
Simulates an additional
40.0-46.3, 45.6-51.2 and
61.9-72.0 GtC of pre-
industrial permafrost
carbon that is no longer
perennially frozen, relative
to 2015, for the three
temperature scenarios.
Between 20 and 30% of
this newly thermally active
carbon released to the
atmosphere.

(Turetsky et al., 2020)
Emissions across 2.5
million km? of abrupt
thaw; under RCP8.5 areca
of thaw threefold larger
than with only graduial
thaw. Emissions of ca. 80
+- 19PgC by 2300, results
suggest that abrupt thaw
carbon losses are
equivalent to
approximately 40% of the
mean net emissions
attributed to gradual thaw.

Permafrost region - No Eight ecosystem Large (McGuire et al., 2018)

2100, climate and CO: _N/A models between Projected losses of

as in RCP4.5 and 8.5 model permafrost between 3 - 5
spread, but million km?2 for the
agreement in RCP4.5 6 -16 million km2
direction of for RCP8.5. RCP4.5: cum.
model change in soil carbon 66
response Pg Closs - 70 Pg C gain.
w.r.t. loss of RCP8.5: losses in soil
area; four of carbon, 74 - 652 Pg C. For
five models RCPA4.5, gains in
that simulate vegetation carbon were
C-response largely responsible for the
show overall projected net gains
increase in in ecosystem carbon (8 to
vegetation C 244Pg C gains). For
and all five RCP8.5 projection, gains
show in vegetation carbon were
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N America arctic No
tundra - 2100, RCP8.5 N/A
climate and CO:

Peatlands, Amazon No
(Peru) - 2100, N/A

climate/CO: as in
RCP2.6, 4.5 and 8.5

Peatlands; northern No
hemisphere - 2700, N/A
RCP/CO: asin'2.6, 6,

8.5

decrease in

soil C (in
RCP 8.5) but
with large
spread
between
models.

ecosystem model

Ecosys +

downscaled

CMIP5

ensemble

climate

projections

Peatland

ecosystem model

P-TEM +

CCSM3:¢climate

ORCHIDEE-
peat + IPSL-
CMS5A-LR GCM
and GFDL-
ESM2M

not great enough to
compensate for the losses
of carbon projected by four
of five models ( 641Pg C
loss to 167Pg C gain).

(Mekonnen et al., 2018)
Between 1982 and 2100
averaged increases in
relative dominance of
woody versus non-woody
plants; increased
ecosystem annual NPP
(244 g C m—2) offsets
increases in annual Rh
(139 g C m—2), resulting in
an increasing net carbon
sink over the 21st century.
(Wang et al., 2018) Under
warmer (and presumably
wetter) conditions over the
21st century, SOC
accumulation rate in the
study region slows down to
7.9 (4.3-12.2)
g-:C-m—2-y—1 (from the
current rate of16.1 (9.1
23.7) g:C-m—2-y—1);
region may turn into a
carbon source (—53.3
(—66.8 to—41.2)
g-:C-m—2-y—1), depending
on the level of warming.
(Qiu et al., 2020) Current
carbon this sink will
roughly double in the
future under both RCP2.6
and RCP6.0, whereas the
total northern peatlands
will be either a source of
CO, (IPSL-CM5A-LR) or
near neutral (GFDL-
ESM2M) by the end of the
century under RCP8.5.

Do Not Cite, Quote or Distribute

SM2-36

Total pages: 136




FINAL DRAFT

Chapter 2 Supplementary Material

IPCC WGII Sixth Assessment Report

Global - 2100, no
climate change

Tropical
peatland/Malaysia,
Indonesia

Tropica peatland -
none

Tropical- 2700,
climate/CO: as in
SRES A2

Yes (drainage) Empirical, based

Yes (peat
swamp/oil
plantation)

Yes

No
N/A

on literature
values for
peatland area
and emission
factors.

Empirical,
upscaled
measurements

Review paper

DGVM Moses-
Trifid & 22
GCM (from
AR4), emulated
with pattern-
scaler model
IMOGEN

Agreement
that forest
gain
biomass, but
very large
variability in
projected
tropical
forest

(Leifeld et al., 2019) By
2100, peatland conversion
in tropical regions might
increase to 36.3 million ha.
Cumulative emissions
from drained sites reached
80 + 20 PgCO,e in 2015
and will add up to 249 +
38 Pg by 2100. At the
same time, the number of
intact sites accumulating
peat will decline.

(Cooper et al., 2020)
Measurements of GHGs
emitted during the
conversion from peat
swamp forest to oil
palmplantation, accounting
for CH4and N20 as well
as CO,. Emissions factors
for converted peat swamp
forest is in the range 70—
117 t COzeq ha—lyr—1,
with COzand N20O
responsible for ca. 60 and
ca. 40% of this value,
respectively. These GHG
emissions suggest that
conversion of Southeast
Asian peatswamp forest is
contributing between 16.6
and 27.9% of combined
total national GHG
emissions from Malaysia
and Indonesia.

(Page and Baird, 2016)

(Huntingford et al., 2013)
Agreement that forest gain
biomass, but very large
variability in projected
tropical forest biomass,
depending on which GCM
used, despite of only using
a single emission scenario.
Towards end of 21st
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Global - 2100, SRES  No
A2 climate and CO: N/A

biomass,
depending
on which
GCM used,
despite of
only using a
single
emission
scenario

Jules,. Adjusted

for T-

acclimation of

photosynthesis +

emulated climate

century peak in biomass-
gain and downturn. Only
one of all 22 simulations
forest projected to loose
biomass, and this only in
the South American
tropics.

(Mercado et al., 2018)
Results suggest that
thermal acclimation of
photosyntheticcapacity
makes tropical and

Africa savanna- none No

satellite-based
maps of plant
productivity +
estimates of
animal
abundance and
foraging area

LPJ-GUESS +

from 22 AR4 temperate C less
GCMs vulnerable to warming, but
reduces the warming-
induced C uptake in the
boreal region under
elevated CO,.
Cascading trophic effects triggered by =~ Western North No Data on Risk to terrestrial (Stoner et al., 2018) Data
top predators or the largest herbivores ~ America - none N/A population carbon {2.5.3.4} indicate strong, positive
propagate through food webs and densities.of'a association between plant
reverberate through to the functioning primary and productivity and mountain
of whole ecosystems, altering notably secondary lion density 8via impacts
productivity, carbon and nutrient consumers on mule deer). Droughts
turnover and net carbon storage across a climatic and longer-term climate
[medium confidence) gradient; changes reduce the

suitability of marginal
habitats--> consumer home
ranges will expand in order
for individuals to meet
basic nutritional
requirements. These
changes portend decreases
in the abundance of large-
bodied, wide-ranging
wildlife through
climatically-driven
reductions in carrying
capacity.

(Pachzelt et al., 2015) The

N/A grazing module grazer—vegetation model
predicted substantial
impacts on grass biomass
(mostly increases), total
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veg carbon was medium
affected (c. 10%) and
burned area (increase),
particularly in areas with
high grazer densities.
Africa, lowland No Ecosystem (Berzaghi et al., 2019)
primary forest - none  N/A model ED + Elephants: reduction of
elephant forest stem density -->
disturbance changes in the competition
for light, water and space
among trees --> emergence
of fewer and larger trees
with higher wood density -
-> increases the long-term
\ equilibrium of
aboveground biomass,
reduces the forest NPP

% V (trade-off between
productivity and wood
density). Typical density
of 0.5 to 1 animals per km?

\ --> elephant disturbances

increase aboveground
biomass by 26-60 t ha—1;
Extinction of forest

elephants would --> 7%
decrease in the
( & aboveground biomass in

central African rainforests.

Table SM2.3: Projected vulnerabilities and risks of ecosystems to biome shifts from spatial analyses of vegetation biogeography, in order by type of analysis, analysis area, and
rojected change in temperature. Data underlying Figure 2.9

Dynamic global vegetation models .

Hybrid, JeDi,
JULES,
LPJmL,
ORCHIDEE,
SGVM,
VISIT

World 1 RCP2.6 ~4 5-14 3 risk >0.3 ~50 (Warszawski et al., 2013)
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World 1.5 1.5°C ~5 2 16 P >0.80 ~150 LPJ (Scholze et al., 2006)
|change| _
World <2 Bl 7 8 12 2305 50 LPJ (Park et al., 2015)
World 2.4 Bl 10 13 3 °°“f(f§“°e 50 MCl1 (Gonzalez et al., 2010b)
World 2.5 +2-3°C ~5 2 16 P >0.80 ~150 LPJ (Scholze et al., 2006)
Hybrid, JeDi,
JULES;
. LPJniL, .
World 2 RCP4.5 13 5-14 3 risk >0.3 ~50 OREGHIDEE, (Warszawski et al., 2013)
SGVM,
VISIT
Hybrid, JeDi,
JULES,
: LPJmL, .
World 3 RCP6.0 28 5-14 3 risk >0.3 ~50 ORCHIDEE, (Warszawski et al., 2013)
SGVM,
VISIT
World 2535 AlB 10 8 18 |°>}‘§‘g§e| ~50 LPJ (Park et al., 2015)
0
World 3.4 AlB 13 13 3 °°nf(f§n°e 50 MCl1 (Gonzalez et al., 2010b)
World 3.5 3.5°C ~5 2 16 P0.80 ~150 LPJ (Scholze et al., 2006)
|change| _
World >3.5 A2 13 8 18 C30% 50 LPJ (Park et al., 2015)
World 4 A2 16 13 3 °°“f(f§“°e 50 MCl1 (Gonzalez et al., 2010b)
historical nfiden
World 3.14.7  climate and 12 13 3 €0 >0§ ce 50 MCl1 (Gonzalez et al., 2010b)
Bl, AlB, A2 '
World ~3.5-5.5 AlB ~10-30 5 8 rg‘g&‘;f ~280  CLM (Alo and Wang, 2008)
Hybrid, JeDi,
JULES,
. LPJmL, .
World 4 RCP8.5 35 5-14 3 risk >0.3 ~50 ORCHIDEE, (Warszawski et al., 2013)
SGVM,
VISIT
World 4.6 AIFI ~10 2 1 |°>h§‘80g/oe| ~250-375 HyLand (Sitch et al., 2008)
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World 4.6 AIFI ~20 2 1 |‘“‘>h§‘(‘)1§e| ~250-375 LPJ (Sitch et al., 2008)
(V]
World 4.6 AIFI ~10 2 1 |°>h§‘6‘§e| ~250 x 375 ORCHIDEE  (Sitch et al., 2008)
(V]
World 4.6 AIFI ~15 2 1 |‘“‘>h;‘(‘)‘§e| ~250 x 375 TRIFFID (Sitch et al., 2008)
(V]

. change in . .
Africa - AlB 26 5 1 one GCM 30 aDGVM (Scheiter and Higgins, 2009)
Asia -

Qinghai- change in - .
Tibotan 1.5 RCP4.5 55 19 1 one GCM 50 LPJ {Gao, 2016, Climate change and}
Plateau
Asia -
Qinghai- change in _ .
Tibotan 4.2 RCP8.5 70 19 1 oné GOM 50 LPJ {Gao, 2016, Climate change and}
Plateau
. oo +2.6°C after |change| )
Asia - Siberia 2 130y 5 2 - ~50% of arda 372sites  FAREAST (Shuman et al., 2011)
change'in ;
Europe 2.9-4.9 A2 ~30-40 13 2 one GCM 12x18 LPJ-GUESS  (Hickler et al., 2012)
South change in
America - 2 A2 ~30 2 1 & ~250x 375 HadCM3LC  (Jones et al., 2009)
Amazon one GCM
S change in
America - ~3 RCP4.5 ~50 15 1 g ~190 x 125 Inland (Lyra et al., 2016)
Amazon one GCM
South change in
America - ~6 RCPS.5 ~80 15 1 g ~190x 125 Inland (Lyra et al., 2016)
Amazon one GCM
Equilibrium models
World 1 RCP2.6 10 14 10 vulnerability <10 Yuhnerability 5o o1 2018a)
index >0.7 index
World 1.8 RCP4(5 12 14 10 Tzl ~10  Yulerability ;. 01, 2018a)
index >0.7 index
World 3.7 RCPS.5 15 14 10 vulnerability <10 Yuhnerability 5o o1 2018a)
index >0.7 index
World 2-4 AIB 37 5 10 a"ggﬁs‘)f ~100 EVE (Bergengren et al., 2011)
Affica - South AlB 50 7 1 change in ~20 aDGVM (Moncrieff et al., 2015)
one GCM
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weighted
Africa - West A2 ~50 5 17 average of ~10 GAM (Heubes et al., 2011)
GCMs
Minimum
. . +3°C, +15% change in distance
Asia - India 3 precipitation 25 7 1 one SCenario 1 supervised (Chakraborty et al., 2013)
classification
Asia - India RCP4.5 14 11 19 e ~10  RF (Rasquinha and Sankaran, 2016)
Asia - India RCPS.5 18 11 17 agrement ~10  RF (Rasquinha and Sankaran, 2016)
North Historical hanee in
America - climate and 50-57 33 2 Cn C%;EM ~1 Rehfeldt (Langdon and Lawler, 2015)
Northwest A2 ' @
North twoprojected SNAP-
America - 3.9-6.9 A2 50 25 5 changes in ~18 (Rowland et al., 2016)
. EWHALE

Yukon biome
South confidence CPTEC-
P —— A2 ~5-40 13 14 ~0.75 ~170 PVM2 (Lapola et al., 2009)
gfeﬂiial 2 +2°C <5 2 16 P >0.80 ~100 MWCD (Zelazowski et al., 2011)
gr"ezltzal 4 +4°C ~5 2 16 P>0.80 ~100  MWCD (Zelazowski et al., 2011)
Combined climate change and land use change
World 1 RCP2.6 22 9 risk >0.3 ~50 LPJmL (Ostberg et al., 2018)
World 1.8 RCP4.5 34 9 risk >0.3 ~50 LPJmL (Ostberg et al., 2018)
World 2.2 RCP6.0 41 9 risk >0.3 ~50 LPJmL (Ostberg et al., 2018)
World 3.7 RCP8.5 54 9 risk >0.3 ~50 LPJmL (Ostberg et al., 2018)

historical nfiden
World 3.1-47 climate and 48 13 o "0 Z ce 48 MCl1 (Eigenbrod et al., 2015)

B1, A1B, A2 )
Latin America 1 RCP2.6 §-14 9 5 a"ggﬁs‘)f ~50  LPJmL (Boit et al., 2016)
Latin America 3.7 RCP8.5 10-15 9 5 avér&gv‘;s"f ~50 LPJmL (Boit et al., 2016)
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Table SM2.4: Biome Change. Data underlying Figure Box 2.1.1

Full reference Year Continent Country Ecosystem  Start. End.Y
Change Year ear
Axelsson, C. R., & Hanan, N. P. (2018). Rates
of woody encroachment in African savannas 2018 Africa Ancola Sl;;l:ib(/:\(z)vo:rdl 2002 2016
reflect water constraints and fire disturbance. & ainV
Journal of biogeography, 45(6), 1209-1218. &
Axelsson, C. R., & Hanan, N. P. (2018). Rates
of woody encroachment in African savannas 2018 Africa Angola ngllébé\(z)vo:rdl 2000 2016
reflect water constraints and fire disturbance. & ainv
Journal of biogeography, 45(6), 1209-1218. &
Axelsson, C. R., & Hanan, N. P. (2018). Rates
of woody encroachment in African savannas Shrub/wood
. . 2018 Africa Botswana and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
Axelsson, C. R., & Hanan, N. P. (2018). Rates
of woody encroachment in African savannas Shb voodg
. . 2018 Africa Botswana and cover 2002 2016
reflect water constraints and fire disturbance. aif)
Journal of biogeography, 45(6), 1209-1218. &
ot woods eneroschment i Aftcan savames St wood!
Y . . 2018 Africa Botswana and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
Axelsson, C. R., & Hanan, N. P. (2018). Rates
of woody encroachment in African savannas Pimsead!
. . 2018 Africa Botswana and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
Axelsson, C. R., & Hanan, N. P. (2018). Rates
of woody encroachment in African savannas Shrub/woodl
Y . . 2018 Africa Chad and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
Axelsson, C. R., & Hanan, N.P. (2018). Rates
of woody encroachment in African savannas Pimsead!
. . 2018 Africa Chad and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218: &
Axelsson, C. R.,.&Hanan,N. P. (2018). Rates
of woody encroachment in African savannas 2018 Africa Ethiopa Sl;;l:ib(/:\(z)vo:rdl 2000 2016
reflect waterconstraints and fire disturbance. P ainV
Journal of biogeography, 45(6), 1209-1218. &
Axelsson, C.R., & Hanan, N. P. (2018). Rates
of woody encroachment in African savannas 2018 Africa Ethiopa Sggébé‘g‘?:rdl 2000 2016
reflect water constraints and fire disturbance. P ain
Journal of biogeography; 45(6), 1209-1218. &
Axelsson, C. R., & Hanan, N. P. (2018). Rates
of woody encroachment in African savannas Shrub/woodl
Y . . 2018 Africa Ghana and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
Axelsson, C. R., & Hanan, N. P. (2018). Rates
of woody encroachment in African savannas 2018 Africa Kenva Sggébé‘g‘?:rdl 2000 2016
reflect water constraints and fire disturbance. y ain
Journal of biogeography, 45(6), 1209-1218. &
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S C %t o1 0018 R Srivond

Woocy ) | Sav 2018  Africa  Mozambique  and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
el CR S G

Y . . 2018 Africa Mozambique  and cover 2002 2016

reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
e C % et o1 0018 R Srivond

Woocy ) | Sav 2018 Africa Namibia and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
el CR S G

woocy .  Sav 2018  Africa Namibia and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
o oty coctenshomt i Al Stvannan Shrub/wood!

Woocy ) | Sav 2018 Africa Namibia and cover . 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
o macds cctoacien . Afioam st Shrl/sfood!
reflect water constraints and fire disturbance. 20 iy Nl i ;icl)lver Az 20
Journal of biogeography, 45(6), 1209-1218. &
o oty coctenshomt i Al Stvannan Shrub/wood!
reflect water constraints and fire disturbance. 2088 Africa Nigeria and :icl)lver UL
Journal of biogeography, 45(6), 1209-1218. &
ot macds cactomcient 1 Aftorm g Shrubiwvood
reflect water constraints and fire disturbance. 20 Aljca Senceal i ;icl)lver Az 20
Journal of biogeography, 45(6),4209-1218. &
ot woody encrenchment A Dan SoranagA Shrub/wood!

Woocy ) | Sav 2018 Africa Somalia and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography; 45(6), 1209-1218. &
By T

Woody S ONGIY LK 2018  Africa Somalia and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of'biogeography,45(6), 1209-1218. &
oty cncrenchaaen O Moo szvanmmt Shrub/wood!

Woory . | Sav 2018 Africa Somalia and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
o macds ctoachmont 1 Afoam st Shrub/svood!

woocy .  Sav 2018  Africa  South Africa  and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
o oty coctenshomt i Al Stvannan Shrub/wood!

Woocy ) | Sav 2018  Africa  South Africa  andcover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
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T G O 0, T
. . 2018 Africa Sudan and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
Ascn CR_ & P 010
Y . . 2018 Africa Sudan and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
ST G O R E0, T
. . 2018 Africa Sudan and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
e C % et o1 0018 R Srivond
. . 2018 Africa Tanzania and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
ST G O R E0, T
. . 2018 Africa Tanzania and cover 2002 2016
reflect water constraints and fire disturbance. X
Journal of biogeography, 45(6), 1209-1218. &
of sroody entxtachiment i Afiden sevamms. Shrub/wood!
. . 2018 Africa Tanzania and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6), 1209-1218. &
°Afx$s‘s’(‘);; QCiafﬁrIn{:gfﬂl iﬁiggi‘iz‘ﬁgﬂ 2018 . “Africa Uganda Sﬂﬁ?ﬁ?ﬁ’é’fl 2002 2016
reflect water constraints and fire disturbance. g ain
Journal of biogeography, 45(6), 1209-1218. &
o woody snctechant . Afcan s Shrub/woodl
. . 2018 Africa Zambia and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography, 45(6),1209-1218. &
ot waedy cncronchmont Kaoon Sermag Shrubiwvood
. . 2018 Africa Zimbabwe and cover 2002 2016
reflect water constraints and fire disturbance. ain
Journal of biogeography; 45(6), 1209-1218. &
Bass'ett, T.J, & Zueh, K./B. (2000). , Shrub/woodl
Environmental discourses and the Ivorian 2000 Africa Ivorv coast and cover 1956 1989
Savanna. Annals of the Association of Y ain
American Geographers, 90(1), 67-95. &
Bass'ett, T.J5& Zueh, K. B:(2000). ‘ Shrub/woodl
Environmental discourses and:the Ivorian 2000 Africa Tvory coast and cover 1956 1993
Savanna. Annals of the Association of Y ain
American Geographers, 90(1), 67-95. &
otk vegeati o n seiari] somannm, with Shrub/wood
yveg . i 2007 Africa South Africa and cover 1957 1993
a focus on bush encroachment. African Journal ain
of Range and Forage Science, 24(3), 131-140. &
Eckhardt, H. C., Wilgen, B. W., & Biggs, H. C.
(2000). Trends in woody vegetation cover in Shrub/woodl
the Kruger National Park, South Africa, 2000 Africa South Africa  and cover 1940 1998
between 1940 and 1998. African Journal of gain
Ecology, 38(2), 108-115.
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Gautier, L. (1989). Contact forét-savane en
Cote d'Ivoire centrale: évolution de la surface

Forest cover

forestiére de la réserve de Lamto (sud du V- 1989 Africa Ivory coast . 1963 1988
Baoulé). Bulletin de la Société Botanique de gamn
France, 136(3), 85-92.
Gautier, L. (1989). Contact forét-savane en
Cote d'Ivoire centrale: évolution de la surface Shrub/woodl
forestiére de la réserve de Lamto (sud du V- 1989 Africa Ivory coast and cover 1963 1988
Baoulé). Bulletin de la Société Botanique de gain
France, 136(3), 85-92.
Goetze, D., Horsch, B., & Porembski, S.
(2006). Dynamics of forest-savanna mosaics in Forest cover
north-eastern Ivory Coast from 1954 to 2006 Africa Guinea . 1954 1996
2002. Journal of Biogeography, 33(4), 653- gamn
664.
Gordijn, P. J., Rice, E., & Ward, D. (2012).
The effects of fire on woody plant
encroachment are exacerbaz;g by succession of . . limlsy el
o .. 2012 Africa South Africa  and cover 1943 «..2007
trees of decreased palatability. Perspectives in .
Plant Ecology, Evolution and gam
Systematics, 14(6), 411-422.
Grellier, S., Kemp, J., Janeau, J. L., Florsch,
N., Ward, D., Barot, S., ... & Valentin, C.
(2012). The indirect impact of encroaching . . Yot
) . . 2012 Africa South Africa and cover 1945 2009
trees on gully extension: A 64year study in a :
sub-humid grassland of South gam
Africa. Catena, 98, 110-119.
Guillet, B., Achoundong, G., Happi, J. Y.,
Beyala, V. K. K., Bonvallot, J., Riera, B., ... &
Schwartz, D. (2001). Agreement between
floristic and soil organic carbon isotope . Forest cover
(13C/12C, 14C) indicators of forest invasion of 3 AT I gain Coz 1B2E
savannas during the last century in
Cameroon. Journal of Tropical
Ecology, 17(06), 809-832.
Hottman, M. T., & O'Connor, T. G. (1999).
Woenen/Miden ren, KnaZatu Netls |  Shrb/wood
. ? v 1999 Africa South Africa and cover 1955 1998
evidence from photo-panoramas.African .
Journal of Range and Forage Science, 16(2-3), gam
71-88.
Hudak, A. T., &Wessman; C. A. (2001).
T ol g e Shivond
. 2001 Africa South Africa  and cover 1955 1996
Reserve, South Africa, 1955- .
1996:International Journal of Remote gam
Sensing,22(14), 2731-2740.
Kakembo, V. (2001). Trends in vegetation
degradation in relation to/land tenure, rainfall, Shrub/woodl
and population changes in Peddie district, 2001 Africa South Africa  and cover 1938 1988
Eastern Cape, South Africa.Environmental gain
Management, 28(1), 39-46.
I(Ef)‘rlllt(:;tEie%é,nﬁceio\%zgse’tiiog.d(}%t(l);ril)i.cs in an Pimbead!
. 2011 Africa South Africa  and cover 1942 2001
African savanna. Landscape ecology, 26(4), .
515-528. gamn
I(Ef)rlltzl;}-scielgé’nflceﬁf \%S;i’tii.oi.d(;r?;r}q)i;:s in an Shrub/woodl
. 2011 Africa South Africa and cover 1942 2001
African savanna. Landscape ecology, 26(4), .
515-528. gam
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Mapedza, E., Wright, J., & Fawcett, R. (2003).

An investigation of land cover change in

Forest cover

Mafungautsi Forest, Zimbabwe, using GIS and 2003 Africa Zimbabwe . 1976 1996
participatory mapping.Applied gam
Geography, 23(1), 1-21.
Marston, C. G., Aplin, P., Wilkinson, D. M.,
Field, R., & O’Regan, H. J. (2017). Scrubbing Shrub/woodl
up: multi-scale investigation of woody 2017 Africa South Africa  and cover 2001 2014
encroachment in a southern African savannah. gain
Remote Sensing, 9(5), 419.
Mitchard, E. T. A., Saatchi, S. S., Gerard, F. F.,
Lewis, S. L., & Meir, P. (2009). Measuring Forest cover
woody encroachment along a forest-savanna 2009 Africa Cameroon . 1986 2006
boundary in Central Africa. Earth gam
Interactions, 13(8), 1-29.
Mosugelo, D. K., Moe, S. R., Ringrose, S., &
Nellemann, C. (2002). Vegetation changes Shrub/woodl
during a 36-year period in northern Chobe 2002 Africa Botswana and cover 1962 1998
National Park, Botswana.African Journal of gain
Ecology, 40(3), 232-240.
O’Connor, T. G. (2001). Effect of small
catchment dams on downstream vegetation of a Shrub/woodl
seasonal river in semi-arid African 2001 Africa South Africa  _and cover 1955 1987
savanna. Journal of Applied Ecology, 38(6), gain
1314-1325.
O'Connor, T. G., & Crow, V. R. T. (1999).
Rate and pattern of bush encroachment in Shrub/woodl
Eastern Cape savanna and grassland. African 1999 Africa South Africa» and cover 1938 1986
Journal of Range and Forage Science, 16(1), gain
26-31.
O'connor, T. G., Haines, L. M., & Snyman, H.
A. (2001). Influence of precipitation and Shrub/woodl
species composition on phytomass of a semi- 2001 Africa South Africa  and cover 1955 1987
arid African grassland. Journal of Ecology, gain
89(5), 850-860.
Poulsen, Z.C. and Hoffman, M.T.;2015.
Changes in the distribution of indigenous forest Forest cover
in Table Mountain National-Park during the 2015 Africa South Africa : 1944 2008
20th Century. South African Journal of Botany: gam
101, 49-56.
Prlnsf H. H, & van der Jeugd, H. P. (1993). Shrub/woodl
Herbivore population crashes and woodland . .
structure in East Africa. Journal of Ecology, 28 I sy i cover ks 1R
305-314. gamn
Prins? H.H., & van der Jeugd, H. P. (1993). Shrub/woodl
Herbivore population crashes-and-woodland . .
structure in:East Africa. Journal of Ecology, 1993 Affica Tanzania and cover 1985 1991
305-314. gamn
Prinsf H. H., & van der Jeugd, H. P. (1993). Shrub/woodl
Herbivore population crashes and woodland . .
. . 1993 Africa Tanzania and cover 1985 1991
structure in East Africa. Journal of Ecology, .
305-314. gamn
Prins? H. H., & van der Jeugd, H. P. (1993). Shrub/woodl
Herbivore population crashes and woodland 1993 Africa Tanzania and cover 1985 1991
structure in East Africa. Journal of Ecology, .
305-314. gamn
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Table SM2.5: Key risks to terrestrial and freshwater ecosystems from climate change. Details of temperature
levels for risk transitions for the burning embers diagram Figure 2.11. see 2.5.4

IPCC Risk Levels
Level Undetectable (White) Moderate (Yellow) High (Red) Very High (Purple)
Definition No associated impacts | Associated impacts are both |Severe and Very high risk is
are detectable and detectable and attributable to | widespread impacts | indicated by all
climate change with at least | that are judged specific criteria for

Do Not Cite, Quote or Distribute

SM2-114

Total pages: 136



(O I N VS S

O 0 9

FINAL DRAFT

Chapter 2 Supplementary Material

IPCC WGII Sixth Assessment Report

attributable to climate
change.

medium confidence, also
accounting for the other
specific criteria for key risks.

to be high on one or
more criteria for
assessing key risks

key risks, including
limited ability to
adapt.

Key Risk — Biodiversity Risk due to climate change. Loss of species erodes ecosystem integrity,
functioning, provisioning of services (including climate regulation, food and water) and resilience to extreme

events and future climate change.

Risk Global mean surface Confidence (Description
Transition temperature change above
pre-industrial period (°C)
Undetectable | minimum 0.6°C High
to Moderate
median 0.08°C Observations of the first species to lose >50%.of
range due to climate change, rendering.them in the
IUCN category of "endangered". Many local
population extinctions observed in the most sensitive
species, global extinction of species attributable to
climate change first start being detected.
maximum 1.0°C
Moderate to minimum 0.875°C Medium
High
median 1.58°C > 10% of species are projected to lose >50% of their
range. Increasing number of taxa that show high
extinction risk (>10% of the species in the taxa),
weighted by role the species in the taxa play in
performing services to ecosystems and humans, e.g.
pollinators, detritivores. This is 1000x natural
background rates of species' extinctions
maximum 2.025°C
High to Very | minimum 1.6°C Medium
High
median 2.07¢C > 20% of species are projected to lose >50% of their
range. Increasing number of taxa that now show
greater than 20% of the species in the taxa at high risk
of extinction.
maximum 2.55°C Above this warming level, risk of extinction rises
non-linearly. In the worst-case scenario (10"
percentile of the models at 4.5°C), many taxa show
>50% of the species in that taxa at high risk of
extinction.

Key Risk - Wildfire considerably degrades ecosystems, substantially increases carbon emissions, and

increases illnesses and death of people

Risk Global mean surface Confidence |Description
Transition temperature change above
pre-industrial period (°C)
Undetectable | minimum 0.6°C High Field research and statistical analyses have detected
to Moderate and attributed increases in the area burned by wildfire
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Risk
Transition

Global mean surface
temperature change above
pre-industrial period (°C)

Confidence

Description

median

0.75°C

maximum

0.9°C

above natural levels (see references in description for
maximum); Global mean surface temperature change
of 0.6°C in the 1990s, in the middle of the period of
observed changes (IPCC 2018 SR15)

Median between the minimum and maximum values.

Field research and statistical analyses have detected
and attributed increases in the area burned by wildfire
above natural levels in western North America from
1984 to 2017 (Chapter 2.4.4.2.1, Abatzoglouand
Williams 2016, Partain et al. 2016, Kirchmeier-Y oung
et al. 2019, Mansuy et al. 2019); Increases in burned
area detected in the;tAmazon, Australia, and Siberia
from a combination.of climate and-non-climate factors
(Chapter 2:4:4.2.3, Ponomarev et al. 2016, van Marle
et al. 2017, da Silva et al. 2018, Lindenmayer and
Taylor2020); Wildfires in the Arctic are contributing
topermafrost thaw and soil carbon release (Brown et
al..2015, Natali et.al. 2019, Walker et al. 2019); These
changes have already occurred at a temperature
increase of 1.1+ 0:1°C between the periods 1850-1900
and 2006-2015 (IPCC 2018 SR15).

Moderate to
High

minimum

1.5°C

median

2.0°C

maximum

2.5°C

Medium

Projected increases in burned area, fire frequency, or
fire weather across extensive areas globally, lower
estimate (Gonzalez et al. 2010, Moritz et al. 2012,
Flannigan et al. 2013, Burton et al. 2018, Abatzoglou
et al. 2019)

Projected increases in burned area or fire frequency
above natural levels on all continents due to
anthropogenic climate change (Gonzalez et al. 2010,
Moritz et al. 2012); emergence of anthropogenic
signal from natural variation in fire weather for a third
of global area (Flannigan et al. 2013, Knorr et al.
2016, Burton et al. 2018, Abatzoglou et al. 2019);
increase of burned area in areas where fire had been
rare or absent, particularly Arctic tundra (Lehtonen et
al. 2016, Young et al. 2017) (Chapter 2.5.5.2)

Projected increases in burned area, fire frequency, or
fire weather across extensive areas globally, upper
estimate (Gonzalez et al. 2010, Moritz et al. 2012,
Flannigan et al. 2013, Burton et al. 2018, Abatzoglou
et al. 2019)

High to Very
High

minimum

3.0°C

median

4.0°C

Medium

Wildfire-induced conversion of up to half the area of
Amazon rainforest to grassland, lower threshold
estimates (Lenton et al. 2008, Salazar and Nobre 2010,
Lyra et al. 2016)

Wildfire-induced conversion of up to half the area of
Amazon rainforest to grassland (Oyama and Nobre
2003, Sampaio et al. 2007, Lenton et al. 2008,
Nepstad et al. 2008, Malhi et al. 2009, Salazar and
Nobre 2010, Settele et al. 2014, Lyra et al. 2016,
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Risk
Transition

Global mean surface
temperature change above
pre-industrial period (°C)

Confidence

Description

maximum 4.5°C

Zemp et al. 2017, Brando et al. 2020); up to doubling
of burned area in areas where fire had been rare or
absent, particularly the Amazon (Le Page et al. 2017,
Brando et al. 2020) and Arctic tundra (Lehtonen et al.
2016, Veraverbeke et al. 2017) substantially
increasing global carbon emissions (Chapter 2.4.4.4,
2.5.5.2)

Wildfire-induced conversion of up to half the area of
Amazon rainforest to grassland, higher threshold
estimate (Lenton et al. 2008, Salazar and Nobre 2010,
Lyra et al. 2016)

Key Risk - Anthropogenic climate change cause widespread death of trees, damage ecosystems, and

reduce provision of water and other services to people

Risk
Transition

Global mean surface
temperature change
above pre-industrial
period (°C)

Confidence

Description

Undetectable
to Moderate

minimum 0.3°C

median 0.6°C

maximum 0.9°C

High

Field research and statistical analyses have detected
and attributed.to anthropogenic climate change
increases in-tree mortality in temperate and tropical
ecosystems:in the period 1945-2007 (see references in
description for maximum); Global mean surface
temperature change of 0.3°C in the 1970s, in the middle
of the period of observed changes (IPCC 2018 SR15).

Median between the minimum and maximum values.

Field research and statistical analyses have detected
and attributed to anthropogenic climate change
increases in tree mortality in temperate and tropical
ecosystems in the period 1945-2007 (van Mantgem et
al. 2009, Gonzalez et al. 2012, le Polain de Waroux and
Lambin 2012). Drought has induced these cases of tree
mortality, with pest infestations and wildfire also
causing much of the tree mortality in temperate forests.
These changes have already occurred at a temperature
increase of 0.9 £ 0.1°C between the periods 1850-1900
and 2006-2015 (IPCC 2018 SR15). (Sections 2.4.4.3;
2.5.5.3). Numerous other cases of drought-induced tree
mortality have been detected around the world (Allen
etal. 2010, Allen et al. 2015, Bennett et al. 2015,
Martinez-Vilalta et al. 2016, Greenwood et al. 2017,
Hartmann et al. 2018), consistent with but not formally
attributed to anthropogenic climate change.

Moderate to
High

minimum 1°C

median 1.5°C

Medium

Approximate lower bound of projections of more
extensive tree mortality (see references in description
for median)

Models project increasingly extensive drought-induced
tree mortality at continued moderate temperature
increases. In western North America, one-tenth of
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Risk
Transition

Global mean surface
temperature change
above pre-industrial
period (°C)

Confidence

Description

maximum 2°C

forest area is highly vulnerable to drought-induced
mortality under RCP8.5 by 2050 (Buotte et al. 2019)
and increased evapotranspiration in conifer forests
increases the fraction of the area at risk of tree
mortality 15-20% per degree Celsius {Goulden et al.
2019). In boreal forest, fire-induced tree mortality from
climate change under RCP8.5 could reduce the extent
of spruce forest (Picea sp.) 8-44% by 2100 (Pastick et
al. 2017). (Section 2.5.5.3).

Approximate upper bound of projections of more
extensive tree mortality (see references in description
for median).

High to Very
High

minimum 2.5°C

median 3.5°C

maximum 4.5°C

Medium

Approximate lower bound of projections of tree
mortality of half the area of forest biomes (see
references in description for.median)

Models project risks of mortality.of up to half of forest
area in‘different biomes. Climate change under RCP8.5
could cause drought-induced tree mortality and the loss
of half of Northern. Hemisphere conifer forest area by
2100 (McDeowell et al. 2016). In southeast France, the
most extreme summer temperatures could increase
post-fire mortality of many broadleaf and conifer
species 50% (Dupire et al. 2019).

In . Amazon rainforests, a lack of buffering capacity for
plant. moisture during drought increases the risk of tree
mortality and, combined with increased fire from
climate change and deforestation, the possibility of a
tipping point of massive forest dieback and a biome
shift to grassland (Oyama and Nobre 2003, Sampaio et
al. 2007, Nepstad et al. 2008, Malhi et al. 2009, Settele
et al. 2014, Lyra et al. 2016, Zemp et al. 2017, Brando
et al. 2020). In Guinean tropical deciduous forest in
Africa, climate change under RCP8.5 could increase
mortality 700% by 2100 or 400% under lower
emissions (RCP4.5) (Claeys et al. 2019).

Approximate upper bound of projections of tree
mortality of half the area of forest biomes (see
references in description for median)

Key Risk - Ecosystem carbon loss from tipping points of loss of tropical forest and Arctic permafrost

Risk Global mean surface Confidence (Description
Transition temperature change above
pre-industrial levels °C

Undetectable | minimum 0.6°C Medium Primary tropical forest comprised a net source of

to Moderate carbon to the atmosphere, 2001-2019 (emissions 0.6
Gty', net 0.1 Gty") (Harris et al. 2021).
Anthropogenic climate change has thawed Arctic
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Risk
Transition

Global mean surface
temperature change above
pre-industrial levels °C

Confidence

Description

median

0.75°C

maximum

0.9°C

permafrost (Guo et al. 2020), carbon emissions 1.7 +
0.8 Gty!, 2003-2017 (Natali et al. 2019). (See more
details in description for maximum); Global mean
surface temperature change of 0.6°C in 2000 (IPCC
2018 SR15)

Median between the minimum and maximum values.

Primary tropical forest comprised a net source of
carbon to the atmosphere, 2001-2019 (emissions 0.6
Gty', net 0.1 Gty") (Harris et al. 2021). Amazon as a
whole was a net carbon emitter, 2003-2008 (Exbrayat
et al. 2015, Yang et al. 2018), from deforestation for
agriculture and livestock (De Sy et al. 2015,.2019).
Amazon deforestation emitted 0.17.+ 0.05 Gt y!
carbon, 2001=2015 (Silva Junior et al. 2020); fires
emitted 0.12 + 0,14 Gt y'! carbon; 2003-2015 (Aragao
et al. 2018). Amazon carbon loss from deforestation
and'degradation 0.5 Gt y™', 20102019 (Qin et al.
2021). Intact old-growth Amazon rainforest may have
become'a net carbon source, 2010-2019 {Qin et al.
2021). Anthropogenic climate change has thawed
)Arctic permafrost (Guo et al. 2020), carbon emissions
1.7 £ 0.8:Gt.y!;, 2003-2017 (Natali et al. 2019). These
changes have already occurred at a temperature
increase of 0.9°C between the periods 1850-1900 and
2006-2015 (IPCC 2018 SR15).

Moderate to
High

minimum

1:5°C

median

2°C

maximum

3°C

Medium

Limiting the global temperature increase to 1.5°C,
compared to 2°C could reduce projected permafrost
COz losses by 2100 by 24.2 Gt C (median) (Comyn-
Platt et al. 2018).

Mean temperature increase of 2°C could reduce
permafrost area ~15% by 2100 (Comyn-Platt et al.
2018) and emit 20-58 Gt (von Deimling et al. 2015),
46-51 Gt (Comyn-Platt et al. 2018), 27-100 Gt
(Schaefer et al. 2014) carbon by 2100. Globally, most
soil carbon emissions would come from Arctic tundra,
with climate change under RCP8.5 causing a soil
carbon loss of 55 £ 50 Gt carbon by 2050, increasing
atmospheric CO2 by 25 ppm (Crowther et al. 2016).
Wildfire-induced conversion of Amazon rainforest
area to grassland (Lenton et al. 2008, Salazar and
Nobre 2010, Lyra et al. 2016, Nobre et al. 2016,
Boulton et al. 2017, Zemp et al. 2017, Marengo et al.
2018) of approximately 5% at 2°C increase (Lyra et al.
2016), much of Amazon evergreen to deciduous forest
2-3°C (Salazar and Nobre 2010).

Much of Amazon evergreen to deciduous forest 2-3°C
(Salazar and Nobre 2010).

High to Very
High

minimum

3°C

Low

Under RCP8.5, models project potential permafrost
carbon losses by 2100 of 28113 Gt (Koven et al.
2015), 11-143 Gt (Gasser et al. 2018), 42-141 Gt (von
Deimling et al. 2015), 37-170 Gt (Schuur et al. 2015),
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Risk
Transition

Global mean surface
temperature change above
pre-industrial levels °C

Confidence

Description

median

4°C

maximum

5°C

or 35-205 Gt (Schaefer et al. 2014) carbon, potentially
increasing global average temperatures 0.29 = 0.21°C
(Schaefer et al. 2014). Lower bound of temperature
projection of RCP8.5 (IPCC 2013 AR5 WG ).

Under RCP8.5, models project potential permafrost
carbon losses by 2100 of 28113 Gt (Koven et al.
2015), 11-143 Gt (Gasser et al. 2018), 42-141 Gt (von
Deimling et al. 2015), 37-170 Gt (Schuur et al. 2015),
or 35-205 Gt (Schaefer et al. 2014) carbon, potentially
increasing global average temperatures 0.29 = 0.21°C
(Schaefer et al. 2014). Wildfire-induced conyersion of
up to half the area of Amazon rainforest to grassland
(Oyama and Nobre 2003, Sampaio et al: 2007,
Nepstad et al. 2008; Malhi et al. 2009, Settele et al.
2014, Lyra et al.2016; Zemp et al. 2017, Brando et al.
2020). This.could.occur at a 4-5°C temperature
increase above the pre-industrial period (Salazar and
Nobre2010). The potentially abrupt nature of this and
its fundamental impact on global biogeochemistry
mark-the melting of permafrost as a tipping point
(Schaefer et al. 2014).

Amazon forest dieback could occur at a 4-5°C
temperature increase above the pre-industrial period
(Salazar and Nobre 2010).

Key Risk — Ecosystem structure change

Risk
Transition

Global mean surface
temperature change above
pre-industrial period (°C)

Confidence

Description

Undetectable
to Moderate

minimum

0.5°C

median

1.5°C

maximum

3.0°C

High

Landscape and larger scale shifts in ecosystem
structure and function. Changes attributable to climate
change or interactions with changing disturbance
regime, climate and rising CO: already observed at
0.5°C increase, with shifts initially detected in boreal
forests, tundra, and tropical grasslands

Moderate to
High

minimum

2.0°C

median

3.2°C

maximum

4.5°C

Medium

Landscape and larger scale shifts in ecosystem
structure and function. Global observations that agree
with future projections with at least 10% of the area of
key ecosystems affected, from Box 2.1. Medium
confidence because existing observations and
projections are not available for all biomes.
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Risk Global mean surface Confidence |Description
Transition temperature change above
pre-industrial period (°C)
High to Very | minimum 3.0°C Medium
High
median 4.5°C Increasing risk of landscape and larger scale shifts in
ecosystem structure and function. Most information
derived for tropical forest, boreal forest, savannas, and
tundra. More than 50% of several ecosystems may
experience shifts in structure and function.
maximum 5.0°C

Table SM2.6: References used to create the Cross-Chapter Box ILLNESS Table 1, in Chapter 2, by region

Cholera

Dengue

Malaria

Global

Africa

Asia

Australasia

Central
America

(Escobar et al., 2015; Nichols et
al., 2018; Watts et al., 2019)

(Mendelsohn and Dawson,
2008; Paz, 2009; Nkoko et al.,
2011; Reyburn et al., 2011;
Magny et al., 2012; Jutla et al.,
2013a; Rebaudet et al., 2013;
Jutla et al., 2015; Leckebusch
and Abdussalam, 2015; Sigudu
et al., 2015; Moore et al., 2017;
Watts et al., 2019)

(Sack et al., 2003; Agtini etal.,
2005; Hugq et al., 2005; Koelle
et al., 2005; Emchret al:, 2008;
Magny et al., 2008; Emchet al.,
2010; Hashizume et al., 2010;
Goel and Jiang, 2011; Jutla et
al., 2011; Akanda et al., 2013;
Ali etal; 2013; Jutla et al.,
2013a; Jutla et al., 2013b; Yue
etal., 2014; Xu et al.,2016;
Roobthaisong et al., 2017;
Watts et al.;:2019; Campbell et
al., 2020)

(Watts et al., 2019)

(Watts et al., 2019)

(Campbell et al., 2015; Guzman
and Harris, 2015)

(Caldwell et al., 2021)

(Nagaoret al,, 2003; Chakravarti
and Kumaria, 2005; Kanchana
etal., 2005; Thammapalo et al.,
20053 Bangs et al., 2006; Arcari
et al., 2007; Wu et al., 2007,
Dabhal, 2008; Halide and Ridd,
2008; Nagao et al., 2008; Hsieh
and Chen, 2009; Lu et al., 2009;
Wau et al., 2009; Hii et al., 2012;
Dhimal et al., 2014a; Dhimal et
al., 2014b; Dhimal et al., 2015a;
Dhimal et al., 2015b; Xiang et
al., 2017; Acharya et al., 2018;
Lietal., 2019; Tuladhar et al.,
2019; Adhikari and Subedi,
2020; Gyawali et al., 2020; Liu
et al., 2020; Metelmann et al.,
2021; Riad et al., 2021; Seah et
al., 2021)

(Biet al.,, 2001; Kearney et al.,
2009; Hu et al., 2010; Akter et
al., 2020)

(Herrera-basto et al., 1992;
Lozano-Fuentes et al., 2012;
Colon-Gonzalez et al., 2013;
Hernandez-Avila et al., 2013;
Stewart-Ibarra and Lowe, 2013;
Stewart-Ibarra et al., 2013;
Dantés et al., 2014; Lowe et al.,

(Gething et al., 2010; Phillips et
al., 2017;Organization, 2020)

(Hay et al., 2002; Pascual et al.,
20063 Alonso et al., 2011;
Omumbo et al., 2011; Chaves et
al., 2012; Siraj et al., 2014;
Bhatt et al., 2015; Boyce et al.,
2016; Shah et al., 2019;
Abiodun et al., 2020; Chirombo
et al., 2020; Makinde and
Abiodun, 2020; Matthew, 2020;
Siya et al., 2020; Kassam et al.,
2021)

(Dhimal et al., 2014a; Dhimal et
al., 2014c; Dhimal et al., 2015a;
Emeto et al., 2020; Kumar et al.,
2020; Wangdi et al., 2020;
Faradiba, 2021; Sri Rejeki et al.,
2021)

(Pinault and Hunter, 2011;
Manguin and Dev, 2018;
Ferreira and Castro, 2019;
Fletcher et al., 2020)
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2017; Watts et al., 2020;
Caldwell et al., 2021)

South (Gil et al., 2004; Martinez- (Estallo et al., 2020; Robert et (Siraj et al., 2014; Manguin and
America Urtaza et al., 2008; Ryan et al., al., 2020) Dev, 2018; Ferreira and Castro,
2018; Watts et al., 2019) 2019; Laneri et al., 2019;
Douine et al., 2020; Rozo, 2020;
Grillet et al., 2021)
Europe (Vezzulli et al., 2012; Vezzulli (Bouzid et al., 2014; Robert et (Fischer et al., 2020; Boualam et
et al., 2016; Watts et al., 2019) al., 2020) al., 2021)
North (Louis Valérie et al., 2003; (Afiez and Rios, 2013;
America Vezzulli et al., 2016; Watts et Fredericks and Fernandez-
al., 2019) Sesma, 2014; Butterworth et al.,

2017; Lowe et al., 2018; Robert

etal.,, 2019; Robert et al., 2020;

Watts et al., 2020)
Small (Jutla et al., 2013b; Alam et al.,  (Morin et al., 2015) (Ferreira and Castro, 2019)
Islands 2014; Watts et al., 2019)
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