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Table SM2.1: Attribution and assessment of uncertainties associated with key statements on observed impacts. Many human activities, in addition to greenhouse gas 1 
emissions, are affecing wild species and biome transition zones and can confound attribution of an observed change to climate change in high human impact areas.  The principal 2 
non-climatic drivers are LULCC, mainly habitat destruction when natural lands are converted for agricultural use or development. The best attribution studies for observed changes 3 
in wild species and ecosystems, then, use data from areas with very little (or no) LULCC so that this effect is minimized. Lines of evidence that support confidence statements for 4 
attribution of a particular observed change to local or regional climate change (including increased atmospheric CO2). Paleo data provides documentation of responses of species and 5 
biomes during past large climatic changes (e.g. across glacial/interglacial cycles of the Pleistocene).  Long term observations are at least 20 years of data, ideally >50 years, such that 6 
long-term trends in biological changes can be teased apart from natural variability of both climate and of biological responses to climate variability. Experiments range from small 7 
scale laboratory studies in controlled environmental chambers, to larger mesocosm studies of manipulated communities in greenhouses or artificial ponds to large-scale 8 
manipulations of temperature, precipitation, CO2 and other non-climatic drivers (e.g. nitrogen additions) in outdoor manipulated (planted/placed) communities and in completely 9 
natural communities to which manipulations of different drivers have been applied. Fingerprints of climate change response are a set of responses that are uniquely expected from 10 
climate change and not from other potential confounded drivers (e.g. LULCC); these are fully described in  (Parmesan and Yohe, 2003)).  One type of fingerprint is temporal sign-11 
switching, in which, for example, a species' northern boundary in Europe expanded northward during the two twentieth-century warming periods (1930–45 and 1975–99), and 12 
southward during the intervening cooling period (1950–70) - a pattern that is expected from that species' responded to decadal temperature trends but not expected from documented 13 
habitat loss. Another type of temporal sign switching is found when onset of spring (leaf unfolding, flowering, breeding) follows decadal spring temperature trends, occurring earlier 14 
in warm years, later in cool years, and above and beyond yearly variability, tracking a long-term trend in spring temperatures. Sign-switching among species in a single location can 15 
also provide a fingerprint of climate change impacts when the site is at a climate zone boundary.  For example, in Monteray Bay, California, where temperate and boreal species 16 
overlap, southern species were increasing in abundances and northern speces were declining over a 70 year period. Modeling approaches comprise a wide diversity of both process-17 
based and distribution-based models. They can be back-cast and compared with observed trends - when modeled changes based upon climate as the primary driver agree with 18 
observed changes, climate change attribution is supported. Statistical analyses include those from WGI that provide attribution of regional and global climate change to greenhouse 19 
gas forcing. When biological datasets have very large sample sizes, are gathered over very long time periods and/or over large areas, in concert with complementary datasets on 20 
LULCC, meteorological data, or other drivers of interest collected over the same time periods and spatial area, statistical analyses can tease apart effects of differnt drivers and their 21 
interactions, thus providing a quantitative assessment of the role of climate change. 22 

Key statement 
Geographic 
region and 

Period 

Non-climatic 
Drivers: 

Land Use and 
Land Cover 

Change 
(LULCC) or 

Other 
Changes 

Lines of evidence for climate change (including increased atmospheric CO2 as 1° driver of observed 
change) 

Levels of 
evidence, 

agreement 
and 

confidence 
for 

attribution 

References 

Paleo data and 
Long-term 

Observations 
Experiments 

Fingerprint of climate 
change response Models 

Statistical 
analyses 

  

About half of all 
species where 
land use change 
has been a 
minimal driver 
and with long-
term (>20 years) 
of records have 
shifted their 
ranges, with 80-
90% of 

Global - 
Varies by 
study.  Range 
typically 20 - 
250 years, but 
longest 
dataset is 800 
years. 

Minimised by 
study designs 
(1)   

Polewards and 
upward ranges 
shifts have been 
common 
responses to past 
major climatic 
shifts (2).                                   
Yearly variability 
in polewards 
range boundaries 
for mobile birds 

Translocation of 
temperature-limited 
species outside the 
historic range bound 
aries has been 
unsuccessful in the 
absence of warming 
and successful during 
warming periods (3) 

Very long-term records 
(>50 years) demonstrate 
"sign-switching"  in 
which a species poleward 
boundary shifts polewards 
during warming periods 
and towards the equator 
during cooling periods (5) 

Species 
distribution 
models, 
Phenological 
models, and 
other process-
based models 
driven by 
climate 
parameters 
have high 

Yes. Warming 
seasonal and 
annual 
temperatures have 
been linked to 
GHG forcing at 
both regional and 
global scales (8). 
Multiple global 
meta-analyses of 
>4,000 species for 

robust 
evidence, 
high 
agreement, 
very high 
confidence 

(1) (Parmesan 
and Yohe, 
2003) (Cross-
Working Group 
Box ATTRIB in 
Chapter 1); (2) 
(Coope, 1995), 
(Cross-Chapter 
Box PALEO in 
Chapter 1);  
(3)(Ford, 1945; 
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movements being 
in the direction 
expected from 
regional warming 
trends - i.e. 
poleward and  
upward. 
Conclusions from 
prior ARs are 
further supported 
with new 
literature for 
butterflies, birds, 
plants, freshwater 
fish.  

and butterflies 
highly 
significantly 
correlated with 
annual 
temperature 
variability (4) 

predictive 
power in back-
casting  
observed 
distributional 
changes (6)  

which attribution 
to climate change 
was medium to 
very high 
confidence show 
from 40% to 60% 
of species in a 
given region or 
taxonomic group 
having shifted their 
poleward range 
boundary further 
poleward over the 
past 20-120 years 
(8) 

Willis et al., 
2009)(2.6.5.1); 
(4) (Dennis, 
1993; Parmesan 
and Yohe, 
2003); (5) 
(Parmesan and 
Yohe, 2003);  
(6) (Chuine and 
Régnière, 2017; 
Platts et al., 
2019); (7) 
(WGI AR6 
2021);  (8) 
(2.4.2, Table 
2.2) 

About 2/3 of all 
species with long-
term (>20 years) 
of records have 
shifted the timing 
of spring events in 
directions 
expected from 
regional winter 
and spring 
warming.   

Global - 
Varies by 
study.  Range 
= 20 - 400 
years 

NA / 
Photoperiod is 
an important 
cue for some 
species, which 
would show 
up as either no 
change in 
phenology 
over time, or 
where both 
photoperiod 
and 
temperature 
are drivers, 
photoperiod 
cues may tend 
to counter 
temperature 
cues (1) 

Yearly variability 
in spring 
emergence,flight 
and  migrationof 
birds and 
butterflies and 
leaf-out and, 
flowering of 
plants is highly 
significantly 
correlated with 
spring 
temperature 
variability (3) 

Controlled 
experiments 
demonstrate that 
temperature has large 
effects on timing of 
spring events for many 
species (2) 

Very long-term records 
(>50 years) demonstrate 
"sign-switching"  in 
which a species shifts to 
earlier spring events 
during warming periods 
and later spring events 
during cooler periods (4) 

Phenological 
models based 
on temperature 
have good 
predictive 
power in back-
casting  
observed 
phenological 
change; model 
performance is 
improved if 
photoperiod is 
included, and 
even better if 
abiotic factors 
are included (5)  

Yes. Warming 
spring 
temperatures have 
been linked to 
GHG forcing at 
both regional and 
global scales (6).                                             
Multiple global 
meta-analyses all 
show from 48% to 
92% of species in a 
given region or 
taxonomic group 
having shifted 
towards earlier 
spring timing in 
recent decades; 
exception is 
seabirds that have 
been stable (7) 

robust 
evidence, 
high 
agreement, 
very high 
confidence 

(1) (Piao et al., 
2019; Ettinger 
et al., 2021); (2) 
E.g. (Craufurd 
and Wheeler, 
2009; 
Wolkovich et 
al., 2012; Piao 
et al., 2019); (3) 
(Dennis, 1993; 
Gordo, 2007; 
Amano et al., 
2010; Piao et 
al., 2019), (4) 
(Parmesan and 
Yohe, 2003); 
(5) (Piao et al., 
2019); (6) 
{WGI AR6 
2021};  (7) 
(Section 2.4.2.4, 
Table 2.2) 
Freshwater: 
(Adrian et al., 
2006; 
Blenckner et al., 
2007; Adrian et 
al., 2009) 

For species that 
require winter 

Northern 
Europe and 

NA / 
Photoperiod 

NA.                                        
Yearly variability 

orange tip, 
vernalization of plants 

  Models based 
on seasonal 

Yes. Fall and 
winter warming 

medium 
evidence, 

(1) (Gill et al., 
2015; Piao et 
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chilling, winter 
warming has 
countered spring 
warming, 
resulting in either 
delayed spring 
events or no 
change. When 
these species are 
taken into 
account, it is 
estimated that 
92% of species in 
these studies have 
responded to 
regional warming 
trends 

USA - Varies 
by study (>20 
years)   

and 
vernalization 
requirements 
interact (1) 

in break of 
diapause and 
dormancy  highly 
significantly 
correlated with 
variability of fall 
and winter 
temperatures (3) 

(UEA group) - 
demonstrate high 
heritability (strong 
genetic basis).  
Metabolic pathways 
understood for some 
species (2) 

temperature 
sensitivities of 
individual 
species have 
good predictive 
power in back-
casting 
observed 
phenological 
change (4)  

has been linked to 
GHG forcing at 
both regional and 
global scales (5).                                      
None to date. 

high 
agreement, 
high 
confidence 

al., 2019; 
Ettinger et al., 
2021); (2)  E.g.: 
(Friedman and 
Willis, 2013; 
Stålhandske et 
al., 2017); (3) 
(Cook et al., 
2012a; Cook et 
al., 2012b; 
Stålhandske et 
al., 2017); (4) 
(Cook et al., 
2012a; Cook et 
al., 2012b; Xie 
et al., 2015); (5) 
{WGI AR6 
2021};  
(Section 
2.4.2.5) 

Wildfire has 
burned 
increasingly 
extensive areas, 
increasing nine-
fold in 32 years, 
driven more by 
the increased heat 
and aridity of 
anthropogenic 
climate change 
than by non-
climate factors 

Western 
North 
America - 
1984-2017 

Population 
density, roads, 
built area, 
analysed but 
less important 

Field and remote 
sensing 
measurements of 
burned area: 
Western USA 
burned area 
increased >900%, 
1984-2015; 
Alaska burned 
area in 2015 was 
the second highest 
in the 1940-2015 
record; British 
Columbia, 
Canada, burned 
area in 2017 was 
the highest in the 
1950-2017 record. 
Weather station 
measurements of 
climate: Western 
USA temperature 
increased 1.5°C, 
1920-2018, 
summer 
precipitation 

    Numerical 
models of 
wildfire as a 
function of 
climate and 
non-climate 
variables, 
calibrated by 
historical data, 
run for actual 
observed 
values and 
compared to 
model runs in 
which 
temperature 
remains 
unchanged. 
Western USA: 
anthropogenic 
climate change 
doubled burned 
area over 
natural 
burning, 
accounting for 

Increased 
temperature and 
decreased summer 
precipitation 
detected and 
attributed to 
anthropogenic 
greenhouse gas 
forcing. 
Anthropogenic 
climate change 
accounts for half 
the magnitude of a 
regional drought, 
2000-2020, 
reducing soil 
moisture to its 
lowest levels since 
the 1500s.                                                 
Correlation of 
burned area to 
climate variables 
(temperature, 
precipitation, 
relative humidity, 
evapotranspiration

high 
evidence, 
high 
agreement, 
high 
confidence 

(Abatzoglou 
and Williams, 
2016; Partain et 
al., 2016; 
Holden et al., 
2018; 
Kirchmeier-
Young et al., 
2019; Mansuy 
et al., 2019; 
Williams et al., 
2020) + refs in 
section 
{2.4.4.2} 
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decreased 12%, 
1984-2016 

49% (32-76%, 
95% 
confidence 
interval) of 
cumulative 
burned area, 
1984-2016; 
Alaska: 
Anthropogenic 
climate change 
accounted for 
34-60% of 
2015 burned 
area; British 
Columbia: 
Anthropogenic 
climate change 
increased 2017 
burned area 7 
to 11 times 
over the area of 
natural burning 

) outweighed local 
human factors 
(population 
density, roads, and 
built-area) 

Tree mortality has 
increased 
substantially, as 
much as doubling 
in 52 years, driven 
more by the 
increased heat and 
aridity of 
anthropogenic 
climate change 
than by non-
climate factors 

North 
America, 
Africa - ca. 
1945-2007 

Multivariate 
and bivariate 
statistical 
analyses of 
population 
density, roads, 
timber 
harvesting, 
livestock 
grazing, 
increased tree 
density, fire 
suppression, 
toppling of 
large trees, 
analysed but 
less important 

Field surveys of 
trees: western 
U.S. tree mortality 
doubled, 1955-
2007; African 
Sahel tree 
mortality 18%, 
1954-2002; 
southwest 
Morocco tree 
mortality 44%, 
1970-2007; 
weather station 
measurements 
show significant 
increases in 
temperature and 
decreases in 
precipitation 

      Increases in 
temperature and 
changes in 
precipitation 
detected and 
attributed to 
anthropogenic 
greenhouse gas 
forcing.                                
Canonical 
correlation 
analyses of climate 
and non-climate 
factors found 
climate change 
outweighed other 
factors; other 
cases correlation 
analyses of climate 
factors significant, 
non-climate factors 
non-significant. 

medium 
evidence, 
high 
agreement 

(Desanker et al., 
2001; van 
Mantgem et al., 
2009; Gonzalez 
et al., 2012; le 
Polain de 
Waroux and 
Lambin, 2012) 
[many other 
cases detected 
(Allen et al., 
2010; Allen et 
al., 2015; 
Bennett et al., 
2015; Martinez-
Vilalta and 
Lloret, 2016; 
Greenwood et 
al., 2017; 
Hartmann et al., 
2018) but not 
formally 
attributed + refs 
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in section 
{2.4.4.3} 

Vegetation 
biomes have 
shifted 
significantly 
towards the poles 
or the Equator or 
upslope at 19 sites 
in boreal, 
temperate, and 
tropical 
ecosystems, 
caused more by 
increased 
temperatures and 
changes in 
precipitation of 
anthropogenic 
climate change 
than by non-
climate factors 

Global - 
1500-2008 

Research in 
some areas 
conducted 
multivariate 
statistical 
analyses of 
climate and 
other factors, 
population 
density, roads, 
other non-
climate factors 
analysed but 
less important; 
research at 
other areas 
selected sites 
with no 
substantial 
human land 
use change 

Field surveys 
show significant 
changes of 
vegetation species 
locations and 
densities, boreal 
forest shifting into 
tundra, subalpine 
forest shifting into 
alpine grassland, 
broadleaf forest 
shifting into 
coniferous forest, 
grassland shifting 
into woodland; 
Weather station 
measurements 
show significant 
increases in 
temperature and 
changes in 
precipitation 

     see section text Increases in 
temperature and 
changes in 
precipitation 
detected and 
attributed to 
anthropogenic 
greenhouse gas 
forcing.                                 
Canonical 
correlation 
analyses of climate 
and non-climate 
factors in some 
areas; correlation 
analyses of climate 
factors significant, 
non-climate factors 
non-significant in 
some areas; no 
substantial local 
human land use 
change in some 
areas. 

high 
evidence, 
high 
agreement, 
high 
confidence 

(Beckage et al., 
2008) (Brink, 
1959) 
(Desanker et al., 
2001; Lloyd 
and Fastie, 
2003; Danby 
and Hik; Dial et 
al., 2007; Devi 
et al., 2008; 
Kullman and 
Öberg, 2009; 
Gonzalez et al., 
2010; Leonelli 
et al., 2011; 
Gonzalez et al., 
2012; 
Kirdyanov et 
al., 2012) 
(Luckman and 
Kavanagh, 
2000) (Payette 
et al., 1985; 
Wardle and 
Coleman, 1992; 
Suarez et al., 
1999; Penuelas 
and Boada, 
2003; Millar et 
al., 2004; 
Walther et al., 
2005; Payette, 
2007; Settele et 
al., 2014) + refs 
in section 
{2.4.3.1; 
2.4.3.2; 2.4.3.3–
9; 2.4.5} 

Beetles & moths 
shifting poleward 
and upward has 
brought new pest 
species into some 
forests 

North 
America, 
Europe and 
Eurasia. Time 
period varies 
by study.  

Not directly 
assessed, but 
occurring in 
both areas of 
high LUC and 
protected areas 

 Direct 
observations of 
insect pest 
outbreaks have 
been recorded 
since the mid-

controlled temperature 
experiments link 
warming winters to 
lower insect mortality, 
and increased growing 
season length to 

 
see section text see section text   refs in section 

{2.4.2.1; 
2.4.4.3; 
particularly 
2.4.4.3.3} 
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Datasets start 
in mid-1800s 
to present 

1800s for many 
temperate and 
boreal forests in 
the northern 
hemisphere 

increased number of 
generations per year, 
which leads to large 
increases in insect 
abundances in late 
growing season 

Shift in forest 
composition has 
occurred due to 
species-specific 
differences in 
response to 
increasing drought 

 see section 
text 

 see section 
text 

 see section text      see section text  see section text   (Anderegg et 
al., 2016) 

Increased tree 
mortality has 
occurred globally, 
in boreal, 
temperate and 
tropical systems, 
in response to 
increased drought, 
wildfire and insect 
pest outbreaks 

Global - 
Timespan 
varies by 
study. 
Observational 
datasets 
available 
from mid-
1800s to 
present. 
Treerings 
provide data 
going back 
hundreds of 
years 

For many 
studies, land 
use change is 
an important 
driver.  For 
some studies, 
LUC is 
minimal (1) 
pest outbreaks 
are important 
drivers, but 
impacts have 
been 
exacerbated by 
heat/drought 
induced tree 
stress (2) 

tree-rings provide 
very long-term 
data, that overlaps 
with observational 
data starting in 
mid-1800s 

  
see section text see section text high 

evidence, 
high 
agreement, 
high  
confidence 

refs in section 
{2.4.4.3} 

Diseases 
wildlife/humans 

                  

Newly emerging 
vector-borne 
diseases (dengue, 
chikungunya, 
Japanese 
encephalitis, 
malaria, visceral 
leishmaniasis) and 
their vectors 
(An.spp., Aedes 
albopictus, Ae. 
aegypti, Culex 
quinquefasciatus, 
C. 

South Asia 
(Nepal) - 
Dengue 
(2004-
present) / 
Chikungunya 
(2013-
present) / 
Japanese 
Encephalitis 
(1995-
present) / 
Visceral 
Leishmaniasi

JE has + 
association 
with irrigated 
land, 
agriculture, 
land use / 
Malaria: 
incidence 
decreased in 
lowlands with 
free 
distribution of 
long-lasting 

Dengue: 1st 
reported case in 
Nepal in 2004, 
outbreak in 2006, 
then expansion to 
new areas in 2008, 
spread to 
highlands in 2010. 
Chikungunya: The 
first 
autochthonous 
cases of 
chikungunya virus 
were reported in 

Dengue: EIP = 15 
days at 25°C & 6.5 
days at 30°C (Rohani 
et al., 2009) / 
Narrower DTR 
decreases EIP or 
increases 
susceptibility of 
mosquitoes to 
infection (Lambrechts 
et al., 2011) 

Dengue: Increased 
number of cases in 
highlands of Himalayan 
region in temperate to 
subalpine areas (Acharya 
et al., 2020) / min temp 
highly sig correlated with 
dengue cases in Chitwan 
district (Tuladhar et al., 
2019) / increased nightly 
temps during the 
monsoon months 
correlated with increased 
transmission (p<0.05) 

  Higher warming 
rates in high-
elevation areas 
compared to 
lowlands -- 
warming rate of 
Nepal is higher 
than global average 
/ decreasing trends 
of cool days & 
increasing trends 
of warm days in 
higher elev. / 
increasing trends 

high 
confidence 

(Dahal, 2008; 
Lambrechts et 
al., 2011; 
Dhimal et al., 
2014a; Pun et 
al., 2014; 
Dhimal et al., 
2015a; Pandey 
et al., 2015; 
Pandey et al., 
2017; Shrestha 
et al., 2018; 
Shrestha et al., 
2019; Tuladhar 
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tritaeniorhynchus) 
are appearing in 
higher elevation 
and non-endemic 
regions of Nepal. 
Climate change 
will intensify 
VBD epidemics in 
mountain regions 
of Nepal.  

s (2009-
present) 

insecticidal 
nets (LLINs) 

2013 (Pun et al., 
2014) and have 
expanded their 
geographic range 
in Nepal (Pandey 
et al., 2015; 
Pandey et al., 
2017) Japanese 
Encephalitis: 
introduced in 
1970s to S. Nepal 
but 1st epidemic 
in 1995 in 
Kathmandu 
valley, shifted to 
mountain districts 
after 2005.  
Visceral 
Leishmaniasis: 1st 
case in hilly non-
endemic region in 
2011, now found 
in hill & mountain 
regions previously 
considered non-
endemic. Malaria: 
reported in 1969 
at 1800+ m., and 
An. maculatus 
recorded up to 
3100 m.; most 
malaria cases 
below 1200 m. in 
1978-80 
(originally 
confined to forest 
areas of 
lowlands); now in 
hills and 
mountains 
2000+m 

from 2010-2019 (Gyawali 
et al., 2020).  

of max temps & 
more warming in 
winter compared to 
other seasons 
/statistically sig. 
warmind trend of 
max temps / sig 
increase in annual 
mean temp highly 
influenced by max 
temp / increasing 
trends in heavy 
prec. events. 
Dengue: Chitwan 
district, Nepal 
study 2010-2017: 
Max temp sig 
correlated with 
cases through lag 
1-3 month lag / 
Min temp sig 
correlated with 
cases 0-3 month 
lag w/ strongest 
correlation at lag 2 
/ min temp strength 
corr. higher than 
max temp / rainfall 
sig correlated with 
cases 1-3 mos. lag 
& highest a lag 2 
mo. (Tuladhar et 
al., 2019) 

et al., 2019; 
Gyawali et al., 
2020; Liu et al., 
2020; Phuyal et 
al., 2020; 
Dhimal et al., 
2021a; Dhimal 
et al., 2021b) 

Haemonchosis 
(Haemonchus 
contortus)  worm 
of sheep / H. 
contortus was 

Northeastern 
Europe (UK, 
Scotland), 
1989-2006 

No 
intensification 
of sheep 
farming found 
up to 2006 

Sig increase in 
diagnosis rates 
from 1989-2006 
(p = 0.001) but 
also showed some 

Optimal temps for 
development and 
growth are between 
25-37°C (more 
adapted to sub-tropics 

Sig increase in diagnosis 
rates in northern study 
regions (Scotland, N UK, 
& Midlands) from 1977-
2006; Sig positive trend 

Increases in 
summer temps 
increase 
mortality and 
offset the 

Mean annual 
temperature 
increased  w/ temp 
increasing earlier 
and more 

robust 
evidence, 
high 
agreement, 

(Smith, 1990; 
O’Connor et al., 
2006; van Dijk 
et al., 2008; van 
Dijk et al., 
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endemic to 
southern England 
but is now 
documented in 
Scotland and has 
an extended 
transmission 
season. Benefits 
of increased 
developmental 
rates outstrip the 
disadvantages of 
increased death 
rates during some 
times of the year, 
particularly 
benefiting from 
increased 
developmental 
opportunities in 
spring and early 
summer; besides 
climate, 
interaction with 
hosts will be very 
important (van 
Dijk et al., 2010). 

during time 
period of 
increased 
disease 
incidence (van 
Dijk et al., 
2008). 
Effective 
anthelmintics 
were still 
available 
during the 
latter years of 
the study and 
antihelminthic 
resistance 
would not 
affect the 
seasonality of 
the disease 
(van Dijk et 
al., 2010). Sig 
increases in 
parasite 
abundance 
documented in 
colder 
northern parts 
of Great 
Britain but not 
warmer 
southern parts 
(anthelmintic 
resistance 
would be 
expected to 
increase 
abundance in 
the south as 
well) (van 
Dijk et al., 
2010). 

periods of 
significant 
decrease (1992-
1996, 2002-2006) 
meaning there is 
high variability in 
the system (van 
Dijk et al., 2008). 
Highly sig 
increase in disease 
incidence starting 
in late 1990s-2006 
(p <= 0.005, 
Spearman's rho > 
0.450) (van Dijk 
et al., 2010). 

and tropics) but it can 
survive from 10-40°C 
(O'Connor, 2006). The 
min. dev time 
decreased as temp 
increased from 16 
days at 10°C to 2.5 
days at 37 C (Smith, 
1990). 

for Nov & Dec suggesting 
greater autumn 
haemonchosis recently 
(van Dijk et al., 2008). 

increased 
development 
rate (Rose et 
al., 2015). 

significantly in 
spring months; sig 
increase in rainfall 
in April (van Dijk 
et al., 2008). 
"Overall, the 
observed 
temperature-
mediated increases 
in cercarial output 
are much more 
substantial than 
those expected 
from basic 
physiological 
processes, for 
which 2- to 3-fold 
increases are 
normally seen" 
was stated in an 
analysis examining 
cercarial 
production of 
different species of 
trematodes in 
temperature 
experiments - 
review paper of 20 
studies (Poulin, 
2006). Sig positive 
relationship 
between GIN 
infection level 
(GIN: Nematodirus 
spp., Haemonchus 
contortus, 
Teladorsagia 
circumcincta, 
Trichostrongylus 
spp., Chabertia 
ovina, 
Bunostomum spp.) 
with max humidity 
and sig negative 
relationship with 
solar radiation 

high 
confidence 

2010; Rose et 
al., 2015) 
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during 30 day 
period  preceding 
prepatency (when 
free-living stages 
are developing in 
the field). 
(Martínez-
Valladares et al., 
2013) 

Teladorsagia 
circumcincta 
(brown stomach 
worm), 
Trichostrongylus 
vitrinus, Tr. 
colubriformis, Tr. 
axei (round 
worms) found in 
sheep and goats 
are spreading 
northward in 
Europe and 
expanding their 
transmission 
season. 

Northwestern 
Europe (UK, 
Scotland), 
1975-2006 
(van Dijk et 
al., 2008) 

No 
intensification 
of sheep 
farming found 
up to 2006 
during time 
period of 
increased 
disease 
incidence. 
Effective 
anthelmintics 
were still 
available 
during the 
latter years of 
the study and 
antihelminthic 
resistance 
would not 
affect the 
seasonality of 
the disease. 
(van Dijk et 
al., 2008) 

Sig increase in 
diagnosis rates 
from 1975-2006 
(p < 0.001), 
Highest rate of 
increase occurred 
between 1997-
2006; sig 
increases in 
diagnostic rates 
over most of the 
UK except the 
most northern part 
(Scotland); Sig 
positive trend 
from north to 
south (van Dijk et 
al., 2008). 
Transmission 
opportunities 
extended into 
autumn in 
Scotland while sig 
decreases in 
disease were 
observed in the 
spring in the areas 
south of Scotland 
(van Dijk et al., 
2010). Highly sig 
increase in disease 
incidence starting 
in late 1990s-2006 
(p <= 0.005, 
Spearman's rho > 
0.450) (van Dijk 
et al., 2010). 

Accumulation of 
infective stages from 
successive generations 
of adult parasites is 
accelerated at higher 
temps, leading to 
higher parasite 
abundance and 
increased risk of 
disease from 
midsummer onwards  
(Armour, 1986; 
Barger, 1997). Low 
temperatures (<10 C) 
reduce development of 
larvae & reduce 
hatching of Tr. 
colubriformis, Tr. 
rugatus while Tr. 
virtrinus could 
develop successfully 
to the infective stage 
in temps <10 C 
(Beveridge, 1989); 30 
C reduced number of 
larvae from 3 
Trichostrongylus spp. 
(Beveridge, 1989). Tr. 
colubriformis does not 
develop when soil 
temps <10 C and air 
temps <13 C (Gibson 
and Everett, 1976; 
Levine and Andersen, 
1973). Tr. 
colubriformis was 
recovered in low 

Mean peak month became 
sig later in southern most 
region showing later shift 
in seasonality (1977-
2006) and sig declines in 
the spring months (1977-
2006) (van Dijk et al., 
2008). 

Increase in 
temps resulted 
in increased 
development 
rates for T. 
circumcincta 
leading to year-
round 
development. 
(Rose et al., 
2015). 

Mean annual 
temperature 
increased  w/ temp 
increasing earlier 
and more 
significantly in 
spring months; sig 
increase in rainfall 
in April (van Dijk 
et al., 2008).  
"Overall, the 
observed 
temperature-
mediated increases 
in cercarial output 
are much more 
substantial than 
those expected 
from basic 
physiological 
processes, for 
which 2- to 3-fold 
increases are 
normally seen" 
was stated in an 
analysis examining 
cercarial 
production of 
different species of 
trematodes in 
temperature 
experiments - 
review paper of 20 
studies (Poulin, 
2006). Sig positive 
relationship 
between GIN 

robust 
evidence, 
high 
agreement, 
very high 
confidence 

(Levine and 
Andersen, 
1973; Armour, 
1974; Gibson 
and Everett, 
1976; Southcott 
et al., 1976; 
Salih and 
Grainger, 1982; 
Beveridge et al., 
1989; Barger, 
1997; Poulin, 
2006; van Dijk 
et al., 2008; van 
Dijk et al., 
2010; Martínez-
Valladares et 
al., 2013; Rose 
et al., 2015) 
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numbers when temps 
were between 1.3-15 
C (Southcott, 1976). 
Mean time until 
hatching took 19.1 
days at 10 C and 
increased with 
warming temps to 1 
day at 25 C (Salih and 
Grainger, 1982) 

infection level 
(GIN: Nematodirus 
spp., Haemonchus 
contortus, 
Teladorsagia 
circumcincta, 
Trichostrongylus 
spp., Chabertia 
ovina, 
Bunostomum spp.) 
with max humidity 
and sig negative 
relationship with 
solar radiation 
during 30 day 
period  preceding 
prepatency (when 
free-living stages 
are developing in 
the field). 
(Martínez-
Valladareset al., 
2013) 

Fasciolosis risk 
caused by F. 
hepatica 
(exposure, 
prevalence, 
outbreaks, 
geographic 
emergence) 
significantly 
increased or 
appeared in new 
areas over time. 
There are broad 
trends towards 
increased risk. 
Fasciola hepatica 
is a liver fluke that 
infects many 
different animal 
species (domestic 
primary hosts: 
sheep, cattle; 
other domestic 

Europe: 
1977-2006, 
UK (van Dijk 
et al., 2010), 
2006-2001, 
Spain 
(Martínez-
Valladares et 
al., 2013); 
2000-2013, 
Italy (Bosco 
et al., 2015) 

Antihelminthic 
drug resistance 
may be 
contributing to 
disease 
increases in 
some areas; 
however, drug 
resistance 
would not be 
expected to 
alter the 
seasonality by 
extending the 
fall grazing, 
transmission 
season. The 
government 
funded the 
installation of 
modern 
irrigation 
systems in 

East Anglia, UK: 
New outbreaks 
and increased 
disease incidence 
from 2001-2003 
occurred on farms 
with no prior 
history of disease; 
only sporadic 
disease since the 
1960s. Disease 
was only first 
recorded in 1996 
during the study 
period of 1993-
2003 (Pritchard et 
al., 2005). Highly 
sig increase in 
disease incidence 
starting in late 
1990s-2006 (p <= 
0.005, Spearman's 
rho > 0.450) (van 

Lymnaea viridus 
snails infected with 
Fasciola hepatica 
shed cercariae more 
quickly, for longer 
durations, and in 
higher numbers 
(p<0.001) at higher 
temperatures (Lee et 
al., 1995). 

    Avg annual rainfall 
in East Anglia 
from 1970-2000 
(605.6 mm) 
compared to 
outbreak years of 
2001-2002 (781.1) 
increased by 175.5 
mm and was 
higher in summer 
months of July and 
August [no stat 
testing] (Pritchard 
et al., 2005). 
Increasing min 
humidity and 
precipitation was 
associated with 
increases in epg in 
Spanish study from 
2006-2011 during 
30 day period  
preceding 

medium-
robust 
evidence, 
high 
agreement, 
high  
confidence 

(Lee et al., 
1995; Pritchard 
et al., 2005; van 
Dijk et al., 
2010; Martínez-
Valladares et 
al., 2013; Bosco 
et al., 2015; 
Caminade et al., 
2015) 
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hosts: goats, 
alpacas; wild 
hosts: rabbits, 
nutria, red deer 
(Cervus elephus). 

Castilla and 
Leon, Spain, 
since the 
1990s which 
may be 
increasing 
humidity (not 
statistical 
analysis 
carried out) 
(Martínez-
Valladares et 
al., 2013). 
However, No 
intensification 
of sheep 
farming found 
up to 2006 
during time 
period of 
increased 
disease 
incidence in 
UK (van Dijk 
et al., 2008). 

Dijk et al., 2010). 
Spanish province 
of León showed 
prevalence 
increasing in 
sheep flocks from 
14.67% (1986-87) 
to 26.7% (1992-
93) to 60.5% 
(2011) (Martínez-
Valladares et al., 
2013). 

prepatency (when 
free-living stages 
are developing in 
the field 
)(Martínez-
Valladares et al., 
2013). Sig increase 
in temperature, 
rainfall, and # 
rainy days during 
outbreak in Italy (p 
< 0.001) (Bosco et 
al., 2015).   

Nematodirosis 
(Nematodirus 
battus, N. 
filicollis, N. 
spathiger) in 
sheep is 
increasing. 

Northeastern 
Europe (UK, 
Scotland), 
1975-2006 

No 
intensification 
of sheep 
farming (van 
Dijk et al., 
2008). 
Effective 
anthelmintics 
still available 
during the 
latter years of 
the study and 
antihelminthic 
resistance 
would not 
affect the 
seasonality of 
the disease. 
There has been 
no 
antihelminthic 

Sig increase in 
2002-2006 
compared to 
diagnosis rates 
from 1975-2002 
(p <= 0.011) (van 
Dijk et al., 2008). 
Highly sig 
increase in disease 
incidence starting 
in late 1990s-2006 
(p <= 0.005, 
Spearman's rho > 
0.450) (van Dijk 
et al., 2010). 

 Sig increase in Scotland 
(most northern portion of 
study area) w/ no 
significant or only 
marginal rises in 
diagnostic rates in 
southern areas (Wales, 
SW Britain) from 1975-
2006. Sig positive trend 
from south to north; Cases 
were first recorded in 
December in 1999 (van 
Dijk, 2008). 

 Mean annual 
temperature 
increased  w/ temp 
increasing earlier 
and more 
significantly in 
spring months; sig 
increase in rainfall 
in April (van Dijk 
et al., 2008).   

medium-
robust 
evidence, 
high 
agreement, 
high 
confidence 

{van Dijk, 
2008; van Dijk, 
2010 
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resistance 
recorded for 
N. battus (van 
Dijk et al., 
2010). Sig 
increases in 
parasite 
abundance 
documented in 
colder 
northern parts 
of Great 
Britain but not 
warmer 
southern parts 
(anthelmintic 
resistance 
would be 
expected to 
increase 
abundance in 
the south as 
well) (van 
Dijk et al., 
2010). 

Midge-borne 
bluetongue virus 
is expanding into 
new geographical 
areas as higher 
temperatures 
make new areas 
habitable for both 
the vectors and 
virus. Bluetongue 
virus infects 
ruminants (sheep, 
cattle, deer, and 
goats) and is 
vectored bu 
midges of the 
genus Culicoides. 

Northern 
Europe (2006 
and later) 

 BTV spreading 
northward in 
Europe during the 
2000s (Carpenter 
et al., 2009). 

  A 
comprehensive 
deterministic 
model set takes 
into account 
multiple vector 
and host state 
variables 
(incubating, 
infectious, 
susceptible, 
recovered) and 
other 
vector/host 
population 
parameters 
(birth rate, 
mortality rate), 
air temperature 
(seasonality), 
host immunity, 

 limited-
medium 
evidence, 
medium 
agreement, 
low 
confidence 

(Thornley and 
France, 2016; 
Tryland et al., 
2018) 
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and vertical 
tranmission to 
offspring over 
time on a farm 
hypothetically 
set in aouthern 
England. 
Climate 
warming 
increases air 
temperature 
and reduces 
vector 
mortality 
(Thornley and 
France, 2016). 

The roundworm 
Setaria tundra, a 
species of filaroid 
nematode, is a 
vector-borne 
disease spread by 
Aedes and 
Anopheles 
mosquitos, which 
infects reindeer 
(Rangifer 
tarandus), roe deer 
(Capreolus 
capreolus) and 
moose (Alces 
alces). Outbreaks 
were found to be 
driven by mean 
summer 
temperatures of 
14°C or higher 
with increasing 
morbidity and 
mortality lagging 
to the following 
year. These high 
summer 
temperatures 
reflect a tipping 
point that impacts 

Nordic 
regions of 
Europe: 
Finland 
(1961-2004); 
Lapland 
(1979-2015) 
 
 

 Outbreaks 
recorded back to 
the 1970s in 
cervids in Nordic 
regions of Europe. 
Meat inspections 
dating back to the 
2000s in Finland 
show reindeer 
meat 
condemnation 
increased from 
4.9% in 2001 to 
40.1% in 2003 in 
Oulu province 
with the outbreak 
moving northward 
by 100 km. There 
was a massive 
increase in 
reindeer viscera 
condemned in 
both northern and 
southern Lapland 
(Laaksonen, 
2010). 

"Warmth decreases 
the time required for 
larval development of 
S. tundra larvae" 
(Laaksonen et al., 
2009) 

 GLMs showed 
that the 
occurrence of 
an epidemic 
lagged and 
increased with 
mean summer 
temperatures( b 
= 6.60 ±3.39 
(s.e.); P = 
0.0004) but 
"moribidity 
manifests the 
following 
summer only if 
the weather 
conditions are 
still favorable" 
(Laaksonen et 
al., 2010). "In 
southern and 
central 
Lapland, our 
model 
predicted an 
increasing 
tredn from 
1979-2015 for 
both the 
duration oif the 

 medium 
evidence, 
high 
agreement, 
medium 
confidence 

Filariasis 
(Laaksonen, 
2010; 
Laaksonen and 
Oksanen, 2010; 
Laaksonen et 
al., 2010; 
Haider et al., 
2018; Tryland 
et al., 2018) 
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Aedesvector 
abundance, 
Setaria 
tundrainfection, 
and reindeer 
flocking behavior 
to mosquito rich 
wetlands. 

effective 
transmission 
period of 
S.tundra 
(P<0.001) and 
for the 
potential 
number of L3 
S. tundra larvae 
being 
transmitted 
from an 
infectious 
reindeer 
(P<0.001)" 
(Haider et al., 
2018) 

Elaphostrongylosi
s is a snail-borne 
helminthiasis 
caused by 
Elaphostrongylus 
rangiferi, which 
infects reindeer 
(Rangifer 
tarandus) has 
caused recent 
outbreaks and has 
development 
increase with 
temperature. 

Nordic 
regions of 
Europe 
(1974-1988) 

  E. rangiferi 
development in snails 
is dependent on 
temperature and 
increases with 
increasing 
temperatures 
(Halvorsen and 
Skorping, 1982). 

Norwegian outbreak over 
warm summer in 2018 
affected more age classes 
and had unusual 
phenological timing 
(Deksne et al., 2020) 

Cross 
correlation 
time series 
analysis found 
E. rangiferi 
abundance 
increased with 
increases in 
summer 
temperature 
(Halvorsen, 
2012). 

 limited-
medium 
evidence, 
medium 
agreement, 
low 
confidence 

(Halvorsen et 
al., 1979; 
Halvorsen, 
2012; 
Handeland et 
al., 2019; 
Deksne et al., 
2020) 

Tick-borne 
encephalitis virus 
and its vector tick 
species have 
expanded to 
higher altitudes 
and latitudes 
because of 
phenological 
changes: warmer 
autumns, milder 
winters, and 
earlier spring. The 
expansion of 
Ixodes persulcatus 

Northern 
Europe: 
Stockholm 
and Uppsala, 
1984-2008 
(Haernig et 
al., 2008); 
Sweden, 
Stockholm 
county, 1960-
1998 
(Lindgren et 
al., 2001) and 
Asia: Russia, 
Archangelsk 

Increases in 
human 
population 
were not 
analyzed in 
some studies 
but in others, 
for instance, 
the Komi 
Repbulic study 
by Tokarevich 
(2017) found 
only a 4% 
population 
increase 

No uptrend found 
in TBE virus 
prevalence in ticks 
examined from 
1996-1999 & 
2002-2009. BIR 
(tick-bite 
incidence rate) 
and TBE 
incidence 
examined from 
1980-2009: TBE 
incidence found to 
increase 40-fold in 
30 years from 0.1 

Entomological and 
weather survey plots 
of ticks in southern 
Prague, Czech 
Republic from 2001-
2004 tracking tick 
behavior and air and 
soil temp., humidity, 
prec., soil moisture, 
wind speed  - temp 
good predictor as long 
as extreme 
prec/humidity/moistur
e conditions not 

An entomological and 
epidemiological analysis 
of monthly tick survey 
data from 1992-2009 
found ticks expanded 
northward and eastward 
and increased in 
population size in AO, 
Russia (Tokarevich et al., 
2011). Tick bite season 
increased from 4 to 6 
months and substantial N 
shift of tick bites 
reported(Tokarevich et 
al., 2017). 

Simple 2 and 3 
parameter time 
series models 
of Ixodes 
ricinus host-
seeking 
behavior and 
weather were 
constructed in 
Czech 
Republic, 
R>0.612(Danie
l et al., 2006) 

Warmer and 
prolonged warm 
seasons increase 
TBE incidence 
(Multiple 
regression model 
results: R2 = 0.58, 
p<0.0001, Full 
model: increases in 
disease incidence 
associated with 2 
mild winters, 
temperatures 
favouring spring 
development (8-

high 
evidence, 
high 
agreement, 
very high 
confidence 

(Lindgren and 
Gustafson, 
2001; Kutz et 
al., 2005; 
Daniel et al., 
2006; 
Tokarevich et 
al., 2011; 
Hoberg et al., 
2013; Kutz et 
al., 2013; 
Tokarevich et 
al., 2017) 

ACCEPTED V
ERSIO

N 

SUBJE
CT TO FIN

AL E
DITS



FINAL DRAFT  Chapter 2 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SM2-16 Total pages: 136 

is the primary 
driver for increase 
TBE incidence in 
the Arkhangelsk 
olast region of 
Russia even while 
overal TBE 
incidence 
decreased for all 
of Russia. 
Northern regions 
are documenting 
new cases of 
disease and 
vectors while 
southern and 
central areas in 
the north are 
experiencing 
drastically higher 
disease incidence 
rates and biting 
rates. Ixodes 
ricinus ticks and 
TBE incidence 
increased in the 
Czech Republic 
and appeared in 
high elevation 
areas (Šumava 
and Krkonoše 
Mountains) not 
previously 
observed. 

Oblast (AO), 
1980-2009 
(Tokarevich 
et al., 2011), 
Komi 
Republic, 
1970-2011 
(Tokarevich 
et al., 2017) ; 
Czech 
Republic: 
1953-1976, 
1982, 1992, 
(tick 
surveys), 
1965-2001: 
TBE 
incidence 
(Daniel et al., 
2004) 

between 1970-
2011. 

in the 1980s to 9.9 
in 2009. Tick-
bitten inhabitants 
increased from 
284 in the 1980s 
to ~4000 in the 
2000s. Tick bites 
were newly 
reported in central 
and northern 
districts after 
2000. Length of 
tick-bite reporting 
period increased 
20-fold in N 
region, 2-fold in 
Central, and 1.5 
fold in S region. 
(tick bites are 
mandatory 
reporting) 
(Tokarevich et al., 
2011). Monthly 
tick abundance 
data collected 
from 1970-2011 
in windows from 
1970-71, 1974-80, 
1982-84, 1986-92, 
200-2003, 2005-
2011. TBEV only 
found in ticks in S 
and C regions of 
Komiin 2011 but 
not before. 23-
fold increase in 
patients seeking 
care for tick bites 
from 1992-
2011.TBE 
incidence 
increased from 
0.12 (1970-83) to 
2.17 (2009-2011) 
(Tokarevich et al., 
2017). 

encountered (Daniel et 
al., 2006) 

10°C) and 
extended autumn 
activity in the year 
prior to incidence 
year, and 
temperatures 
allowing tick 
activity (5-8°C) 
early into the 
incidence year) 
(Lindgren and 
Gustafson, 2001). 
Mean annual 
temperature 
change in AO, 
Russia: +2.0°C in 
2000s compared to 
1960-1989; 
regression analysis 
of temperature and 
TBE incidence (R 
ranging from 0.5-
0.77 depending on 
region and 
exclusion criteria, 
p<0.01) found 
strong correlation 
between increases 
in temperature and 
TBE incidence rate 
(Tokarevich et al., 
2011).  Sig 
increase in avg 
annual air temp 
between 1989-95 
resulted in a 0.25 
TBE incidence rate 
increase / strong 
correlation 
coefficient of 0.77 
for all RK 
(p<0.0001) 
(Tokarevich et al., 
2017). 
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West Nile disease 
incidence 
increased due to 
temperature and 
has moved further 
north in Eurasia. 

(eastern 
Europe) 
Russia - 
1999-2012 

Decreased 
incidence was 
observed in 
the year 
following an 
outbreak. 

WND first 
reported in Russia 
in 1999. 
Outbreaks were 
associated with 
higher summer 
temperatures and 
mild winters. 

Temp increases 
shorten gonotrophic 
period (GP), and 
increases reproduction 
of Culex spp., and 
decreases extrinsic 
incubation period 
(EIP) of the virus. 

    Mean temp in 
winter (Dec-
March) (R=0.59), 
mean temp in 
summer (July-Sep) 
(R=0.67), hours 
temp above 25°C 
(R=0.70), mean 
humidity in 2nd 
and 3rd quarters 
(R= -0.51), mean 
atm. pressure in 
3rd quarter (R= -
0.71) 

limited 
evidence, 
med-high 
agreement, 
low-medium 
confidence 

 (Platonov et al., 
2008; Platonov 
et al., 2014; 
Mihailović et 
al., 2020) 

Taxonomic-
specific 
statements 

                  

Climate change 
induced warming 
leads to shifts in 
thermal regime of 
lakes 

Boreal - Past 
>40 years 

Eutrophication 
/ Trophic state 
of lakes(1) 

In situ monitoring 
in real time; 
decadal 
observations >40 
years 

  Polymictic lakes 
(regularly mixed 
throughout summer) may 
become dimictic more 
frequently; dimictic lakes 
(regularly stratify 
throughout summer) may 
have a greater tendency to 
become monomictic; and 
monomictic lakes (differ 
to dimictic lakes in that 
they do not freeze over in 
winter) may tend to 
become oligomictic ( 
thermally almost stable, 
mixing only rarely; 
mostly tropical lakes) (2)  

yes, observed 
changes based 
on long-term 
empirical data 
match model 
projections; 
Kirillin 2010, 
Kirillin & 
Shatwell, 2016 

One dimensional 
lake model, 
statistical analysis, 
numerical models. 

Robust 
evidence that 
climate 
change is one 
of the 
primary 
driver. 
Planktonic 
events can 
contribute to 
polymictic-
dimictic 
regime shifts 
in temperate 
lakes, high 
confidence 

(1) (Shatwell et 
al., 2016); 2 
(Kirillin, 2010; 
Kirillin and 
Shatwell, 2016; 
Wood et al., 
2016; Ficker et 
al., 2017; 
Shatwell et al., 
2019; Woolway 
and Merchant, 
2019) 

Climate change 
causes gains and 
losses in 
freshwater water 
level  

Global - 
1984-2015 

Water 
abstraction, 
dams / Recent 
(2002-2016) 
changes in 
terrestrial 
water storage 
in Australia 
and Sub-
Saharan Africa 
have been 

Water storage 
increases in the 
Tibetan Plateau 
can be more 
confidently 
attributed to 
climate change, 
since they are 
corroborated by 
half-century old 
ground survey 

  Global surface water 
extents have been mapped 
using Landsat, which 
showed that from 1984 to 
2015, 90,000 km2 of 
permanent surface water 
has disappeared globally, 
while 184,000 km2 of 
lake surface area has 
formed elsewhere  (Figure 
##a). Most of these 

    Until the 
influence of 
climate 
change on all 
water fluxes 
(precipitation, 
ET, runoff) 
relevant to 
specific lake 
water budgets 
can be 

(1) (Pekel et al., 
2016) (2) (Ma 
et al., 2010) (3) 
(Rodell et al., 
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attributed to 
the passage of 
natural 
drought and 
precipitation 
cycles, not 
climate change 
(Rodell et al., 
2018). The 
complexities 
of lake water 
storage 
responses to 
climate change 
and the 
challenges 
associated 
with its 
detection and 
attribution are 
reflected in the 
ongoing 
debate about 
the influence 
of climate 
change effects 
on lake water 
storage 
(Muller, 
2018). 

data (Ma et al., 
2010), and recent 
observations from 
the GRACE 
satellite mission 
(Rodell et al., 
2018), and 
because there are 
minimal irrigated 
agriculture 
operations or 
water diversions 
which may 
confound the 
trend (Rodell et 
al., 2018). 

changes are thought to be 
attributable to background 
climate variability, water 
extractions, and reservoir 
filling, rather than climate 
change per se (Pekel et 
al., 2016). 

adequately 
resolved, the 
magnitude of 
climate 
change 
effects on 
global lake 
water storage 
will remain 
highly 
uncertain, 
particularly in 
the presence 
of interannual 
climate 
variability, 
low 
confidence 

Warming may 
amplify the 
trophic state lakes 
are already in. 
Eutrophic lakes 
have been shown 
to become more 
productive while 
nutrient limitation 
may increase in 
oligotrophic lakes. 

Global - 
Varies by 
study. Range 
20-50 years 

Land-use 
changes, 
agriculture 

Long-term 
observations 
past>40 years, 
remote sensing 
data 

  In nutrient poor lakes 
prolongation of thermal 
stratification limits 
nutrient entrainments via 
vertical mixing which 
leads to a reduction in 
algal biomass (2), while 
global warming reinforces 
eutrophication of already 
eutrophic lakes via 
oxygen depletion in the 
sediment near water 
layers which triggers 
release of nutrients 
previously bound in the 
sediment (3,4). 

yes, ecosystem 
model PCLake 
(1) 

multivariate 
statistical analysis, 
machine learning 
tools 

High 
Agreement 
for 
amplification 
of 
eutrophicatio
n in eutrophic 
lakes.  
Limited 
evidence for 
climate-
change driven 
enhanced 
nutrient 
limitation in 
deep 

1(Mooij et al.); 
2 (Kraemer et 
al.), 3(Adrian et 
al.), 4(De 
Senerpont 
Domis et al.)  
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oligotrophic 
lakes, 
medium-high 
confidence 

In lakes weather 
extremes in wind, 
temperature, 
precipitation and 
loss of ice 
foremost affect 
the thermal 
regime with 
repercussions on 
water temperature, 
transparency, 
oxygen and 
nutrient dynamics, 
affecting 
ecosystem 
functionality 

Global - Past 
>40 years 

Antecedent 
conditions 

In situ monitoring 
in real time; 
decadal 
observations >40 
years 

  Depending on lake type, 
the severity and timing of 
the extreme event, and the 
nature of entrainment 
from run-off (e.g. DOM) 
and internal nutrient 
loads, algal biomass and 
biodiversity has either 
declined or increased (1). 
A once in 250-year flood 
event in 2009 caused the 
water column of Lough 
Feeagh, a large nutrient 
poor lake in Ireland, to 
destabilise, followed by 
reduced primary 
production (2). The 
dominant CH4 emission 
pathway in a shallow 
productive lake, shifted 
from gas ebullition to 
diffusion following high 
CH4 release from 
sediments that was driven 
by colder deep water 
temperatures during a 
heatwave (3). Oxygen 
depletion in the cold deep 
water body of lakes 
during heat extremes has 
forced fish to move 
upwards into the warm 
upper water layers where 
thermal stress and 
metabolic costs increase. 
Summer fish kills have 
been related to summer 
temperature extremes and 
near-bottom oxygen 
depletion (4). 

    Agreement is 
high that the 
increase in 
the number 
and severity 
of extreme 
events can be 
attributed to 
climate 
change,  low-
medium 
confidence 

(1)(Havens et 
al., 2016) (Kuha 
et al., 2016) 
(Kasprzak et al., 
2017) 
(Bergkemper et 
al., 2018) 
(Stockwell et 
al., 2020); 
(2)(de Eyto et 
al., 2016); 
(3)(Bartosiewic
z et al., 2016); 
(4)(Kangur et 
al., 2016) 

Severe floods and 
droughts are 

Global Antecedent 
conditions.               

    Duration of droughts in 
Mediterranean streams in 

  mathematical 
modelling, 

High 
Agreement  

(1) (Colls et al., 
2019)(2) 
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major threads for 
river ecosystems 

(1) urban 
development, 
farming on 
floodplains, 
river flow 
disruptions 

NE Iberian Peninsula has 
been linked to a 
significant decrease of 
autotrophic biomass, 
gross primary production 
(1)  and net primary 
production in streams (2) . 
The predicted effects of 
permafrost thaw include 
increased inputs of 
nitrogen, phosphorus and 
carbon into rivers which 
are predicted to affect 
primary and secondary 
production and hence the 
species communities (3). 
Increased forest fire 
activity in the surrounding 
catchment of freshwater 
ecosystems (4) in riparian 
zones can lead to reduced 
canopy cover and 
increased water 
temperatures, increased 
stream flow and 
suspended sediment 
concentrations. Increased 
algal levels can hence 
alter stream food webs 
(5)and lead to water 
quality degradation (6). 

literature review, 
observations, 
boosted regression 
tree analysis 

that the 
increase in 
the number 
and severity 
of extreme 
events can be 
attributed to 
climate 
change, 
medium-high 
confidence 

(Zlatanović et 
al., 2018), (3) 
(Nilsson et al., 
2015), 
(4)(Abatzoglou 
and Williams, 
2016),  
(5)(Cooper et 
al., 2015), 
(6)(Dahm et al., 
2015). 

In boreal, 
coniferous areas 
changes in 
forestry practices 
and climate 
change  have 
caused an increase 
in terrestrial 
derived dissolved 
organic matter 
(DOM) transport 
into rivers and 
lakes leading to 
their browning. 

Boreal - Past 
decades 

Forestry 
practice, 
planting of 
spruce (2); 
Land-use 
changes (2). / 
Non climate 
related 
proposed 
drivers of 
browning are 
the strong 
decline in 
atmospheric 

Long-term 
observations 
during past 
decades (1,4), for 
review see (2) 

Mesocosm 
experiments (3) 

Browning has been shown 
to drive a shift from auto- 
to 
heterotrophic/mixotrophic
-based production (2,5) 
with a subsequent decline 
in energy transfer 
efficiency and a reduction 
of biomass at higher 
trophic levels (6). Mild 
browning may accelerate 
primary production and 
favour fish production 
(2014) through input of 

 An increase in 
browning by 
factor 1.3 
based on a 
worst case 
climate 
scenario was 
predicted for 
6347 lakes and 
rivers in the 
boreal region 
of Sweden until 
2030, which 
match observed 

  Agreement is 
high that 
climate 
change 
induced 
hydrological 
intensificatio
n and 
greening of 
the northern 
hemisphere 
are major 
drivers of 
browning 

(1)(de Wit et 
al., 2016), 
(2)(Kritzberg et 
al., 2020), (3) 
(Urrutia-
Cordero et al., 
2017), (4) 
(Creed et al., 
2018), (5) 
(Zwart et al., 
2016), 
(6)(Ellison et 
al., 2017), (7) 
(Finstad et al., 
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sulphur 
deposition 
since the 
1980ties, 
reducing 
acidification 
and by that 
increasing the 
solubility and 
transport of 
DOC from 
soils (1,2).  

nutrients associated with 
DOM in nutrient poor 
lakes(6,8,9) and increase 
cyanobacteria growth 
(cyanobacteria better cope 
with low light 
intensities(10) and toxin 
levels (11,12). 

trends in the 
past decades 
(13). 

(Solomon et 
al., 2015) (de 
Wit et al., 
2016) 
(Finstad et 
al., 2016) 
(Catalán et 
al., 2016; 
Creed et al., 
2018), 
{Hayden, 
2019, from 
clear lakes}. 
high 
confidence  

2014), 
(8)(Thrane et 
al., 2014), (9) 
(Seekell et al., 
2015) (10) 
(Huisman et al., 
2018) 
(11)(Hansson et 
al., 2013) (12) 
(Urrutia-
Cordero et al., 
2016), (13) 
(Weyhenmeyer 
et al., 2016) 

Greenhouse gas 
emissions from 
freshwater 
ecosystems are 
equivalent to 
around 20% of 
global burning 
fossil fuel CO2 
emission  

Global - Past 
decades 

Eutrophication
, agriculture 

  Fine sediment fraction 
and organic carbon 
content were 
important drivers of 
methane production 
and potential methane 
oxidation in rivers- 
based on 
field/laboratory 
studies (1); CH4 
ebullition due to 
temperature induced 
increase in sediment 
CH4 production will 
increase in freshwater 
ecosystem; literature 
data combined with 
mesocosm 
experiments (2). 

CO2 and CH4 emissions 
from freshwater 
ecosystems are likely to 
increase due to the 
imbalance between losses 
and gains of CO2 by  
photosynthesis and 
respiration,  enhanced 
emissions from exposed 
sediments during droughts 
(3,4), enhanced CH4 
ebullition of seasonally 
hypoxic lakes ( 2,5,6,7,8), 
increased matter transport 
from land to water 
(particularly permafrost 
thaw) (6) are key 
mechanisms which 
contribute to rising GHG 
emissions from freshwater 
ecosystems to the 
atmosphere. 

    Uncertainty 
primarily 
stems from 
the large site 
specific 
heterogeneity 
of CO2 and 
CH4 
dynamics (6), 
seasonality of 
their 
sediment-
water–air 
fluxes (6,9), 
the exclusion 
of ponds and 
the winter 
season in 
global carbon 
flux estimates 
(6,9), 
procedures of 
upscaling (6) 
and 
measuring 
techniques 
(5), medium 
to low 
confidence 

(1)(Bodmer et 
al., 2020), (2) 
(Aben et al., 
2017), (3) 
(Marcé et al., 
2019); (4) 
(Keller et al., 
2020); (5) 
(Sanches et al., 
2019); 
(6)(DelSontro et 
al., 2018); (7) 
(Beaulieu et al., 
2019); 
(8)(Bartosiewic
z et al., 2019), 
(9) (Denfeld et 
al., 2018) 

Climate change 
induced warming 

North 
America, 

Antecedent 
conditions 

Lowland rivers 
have been 

        Robust 
evidence, 

 (1) (Piccolroaz 
et al., 2018) (2) 
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leads to shifts in 
thermal regime of 
rivers and 
streams; lowland 
rivers show a 
stronger thermal 
response than 
high-altitude, 
cold-water 
receiving streams 

Europe - Past 
decades 

observed to be 
extremely 
sensitive to 
heatwaves while 
high-altitude 
snow-fed rivers 
and regulated 
rivers receiving 
cold water from 
higher altitude 
showed a damped 
thermal response 
(1); small 
mountain streams 
do not warm 
linearly with 
increasing air 
temperature 
because of strong 
local temperature 
gradients 
associated with 
topographic 
controls (2) 

high 
confidence 

(Isaak et al., 
2016) 

Loss of 
biodiversity in 
streams can be 
directly attributed 
to climate change 
through increased 
water 
temperatures, 
hydrological 
changes such as 
increased peak 
discharges, flow 
alteration and 
droughts 

Global - Past 
decades 

Antecedent 
conditions 

Observed long-
term trends in 
stream 
macroinvertebrate
s have shown that 
changes in species 
composition and 
community 
structure can be 
attributed to 
climate change 
triggered by hydro 
climatic changes 
(1,2). In the 
Mediterranean 
climate change 
may increase the 
occurrence of 
droughts and 
reduce small 
floods needed to 
guarantee habitat 

        high 
agreement, 
very high 
confidence 

(1)(Daufresne et 
al., 2007), 
(2)(Chessman, 
2009), (3) 
(Death et al., 
2015), (4)(Jaric 
et al., 2019),  
(5)(Mouthon 
and Daufresne, 
2015). 
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diversity (3) 
particularly 
threatening fish 
species of small 
body size, small 
range size and low 
dispersal abilities 
(4 ). Heat waves 
have shown to 
alter the density, 
species richness 
and structure of 
mollusc 
communities, 
favouring more 
resilient species 
with a slow pace 
of recovery (5). 

Climate change is 
causing range 
shifts of 
freshwater fish 

North 
America - 
Past decades 

Antecedent 
conditions 

Systematic shifts 
towards higher 
elevation and 
upstream were 
found for 32 
stream fish 
species in France 
following 
geographic 
variation in 
climate change 
(1). Stream fish 
are currently 
responding to 
recent climate 
warming at a 
greater rate than 
many terrestrial 
organisms, 
although not as 
much as needed to 
cope with future 
climate 
modifications (1). 
Range 
contractions have 
been found for 
Bull trout 

        high 
agreement, 
high 
confidence 

(1) (Comte and 
Grenouillet, 
2013), (2) 
(Isaak et al., 
2010), (3) (Eby 
et al., 2014). 
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(Salvelinus 
confluentus) (2,3) 

Whole biome 
shifts have 
occurred.  Boreal 
forests have 
shifted into arctic 
tundra, treeline 
has shifted 
upward into  
alpine tundra, 
temperate 
deciduous shrubs 
and forests 
upwards into 
conifer forest, xx 

Global Mixed.  add 
detail 

              

Woody 
encroachment into 
open (grassland, 
desert) systems 
has occurred 
globally, with 
climate change as 
one of the primary 
drivers 

Global Yes -  loss of 
browsing 
herbivores; 
fire 
suppression. 
Reviews of 
long term 
experiments 
demonstrate 
impacts (1) / 
yes -  (2) 

yes - emergence 
of grasslands after 
CO2 came down 
below ~500ppm 
(3)                                     
yes -Long-term 
fire and grazing 
trials show woody 
encroachment 
occurs even when 
land use is held 
constant or 
accounted for 
indicating a global 
driver.   (5) 

Experiments 
manipulating CO2 
benefit woody plants 
(4) 

  yes - indicating 
co2 driven 
increase in 
woody cover 
(6) 

Yes - consistent 
encroachment 
across all savannas 
(8). 

Robust 
evidence that 
climate 
change is one 
of the 
primary 
drivers, but 
LUC also 
primary 
driver.  
Robust 
evidence (lots 
of studies) 
but medium 
agreement on 
climate-
change 
attribution 
because of 
complex 
drivers.  
medium 
confidence 

(1)(Smit and 
Velthof; Bond 
and Midgley, 
2012; Bakker et 
al., 2016) (3) 
(Ehleringer et 
al., 2002) 
(Beerling and 
Osborne, 
2006)(4) 
(Polley et al., 
1997; Bond and 
Midgley, 2000; 
Kgope et al., 
2010) 
(Hoffmann and 
Jackson) (Quirk 
et al., 2019)(5) 
(Buitenwerf et 
al., 2012; 
Venter et al., 
2018; Zhang, 
2019) (6) 
(Scheiter and 
Higgins, 2009; 
Moncrieff et al., 
2014; Scheiter 
et al., 2018) (8) 
(Stevens et al., 
2017) 
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Widespread 
greening and 
shrubbification of 
tundra 

High artic 
and mountain 
tundra - data 
starting in 
1900 

  yes - satellite and 
long term repeat 
photos (5) 

yes - network of 
warming experiments 
link warming to 
increases in shrub, 
grass and sedge 
species (4) 

    Yes - widespread 
shrubbification (8). 

robust 
evidence, 
high  
agreement, 
high 
confidence 

(4) (Elmendorf 
et al., 2012a; 
Elmendorf et 
al., 2012b; 
Elmendorf et 
al., 2015; 
Bjorkman et al., 
2018; Bjorkman 
et al., 2019; 
Myers-Smith et 
al., 2019) (5) 
(Tape et al., 
2006; Phoenix 
and Bjerke, 
2016) (8) 
(Myers-Smith et 
al., 2011) 

Tropical forests  Tropical 
region 

                

Drought and 
warming induced 
diversity shifts in 
Mediterranean 
type ecosystems 

Mediterranea
n ecosystems 

Insect 
outbreaks 
associated 
with drought 
(1); loss of 
fish species 
(Jaric et al., 
2019) (9) 

yes - Field 
surveys of long 
term monitoring 
show reduced 
diversity or shift 
in functional due 
to increasing 
prevalence of 
extreme hot and 
dry weather often 
the post-fire 
regeneration 
phase(5) 

      yes - increase in 
extreme droughts 
in regions (8) 

medium 
evidence 
changes are 
mediated by 
an increase in 
extreme 
droughts. 
Changes are 
not always 
direct but 
interact 
through 
altering the 
fire regime 
and post-fire 
recovery 

(1) (McIntyre et 
al., 2015; Fettig 
et al., 2019) (5) 
(McIntyre et al., 
2015; Slingsby 
et al., 2017; 
Harrison et al., 
2018 2018; 
Smithers et al., 
2018; 
Stephenson et 
al., 2018; Fettig 
et al., 2019) (8) 
(AghaKouchak 
et al., 2014; 
Robeson; Otto 
et al., 2018; 
Sousa et al., 
2018), (9) (Jaric 
et al., 2019) 

Deserts                   
Med shrublands 
shifting to 
grasslands 

Mediterranea
n ecosystems, 
arid 
shrublands 

Human driven 
fragmentation 
and nitrogen 
deposition 
benefits 
grasses (1) 

Long-term            (1) (Lambrinos, 
2006; Fenn et 
al., 2011) 
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Terrestrial 
carbon stocks 

               varies by 
region and 
ecosystem 
type 

(5) (Jacobsen 
and Pratt, 2018; 
Syphard et al., 
2019 2019; 
Young et al., 
2019) see 
section 
{2.4.4.4} 

Droughts 
associated with El 
Nino lead to an 
increase of 
anthropogenic fire 
in drained tropical 
peatlands 

Southeast 
Asia - Past 
decades 

  Long term 
monitoring and 
remote sensing 
show grass 
invasions (5) 

        high 
confidence 

(Herawati and 
Santoso, 2011; 
Page and 
Hooijer, 2016) 

 1 
 2 
 3 
Table SM2.2: Assessment of uncertainties associated with key statements on Projected Impacts.  See SM2.1 caption for descriptions of lines of evidence.  Where evidence is 4 
provided in main text, only the relevant section is noted. 5 

Key statement 
Geographic region 

and Period 

Non-climatic 
Drivers: 

Land Use 
and Land 

Cover 
Change 

(LULCC)1 
or Other 
Changes 

Study design 

Independent 
evidence; 

paleo data and 
long term 

observations 

Levels of 
evidence, 

agreement 
and 

confidence 
for 

attribution 

SOD sections References and results 

Numbers of 
studies and/or 

numbers of 
different 

models used 
to generate 
projected 
impacts 

Level of 
agreement 

among 
studies 
and/or 
model 

outputs 

Continued climate change under high 
emissions scenarios could increase 
future wildfire frequency on one-third 
to two-thirds of global land by 2100 
and decrease fire frequency on one-
fifth of global land, with a net global 
fire frequency increase of ~30% per 
century  

          medium 
confidence 

{2.4.4.2; 
2.5.5.2} 

  

Increased wildfire, combined with 
erosion due to deforestation, could 
degrade water supplies 

          medium 
confidence 

{2.4.4.2; 
2.5.5.2} 

  

For ecosystems with historically low 
fire frequencies, particularly tropical 
rainforests, projected increases of  
drought under continued climate 

          medium 
confidence 

{2.4.4.2; 
2.5.5.2} 
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change increase risks of fire, which 
could cause biome shifts, e.g., potential 
conversion of over half the area of 
Amazon rainforest to grassland.  
Terrestrial ecosystems protect globally 
critical stocks of carbon and provide an 
essential service of sequestration of 
carbon from the atmosphere but are at 
risk of carbon losses from 
deforestation and climate change 

          high 
confidence 

{2.4.4.4; 2.5.1}    

Percentages of species projected to 
suffer extinction vary from zero to 
64% with a threshold for extinction of 
>80% of the species' climate space 
disappeared.  With a threshold for 
extinction of >50% climatic range lost, 
under 3.2 °C warming, 49% of insects, 
44% of plants, and 26% of vertebrates 
are projected to be at risk of extinction. 
At 2°C, this falls to 18% of insects, 
16% of plants, and 8% of vertebrates 
and at 1.5°C, to 6% of insects, 8% of 
plants, and 4% of vertebrates.  

Global  yes for some 
studies 

178 studies.  
Each study is of 
a variable 
number of 
species, ranging 
from a few to 
>100,000 
species.  
Modeling 
approaches 
include a range 
of biological 
models (SDMs 
as well as 
process-based 
models) and 
multiple GCMs 
and warming 
scenarios. 

medium to 
high 
agreement 
for same 
species or 
dataset, low 
agreement 
across 
studies of 
multiple 
species 

Ever-increasing 
evidence of 
current impacts 
of climate 
change  on wild 
species in turn 
gives us higher 
confidence in 
future 
projections of 
biodiversity 
changes that are 
based upon 
known 
relationships 
between species 
and climate.  

Differences 
in estimates 
of extinction 
risk stem 
from 
differing 
assumptions 
of thresholds 
for 
extinction 
risk, 
differing 
geographic 
regions and 
taxonomic 
groups, as 
well as 
differing 
modeling 
approaches 
and 
emissions 
scenarios, 
Confidence 
highly 
dependent 
upon 
statement of 
range of 
species' 
extinctions  

{2.5.1.3.3,; 
2.5.4} 

  

Climate change induced warming leads 
to shifts in thermal regime of lakes 

Global - 
Representative 
concentration pathway 
8.5 

    high      {2.3.3.6; 
2.5.1.3.2; 
2.5.3.6.2}  
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Substantial changes in vegetation 
structure and ecosystem processes are 
expected to for already relatively small 
temperature increases (<2°C above 
pre-industrial), in particular in cold 
(boreal, tundra) regions, as well as in 
dry regions [high confidence]. Land-
use change will exacerbate projected 
impacts on ecosystems and will alter 
ecosystem function and vegetation 
cover in addition to climate change. 
Models agree on impacts increasing 
rapidly with level of global mean 
temperature change; models also agree 
that these impacts will be visible the 
earliest in boreal/tundra regions, as 
well as in dry areas. Nonetheless there 
are discrepancies regarding the 
regional patterns of impacts, not only 
for climate change but also for land-
use change. 

Global, Tropical 
boreal - 2100, 
climate/CO₂ as in RCP 
2.6, 4.5, 8.5 

Yes for some 
experiments, 
from 
LUH/CMIP5               
N/A 

Factorial model 
experiment 
(HadGEM2-
ESM 

  Greening and 
browning 
observed in 
satellite remote 
sensing studies, 
and attributed to 
LUC and climate 
change/CO₂. 
their relative 
impacts vary 
widely over the 
globe -- see E:G: 
Piao et al., 2016 

  Projected 
changes at the 
biome level 
{2.5.2.2} See 
also SM2.3 and 
Figure 2.9 

(Davies-Barnard et al., 
2015) Forest fraction 
change: global & boreal-- 
increasing with CC/CO₂, 
most strongly in RCP8.5; 
tropical -- impacts are 
small, slight decline in 
RCP2.6; 
global/boral/tropical -- 
decline in response to LUC 
for 2.6 and 8.5, increase in 
4.5. 

Global - 2100, 
climate/CO₂ as in RCP 
2.6, 4.5, 6.0 

Yes, for some 
experiments, 
from 
LUH/CMIP5                      
N/A 

DGVM (LPJ) 
with multiple 
CMIP5 ESM 
climates, 
caclulate 
"gamma metric" 
which expresses 
strenght of 
change in biome 
shifts and 
bieogeochemical 
cycles/ecosystem 
services 

        (Ostberg et al., 2013; 
Ostberg et al., 2018)      
For RCP2.6, still >20% of 
land surface notably 
impacted by climate 
change (mostly tundra, 
boreal regions, but also dry 
grasslands/deserts). 
Increasing to >30% (RCP 
4.5) and >40% (6.0) of the 
land surface, and 
increasingly including now 
also tropical seasonal 
forests expanding into 
tropical forests and into 
savannas. In a RCP8.5 
world, >50% of land 
sirface affected by climate 
change alone. LUC 
substantially enhances the 
land surface transformation 
in addition to climate 
change but areas of largest 
climate change impacts 
and largest LUC impacts 
do not necessarily overlap 
in many places. 

Global - 2100, 
climate/CO₂ as in RCP 
2.6, 4.5, 6, 8.5 

No                                   
N/A 

Seven global 
vegetation 
models, driven 
by ISIMIP 
climate 
projections 

       Projected 
changes at the 
biome level 
{2.5.2.2} See 
also SM2.3 and 
Figure 2.9 

(Warszawski et al., 2013)     
At 2oC warming above 
1980-2010 levels, 5-19% 
of land surface at risk of 
severe change; extend of 
regions at risk more or less 
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doubles between 2oC and 
3oC mean global warming, 
at 4oC warming ca. 35% of 
land surface projected to 
be notably impacted. 
Vegetation models to some 
extend disagree on 
regional patterns of 
impacts are largest, but 
agreement that high 
northern latitudes will be 
strongly affected. 

Global - 2100, 
climate/CO₂ as in 
RCP8.5 

No                                   
N/A 

DGVM LPJ-
GUESS & MPI-
ESM climate 

        (Wårlind et al., 2014)     
Shifts in vegetation 
composition in many 
regions, for instance wood 
vegetation increase in 
tundra, larger component 
of evergreens in 
mediterranean regions, 
more drought-tolerant 
woody vegetation in 
savanna. 

Novel abiotic conditions are expected 
to also result in no-analogue vegetation 
composition [medium confidence] 

Global - ca. 2050, 
RCP6.0 

No                                   
N/A 

Uses projections 
of abiotic 
conditions (R, 
precip., N 
deposition) plus 
human 
population 
density. Relative 
to an estimated 
present-day 
baseline. 
Measure: 
minimum 
dissimilarity 
scores. Climate: 
ensemble of 
12ESMs 

    medium 
confidence 
that novel 
abiotic 
conditions 
will also be 
seen in novel 
ecosystems, 
but low 
confidence 
as to where 
these will 
emerge. 

Projected 
changes at the 
biome level 
{2.5.2.2} See 
also SM2.3 and 
Figure 2.9 

(Radeloff et al., 2015)  T 
(and N deposition) largest 
driver of novelty; large 
degree of novelty in tropics 
and subtropics because 
temperatures reach levels 
that haven't been seen in 
the recent past; despite of 
overproportional warming 
level of novelty in high 
latitudes in some regions 
smaller because these 
temperatures also occur 
elsewhere globally, so not 
novel. 

Global - 2100, SRES 
B1, A2 

No                                   
N/A 

Vegetation 
model JeDi, 
identify 
distribution of 
simulated no-
analogue 

    medium 
confidence 
that novel 
abiotic 
conditions 
will also be 

 Projected 
changes at the 
biome level 
{2.5.2.2} See 
also SM2.3 and 
Figure 2.9 

(Reu et al., 2014) Find no-
analogue climate in 
(sub)tropical regions, 
mostly of the northern 
hemisphere and non-
analogue vegetation in 
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vegetation and 
compare to no-
analogue 
climate. Does 
not consider CO₂ 
impacting 
photosynthesis. 
Climate 
analogues 
obtained from 
seven 
GCMs/AR4. 

seen in novel 
ecosystems, 
but low 
confidence 
as to where 
these will 
emerge. 

Finland and western 
Siberia. Effects stronger in 
A2. 

At least part of what is now humid 
tropical forest is projected to shift 
increasingly towards vegetation with 
traits that correspond to drier and 
hotter climate [high confidence] 

Tropical/Ghana - NA No                                   
N/A 

Species 
functional traits 
plus vegetation 
census data 
(plots) along a 
rainfall gradient; 
calculate 
community-level 
weighted mean 
for each trait and 
plots, CWM is 
indicator of 
mean canopy 
properties. 
Explore 
empirical 
relationship with 
soil water 
deficit. 

      Risk to tropical 
forest {2.5.2.6} 

(Aguirre-Gutiérrez et al., 
2019)           Drier tropical 
forests increased their 
deciduous species 
abundance and generally 
changed more functionally 
than forests growing in 
wetter conditions, 
suggesting an enhanced 
ability to adapt 
ecologically to a drying 
environment. 

Tropical/Amazon - NA No                                   
N/A 

Calculate 
exposure as 
meteorological 
drought, using 
the standardized 
 precipitation 
index (SPI) and 
the maximum 
cumulative water 
deficit 
 (MCWD) from 
1981 to 2016 & 
assess changes in 
enhanced 
vegetation index 

      (Anderson et al., 2018; 
Bartlett et al., 2019)           
Minimum and maximum 
AEVI indicate that 
droughts tend to increase 
the variance of the 
photosynthetic capacity of 
Amazonian forests; 
intensity of negative AEVI 
increased with time (2005-
2016), forest may become 
more vulnerable to 
droughts. 
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anomalies 
(AEVI, from 
MODIS). 

Tropical - Stylised 
droughts; 400 and 800 
ppm CO₂ 

No                                   
N/A 

Empirical model, 
linking 
photosynthesis 
and stomatal 
conductance and 
other drought-
related traits to 
soil water 
content. 
Parameterised 
with field data. 
Evolutionary 
stable state 
analysis to 
identify shifts in 
competitively 
optimal 
hydraulic traits. 

      (Anderson et al., 2018)   
Drought impacted 
competition more than 
CO₂, with elevated CO₂ 
reducing but not reversing 
drought-induced shifts 
towards more tolerant 
strategies --> shifts 
towards drought adapted 
vegetation. 

Tropical, global - NA No                                   
N/A 

Reviews, 
published 
literature on 
observed 
drought-impacts. 

      (Bonai et al., 2016)   Wide 
range of responses, seen in 
e.g. mortality, growth, 
LAI, carbon fluxes, shifts 
in traits. While responses 
are variable seem to 
support projected shifts 
towards initial mortality of 
trees and then shift to more 
xeric vegetation. Large 
uncertainties w.r.t. changes 
in phenology and carbon 
fluxes. 

Tropical/Amazon - 
NA 

No                                   
N/A 

Forest cencus 
data in humid 
forests, 
chronosequences 
after fire, 
compared to 
surrounding 
unburned plots. 

      (da Silva et al., 2018)   
Reduced forest biomass 
and enhanced post-fire 
mortality that might last 
years/decades after fire. 

Tropical/Central/South 
America - NA 

No                                   
N/A 

Review, 
published 
literature on 
observed 

      (Stan and Sanchez-
Azofeifa, 2019)   Climate 
along a latitudinal gradient 
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climate-impacts 
in tropical dry 
forest. 

indicates drought 
tolerance. 

Tropical/Amazon - 
2050, climate/CO₂ as 
in RCPs2.6, 4.5, 8.5 

No                                   
N/A 

Review, 
published 
literature of 
climate change 
and land-use 
chage impacts & 
simulations with 
vegetation model 
CPTEC-PVM2 
with nine CMIP5 
GCMs 

      (Nobre et al., 2016)  4°C 
warming or deforestation 
exceeding 40% of the 
forest area estimated as 
tipping point towards 
"savannisation". 

Tropical/Latin 
America - 2100, 
climate/CO₂ as in 
RCP2.6 and 8.5 

yes, in some 
experiments           
N/A 

Projections with 
DGVM LPJmL, 
driven by five 
ISIMIP climate 
projections. 
Land-use change 
from CLUE, 
combined with 
SSPs. 

      (Boit et al., 2016)  Across 
all scenarios 5–6% of the 
total area will undergo 
biome shifts that can be 
attributed to climate 
change until 2099, even in 
the RCP8.5. Changes 
clearly dominated by 
land.use change. CO₂ 
fertilisation helps to buffer 
negative climate change 
impacts. 

Tropical - 2100, 
climate/CO₂ as in 
SRES A2 

No                                   
N/A 

DGVM Moses-
Trifid & 22 
GCM (from 
AR4), emulated 
with pattern-
scaler model 
IMOGEN 

Agreement 
that forest 
gain 
biomass, but 
very large 
variability in 
projected 
tropical 
forest 
biomass, 
depending 
on which 
GCM used, 
despite of 
only using a 
single 
emission 
scenario 

    (Huntingford et al., 2013)  
Agreement that forest gain 
biomass, but very large 
variability in projected 
tropical forest biomass, 
depending on which GCM 
used, despite of only using 
a single emission scenario. 
Towards end of 21st 
century peak in biomass-
gain and downturn. Only 
one of all 22 simulations 
forest projected to loose 
biomass, and this only in 
the South American 
tropics. 

Tropical/Amazon - 
2100, climate/CO₂ as 

No                                   
N/A 

Trifid + 
HadCM3 

        (Boulton et al., 2017) Little 
change in Amazon forest 
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in SRES A1B, RCP 
2.6, RCP 8.5 

cover for A1B and RCP 
2.6, decline in some of the 
ensemble runs under RCP 
8.5. Impacts get stronger in 
time periods beyond 2100 
('comitted') 

On different continents, and from 
mesic to dry savannah sub-regions, the 
relative importance of climate, fire and 
other factors in shaping savannah 
vegetation and distribution varies, 
which makes projections of the change 
of the biome’s extend challenging. Due 
to the continued strong effect of CO₂ 
on tree to grass ratio in future, models 
suggest both a loss of savannah extend 
and conversion into dry forest and an 
expansion of savannah-type vegetation 
into arid grasslands. 

Savanna - 2070, 
RCP4.5 

No                                   
N/A 

Thornley 
transport 
resistance 
statistical 
distribution 
model & three 
versions of 
aDGVM + MPI 
ESM-LR 

      Risk to savannas 
{2.5.2.5} 

(Moncrieff et al., 2016)  
2070: DVM project 
reduced extent of savannah 
at boundary with forests, 
while the TTR-SDM 
projects savannah decrease 
at boundary with 
grassland. TTR does not 
include CO₂ impacts. 

Savanna/Africa - 
2100, SRES A1B 

No                                   
N/A 

aDGVM + 
climate from 
ECHAM5 

      (Higgins and Scheiter, 
2012)  (woody) C3 
vegetation increases in 
from dominating less then 
5% of study area surface in 
2020 to ca. 20% at end of 
century. 

Models of vegetation response to 
climate project that the observed 
increases in shrub dominance and in 
boreal forest encroachment driven by 
recent warming are to accelerate in 
coming decades, especially under the 
higher greenhouse gas emissions 
scenarios, leading to a shrinking of the 
area of tundra globally 

Tundra - 2070, RCP 
4.5 

no                             
yes? 

SDMs, 116 
vascular plants, 
based on plot 
observation data 
-- presumably no 
CO₂ impact on 
plants 

      Risk to tundra 
and boreal forest 
{2.5.2.9} 

(Mod and Luoto, 2016)  
Abundance of woody 
plants will expand, 
decreasing predicted 
species richness, 
amplifying species 
turnover and increasing the 
local extinction risk for 
ambient vegetation 

Tundra - 2050 and 
2070, climate as in 
RCPs 2.6 - 8.5 

no statistical 
vegetation model 
CSCS + 
enesmble 33 
GCMs, unclear 
if model 
accounts for CO₂ 

      (Gang et al., 2017)  Area 
of tundra declines in 
basically all future 
projections, highest impact 
in high emission scenarios. 

Tundra - 2074; 0, 2.5, 
5, 8°C warming 
compared to 1994 

No                                   
N/A 

vegetation model 
NUCOM-tundra 
+ 16 different 
climate 
scenarios; 
unclear if model 
accounts for CO₂ 

      (van der Kolk et al., 2016)  
Abrupt permafrost thaw 
initiating thaw pond 
formation led to complete 
domination of graminoids: 
shrub growth limited by 
very wet soil conditions 
and low nutrient 
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supply/graminoids can 
grow in wide range of soil 
moistures & access 
nutrients in deeper soil 
layers. 

Boreal tree species are expected to 
move northwards (or in mountain 
regions: upwards) into regions 
dominated by tundra, unless 
constrained by edaphic features, and 
temperate species are projected to grow 
in regions currently occupied by 
southern boreal forest. In both biomes, 
deciduous trees are simulated to 
increasingly grow in regions currently 
dominated by conifers. 

Boreal forest/Siberia - 
2100, climate/CO₂  as 
in RCP8.5 

No                                   
N/A 

DGVM LPJ-
GUESS & 
ECHAM5.5-
HAM2 climate 

      (Arneth et al., 2016)  Areas 
dominated by löarch shift 
northwards, overall area of 
larch-dominateed forest 
declines. Expansion of 
deciduous vegetation at 
southern edge. 

Global/boreal regions 
(45-80oN) - 2100, 
SRES A1B and climate 
stabilisation scenario 

No                                   
N/A 

HadCM3C       Falloon et al., 2012  
Increases in shrub and 
needleleaf trees at high 
latitudes. 

While the future of the global land 
carbon sink is highly iuncertain, 
possibly enhanced carbon losses from 
terrestrial systems further will limit the 
available carbon budget for global 
warming staying below 1.5oC [high 
confidence] 

Permafrost region - 
2300, Stabilisation for 
RCP4.5 and 8.5 (no 
changes after 2100). 
No CO₂  impacts 
included. 

No                                   
N/A 

Empirical 
relationship to 
determine 
permafrost area 
from MAAT. 
Develop 
relationships 
between mean 
annual air T and 
nine CMIP5 
GCMs. Estimate 
future air 
temperatures by 
increasing 
historical air 
temperatures by 
the global mean 
warming, 
multiplied by an 
Arctic 
amplification 
factor, using 
CMIP5 models. 

      Risk to terrestrial 
carbon {2.5.3.4} 

(Chadburn et al., 2017)  
Simulations under two 
future climate scenarios 
show near-surface 
permafrost loss per degree 
of warming between 1.1 
and 1.2 million km² (in the 
new model version). If the 
climate is stabilized at 2°C 
estimate are that the 
permafrost area would 
eventually be reduced by 
over 40%. Stabilizing at 
1.5°C rather than 2°C 
(above PI) would save 
approximately 2 million 
km² of permafrost. 

Permafrost region - 
2100, 1.5o and 2o 
warming trajectories, 
incl. 1.5oC with 
overshoot; include 
CO₂  

No                                   
N/A 

Ecosystem 
model Jules + 
Climate change 
emulator 
IMOGEN 

      (Comyn-Platt et al., 2018)  
By 2100, the model 
ensemble estimates a 
median 138 Mha loss of 
permafrost area at 3 m 
depth for the 1.5°C 
asymptote pathway, and a 
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median 239 Mha loss for 
the 2.0°C pathway. 
Simulates an additional 
40.0–46.3, 45.6–51.2 and 
61.9–72.0 GtC of pre-
industrial permafrost 
carbon that is no longer 
perennially frozen, relative 
to 2015, for the three 
temperature scenarios. 
Between 20 and 30% of 
this newly thermally active 
carbon released to the 
atmosphere. 

Permafrost region - 
2300, RCP 8.5 & 4.5 

No                                   
N/A 

Inventory 
models + 
CCSM4 climate 

      (Turetsky et al., 2020)  
Emissions across 2.5 
million km² of abrupt 
thaw; under RCP8.5 area 
of thaw threefold larger 
than with only graduial 
thaw. Emissions of ca. 80 
+- 19PgC by 2300, results 
suggest that abrupt thaw 
carbon losses are 
equivalent to 
approximately 40% of the 
mean net emissions 
attributed to gradual thaw. 

Permafrost region - 
2100, climate and CO₂  
as in RCP4.5 and 8.5 

No                                   
N/A 

Eight ecosystem 
models 

Large 
between 
model 
spread, but 
agreement in 
direction of 
model 
response 
w.r.t. loss of 
area; four of 
five models 
that simulate 
C-response 
show 
increase in 
vegetation C 
and all five 
show 

    (McGuire et al., 2018)  
Projected losses of 
permafrost between 3 - 5 
million km2 for the 
RCP4.5 6 -16 million km2 
for RCP8.5. RCP4.5: cum. 
change in soil carbon 66 
Pg C loss - 70 Pg C gain. 
RCP8.5: losses in soil 
carbon, 74 - 652 Pg C. For 
RCP4.5, gains in 
vegetation carbon were 
largely responsible for the 
overall projected net gains 
in ecosystem carbon (8 to 
244Pg C gains). For 
RCP8.5 projection, gains 
in vegetation carbon were 
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decrease in 
soil C (in 
RCP 8.5) but 
with large 
spread 
between 
models. 

not great enough to 
compensate for the losses 
of carbon projected by four 
of five models ( 641Pg C 
loss to 167Pg C gain). 

N America arctic 
tundra - 2100, RCP8.5 
climate and CO₂  

No                                   
N/A 

ecosystem model 
Ecosys + 
downscaled 
CMIP5 
ensemble 
climate 
projections 

      (Mekonnen et al., 2018)  
Between 1982 and 2100 
averaged increases in 
relative dominance of 
woody versus non-woody 
plants; increased 
ecosystem annual NPP 
(244 g C m−2) offsets 
increases in annual Rh 
(139 g C m−2), resulting in 
an increasing net carbon 
sink over the 21st century. 

Peatlands, Amazon 
(Peru) - 2100, 
climate/CO₂  as in 
RCP2.6, 4.5 and 8.5 

No                                   
N/A 

Peatland 
ecosystem model 
P-TEM + 
CCSM3 climate 

      (Wang et al., 2018)   Under 
warmer (and presumably 
wetter) conditions over the 
21st century, SOC 
accumulation rate in the 
study region slows down to 
7.9 (4.3–12.2) 
g·C·m−2·y−1 (from the 
current rate of16.1 (9.1–
23.7) g·C·m−2·y−1); 
region may turn into a 
carbon source (−53.3 
(−66.8 to−41.2) 
g·C·m−2·y−1), depending 
on the level of warming. 

Peatlands, northern 
hemisphere - 2100, 
RCP/CO₂  as in 2.6, 6, 
8.5 

No                                   
N/A 

ORCHIDEE-
peat + IPSL-
CM5A-LR GCM 
and GFDL-
ESM2M 

      (Qiu et al., 2020)  Current 
carbon this sink will 
roughly double in the 
future under both RCP2.6 
and RCP6.0, whereas the 
total northern peatlands 
will be either a source of 
CO₂ (IPSL-CM5A-LR) or 
near neutral (GFDL-
ESM2M) by the end of the 
century under RCP8.5. 
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Global - 2100, no 
climate change 

Yes (drainage) Empirical, based 
on literature 
values for 
peatland area 
and emission 
factors. 

      (Leifeld et al., 2019)  By 
2100, peatland conversion 
in tropical regions might 
increase to 36.3 million ha. 
Cumulative emissions 
from drained sites reached 
80 ± 20 PgCO₂e in 2015 
and will add up to 249 ± 
38 Pg by 2100. At the 
same time, the number of 
intact sites accumulating 
peat will decline. 

Tropical 
peatland/Malaysia, 
Indonesia 

Yes (peat 
swamp/oil 
plantation) 

Empirical, 
upscaled 
measurements 

      (Cooper et al., 2020)  
Measurements of GHGs 
emitted during the 
conversion from peat 
swamp forest to oil 
palmplantation, accounting 
for CH4and N2O as well 
as CO₂. Emissions factors 
for converted peat swamp 
forest is in the range 70–
117 t CO₂eq ha−1yr−1, 
with CO₂and N2O 
responsible for ca. 60 and 
ca. 40% of this value, 
respectively. These GHG 
emissions suggest that 
conversion of Southeast 
Asian peatswamp forest is 
contributing between 16.6 
and 27.9% of combined 
total nationalGHG 
emissions from Malaysia 
and Indonesia. 

Tropica peatland - 
none 

Yes Review paper       (Page and Baird, 2016) 

Tropical- 2100, 
climate/CO₂ as in 
SRES A2 

No                                   
N/A 

DGVM Moses-
Trifid & 22 
GCM (from 
AR4), emulated 
with pattern-
scaler model 
IMOGEN 

Agreement 
that forest 
gain 
biomass, but 
very large 
variability in 
projected 
tropical 
forest 

    (Huntingford et al., 2013)  
Agreement that forest gain 
biomass, but very large 
variability in projected 
tropical forest biomass, 
depending on which GCM 
used, despite of only using 
a single emission scenario. 
Towards end of 21st 
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biomass, 
depending 
on which 
GCM used, 
despite of 
only using a 
single 
emission 
scenario 

century peak in biomass-
gain and downturn. Only 
one of all 22 simulations 
forest projected to loose 
biomass, and this only in 
the South American 
tropics. 

Global - 2100, SRES 
A2 climate and CO₂  

No                                   
N/A 

Jules,. Adjusted 
for T-
acclimation of 
photosynthesis + 
emulated climate 
from 22 AR4 
GCMs 

      (Mercado et al., 2018)  
Results suggest that 
thermal acclimation of 
photosyntheticcapacity 
makes tropical and 
temperate C less 
vulnerable to warming, but 
reduces the warming-
induced C uptake in the 
boreal region under 
elevated CO₂. 

Cascading trophic effects triggered by 
top predators or the largest herbivores 
propagate through food webs and 
reverberate through to the functioning 
of whole ecosystems, altering notably 
productivity, carbon and nutrient 
turnover and net carbon storage 
[medium confidence] 

Western North 
America - none 

No                                   
N/A 

Data on 
population 
densities of a 
primary and 
secondary 
consumers 
across a climatic 
gradient; 
satellite-based 
maps of plant 
productivity + 
estimates of 
animal 
abundance and 
foraging area 

      Risk to terrestrial 
carbon {2.5.3.4} 

(Stoner et al., 2018)  Data 
indicate strong, positive 
association between plant 
productivity and mountain 
lion density 8via impacts 
on mule deer). Droughts 
and longer-term climate 
changes reduce the 
suitability of marginal 
habitats--> consumer home 
ranges will expand in order 
for individuals to meet 
basic nutritional 
requirements. These 
changes portend decreases 
in the abundance of large-
bodied, wide-ranging 
wildlife through 
climatically-driven 
reductions in carrying 
capacity. 

Africa savanna - none No                                   
N/A 

LPJ-GUESS + 
grazing module 

      (Pachzelt et al., 2015)  The 
grazer–vegetation model 
predicted substantial 
impacts on grass biomass 
(mostly increases), total 
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veg carbon was medium 
affected (c. 10%) and 
burned area (increase), 
particularly in areas with 
high grazer densities. 

Africa, lowland 
primary forest - none 

No                                   
N/A 

Ecosystem 
model ED + 
elephant 
disturbance 

      (Berzaghi et al., 2019)  
Elephants: reduction of 
forest stem density --> 
changes in the competition 
for light, water and space 
among trees --> emergence 
of fewer and larger trees 
with higher wood density -
-> increases the long-term 
equilibrium of 
aboveground biomass, 
reduces the forest NPP 
(trade-off between 
productivity and wood 
density).  Typical density 
of 0.5 to 1 animals per km² 
--> elephant disturbances 
increase aboveground 
biomass by 26–60 t ha−1; 
Extinction of forest 
elephants would --> 7% 
decrease in the 
aboveground biomass in 
central African rainforests. 

 1 
 2 
Table SM2.3: Projected vulnerabilities and risks of ecosystems to biome shifts from spatial analyses of vegetation biogeography, in order by type of analysis, analysis area, and 3 
projected change in temperature.  Data underlying Figure 2.9 4 

Area  ∆T (ºC) Emissions 
scenario 

Biome 
change, 

fraction of 
area (%) 

Number of 
biomes 

Number of 
GCMs 

Biome shift 
criterion 

Spatial 
resolution 

(km) 

Vegetation 
model Reference 

Dynamic global vegetation models 

World 1 RCP2.6 ~4 5‒14 3 risk >0.3 ~50 

Hybrid, JeDi, 

JULES, 

LPJmL, 

ORCHIDEE, 

SGVM, 

VISIT 

(Warszawski et al., 2013) 
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World 1.5 1.5º C ~5 2 16 P >0.80 ~150 LPJ (Scholze et al., 2006) 

World ≤2 B1 7 8 12 
|change| 

>30%  
~50 LPJ (Park et al., 2015) 

World 2.4 B1 10 13 3 
confidence 

>0.8 
50 MC1 (Gonzalez et al., 2010b) 

World 2.5 +2‒3º C ~5 2 16 P >0.80 ~150 LPJ (Scholze et al., 2006) 

World 2 RCP4.5 13 5‒14 3 risk >0.3 ~50 

Hybrid, JeDi, 

JULES, 

LPJmL, 

ORCHIDEE, 

SGVM, 

VISIT 

(Warszawski et al., 2013) 

World 3 RCP6.0 28 5‒14 3 risk >0.3  ~50 

Hybrid, JeDi, 

JULES, 

LPJmL, 

ORCHIDEE, 

SGVM, 

VISIT 

(Warszawski et al., 2013) 

World  2.5‒3.5 A1B 10 8 18 
|change| 

>30%  
~50 LPJ (Park et al., 2015) 

World  3.4 A1B 13 13 3 
confidence 

>0.8 
50 MC1 (Gonzalez et al., 2010b) 

World  3.5 3.5ºC ~5 2 16 P >0.80 ~150 LPJ (Scholze et al., 2006) 

World ≥3.5 A2 13 8 18 
|change| 

>30%  
~50 LPJ (Park et al., 2015) 

World 4 A2 16 13 3 
confidence 

>0.8 
50 MC1 (Gonzalez et al., 2010b) 

World   3.1‒4.7 

historical 

climate and 

B1, A1B, A2 

12 13 3 
confidence 

>0.8 
50 MC1 (Gonzalez et al., 2010b) 

World ~3.5‒5.5 A1B ~10‒30 5 8 
range of 

GCMs 
~280 CLM (Alo and Wang, 2008) 

World 4 RCP8.5 35 5‒14 3 risk >0.3  ~50 

Hybrid, JeDi, 

JULES, 

LPJmL, 

ORCHIDEE, 

SGVM, 

VISIT 

(Warszawski et al., 2013) 

World  4.6 A1FI ~10 2 1 
|change| 

>50% 
~250‒375 HyLand (Sitch et al., 2008) 
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World  4.6 A1FI ~20 2 1 
|change| 

>50% 
~250‒375 LPJ (Sitch et al., 2008) 

World  4.6 A1FI ~10 2 1 
|change| 

>50% 
~250 x 375 ORCHIDEE (Sitch et al., 2008) 

World  4.6 A1FI ~15 2 1 
|change| 

>50% 
~250 x 375 TRIFFID (Sitch et al., 2008) 

Africa - A1B ~26 5 1 
change in 

one GCM 
~30 aDGVM (Scheiter and Higgins, 2009) 

Asia - 

Qinghai-

Tibetan 

Plateau 

1.5 RCP4.5 55 19 1 
change in 

one GCM 
~50 LPJ {Gao, 2016, Climate change and} 

Asia - 

Qinghai-

Tibetan 

Plateau 

 4.2 RCP8.5 70 19 1 
change in 

one GCM 
~50 LPJ {Gao, 2016, Climate change and} 

Asia - Siberia 2 
+2.6ºC after 

130 y 
~5 2 - 

|change| 

>50% of area 
372 sites FAREAST (Shuman et al., 2011) 

Europe  2.9‒4.9 A2 ~30‒40 13 2 
change in 

one GCM 
~12 x 18 LPJ-GUESS (Hickler et al., 2012) 

South 

America - 

Amazon 

2 A2 ~30 2 1 
change in 

one GCM 
~250 x 375 HadCM3LC (Jones et al., 2009) 

South 

America - 

Amazon 

~3 RCP4.5 ~50 15 1 
change in 

one GCM 
~190 x 125 Inland (Lyra et al., 2016) 

South 

America - 

Amazon 

~6 RCP8.5 ~80 15 1 
change in 

one GCM 
~190 x 125 Inland (Lyra et al., 2016) 

Equilibrium models 

World 1 RCP2.6 10 14 10 
vulnerability 

index >0.7 
~10 

vulnerability 

index 
(Li et al., 2018a) 

World 1.8 RCP4.5 12 14 10 
vulnerability 

index >0.7 
~10 

vulnerability 

index 
(Li et al., 2018a) 

World 3.7 RCP8.5 15 14 10 
vulnerability 

index >0.7 
~10 

vulnerability 

index 
(Li et al., 2018a) 

World 2–4 A1B 37 5 10 
average of 

GCMs 
~100 EVE (Bergengren et al., 2011) 

Africa - South   A1B 50 7 1 
change in 

one GCM 
~20 aDGVM (Moncrieff et al., 2015) 
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Africa - West   A2 ~50 5 17 

weighted 

average of 

GCMs 

~10 GAM (Heubes et al., 2011) 

Asia - India 3 
+3ºC, +15% 

precipitation 
~25 7 1 

change in 

one scenario 
1 

Minimum 

distance 

supervised 

classification 

(Chakraborty et al., 2013) 

Asia - India   RCP4.5 14 11 19 
agreement 

>0.75 
~10  RF (Rasquinha and Sankaran, 2016) 

Asia - India   RCP8.5 18 11 17 
agreement 

>0.75 
~10 RF (Rasquinha and Sankaran, 2016) 

North 

America - 

Northwest 

  

Historical 

climate and 

A2 

50‒57 33 2 
change in 

one GCM 
~1 Rehfeldt (Langdon and Lawler, 2015) 

North 

America - 

Yukon 

3.9‒6.9 A2 50 25 5 

two projected 

changes in 

biome 

~18 
SNAP-

EWHALE 
(Rowland et al., 2016) 

South 

America 
  A2 ~5‒40 13 14 

confidence 

>0.75 
~170 

CPTEC-

PVM2 
(Lapola et al., 2009) 

Tropical 

forests 
2 +2ºC <5 2 16 P >0.80 ~100 MWCD (Zelazowski et al., 2011) 

Tropical 

forests 
4 +4ºC ~5 2 16 P >0.80 ~100 MWCD (Zelazowski et al., 2011) 

Combined climate change and land use change 
World 1 RCP2.6 22 9   risk >0.3 ~50 LPJmL (Ostberg et al., 2018) 

World 1.8 RCP4.5 34 9   risk >0.3 ~50 LPJmL (Ostberg et al., 2018) 

World 2.2 RCP6.0 41 9   risk >0.3 ~50 LPJmL (Ostberg et al., 2018) 

World 3.7 RCP8.5 54 9   risk >0.3 ~50 LPJmL (Ostberg et al., 2018) 

World 3.1‒4.7 

historical 

climate and 

B1, A1B, A2 

48 13   
confidence 

>0.8 
48 MC1 (Eigenbrod et al., 2015) 

Latin America 1 RCP2.6 8‒14 9 5 
average of 

GCMs 
~50 LPJmL (Boit et al., 2016) 

Latin America 3.7 RCP8.5 10‒15 9 5 
average of 

GCMs 
~50 LPJmL (Boit et al., 2016) 

 1 
 2 
  3 
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Table SM2.4: Biome Change.  Data underlying Figure Box 2.1.1 1 

Full reference Year Continent Country Ecosystem 
Change 

Start.
Year 

End.Y
ear 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Angola 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Angola 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Botswana 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Botswana 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Botswana 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Botswana 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Chad 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Chad 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Ethiopa 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Ethiopa 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Ghana 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Kenya 

Shrub/woodl

and cover 

gain 

2002 2016 
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Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Mozambique 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Mozambique 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Namibia 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Namibia 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Namibia 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Nigeria 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Nigeria 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Senegal 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Somalia 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Somalia 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Somalia 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa South Africa 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa South Africa 

Shrub/woodl

and cover 

gain 

2002 2016 

ACCEPTED V
ERSIO

N 

SUBJE
CT TO FIN

AL E
DITS



FINAL DRAFT  Chapter 2 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SM2-45 Total pages: 136 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Sudan 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Sudan 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Sudan 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Tanzania 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Tanzania 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Tanzania 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Uganda 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Zambia 

Shrub/woodl

and cover 

gain 

2002 2016 

Axelsson, C. R., & Hanan, N. P. (2018). Rates 

of woody encroachment in African savannas 

reflect water constraints and fire disturbance. 

Journal of biogeography, 45(6), 1209-1218. 

2018 Africa Zimbabwe 

Shrub/woodl

and cover 

gain 

2002 2016 

Bassett, T. J., & Zuéli, K. B. (2000). 

Environmental discourses and the Ivorian 

Savanna. Annals of the Association of 

American Geographers, 90(1), 67-95. 

2000 Africa Ivory coast 

Shrub/woodl

and cover 

gain 

1956 1989 

Bassett, T. J., & Zuéli, K. B. (2000). 

Environmental discourses and the Ivorian 

Savanna. Annals of the Association of 

American Geographers, 90(1), 67-95. 

2000 Africa Ivory coast 

Shrub/woodl

and cover 

gain 

1956 1993 

Britz, M. L., & Ward, D. (2007). Dynamics of 

woody vegetation in a semi-arid savanna, with 

a focus on bush encroachment. African Journal 

of Range and Forage Science, 24(3), 131-140. 

2007 Africa South Africa 

Shrub/woodl

and cover 

gain 

1957 1993 

Eckhardt, H. C., Wilgen, B. W., & Biggs, H. C. 

(2000). Trends in woody vegetation cover in 

the Kruger National Park, South Africa, 

between 1940 and 1998. African Journal of 

Ecology, 38(2), 108-115. 

2000 Africa South Africa 

Shrub/woodl

and cover 

gain 

1940 1998 
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Gautier, L. (1989). Contact forêt-savane en 

Côte d'Ivoire centrale: évolution de la surface 

forestière de la réserve de Lamto (sud du V-

Baoulé). Bulletin de la Société Botanique de 

France, 136(3), 85-92. 

1989 Africa Ivory coast 
Forest cover 

gain 
1963 1988 

Gautier, L. (1989). Contact forêt-savane en 

Côte d'Ivoire centrale: évolution de la surface 

forestière de la réserve de Lamto (sud du V-

Baoulé). Bulletin de la Société Botanique de 

France, 136(3), 85-92. 

1989 Africa Ivory coast 

Shrub/woodl

and cover 

gain 

1963 1988 

Goetze, D., Hörsch, B., & Porembski, S. 

(2006). Dynamics of forest–savanna mosaics in 

north‐eastern Ivory Coast from 1954 to 

2002. Journal of Biogeography, 33(4), 653-

664. 

2006 Africa Guinea 
Forest cover 

gain 
1954 1996 

Gordijn, P. J., Rice, E., & Ward, D. (2012). 

The effects of fire on woody plant 

encroachment are exacerbated by succession of 

trees of decreased palatability. Perspectives in 

Plant Ecology, Evolution and 

Systematics, 14(6), 411-422. 

2012 Africa South Africa 

Shrub/woodl

and cover 

gain 

1943 2007 

Grellier, S., Kemp, J., Janeau, J. L., Florsch, 

N., Ward, D., Barot, S., ... & Valentin, C. 

(2012). The indirect impact of encroaching 

trees on gully extension: A 64year study in a 

sub-humid grassland of South 

Africa. Catena, 98, 110-119. 

2012 Africa South Africa 

Shrub/woodl

and cover 

gain 

1945 2009 

Guillet, B., Achoundong, G., Happi, J. Y., 

Beyala, V. K. K., Bonvallot, J., Riera, B., ... & 

Schwartz, D. (2001). Agreement between 

floristic and soil organic carbon isotope 

(13C/12C, 14C) indicators of forest invasion of 

savannas during the last century in 

Cameroon. Journal of Tropical 

Ecology, 17(06), 809-832. 

2001 Africa Cameroon 
Forest cover 

gain 
1952 1993 

Hottman, M. T., & O'Connor, T. G. (1999). 

Vegetation change over 40 years in the 

Weenen/Muden area, KwaZulu-Natal: 

evidence from photo-panoramas.African 

Journal of Range and Forage Science, 16(2-3), 

71-88. 

1999 Africa South Africa 

Shrub/woodl

and cover 

gain 

1955 1998 

Hudak, A. T., & Wessman, C. A. (2001). 

Textural analysis of high resolution imagery to 

quantify bush encroachment in Madikwe Game 

Reserve, South Africa, 1955-

1996. International Journal of Remote 

Sensing, 22(14), 2731-2740. 

2001 Africa South Africa 

Shrub/woodl

and cover 

gain 

1955 1996 

Kakembo, V. (2001). Trends in vegetation 

degradation in relation to land tenure, rainfall, 

and population changes in Peddie district, 

Eastern Cape, South Africa.Environmental 

Management, 28(1), 39-46. 

2001 Africa South Africa 

Shrub/woodl

and cover 

gain 

1938 1988 

Levick, S. R., & Rogers, K. H. (2011). 

Context-dependent vegetation dynamics in an 

African savanna. Landscape ecology, 26(4), 

515-528. 

2011 Africa South Africa 

Shrub/woodl

and cover 

gain 

1942 2001 

Levick, S. R., & Rogers, K. H. (2011). 

Context-dependent vegetation dynamics in an 

African savanna. Landscape ecology, 26(4), 

515-528. 

2011 Africa South Africa 

Shrub/woodl

and cover 

gain 

1942 2001 
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Mapedza, E., Wright, J., & Fawcett, R. (2003). 

An investigation of land cover change in 

Mafungautsi Forest, Zimbabwe, using GIS and 

participatory mapping.Applied 

Geography, 23(1), 1-21. 

2003 Africa Zimbabwe 
Forest cover 

gain 
1976 1996 

Marston, C. G., Aplin, P., Wilkinson, D. M., 

Field, R., & O’Regan, H. J. (2017). Scrubbing 

up: multi-scale investigation of woody 

encroachment in a southern African savannah. 

Remote Sensing, 9(5), 419. 

2017 Africa South Africa 

Shrub/woodl

and cover 

gain 

2001 2014 

Mitchard, E. T. A., Saatchi, S. S., Gerard, F. F., 

Lewis, S. L., & Meir, P. (2009). Measuring 

woody encroachment along a forest-savanna 

boundary in Central Africa. Earth 

Interactions, 13(8), 1-29. 

2009 Africa Cameroon 
Forest cover 

gain 
1986 2006 

Mosugelo, D. K., Moe, S. R., Ringrose, S., & 

Nellemann, C. (2002). Vegetation changes 

during a 36‐year period in northern Chobe 

National Park, Botswana.African Journal of 

Ecology, 40(3), 232-240. 

2002 Africa Botswana 

Shrub/woodl

and cover 

gain 

1962 1998 

O’Connor, T. G. (2001). Effect of small 

catchment dams on downstream vegetation of a 

seasonal river in semi‐arid African 

savanna. Journal of Applied Ecology, 38(6), 

1314-1325. 

2001 Africa South Africa 

Shrub/woodl

and cover 

gain 

1955 1987 

O'Connor, T. G., & Crow, V. R. T. (1999). 

Rate and pattern of bush encroachment in 

Eastern Cape savanna and grassland. African 

Journal of Range and Forage Science, 16(1), 

26-31. 

1999 Africa South Africa 

Shrub/woodl

and cover 

gain 

1938 1986 

O'connor, T. G., Haines, L. M., & Snyman, H. 

A. (2001). Influence of precipitation and 

species composition on phytomass of a semi‐

arid African grassland. Journal of Ecology, 

89(5), 850-860. 

2001 Africa South Africa 

Shrub/woodl

and cover 

gain 

1955 1987 

Poulsen, Z.C. and Hoffman, M.T., 2015. 

Changes in the distribution of indigenous forest 

in Table Mountain National Park during the 

20th Century. South African Journal of Botany. 

101, 49-56. 

2015 Africa South Africa 
Forest cover 

gain 
1944 2008 

Prins, H. H., & van der Jeugd, H. P. (1993). 

Herbivore population crashes and woodland 

structure in East Africa. Journal of Ecology, 

305-314. 

1993 Africa Tanzania 

Shrub/woodl

and cover 

gain 

1985 1991 

Prins, H. H., & van der Jeugd, H. P. (1993). 

Herbivore population crashes and woodland 

structure in East Africa. Journal of Ecology, 

305-314. 

1993 Africa Tanzania 

Shrub/woodl

and cover 

gain 

1985 1991 

Prins, H. H., & van der Jeugd, H. P. (1993). 

Herbivore population crashes and woodland 

structure in East Africa. Journal of Ecology, 

305-314. 

1993 Africa Tanzania 

Shrub/woodl

and cover 

gain 

1985 1991 

Prins, H. H., & van der Jeugd, H. P. (1993). 

Herbivore population crashes and woodland 

structure in East Africa. Journal of Ecology, 

305-314. 

1993 Africa Tanzania 

Shrub/woodl

and cover 

gain 

1985 1991 

Puttick, J. R., Hoffman, M. T., & Gambiza, J. 

(2011). Historical and recent land-use impacts 

on the vegetation of Bathurst, a municipal 

commonage in the Eastern Cape, South 

Africa. African Journal of Range & Forage 

Science, 28(1), 9-20. 

2011 Africa South Africa 

Shrub/woodl

and cover 

gain 

1942 2004 
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Puttick, J. R., Hoffman, M. T., & Gambiza, J. 

(2011). Historical and recent land-use impacts 

on the vegetation of Bathurst, a municipal 

commonage in the Eastern Cape, South 

Africa. African Journal of Range & Forage 

Science, 28(1), 9-20. 

2011 Africa South Africa 

Shrub/woodl

and cover 

gain 

1942 2004 

Puttick, J. R., Hoffman, M. T., & Gambiza, J. 

(2011). Historical and recent land-use impacts 

on the vegetation of Bathurst, a municipal 

commonage in the Eastern Cape, South 

Africa. African Journal of Range & Forage 

Science, 28(1), 9-20. 

2011 Africa South Africa 

Shrub/woodl

and cover 

gain 

1942 2004 

Puttick, J. R., Hoffman, M. T., & Gambiza, J. 

(2014). The impact of land use on woody plant 

cover and species composition on the 

Grahamstown municipal commonage: 

implications for South Africa's land reform 

programme. African Journal of Range & 

Forage Science, 31(2), 123-133. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1942 2004 

Puttick, J. R., Hoffman, M. T., & Gambiza, J. 

(2014). The influence of South Africa's post-

apartheid land reform policies on bush 

encroachment and range condition: a case 

study of Fort Beaufort's municipal 

commonage. African Journal of Range & 

Forage Science, (ahead-of-print), 1-11. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1949 2004 

Puttick, J. R., Hoffman, M. T., & Gambiza, J. 

(2014). The influence of South Africa's post-

apartheid land reform policies on bush 

encroachment and range condition: a case 

study of Fort Beaufort's municipal 

commonage. African Journal of Range & 

Forage Science, (ahead-of-print), 1-11. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1949 2004 

Puttick, J. R., Hoffman, M. T., & Gambiza, J. 

(2014). The influence of South Africa's post-

apartheid land reform policies on bush 

encroachment and range condition: a case 

study of Fort Beaufort's municipal 

commonage. African Journal of Range & 

Forage Science, (ahead-of-print), 1-11. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1949 2004 

Rohde, R. F., & Hoffman, M. T. (2012). The 

historical ecology of Namibian rangelands: 

Vegetation change since 1876 in response to 

local and global drivers. Science of the Total 

Environment, 416, 276-288. 

2012 Africa namibia 

Shrub/woodl

and cover 

gain 

1876 2009 

Rohde, R. F., & Hoffman, M. T. (2012). The 

historical ecology of Namibian rangelands: 

Vegetation change since 1876 in response to 

local and global drivers. Science of the Total 

Environment, 416, 276-288. 

2012 Africa namibia 

Shrub/woodl

and cover 

gain 

1876 2009 

Rohde, R. F., Hoffman, M. T., Durbach, I., 

Venter, Z., & Jack, S. (2019). Vegetation and 

climate change in the Pro-Namib and Namib 

Desert based on repeat photography: Insights 

into climate trends. Journal of Arid 

Environments, 165, 119-131. 

2019 Africa Namibia 

Shrub/woodl

and cover 

gain 

1876 2016 

Rohde, R. F., Hoffman, M. T., Durbach, I., 

Venter, Z., & Jack, S. (2019). Vegetation and 

climate change in the Pro-Namib and Namib 

Desert based on repeat photography: Insights 

2019 Africa Namibia 

Shrub/woodl

and cover 

gain 

1876 2016 
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into climate trends. Journal of Arid 

Environments, 165, 119-131. 

Roques, K. G., O'connor, T. G., & Watkinson, 

A. R. (2001). Dynamics of shrub encroachment 

in an African savanna: relative influences of 

fire, herbivory, rainfall and density 

dependence. Journal of Applied 

Ecology, 38(2), 268-280. 

2001 Africa Swaziland 

Shrub/woodl

and cover 

gain 

1947 1997 

Roques, K. G., O'connor, T. G., & Watkinson, 

A. R. (2001). Dynamics of shrub encroachment 

in an African savanna: relative influences of 

fire, herbivory, rainfall and density 

dependence. Journal of Applied 

Ecology, 38(2), 268-280. 

2001 Africa Swaziland 

Shrub/woodl

and cover 

gain 

1947 1997 

Roques, K. G., O'connor, T. G., & Watkinson, 

A. R. (2001). Dynamics of shrub encroachment 

in an African savanna: relative influences of 

fire, herbivory, rainfall and density 

dependence. Journal of Applied 

Ecology, 38(2), 268-280. 

2001 Africa Swaziland 

Shrub/woodl

and cover 

gain 

1947 1997 

Roques, K. G., O'connor, T. G., & Watkinson, 

A. R. (2001). Dynamics of shrub encroachment 

in an African savanna: relative influences of 

fire, herbivory, rainfall and density 

dependence. Journal of Applied 

Ecology, 38(2), 268-280. 

2001 Africa Swaziland 

Shrub/woodl

and cover 

gain 

1947 1997 

Roques, K. G., O'connor, T. G., & Watkinson, 

A. R. (2001). Dynamics of shrub encroachment 

in an African savanna: relative influences of 

fire, herbivory, rainfall and density 

dependence. Journal of Applied 

Ecology, 38(2), 268-280. 

2001 Africa Swaziland 

Shrub/woodl

and cover 

gain 

1947 1997 

Roques, K. G., O'connor, T. G., & Watkinson, 

A. R. (2001). Dynamics of shrub encroachment 

in an African savanna: relative influences of 

fire, herbivory, rainfall and density 

dependence. Journal of Applied 

Ecology, 38(2), 268-280. 

2001 Africa Swaziland 

Shrub/woodl

and cover 

gain 

1947 1997 

Russell, J. M., & Ward, D. (2014). Remote 

sensing provides a progressive record of 

vegetation change in northern KwaZulu-Natal, 

South Africa, from 1944 to 2005. International 

Journal of Remote Sensing, 35(3), 904-926. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1944 2005 

Russell, J. M., & Ward, D. (2014). Remote 

sensing provides a progressive record of 

vegetation change in northern KwaZulu-Natal, 

South Africa, from 1944 to 2005. International 

Journal of Remote Sensing, 35(3), 904-926. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1944 2005 

Russell, J. M., & Ward, D. (2014). Remote 

sensing provides a progressive record of 

vegetation change in northern KwaZulu-Natal, 

South Africa, from 1944 to 2005. International 

Journal of Remote Sensing, 35(3), 904-926. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1944 2005 
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Russell, J. M., & Ward, D. (2014). Remote 

sensing provides a progressive record of 

vegetation change in northern KwaZulu-Natal, 

South Africa, from 1944 to 2005. International 

Journal of Remote Sensing, 35(3), 904-926. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1944 2005 

Russell, J., & Ward, D. (2013). Vegetation 

change in northern KwaZulu-Natal since the 

Anglo-Zulu War of 1879: local or global 

drivers?. African Journal of Range & Forage 

Science, (ahead-of-print), 1-17. 

2013 Africa South Africa 

Shrub/woodl

and cover 

gain 

1879 2011 

Stevens et al unpublished 2016 Africa South Africa 

Shrub/woodl

and cover 

gain 

1940 2009 

Ward, D., Hoffman, M. T., & Collocott, S. J. 

(2014). A century of woody plant 

encroachment in the dry Kimberley savanna of 

South Africa. African Journal of Range & 

Forage Science, (ahead-of-print), 1-15. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1940 2009 

Ward, D., Hoffman, M. T., & Collocott, S. J. 

(2014). A century of woody plant 

encroachment in the dry Kimberley savanna of 

South Africa. African Journal of Range & 

Forage Science, (ahead-of-print), 1-15. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1900 2010 

Ward, D., Hoffman, M. T., & Collocott, S. J. 

(2014). A century of woody plant 

encroachment in the dry Kimberley savanna of 

South Africa. African Journal of Range & 

Forage Science, (ahead-of-print), 1-15. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1899 2010 

Ward, D., Hoffman, M. T., & Collocott, S. J. 

(2014). A century of woody plant 

encroachment in the dry Kimberley savanna of 

South Africa. African Journal of Range & 

Forage Science, (ahead-of-print), 1-15. 

2014 Africa South Africa 

Shrub/woodl

and cover 

gain 

1989 2010 

Wigley, B. J., Bond, W. J., & Hoffman, M. 

(2010). Thicket expansion in a South African 

savanna under divergent land use: local vs. 

global drivers?. Global Change Biology, 16(3), 

964-976. 

2010 Africa South Africa 

Shrub/woodl

and cover 

gain 

1937 2004 

Wigley, B. J., Bond, W. J., & Hoffman, M. 

(2010). Thicket expansion in a South African 

savanna under divergent land use: local vs. 

global drivers?. Global Change Biology, 16(3), 

964-976. 

2010 Africa South Africa 

Shrub/woodl

and cover 

gain 

1937 2004 

Wigley, B. J., Bond, W. J., & Hoffman, M. 

(2010). Thicket expansion in a South African 

savanna under divergent land use: local vs. 

global drivers?. Global Change Biology, 16(3), 

964-976. 

2010 Africa South Africa 

Shrub/woodl

and cover 

gain 

1937 2004 

Masubelele, M. L., Hoffman, M. T., & Bond, 

W. J. (2015). A repeat photograph analysis of 

long‐term vegetation change in semi‐arid South 

Africa in response to land use and 

climate. Journal of Vegetation Science, 26(5), 

1013-1023. 

2015 Africa South Africa 
Herbaceous 

cover gain 
1950 2010 

Masubelele, M. L., Hoffman, M. T., & Bond, 

W. J. (2015). A repeat photograph analysis of 

long‐term vegetation change in semi‐arid South 

Africa in response to land use and 

climate. Journal of Vegetation Science, 26(5), 

1013-1023. 

2015 Africa South Africa 
Herbaceous 

cover gain 
1950 2010 
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Masubelele, M. L., Hoffman, M. T., & Bond, 

W. J. (2015). A repeat photograph analysis of 

long‐term vegetation change in semi‐arid South 

Africa in response to land use and 

climate. Journal of Vegetation Science, 26(5), 

1013-1023. 

2015 Africa South Africa 

Shrub/woodl

and cover 

gain 

1950 2010 

Masubelele, M. L., Hoffman, M. T., & Bond, 

W. J. (2015). A repeat photograph analysis of 

long‐term vegetation change in semi‐arid South 

Africa in response to land use and 

climate. Journal of Vegetation Science, 26(5), 

1013-1023. 

2015 Africa South Africa 

Shrub/woodl

and cover 

gain 

1950 2010 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 

Shrub/woodl

and cover 

gain 

1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 

Shrub/woodl

and cover 

gain 

1987 2016 
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Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 

Shrub/woodl

and cover 

gain 

1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
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Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 
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distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-
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Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 
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distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
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1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Herbaceous 

cover gain 
1987 2016 

Li, W., Buitenwerf, R., Munk, M., Bøcher, P. 

K., & Svenning, J. C. (2020). Deep-learning 

based high-resolution mapping shows woody 

vegetation densification in greater Maasai 

Mara ecosystem. Remote Sensing of 

Environment, 247, 111953. 

2020 Africa Kenya 
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and cover 

gain 
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Li, W., Buitenwerf, R., Munk, M., Bøcher, P. 
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B. B. Baker & R. K. Moseley (2007) 

Advancing Treeline and Retreating Glaciers: 

Implications for Conservation in Yunnan, P.R. 

China, Arctic, Antarctic, and Alpine Research, 

39:2, 200-209, DOI: 10.1657/1523-

0430(2007)39[200:ATARGI]2.0.CO;2 

2007 Asia China 
Forest cover 

gain 
    

Blok D, Sass-Klaassen U, Schaepman-Strub G, 

Heijmans M M P D, Sauren P and Berendse F 

2011 What are the main climate drivers for 

shrub growth in Northeastern Siberian 

tundra? Biogeosciences 8 1169–79 

2011 Asia Russia 

Shrub/woodl

and cover 

gain 

   

Brandt, J.S., Haynes, M.A., Kuemmerle, T., 

Waller, D.M. and Radeloff, V.C., 2013. 

Regime shift on the roof of the world: Alpine 

meadows converting to shrublands in the 

southern Himalayas. Biological Conservation. 

158, 116-127. 

2013 Asia China 

Shrub/woodl

and cover 

gain 
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Esper, J., & Schweingruber, F. H. (2004). 

Large‐scale treeline changes recorded in 

Siberia. Geophysical Research Letters, 31(6). 

2004 Asia Russia 

Shrub/woodl

and cover 

gain 

   

Esper, J., & Schweingruber, F. H. (2004). 

Large‐scale treeline changes recorded in 

Siberia. Geophysical Research Letters, 31(6). 

2004 Asia Russia 

Shrub/woodl

and cover 

gain 

    

Esper, J., & Schweingruber, F. H. (2004). 

Large‐scale treeline changes recorded in 

Siberia. Geophysical Research Letters, 31(6). 

2004 Asia Russia 

Shrub/woodl

and cover 

gain 

   

Feng, Q., Jiang, X., Wang, X., and Cao, S. 

(2015). What has caused desetification in 

China? Nature Scientific Reports 5:15998. 

2015 Asia China  
Grass cover 

loss 
1983 2012 

Feng, Q., Jiang, X., Wang, X., and Cao, S. 

(2015). What has caused desetification in 

China? Nature Scientific Reports 5:15998. 

2015 Asia China  
Grass cover 

loss 
1983 2012 

Feng, Q., Jiang, X., Wang, X., and Cao, S. 

(2015). What has caused desetification in 

China? Nature Scientific Reports 5:15998. 

2015 Asia China  
Grass cover 

loss 
1983 2012 

Feng, Q., Jiang, X., Wang, X., and Cao, S. 

(2015). What has caused desetification in 

China? Nature Scientific Reports 5:15998. 

2015 Asia China  
Grass cover 

loss 
1983 2012 

Forbes B C, Fauria M M and Zetterberg P 2010 

Russian arctic warming and ‘greening’ are 

closely tracked by tundra shrub willows Glob. 

Change Biol. 16 1542–54 

2010 Asia Russia 

Shrub/woodl

and cover 

gain 

    

Gervais, B. R., & MacDonald, G. M. (2000). A 

403-year record of July temperatures and 

treeline dynamics of Pinus sylvestris from the 

Kola Peninsula, northwest Russia. Arctic, 

Antarctic, and Alpine Research, 32(3), 295-

302. 

2000 Asia  Russia 
Forest cover 

gain 
   

Kudo, G., Amagai, Y., Hoshino, B., & Kaneko, 

M. (2011). Invasion of dwarf bamboo into 

alpine snow‐meadows in northern Japan: 

pattern of expansion and impact on species 

diversity. Ecology and Evolution, 1(1), 85-96. 

2011 Asia Japan 
Herbaceous 

cover gain 
1977 2009 

Li, Z., Chen, Y., Li, W., Deng, H., & Fang, G. 

(2015). Potential impacts of climate change on 

vegetation dynamics in Central Asia. Journal of 

Geophysical Research: Atmospheres, 120(24), 

12345-12356. 

2015 Asia Central asia 

Shrub/woodl

and cover 

gain 

1980 2013 

Liu, F., Zhang, H., Qin, Y., Dong, J., Xu, E., 

Yang. Y., Zhang, G., and Xiao, X. (2016). 

Semi-natural areas of Tarim Basin in northwest 

China: Linkage to desertification. Science of 

the Total Environment 573, 178-188. 

2016 Asia China 
Grass cover 

loss 
1990 2010 

Mazepa, V. S. (2005). Stand density in the last 

millennium at the upper tree-line ecotone in the 

Polar Ural Mountains. Canadian Journal of 

Forest Research, 35(9), 2082-2091. 

2005 Asia Russia 
Forest cover 

gain 
   

Meshinev, T., Apostolova, I., & Koleva, E. 

(2000). Influence of warming on timberline 

rising: a case study on Pinus peuce Griseb. in 

Bulgaria. Phytocoenologia, 30(3/4), 431-438. 

2000 Asia Bulgaria 
Forest cover 

gain 
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Moiseev, P. A. (2002). Effect of climatic 

changes on radial increment and age structure 

formation in high-mountain larch forests of the 

Kuznetsk Ala Tau. Russian Journal of 

Ecology, 33(1), 7-13. 

2002 Asia Russia 
Forest cover 

gain 
   

Puyravaud, J.P., Dufour, C. and Aravajy, S., 

2003. Rain forest expansion mediated by 

successional processes in vegetation thickets in 

the Western Ghats of India. Journal of 

Biogeography. 30, 1067-1080. 

2003 Asia India 

Shrub/woodl

and cover 

gain 

    

SHIYATOV, S. G. (2003). Rates of change in 

the upper treeline ecotone in the Polar Ural 

Mountains. Nature, 394, 739-743. 

2003 Asia Russia 
Forest cover 

gain 
1910 2000 

SHIYATOV, S. G. (2003). Rates of change in 

the upper treeline ecotone in the Polar Ural 

Mountains. Nature, 394, 739-743. 

2003 Asia Russia 
Forest cover 

gain 
1910 2000 

Shiyatov, S. G., Terent’Ev, M. M., & Fomin, 

V. V. (2005). Spatiotemporal dynamics of 

forest-tundra communities in the Polar 

Urals. Russian Journal of Ecology, 36(2), 69-

75. 

2005 Asia Russia 
Forest cover 

gain 
1910 2000 

Shiyatov, S. G., Terent’Ev, M. M., & Fomin, 

V. V. (2005). Spatiotemporal dynamics of 

forest-tundra communities in the Polar 

Urals. Russian Journal of Ecology, 36(2), 69-

75. 

2005 Asia Russia 
Forest cover 

gain 
1910 2000 

Shiyatov, S. G., Terent’ev, M. M., Fomin, V. 

V., & Zimmermann, N. E. (2007). Altitudinal 

and horizontal shifts of the upper boundaries of 

open and closed forests in the Polar Urals in 

the 20th century. Russian Journal of 

Ecology, 38(4), 223-227. 

2007 Asia Russia 
Forest cover 

gain 
1910 2000 

Shrestha, B. B., Ghimire, B., Lekhak, H. D., & 

Jha, P. K. (2007). Regeneration of treeline 

birch (Betula utilis D. Don) forest in a trans-

Himalayan dry valley in central 

Nepal. Mountain Research and 

Development, 27(3), 259-268. 

2007 Asia Nepal 
Forest cover 

gain 
    

Zhang, D. 2019. China’s forest expansion in 

the last three plus decades: Why and how? 

Forest Policy and Economics 98:75–81. 

2019 Asia China 
Forest cover 

gain 
1977 2013 

Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, 

H., Liang, E., & Peñuelas, J. (2018). Moisture‐

mediated responsiveness of treeline shifts to 

global warming in the Himalayas. Global 

change biology, 24(11), 5549-5559. 

2018 Asia Nepal 
Forest cover 

gain 
1865 2015 

Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, 

H., Liang, E., & Peñuelas, J. (2018). Moisture‐

mediated responsiveness of treeline shifts to 

global warming in the Himalayas. Global 

change biology, 24(11), 5549-5559. 

2018 Asia Nepal 
Forest cover 

gain 
1865 2015 

Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, 

H., Liang, E., & Peñuelas, J. (2018). Moisture‐

mediated responsiveness of treeline shifts to 

global warming in the Himalayas. Global 

change biology, 24(11), 5549-5559. 

2018 Asia Nepal 
Forest cover 

gain 
1865 2015 
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Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, 

H., Liang, E., & Peñuelas, J. (2018). Moisture‐

mediated responsiveness of treeline shifts to 

global warming in the Himalayas. Global 

change biology, 24(11), 5549-5559. 

2018 Asia Nepal 
Forest cover 

gain 
1865 2015 

Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, 

H., Liang, E., & Peñuelas, J. (2018). Moisture‐

mediated responsiveness of treeline shifts to 

global warming in the Himalayas. Global 

change biology, 24(11), 5549-5559. 

2018 Asia Nepal 
Forest cover 

gain 
1865 2015 

Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, 

H., Liang, E., & Peñuelas, J. (2018). Moisture‐

mediated responsiveness of treeline shifts to 

global warming in the Himalayas. Global 

change biology, 24(11), 5549-5559. 

2018 Asia Nepal 
Forest cover 

gain 
1865 2015 

Du, H., Liu, J., Li, M. H., Büntgen, U., Yang, 

Y., Wang, L., ... & He, H. S. (2018). Warming‐

induced upward migration of the alpine treeline 

in the Changbai Mountains, northeast 

China. Global Change Biology, 24(3), 1256-

1266. 

2018 Asia China 
Forest cover 

gain 
  1890 

Du, H., Liu, J., Li, M. H., Büntgen, U., Yang, 

Y., Wang, L., ... & He, H. S. (2018). Warming‐

induced upward migration of the alpine treeline 

in the Changbai Mountains, northeast 

China. Global Change Biology, 24(3), 1256-

1266. 

2018 Asia China 
Forest cover 

gain 
1891 1996 

Du, H., Liu, J., Li, M. H., Büntgen, U., Yang, 

Y., Wang, L., ... & He, H. S. (2018). Warming‐

induced upward migration of the alpine treeline 

in the Changbai Mountains, northeast 

China. Global Change Biology, 24(3), 1256-

1266. 

2018 Asia China 
Forest cover 

gain 
1996 2005 

Gatti, R. C., Callaghan, T., Velichevskaya, A., 

Dudko, A., Fabbio, L., Battipaglia, G., & 

Liang, J. (2019). Accelerating upward treeline 

shift in the Altai Mountains under last-century 

climate change. Scientific reports, 9(1), 1-13. 

2019 Asia Russia 
Forest cover 

gain 
1950 2002 

Piao, S., Yin, G., Tan, J., Cheng, L., Huang, 

M., Li, Y., ... & Poulter, B. (2015). Detection 

and attribution of vegetation greening trend in 

China over the last 30 years. Global change 

biology, 21(4), 1601-1609. 

2015 Asia China 
Forest cover 

gain 
1982 2009 

Piao, S., Yin, G., Tan, J., Cheng, L., Huang, 

M., Li, Y., ... & Poulter, B. (2015). Detection 

and attribution of vegetation greening trend in 

China over the last 30 years. Global change 

biology, 21(4), 1601-1609. 

2015 Asia China 
Forest cover 

gain 
1982 2009 

Salmon, V. G., A. L. Breen, J. Kumar, M. J. 

Lara, P. E. Thornton, S. D. Wullschleger, and 

C. M. Iversen. 2019. Alder Distribution and 

Expansion Across a Tundra Hillslope: 

Implications for Local N Cycling. Frontiers in 

Plant Science 10:1–15. 

2019 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

1956 2014 

Joly, K., M. J. Cole, and R. R. Jandt. 2007. 

Diets of overwintering Caribou, rangifer 

tarandus, track decadal changes in Arctic 

Tundra vegetation. Canadian Field-Naturalist 

121:379–383. 

2007 
North 

America 
United States 

Herbaceous 

cover gain 
1981 2005 
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Terskaia, A., Dial, R. J., & Sullivan, P. F. 

(2020). Pathways of tundra encroachment by 

trees and tall shrubs in the western Brooks 

Range of Alaska. Ecography, 43(5), 769-778. 

2020 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

1952 2015 

Terskaia, A., Dial, R. J., & Sullivan, P. F. 

(2020). Pathways of tundra encroachment by 

trees and tall shrubs in the western Brooks 

Range of Alaska. Ecography, 43(5), 769-778. 

2020 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

1952 2015 

Terskaia, A., Dial, R. J., & Sullivan, P. F. 

(2020). Pathways of tundra encroachment by 

trees and tall shrubs in the western Brooks 

Range of Alaska. Ecography, 43(5), 769-778. 

2020 
North 

America 
United States 

Forest cover 

gain 
1952 2015 

Lloyd, A. H., & Fastie, C. L. (2003). Recent 

changes in treeline forest distribution and 

structure in interior Alaska. Ecoscience, 10(2), 

176-185. 

2003 
North 

America 
United States 

Forest cover 

gain 
1850 2002 

Lloyd, A. H., & Fastie, C. L. (2003). Recent 

changes in treeline forest distribution and 

structure in interior Alaska. Ecoscience, 10(2), 

176-185. 

2003 
North 

America 
United States 

Forest cover 

gain 
1850 2002 

Lloyd, A. H. (2005). Ecological histories from 

Alaskan tree lines provide insight into future 

change. Ecology, 86(7), 1687-1695. 

2005 
North 

America 
United States 

Forest cover 

gain 
   

Lloyd, A. H. (2005). Ecological histories from 

Alaskan tree lines provide insight into future 

change. Ecology, 86(7), 1687-1695. 

2005 
North 

America 
United States 

Forest cover 

gain 
    

Villarreal, S., Hollister, R.D., Johnson, D.R., 

Lara, M.J., Webber, P.J. & Tweedie, C.E. 

(2012). Tundra vegetation change near Barrow, 

Alaska (19722010). Environ. Res. Lett., 7. 

2012 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

1972 2010 

Villarreal, S., Hollister, R.D., Johnson, D.R., 

Lara, M.J., Webber, P.J. & Tweedie, C.E. 

(2012). Tundra vegetation change near Barrow, 

Alaska (19722010). Environ. Res. Lett., 7. 

2012 
North 

America 
United States 

Grass cover 

loss 
1972 2010 

Tape, K., Sturm, M. & Racine, C. (2006). The 

evidence for shrub expansion in Northern 

Alaska and the Pan-Arctic. Glob. Chang. Biol., 

12, 686–702. 

2006 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

1945 2002 

Sturm, M., Racine, C.H. and Tape, K.D. (2001) 

Increasing shrub abundance in the 

Arctic. Nature 411,546–547. 

2001 
North 

America 
USA 

Forest cover 

gain 
1950 2000 

Sturm, M., Racine, C.H. and Tape, K.D. (2001) 

Increasing shrub abundance in the 

Arctic. Nature 411,546–547. 

2001 
North 

America 
USA 

Shrub/woodl

and cover 

gain 

1950 2000 

Duchesne, R. R., Chopping, M. J., Tape, K. D., 

Wang, Z., & Schaaf, C. L. B. (2018). Changes 

in tall shrub abundance on the North Slope of 

Alaska, 2000–2010. Remote Sensing of 

Environment, 219(December 2016), 221–232. 

https://doi.org/10.1016/j.rse.2018.10.013 

2018 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

2000 2010 

Duchesne, R. R., Chopping, M. J., Tape, K. D., 

Wang, Z., & Schaaf, C. L. B. (2018). Changes 

in tall shrub abundance on the North Slope of 

Alaska, 2000–2010. Remote Sensing of 

Environment, 219(December 2016), 221–232. 

https://doi.org/10.1016/j.rse.2018.10.014 

2018 
North 

America 
United States 
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and cover 

gain 

2000 2010 
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Duchesne, R. R., Chopping, M. J., Tape, K. D., 

Wang, Z., & Schaaf, C. L. B. (2018). Changes 

in tall shrub abundance on the North Slope of 

Alaska, 2000–2010. Remote Sensing of 

Environment, 219(December 2016), 221–232. 

https://doi.org/10.1016/j.rse.2018.10.015 

2018 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

2000 2010 

Duchesne, R. R., Chopping, M. J., Tape, K. D., 

Wang, Z., & Schaaf, C. L. B. (2018). Changes 

in tall shrub abundance on the North Slope of 

Alaska, 2000–2010. Remote Sensing of 

Environment, 219(December 2016), 221–232. 

https://doi.org/10.1016/j.rse.2018.10.016 

2018 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

2000 2010 

Duchesne, R. R., Chopping, M. J., Tape, K. D., 

Wang, Z., & Schaaf, C. L. B. (2018). Changes 

in tall shrub abundance on the North Slope of 

Alaska, 2000–2010. Remote Sensing of 

Environment, 219(December 2016), 221–232. 

https://doi.org/10.1016/j.rse.2018.10.017 
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America 
United States 

Shrub/woodl

and cover 

gain 

2000 2010 

Naito, A. T., and D. M. Cairns. 2015. Patterns 

of shrub expansion in Alaskan arctic river 

corridors suggest phase transition. Ecology and 

Evolution 5:87–101. 
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North 

America 
United States 

Shrub/woodl

and cover 

gain 

1950 2010 

Lloyd, A. H., and C. L. Fastie. 2002. Spatial 

and temporal variability in the growth and 

climate response of tree line trees in Alaska. 

Climatic Change 52:481–509. 

2002 
North 

America 
United States 

Forest cover 

gain 
1923 1996 

Dial R J, Berg E E, Timm K, McMahon A and 

Geck J 2007 Changes in the alpine forest-

tundra ecotone commensurate with recent 

warming in southcentral Alaska: evidence from 

orthophotos and field plots J. Geophys. 

Res. 112 G04015 

2007 
North 

America 
USA 

Shrub/woodl

and cover 

gain 

   

Berg, E.E., Hillman, K.M., Dial, R. and 

DeRuwe, A., 2009. Recent woody invasion of 

wetlands on the Kenai Peninsula Lowlands, 

south-central Alaska: a major regime shift after 

18 000 years of wet Sphagnum–sedge peat 

recruitment. Canadian Journal of Forest 

Research. 39, 2033-2046. 

2009 
North 

America 
Alaska 

Shrub/woodl

and cover 

gain 

1951 1998 

Tape, K.D., Hallinger, M., Welker, J.M. & 

Ruess, R.W. (2012). Landscape Heterogeneity 

of Shrub Expansion in Arctic Alaska. 

Ecosystems, 15, 711–724. 

2012 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

1950 2006 

Brodie, J. F., C. A. Roland, S. E. Stehn, and E. 

Smirnova. 2019. Variability in the expansion 

of trees and shrubs in boreal Alaska. Ecology 

100:1–10. 

2019 
North 

America 
United States 

Forest cover 

gain 
1906 2016 

Knapp, A. K., Briggs, J. M., Collins, S. L., 

Archer, S. R., BRET‐HARTE, M. S., Ewers, B. 

E., ... & Cleary, M. B. (2008). Shrub 

encroachment in North American grasslands: 

shifts in growth form dominance rapidly alters 

control of ecosystem carbon inputs. Global 

Change Biology, 14(3), 615-623. 

2008 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

   

Beck, P.S.A., Juday, G.P., Alix, C., Barber, 

V.A., Winslow, S.E., Sousa, E.E., Heiser, P., 

Herriges, J.D., & Goetz, S.J. 2011. Changes in 

forest productivity across Alaska consistent 

with biome shift. Ecology Letters, 14:373-379. 

2011 
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America 
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Forest cover 

gain 
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Myers-Smith, I.H., Forbes, B.C., Wilmking, 

M., Hallinger, M., Lantz, T., Blok, D., Tape, 

K.D., Macias-Fauria, M., Sass-Klaassen, U., & 

Lévesque, E. (2011). Shrub expansion in 

tundra ecosystems: dynamics, impacts and 

research priorities. Environmental Research 

Letters, 6(4), 1-15. 

2011 
North 

America 
USA 

Shrub/woodl

and cover 

gain 

~50 yr   

Lloyd, A. H. (2005). Ecological histories from 

Alaskan tree lines provide insight into future 

change. Ecology, 86(7), 1687-1695. 
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America 
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Forest cover 

gain 
    

Wang, J. A., Sulla‐Menashe, D., Woodcock, C. 

E., Sonnentag, O., Keeling, R. F., & Friedl, M. 

A. (2020). Extensive land cover change across 

Arctic–Boreal Northwestern North America 

from disturbance and climate forcing. Global 

Change Biology, 26(2), 807-822. 

2020 
North 

America 
USA 
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cover gain 
1984 2014 

Wang, J. A., Sulla‐Menashe, D., Woodcock, C. 

E., Sonnentag, O., Keeling, R. F., & Friedl, M. 

A. (2020). Extensive land cover change across 

Arctic–Boreal Northwestern North America 

from disturbance and climate forcing. Global 

Change Biology, 26(2), 807-822. 

2020 
North 

America 
USA 
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change 
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Wang, J. A., Sulla‐Menashe, D., Woodcock, C. 

E., Sonnentag, O., Keeling, R. F., & Friedl, M. 

A. (2020). Extensive land cover change across 

Arctic–Boreal Northwestern North America 

from disturbance and climate forcing. Global 

Change Biology, 26(2), 807-822. 

2020 
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America 
USA 

Shrub/woodl

and cover 

gain 

1984 2014 

Myers-Smith I H, Hik D S, Kennedy C, Cooley 

D, Johnstone J F, Kenney A J and Krebs C J 

2011 Expansion of canopy-forming willows 

over the twentieth century on Herschel Island, 

Yukon Territory, Canada Ambio 40 610–23 

2011 
North 

America 
Canada 

Shrub/woodl

and cover 

gain 

    

Myers-Smith I H 2011 Shrub encroachment in 

arctic and alpine tundra: mechanisms of 

expansion and ecosystem impacts PhD 

thesis University of Alberta 

2011 
North 

America 
Canada 

Shrub/woodl

and cover 

gain 

   

Myers-Smith, I. H., and D. S. Hik. 2018. 

Climate warming as a driver of tundra 

shrubline advance. Journal of Ecology 

106:547–560. 

2018 
North 

America 
Canada 

Shrub/woodl

and cover 

gain 

2009 2013 

Lantz, T. C., P. Marsh, and S. V. Kokelj. 2013. 

Recent Shrub Proliferation in the Mackenzie 

Delta Uplands and Microclimatic Implications. 

Ecosystems 16:47–59. 
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America 
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and cover 

gain 
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Wang, J. A., Sulla‐Menashe, D., Woodcock, C. 

E., Sonnentag, O., Keeling, R. F., & Friedl, M. 

A. (2020). Extensive land cover change across 

Arctic–Boreal Northwestern North America 

from disturbance and climate forcing. Global 

Change Biology, 26(2), 807-822. 

2020 
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Canada/Alas

ka 
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Wang, J. A., Sulla‐Menashe, D., Woodcock, C. 

E., Sonnentag, O., Keeling, R. F., & Friedl, M. 

A. (2020). Extensive land cover change across 

Arctic–Boreal Northwestern North America 

from disturbance and climate forcing. Global 

Change Biology, 26(2), 807-822. 

2020 
North 

America 

Canada/Alas

ka 

Forest type 

change 
1984 2014 

ACCEPTED V
ERSIO

N 

SUBJE
CT TO FIN

AL E
DITS



FINAL DRAFT  Chapter 2 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SM2-67 Total pages: 136 

Jackson, M. M., Topp, E., Gergel, S. E., 

Martin, K., Pirotti, F., & Sitzia, T. (2016). 

Expansion of subalpine woody vegetation over 

40 years on Vancouver Island, British 

Columbia, Canada. Canadian Journal of 

Forest Research, 46(3), 437-443. 

2016 
North 

America 
Canada 

Forest cover 

gain 
1962 2005 

Jackson, M. M., Topp, E., Gergel, S. E., 

Martin, K., Pirotti, F., & Sitzia, T. (2016). 

Expansion of subalpine woody vegetation over 
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structure in California: Denser forests, smaller 

trees, and increased dominance of 

oaks. Proceedings of the National Academy of 

Sciences, 112(5), 1458-1463. 

2015 
North 

America 
United States 

Forest cover 

gain 
1930 2000 

ACCEPTED V
ERSIO

N 

SUBJE
CT TO FIN

AL E
DITS



FINAL DRAFT  Chapter 2 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SM2-69 Total pages: 136 

McIntyre, P. J., Thorne, J. H., Dolanc, C. R., 

Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, 

D. D. (2015). Twentieth-century shifts in forest 

structure in California: Denser forests, smaller 

trees, and increased dominance of 

oaks. Proceedings of the National Academy of 

Sciences, 112(5), 1458-1463. 

2015 
North 

America 
United States 

Forest type 

change 
1930 2000 

Millar, C. I., Westfall, R. D., Delany, D. L., 
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change and migrational lag. Ecology. 88, 770-

780. 

2007 
North 

America 
Canada 

Forest/woodl

and decline 
~1700 present 

Upshall M 2011 Simulating vegetation change 

in the Torngat Mountains, Labrador using a 

cellular automata-Markov chain model MSc 

thesis Memorial University of Newfoundland, 

St. John’s, NF, Canada 

2011 
North 

America 
Canada 

Shrub/woodl

and cover 

gain 

1985 2001 

Payette, S., 2007. Contrasted dynamics of 

northern Labrador tree lines caused by climate 

change and migrational lag. Ecology. 88, 770-

780. 

2007 
North 

America 
Canada 

Forest cover 

gain 
1940 2007 

Myers-Smith, I.H., Forbes, B.C., Wilmking, 

M., Hallinger, M., Lantz, T., Blok, D., Tape, 

K.D., Macias-Fauria, M., Sass-Klaassen, U., & 

Lévesque, E. (2011). Shrub expansion in 

tundra ecosystems: dynamics, impacts and 

research priorities. Environmental Research 

Letters, 6(4), 1-15. 

2011 
North 

America 
Canada 

Shrub/woodl

and cover 

gain 

   

Myers-Smith, I.H., Forbes, B.C., Wilmking, 

M., Hallinger, M., Lantz, T., Blok, D., Tape, 

K.D., Macias-Fauria, M., Sass-Klaassen, U., & 

Lévesque, E. (2011). Shrub expansion in 

tundra ecosystems: dynamics, impacts and 

research priorities. Environmental Research 

Letters, 6(4), 1-15. 

2011 
North 

America 
Canada 

Shrub/woodl

and cover 

gain 

    

Daniëls F J A, de Molenaar J G, Chytrý M and 

Tichý L 2011 Vegetation change in southeast 

Greenland? Tasiilaq revisited after 40 

years Appl. Veg Sci. 14 230–41 

2011 
North 

America 
Greenland 

Shrub/woodl

and cover 

gain 

1968 2007 

Lantz T C, Kokelj S V, Gergel S E and Henry 

G H R 2009 Relative impacts of disturbance 

and temperature: persistent changes in 

microenvironment and vegetation in 

retrogressive thaw slumps Glob. Change 

Biol. 15 1664–75 

2009 
North 

America 
Canada 

Shrub/woodl

and cover 

gain 

    

Millar, C. I., Westfall, R. D., Delany, D. L., 

King, J. C., & Graumlich, L. J. (2004). 

Response of subalpine conifers in the Sierra 

Nevada, California, USA, to 20th-century 

warming and decadal climate 

variability. Arctic, Antarctic, and Alpine 

Research, 36(2), 181-200. 

2004 
North 

America 
United States 

Forest cover 

gain 
1945 1976 

McIntyre, P. J., Thorne, J. H., Dolanc, C. R., 

Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, 

D. D. (2015). Twentieth-century shifts in forest 

structure in California: Denser forests, smaller 

trees, and increased dominance of 

oaks. Proceedings of the National Academy of 

Sciences, 112(5), 1458-1463. 

2015 
North 

America 
United States 

Forest cover 

gain 
1930 2000 
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McIntyre, P. J., Thorne, J. H., Dolanc, C. R., 

Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, 

D. D. (2015). Twentieth-century shifts in forest 

structure in California: Denser forests, smaller 

trees, and increased dominance of 

oaks. Proceedings of the National Academy of 

Sciences, 112(5), 1458-1463. 

2015 
North 

America 
United States 

Forest type 

change 
1930 2000 

Hollister, R. D., J. L. May, K. S. Kremers, C. 

E. Tweedie, S. F. Oberbauer, J. A. Liebig, T. F. 

Botting, R. T. Barrett, and J. L. Gregory. 2015. 

Warming experiments elucidate the drivers of 

observed directional changes in tundra 

vegetation. Ecology and Evolution 5:1881–

1895. 

2015 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

1994 2012 

Benedict, J. B. (1984). Rates of tree‐island 

migration, Colorado Rocky Mountains, 

USA. Ecology, 65(3), 820-823. 

1984 
North 

America 
United States 

Forest cover 

gain 
   

Daly, C., & Shankman, D. (1985). Seedling 

establishment by conifers above tree limit on 

Niwot Ridge, Front Range, Colorado, 

USA. Arctic and Alpine Research, 17(4), 389-

400. 

1985 
North 

America 
United States 

Forest cover 

gain 
    

Weisberg, Peter J., and William L. Baker. 

"Spatial variation in tree seedling and 

krummholz growth in the forest-tundra ecotone 

of Rocky Mountain National Park, Colorado, 

USA." Arctic and Alpine Research 27, no. 2 

(1995): 116-129. 

1995 
North 

America 
United States     

Elliott, G. P., & Baker, W. L. (2004). Quaking 

aspen (Populus tremuloides Michx.) at treeline: 

a century of change in the San Juan Mountains, 

Colorado, USA. Journal of 

Biogeography, 31(5), 733-745. 

2004 
North 

America 
United States 

Forest type 

change 
    

Coop, J. D., & Givnish, T. J. (2007). Spatial 

and temporal patterns of recent forest 

encroachment in montane grasslands of the 

Valles Caldera, New Mexico, USA. Journal of 

Biogeography, 34(5), 914-927. 

2007 
North 

America 
United States 

Forest cover 

gain 
   

Andersen, M. D., & Baker, W. L. (2005). 

Reconstructing landscape-scale tree invasion 

using survey notes in the Medicine Bow 

Mountains, Wyoming, USA. Landscape 

Ecology, 21(2), 243-258. 

2005 
North 

America 
United States 

Forest cover 

gain 
1895 2005 

Cocke, A. E., Fule, P. Z., & Crouse, J. E. 

(2005). Forest change on a steep mountain 

gradient after extended fire exclusion: San 

Francisco Peaks, Arizona, USA. Journal of 

Applied Ecology, 42(5), 814-823. 

2005 
North 

America 
United States 

Forest cover 

gain 
1876 2000 

Moore, M. M., & Huffman, D. W. (2004). Tree 

encroachment on meadows of the north rim, 

Grand Canyon National Park, Arizona, 

USA. Arctic, Antarctic, and Alpine 

Research, 36(4), 474-483. 

2004 
North 

America 
United States 

Forest cover 

gain 
1930 2000 

Klasner, F. L., & Fagre, D. B. (2002). A half 

century of change in alpine treeline patterns at 

Glacier National Park, Montana, USA. Arctic, 

Antarctic, and Alpine Research, 34(1), 49-56. 

2002 
North 

America 
United States 

Forest cover 

gain 
1945 1991 

Butler, D. R., & DeChano, L. M. (2001). 

Environmental change in Glacier National 

Park, Montana: an assessment through repeat 

photography from fire lookouts. Physical 

Geography, 22(4), 291-304. 

2001 
North 

America 
United States 

Forest cover 

gain 
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Alftine K.J., Malanson G.P. & Fagre D.B. 

(2003). Feedback-driven response to 

multidecadal climatic variability at an alpine 

treeline. Physical Geography, 24, 520-535. 

2003 
North 

America 
United States 

Forest cover 

gain 
1940 1980 

Baker, W., & Weisberg, P. (1997). Using GIS 

to model tree population parameters in the 

Rocky Mountain National Park forest–tundra 

ecotone. Journal of Biogeography, 24(4), 513-

526. 

1997 
North 

America 
United States 

Forest cover 

gain 
    

Weisberg, P. J., Lingua, E., & Pillai, R. B. 

(2007). Spatial patterns of pinyon–juniper 

woodland expansion in central 

Nevada. Rangeland Ecology & 

Management, 60(2), 115-124. 

2007 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

   

Bunn, A. G., Waggoner, L. A., & Graumlich, 

L. J. (2005). Topographic mediation of growth 

in high elevation foxtail pine (Pinus 

balfouriana Grev. et Balf.) forests in the Sierra 

Nevada, USA. Global Ecology and 

Biogeography, 14(2), 103-114. 

2005 
North 

America 
United States 

Forest cover 

gain 
  2001 

Vale, T. R. (1987). Vegetation change and park 

purposes in the high elevations of Yosemite 

National Park, California. Annals of the 

Association of American Geographers, 77(1), 

1-18. 

1987 
North 

America 
United States 

Forest cover 

gain 
   

Brink, V.C. (1959). A directional change in the 

subapline forest-heath ecotone in Garibaldi 

Park, British Columbia. Ecology, 40(1), 10-16. 

1959 
North 

America 
Canada 

Forest cover 

gain 
1918 1958 

Danby, R. K., & Hik, D. S. (2007). Variability, 

contingency and rapid change in recent 

subarctic alpine tree line dynamics. Journal of 

Ecology, 95(2), 352-363. 

2007 
North 

America 
Canada 

Forest cover 

gain 
1947 1989 

Epstein, H. E., Calef, M. P., Walker, M. D., 

Stuart Chapin III, F., & Starfield, A. M. (2004). 

Detecting changes in arctic tundra plant 

communities in response to warming over 

decadal time scales. Global Change 

Biology, 10(8), 1325-1334. 

2004 
North 

America 
United States 

Shrub/woodl

and cover 

gain 

   

Suarez, F., Binkley, D., Kaye, M. W., & 

Stottlemyer, R. (1999). Expansion of forest 

stands into tundra in the Noatak National 

Preserve, northwest Alaska. Ecoscience, 6(3), 

465-470. 

1999 
North 

America 
United States 

Forest cover 

gain 
    

Beckage, B., Osborne, B., Gavin, D. G., Pucko, 

C., Siccama, T., & Perkins, T. (2008). A rapid 

upward shift of a forest ecotone during 40 

years of warming in the Green Mountains of 

Vermont. Proceedings of the National 

Academy of Sciences, 105(11), 4197-4202. 

2008 
North 

America 
United States 

Forest type 

change 
1962 2005 

Gamache, I., & Payette, S. (2005). Latitudinal 

response of subarctic tree lines to recent 

climate change in eastern Canada. Journal of 

Biogeography, 32(5), 849-862. 

2005 
North 

America 
Canada 

Forest cover 

gain 
    

Gamache, I., & Payette, S. (2004). Height 

growth response of tree line black spruce to 

recent climate warming across the forest‐tundra 

of eastern Canada. Journal of Ecology, 92(5), 

835-845. 

2004 
North 

America 
Canada 

Forest cover 

gain 
   

Gamache, I., & Payette, S. (2005). Latitudinal 

response of subarctic tree lines to recent 

climate change in eastern Canada. Journal of 

Biogeography, 32(5), 849-862. 

2005 
North 

America 
Canada 

Forest cover 

gain 
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Gamache, I., & Payette, S. (2005). Latitudinal 

response of subarctic tree lines to recent 

climate change in eastern Canada. Journal of 

Biogeography, 32(5), 849-862. 

2005 
North 

America 
Canada 

Forest cover 

gain 
   

Pereg, D., & Payette, S. (1998). Development 

of black spruce growth forms at treeline. Plant 

Ecology, 138(2), 137-147. 

1998 
North 

America 
Canada 

Forest cover 

gain 
  ~1998 

Caccianiga, M., & Payette, S. (2006). Recent 

advance of white spruce (Picea glauca) in the 

coastal tundra of the eastern shore of Hudson 

Bay (Québec, Canada). Journal of 

Biogeography, 33(12), 2120-2135. 

2006 
North 

America 
Canada 

Forest cover 

gain 
   

Caccianiga, M., & Payette, S. (2006). Recent 

advance of white spruce (Picea glauca) in the 

coastal tundra of the eastern shore of Hudson 

Bay (Québec, Canada). Journal of 

Biogeography, 33(12), 2120-2135. 

2006 
North 

America 
Canada 

Forest cover 

gain 
    

Caccianiga, M., & Payette, S. (2006). Recent 

advance of white spruce (Picea glauca) in the 

coastal tundra of the eastern shore of Hudson 

Bay (Québec, Canada). Journal of 

Biogeography, 33(12), 2120-2135. 

2006 
North 

America 
Canada 

Forest cover 

gain 
   

Caccianiga, M., & Payette, S. (2006). Recent 

advance of white spruce (Picea glauca) in the 

coastal tundra of the eastern shore of Hudson 

Bay (Québec, Canada). Journal of 

Biogeography, 33(12), 2120-2135. 

2006 
North 

America 
Canada 

Forest cover 

gain 
    

Vallée, S., & Payette, S. (2004). Contrasted 

growth of black spruce (Picea mariana) forest 

trees at treeline associated with climate change 

over the last 400 years. Arctic, Antarctic, and 

Alpine Research, 36(4), 400-406. 

2004 
North 

America 
Canada 

Forest cover 

gain 
1800 2000 

Körner, C., Sarris, D. and Christodoulakis, D., 

2005. Long-term increase in climatic dryness 

in the East-Mediterranean as evidenced for the 

island of Samos. Regional Environmental 

Change, 5(1), pp.27-36. 

2005 Europe Greece 
Forest/woodl

and decline 
2000 2000 

Cerrillo, R.N., Varo, M.A., Lanjeri, S. and 

Clemente, R.H., 2007. Cartografía de 

defoliación en los pinares de pino silvestre 

(Pinus sylvestris L.) y pino salgareño (Pinus 

nigra Arnold.) en la Sierra de los Filabres. 

Revista Ecosistemas, 16(3). 

2007 Europe Spain 
Forest/woodl

and decline 
2004 2006 

Peñuelas, J., Lloret, F. and Montoya, R., 2001. 

Severe drought effects on Mediterranean 

woody flora in Spain. Forest Science, 47(2), 

pp.214-218. 

2001 Europe Spain 
Forest/woodl

and decline 

1994 

& 

1998 

1994 

& 

1998 

Markalas, S., 1992. Site and stand factors 

related to mortality rate in a fir forest after a 

combined incidence of drought and insect 

attack. Forest Ecology and Management, 47(1-

4), pp.367-374. 

1992 Europe Greece 
Forest/woodl

and decline 
1987 1989 

van Gils, H., Batsukh, O., Rossiter, D., 

Munthali, W. and Liberatoscioli, E., 2008. 

Forecasting the pattern and pace of Fagus 

forest expansion in Majella National Park, 

Italy. Applied Vegetation Science, 11(4), 

pp.539-546. 

2008 Europe Italy 
Forest cover 

gain 
1975 2003 
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Mancino, G., Nolè, A., Ripullone, F. and 

Ferrara, A., 2014. Landsat TM imagery and 

NDVI differencing to detect vegetation change: 

assessing natural forest expansion in Basilicata, 

southern Italy. iForest-Biogeosciences and 

Forestry, 7(2), p.75. 

2014 Europe Italy 
Forest cover 

gain 
1984 2010 

Barbati, A., Corona, P., Salvati, L. and 

Gasparella, L., 2013. Natural forest expansion 

into suburban countryside: Gained ground for a 

green infrastructure?. Urban Forestry & Urban 

Greening. 12, 36-43. 

2013 Europe Italy 

Shrub/woodl

and cover 

gain 

1974 2008 

Acosta, A., Carranza, M.L. and Giancola, M., 

2005. Landscape change and ecosystem 

classification in a municipal district of a small 

city (Isernia, Central Italy). Environmental 

Monitoring and Assessment, 108(1-3), pp.323-

335. 

2005 Europe Italy 
Forest cover 

gain 
1954 1992 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe Bulgaria 
Forest cover 

gain 
    

Peñuelas, J., Ogaya, R., Boada  M., & Jump, A. 

S. 2007. Migration, invasion and decline: 

changes in recruitment andforest structure in a 

warming-linked shift of European beechforest 

in Catalonia (NE Spain). Ecography 30, 829-

837. 

2007 Europe Spain 
Forest cover 

gain 
1920 2003 

Peñuelas, J., Ogaya, R., Boada  M., & Jump, A. 

S. 2007. Migration, invasion and decline: 

changes in recruitment andforest structure in a 

warming-linked shift of European beechforest 

in Catalonia (NE Spain). Ecography 30, 829-

837. 

2007 Europe Spain 
Forest cover 

gain 
1910 2007 

Peñuelas, J., Ogaya, R., Boada  M., & Jump, A. 

S. 2007. Migration, invasion and decline: 

changes in recruitment andforest structure in a 

warming-linked shift of European beechforest 

in Catalonia (NE Spain). Ecography 30, 829-

837. 

2007 Europe Spain 
Forest type 

change 
1910 2007 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe macedonia 
Forest cover 

gain 
1934 2010 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe Italy 
Forest cover 

gain 
1954 2007 

Ameztegui, A., Coll, L., Brotons, L., & Ninot, 

J. M. (2016). Land‐use legacies rather than 

climate change are driving the recent upward 

shift of the mountain tree line in the 

Pyrenees. Global Ecology and 

Biogeography, 25(3), 263-273. 

2016 Europe Spain 
Forest cover 

gain 
1956 2006 
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Feuillet, T., Birre, D., Milian, J., Godard, V., 

Clauzel, C., & Serrano‐Notivoli, R. (2020). 

Spatial dynamics of alpine tree lines under 

global warming: What explains the mismatch 

between tree densification and elevational 

upward shifts at the tree line ecotone?. Journal 

of Biogeography, 47(5), 1056-1068. 

2019 Europe France 
Forest cover 

gain 
1953 2015 

Feuillet, T., Birre, D., Milian, J., Godard, V., 

Clauzel, C., & Serrano‐Notivoli, R. (2020). 

Spatial dynamics of alpine tree lines under 

global warming: What explains the mismatch 

between tree densification and elevational 

upward shifts at the tree line ecotone?. Journal 

of Biogeography, 47(5), 1056-1068. 

2019 Europe France 
Forest cover 

gain 
1953 2015 

Feuillet, T., Birre, D., Milian, J., Godard, V., 

Clauzel, C., & Serrano‐Notivoli, R. (2020). 

Spatial dynamics of alpine tree lines under 

global warming: What explains the mismatch 

between tree densification and elevational 

upward shifts at the tree line ecotone?. Journal 

of Biogeography, 47(5), 1056-1068. 

2020 Europe France 
Forest cover 

gain 
1953 2015 

Feuillet, T., Birre, D., Milian, J., Godard, V., 

Clauzel, C., & Serrano‐Notivoli, R. (2020). 

Spatial dynamics of alpine tree lines under 

global warming: What explains the mismatch 

between tree densification and elevational 

upward shifts at the tree line ecotone?. Journal 

of Biogeography, 47(5), 1056-1068. 

2020 Europe France 
Forest cover 

gain 
1953 2015 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe Spain 
Forest cover 

gain 
1956 2006 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe Bulgaria 
Forest cover 

gain 
    

Mouillot, F., Ratte, J.P., Joffre, R., Mouillot, D. 

and Rambal, S., 2005. Long-term forest 

dynamic after land abandonment in a fire prone 

Mediterranean landscape (central Corsica, 

France). Landscape Ecology, 20(1), pp.101-

112. 

2005 Europe France 
Forest cover 

gain 
1960 1990 

Vennetier, M., Vila, B., Liang, E.Y., Guibal, 

F., Thabeet, A. and Gadbin-Henry, C., 2007. 

Impact of climate change on pine forest 

productivity and on the shift of a bioclimatic 

limit in a Mediterranean area. Options 

Méditerranéennes, Série A, 75, pp.189-197. 

2007 Europe France 
Forest/woodl

and decline 
2003 2008 

Vennetier, M., Cecillon, L., Guénon, R., 

Schaffhauser, A., Vergnoux, A., Boichard, J.L., 

Bottéro, J.Y., Brun, J.J., Carrara, M., Cassagne, 

N. and Chandioux, O., 2008. Etude de l’impact 

d’incendies de forêt répétés sur la biodiversité 

et sur les sols: recherche d’indicateurs. Rapport 

final. Cemagref, Ministère de l’Agriculture et 

de la pêche, Union Européenne, Aix en 

Provence, 236. 

2008 Europe France 
Forest/woodl

and decline 
2006 2008 
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Preiss, E., Martin, J.L. and Debussche, M., 

1997. Rural depopulation and recent landscape 

changes in a Mediterranean region: 

consequences to the breeding avifauna. 

Landscape ecology, 12(1), pp.51-61. 

1997 Europe France 

Shrub/woodl

and cover 

gain 

1978 1992 

Argenti, G., Bianchetto, E., Ferretti, F., 

Giulietti, V., Milandri, M., Pelleri, F., 

Romagnoli, P., Signorini, M.A. and Venturi, 

E., 2006. Caratterizzazione di un’area 

pascoliva in fase di abbandono attualmente 

utilizzata in modo estensivo (S. Paolo in Alpe-

S. Sofia, FC). Forest@-Journal of Silviculture 

and Forest Ecology, 3(3), p.387. 

2006 Europe Italy 
Forest cover 

gain 
1955 1997 

Agnoletti, M., 2007. The degradation of 

traditional landscape in a mountain area of 

Tuscany during the 19th and 20th centuries: 

Implications for biodiversity and sustainable 

management. Forest ecology and Management, 

249(1-2), pp.5-17. 

2007 Europe Italy 
Forest cover 

gain 
1832 2000 

Vertui, F. and Tagliaferro, F., 1998. Scots pine 

(Pinus sylvestris L.) die-back by unknown 

causes in the Aosta Valley, Italy. 

Chemosphere, 36(4-5), pp.1061-1065. 

1998 Europe Italy 
Forest/woodl

and decline 
1985 1998 

Laiolo, P., Dondero, F., Ciliento, E. and 

Rolando, A., 2004. Consequences of pastoral 

abandonment for the structure and diversity of 

the alpine avifauna. Journal of Applied 

Ecology, 41(2), pp.294-304. 

2004 Europe Italy 
Forest cover 

gain 
1954 2002 

Gellrich, M., Baur, P., Robinson, B.H. and 

Bebi, P., 2008. Combining classification tree 

analyses with interviews to study why sub-

alpine grasslands sometimes revert to forest: A 

case study from the Swiss Alps. Agricultural 

Systems, 96(1-3), pp.124-138. 

2008 Europe Switzerland 
Forest cover 

gain 
1950 2000 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe Slovenia 
Forest cover 

gain 
    

Rigling, A., Bigler, C., Eilmann, B., 

Feldmeyer‐Christe, E., Gimmi, U., Ginzler, C., 

... & Wohlgemuth, T. (2013). Driving factors 

of a vegetation shift from Scots pine to 

pubescent oak in dry Alpine forests. Global 

Change Biology, 19(1), 229-240. 

2013 Europe Switzerland 
Forest type 

change 
1983 2003 

Rigling, A., Bigler, C., Eilmann, B., 

Feldmeyer‐Christe, E., Gimmi, U., Ginzler, C., 

... & Wohlgemuth, T. (2013). Driving factors 

of a vegetation shift from Scots pine to 

pubescent oak in dry Alpine forests. Global 

Change Biology, 19(1), 229-240. 

2013 Europe Switzerland 
Forest type 

change 
1983 2003 

Wermelinger, B., Rigling, A., Schneider 

Mathis, D. and Dobbertin, M., 2008. Assessing 

the role of bark‐and wood‐boring insects in the 

decline of Scots pine (Pinus sylvestris) in the 

Swiss Rhone valley. Ecological Entomology, 

33(2), pp.239-249. 

2008 Europe Switzerland 
Forest/woodl

and decline 
2001 2005 
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Kienast, F., Flühler, H. and Schweingruber, 

F.H., 1981. Jahrringanalysen an Föhren (Pinus 

silvestris L.) aus immissionsgefährdeten 

Beständen des Mittelwallis (Saxon, Schweiz). 

Mitteilungen der Eidgenössischen Anstalt für 

das Forstliche Versuchswesen, 57, pp.415-32. 

1981 Europe Switzerland 
Forest/woodl

and decline 
1960 1978 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe Italy 
Forest cover 

gain 
1954 2018 

Bolliger, J., Kienast, F., Soliva, R. and 

Rutherford, G., 2007. Spatial sensitivity of 

species habitat patterns to scenarios of land use 

change (Switzerland).` Landscape Ecology, 

22(5), pp.773-789. 

2007 Europe Switzerland 
Forest cover 

gain 
1979 1997 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe Switzerland 
Forest cover 

gain 
1954 2018 

Minerbi, S., 1993. Wie gesund sind unsere 

Walder? 10. Bericht uber den Zustand der 

Walder in Su dtirol. Agrar-und Forstbericht, 

Autonome Provinz Bozen. Assessorate fur 

Land-und Forstwirtschaft, p.40. 

1993 Europe Italy 
Forest/woodl

and decline 
1992 1992 

Cannone, N., S. Sgorbati, and M. Guglielmin. 

2007. Unexpected impacts of climate change 

on alpine vegetation. Frontiers in Ecology and 

the Environment 5:360–364. 

2007 Europe Switzerland 

Shrub/woodl

and cover 

gain 

1953 2003 

Tasser, E. and Tappeiner, U., 2002. Impact of 

land use changes on mountain vegetation. 

Applied vegetation science, 5(2), pp.173-184. 

2002 Europe Italy 
Forest cover 

gain 
1932 1998 

Tappeiner, U., Tasser, E., Leitinger, G., 

Cernusca, A. and Tappeiner, G., 2008. Effects 

of historical and likely future scenarios of land 

use on above-and belowground vegetation 

carbon stocks of an alpine valley. Ecosystems, 

11(8), pp.1383-1400. 

2008 Europe Austria 
Forest cover 

gain 
1865 2003 

Cech, T., Perny, L.B., 2000. Kiefernsterben in 

Tirol. Forstschutz-aktuell 22, 12–15. 
2000 Europe Austria 

Forest/woodl

and decline 
1991 1997 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Moldova 
Forest cover 

gain 
1915 2012 

Petercord, R., 2008. Future endangerment of 

the European beech by bark and wood boring 

beetles in BadenWürttemberg. Mitteilungen 

der Deutsche Gesellschaft für Allgemeine und 

Angewandte Entomologie, 16, pp.247-250. 

2008 Europe Germany 
Forest/woodl

and decline 
2003 2006 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe Slovakia 
Forest cover 

gain 
1950 2018 
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Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Ukraine 
Forest cover 

gain 
1917 2012 

Treml, V., Wild, J., Chuman, T., & Potůčková, 

M. 2010. Assessing the change in cover of 

non-indigenous dwarf-pine using aerial 

photographs, a case study from the Hrubý 

Jeseník MTS., the Sudetes. Journal of 

Landscape Ecology, 3(2), 90-104. 

2010 Europe Czechia 
Forest cover 

gain 

1971/1

973 
2003 

Treml, V., Wild, J., Chuman, T., & Potůčková, 

M. 2010. Assessing the change in cover of 

non-indigenous dwarf-pine using aerial 

photographs, a case study from the Hrubý 

Jeseník MTS., the Sudetes. Journal of 

Landscape Ecology, 3(2), 90-104. 

2010 Europe Czechia 
Forest cover 

gain 

1971/1

973 
2003 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe 
Czech 

republic 

Forest cover 

gain 
1936 2005 

Treml, V., Wild, J., Chuman, T., & Potůčková, 

M. 2010. Assessing the change in cover of 

non-indigenous dwarf-pine using aerial 

photographs, a case study from the Hrubý 

Jeseník MTS., the Sudetes. Journal of 

Landscape Ecology, 3(2), 90-104. 

2010 Europe Czechia 
Forest cover 

gain 

1971/1

973 
2003 

Treml, V., Wild, J., Chuman, T., & Potůčková, 

M. 2010. Assessing the change in cover of 

non-indigenous dwarf-pine using aerial 

photographs, a case study from the Hrubý 

Jeseník MTS., the Sudetes. Journal of 

Landscape Ecology, 3(2), 90-104. 

2010 Europe Czechia 
Forest cover 

gain 

1971/1

973 
2003 

Treml, V., Wild, J., Chuman, T., & Potůčková, 

M. 2010. Assessing the change in cover of 

non-indigenous dwarf-pine using aerial 

photographs, a case study from the Hrubý 

Jeseník MTS., the Sudetes. Journal of 

Landscape Ecology, 3(2), 90-104. 

2010 Europe Czechia 
Forest cover 

gain 

1971/1

973 
2003 

Treml, V., Wild, J., Chuman, T., & Potůčková, 

M. 2010. Assessing the change in cover of 

non-indigenous dwarf-pine using aerial 

photographs, a case study from the Hrubý 

Jeseník MTS., the Sudetes. Journal of 

Landscape Ecology, 3(2), 90-104. 

2010 Europe Czechia 
Forest cover 

gain 

1971/1

973 
2003 

Treml, V., Wild, J., Chuman, T., & Potůčková, 

M. 2010. Assessing the change in cover of 

non-indigenous dwarf-pine using aerial 

photographs, a case study from the Hrubý 

Jeseník MTS., the Sudetes. Journal of 

Landscape Ecology, 3(2), 90-104. 

2010 Europe Czechia 
Forest cover 

gain 

1971/1

973 
2003 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Russia 
Forest cover 

gain 
1939 2012 
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Siwkcki, R. and Ufnalski, K., 1998. Review of 

oak stand decline with special reference to the 

role of drought in Poland. European Journal of 

Forest Pathology, 28(2), pp.99-112. 

1998 Europe Poland 
Forest/woodl

and decline 
1979 1987 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Belarus 
Forest cover 

gain 
1930 2012 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Russia 
Forest cover 

gain 
1917 2012 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Russia 
Forest cover 

gain 
1975 2012 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Lithuania 
Forest cover 

gain 
1922 2012 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Russia 
Forest cover 

gain 
1921 2012 

Olsson, E.G.A., Austrheim, G. and Grenne, 

S.N., 2000. Landscape change patterns in 

mountains, land use and environmental 

diversity, Mid-Norway 1960–1993. Landscape 

ecology, 15(2), pp.155-170. 

2001 Europe Norway 
Forest cover 

gain 
1964 1989 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe Norway 
Forest cover 

gain 
1915 2007 

Truong, C., Palmé, A. E., & Felber, F. (2007). 

Recent invasion of the mountain birch Betula 

pubescens ssp. tortuosa above the treeline due 

to climate change: genetic and ecological study 

in northern Sweden. Journal of evolutionary 

biology, 20(1), 369-380. 

2007 Europe Sweden 
Forest cover 

gain 
    

Vowles, T., Lovehav, C., Molau, U. & Björk, 

R.G. (2017). Contrasting impacts of reindeer 

grazing in two tundra grasslands. Environ. Res. 

Lett., 12. 

2017 Europe Sweden 

Shrub/woodl

and cover 

gain 

1995 2012 

Olsson, E.G.A., Austrheim, G. and Grenne, 

S.N., 2000. Landscape change patterns in 

mountains, land use and environmental 

diversity, Mid-Norway 1960–1993. Landscape 

ecology, 15(2), pp.155-170. 

2000 Europe Norway 
Forest cover 

gain 
1963 1993 

Kjallgren & Kullman 1998 1998 Europe Sweden 
Forest cover 

gain 
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Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1969 2009 

Tsvetkov, V.F., Tsvetkov, V.I., 2007. The 

problem of spruce forests—mortality in the 

Arkhangelsk Region. In: Dying Spruce Forests 

of Arkhangelsk Region. Problems 

and Means of their Solution, Department of 

Forest Complex of Arkhangelsk 

Region, Arkhangelsk, Russian Federation, pp. 

20–30. 

2007 Europe Russia 
Forest/woodl

and decline 
2004 2006 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1969 2010 

Frost, G. V., H. E. Epstein, D. A. Walker, G. 

Matyshak, and K. Ermokhina. 2013. Patterned-

ground facilitates shrub expansion in Low 

Arctic tundra. Environmental Research Letters 

8:015035. 

2013 Europe Russia 

Shrub/woodl

and cover 

gain 

1968 2010 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1968 2003 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1968 2004 

Frost, G. V., H. E. Epstein, D. A. Walker, G. 

Matyshak, and K. Ermokhina. 2013. Patterned-

ground facilitates shrub expansion in Low 

Arctic tundra. Environmental Research Letters 

8:015035. 

2013 Europe Russia 

Shrub/woodl

and cover 

gain 

1968 2010 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1968 2010 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1968 2011 

Vowles, T., Lovehav, C., Molau, U. & Björk, 

R.G. (2017). Contrasting impacts of reindeer 

grazing in two tundra grasslands. Environ. Res. 

Lett., 12. 

2017 Europe Sweden 

Shrub/woodl

and cover 

gain 

1995 2012 

Cudlín, Pavel, Matija Klopčič, Roberto 

Tognetti, Frantisek Máli&, Concepción L. 

Alados, Peter Bebi, Karsten Grunewald et al. 

"Drivers of treeline shift in different European 

mountains." Climate Research 73, no. 1-2 

(2017): 135-150. 

2017 Europe 
Northern 

Scandes 

Forest cover 

gain 
1958 2008 

Molau, U. 2010. Long-term impacts of 

observed and induced climate change on 

tussock tundra near its southern limit in 

northern Sweden. Plant Ecology and Diversity 

3:29–34. 

2010 Europe Sweden 

Shrub/woodl

and cover 

gain 

1995 2006 

Rundqvist, S., Hedenås, H., Sandström, A., 

Emanuelsson, U., Eriksson, H., Jonasson, C., et 

al. (2011). Tree and shrub expansion over the 

past 34 years at the tree-line near Abisko, 

Sweden. Ambio, 40, 683–692. 

2011 Europe Sweden 

Shrub/woodl

and cover 

gain 

1976 2010 
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Rundqvist, S., Hedenås, H., Sandström, A., 

Emanuelsson, U., Eriksson, H., Jonasson, C., et 

al. (2011). Tree and shrub expansion over the 

past 34 years at the tree-line near Abisko, 

Sweden. Ambio, 40, 683–692. 

2011 Europe Sweden 
Forest cover 

gain 
1976 2010 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1965 2010 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 
Forest cover 

gain 
1965 2010 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1966 2010 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 
Forest cover 

gain 
1966 2010 

Kapfer, J., and K. Popova. 2020. Changes in 

subarctic vegetation after one century of land 

use and climate change. Journal of Vegetation 

Science 00:1–12. 

2020 Europe Russia 

Shrub/woodl

and cover 

gain 

1930 2016 

Kapfer, J., and K. Popova. 2020. Changes in 

subarctic vegetation after one century of land 

use and climate change. Journal of Vegetation 

Science 00:1–12. 

2020 Europe Russia 
Herbaceous 

cover gain 
1930 2016 

Kapfer, J., and K. Popova. 2020. Changes in 

subarctic vegetation after one century of land 

use and climate change. Journal of Vegetation 

Science 00:1–12. 

2020 Europe Russia 
Grass cover 

loss 
1930 2016 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1966 2009 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 
Forest cover 

gain 
1966 2009 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1966 2009 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 
Forest cover 

gain 
1966 2009 

Frost, G. V., and H. E. Epstein. 2014. Tall 

shrub and tree expansion in Siberian tundra 

ecotones since the 1960s. Global Change 

Biology 20:1264–1277. 

2014 Europe Russia 

Shrub/woodl

and cover 

gain 

1965 2009 

Schmidt, N. M., Kristensen, D. K., Michelsen, 

A. & Bay, C. 2012. High Arctic plant 

community responses to a decade of ambient 

warming. Biodiversity, 12, 191-199. 

2012 Europe Greenland 
Grass cover 

loss 
1997 2008 

Hofgaard, A., Kullman, L., & Alexandersson, 

H. (1991). Response of old‐growth montane 

Picea abies (L.) Karst. forest to climatic 

variability in northern Sweden. New 

Phytologist, 119(4), 585-594. 

1991 Europe Sweden 
Forest cover 

gain 
1938 1988 
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Julio Camarero, J., & Gutiérrez, E. (2007). 

Response of Pinus uncinata recruitment to 

climate warming and changes in grazing 

pressure in an isolated population of the Iberian 

system (NE Spain). Arctic, Antarctic, and 

Alpine Research, 39(2), 210-217. 

2007 Europe Spain  
Forest cover 

gain 
    

Camarero, J. J., & Gutiérrez, E. (2004). Pace 

and pattern of recent treeline dynamics: 

response of ecotones to climatic variability in 

the Spanish Pyrenees. Climatic change, 63(1-

2), 181-200. 

2004 Europe Spain  
Forest cover 

gain 
1900 1997 

Camarero, J. J., & Gutiérrez, E. (2004). Pace 

and pattern of recent treeline dynamics: 

response of ecotones to climatic variability in 

the Spanish Pyrenees. Climatic change, 63(1-

2), 181-200. 

2004 Europe Spain  
Forest cover 

gain 
1900 1997 

Motta, R., & Nola, P. (2001). Growth trends 

and dynamics in sub‐alpine forest stands in the 

Varaita Valley (Piedmont, Italy) and their 

relationships with human activities and global 

change. Journal of Vegetation Science, 12(2), 

219-230. 

2001 Europe Italy 
Forest cover 

gain 
   

Motta, R., & Nola, P. (2001). Growth trends 

and dynamics in sub‐alpine forest stands in the 

Varaita Valley (Piedmont, Italy) and their 

relationships with human activities and global 

change. Journal of Vegetation Science, 12(2), 

219-230. 

2001 Europe Italy 
Forest cover 

gain 
    

Didier, L. (2001). Invasion patterns of 

European larch and Swiss stone pine in 

subalpine pastures in the French Alps. Forest 

Ecology and Management, 145(1-2), 67-77. 

2001 Europe Switzerland 
Forest type 

change 
1950 2000 

Vittoz, P., Rulence, B., Largey, T., & 

Freléchoux, F. (2008). Effects of climate and 

land-use change on the establishment and 

growth of cembran pine (Pinus cembra L.) over 

the altitudinal treeline ecotone in the Central 

Swiss Alps. Arctic, Antarctic, and Alpine 

Research, 40(1), 225-232. 

2008 Europe Switzerland 
Forest cover 

gain 
    

Vittoz, P., Rulence, B., Largey, T., & 

Freléchoux, F. (2008). Effects of climate and 

land-use change on the establishment and 

growth of cembran pine (Pinus cembra L.) over 

the altitudinal treeline ecotone in the Central 

Swiss Alps. Arctic, Antarctic, and Alpine 

Research, 40(1), 225-232. 

2008 Europe Switzerland 
Forest cover 

gain 
   

Gehrig‐Fasel, J., Guisan, A., & Zimmermann, 

N. E. (2007). Tree line shifts in the Swiss Alps: 

climate change or land abandonment?. Journal 

of vegetation science, 18(4), 571-582. 

2007 Europe Switzerland 
Forest cover 

gain 
1985 1997 

Gehrig‐Fasel, J., Guisan, A., & Zimmermann, 

N. E. (2007). Tree line shifts in the Swiss Alps: 

climate change or land abandonment?. Journal 

of vegetation science, 18(4), 571-582. 

2007 Europe Switzerland 
Forest cover 

gain 
1985 1997 

Vittoz, P., Rulence, B., Largey, T., & 

Freléchoux, F. (2008). Effects of climate and 

land-use change on the establishment and 

growth of cembran pine (Pinus cembra L.) over 

the altitudinal treeline ecotone in the Central 

Swiss Alps. Arctic, Antarctic, and Alpine 

Research, 40(1), 225-232. 

2008 Europe Switzerland 
Forest cover 

gain 
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Motta, R., Nola, P., & Piussi, P. (2002). Long‐

term investigations in a strict forest reserve in 

the eastern Italian Alps: spatio‐temporal origin 

and development in two multi‐layered 

subalpine stands. Journal of Ecology, 90(3), 

495-507. 

2002 Europe Italy 
Forest cover 

gain 
1920 2000 

Motta, R., Nola, P., & Piussi, P. (2002). Long‐

term investigations in a strict forest reserve in 

the eastern Italian Alps: spatio‐temporal origin 

and development in two multi‐layered 

subalpine stands. Journal of Ecology, 90(3), 

495-507. 

2002 Europe Italy 
Forest cover 

gain 
  2000 

Kern, Z., & Popa, I. (2008). Changes of frost 

damage and treeline advance for swiss Stone 

Pine in the Calimani Mts.(Eastern Carpathians, 

Romania). Acta Silvatica et Lignaria 

Hungarica, 4, 39-48. 

2008 Europe Romania 
Forest cover 

gain 
1910 2006 

Dullinger, S., Dirnböck, T., & Grabherr, G. 

(2003). Patterns of shrub invasion into high 

mountain grasslands of the Northern 

Calcareous Alps, Austria. Arctic, Antarctic, 

and Alpine Research, 35(4), 434-441. 

2003 Europe Austria 
Forest cover 

gain 
    

LinLinderholm, H. W. (2002). Twentieth-

century Scots pine growth variations in the 

central Scandinavian Mountains related to 

climate change. Arctic, Antarctic, and Alpine 

Research, 34(4), 440-449.derholm 2002 

2002 Europe Sweden 
Forest cover 

gain 
1931 1960 

Grace, J., & Norton, D. A. (1990). Climate and 

growth of Pinus sylvestris at its upper 

altitudinal limit in Scotland: evidence from tree 
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Lara, A., Villalba, R., Wolodarsky‐Franke, A., 

Aravena, J. C., Luckman, B. H., & Cuq, E. 

(2005). Spatial and temporal variation in 

Nothofagus pumilio growth at tree line along 

its latitudinal range (35 40′–55 S) in the 

Chilean Andes. Journal of 

Biogeography, 32(5), 879-893. 

2005 
South 

America 
Chile 

Forest cover 

gain 
1768 1996 

Lara, A., Villalba, R., Wolodarsky‐Franke, A., 

Aravena, J. C., Luckman, B. H., & Cuq, E. 

(2005). Spatial and temporal variation in 

Nothofagus pumilio growth at tree line along 

its latitudinal range (35 40′–55 S) in the 

Chilean Andes. Journal of 

Biogeography, 32(5), 879-893. 

2005 
South 

America 
Chile 

Forest cover 

gain 
1752 1996 

Lara, A., Villalba, R., Wolodarsky‐Franke, A., 

Aravena, J. C., Luckman, B. H., & Cuq, E. 

(2005). Spatial and temporal variation in 

Nothofagus pumilio growth at tree line along 

its latitudinal range (35 40′–55 S) in the 

Chilean Andes. Journal of 

Biogeography, 32(5), 879-893. 

2005 
South 

America 
Chile 

Forest cover 

gain 
1763 1996 

Cuevas, J. G. (2000). Tree recruitment at the 

Nothofagus pumilio alpine timberline in Tierra 

del Fuego, Chile. Journal of Ecology, 88(5), 

840-855. 

2000 
South 

America 
Chile 

Forest cover 

gain 
   

Cierjacks, A., Wesche, K., & Hensen, I. 

(2007). Potential lateral expansion of Polylepis 

forest fragments in central Ecuador. Forest 

Ecology and Management, 242(2-3), 477-486. 

2007 
South 

America 
Ecudor 

Forest cover 

gain 
    

Bader, M. Y., van Geloof, I., & Rietkerk, M. 

(2007). High solar radiation hinders tree 

regeneration above the alpine treeline in 

northern Ecuador. Plant Ecology, 191(1), 33-

45. 

2007 
South 

America 
Ecuador 

Forest cover 

gain 
   

Daniels, L. D., & Veblen, T. T. (2003). 

Regional and local effects of disturbance and 

climate on altitudinal treelines in northern 

Patagonia. Journal of Vegetation 

Science, 14(5), 733-742. 

2003 
South 

America 
Patagonia 

Forest cover 

gain 
    

Daniels, L. D., & Veblen, T. T. (2003). 

Regional and local effects of disturbance and 

climate on altitudinal treelines in northern 

Patagonia. Journal of Vegetation 

Science, 14(5), 733-742. 

2003 
South 

America 
Patagonia 

Forest cover 

gain 
   

Cuevas, J. G. (2000). Tree recruitment at the 

Nothofagus pumilio alpine timberline in Tierra 

del Fuego, Chile. Journal of Ecology, 88(5), 

840-855. 

2000 
South 

America 
Chile 

Forest cover 

gain 
    

Cuevas, J. G. (2002). Episodic regeneration at 

the Nothofagus pumilio alpine timberline in 

Tierra del Fuego, Chile. Journal of 

Ecology, 90(1), 52-60. 

2002 
South 

America 
Chile 

Forest cover 

gain 
1800 1850 

Byers, A. C. (2000). Contemporary landscape 

change in the Huascarán National Park and 

buffer zone, Cordillera Blanca, Peru. Mountain 

Research and Development, 20(1), 52-63. 

2000 
South 

America 
Peru 

Forest cover 

gain 
1936 1998 

Cerrillo, R.N., Varo, M.A., Lanjeri, S. and 

Clemente, R.H., 2007. Cartografía de 

defoliación en los pinares de pino silvestre 

(Pinus sylvestris L.) y pino salgareño (Pinus 

nigra Arnold.) en la Sierra de los Filabres. 

Revista Ecosistemas, 16(3). 

2007 Europe Spain 
Forest/woodl

and decline 
2004 2006 
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French Forest Health Department 

(Département Santé des Forêts), 1998–1999, 

2003–2008 Annual Reports 

2008 Europe France 
Forest/woodl

and decline 
2003 2008 

Kienast, F., Flühler, H. and Schweingruber, 

F.H., 1981. Jahrringanalysen an Föhren (Pinus 

silvestris L.) aus immissionsgefährdeten 

Beständen des Mittelwallis (Saxon, Schweiz). 

Mitteilungen der Eidgenössischen Anstalt für 

das Forstliche Versuchswesen, 57, pp.415-32. 

1981 Europe Switzerland 
Forest/woodl

and decline 
1960 1978 

Körner, C., Sarris, D. and Christodoulakis, D., 

2005. Long-term increase in climatic dryness 

in the East-Mediterranean as evidenced for the 

island of Samos. Regional Environmental 

Change, 5(1), pp.27-36. 

2005 Europe Greece 
Forest/woodl

and decline 
2000 2000 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe 
Former 

Soviet Union  

Forest/woodl

and decline 
1700 2000 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Belarus 
Forest/woodl

and decline 
1700 1930 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Lithuania 
Forest/woodl

and decline 
1700 1922 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Russia 
Forest/woodl

and decline 
1700 1921 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Russia 
Forest/woodl

and decline 
1700 1917 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Ukraine 
Forest/woodl

and decline 
1700 1917 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Moldova 
Forest/woodl

and decline 
1700 1915 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Russia 
Forest/woodl

and decline 
1700 1975 
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Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Russia 
Forest/woodl

and decline 
1700 2012 

Kuemmerle, T., Kaplan, J.O., Prishchepov, 

A.V., Rylsky, I., Chaskovskyy, O., Tikunov, 

V.S. and Müller, D., 2015. Forest transitions in 

Eastern Europe and their effects on carbon 

budgets. Global change biology, 21(8), 

pp.3049-3061. 

2015 Europe Russia 
Forest/woodl

and decline 
1700 1939 

LinLinderholm, H. W. (2002). Twentieth-

century Scots pine growth variations in the 

central Scandinavian Mountains related to 

climate change. Arctic, Antarctic, and Alpine 

Research, 34(4), 440-449.derholm 2002 

2002 Europe Sweden 
Forest/woodl

and decline 
1901 1930 

LinLinderholm, H. W. (2002). Twentieth-

century Scots pine growth variations in the 

central Scandinavian Mountains related to 

climate change. Arctic, Antarctic, and Alpine 

Research, 34(4), 440-449.derholm 2002 

2002 Europe Sweden 
Forest/woodl

and decline 
1961 1990 

Markalas, S., 1992. Site and stand factors 

related to mortality rate in a fir forest after a 

combined incidence of drought and insect 

attack. Forest Ecology and Management, 47(1-

4), pp.367-374. 

1992 Europe Greece 
Forest/woodl

and decline 
1987 1989 

Minerbi, S., 1993. Wie gesund sind unsere 

Walder? 10. Bericht uber den Zustand der 

Walder in Su dtirol. Agrar-und Forstbericht, 

Autonome Provinz Bozen. Assessorate fur 

Land-und Forstwirtschaft, p.40. 

1993 Europe Italy 
Forest/woodl

and decline 
1992 1992 

Peñuelas, J., Lloret, F. and Montoya, R., 2001. 

Severe drought effects on Mediterranean 

woody flora in Spain. Forest Science, 47(2), 

pp.214-218. 

2001 Europe Spain 
Forest/woodl

and decline 

1994 

& 

1998 

1994 

& 

1998 

Petercord, R., 2008. Future endangerment of 

the European beech by bark and wood boring 

beetles in BadenWürttemberg. Mitteilungen 

der Deutsche Gesellschaft für Allgemeine und 

Angewandte Entomologie, 16, pp.247-250. 

2008 Europe Germany 
Forest/woodl

and decline 
2003 2006 

Schilli, S., Dobbertin, M., Rigling, A., Bucher, 

H.U. 2008. Waldfohrensterben um chur und im 

Wallis. Bundner Wald, 70-74. 

2008 Europe Switzerland 
Forest/woodl

and decline 
2002 2007 

Siwkcki, R. and Ufnalski, K., 1998. Review of 

oak stand decline with special reference to the 

role of drought in Poland. European Journal of 

Forest Pathology, 28(2), pp.99-112. 

1998 Europe Poland 
Forest/woodl

and decline 
1979 1987 

Solberg, S., 2004. Summer drought: a driver 

for crown condition and mortality of Norway 

spruce in Norway. Forest Pathology, 34(2), 

pp.93-104. 

2004 Europe Norway 
Forest/woodl

and decline 
1988 2001 

Tsopelas, P., Angelopoulos, A., Economou, A. 

and Soulioti, N., 2004. Mistletoe (Viscum 

album) in the fir forest of Mount Parnis, 

Greece. Forest ecology and management, 

202(1-3), pp.59-65. 

2004 Europe Greece 
Forest/woodl

and decline 
2000 2002 
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Tsvetkov, V.F., Tsvetkov, V.I., 2007. The 

problem of spruce forests—mortality in the 

Arkhangelsk Region. In: Dying Spruce Forests 

of Arkhangelsk Region. Problems 

and Means of their Solution, Department of 

Forest Complex of Arkhangelsk 

Region, Arkhangelsk, Russian Federation, pp. 

20–30. 

2007 Europe Russia 
Forest/woodl

and decline 
2004 2006 

Vennetier, M., Cecillon, L., Guénon, R., 

Schaffhauser, A., Vergnoux, A., Boichard, J.L., 

Bottéro, J.Y., Brun, J.J., Carrara, M., Cassagne, 

N. and Chandioux, O., 2008. Etude de l’impact 

d’incendies de forêt répétés sur la biodiversité 

et sur les sols: recherche d’indicateurs. Rapport 

final. Cemagref, Ministère de l’Agriculture et 

de la pêche, Union Européenne, Aix en 

Provence, 236. 

2008 Europe France 
Forest/woodl

and decline 
2006 2008 

Vennetier, M., Vila, B., Liang, E.Y., Guibal, 

F., Thabeet, A. and Gadbin-Henry, C., 2007. 

Impact of climate change on pine forest 

productivity and on the shift of a bioclimatic 

limit in a Mediterranean area. Options 

Méditerranéennes, Série A, 75, pp.189-197. 

2007 Europe France 
Forest/woodl

and decline 
2003 2008 

Vertui, F. and Tagliaferro, F., 1998. Scots pine 

(Pinus sylvestris L.) die-back by unknown 

causes in the Aosta Valley, Italy. 

Chemosphere, 36(4-5), pp.1061-1065. 

1998 Europe Italy 
Forest/woodl

and decline 
1985 1998 

Wermelinger, B., Rigling, A., Schneider 

Mathis, D. and Dobbertin, M., 2008. Assessing 

the role of bark‐and wood‐boring insects in the 

decline of Scots pine (Pinus sylvestris) in the 

Swiss Rhone valley. Ecological Entomology, 

33(2), pp.239-249. 

2008 Europe Switzerland 
Forest/woodl

and decline 
2001 2005 

Cech, T., Perny, L.B., 2000. Kiefernsterben in 

Tirol. Forstschutz-aktuell 22, 12–15. 
2000 Europe Austria 

Forest/woodl

and decline 
1991 1997 

Ermolenko, A., 2008, August. Climate change 

and mass-scale forest dieback: regional, 

national and international aspects. In Oral 

presentation at: International Conference 

‘‘Adaptation of Forests and Forest 

Management to Changing Climate with. 

2008 Asia Russia 
Forest/woodl

and decline 
2005 2008 

Fisher, M. and Gardner, A.S., 1995. The status 

and ecology of a Juniperus excelsa subsp. 

polycarpos woodland in the northern 

mountains of Oman. Vegetatio, 119(1), pp.33-

51. 

1995 Asia 
Saudi Arabia 

and Oman 

Forest/woodl

and decline 
~1990 ~1995 

Khan, J.A., Rodgers, W.A., Johnsingh, A.J.T. 

and Mathur, P.K., 1994. Tree and shrub 

mortality and debarking by sambar Cervus 

unicolor (Kerr) in Gir after a drought in 

Gujarat, India. Biological Conservation, 68(2), 

pp.149-154. 

2001 Asia India 
Forest/woodl

and decline 
1987 1987 

Kinnaird, M.F. and O’Brien, T.G., 1998. 

Ecological effects of wildfire on lowland 

rainforest in Sumatra. Conservation Biology, 

12(5), pp.954-956. 

1998 Asia Indonesia 
Forest/woodl

and decline 
1997 1998 
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Lim, J.H., Chun, J.H., Woo, S.Y. and Kim, 

Y.K., 2008, August. Increased declines of 

Korean fir forest caused by climate change in 

Mountain Halla, Korea. In Oral Presentation 

At: International Conference ‘‘Adaptation of 

Forests and Forest Management to Changing 

Climate with Emphasis on Forest Health: A 

Review of Science, Policies, and Practices’’, 

Umea, Sweden, FAO/IUFRO (pp. 25-28). 

2008 Asia South Korea 
Forest/woodl

and decline 
2003 2008 

Nakagawa, M., Tanaka, K., Nakashizuka, T., 

Ohkubo, T., Kato, T., Maeda, T., Sato, K., 

Miguchi, H., Nagamasu, H., Ogino, K. and 

Teo, S., 2000. Impact of severe drought 

associated with the 1997–1998 El Nino in a 

tropical forest in Sarawak. Journal of Tropical 

Ecology, 16(3), pp.355-367. 

2000 Asia Malaysia 
Forest/woodl

and decline 
1997 1998 

Nishimua, T.B., Suzuki, E., Kohyama, T. and 

Tsuyuzaki, S., 2007. Mortality and growth of 

trees in peat-swamp and heath forests in 

Central Kalimantan after severe drought. Plant 

Ecology, 188(2), pp.165-177. 

2007 Asia Indonesia 
Forest/woodl

and decline 
1997 1998 

Pandit, M.K., Manish, K. and Koh, L.P., 2014. 

Dancing on the roof of the world: ecological 

transformation of the Himalayan landscape. 

BioScience, 64(11), pp.980-992. 

2014 Asia 

Afganistan, 

Pakistan, 

India, Nepal, 

Bhutan, 

China, TAR, 

Northern 

Myanmar 

Forest/woodl

and decline 
1960 1990 

Semerci, A., Sanlı, B.N., Sahin, O., Celik, O., 

Balkız, G.B., Ceylan, S. and Argun, N., 2008, 

August. Examination of tree mortalities in 

semi-arid central Anatolian region of Turkey 

during last six-year period (2002–2007). In 

Book of Abstracts of the International 

Conference ‘‘Adaptation of Forests and Forest 

Management to Changing Climate with 

Emphasis on Forest Health: A Review of 

Science, Policies, and Practices’’, Umea, 

Sweden, FAO/IUFRO (p. 262). 

2008 Asia Turkey 
Forest/woodl

and decline 
2002 2007 

Van Nieuwstadt, M.G. and Sheil, D., 2005. 

Drought, fire and tree survival in a Borneo rain 

forest, East Kalimantan, Indonesia. Journal of 

Ecology, 93(1), pp.191-201. 

2005 Asia 
Indonesia & 

Malaysia 

Forest/woodl

and decline 
1997 1998 

Wang, H.B., Zhang, Z., Kong, X.B., Lui, S.C., 

Shen, Z.R., 2007. Preliminary deduction of 

 

potential distribution and alternative hosts of 

invasive pest, Dendroctonus 

 

valens (Coleoptera: Scolytidae). Scientia Silvae 

Sinicae 143, 71–76. 

2007 Asia China 
Forest/woodl

and decline 
1998 2001 

Werner, W.L., 1988. Canopy dieback in the 

upper montane rain forests of Sri Lanka. 

GeoJournal, 17(2), pp.245-248. 

1988 Asia Sri Lanka 
Forest/woodl

and decline 
176 1980 

Woods, P., 1989. Effects of logging, drought, 

and fire on structure and composition of 

tropical forests in Sabah, Malaysia. Biotropica, 

pp.290-298. 

1989 Asia Malaysia 
Forest/woodl

and decline 
1982 1983 
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Giampietro, R. 2005. Modificações na 

estrutura e composição florística de matas 

ciliares na região do Médio Paranapanema 

(1992-2004). 118 f. Dissertação (Mestrado em 

Ciências da Engenharia Ambiental),  

Universidade de São Paulo, São Carlos, SP. 

2005 
South 

America 
Brazil 

Forest/woodl

and decline 
1992 2004 

Giampietro, R. 2005. Modificações na 

estrutura e composição florística de matas 

ciliares na região do Médio Paranapanema 

(1992-2004). 118 f. Dissertação (Mestrado em 

Ciências da Engenharia Ambiental),  

Universidade de São Paulo, São Carlos, SP. 

2005 
South 

America 
Brazil 

Forest/woodl

and decline 
1992 2004 

Kok, K., Verweij, P. A., & Beukema, H. 

(1995). Effects of cutting and grazing on 

Andean treeline vegetation. Biodiversity and 

Conservation of Neotropical Montane Forest. 

Biodiversity and Conservation of Neotropical 

Montane Forests, 527-539. 

1995 
South 

America 
Colombia 

Forest/woodl

and decline 
    

Phillips, O.L., Aragão, L.E., Lewis, S.L., 

Fisher, J.B., Lloyd, J., López-González, G., 

Malhi, Y., Monteagudo, A., Peacock, J., 

Quesada, C.A. and Van Der Heijden, G., 2009. 

Drought sensitivity of the Amazon rainforest. 

Science, 323(5919), pp.1344-1347. 

2009 
South 

America 

Amazon 

Basin 

Forest/woodl

and decline 
2005 2005 

Rolim, S.G., Jesus, R.M., Nascimento, H.E., 

Do Couto, H.T. and Chambers, J.Q., 2005. 

Biomass change in an Atlantic tropical moist 

forest: the ENSO effect in permanent sample 

plots over a 22-year period. Oecologia, 142(2), 

pp.238-246. 

2005 
South 

America 
Brazil 

Forest/woodl

and decline 

 1986, 

1997 

1989, 

1999 

Silva, L.C., Haridasan, M., Sternberg, L.S., 

Franco, A.C. and Hoffmann, W.A., 2010. Not 

all forests are expanding over central Brazilian 

savannas. Plant and Soil. 333, 431-442. 

2010 
South 

America 
Brazil 

Forest/woodl

and decline 
   

Suarez, M.L., Ghermandi, L. and Kitzberger, 

T., 2004. Factors predisposing episodic 

drought‐induced tree mortality in Nothofagus–

site, climatic sensitivity and growth trends. 

Journal of Ecology, 92(6), pp.954-966. 

2004 
South 

America 
Argentina 

Forest/woodl

and decline 
1998 1999 

Williamson, G.B., Laurance, W.F., Oliveira, 

A.A., Delamônica, P., Gascon, C., Lovejoy, 

T.E. and Pohl, L., 2000. Amazonian tree 

mortality during the 1997 El Nino drought. 

Conservation Biology, 14(5), pp.1538-1542. 

2000 
South 

America 
Brazil 

Forest/woodl

and decline 
1997 1997 

Aide, T. M., Grau, H. R., Graesser, J., 

Andrade‐Nuñez, M. J., Aráoz, E., Barros, A. 

P., ... & Peralvo, M. (2019). Woody vegetation 

dynamics in the tropical and subtropical Andes 

from 2001 to 2014: Satellite image 

interpretation and expert validation. Global 

change biology, 25(6), 2112-2126. 

2019 
South 

America 
Venezuela 

Forest/woodl

and decline 
2001 2014 

Aide, T. M., Grau, H. R., Graesser, J., 

Andrade‐Nuñez, M. J., Aráoz, E., Barros, A. 

P., ... & Peralvo, M. (2019). Woody vegetation 

dynamics in the tropical and subtropical Andes 

from 2001 to 2014: Satellite image 

interpretation and expert validation. Global 

change biology, 25(6), 2112-2126. 

2019 
South 

America 
Argentina 

Forest/woodl

and decline 
2001 2014 
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Banfai, Daniel S., and David MJS Bowman. 

"Forty years of lowland monsoon rainforest 

expansion in Kakadu National Park, Northern 

Australia." Biological Conservation 131.4 

(2006): 553-565. 

2006 Australasia Australia 
Forest/woodl

and decline 
1964 2004 

Banfai, Daniel S., and David MJS Bowman. 

"Forty years of lowland monsoon rainforest 

expansion in Kakadu National Park, Northern 

Australia." Biological Conservation 131.4 

(2006): 553-565. 

2006 Australasia Australia 
Forest/woodl

and decline 
1964 2004 

Banfai, Daniel S., and David MJS Bowman. 

"Forty years of lowland monsoon rainforest 

expansion in Kakadu National Park, Northern 

Australia." Biological Conservation 131.4 

(2006): 553-565. 

2006 Australasia Australia 
Forest/woodl

and decline 
1964 2004 

Banfai, Daniel S., and David MJS Bowman. 

"Forty years of lowland monsoon rainforest 

expansion in Kakadu National Park, Northern 

Australia." Biological Conservation 131.4 

(2006): 553-565. 

2006 Australasia Australia 
Forest/woodl

and decline 
1964 2004 

Banfai, Daniel S., and David MJS Bowman. 

"Forty years of lowland monsoon rainforest 

expansion in Kakadu National Park, Northern 

Australia." Biological Conservation 131.4 

(2006): 553-565. 

2006 Australasia Australia 
Forest/woodl

and decline 
1964 2004 

Banfai, Daniel S., and David MJS Bowman. 

"Forty years of lowland monsoon rainforest 

expansion in Kakadu National Park, Northern 

Australia." Biological Conservation 131.4 

(2006): 553-565. 

2006 Australasia Australia 
Forest/woodl

and decline 
1964 2004 

Banfai, Daniel S., and David MJS Bowman. 

"Forty years of lowland monsoon rainforest 

expansion in Kakadu National Park, Northern 

Australia." Biological Conservation 131.4 

(2006): 553-565. 

2006 Australasia Australia 
Forest/woodl

and decline 
1964 2004 

Banfai, Daniel S., and David MJS Bowman. 

"Forty years of lowland monsoon rainforest 

expansion in Kakadu National Park, Northern 

Australia." Biological Conservation 131.4 

(2006): 553-565. 

2006 Australasia Australia 
Forest/woodl

and decline 
1964 2004 

Fensham, R.J. and Fairfax, R.J., 2005. 

Preliminary assessment of gidgee (Acacia 

cambagei) woodland thickening in the 
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and decline 
1919 2010 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Forest/woodl

and decline 
1987 2016 

Brandt, M., Hiernaux, P., Rasmussen, K., 

Tucker, C. J., Wigneron, J. P., Diouf, A. A., ... 

& Abel, C. (2019). Changes in rainfall 

distribution promote woody foliage production 

in the Sahel. Communications biology, 2(1), 1-

10. 

2019 Africa Sahel 
Forest/woodl

and decline 
1987 2016 

Li, W., Buitenwerf, R., Munk, M., Amoke, I., 

Bøcher, P. K., & Svenning, J. C. (2020). 

Accelerating savanna degradation threatens the 

Maasai Mara socio-ecological system. Global 

Environmental Change, 60, 102030. 

2020 Africa Kenya 
Forest/woodl

and decline 
1985 2016 

Venter, Z. S., Scott, S. L., Desmet, P. G., & 

Hoffman, M. T. (2020). Application of 

Landsat-derived vegetation trends over South 

Africa: Potential for monitoring land 

degradation and restoration. Ecological 

Indicators, 113, 106206. 

2020 Africa South Africa 
Forest/woodl

and decline 
2004 2018 

White, J. D. M., Jack, S. L., Hoffman, M. T., 

Puttick, J., Bonora, D., Visser, V., & February, 

E. C. (2016). Collapse of an iconic conifer: 

long-term changes in the demography of 

Widdringtonia cedarbergensis using repeat 

photography. BMC ecology, 16(1), 1-11. 

2016 Africa South Africa 
Forest/woodl

and decline 
1931 2013 

Matusick, G., Ruthrof, K. X., Kala, J., 

Brouwers, N. C., Breshears, D. D., & Hardy, 

G. E. S. J. (2018). Chronic historical drought 

legacy exacerbates tree mortality and crown 

dieback during acute heatwave-compounded 

drought. Environmental Research 

Letters, 13(9), 095002. 

2018 Australasia Australia 
Forest/woodl

and decline 
2010   

Brouwers, N. C., Mercer, J., Lyons, T., Poot, 

P., Veneklaas, E., & Hardy, G. (2013). Climate 

and landscape drivers of tree decline in a 

Mediterranean ecoregion. Ecology and 

Evolution, 3(1), 67-79. 

2013 Australasia Australia 
Forest/woodl

and decline 
2002 2008 

Zhang, C., Wang, X., Li, J., & Hua, T. (2020). 

Identifying the effect of climate change on 

desertification in northern China via trend 

analysis of potential evapotranspiration and 

precipitation. Ecological Indicators, 112, 

106141. 

2020 Asia China 
Grass cover 

loss 
1990 2000 
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Zhang, C., Wang, X., Li, J., & Hua, T. (2020). 

Identifying the effect of climate change on 

desertification in northern China via trend 

analysis of potential evapotranspiration and 

precipitation. Ecological Indicators, 112, 

106141. 

2020 Asia China 
Grass cover 

loss 
1990 2000 

Zhang, C., Wang, X., Li, J., & Hua, T. (2020). 

Identifying the effect of climate change on 

desertification in northern China via trend 

analysis of potential evapotranspiration and 

precipitation. Ecological Indicators, 112, 

106141. 

2020 Asia China 
Grass cover 

loss 
1990 2000 

Mahmoudi, P., Kalim, D., & Amirmoradi, M. 

R. (2011). Investigation of Iran Vulnerability 

Trend to Desertification with approach of 

climate change. In Second International 

Conference on Environmental Science and 

Development IPCBEE; IACSIT Press: 

Singapore (Vol. 4, pp. 63-67). 

2011 Asia Iran 
Grass cover 

loss 
1976 2005 

Mahmoudi, P., Kalim, D., & Amirmoradi, M. 

R. (2011). Investigation of Iran Vulnerability 

Trend to Desertification with approach of 

climate change. In Second International 

Conference on Environmental Science and 

Development IPCBEE; IACSIT Press: 

Singapore (Vol. 4, pp. 63-67). 

2011 Asia Iran 
Grass cover 

loss 
1976 2005 

Barbosa, H. A., Kumar, T. L., & Silva, L. R. 

M. (2015). Recent trends in vegetation 

dynamics in the South America and their 

relationship to rainfall. Natural Hazards, 77(2), 

883-899. 

2015 
South 

America 
Argentina 

Grass cover 

loss 
1998 2014 

Barbosa, H. A., Kumar, T. L., & Silva, L. R. 

M. (2015). Recent trends in vegetation 

dynamics in the South America and their 

relationship to rainfall. Natural Hazards, 77(2), 

883-899. 

2015 
South 

America 
 

Shrub/woodl

and cover 

gain 

1998 2014 

Javed, A., Jamal, S., & Khandey, M. Y. (2012). 

Climate change induced land degradation and 

socio-economic deterioration: a remote sensing 

and gis based case study from Rajasthan, India. 

2012 Asia India 
Grass cover 

loss 
1998 2010 

Burrell, A. L., Evans, J. P., & De Kauwe, M. 

G. (2020). Anthropogenic climate change has 

driven over 5 million km 2 of drylands towards 

desertification. Nature communications, 11(1), 

1-11. 

2020 Australia  Grass cover 

loss 
1982 2015 

Burrell, A. L., Evans, J. P., & De Kauwe, M. 

G. (2020). Anthropogenic climate change has 

driven over 5 million km 2 of drylands towards 

desertification. Nature communications, 11(1), 

1-11. 

2020 Africa Namibia 
Grass cover 

loss 
1982 2015 

 1 
 2 
Table SM2.5: Key risks to terrestrial and freshwater ecosystems from climate change. Details of temperature 3 
levels for risk transitions for the burning embers diagram Figure 2.11. see 2.5.4 4 
 5 
IPCC Risk Levels 6 
 7 

Level Undetectable (White) Moderate (Yellow) High (Red) Very High (Purple) 
Definition No associated impacts 

are detectable and 

Associated impacts are both 

detectable and attributable to 

climate change with at least 

Severe and 

widespread impacts 

that are judged 

Very high risk is 

indicated by all 

specific criteria for 
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attributable to climate 

change.  

medium confidence, also 

accounting for the other 

specific criteria for key risks. 

to be high on one or 

more criteria for 

assessing key risks 

key risks, including 

limited ability to 

adapt. 

 1 
Key Risk – Biodiversity Risk due to climate change. Loss of species erodes ecosystem integrity, 2 
functioning, provisioning of services (including climate regulation, food and water) and resilience to extreme 3 
events and future climate change. 4 
 5 

Risk 
Transition 

Global mean surface 
temperature change above 
pre-industrial period (°C) 

Confidence Description 

Undetectable 
to Moderate 

minimum  0.6°C High  

median 0.08°C Observations of the first species to lose >50% of 

range due to climate change, rendering them in the 

IUCN category of "endangered". Many local 

population extinctions observed in the most sensitive 

species, global extinction of species attributable to 

climate change first start being detected. 

maximum  1.0°C  

Moderate to 
High 

minimum  0.875°C Medium  

median 1.58°C > 10% of species are projected to lose >50% of their 

range. Increasing number of taxa that show high 

extinction risk  (>10% of the species in the taxa), 

weighted by role the species in the taxa play in 

performing services to ecosystems and humans, e.g. 

pollinators, detritivores.  This is 1000x natural 

background rates of species' extinctions 

maximum  2.025°C  

High to Very 
High 

minimum 1.6°C Medium  

median 2.07°C > 20% of species are projected to lose >50% of their 

range. Increasing number of taxa that now show 

greater than 20% of the species in the taxa at high risk 

of extinction.  

maximum  2.55°C  Above this warming level, risk of extinction rises 

non-linearly. In the worst-case scenario (10th 

percentile of the models at 4.5°C), many taxa show 

>50% of the species in that taxa at high risk of 

extinction. 

 6 
Key Risk - Wildfire considerably degrades ecosystems, substantially increases carbon emissions, and 7 
increases illnesses and death of people 8 
 9 

Risk 
Transition 

Global mean surface 
temperature change above 
pre-industrial period (°C) 

Confidence Description 

Undetectable 
to Moderate 

minimum  0.6°C High Field research and statistical analyses have detected 

and attributed increases in the area burned by wildfire 
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Risk 
Transition 

Global mean surface 
temperature change above 
pre-industrial period (°C) 

Confidence Description 

above natural levels (see references in description for 

maximum); Global mean surface temperature change 

of 0.6ºC in the 1990s, in the middle of the period of 

observed changes (IPCC 2018 SR15) 

median 0.75°C Median between the minimum and maximum values. 

maximum  0.9°C Field research and statistical analyses have detected 

and attributed increases in the area burned by wildfire 

above natural levels in western North America from 

1984 to 2017 (Chapter 2.4.4.2.1, Abatzoglou and 

Williams 2016, Partain et al. 2016, Kirchmeier‐Young 

et al. 2019, Mansuy et al. 2019); Increases in burned 

area detected in the Amazon, Australia, and Siberia 

from a combination of climate and non-climate factors 

(Chapter 2.4.4.2.3, Ponomarev et al. 2016, van Marle 

et al. 2017, da Silva et al. 2018, Lindenmayer and 

Taylor 2020); Wildfires in the Arctic are contributing 

to permafrost thaw and soil carbon release (Brown et 

al. 2015, Natali et al. 2019, Walker et al. 2019); These 

changes have already occurred at a temperature 

increase of 1.1 ± 0.1ºC between the periods 1850-1900 

and 2006-2015 (IPCC 2018 SR15). 

Moderate to 
High 

minimum  1.5°C Medium Projected increases in burned area, fire frequency, or 

fire weather across extensive areas globally, lower 

estimate (Gonzalez et al. 2010, Moritz et al. 2012, 

Flannigan et al. 2013, Burton et al. 2018, Abatzoglou 

et al. 2019) 

median 2.0°C Projected increases in burned area or fire frequency 

above natural levels on all continents due to 

anthropogenic climate change (Gonzalez et al. 2010, 

Moritz et al. 2012); emergence of anthropogenic 

signal from natural variation in fire weather for a third 

of global area (Flannigan et al. 2013, Knorr et al. 

2016, Burton et al. 2018, Abatzoglou et al. 2019); 

increase of burned area in areas where fire had been 

rare or absent, particularly Arctic tundra (Lehtonen et 

al. 2016, Young et al. 2017) (Chapter 2.5.5.2) 

maximum  2.5°C Projected increases in burned area, fire frequency, or 

fire weather across extensive areas globally, upper 

estimate (Gonzalez et al. 2010, Moritz et al. 2012, 

Flannigan et al. 2013, Burton et al. 2018, Abatzoglou 

et al. 2019) 

High to Very 
High 

minimum 3.0°C Medium Wildfire-induced conversion of up to half the area of 

Amazon rainforest to grassland, lower threshold 

estimates (Lenton et al. 2008, Salazar and Nobre 2010, 

Lyra et al. 2016) 

median 4.0°C Wildfire-induced conversion of up to half the area of 

Amazon rainforest to grassland (Oyama and Nobre 

2003, Sampaio et al. 2007, Lenton et al. 2008, 

Nepstad et al. 2008, Malhi et al. 2009, Salazar and 

Nobre 2010, Settele et al. 2014, Lyra et al. 2016, 
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Risk 
Transition 

Global mean surface 
temperature change above 
pre-industrial period (°C) 

Confidence Description 

Zemp et al. 2017, Brando et al. 2020); up to doubling 

of burned area in areas where fire had been rare or 

absent, particularly the Amazon (Le Page et al. 2017, 

Brando et al. 2020) and Arctic tundra (Lehtonen et al. 

2016, Veraverbeke et al. 2017) substantially 

increasing global carbon emissions (Chapter 2.4.4.4, 

2.5.5.2) 

maximum  4.5°C  Wildfire-induced conversion of up to half the area of 

Amazon rainforest to grassland, higher threshold 

estimate (Lenton et al. 2008, Salazar and Nobre 2010, 

Lyra et al. 2016) 

 1 
Key Risk - Anthropogenic climate change cause widespread death of trees, damage ecosystems, and 2 
reduce provision of water and other services to people 3 
 4 

Risk 
Transition 

Global mean surface 
temperature change 
above pre-industrial 
period (°C) 

Confidence Description 

Undetectable 
to Moderate 

minimum  0.3°C High Field research and statistical analyses have detected 

and attributed to anthropogenic climate change 

increases in tree mortality in temperate and tropical 

ecosystems in the period 1945-2007 (see references in 

description for maximum); Global mean surface 

temperature change of 0.3ºC in the 1970s, in the middle 

of the period of observed changes (IPCC 2018 SR15). 

median 0.6°C Median between the minimum and maximum values. 

maximum  0.9°C Field research and statistical analyses have detected 

and attributed to anthropogenic climate change 

increases in tree mortality in temperate and tropical 

ecosystems in the period 1945-2007 (van Mantgem et 

al. 2009, Gonzalez et al. 2012, le Polain de Waroux and 

Lambin 2012). Drought has induced these cases of tree 

mortality, with pest infestations and wildfire also 

causing much of the tree mortality in temperate forests. 

These changes have already occurred at a temperature 

increase of 0.9 ± 0.1ºC between the periods 1850-1900 

and 2006-2015 (IPCC 2018 SR15). (Sections 2.4.4.3; 

2.5.5.3). Numerous other cases of drought-induced tree 

mortality have been detected around the world (Allen 

et al. 2010, Allen et al. 2015, Bennett et al. 2015, 

Martinez-Vilalta et al. 2016, Greenwood et al. 2017, 

Hartmann et al. 2018), consistent with but not formally 

attributed to anthropogenic climate change. 

Moderate to 
High 

minimum  1°C Medium Approximate lower bound of projections of more 

extensive tree mortality (see references in description 

for median) 

median 1.5°C Models project increasingly extensive drought-induced 

tree mortality at continued moderate temperature 

increases. In western North America, one-tenth of 
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Risk 
Transition 

Global mean surface 
temperature change 
above pre-industrial 
period (°C) 

Confidence Description 

forest area is highly vulnerable to drought-induced 

mortality under RCP8.5 by 2050 (Buotte et al. 2019) 

and increased evapotranspiration in conifer forests 

increases the fraction of the area at risk of tree 

mortality 15-20% per degree Celsius {Goulden et al. 

2019). In boreal forest, fire-induced tree mortality from 

climate change under RCP8.5 could reduce the extent 

of spruce forest (Picea sp.) 8-44% by 2100 (Pastick et 

al. 2017). (Section 2.5.5.3). 

maximum  2°C Approximate upper bound of projections of more 

extensive tree mortality (see references in description 

for median). 

High to Very 
High 

minimum 2.5°C Medium Approximate lower bound of projections of tree 

mortality of half the area of forest biomes (see 

references in description for median) 

median 3.5°C Models project risks of mortality of up to half of forest 

area in different biomes. Climate change under RCP8.5 

could cause drought-induced tree mortality and the loss 

of half of Northern Hemisphere conifer forest area by 

2100 (McDowell et al. 2016). In southeast France, the 

most extreme summer temperatures could increase 

post-fire mortality of many broadleaf and conifer 

species 50% (Dupire et al. 2019). 

In Amazon rainforests, a lack of buffering capacity for 

plant moisture during drought increases the risk of tree 

mortality and, combined with increased fire from 

climate change and deforestation, the possibility of a 

tipping point of massive forest dieback and a biome 

shift to grassland (Oyama and Nobre 2003, Sampaio et 

al. 2007, Nepstad et al. 2008, Malhi et al. 2009, Settele 

et al. 2014, Lyra et al. 2016, Zemp et al. 2017, Brando 

et al. 2020). In Guinean tropical deciduous forest in 

Africa, climate change under RCP8.5 could increase 

mortality 700% by 2100 or 400% under lower 

emissions (RCP4.5) (Claeys et al. 2019). 

maximum  4.5°C Approximate upper bound of projections of tree 

mortality of half the area of forest biomes (see 

references in description for median) 

 1 
 2 
 3 
 4 
Key Risk - Ecosystem carbon loss from tipping points of loss of tropical forest and Arctic permafrost 5 
 6 

Risk 
Transition 

Global mean surface 
temperature change above 
pre-industrial levels °C 

Confidence Description 

Undetectable 
to Moderate 

minimum  0.6°C Medium Primary tropical forest comprised a net source of 

carbon to the atmosphere, 2001-2019 (emissions 0.6 

Gt y-1, net 0.1 Gt y-1) (Harris et al. 2021). 

Anthropogenic climate change has thawed Arctic 
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Risk 
Transition 

Global mean surface 
temperature change above 
pre-industrial levels °C 

Confidence Description 

permafrost (Guo et al. 2020), carbon emissions 1.7 ± 

0.8 Gt y-1, 2003-2017 (Natali et al. 2019). (See more 

details in description for maximum); Global mean 

surface temperature change of 0.6ºC in 2000 (IPCC 

2018 SR15) 

median 0.75°C Median between the minimum and maximum values. 

maximum  0.9°C Primary tropical forest comprised a net source of 

carbon to the atmosphere, 2001-2019 (emissions 0.6 

Gt y-1, net 0.1 Gt y-1) (Harris et al. 2021). Amazon as a 

whole was a net carbon emitter, 2003-2008 (Exbrayat 

et al. 2015, Yang et al. 2018), from deforestation for 

agriculture and livestock (De Sy et al. 2015, 2019). 

Amazon deforestation emitted 0.17 ± 0.05 Gt y-1 

carbon, 2001-2015 (Silva Junior et al. 2020); fires 

emitted 0.12 ± 0.14 Gt y-1 carbon, 2003-2015 (Aragao 

et al. 2018). Amazon carbon loss from deforestation 

and degradation 0.5 Gt y-1, 2010-2019 (Qin et al. 

2021). Intact old-growth Amazon rainforest may have 

become a net carbon source, 2010-2019 {Qin et al. 

2021). Anthropogenic climate change has thawed 

Arctic permafrost (Guo et al. 2020), carbon emissions 

1.7 ± 0.8 Gt y-1, 2003-2017 (Natali et al. 2019). These 

changes have already occurred at a temperature 

increase of 0.9ºC between the periods 1850-1900 and 

2006-2015 (IPCC 2018 SR15). 

Moderate to 
High 

minimum  1.5°C Medium Limiting the global temperature increase to 1.5ºC, 

compared to 2ºC could reduce projected permafrost 

CO2 losses by 2100 by 24.2 Gt C (median) (Comyn-

Platt et al. 2018). 

median 2°C Mean temperature increase of 2ºC could reduce 

permafrost area ~15% by 2100 (Comyn-Platt et al. 

2018) and emit 20-58 Gt (von Deimling et al. 2015), 

46–51 Gt (Comyn-Platt et al. 2018), 27-100 Gt 

(Schaefer et al. 2014) carbon by 2100. Globally, most 

soil carbon emissions would come from Arctic tundra, 

with climate change under RCP8.5 causing a soil 

carbon loss of 55 ± 50 Gt carbon by 2050, increasing 

atmospheric CO2 by 25 ppm (Crowther et al. 2016). 

Wildfire-induced conversion of Amazon rainforest 

area to grassland (Lenton et al. 2008, Salazar and 

Nobre 2010, Lyra et al. 2016, Nobre et al. 2016, 

Boulton et al. 2017, Zemp et al. 2017, Marengo et al. 

2018) of approximately 5% at 2ºC increase (Lyra et al. 

2016), much of Amazon evergreen to deciduous forest 

2-3ºC (Salazar and Nobre 2010). 

maximum  3°C Much of Amazon evergreen to deciduous forest 2-3ºC 

(Salazar and Nobre 2010). 

High to Very 
High 

minimum 3°C Low Under RCP8.5, models project potential permafrost 

carbon losses by 2100 of 28–113 Gt (Koven et al. 

2015), 11–143 Gt (Gasser et al. 2018), 42-141 Gt (von 

Deimling et al. 2015), 37–170 Gt (Schuur et al. 2015), 
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Risk 
Transition 

Global mean surface 
temperature change above 
pre-industrial levels °C 

Confidence Description 

or 35-205 Gt (Schaefer et al. 2014) carbon, potentially 

increasing global average temperatures 0.29 ± 0.21ºC 

(Schaefer et al. 2014). Lower bound of temperature 

projection of RCP8.5 (IPCC 2013 AR5 WG I). 

median 4°C Under RCP8.5, models project potential permafrost 

carbon losses by 2100 of 28–113 Gt (Koven et al. 

2015), 11–143 Gt (Gasser et al. 2018), 42-141 Gt (von 

Deimling et al. 2015), 37–170 Gt (Schuur et al. 2015), 

or 35-205 Gt (Schaefer et al. 2014) carbon, potentially 

increasing global average temperatures 0.29 ± 0.21ºC 

(Schaefer et al. 2014). Wildfire-induced conversion of 

up to half the area of Amazon rainforest to grassland 

(Oyama and Nobre 2003, Sampaio et al. 2007, 

Nepstad et al. 2008, Malhi et al. 2009, Settele et al. 

2014, Lyra et al. 2016, Zemp et al. 2017, Brando et al. 

2020). This could occur at a 4-5ºC temperature 

increase above the pre-industrial period (Salazar and 

Nobre 2010). The potentially abrupt nature of this and 

its fundamental impact on global biogeochemistry 

mark the melting of permafrost as a tipping point 

(Schaefer et al. 2014). 

maximum  5°C Amazon forest dieback could occur at a 4-5ºC 

temperature increase above the pre-industrial period 

(Salazar and Nobre 2010). 

 1 
Key Risk – Ecosystem structure change 2 
 3 

Risk 
Transition 

Global mean surface 
temperature change above 
pre-industrial period (°C) 

Confidence Description 

Undetectable 
to Moderate 

minimum  0.5°C High  

median 1.5°C Landscape and larger scale shifts in ecosystem 

structure and function. Changes attributable to climate 

change or interactions with changing disturbance 

regime, climate and rising CO2 already observed at 

0.5ºC increase, with shifts initially detected in boreal 

forests, tundra, and tropical grasslands 

maximum  3.0°C  

Moderate to 
High 

minimum  2.0°C Medium  

median 3.2°C Landscape and larger scale shifts in ecosystem 

structure and function. Global observations that agree 

with future projections with at least 10% of the area of 

key ecosystems affected, from Box 2.1. Medium 

confidence because existing observations and 

projections are not available for all biomes. 

maximum  4.5°C  
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Risk 
Transition 

Global mean surface 
temperature change above 
pre-industrial period (°C) 

Confidence Description 

High to Very 
High 

minimum 3.0°C Medium  

median 4.5°C Increasing risk of landscape and larger scale shifts in 

ecosystem structure and function. Most information 

derived for tropical forest, boreal forest, savannas, and 

tundra. More than 50% of several ecosystems may 

experience shifts in structure and function. 

maximum  5.0°C   

 1 
 2 
Table SM2.6: References used to create the Cross-Chapter Box ILLNESS Table 1, in Chapter 2, by region 3 

 Cholera Dengue Malaria 
Global 

 

 

(Escobar et al., 2015; Nichols et 

al., 2018; Watts et al., 2019) 

(Campbell et al., 2015; Guzman 

and Harris, 2015) 
 

(Gething et al., 2010; Phillips et 

al., 2017; Organization, 2020) 

Africa (Mendelsohn and Dawson, 

2008; Paz, 2009; Nkoko et al., 

2011; Reyburn et al., 2011; 

Magny et al., 2012; Jutla et al., 

2013a; Rebaudet et al., 2013; 

Jutla et al., 2015; Leckebusch 

and Abdussalam, 2015; Sigudu 

et al., 2015; Moore et al., 2017; 

Watts et al., 2019) 

(Caldwell et al., 2021)  (Hay et al., 2002; Pascual et al., 

2006; Alonso et al., 2011; 

Omumbo et al., 2011; Chaves et 

al., 2012; Siraj et al., 2014; 

Bhatt et al., 2015; Boyce et al., 

2016; Shah et al., 2019; 

Abiodun et al., 2020; Chirombo 

et al., 2020; Makinde and 

Abiodun, 2020; Matthew, 2020; 

Siya et al., 2020; Kassam et al., 

2021) 

Asia (Sack et al., 2003; Agtini et al., 

2005; Huq et al., 2005; Koelle 

et al., 2005; Emch et al., 2008; 

Magny et al., 2008; Emch et al., 

2010; Hashizume et al., 2010; 

Goel and Jiang, 2011; Jutla et 

al., 2011; Akanda et al., 2013; 

Ali et al., 2013; Jutla et al., 

2013a; Jutla et al., 2013b; Yue 

et al., 2014; Xu et al., 2016; 

Roobthaisong et al., 2017; 

Watts et al., 2019; Campbell et 

al., 2020) 

(Nagao et al., 2003; Chakravarti 

and Kumaria, 2005; Kanchana 

et al., 2005; Thammapalo et al., 

2005; Bangs et al., 2006; Arcari 

et al., 2007; Wu et al., 2007; 

Dahal, 2008; Halide and Ridd, 

2008; Nagao et al., 2008; Hsieh 

and Chen, 2009; Lu et al., 2009; 

Wu et al., 2009; Hii et al., 2012; 

Dhimal et al., 2014a; Dhimal et 

al., 2014b; Dhimal et al., 2015a; 

Dhimal et al., 2015b; Xiang et 

al., 2017; Acharya et al., 2018; 

Li et al., 2019; Tuladhar et al., 

2019; Adhikari and Subedi, 

2020; Gyawali et al., 2020; Liu 

et al., 2020; Metelmann et al., 

2021; Riad et al., 2021; Seah et 

al., 2021) 

(Dhimal et al., 2014a; Dhimal et 

al., 2014c; Dhimal et al., 2015a; 

Emeto et al., 2020; Kumar et al., 

2020; Wangdi et al., 2020; 
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2009; Hu et al., 2010; Akter et 
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Central 

America 

(Watts et al., 2019) (Herrera-basto et al., 1992; 

Lozano-Fuentes et al., 2012; 

Colón-González et al., 2013; 

Hernández-Ávila et al., 2013; 
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Manguin and Dev, 2018; 

Ferreira and Castro, 2019; 

Fletcher et al., 2020)  
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2017; Watts et al., 2020; 

Caldwell et al., 2021) 

South 

America 

(Gil et al., 2004; Martinez-

Urtaza et al., 2008; Ryan et al., 

2018; Watts et al., 2019) 

(Estallo et al., 2020; Robert et 

al., 2020) 

(Siraj et al., 2014; Manguin and 

Dev, 2018; Ferreira and Castro, 

2019; Laneri et al., 2019; 

Douine et al., 2020; Rozo, 2020; 

Grillet et al., 2021) 

Europe (Vezzulli et al., 2012; Vezzulli 

et al., 2016; Watts et al., 2019) 

(Bouzid et al., 2014; Robert et 

al., 2020) 

(Fischer et al., 2020; Boualam et 

al., 2021) 

North 

America 

(Louis Valérie et al., 2003; 

Vezzulli et al., 2016; Watts et 

al., 2019) 

(Añez and Rios, 2013; 

Fredericks and Fernandez-

Sesma, 2014; Butterworth et al., 

2017; Lowe et al., 2018; Robert 

et al., 2019; Robert et al., 2020; 

Watts et al., 2020) 

 

Small 

Islands 

(Jutla et al., 2013b; Alam et al., 

2014; Watts et al., 2019) 

(Morin et al., 2015) (Ferreira and Castro, 2019) 
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