2 3 4

5

6

11

1

Chapter 2: Terrestrial and Freshwater Ecosystems and their Services Supplementary Material

Coordinating Lead Authors: Camille Parmesan (France/USA/United Kingdom), Mike D. Morecroft (United Kingdom), Yongyut Trisurat (Thailand)

Lead Authors: Rita Adrian (Germany), Gusti Zakaria Anshari (Indonesia), Almut Arneth (Germany),
Qingzhu Gao (China), Patrick Gonzalez (USA), Rebecca Harris (Australia), Jeff Price (United Kingdom),
Nicola Stevens (South Africa), Gautam Hirak Talukdar (India)

Contributing Authors: David D Ackerly (USA), Elizabeth Anderson (USA), Vanessa Bremerich 12 (Germany), Lluís Brotons (Spain), Yu-Yun Chen (Taiwan, Province of China), Meghnath Dhimal (Nepal), 13 Sami Domisch (Germany), Errol Douwes (South Africa), Alexander Flecker (USA), Wendy Foden (South 14 Africa), Rachael V. Gallagher (Australia), Michael Goulding (USA), Aurora Gaxiola (Chile), Kerry-Anne 15 Grey (South Africa), Susan Harrison (USA), David A. Keith (Australia), Benjamin M. Kraemer 16 (USA/Germany), Simone Langhans (Switzerland), Andrew Latimer (USA), Julie Loisel (Canada, USA), 17 James Pearce-Higgins (United Kingdom), Guy Midgley (South Africa), Erin Mordecai (USA), Francisco 18 Moreira (Portugal), Isla Myers-Smith (United Kingdom/USA), A. Townsend Peterson (USA), Julio C. 19 Postigo (Peru/USA), Joacim Rocklöv (Sweden), Angela Gallego-Sala (Spain/United Kingdom), Nathalie 20 Seddon (United Kingdom), Michael C. Singer (France/United Kingdom), Jasper Slingsby (South Africa), 21 Stavana E. Strutz (USA), Merritt Turetsky (USA), Beth Turner (Canada), Kenneth Young (USA). 22

Review Editors: Carol Franco Billini (Dominican Republic/USA), Yakiv Didukh (Ukraine), Andreas
 Fischlin (Switzerland)

25 Fischlin (Switzerlan26

27 Chapter Scientists: Stavana E. Strutz (USA), Dalila Mezzi-Booth (France)

- 28
 29 Date of Draft: 1 October 2021
- 3031 Notes: TSU Compiled version
- 32 33 34

Table SM2.1: Attribution and assessment of uncertainties associated with key statements on observed impacts. Many human activities, in addition to greenhouse gas 1 emissions, are affecing wild species and biome transition zones and can confound attribution of an observed change to climate change in high human impact areas. The principal 2 non-climatic drivers are LULCC, mainly habitat destruction when natural lands are converted for agricultural use or development. The best attribution studies for observed changes 3 in wild species and ecosystems, then, use data from areas with very little (or no) LULCC so that this effect is minimized. Lines of evidence that support confidence statements for 4 attribution of a particular observed change to local or regional climate change (including increased atmospheric CO₂). Paleo data provides documentation of responses of species and 5 biomes during past large climatic changes (e.g. across glacial/interglacial cycles of the Pleistocene). Long term observations are at least 20 years of data, ideally >50 years, such that 6 long-term trends in biological changes can be teased apart from natural variability of both climate and of biological responses to climate variability. Experiments range from small 7 scale laboratory studies in controlled environmental chambers, to larger mesocosm studies of manipulated communities in greenhouses or artificial ponds to large-scale 8 manipulations of temperature, precipitation, CO₂ and other non-climatic drivers (e.g. nitrogen additions) in outdoor manipulated (planted/placed) communities and in completely 9 natural communities to which manipulations of different drivers have been applied. Fingerprints of climate change response are a set of responses that are uniquely expected from 10 climate change and not from other potential confounded drivers (e.g. LULCC); these are fully described in (Parmesan and Yohe, 2003)). One type of fingerprint is temporal sign-11 switching, in which, for example, a species' northern boundary in Europe expanded northward during the two twentieth-century warming periods (1930-45 and 1975-99), and 12 southward during the intervening cooling period (1950-70) - a pattern that is expected from that species' responded to decadal temperature trends but not expected from documented 13 habitat loss. Another type of temporal sign switching is found when onset of spring (leaf unfolding, flowering, breeding) follows decadal spring temperature trends, occurring earlier 14 in warm years, later in cool years, and above and beyond yearly variability, tracking a long-term trend in spring temperatures. Sign-switching among species in a single location can 15 also provide a fingerprint of climate change impacts when the site is at a climate zone boundary. For example, in Monteray Bay, California, where temperate and boreal species 16 overlap, southern species were increasing in abundances and northern speces were declining over a 70 year period. Modeling approaches comprise a wide diversity of both process-17 based and distribution-based models. They can be back-cast and compared with observed trends - when modeled changes based upon climate as the primary driver agree with 18 observed changes, climate change attribution is supported. Statistical analyses include those from WGI that provide attribution of regional and global climate change to greenhouse 19 gas forcing. When biological datasets have very large sample sizes, are gathered over very long time periods and/or over large areas, in concert with complementary datasets on 20 LULCC, meteorological data, or other drivers of interest collected over the same time periods and spatial area, statistical analyses can tease apart effects of differnt drivers and their 21 interactions, thus providing a quantitative assessment of the role of climate change. 22

Key statement	Geographic region and <i>Period</i>	Non-climatic Drivers: Land Use and Land Cover Change (LULCC) or	Lines of eviden	nes of evidence for climate change (including increased atmospheric CO ₂ as 1° driver of observed change)				Levels of evidence, agreement and confidence for attribution	References
		Other Changes	Paleo data and Long-term Observations	Experiments	Fingerprint of climate change response	Models	Statistical analyses		
About half of all	Global -	Minimised by	Polewards and	Translocation of	Very long-term records	Species	Yes. Warming	robust	(1) (Parmesan
species where	Varies by	study designs	upward ranges	temperature-limited	(>50 years) demonstrate	distribution	seasonal and	evidence,	and Yohe,
land use change	study. Range	(1)	shifts have been	species outside the	"sign-switching" in	models,	annual	high	2003) (Cross-
has been a	typically 20 -		common	historic range bound	which a species poleward	Phenological	temperatures have	agreement,	Working Group
minimal driver	250 years, but		responses to past	aries has been	boundary shifts polewards	models, and	been linked to	very high	Box ATTRIB in
and with long-	longest		major climatic	unsuccessful in the	during warming periods	other process-	GHG forcing at	confidence	Chapter 1); (2)
term (>20 years)	dataset is 800		shifts (2).	absence of warming	and towards the equator	based models	both regional and		(Coope, 1995),
of records have	years.		Yearly variability	and successful during	during cooling periods (5)	driven by	global scales (8).		(Cross-Chapter
shifted their		C	in polewards	warming periods (3)		climate	Multiple global		Box PALEO in
ranges, with 80-			range boundaries			parameters	meta-analyses of		Chapter 1);
90% of			for mobile birds			have high	>4,000 species for		(3)(Ford, 1945;

FINAL DRAFT	Chapter 2 Supplementary Material	IPCC WGII Sixth Assessment Report

movements being in the direction expected from regional warming trends - i.e. poleward and upward. Conclusions from prior ARs are further supported with new literature for butterflies, birds, plants, freshwater fish.			and butterflies highly significantly correlated with annual temperature variability (4)			predictive power in back- casting observed distributional changes (6)	which attribution to climate change was <i>medium</i> to <i>very high</i> <i>confidence</i> show from 40% to 60% of species in a given region or taxonomic group having shifted their poleward range boundary further poleward over the past 20-120 years (8)		Willis et al., 2009)(2.6.5.1); (4) (Dennis, 1993; Parmesan and Yohe, 2003); (5) (Parmesan and Yohe, 2003); (6) (Chuine and Régnière, 2017; Platts et al., 2019); (7) (WGI AR6 2021); (8) (2.4.2, Table 2.2)
About 2/3 of all species with long- term (>20 years) of records have shifted the timing of spring events in directions expected from regional winter and spring warming.	Global - Varies by study. Range = 20 - 400 years	NA / Photoperiod is an important cue for some species, which would show up as either no change in phenology over time, or where both photoperiod and temperature are drivers, photoperiod cues may tend to counter temperature cues (1)	Yearly variability in spring emergence, flight and migrationof birds and butterflies and leaf-out and, flowering of plants is highly significantly correlated with spring temperature variability (3)	Controlled experiments demonstrate that temperature has large effects on timing of spring events for many species (2)	Very long-term records (>50 years) demonstrate "sign-switching" in which a species shifts to earlier spring events during warming periods and later spring events during cooler periods (4)	Phenological models based on temperature have good predictive power in back- casting observed phenological change; model performance is improved if photoperiod is included, and even better if abiotic factors are included (5)	Yes. Warming spring temperatures have been linked to GHG forcing at both regional and global scales (6). Multiple global meta-analyses all show from 48% to 92% of species in a given region or taxonomic group having shifted towards earlier spring timing in recent decades; exception is seabirds that have been stable (7)	robust evidence, high agreement, very high confidence	(1) (Piao et al., 2019; Ettinger et al., 2021); (2) E.g. (Craufurd and Wheeler, 2009; Wolkovich et al., 2012; Piao et al., 2019; (3) (Dennis, 1993; Gordo, 2007; Amano et al., 2010; Piao et al., 2019), (4) (Parmesan and Yohe, 2003); (5) (Piao et al., 2019); (6) {WGI AR6 2021}; (7) (Section 2.4.2.4, Table 2.2) Freshwater: (Adrian et al., 2006; Blenckner et al., 2007; Adrian et al., 2009)
For species that require winter	Northern Europe and	NA / Photoperiod	NA. Yearly variability	orange tip, vernalization of plants		Models based on seasonal	Yes. Fall and winter warming	medium evidence,	(1) (Gill et al., 2015; Piao et

FINAL DRAFT		Chap	ter 2 Supplementar	y Material IPCC WGII Sixth	Assessment Re	port			
chilling, winter warming has countered spring warming, resulting in either delayed spring events or no change. When these species are taken into account, it is estimated that 92% of species in these studies have responded to regional warming trends	USA - Varies by study (>20 years)	and vernalization requirements interact (1)	in break of diapause and dormancy highly significantly correlated with variability of fall and winter temperatures (3)	(UEA group) - demonstrate high heritability (strong genetic basis). Metabolic pathways understood for some species (2)	30	temperature sensitivities of individual species have good predictive power in back- casting observed phenological change (4)	has been linked to GHG forcing at both regional and global scales (5). None to date.	high agreement, high confidence	al., 2019; Ettinger et al., 2021); (2) E.g.: (Friedman and Willis, 2013; Stålhandske et al., 2017); (3) (Cook et al., 2012a; Cook et al., 2012b; Stålhandske et al., 2017); (4) (Cook et al., 2012a; Cook et al., 2012b; Xie et al., 2015); (5) {WGI AR6 2021}; (Section 2.4.2.5)
Wildfire has burned increasingly extensive areas, increasing nine- fold in 32 years, driven more by the increased heat and aridity of anthropogenic climate change than by non- climate factors	Western North America - 1984-2017	Population density, roads, built area, analysed but less important	Field and remote sensing measurements of burned area: Western USA burned area increased >900%, 1984-2015; Alaska burned area in 2015 was the second highest in the 1940-2015 record; British Columbia, Canada, burned area in 2017 was the highest in the 1950-2017 record. Weather station measurements of climate: Western USA temperature increased 1.5°C, 1920-2018, summer precipitation			Numerical models of wildfire as a function of climate and non-climate variables, calibrated by historical data, run for actual observed values and compared to model runs in which temperature remains unchanged. Western USA: anthropogenic climate change doubled burned area over natural burning, accounting for	Increased temperature and decreased summer precipitation detected and attributed to anthropogenic greenhouse gas forcing. Anthropogenic climate change accounts for half the magnitude of a regional drought, 2000-2020, reducing soil moisture to its lowest levels since the 1500s. <i>Correlation of burned area to climate variables</i> (temperature, precipitation, relative humidity, evapotranspiration	high evidence, high agreement, high confidence	(Abatzoglou and Williams, 2016; Partain et al., 2016; Holden et al., 2018; Kirchmeier- Young et al., 2019; Mansuy et al., 2019; Williams et al., 2020) + refs in section {2.4.4.2}

			decreased 12%, 1984-2016	% (32-76%, % ifidence erval) of nulative ned area, 84-2016; sska: thropogenic nate change ounted for 60% of .5 burned a; British lumbia: thropogenic nate change reased 2017 ned area 7 11 times er the area of ural burning) outweighed local human factors (population density, roads, and built-area)		
Tree mortality has increased substantially, as much as doubling in 52 years, driven more by the increased heat and aridity of anthropogenic climate change than by non- climate factors	North America, Africa - <i>ca.</i> 1945-2007	Multivariate and bivariate statistical analyses of population density, roads, timber harvesting, livestock grazing, increased tree density, fire suppression, toppling of large trees, analysed but less important	Field surveys of trees: western U.S. tree mortality doubled, 1955- 2007; African Sahel tree mortality 18%, 1954-2002; southwest Morocco tree mortality 44%, 1970-2007; weather station measurements show significant increases in temperature and decreases in precipitation		Increases in temperature and changes in precipitation detected and attributed to anthropogenic greenhouse gas forcing. <i>Canonical</i> <i>correlation</i> <i>analyses of climate</i> <i>factors found</i> <i>climate change</i> <i>outweighed other</i> <i>factors; other</i> <i>cases correlation</i> <i>analyses of climate</i> <i>factors; other</i> <i>cases correlation</i> <i>analyses of climate</i> <i>factors significant,</i> <i>non-climate</i> factors non-significant.	medium evidence, high agreement	(Desanker et al., 2001; van Mantgem et al., 2009; Gonzalez et al., 2012; le Polain de Waroux and Lambin, 2012) [many other cases detected (Allen et al., 2010; Allen et al., 2015; Bennett et al., 2015; Martinez- Vilalta and Lloret, 2016; Greenwood et al., 2017; Hartmann et al., 2018) but not formally attributed + refs

							in section
Vegetation biomes have shifted significantly towards the poles or the Equator or upslope at 19 sites in boreal, temperate, and tropical ecosystems, caused more by increased temperatures and changes in precipitation of anthropogenic climate change than by non- climate factors	Global - 1500-2008	Research in some areas conducted multivariate statistical analyses of climate and other factors, population density, roads, other non- climate factors analysed but less important; research at other areas selected sites with no substantial human land use change	Field surveys show significant changes of vegetation species locations and densities, boreal forest shifting into tundra, subalpine forest shifting into alpine grassland, broadleaf forest shifting into coniferous forest, grassland shifting into woodland; Weather station measurements show significant increases in temperature and changes in precipitation	se section text	Increases in temperature and changes in precipitation detected and attributed to anthropogenic greenhouse gas forcing. Canonical correlation analyses of climate factors in some areas; correlation analyses of climate factors significant, non-climate factors non-significant in some areas; no substantial local human land use change in some areas.	high evidence, high agreement, high confidence	$\{2.4.4.3\}$ (Beckage et al., 2008) (Brink, 1959) (Desanker et al., 2001; Lloyd and Fastie, 2003; Danby and Hik; Dial et al., 2007; Devi et al., 2007; Devi et al., 2008; Kullman and Öberg, 2009; Gonzalez et al., 2010; Leonelli et al., 2011; Gonzalez et al., 2012; Kirdyanov et al., 2012) (Luckman and Kavanagh, 2000) (Payette et al., 1985; Wardle and Coleman, 1992; Suarez et al., 1999; Penuelas and Boada, 2003; Millar et al., 2004; Walther et al., 2005; Payette, 2007; Settele et al., 2014) + refs in section $\{2.4.3.1;2.4.3.2; 2.4.3.3-9; 2.4.5\}$
Beetles & moths shifting poleward and upward has brought new pest species into some forests	North America, Europe and Eurasia. Time period varies by study.	Not directly assessed, but occurring in both areas of high LUC and protected areas	Direct observations of insect pest outbreaks have been recorded since the mid-	controlled temperature see section text experiments link warming winters to lower insect mortality, and increased growing season length to b	see section text		refs in section {2.4.2.1; 2.4.4.3; particularly 2.4.4.3.3}

FINAL DRAFT		Chap	ter 2 Supplementar	y Material IPCC W	GII Sixth Assessment Rer	port			
	Datasets start in mid-1800s to present		1800s for many temperate and boreal forests in the northern hemisphere	increased number of generations per year, which leads to large increases in insect abundances in late growing season			6		
Shift in forest composition has occurred due to species-specific differences in response to increasing drought	see section text	see section text	see section text		6	see section text	see section text		(Anderegg et al., 2016)
Increased tree mortality has occurred globally, in boreal, temperate and tropical systems, in response to increased drought, wildfire and insect pest outbreaks	Global - Timespan varies by study. Observational datasets available from mid- 1800s to present. Treerings provide data going back hundreds of years	For many studies, land use change is an important driver. For some studies, LUC is minimal (1) pest outbreaks are important drivers, but impacts have been exacerbated by heat/drought induced tree stress (2)	tree-rings provide very long-term data, that overlaps with observational data starting in mid-1800s		RSIA	see section lext	see section text	high evidence, high agreement, high confidence	refs in section {2.4.4.3}
Diseases wildlife/humans Newly emerging vector-borne diseases (dengue, chikungunya, Japanese encephalitis, malaria, visceral leishmaniasis) and their vectors (<i>An.spp., Aedes</i> <i>albopictus, Ae.</i> <i>aegypti, Culex</i> <i>quinquefasciatus,</i> <i>C.</i>	South Asia (Nepal) - Dengue (2004- present) / Chikungunya (2013- present) / Japanese Encephalitis (1995- present) / Visceral Leishmaniasi	JE has + association with irrigated land, agriculture, land use / Malaria: incidence decreased in lowlands with free distribution of long-lasting	Dengue: 1st reported case in Nepal in 2004, outbreak in 2006, then expansion to new areas in 2008, spread to highlands in 2010. Chikungunya: The first autochthonous cases of chikungunya virus were reported in	Dengue: EIP = 15 days at 25°C & 6.5 days at 30°C (Rohani et al., 2009) / Narrower DTR decreases EIP or increases susceptibility of mosquitoes to infection (Lambrechts et al., 2011)	Dengue: Increased number of cases in highlands of Himalayan region in temperate to subalpine areas (Acharya et al., 2020) / min temp highly sig correlated with dengue cases in Chitwan district (Tuladhar et al., 2019) / increased nightly temps during the monsoon months correlated with increased transmission (p<0.05)	-	Higher warming rates in high- elevation areas compared to lowlands warming rate of Nepal is higher than global average / decreasing trends of cool days & increasing trends of warm days in higher elev. / increasing trends	high confidence	(Dahal, 2008; Lambrechts et al., 2011; Dhimal et al., 2014a; Pun et al., 2014; Dhimal et al., 2015a; Pandey et al., 2015; Pandey et al., 2017; Shrestha et al., 2018; Shrestha et al., 2019; Tuladhar

tritaeniorhynchus) s (2009-2013 (Pun et al., from 2010-2019 (Gyawali et al., 2019; insecticidal of max temps & are appearing in present) nets (LLINs) 2014) and have et al., 2020). more warming in Gvawali et al.. expanded their higher elevation winter compared to 2020: Liu et al., and non-endemic geographic range other seasons 2020: Phuval et regions of Nepal. in Nepal (Pandey /statistically sig. al., 2020; Climate change et al., 2015; warmind trend of Dhimal et al... will intensify Pandev et al.. max temps / sig 2021a: Dhimal VBD epidemics in 2017) Japanese increase in annual et al., 2021b) mountain regions Encephalitis: mean temp highly of Nepal. introduced in influenced by max 1970s to S. Nepal temp / increasing but 1st epidemic trends in heavy in 1995 in prec. events. Dengue: Chitwan Kathmandu district, Nepal valley, shifted to study 2010-2017: mountain districts after 2005. Max temp sig Visceral correlated with Leishmaniasis: 1st cases through lag 1-3 month lag / case in hilly nonendemic region in Min temp sig 2011, now found correlated with in hill & mountain cases 0-3 month regions previously lag w/ strongest considered noncorrelation at lag 2 endemic. Malaria: / min temp strength reported in 1969 corr. higher than at 1800+ m., and max temp / rainfall sig correlated with An. maculatus cases 1-3 mos. lag recorded up to & highest a lag 2 3100 m.; most malaria cases mo. (Tuladhar et below 1200 m. in al., 2019) 1978-80 (originally confined to forest areas of lowlands); now in hills and mountains 2000+m Northeastern No Sig increase in Optimal temps for Sig increase in diagnosis Mean annual (Smith, 1990; Haemonchosis Increases in robust (Haemonchus Europe (UK, intensification diagnosis rates development and rates in northern study summer temps temperature evidence, O'Connor et al., from 1989-2006 contortus) worm Scotland), of sheep growth are between regions (Scotland, N UK, increase increased w/ temp high 2006; van Dijk of sheep / H. 1989-2006 farming found (p = 0.001) but 25-37°C (more & Midlands) from 1977mortality and increasing earlier et al., 2008; van agreement, Dijk et al., contortus was up to 2006 also showed some adapted to sub-tropics 2006; Sig positive trend offset the and more

IPCC WGII Sixth Assessment Report

FINAL DRAFT

Chapter 2 Supplementary Material

FINAL DRAFT	Chap	ter 2 Supplementary N	Material IPCC W	GII Sixth Assessment Re	port			
endemic to southern England but is now documented in Scotland and has an extended transmission season. Benefits of increased developmental rates outstrip the disadvantages of increased death rates during some times of the year, particularly benefiting from increased developmental opportunities in spring and early summer; besides climate, interaction with hosts will be very important (van Dijk et al., 2010).	during time period of increased disease incidence (van Dijk et al., 2008). Effective anthelmintics were still available during the latter years of the study and antihelminthic resistance would not affect the seasonality of the disease (van Dijk et al., 2010). Sig increases in parasite abundance documented in colder northern parts of Great Britain but not warmer southern parts (anthelmintic resistance would be expected to increase abundance in the south as well) (van Dijk et al., 2010).	periods of an significant su decrease (1992- (C) 1996, 2002-2006) mmeaning there is dehigh variability in inthe system (van da Dijk et al., 2008). da Highly sig 19 increase in disease incidence starting in late 1990s-2006 ($p \le 0.005$, Spearman's rho > 0.450) (van Dijk et al., 2010).	ad tropics) but it can prvive from 10-40°C D'Connor, 2006). The in. dev time creased as temp creased from 16 ays at 10°C to 2.5 ays at 37 C (Smith, 290).	for Nov & Dec suggesting greater autumn haemonchosis recently (van Dijk et al., 2008).	increased development rate (Rose et al., 2015).	significantly in spring months; sig increase in rainfall in April (van Dijk et al., 2008). "Overall, the observed temperature- mediated increases in cercarial output are much more substantial than those expected from basic physiological processes, for which 2- to 3-fold increases are normally seen" was stated in an analysis examining cercarial production of different species of trematodes in temperature experiments - review paper of 20 studies (Poulin, 2006). Sig positive relationship between GIN infection level (GIN: Nematodirus spp., Haemonchus contortus, Teladorsagia circumcineta, Trichostrongylus spp., Chabertia ovina, Bunostomum spp.) with max humidity and sig negative relationship with solar radiation	high confidence	2010; Rose et al., 2015)

Do Not Cite, Quote or Distribute

SM2-9

			dur per pre frec are the (Ma Val 201	ing 30 day iod preceding patency (when e-living stages developing in field). artínez- lladares et al., 13)	
TeladorsagiaNorthwestercircumcinctaEurope (UK(brown stomachScotland),worm),1975-2006Trichostrongylus(van Dijk etvitrinus, Tr.al., 2008)colubriformis, Tr.axei (roundworms) found insheep and goatsare spreadingnorthward inEurope andexpanding theirtransmissionseason.	m No Sig increase in diagnosis rates of sheep from 1975-2006 farming found ($p < 0.001$), Highest rate of during time increase occurrent period of between 1997-increased 2006; sig disease increases in incidence. diagnostic rates Effective over most of the anthelmintics were still most northern p available (Scotland); Sig during the latter years of the study and antihelminthic resistance (van Dijk et al., 2008) resistence (van Dijk et al., 2008) resease in disease increases in disease were observed in the spring in the are south of Scotlar (van Dijk et al., 2010). Highly sincrease in disease incidence startin in late 1990s-20 ($p <= 0.005$, Spearman's rho 0.450) (van Dijk	Accumulation of Mean peak infective stages from successive generations of adult parasites is accelerated at higher 2006) (and second 2008), increased risk of disease from midsummer onwards (Armour, 1986; art Barger, 1997). Low temperatures (<10 C) reduce development of larvae & reduce et hatching of $Tr.$ <i>colubriformis, Tr.</i> <i>rugatus</i> while $Tr.$ <i>virtrinus</i> could develop successfully to the infective stage in temps <10 C (Beveridge, 1989); 30 C reduced number of larvae from 3 as $Trichostrongylus$ spp. d (Beveridge, 1989). Tr. colubriformis does not g develop when soil iste temps <10 C and air ing temps <13 C (Gibson 06 and Everett, 1976; Levine and Andersen, > 1973). <i>Tr.</i> <i>colubriformis</i> was	month became Increase in Me southern most temps resulted terr ving later shift in increased incr ig declines in rates for <i>T</i> , and nonths (1977- Dijk et al., leading to year- round incr development. in <i>A</i> (Rose et al., et a 2015). "Or obs terr med in c are sub tho from phy pro whi incr ana cerr pro diff trer terr exp rev stu 2000 rela	an annual iperaturerobustiperatureevidence,reased w/ temp reasing earlieragreement,I moreagreement,I morevery highnificantly in ing months; sig rease in rainfallconfidenceApril (van Dijk I., 2008)u, 2008)verall, the served.iperature- diated increases.diated increases.cercarial output much more.stantial than se expected.m basic /siological.cesses, for.ich 2- to 3-fold reases are mally seen".s stated in an llysis examining carial.duction of ferent species of matodes in uperature.iew paper of 20 dies (Poulin, D6). Sig positive ationship.	(Levine and Andersen, 1973; Armour, 1974; Gibson and Everett, 1976; Southcott et al., 1976; Salih and Grainger, 1982; Beveridge et al., 1989; Barger, 1997; Poulin, 2006; van Dijk et al., 2008; van Dijk et al., 2010; Martínez- Valladares et al., 2013; Rose et al., 2015)

				numbers when temps	infection level		
				were between 1.3-15	(GIN: Nematodirus		
				C (Southcott 1976)	spn Haemonchus		
				Maan time until	sontortus		
					comornus,		
				hatching took 19.1	Teladorsagia		
				days at 10 C and	circumcincta,		
				increased with	Trichostrongylus		
				warming temps to 1	spp. Chabertia		
				day at 25 C (Salih and	ovina		
				Croingen 1092)	Bun astanum ann)		
				Granger, 1982)	<i>Dunosiomum</i> spp.)		
					with max humidity		
					and sig negative		
					relationship with		
					solar radiation		
					during 30 day		
					uuring 50 day		
					period preceding		
					prepatency (when		
					free-living stages		
					are developing in		
					the field).		
					(Martínez-		
					Valladareset al		
	~				2013)	7.	<i>(</i> 7) 1
Fasciolosis risk	Europe:	Antihelminthic	East Anglia, UK:	Lymnaea viridus	Avg annual rainfall	medium-	(Lee et al.,
caused by F.	1977-2006,	drug resistance	New outbreaks	snails infected with	in East Anglia	robust	1995; Pritchard
hepatica	UK (van Dijk	may be	and increased	Fasciola hepatica	from 1970-2000	evidence,	et al., 2005; van
(exposure,	et al., 2010),	contributing to	disease incidence	shed cercariae more	(605.6 mm)	high	Dijk et al.,
prevalence.	2006-2001.	disease	from 2001-2003	quickly, for longer	compared to	agreement.	2010: Martínez-
outbreaks.	Spain	increases in	occurred on farms	durations, and in	outbreak years of	high	Valladares et
geographic	(Martínez-	some areas:	with no prior	higher numbers	2001_2002 (781.1)	confidence	al 2013: Bosco
emergence)	Valladares et	however drug	history of disease:	(n < 0.001) at higher	increased by 175 5	conjucie	at al 2015; Doseo
cincigence)	\sqrt{a}	nowever, urug	mistory of disease,	(p<0.001) at higher			C_{1}
significantly	a1., 2013);		iny sporadic				Cammade et al.,
increased or	2000-2013,	would not be	disease since the	al., 1995).	nigher in summer		2015)
appeared in new	Italy (Bosco	expected to	1960s. Disease		months of July and		
areas over time.	et al., 2015)	alter the	was only first		August [no stat		
There are broad		seasonality by	recorded in 1996		testing] (Pritchard		
trends towards		extending the	during the study		et al., 2005).		
increased risk.		fall grazing.	period of 1993-		Increasing min		
Fasciola henatica		transmission	2003 (Pritchard et		humidity and		
is a liver fluke that		season. The	al 2005) Highly		nrecipitation was		
infacts many		Season. The	an, 2005). Ingily		precipitation was		
THECES HAILY		government	sig increase in		associated with		
1:66		government	sig increase in		associated with		
different animal		government funded the	sig increase in disease incidence		associated with increases in epg in		
different animal species (domestic		government funded the installation of	sig increase in disease incidence starting in late		associated with increases in epg in Spanish study from		
different animal species (domestic primary hosts:		government funded the installation of modern	sig increase in disease incidence starting in late 1990s-2006 (p <=		associated with increases in epg in Spanish study from 2006-2011 during		
different animal species (domestic primary hosts: sheep, cattle;		government funded the installation of modern irrigation	sig increase in disease incidence starting in late 1990s-2006 (p <= 0.005, Spearman's		associated with increases in epg in Spanish study from 2006-2011 during 30 day period		

FINAL DRAFT		Chapt	ter 2 Supplementary Material	IPCC WGII Sixth Assessment Report			
hosts: goats, alpacas; wild hosts: rabbits, nutria, red deer (<i>Cervus elephus</i>).		Castilla and Leon, Spain, since the 1990s which may be increasing humidity (not statistical analysis carried out) (Martínez- Valladares et al., 2013). However, No intensification of sheep farming found up to 2006 during time period of increased disease incidence in UK (van Dijk et al., 2008).	Dijk et al., 2010). Spanish province of León showed prevalence increasing in sheep flocks from 14.67% (1986-87) to 26.7% (1992- 93) to 60.5% (2011) (Martínez- Valladares et al., 2013).	CONE	prepatency (when free-living stages are developing in the field)(Martínez- Valladares et al., 2013). Sig increase in temperature, rainfall, and # rainy days during outbreak in Italy (p < 0.001) (Bosco et al., 2015).		
Nematodirosis (<i>Nematodirus</i> <i>battus</i> , <i>N</i> . <i>filicollis</i> , <i>N</i> . <i>spathiger</i>) in sheep is increasing.	Northeastern Europe (UK, Scotland), 1975-2006	No intensification of sheep farming (van Dijk et al., 2008). Effective anthelmintics still available during the latter years of the study and antihelminthic resistance would not affect the seasonality of the disease. There has been no antihelminthic	Sig increase in 2002-2006 compared to diagnosis rates from 1975-2002 ($p \le 0.011$) (van Dijk et al., 2008). Highly sig increase in disease incidence starting in late 1990s-2006 ($p \le 0.005$, Spearman's rho > 0.450) (van Dijk et al., 2010).	Sig increase in Scotland (most northern portion of study area) w/ no significant or only marginal rises in diagnostic rates in southern areas (Wales, SW Britain) from 1975- 2006. Sig positive trend from south to north; Cases were first recorded in December in 1999 (van Dijk, 2008).	Mean annual temperature increased w/ temp increasing earlier and more significantly in spring months; sig increase in rainfall in April (van Dijk et al., 2008).	medium- robust evidence, high agreement, high confidence	{van Dijk, 2008; van Dijk, 2010

		resistance recorded for N. battus (van Dijk et al., 2010). Sig increases in parasite abundance documented in colder northern parts of Great Britain but not warmer southern parts (anthelmintic resistance would be expected to increase abundance in the south as well) (van Dijk et al., 2010).	JER MAL		
Midge-borne bluetongue virus is expanding into new geographical areas as higher temperatures make new areas habitable for both the vectors and virus. Bluetongue virus infects ruminants (sheep, cattle, deer, and goats) and is vectored bu midges of the genus Culicoides.	Northern Europe (2006 and later)	PC	BTV spreading northward in Europe during the 2000s (Carpenter et al., 2009).	limited- medium evidence, medium agreement, low confidence	(Thornley and France, 2016; Tryland et al., 2018)

			and vertical tranmission to offspring over time on a farm hypothetically set in aouthern England. Climate warming increases air temperature and reduces		
			vector mortality (Thornley and Erance 2016)		
he roundwormNordicdetaria tundra, aregions ofpecies of filaroidEurope:matade, is aFinlandrector-borne(1961-2004);lisease spread byLaplandVedes and(1979-2015)Anophelesnosquitos, whichnefects reindeerRangiferarandus), roe deerCapreoluscapreolus) andnoose (Alceslices). Outbreaksvere found to belriven by meanummerummeremperatures of.4°C or highervith increasingnorbidity andnortality laggingo the followingrear. These highummeremperatureseenperatureseeflect a tipping	R	Outbreaks recorded back to the 1970s in cervids in Nordic regions of Europe. Meat inspections dating back to the 2000s in Finland show reindeer meat condemnation increased from 4.9% in 2001 to 40.1% in 2003 in Oulu province with the outbreak moving northward by 100 km. There was a massive increase in reindeer viscera condemned in both northern and southern Lapland (Laaksonen, 2010).	France, 2016). GLMs showed that the occurrence of an epidemic lagged and increased with mean summer temperatures(b = 6.60 ± 3.39 (s.e.); P = 0.0004) but "moribidity manifests the following summer only if the weather conditions are still favorable" (Laaksonen et al., 2010). "In southern and central Lapland, our model predicted an increasing tredn from 1979-2015 for both the	medium evidence, high agreement, medium confidence	Filariasis (Laaksonen, 2010; Laaksonen and Oksanen, 2010; Laaksonen et al., 2010; Haider et al., 2018; Tryland et al., 2018)

Aedesvector						effective			
abundance.						transmission			
Setaria						period of			
tundrainfection,						S.tundra			
and reindeer						(P<0.001) and			
flocking behavior						for the			
to mosquito rich						potential			
wetlands.						number of L3			
						S. tundra larvae			
						being			
						transmitted			
						from an	· · ·		
						infectious			
						reindeer $(D < 0.001)$ "			
						(P<0.001) (Haider et al			
						(11aluer et al., 2018)			
Elaphostrongylosi	Nordic			E rangiferi	Norwegian outbreak over	Cross		limited -	(Halvorsen et
s is a snail-borne	regions of			development in snails	warm summer in 2018	correlation		medium	al., 1979:
helminthiasis	Europe			is dependent on	affected more age classes	time series		evidence,	Halvorsen,
caused by	(1974-1988)			temperature and	and had unusual	analysis found		medium	2012;
Elaphostrongylus				increases with	phenological timing	E. rangiferi		agreement,	Handeland et
rangiferi, which				increasing	(Deksne et al., 2020)	abundance		low	al., 2019;
infects reindeer				temperatures		increased with		confidence	Deksne et al.,
(Rangifer				(Halvorsen and		increases in			2020)
<i>tarandus</i>) has				Skorping, 1982).		summer			
caused recent						temperature			
outbreaks and has						(Halvorsen,			
increase with						2012).			
temperature.									
Tick-borne	Northern	Increases in	No uptrend found	Entomological and	An entomological and	Simple 2 and 3	Warmer and	high	(Lindgren and
encephalitis virus	Europe:	human	in TBE virus	weather survey plots	epidemiological analysis	parameter time	prolonged warm	evidence,	Gustafson,
and its vector tick	Stockholm	population	prevalence in ticks	of ticks in southern	of monthly tick survey	series models	seasons increase	high	2001; Kutz et
species have	and Uppsala,	were not	examined from	Prague, Czech	data from 1992-2009	of Ixodes	TBE incidence	agreement,	al., 2005;
expanded to	1984-2008	analyzed in	1996-1999 &	Republic from 2001-	found ticks expanded	ricinus host-	(Multiple	very high	Daniel et al.,
higher altitudes	(Haernig et	some studies	2002-2009. BIR	2004 tracking tick	northward and eastward	seeking	regression model	confidence	2006;
and latitudes	al., 2008);	but in others,	(tick-bite	behavior and air and	and increased in	behavior and	results: $R2 = 0.58$,		Tokarevich et
because of	Sweden,	for instance,	incidence rate)	soil temp., humidity,	population size in AO,	weather were	p<0.0001, Full		al., 2011;
phenological	Stockholm	the Komi	and TBE	prec., soil moisture,	Russia (Tokarevich et al.,	constructed in	model: increases in		Hoberg et al.,
autumns milder	1008	by Tokarovich	avamined from	good predictor on large	2011). Tick offer season	Depublic	usease incluence		2013; Kutz et
winters and	(Lindgrap at	(2017) found	1080-2000 TRE	as extreme	months and substantial N	R>0.612(Dania	mild winters		al., 2015; Tokarevich et
earlier spring The	al 2001) and	(2017) round only a 4%	incidence found to	prec/humidity/moistur	shift of tick bites	1 et al 2006	temperatures		al 2017)
expansion of	Asia: Russia	population	increase 40-fold in	e conditions not	reported(Tokarevich et	r et ul., 2000)	favouring spring		, 2017)
Ixodes persulcatus	Archangelsk	increase	30 years from 0.1		al., 2017).		development (8-		

	011 (10)	1	1 1000 000		10000 1	
is the primary	Oblast (AO),	between 1970-	in the 1980s to 9.9	encountered (Daniel et	$10^{\circ}C$) and	
driver for increase	1980-2009	2011.	in 2009. Tick-	al., 2006)	extended autumn	
TBE incidence in	(Tokarevich		bitten inhabitants		activity in the year	
the Arkhangelsk	et al., 2011).		increased from		prior to incidence	
olast region of	Komi		284 in the 1980s		vear. and	
Russia even while	Republic		to ~ 4000 in the		temperatures	
overal TRE	1070_2011		2000s Tiels hites		allowing tick	
	1970-2011 (T. 1		20008. TICK DILES		anowing tick	
incidence	(Tokarevich		were newly		activity (5-8°C)	
decreased for all	et al., 2017);		reported in central		early into the	
of Russia.	Czech		and northern		incidence year)	
Northern regions	Republic:		districts after		(Lindgren and	
are documenting	1953-1976,		2000. Length of		Gustafson, 2001).	
new cases of	1982, 1992,		tick-bite reporting		Mean annual	
disease and	(tick		period increased		temperature	
vectors while	surveys)		20-fold in N		change in AO	
southern and	1065 2001		region 2 fold in		Pussio: $\pm 2.0^{\circ}$ C in	
southern and	TDE		Control and 1 f			
the next			Central, and 1.5			
the north are	incidence		fold in S region.		1960-1989;	
experiencing	(Daniel et al.,		(tick bites are		regression analysis	
drastically higher	2004)		mandatory		of temperature and	
disease incidence			reporting)		TBE incidence (R	
rates and biting			(Tokarevich et al.,		ranging from 0.5-	
rates. Ixodes			2011). Monthly		0.77 depending on	
ricinus ticks and			tick abundance		region and	
TBE incidence			data collected		exclusion criteria	
increased in the			from 1970-2011		p < 0.01) found	
Czech Republic			in windows from		strong correlation	
czeen Kepublic			1070 71 1074 80		batwaan inanaagaa	
and appeared in			1970-71, 1974-80,		between increases	
high elevation			1982-84, 1986-92,		in temperature and	
areas (Sumava			200-2003, 2005-		TBE incidence rate	
and Krkonoše			2011. TBEV only		(Tokarevich et al.,	
Mountains) not			found in ticks in S		2011). Sig	
previously			and C regions of		increase in avg	
observed.			Komiin 2011 but		annual air temp	
			not before. 23-		between 1989-95	
			fold increase in		resulted in a 0.25	
			natients seeking		TBE incidence rate	
			care for tick bites		increase / strong	
			from 1002			
			100 1992-		correlation	
			2011.1BE		coefficient of 0.77	
			incidence		for all RK	
			increased from		(p<0.0001)	
			0.12 (1970-83) to		(Tokarevich et al.,	
		C	2.17 (2009-2011)		2017).	
			(Tokarevich et al			
			2017).			
		4	(Tokarevich et al., 2017).			

Chapter 2 Supplementary Material IPCC WGII Sixth Assessment Report

West Nile disease incidence increased due to temperature and has moved further north in Eurasia.	(eastern Europe) Russia - 1999-2012	Decreased incidence was observed in the year following an outbreak.	WND first reported in Russia in 1999. Outbreaks were associated with higher summer temperatures and mild winters.	Temp increases shorten gonotrophic period (GP), and increases reproduction of Culex spp., and decreases extrinsic incubation period (EIP) of the virus.	Mean temp in winter (Dec- March) (R=0.59), mean temp in summer (July-Sep) (R=0.67), hours temp above 25° C (R=0.70), mean humidity in 2nd and 3rd quarters (R= -0.51), mean atm. pressure in 3rd quarter (R= - 0.71)	limited evidence, med-high agreement, low-medium confidence	(Platonov et al., 2008; Platonov et al., 2014; Mihailović et al., 2020)
Taxonomic- specific					-		
statements Climate change induced warming leads to shifts in thermal regime of lakes	Boreal - Past >40 years	Eutrophication / Trophic state of lakes(1)	In situ monitoring in real time; decadal observations >40 years	Polymictic lakes (regularly mixed throughout summer) may become dimictic more frequently; dimictic lakes (regularly stratify throughout summer) may have a greater tendency to become monomictic; and monomictic lakes (differ to dimictic lakes in that they do not freeze over in winter) may tend to become oligomictic (thermally almost stable, mixing only rarely; mostly tropical lakes) (2)	One dimensional lake model, statistical analysis, numerical models.	Robust evidence that climate change is one of the primary driver. Planktonic events can contribute to polymictic- dimictic regime shifts in temperate lakes, <i>high</i> <i>confidence</i>	(1) (Shatwell et al., 2016); 2 (Kirillin, 2010; Kirillin and Shatwell, 2016; Wood et al., 2016; Ficker et al., 2017; Shatwell et al., 2019; Woolway and Merchant, 2019)
Climate change causes gains and losses in freshwater water level	Global - 1984-2015	Water abstraction, dams / Recent (2002-2016) changes in terrestrial water storage in Australia and Sub- Saharan Africa have been	Water storage increases in the Tibetan Plateau can be more confidently attributed to climate change, since they are corroborated by half-century old ground survey	Global surface water extents have been mapped using Landsat, which showed that from 1984 to 2015, 90,000 km2 of permanent surface water has disappeared globally, while 184,000 km2 of lake surface area has formed elsewhere (Figure ##a). Most of these		Until the influence of climate change on all water fluxes (precipitation, ET, runoff) relevant to specific lake water budgets can be	(1) (Pekel et al., 2016) (2) (Ma et al., 2010) (3) (Rodell et al., 2018)

Chapter 2 Supplementary Material IPCC WGII Sixth Assessment Report

		attributed to the passage of natural drought and precipitation cycles, not climate change (Rodell et al., 2018). The complexities of lake water storage responses to climate change and the challenges associated with its detection and attribution are reflected in the ongoing debate about the influence of climate change effects on lake water storage (Muller, 2018).	data (Ma et al., 2010), and recent observations from the GRACE satellite mission (Rodell et al., 2018), and because there are minimal irrigated agriculture operations or water diversions which may confound the trend (Rodell et al., 2018).	changes are thought to be attributable to background climate variability, water extractions, and reservoir filling, rather than climate change per se (Pekel et al., 2016).		j (S	adequately resolved, the magnitude of climate change effects on global lake water storage will remain highly uncertain, particularly in the presence of interannual climate variability, <i>low</i> <i>confidence</i>	
Warming may amplify the trophic state lakes are already in. Eutrophic lakes have been shown to become more productive while nutrient limitation may increase in oligotrophic lakes.	Global - Varies by study. Range 20-50 years	Land-use changes, agriculture	Long-term observations past>40 years, remote sensing data	In nutrient poor lakes prolongation of thermal stratification limits nutrient entrainments via vertical mixing which leads to a reduction in algal biomass (2), while global warming reinforces eutrophication of already eutrophic lakes via oxygen depletion in the sediment near water layers which triggers release of nutrients previously bound in the sediment (3.4)	yes, ecosystem model PCLake (1)	multivariate statistical analysis, machine learning tools	High Agreement for amplification of eutrophicatio n in eutrophic lakes. <i>Limited</i> <i>evidence</i> for climate- change driven enhanced nutrient limitation in deep	1(Mooij et al.); 2 (Kraemer et al.), 3(Adrian et al.), 4(De Senerpont Domis et al.)

In lakes weather Glc extremes in wind, >40 temperature, precipitation and loss of ice foremost affect the thermal regime with repercussions on water temperature, transparency, oxygen and nutrient dynamics, affecting ecosystem functionality	obal - Past 0 years	Antecedent conditions	In situ monitoring in real time; decadal observations >40 years	Depending on lake type, the severity and timing of the extreme event, and the nature of entrainment from run-off (e.g. DOM) and internal nutrient loads, algal biomass and biodiversity has either declined or increased (1). A once in 250-year flood event in 2009 caused the water column of Lough Feeagh, a large nutrient poor lake in Ireland, to destabilise, followed by reduced primary	jis ji	oligotrophic lakes, medium-high confidence Agreement is high that the increase in the number and severity of extreme events can be attributed to climate change, low- medium confidence	(1)(Havens et al., 2016) (Kuha et al., 2016) (Kasprzak et al., 2017) (Bergkemper et al., 2018) (Stockwell et al., 2020); (2)(de Eyto et al., 2016); (3)(Bartosiewic z et al., 2016); (4)(Kangur et al., 2016)
transparency, oxygen and nutrient dynamics, affecting ecosystem functionality				event in 2009 caused the water column of Lough Feeagh, a large nutrient poor lake in Ireland, to destabilise, followed by reduced primary production (2). The dominant CH4 emission pathway in a shallow productive lake, shifted from gas ebullition to diffusion following high CH4 release from sediments that was driven		medium confidence	al., 2016); (3)(Bartosiewic z et al., 2016); (4)(Kangur et al., 2016)
Severe floods and Glo	obal	Antecedent	JBJC	by colder deep water temperatures during a heatwave (3). Oxygen depletion in the cold deep water body of lakes during heat extremes has forced fish to move upwards into the warm upper water layers where thermal stress and metabolic costs increase. Summer fish kills have been related to summer temperature extremes and near-bottom oxygen depletion (4).	mathematical	High	(1) (Colls et al.,
droughts are		conditions.		Mediterranean streams in	modelling,	Agreement	2019)(2)

FINAL DRAFT		Chapt	ter 2 Supplementa	ary Material IPC	C WGII Sixth Assessment Re	port		
major threads for river ecosystems		(1) urban development, farming on floodplains, river flow disruptions			NE Iberian Peninsula has been linked to a significant decrease of autotrophic biomass, gross primary production (1) and net primary production in streams (2). The predicted effects of permafrost thaw include increased inputs of nitrogen, phosphorus and carbon into rivers which are predicted to affect primary and secondary production and hence the species communities (3). Increased forest fire activity in the surrounding catchment of freshwater ecosystems (4) in riparian zones can lead to reduced canopy cover and increased water temperatures, increased stream flow and suspended sediment concentrations. Increased algal levels can hence alter stream food webs (5)and lead to water quality degradation (6).	literature review, observations, boosted regression tree analysis	that the increase in the number and severity of extreme events can be attributed to climate change, <i>medium-high</i> <i>confidence</i>	(Zlatanović et al., 2018), (3) (Nilsson et al., 2015), (4)(Abatzoglou and Williams, 2016), (5)(Cooper et al., 2015), (6)(Dahm et al., 2015).
In boreal, coniferous areas changes in forestry practices and climate change have caused an increase in terrestrial derived dissolved organic matter (DOM) transport into rivers and lakes leading to their browning.	Boreal - Past decades	Forestry practice, planting of spruce (2); Land-use changes (2). / Non climate related proposed drivers of browning are the strong decline in atmospheric	Long-term observations during past decades (1,4), for review see (2)	Mesocosm experiments (3)	Browning has been shown to drive a shift from auto- to heterotrophic/mixotrophic -based production (2,5) with a subsequent decline in energy transfer efficiency and a reduction of biomass at higher trophic levels (6). Mild browning may accelerate primary production and favour fish production (2014) through input of	An increase in browning by factor 1.3 based on a worst case climate scenario was predicted for 6347 lakes and rivers in the boreal region of Sweden until 2030, which match observed	Agreement is high that climate change induced hydrological intensificatio n and greening of the northern hemisphere are major drivers of browning	(1)(de Wit et al., 2016), (2)(Kritzberg et al., 2020), (3) (Urrutia- Cordero et al., 2017), (4) (Creed et al., 2018), (5) (Zwart et al., 2016), (6)(Ellison et al., 2017), (7) (Finstad et al.,

	sulphur deposition since the 1980ties, reducing acidification and by that increasing the solubility and transport of DOC from soils (1,2).	nutrients associated with DOM in nutrient poor lakes(6,8,9) and increase cyanobacteria growth (cyanobacteria better cope with low light intensities(10) and toxin levels (11,12).	(Solomon et al., 2015) (de Wit et al., 2016) (Finstad et al., 2016) (Catalán et al., 2016; Creed et al., 2018), {Hayden, 2019, from clear lakes}. <i>high</i> <i>confidence</i>	2014), (8)(Thrane et al., 2014), (9) (Seekell et al., 2015) (10) (Huisman et al., 2018) (11)(Hansson et al., 2013) (12) (Urrutia- Cordero et al., 2016), (13) (Weyhenmeyer et al., 2016)
Greenhouse gas emissions from freshwater ecosystems are equivalent to around 20% of global burning fossil fuel CO2 emission	Eutrophication , agriculture	Fine sediment fraction and organic carbon content were important drivers of methane production and potential methane oxidation in rivers- based on field/laboratory studies (1); CH4 ebullition due to temperature induced increase in sediment CH4 production will increase in freshwater ecosystem; literature data combined with mesocosm experiments (2). CO2 and CH4 emissions from freshwater ecosystems are likely to imerase due to the imisalance between losses and gains of CO2 by photosynthesis and respiration, enhanced emissions from exposed sediments during droughts (3,4), enhanced CH4 ebullition of seasonally hypoxic lakes (2,5,6,7,8), increased matter transport from land to water (particularly permafrost thaw) (6) are key mechanisms which experiments (2).	Uncertainty primarily stems from the large site specific heterogeneity of CO2 and CH4 dynamics (6), seasonality of their sediment- water-air fluxes (6,9), the exclusion of ponds and the winter season in global carbon flux estimates (6,9), procedures of upscaling (6) and measuring techniques (5), medium to low confidence	(1)(Bodmer et al., 2020), (2) (Aben et al., 2017), (3) (Marcé et al., 2019); (4) (Keller et al., 2020); (5) (Sanches et al., 2019); (6)(DelSontro et al., 2018); (7) (Beaulieu et al., 2019); (8)(Bartosiewic z et al., 2019), (9) (Denfeld et al., 2018)
Climate change North induced warming America	Antecedent (Lowland rivers have been	Robust evidence	(1) (Piccolroaz et al., 2018) (2)

leads to shifts in thermal regime of rivers and streams; lowland rivers show a stronger thermal response than high-altitude, cold-water receiving streams	Europe - Past decades		observed to be extremely sensitive to heatwaves while high-altitude snow-fed rivers and regulated rivers receiving cold water from higher altitude showed a damped thermal response (1); small mountain streams do not warm linearly with increasing air temperature because of strong local temperature gradients associated with topographic controls (2)	high confidence	(Isaak et al., 2016)
Loss of biodiversity in streams can be directly attributed to climate change through increased water temperatures, hydrological changes such as increased peak discharges, flow alteration and droughts	Global - Past decades	Antecedent conditions	Observed long- term trends in stream macroinvertebrate s have shown that changes in species composition and community structure can be attributed to climate change triggered by hydro climatic changes (1,2). In the Mediterranean climate change may increase the occurrence of droughts and reduce small floods needed to guarantee habitat	high agreement, very high confidence	(1)(Daufresne et al., 2007), (2)(Chessman, 2009), (3) (Death et al., 2015), (4)(Jaric et al., 2019), (5)(Mouthon and Daufresne, 2015).

			diversity (3) particularly threatening fish species of small body size, small range size and low dispersal abilities (4). Heat waves have shown to alter the density, species richness and structure of mollusc communities, favouring more resilient species with a slow pace of recovery (5).		
Climate change is causing range shifts of freshwater fish	North America - Past decades	Antecedent conditions	Systematic shifts towards higher elevation and upstream were found for 32 stream fish species in France following geographic variation in climate change (1). Stream fish are currently responding to recent climate warming at a greater rafe than many terrestrial organisms, although not as much as needed to cope with future climate modifications (1). Range contractions have been found for Bull trout	high agreement, high confidence	(1) (Comte and Grenouillet, 2013), (2) (Isaak et al., 2010), (3) (Eby et al., 2014).

Chapter 2 Supplementary Material IPCC WGII Sixth Assessment Report

			(Salualinus		
			(sarveinus)		
Whole biome shifts have occurred. Boreal forests have shifted into arctic tundra, treeline has shifted upward into alpine tundra, temperate deciduous shrubs and forests upwards into conifer forest, xx	Global	Mixed. add detail			
Woody encroachment into open (grassland, desert) systems has occurred globally, with climate change as one of the primary drivers	Global	Yes - loss of browsing herbivores; fire suppression. Reviews of long term experiments demonstrate impacts (1) / yes - (2)	yes - emergence of grasslands after Decore down below ~500ppm (3) yes - Long-term fre and grazing trials show woody encroachment occurs even when land use is held constant or accounted for indicating a global driver. (5)	Robust evidence that climate change is one of the primary drivers, but LUC also primary driver. Robust evidence (lots of studies) but medium agreement on climate- change attribution because of complex drivers. medium confidence	(1)(Smit and Velthof; Bond and Midgley, 2012; Bakker et al., 2016) (3) (Ehleringer et al., 2002) (Beerling and Osborne, 2006)(4) (Polley et al., 1997; Bond and Midgley, 2000; Kgope et al., 2010) (Hoffmann and Jackson) (Quirk et al., 2019)(5) (Buitenwerf et al., 2012; Venter et al., 2018; Zhang, 2019) (6) (Scheiter and Higgins, 2009; Moncrieff et al., 2014; Scheiter et al., 2018) (8) (Stevens et al., 2017)

FINAL DRAFT	Chapter 2 Supplementary Material	IPCC WGII Sixth Assessment Report			
Widespread greening and shrubbification of tundra High artic and mountain tundra - data starting in 1900	yes - satellite and long term repeat photos (5)	k of periments g to shrub, dge	Yes - widespread shrubbification (8).	robust evidence, high agreement, high confidence	(4) (Elmendorf et al., 2012a; Elmendorf et al., 2012b; Elmendorf et al., 2015; Bjorkman et al., 2018; Bjorkman et al., 2019; Myers-Smith et al., 2019) (5) (Tape et al., 2006; Phoenix and Bjerke, 2016) (8) (Myers-Smith et al., 2011)
Tropical forests Tropical region Drought and warming induced diversity shifts in Mediterranean type ecosystems Mediterranean Uppeers Mediterranean Mad abrahlanda Mediterranea	Insect outbreaks associated with drought (1); loss of fish species (Jaric et al., 2019) (9) Humme drivers Umage drivers		yes - increase in extreme droughts in regions (8)	<i>medium</i> <i>evidence</i> changes are mediated by an increase in extreme droughts. Changes are not always direct but interact through altering the fire regime and post-fire recovery	 al., 2011) (1) (McIntyre et al., 2015; Fettig et al., 2015; Fettig et al., 2019) (5) (McIntyre et al., 2015; Slingsby et al., 2017; Harrison et al., 2018; Smithers et al., 2018; Stephenson et al., 2018; Fettig et al., 2018; Fettig et al., 2019) (8) (AghaKouchak et al., 2014; Robeson; Otto et al., 2018; Sousa et al., 2018), (9) (Jaric et al., 2019) (1) (Lambringe)
Med shrublands shifting to grasslands Mediterranea n ecosystems, arid shrublands	Human driven fragmentation and nitrogen deposition benefits grasses (1)				(1) (Lambrinos, 2006; Fenn et al., 2011)

FINAL DRAFT	Chapter 2 Supplementary Material	IPCC WGII Sixth Assessment Report		
Terrestrial carbon stocksSoutheastDroughts associated with El Nino lead to an increase of anthropogenic fire in drained tropical peatlandsSoutheast Asia - Pas decades	t Long term monitoring and remote sensing show grass invasions (5)		varies by region and ecosystem type high confidence	(5) (Jacobsen and Pratt, 2018; Syphard et al., 2019 2019; Young et al., 2019) see section {2.4.4.} (Herawati and Santoso, 2011; Page and Hooijer, 2016)

5

Table SM2.2: Assessment of uncertainties associated with key statements on Projected Impacts. See SM2.1 caption for descriptions of lines of evidence. Where evidence is provided in main text, only the relevant section is noted.

Key statement	N Geographic region and <i>Period</i>	Non-climaticStudyDrivers:Numbers ofLand Usestudies and/orand Landnumbers ofCoverdifferentChangemodels used(LULCC)1to generateor OtherprojectedChangesimpacts	design Level of agreement among studies and/or model outputs	Independent evidence; paleo data and <i>long term</i> <i>observations</i>	Levels of evidence, agreement and confidence for attribution	SOD sections	References and results
Continued climate change under high emissions scenarios could increase future wildfire frequency on one-third to two-thirds of global land by 2100 and decrease fire frequency on one- fifth of global land, with a net global fire frequency increase of ~30% per century	C	SEC			medium confidence	{2.4.4.2; 2.5.5.2}	
Increased wildfire, combined with erosion due to deforestation, could degrade water supplies					medium confidence	{2.4.4.2; 2.5.5.2}	
For ecosystems with historically low fire frequencies, particularly tropical rainforests, projected increases of drought under continued climate	5				medium confidence	{2.4.4.2; 2.5.5.2}	

change increase risks of fire, which							
could cause biome shifts, e.g., potential							
conversion of over half the area of							
Amazon rainforest to grassland.							
Terrestrial ecosystems protect globally						high	{2.4.4.4; 2.5.1}
critical stocks of carbon and provide an						confidence	C
essential service of sequestration of							5
carbon from the atmosphere but are at							
risk of carbon losses from							
deforestation and climate change							
Percentages of species projected to	Global	yes for some	178 studies.	medium to	Ever-increasing	Differences	{2.5.1.3.3,;
suffer extinction vary from zero to	s	studies	Each study is of	high	evidence of	in estimates	2.5.4}
64% with a threshold for extinction of			a variable	agreement	current impacts	of extinction	
>80% of the species' climate space			number of	for same	of climate	risk stem	
disappeared. With a threshold for			species, ranging	species or	change on wild	from	
extinction of >50% climatic range lost,			from a few to	dataset, low	species in turn	differing	
under 3.2 °C warming, 49% of insects,			>100,000	agreement	gives us higher	assumptions	
44% of plants, and 26% of vertebrates			species.	across	confidence in	of thresholds	
are projected to be at risk of extinction.			Modeling	studies of	future	for	
At 2°C, this falls to 18% of insects,			approaches	multiple	projections of	extinction	
16% of plants, and 8% of vertebrates			include a range	species	biodiversity	risk,	
and at 1.5°C, to 6% of insects, 8% of			of biological	1	changes that are	differing	
plants, and 4% of vertebrates.			models (SDMs		based upon	geographic	
r,			as well as		known	regions and	
			process-based		relationships	taxonomic	
			models) and		between species	groups as	
			multiple GCMs		and climate	well as	
			and warming		und enmate.	differing	
			scenarios			modeling	
			sectiarios.			approaches	
						approactics	
			\frown			amissions	
						consticution	
		• (Confidence	
						bighty	
						domondomt	
						uependent	
						upon	
						statement of	
						range of	
						species	
	01.1.1			1 . 1		extinctions	
Climate change induced warming leads	Global -			high			{2.3.3.0;
to shifts in thermal regime of lakes	Representative						2.5.1.3.2;
	concentration pathway						2.5.3.6.2}
	8.5						

	Chapter 2 Supple	ementary Mater	al IPCC WGII Sixth Assess	sment Report			
Substantial changes in vegetation structure and ecosystem processes are expected to for already relatively small temperature increases (<2°C above pre-industrial), in particular in cold (boreal, tundra) regions, as well as in dry regions [<i>high confidence</i>]. Land- use change will exacerbate projected impacts on ecosystems and will alter ecosystem function and vegetation cover in addition to climate change. Models agree on impacts increasing rapidly with level of global mean temperature change: models also agree	Global, Tropical boreal - 2100, climate/CO ₂ as in RCP 2.6, 4.5, 8.5	Yes for some experiments, from LUH/CMIP5 N/A	Factorial model experiment (HadGEM2- ESM	Greening and browning observed in satellite remote sensing studies, and attributed to LUC and climate change/CO ₂ . their relative impacts vary widely over the globe see E:G: Piao et al., 2016	0	Projected changes at the biome level {2.5.2.2} See also SM2.3 and Figure 2.9	(Davies-Barnard et al., 2015) Forest fraction change: global & boreal increasing with CC/CO ₂ , most strongly in RCP8.5; tropical impacts are small, slight decline in RCP2.6; global/boral/tropical decline in response to LUC for 2.6 and 8.5, increase in 4.5.
temperature change, models also agree that these impacts will be visible the earliest in boreal/tundra regions, as well as in dry areas. Nonetheless there are discrepancies regarding the regional patterns of impacts, not only for climate change but also for land- use change.	Global - 2100, climate/CO ₂ as in RCP 2.6, 4.5, 6.0 Global - 2100, climate/CO ₂ as in RCP 2.6, 4.5, 6, 8.5	ves, for some experiments, from LUH/CMIP5 N/A	Seven global vegetation models, driven by ISIMIP climate shifts and biogeochemical cycles/ecosystem services			Projected changes at the biome level {2.5.2.2} See also SM2.3 and Figure 2.0	(Ostberg et al., 2013; Ostberg et al., 2018) For RCP2.6, still >20% of land surface notably impacted by climate change (mostly tundra, boreal regions, but also dry grasslands/deserts). Increasing to >30% (RCP 4.5) and >40% (6.0) of the land surface, and increasingly including now also tropical seasonal forests expanding into tropical forests and into savannas. In a RCP8.5 world, >50% of land sirface affected by climate change alone. LUC substantially enhances the land surface transformation in addition to climate change but areas of largest climate change impacts and largest LUC impacts do not necessarily overlap in many places. (Warszawski et al., 2013) At 20C warming above 1980-2010 levels, 5-19% of land surface at risk of severe change; extend of

			vegetation and compare to no- analogue climate. Does not consider CO ₂ impacting photosynthesis. Climate analogues obtained from seven GCMs/AR4.	2	seen in novel ecosystems, but low confidence as to where these will emerge.	S	Finland and western Siberia. Effects stronger in A2.
At least part of what is now humid tropical forest is projected to shift increasingly towards vegetation with traits that correspond to drier and hotter climate [high confidence]	Tropical/Ghana - <i>NA</i>	No N/A	Species functional traits plus vegetation census data (plots) along a rainfall gradient; calculate community-level weighted mean for each trait and plots, CWM is indicator of mean canopy properties. Explore empirical relationship with soil water deficit			Risk to tropical forest {2.5.2.6}	(Aguirre-Gutiérrez et al., 2019) Drier tropical forests increased their deciduous species abundance and generally changed more functionally than forests growing in wetter conditions, suggesting an enhanced ability to adapt ecologically to a drying environment.
	Tropical/Amazon - NA	No N/A	Calculate exposure as meteorological drought, using the standardized precipitation index (SPI) and the maximum cumulative water deficit (MCWD) from 1981 to 2016 & assess changes in enhanced vegetation index				(Anderson et al., 2018; Bartlett et al., 2019) Minimum and maximum AEVI indicate that droughts tend to increase the variance of the photosynthetic capacity of Amazonian forests; intensity of negative AEVI increased with time (2005- 2016), forest may become more vulnerable to droughts.

	in SRES A1B, RCP 2.6, RCP 8.5						cover for A1B and RCP 2.6, decline in some of the ensemble runs under RCP 8.5. Impacts get stronger in time periods beyond 2100 ('comitted')
On different continents, and from mesic to dry savannah sub-regions, the relative importance of climate, fire and other factors in shaping savannah vegetation and distribution varies, which makes projections of the change of the biome's extend challenging. Due to the continued strong effect of CO_2 on tree to grass ratio in future, models	Savanna - 2070, RCP4.5	No N/A	Thornley transport resistance statistical distribution model & three versions of aDGVM + MPI ESM-LR	540		Risk to savannas {2.5.2.5}	(Moncrieff et al., 2016) 2070: DVM project reduced extent of savannah at boundary with forests, while the TTR-SDM projects savannah decrease at boundary with grassland. TTR does not include CO ₂ impacts.
suggest both a loss of savannah extend and conversion into dry forest and an expansion of savannah-type vegetation into arid grasslands.	Savanna/Africa - 2100, SRES A1B	No N/A	aDGVM + climate from ECHAM5	SP	•		(Higgins and Scheiter, 2012) (woody) C3 vegetation increases in from dominating less then 5% of study area surface in 2020 to ca. 20% at end of century.
Models of vegetation response to climate project that the observed increases in shrub dominance and in boreal forest encroachment driven by recent warming are to accelerate in coming decades, especially under the higher greenhouse gas emissions scenarios, leading to a shrinking of the	Tundra - 2070, RCP 4.5	no yes?	SDMs, 116 vascular plants, based on plot observation data presumably no CO ₂ impact on plants			Risk to tundra and boreal forest {2.5.2.9}	(Mod and Luoto, 2016) Abundance of woody plants will expand, decreasing predicted species richness, amplifying species turnover and increasing the local extinction risk for
area of fundra globally	Tundra - 2050 and 2070, climate as in RCPs 2.6 - 8.5	no	statistical vegetation model CSCS + enesmble 33 GCMs, unclear if model accounts for CO ₂				(Gang et al., 2017) Area of tundra declines in basically all future projections, highest impact in high emission scenarios.
	Tundra - 2074; 0, 2.5, 5, 8°C warming compared to 1994	No N/A	vegetation model NUCOM-tundra + 16 different climate scenarios; unclear if model accounts for CO ₂				(van der Kolk et al., 2016) Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids: shrub growth limited by very wet soil conditions and low nutrient

						supply/graminoids can
						suppry/grammolds can
						grow in wide range of soli
						moistures & access
						nutrients in deeper soil
						layers.
Boreal tree species are expected to	Boreal forest/Siberia -	No	DGVM LPJ-			(Arneth et al., 2016) Areas
move northwards (or in mountain	2100, climate/ CO_2 as	N/A	GUESS &			dominated by löarch shift
regions: upwards) into regions	in RCP8.5		ECHAM5.5-			northwards, overall area of
dominated by tundra, unless			HAM2 climate			larch-dominateed forest
constrained by edaphic features, and						declines. Expansion of
temperate species are projected to grow						deciduous vegetation at
in regions currently occupied by						southern edge
southern boreal forest. In both biomes	Global/boreal regions	No	HadCM3C			Falloon et al. 2012
southern borear forest. In both biomes,	(45.80 N) = 2100		Hadewije			Lancon et al., 2012
deciduous trees are simulated to	(43-800IN) - 2100,	IN/A				Increases in shrub and
increasingly grow in regions currently	SRES AIB and climate					needleleaf trees at high
dominated by conifers.	stabilisation scenario					latitudes.
While the future of the global land	Permafrost region -	No	Empirical		Risk to terrestrial	(Chadburn et al., 2017)
carbon sink is highly iuncertain,	2300, Stabilisation for	N/A	relationship to		carbon {2.5.3.4}	Simulations under two
possibly enhanced carbon losses from	<i>RCP4.5 and 8.5 (no</i>		determine			future climate scenarios
terrestrial systems further will limit the	changes after 2100).		permafrost area	XX		show near-surface
available carbon budget for global	No CO ₂ impacts		from MAAT.			permafrost loss per degree
warming staying below 1.5oC [high	included.		Develop			of warming between 1.1
confidence			relationships			and 1.2 million km ² (in the
			between mean			new model version). If the
			annual air T and			climate is stabilized at 2°C
			nine CMIP5			estimate are that the
			GCMs Estimate			normafrost area would
			future air			eventually he reduced by
			tomporaturas by			
			in analysing			over 40%. Stabilizing at
						1.5°C rather than 2°C
	<pre> </pre>		historical air			(above PI) would save
			temperatures by			approximately 2 million
			the global mean			km ² of permafrost.
			warming,			
			multiplied by an			
			Arctic			
			amplification			
			factor, using			
			CMIP5 models.			
	Permafrost region -	No	Ecosystem			(Comyn-Platt et al., 2018)
	2100, 1.50 and 20	N/A	model Jules +			By 2100, the model
	warming trajectories		Climate change			ensemble estimates a
	incl 1 50C with		emulator			median 138 Mha loss of
	overshoot: include		IMOGEN			nermafrost area at 3 m
	CO2		INCOLIN			depth for the 1.5°C
						acpuil for the 1.5 C
						asymptote pathway, and a

FINAL DRAFT

Chapter 2 Supplementary Material IPCC WGII Sixth Assessment Report

	Global - 2100, SRES A2 climate and CO2	No N/A	biomass, depending on which GCM used, despite of only using a single emission scenario Jules,. Adjusted for T- acclimation of photosynthesis + emulated climate from 22 AR4 GCMs		S	century peak in biomass- gain and downturn. Only one of all 22 simulations forest projected to loose biomass, and this only in the South American tropics. (Mercado et al., 2018) Results suggest that thermal acclimation of photosyntheticcapacity makes tropical and temperate C less vulnerable to warming, but reduces the warming- induced C uptake in the boreal region under elevated CO ₂ .
Cascading trophic effects triggered by top predators or the largest herbivores propagate through food webs and reverberate through to the functioning of whole ecosystems, altering notably productivity, carbon and nutrient turnover and net carbon storage [medium confidence]	Western North America - <i>none</i>	No N/A	Data on population densities of a primary and secondary consumers across a climatic gradient; satellite-based maps of plant productivity + estimates of animal abundance and foraging area		Risk to terrestrial carbon {2.5.3.4}	(Stoner et al., 2018) Data indicate strong, positive association between plant productivity and mountain lion density 8via impacts on mule deer). Droughts and longer-term climate changes reduce the suitability of marginal habitats> consumer home ranges will expand in order for individuals to meet basic nutritional requirements. These changes portend decreases in the abundance of large- bodied, wide-ranging wildlife through climatically-driven reductions in carrying capacity. (Pachzelt et al., 2015) The grazer-vegetation model predicted substantial impacts on grass biomass (mostly increases), total

4

Table SM2.3: Projected vulnerabilities and risks of ecosystems to biome shifts from spatial analyses of vegetation biogeography, in order by type of analysis, analysis area, and projected change in temperature. Data underlying Figure 2.9

Area	Δ Τ (°C)	Biome Emissions change, scenario fraction of area (%)	Number of biomes	Number of GCMs	Biome shift criterion	Spatial resolution (km)	Vegetation model	Reference
Dynamic global	vegetation n	nodels						
World	1	RCP2.6 ~4	5–14	3	risk >0.3	~50	Hybrid, JeDi, JULES, LPJmL, ORCHIDEE, SGVM, VISIT	(Warszawski et al., 2013)

Do Not Cite, Quote or Distribute

FINAL DRAFT		Chapt	er 2 Suppleme	ntary Material	IPCC WGI	Sixth Assessmer	nt Report		
World	1.5	1.5° C	~5	2	16	P >0.80	~150	LPJ	(Scholze et al., 2006)
World	≤2	B1	7	8	12	change >30%	~50	LPJ	(Park et al., 2015)
World	2.4	B1	10	13	3	confidence >0.8	50	MC1	(Gonzalez et al., 2010b)
World World	2.5	+2–3° C RCP4.5	~5	2 5–14	16 3	P >0.80 risk >0.3	~150	LPJ Hybrid, JeDi, JULES, LPJmL, ORCHIDEE, SGVM, VISIT	(Scholze et al., 2006) (Warszawski et al., 2013)
World	3	RCP6.0	28	5–14	3	risk >0.3	50	Hybrid, JeDi, JULES, LPJmL, ORCHIDEE, SGVM, VISIT	(Warszawski et al., 2013)
World	2.5-3.5	A1B	10	8	18	change >30%	~50	LPJ	(Park et al., 2015)
World	3.4	A1B	13	13	3	confidence >0.8	50	MC1	(Gonzalez et al., 2010b)
World	3.5	3.5°C	~5	2	16	P >0.80	~150	LPJ	(Scholze et al., 2006)
World	≥3.5	A2	13	8	18	change >30%	~50	LPJ	(Park et al., 2015)
World	4	A2	16	13	3	confidence >0.8	50	MC1	(Gonzalez et al., 2010b)
World	3.1-4.7	historical climate and B1, A1B, A2	12	13	3	confidence >0.8	50	MC1	(Gonzalez et al., 2010b)
World	~3.5–5.5	A1B	~10-30	5	8	range of GCMs	~280	CLM	(Alo and Wang, 2008)
World	4	RCP8.5	35	5-14	3	risk >0.3	~50	Hybrid, JeDi, JULES, LPJmL, ORCHIDEE, SGVM, VISIT	(Warszawski et al., 2013)
World	4.6	A1FI	~10	2	1	change >50%	~250-375	HyLand	(Sitch et al., 2008)

FINAL DRAFT		Chapt	er 2 Suppleme	entary Material	IPCC WGII	Sixth Assessmen	nt Report		
World	4.6	A1FI	~20	2	1	change >50%	~250-375	LPJ	(Sitch et al., 2008)
World	4.6	A1FI	~10	2	1	change >50%	~250 x 375	ORCHIDEE	(Sitch et al., 2008)
World	4.6	A1FI	~15	2	1	change >50%	~250 x 375	TRIFFID	(Sitch et al., 2008)
Africa	-	A1B	~26	5	1	change in one GCM	~30	aDGVM	(Scheiter and Higgins, 2009)
Asia - Qinghai- Tibetan Plateau	1.5	RCP4.5	55	19	1	change in one GCM	~50	LPJ	{Gao, 2016, Climate change and}
Asia - Qinghai- Tibetan Plateau	4.2	RCP8.5	70	19	1	change in one GCM	~50	LPJ	{Gao, 2016, Climate change and}
Asia - Siberia	2	+2.6°C after 130 y	~5	2		change >50% of area	372 sites	FAREAST	(Shuman et al., 2011)
Europe	2.9-4.9	A2	~30–40	13	2	change in one GCM	~12 x 18	LPJ-GUESS	(Hickler et al., 2012)
South America - Amazon	2	A2	~30	2	1	change in one GCM	~250 x 375	HadCM3LC	(Jones et al., 2009)
South America - Amazon	~3	RCP4.5	~50	15		change in one GCM	~190 x 125	Inland	(Lyra et al., 2016)
South America - Amazon	~6	RCP8.5	~80	15	1	change in one GCM	~190 x 125	Inland	(Lyra et al., 2016)
Equilibrium mo	dels				•				
World	1	RCP2.6	10	14	10	vulnerability index >0.7	~10	vulnerability index	(Li et al., 2018a)
World	1.8	RCP4.5	12	14	10	vulnerability index >0.7	~10	vulnerability index	(Li et al., 2018a)
World	3.7	RCP8.5	15	14	10	vulnerability index >0.7	~10	vulnerability index	(Li et al., 2018a)
World	2–4	A1B	37	5	10	average of GCMs	~100	EVE	(Bergengren et al., 2011)
Africa - South		A1B	50	7	1	change in one GCM	~20	aDGVM	(Moncrieff et al., 2015)

FINAL DRAFT		Chapt	er 2 Supplemer	ntary Material	IPCC WGI	I Sixth Assessment	Report		
Africa - West		A2	~50	5	17	weighted average of GCMs	~10	GAM	(Heubes et al., 2011)
Asia - India	3	+3°C, +15% precipitation	~25	7	1	change in one scenario	1	Minimum distance supervised classification	(Chakraborty et al., 2013)
Asia - India		RCP4.5	14	11	19	agreement >0.75	~10	RF	(Rasquinha and Sankaran, 2016)
Asia - India		RCP8.5	18	11	17	agreement >0.75	~10	RF	(Rasquinha and Sankaran, 2016)
North America - Northwest		Historical climate and A2	50–57	33	2	change in one GCM	~1	Rehfeldt	(Langdon and Lawler, 2015)
North America - Yukon	3.9–6.9	A2	50	25	5	two projected changes in biome	~18	SNAP- EWHALE	(Rowland et al., 2016)
South America		A2	~5–40	13	14	confidence >0.75	~170	CPTEC- PVM2	(Lapola et al., 2009)
Tropical forests	2	+2°C	<5	2	16	P>0.80	~100	MWCD	(Zelazowski et al., 2011)
Tropical forests	4	+4°C	~5	2	16	P >0.80	~100	MWCD	(Zelazowski et al., 2011)
Combined clima	ite change ai	nd land use chang	ge						
World	1	RCP2.6	22	9		risk >0.3	~50	LPJmL	(Ostberg et al., 2018)
World	1.8	RCP4.5	34	9		risk >0.3	~50	LPJmL	(Ostberg et al., 2018)
World	2.2	RCP6.0	41	9		risk >0.3	~50	LPJmL	(Ostberg et al., 2018)
World	3.7	RCP8.5	54	9		risk >0.3	~50	LPJmL	(Ostberg et al., 2018)
World	3.1–4.7	historical climate and B1, A1B, A2	48	13		confidence >0.8	48	MC1	(Eigenbrod et al., 2015)
Latin America	1	RCP2.6	8–14	9	5	average of GCMs	~50	LPJmL	(Boit et al., 2016)
Latin America	3.7	RCP8.5	10–15	9	5	average of GCMs	~50	LPJmL	(Boit et al., 2016)
		Po	S						

1

Table SM2.4: Biome Change. Data underlying Figure Box 2.1.1

Full reference	Year	Continent	Country	Ecosystem Change	Start. Year	End.Y ear
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Angola	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Angola	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Botswana	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Botswana	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Botswana	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Botswana	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Chad	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Chad	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Ethiopa	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Ethiopa	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Ghana	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Kenya	Shrub/woodl and cover gain	2002	2016

Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Mozambique	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Mozambique	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Namibia	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Namibia	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Namibia	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Nigeria	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Nigeria	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Senegal	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Somalia	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Somalia	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Somalia	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	South Africa	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	South Africa	Shrub/woodl and cover gain	2002	2016

Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Sudan	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Sudan	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Sudan	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Tanzania	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Tanzania	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Tanzania	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Uganda	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Zambia	Shrub/woodl and cover gain	2002	2016
Axelsson, C. R., & Hanan, N. P. (2018). Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of biogeography, 45(6), 1209-1218.	2018	Africa	Zimbabwe	Shrub/woodl and cover gain	2002	2016
Bassett, T. J., & Zuéli, K. B. (2000). Environmental discourses and the Ivorian Savanna. Annals of the Association of American Geographers, 90(1), 67-95.	2000	Africa	Ivory coast	Shrub/woodl and cover gain	1956	1989
Bassett, T. J., & Zuéli, K. B. (2000). Environmental discourses and the Ivorian Savanna. Annals of the Association of American Geographers, 90(1), 67-95.	2000	Africa	Ivory coast	Shrub/woodl and cover gain	1956	1993
Britz, M. L., & Ward, D. (2007). Dynamics of woody vegetation in a semi-arid savanna, with a focus on bush encroachment. African Journal of Range and Forage Science, 24(3), 131-140.	2007	Africa	South Africa	Shrub/woodl and cover gain	1957	1993
Eckhardt, H. C., Wilgen, B. W., & Biggs, H. C. (2000). Trends in woody vegetation cover in the Kruger National Park, South Africa, between 1940 and 1998. African Journal of Ecology 38(2) 108-115	2000	Africa	South Africa	Shrub/woodl and cover gain	1940	1998
100105, 50(2), 100 115.						

Gautier, L. (1989). Contact forêt-savane en Côte d'Ivoire centrale: évolution de la surface forestière de la réserve de Lamto (sud du V- Baoulé). Bulletin de la Société Botanique de France, 136(3), 85-92.	1989	Africa	Ivory coast	Forest cover gain	1963	1988
Gautier, L. (1989). Contact forêt-savane en Côte d'Ivoire centrale: évolution de la surface forestière de la réserve de Lamto (sud du V- Baoulé). Bulletin de la Société Botanique de France, 136(3), 85-92.	1989	Africa	Ivory coast	Shrub/woodl and cover gain	1963	1988
Goetze, D., Hörsch, B., & Porembski, S. (2006). Dynamics of forest–savanna mosaics in north-eastern Ivory Coast from 1954 to 2002. Journal of Biogeography, 33(4), 653- 664.	2006	Africa	Guinea	Forest cover gain	1954	1996
Gordijn, P. J., Rice, E., & Ward, D. (2012). The effects of fire on woody plant encroachment are exacerbated by succession of trees of decreased palatability. Perspectives in Plant Ecology, Evolution and Systematics, 14(6), 411-422.	2012	Africa	South Africa	Shrub/woodl and cover gain	1943	2007
Grellier, S., Kemp, J., Janeau, J. L., Florsch, N., Ward, D., Barot, S., & Valentin, C. (2012). The indirect impact of encroaching trees on gully extension: A 64year study in a sub-humid grassland of South Africa. Catena, 98, 110-119.	2012	Africa	South Africa	Shrub/woodl and cover gain	1945	2009
Guillet, B., Achoundong, G., Happi, J. Y., Beyala, V. K. K., Bonvallot, J., Riera, B., & Schwartz, D. (2001). Agreement between floristic and soil organic carbon isotope (13C/12C, 14C) indicators of forest invasion of savannas during the last century in Cameroon. Journal of Tropical	2001	Africa	Cameroon	Forest cover gain	1952	1993
Ecology, 17(06), 809-832. Hottman, M. T., & O'Connor, T. G. (1999). Vegetation change over 40 years in the Weenen/Muden area, KwaZulu-Natal: evidence from photo-panoramas.African Journal of Range and Forage Science, 16(2-3), 71-88.	1999	Africa	South Africa	Shrub/woodl and cover gain	1955	1998
Hudak, A. T., & Wessman, C. A. (2001). Textural analysis of high resolution imagery to quantify bush encroachment in Madikwe Game Reserve, South Africa, 1955- 1996. International Journal of Remote Sensing, 22(14), 2731-2740.	2001	Africa	South Africa	Shrub/woodl and cover gain	1955	1996
Kakembo, V. (2001). Trends in vegetation degradation in relation to land tenure, rainfall, and population changes in Peddie district, Eastern Cape, South Africa.Environmental Management, 28(1), 39-46.	2001	Africa	South Africa	Shrub/woodl and cover gain	1938	1988
Levick, S. R., & Rogers, K. H. (2011). Context-dependent vegetation dynamics in an African savanna. Landscape ecology, 26(4), 515-528.	2011	Africa	South Africa	Shrub/woodl and cover gain	1942	2001
Levick, S. R., & Rogers, K. H. (2011). Context-dependent vegetation dynamics in an African savanna. Landscape ecology, 26(4), 515-528.	2011	Africa	South Africa	Shrub/woodl and cover gain	1942	2001

Mapedza, E., Wright, J., & Fawcett, R. (2003). An investigation of land cover change in Mafungautsi Forest, Zimbabwe, using GIS and participatory mapping.Applied Geography, 23(1), 1-21.	2003	Africa	Zimbabwe	Forest cover gain	1976	1996
Marston, C. G., Aplin, P., Wilkinson, D. M., Field, R., & O'Regan, H. J. (2017). Scrubbing up: multi-scale investigation of woody encroachment in a southern African savannah. Remote Sensing, 9(5), 419.	2017	Africa	South Africa	Shrub/woodl and cover gain	2001	2014
Mitchard, E. T. A., Saatchi, S. S., Gerard, F. F., Lewis, S. L., & Meir, P. (2009). Measuring woody encroachment along a forest-savanna boundary in Central Africa. Earth Interactions, 13(8), 1-29.	2009	Africa	Cameroon	Forest cover gain	1986	2006
Mosugelo, D. K., Moe, S. R., Ringrose, S., & Nellemann, C. (2002). Vegetation changes during a 36-year period in northern Chobe National Park, Botswana.African Journal of Ecology, 40(3), 232-240.	2002	Africa	Botswana	Shrub/woodl and cover gain	1962	1998
O'Connor, T. G. (2001). Effect of small catchment dams on downstream vegetation of a seasonal river in semi-arid African savanna. Journal of Applied Ecology, 38(6), 1314-1325.	2001	Africa	South Africa	Shrub/woodl and cover gain	1955	1987
O'Connor, T. G., & Crow, V. R. T. (1999). Rate and pattern of bush encroachment in Eastern Cape savanna and grassland. African Journal of Range and Forage Science, 16(1), 26-31.	1999	Africa	South Africa	Shrub/woodl and cover gain	1938	1986
O'connor, T. G., Haines, L. M., & Snyman, H. A. (2001). Influence of precipitation and species composition on phytomass of a semi- arid African grassland. Journal of Ecology, 89(5), 850-860.	2001	Africa	South Africa	Shrub/woodl and cover gain	1955	1987
Poulsen, Z.C. and Hoffman, M.T., 2015. Changes in the distribution of indigenous forest in Table Mountain National Park during the 20th Century. South African Journal of Botany. 101, 49-56.	2015	Africa	South Africa	Forest cover gain	1944	2008
Prins, H. H., & van der Jeugd, H. P. (1993). Herbivore population crashes and woodland structure in East Africa. Journal of Ecology, 305-314.	1993	Africa	Tanzania	Shrub/woodl and cover gain	1985	1991
Prins, H. H., & van der Jeugd, H. P. (1993). Herbivore population crashes and woodland structure in East Africa. Journal of Ecology, 305-314.	1993	Africa	Tanzania	Shrub/woodl and cover gain	1985	1991
Prins, H. H., & van der Jeugd, H. P. (1993). Herbivore population crashes and woodland structure in East Africa. Journal of Ecology, 305-314.	1993	Africa	Tanzania	Shrub/woodl and cover gain	1985	1991
Prins, H. H., & van der Jeugd, H. P. (1993). Herbivore population crashes and woodland structure in East Africa. Journal of Ecology, 305-314.	1993	Africa	Tanzania	Shrub/woodl and cover gain	1985	1991
(2011). Historical and recent land-use impacts on the vegetation of Bathurst, a municipal commonage in the Eastern Cape, South Africa. African Journal of Range & Forage Science, 28(1), 9-20.	2011	Africa	South Africa	Shrub/woodl and cover gain	1942	2004

.

	Puttick, J. R., Hoffman, M. T., & Gambiza, J. (2011). Historical and recent land-use impacts on the vegetation of Bathurst, a municipal commonage in the Eastern Cape, South Africa. African Journal of Range & Forage Science, 28(1), 9-20.	2011	Africa	South Africa	Shrub/woodl and cover gain	1942	2004
	Puttick, J. R., Hoffman, M. T., & Gambiza, J. (2011). Historical and recent land-use impacts on the vegetation of Bathurst, a municipal commonage in the Eastern Cape, South Africa. African Journal of Range & Forage Science, 28(1), 9-20.	2011	Africa	South Africa	Shrub/woodl and cover gain	1942	2004
	Puttick, J. R., Hoffman, M. T., & Gambiza, J. (2014). The impact of land use on woody plant cover and species composition on the Grahamstown municipal commonage: implications for South Africa's land reform programme. African Journal of Range & Forage Science, 31(2), 123-133.	2014	Africa	South Africa	Shrub/woodl and cover gain	1942	2004
	Puttick, J. R., Hoffman, M. T., & Gambiza, J. (2014). The influence of South Africa's post- apartheid land reform policies on bush encroachment and range condition: a case study of Fort Beaufort's municipal commonage. African Journal of Range & Forage Science, (ahead-of-print), 1-11.	2014	Africa	South Africa	Shrub/woodl and cover gain	1949	2004
	Puttick, J. R., Hoffman, M. T., & Gambiza, J. (2014). The influence of South Africa's post- apartheid land reform policies on bush encroachment and range condition: a case study of Fort Beaufort's municipal commonage. African Journal of Range & Forage Science, (ahead-of-print), 1-11.	2014	Africa	South Africa	Shrub/woodl and cover gain	1949	2004
	Puttick, J. R., Hoffman, M. T., & Gambiza, J. (2014). The influence of South Africa's post- apartheid land reform policies on bush encroachment and range condition: a case study of Fort Beaufort's municipal commonage. African Journal of Range & Forage Science, (ahead-of-print), 1-11.	2014	Africa	South Africa	Shrub/woodl and cover gain	1949	2004
	Rohde, R. F., & Hoffman, M. T. (2012). The historical ecology of Namibian rangelands: Vegetation change since 1876 in response to local and global drivers. Science of the Total Environment, 416, 276-288.	2012	Africa	namibia	Shrub/woodl and cover gain	1876	2009
	Rohde, R. F., & Hoffman, M. T. (2012). The historical ecology of Namibian rangelands: Vegetation change since 1876 in response to local and global drivers. Science of the Total Environment, 416, 276-288.	2012	Africa	namibia	Shrub/woodl and cover gain	1876	2009
	Rohde, R. F., Hoffman, M. T., Durbach, I., Venter, Z., & Jack, S. (2019). Vegetation and climate change in the Pro-Namib and Namib Desert based on repeat photography: Insights into climate trends. Journal of Arid Environments, 165, 119-131.	2019	Africa	Namibia	Shrub/woodl and cover gain	1876	2016
	Rohde, R. F., Hoffman, M. T., Durbach, I., Venter, Z., & Jack, S. (2019). Vegetation and climate change in the Pro-Namib and Namib Desert based on repeat photography: Insights	2019	Africa	Namibia	Shrub/woodl and cover gain	1876	2016
1							

Environments, 165, 119-131.						
Roques, K. G., O'connor, T. G., & Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology, 38(2), 268-280.	2001	Africa	Swaziland	Shrub/woodl and cover gain	1947	1997
Roques, K. G., O'connor, T. G., & Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology, 38(2), 268-280.	2001	Africa	Swaziland	Shrub/woodl and cover gain	1947	1997
Roques, K. G., O'connor, T. G., & Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology, 38(2), 268-280.	2001	Africa	Swaziland	Shrub/woodl and cover gain	1947	1997
Roques, K. G., O'connor, T. G., & Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology, 38(2), 268-280.	2001	Africa	Swaziland	Shrub/woodl and cover gain	1947	1997
Roques, K. G., O'connor, T. G., & Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology, 38(2), 268-280.	2001	Africa	Swaziland	Shrub/woodl and cover gain	1947	1997
Roques, K. G., O'connor, T. G., & Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology, 38(2), 268-280.	2001	Africa	Swaziland	Shrub/woodl and cover gain	1947	1997
Russell, J. M., & Ward, D. (2014). Remote sensing provides a progressive record of vegetation change in northern KwaZulu-Natal, South Africa, from 1944 to 2005. International Journal of Remote Sensing, 35(3), 904-926.	2014	Africa	South Africa	Shrub/woodl and cover gain	1944	2005
Russell, J. M., & Ward, D. (2014). Remote sensing provides a progressive record of vegetation change in northern KwaZulu-Natal, South Africa, from 1944 to 2005. International Journal of Remote Sensing, 35(3), 904-926.	2014	Africa	South Africa	Shrub/woodl and cover gain	1944	2005
Russell, J. M., & Ward, D. (2014). Remote sensing provides a progressive record of vegetation change in northern KwaZulu-Natal, South Africa, from 1944 to 2005. International Journal of Remote Sensing, 35(3), 904-926.	2014	Africa	South Africa	Shrub/woodl and cover gain	1944	2005

into climate trends. Journal of Arid

-						
Russell, J. M., & Ward, D. (2014). Remote sensing provides a progressive record of vegetation change in northern KwaZulu-Natal, South Africa, from 1944 to 2005. International Journal of Remote Sensing, 35(3), 904-926.	, 2014 1	Africa	South Africa	Shrub/woodl and cover gain	1944	2005
Russell, J., & Ward, D. (2013). Vegetation change in northern KwaZulu-Natal since the Anglo-Zulu War of 1879: local or global drivers?. African Journal of Range & Forage Science, (ahead-of-print), 1-17.	2013	Africa	South Africa	Shrub/woodl and cover gain	1879	2011
Stevens et al unpublished	2016	Africa	South Africa	Shrub/woodl and cover gain	1940	2009
Ward, D., Hoffman, M. T., & Collocott, S. J. (2014). A century of woody plant encroachment in the dry Kimberley savanna of South Africa. African Journal of Range & Forage Science, (ahead-of-print), 1-15.	f 2014	Africa	South Africa	Shrub/woodl and cover gain	1940	2009
Ward, D., Hoffman, M. T., & Collocott, S. J. (2014). A century of woody plant encroachment in the dry Kimberley savanna of South Africa. African Journal of Range & Forage Science, (ahead-of-print), 1-15.	f 2014	Africa	South Africa	Shrub/woodl and cover gain	1900	2010
Ward, D., Hoffman, M. T., & Collocott, S. J. (2014). A century of woody plant encroachment in the dry Kimberley savanna of South Africa. African Journal of Range & Forage Science, (ahead-of-print), 1-15.	f 2014	Africa	South Africa	Shrub/woodl and cover gain	1899	2010
Ward, D., Hoffman, M. T., & Collocott, S. J. (2014). A century of woody plant encroachment in the dry Kimberley savanna of South Africa. African Journal of Range & Forage Science, (ahead-of-print), 1-15.	f 2014	Africa	South Africa	Shrub/woodl and cover gain	1989	2010
Wigley, B. J., Bond, W. J., & Hoffman, M. (2010). Thicket expansion in a South African savanna under divergent land use: local vs. global drivers?. Global Change Biology, 16(3) 964-976.	2010	Africa	South Africa	Shrub/woodl and cover gain	1937	2004
Wigley, B. J., Bond, W. J., & Hoffman, M. (2010). Thicket expansion in a South African savanna under divergent land use: local vs. global drivers?. Global Change Biology, 16(3) 964-976.	2010	Africa	South Africa	Shrub/woodl and cover gain	1937	2004
Wigley, B. J., Bond, W. J., & Hoffman, M. (2010). Thicket expansion in a South African savanna under divergent land use: local vs. global drivers?. Global Change Biology, 16(3) 964-976.	2010	Africa	South Africa	Shrub/woodl and cover gain	1937	2004
Masubelele, M. L., Hoffman, M. T., & Bond, W. J. (2015). A repeat photograph analysis of long-term vegetation change in semi-arid Sout Africa in response to land use and climate. Journal of Vegetation Science, 26(5), 1013-1023.	^h 2015	Africa	South Africa	Herbaceous cover gain	1950	2010
Masubelele, M. L., Hoffman, M. T., & Bond, W. J. (2015). A repeat photograph analysis of long-term vegetation change in semi-arid Sout Africa in response to land use and climate. Journal of Vegetation Science, 26(5), 1013-1023.	^h 2015	Africa	South Africa	Herbaceous cover gain	1950	2010

Masubelele, M. L., Hoffman, M. T., & Bond, W. J. (2015). A repeat photograph analysis of long-term vegetation change in semi-arid South Africa in response to land use and climate. Journal of Vegetation Science, 26(5), 1013-1023.	2015	Africa	South Africa	Shrub/woodl and cover gain	1950	2010
Masubelele, M. L., Hoffman, M. T., & Bond, W. J. (2015). A repeat photograph analysis of long-term vegetation change in semi-arid South Africa in response to land use and climate. Journal of Vegetation Science, 26(5), 1013-1023.	2015	Africa	South Africa	Shrub/woodl and cover gain	1950	2010
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Shrub/woodl and cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Shrub/woodl and cover gain	1987	2016

Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Shrub/woodl and cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Shrub/woodl and cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Shrub/woodl and cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Shrub/woodl and cover gain	1987	2016
 Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1-10. 	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
 Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1-10. 	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Herbaceous cover gain	1987	2016
Li, W., Buitenwerf, R., Munk, M., Bøcher, P. K., & Svenning, J. C. (2020). Deep-learning based high-resolution mapping shows woody vegetation densification in greater Maasai Mara ecosystem. Remote Sensing of Environment, 247, 111953.	2020	Africa	Kenya	Shrub/woodl and cover gain	2015	2018

2020	Africa	Kenya	Shrub/woodl and cover gain	2015	2018
2020	Africa	Kenya	Shrub/woodl and cover gain	2015	2018
2020	Africa	South Africa	Shrub/woodl and cover gain	1948	2018
2020	Africa	South Africa	Herbaceous cover gain	1968	2018
2020	Africa	South Africa	Herbaceous cover gain	2004	2018
2020	Africa	South Africa	Grass cover loss	1987	2013
2018	Africa	Central African republic	Forest cover gain		
2018	Africa	Gabon	Forest cover gain		
2017	Africa	South Africa	Shrub/woodl and cover gain	1990	2013
2006	Australasia	Australia	Forest cover gain	1964	2004
2006	Australasia	Australia	Forest cover gain	1964	2004
	2020 2020 2020 2020 2020 2020 2018 2018	2020Africa2020Africa2020Africa2020Africa2020Africa2018Africa2018Africa2018Africa2018Africa2018Africa2018Africa	2020AfricaKenya2020AfricaKenya2020AfricaSouth Africa2020AfricaSouth Africa2020AfricaSouth Africa2020AfricaSouth Africa2020AfricaSouth Africa2020AfricaSouth Africa2020AfricaSouth Africa2020AfricaSouth Africa2020AfricaSouth Africa2020AfricaCentral2020AfricaGabon2020AfricaGabon2020AfricaGabon2020AustralasiAustralia	2020AfricaKenyaShrub/woodl and cover gain2020AfricaKenyaShrub/woodl and cover gain2020AfricaSouth AfricaShrub/woodl and cover gain2020AfricaSouth AfricaHerbaceous cover gain2020AfricaSouth AfricaHerbaceous cover gain2020AfricaSouth AfricaHerbaceous cover gain2020AfricaSouth AfricaHerbaceous cover gain2020AfricaSouth AfricaForest cover loss2031AfricaCentral AfricaForest cover gain2041AfricaGabonForest cover gain2052AgricaSouth AfricaShrub/woodl cover gain2053AfricaGabonForest cover gain2054AgricaAgricaSouth Africa2055AfricaSouth AfricaForest cover gain2056AgricaAgricaAgrica2057AgricaAgricaForest cover gain2058AgricaAgricaAgrica2059AgricaAgricaForest cover gain2050AgricaAgricaForest cover gain2050AgricaAgricaForest cover gain2050AgricaAgricaForest cover2050AgricaAgricaForest cover2050AgricaAgricaForest cover2050AgricaAgricaForest cover2050Agrica </td <td>2020AfricaKenyaShrub/woodl and cover gain20152020AfricaKenyaShrub/woodl and cover gain19482020AfricaSouth AfricaShrub/woodl and cover gain19482020AfricaSouth AfricaHerbaceous cover gain19682020AfricaSouth AfricaHerbaceous cover gain19682020AfricaSouth AfricaMerbaceous cover gain20042020AfricaSouth AfricaGrass cover cover gain19872018AfricaCentral AfricaForest cover gain19872018AfricaGabonForest cover gain19002017AfricaSouth AfricaShrub/woodl and cover gain19202018AfricaGabonForest cover gain19202010AstralasiAustraliaForest cover gain1924</td>	2020AfricaKenyaShrub/woodl and cover gain20152020AfricaKenyaShrub/woodl and cover gain19482020AfricaSouth AfricaShrub/woodl and cover gain19482020AfricaSouth AfricaHerbaceous cover gain19682020AfricaSouth AfricaHerbaceous cover gain19682020AfricaSouth AfricaMerbaceous cover gain20042020AfricaSouth AfricaGrass cover cover gain19872018AfricaCentral AfricaForest cover gain19872018AfricaGabonForest cover gain19002017AfricaSouth AfricaShrub/woodl and cover gain19202018AfricaGabonForest cover gain19202010AstralasiAustraliaForest cover gain1924

Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004

Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman.						

Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004

Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman and Dingle 2006	2006	Australasia	Australia	Forest cover gain	1964	2004
Bowman et al 2001	2001	Australasia	Australia	Forest cover gain	1941	1994
Bowman, D. M. J. S., Walsh, A., & Milne, D. J. (2001). Forest expansion and grassland contraction within a Eucalyptus savanna matrix between 1941 and 1994 at Litchfield National Park in the Australian monsoon tropics. Global Ecology and Biogeography, 10(5), 535-548.	2001	Australasia	Australia	Forest cover gain	1941	1999
Brook and Bowman 2006	2006	Australasia	Australia	Forest cover gain	1947	1997
Brook and Bowman 2006	2006	Australasia	Australia	Forest cover gain	1947	1997
Brook and Bowman 2006	2006	Australasia	Australia	Forest cover gain	1947	1997
Brook and Bowman 2006	2006	Australasia	Australia	Forest cover gain	1947	1997
Brook and Bowman 2006	2006	Australasia	Australia	Forest cover gain	1947	1997
Burrows, W.H, Henry, B.K., Back, P.V., Hoffman, M.B., Tait, L.J., Anderson, E.R., Menke, N., Danaher, T., Carter, J.O., and McKeon, G.M. (2002). Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Global Change Biology, 8(8), 769-784.	2002	Australasia	Australia	Shrub/woodl and cover gain	1984	1999

Fensham, R. J., Choy, S. J. L., Fairfax, R. J., & Cavallaro, P. C. 2003. Modelling trends in woody vegetation structure in semi-arid Australia as determined from aerial photography. Journal of Environmental Management, 68(4), 421-436.	2003	Australasia	Australia	Shrub/woodl and cover gain	1960	1996
Fensham, R. J., Choy, S. J. L., Fairfax, R. J., & Cavallaro, P. C. 2003. Modelling trends in woody vegetation structure in semi-arid Australia as determined from aerial photography. Journal of Environmental Management, 68(4), 421-436.	2003	Australasia	Australia	Shrub/woodl and cover gain	1951	1996
Fensham, R. J., Choy, S. J. L., Fairfax, R. J., & Cavallaro, P. C. 2003. Modelling trends in woody vegetation structure in semi-arid Australia as determined from aerial photography. Journal of Environmental Management, 68(4), 421-436.	2003	Australasia	Australia	Shrub/woodl and cover gain	1952	1994
Fensham, R. J., Choy, S. J. L., Fairfax, R. J., & Cavallaro, P. C. 2003. Modelling trends in woody vegetation structure in semi-arid Australia as determined from aerial photography. Journal of Environmental Management, 68(4), 421-436.	2003	Australasia	Australia	Shrub/woodl and cover gain	1952	1993
Lehmann et al 2009	2009	Australasia	Australia	Shrub/woodl and cover gain	1964	2004
McDougall K L 2003 Aerial photographic interpretation of vegetation changes on the Bogong High Plains Victoria between 1936 and 1980 Aust. J. Bot. 51 251–6	2003	Australasia	Australia	Shrub/woodl and cover gain	1936	1980
McDougall K L 2003 Aerial photographic interpretation of vegetation changes on the Bogong High Plains Victoria between 1936 and 1980 Aust. J. Bot. 51 251–6	2003	Australasia	Australia	Shrub/woodl and cover gain	1936	1980
McDougall K L 2003 Aerial photographic interpretation of vegetation changes on the Bogong High Plains Victoria between 1936 and 1980 Aust. J. Bot. 51 251–6	2003	Australasia	Australia	Herbaceous cover gain	1936	1980
McDougall K L 2003 Aerial photographic interpretation of vegetation changes on the Bogong High Plains Victoria between 1936 and 1980 Aust. J. Bot. 51 251–6	2003	Australasia	Australia	Forest cover gain	1936	1980
Ropars, P., É. Comeau, W. G. Lee, and S. Boudreau. 2018. Biome transition in a changing world: From indigenous grasslands to shrub-dominated communities. New Zealand Journal of Ecology 42:229–239.	2018	Australasia	New Zealand	Shrub/woodl and cover gain	1980	2015
Russell-Smith, Jeremy, et al. "Rain forest invasion of eucalypt-dominated woodland savanna, Iron Range, north-eastern Australia: II. Rates of landscape change." Journal of Biogeography 31.8 (2004): 1305-1316.	2004	Australasia	Australia	Forest cover gain	1943	1991
Scherrer P and Pickering C 2005 Recovery of alpine vegetation from grazing and drought: data from long-term photoquadrats in Kosciuszko National Park, Australia Arct. Antarct. Alp. Res. 37574–84	2005	Australasia	Australia	Shrub/woodl and cover gain	1959	2001

Sharp, B.R. and Bowmann, D.M.J.S. 2004. Patterns of long-term woody vegetation change in a sandstone-plateau savanna woodland, Northern Territory, Australia. Journal of Tropical Ecology, 20:259-270.	2004	Australasia	Australia	Shrub/woodl and cover gain	1948	1995
Sharp, B.R. and Bowmann, D.M.J.S. 2004. Patterns of long-term woody vegetation change in a sandstone-plateau savanna woodland, Northern Territory, Australia. Journal of Tropical Ecology, 20:259-270.	2004	Australasia	Australia	Shrub/woodl and cover gain	1948	1993
Sharp, B.R. and Bowmann, D.M.J.S. 2004. Patterns of long-term woody vegetation change in a sandstone-plateau savanna woodland, Northern Territory, Australia. Journal of Tropical Ecology, 20:259-270.	2004	Australasia	Australia	Shrub/woodl and cover gain	1948	1993
Sharp, B.R. and Bowmann, D.M.J.S. 2004. Patterns of long-term woody vegetation change in a sandstone-plateau savanna woodland, Northern Territory, Australia. Journal of Tropical Ecology, 20:259-270.	2004	Australasia	Australia	Shrub/woodl and cover gain	1948	1993
Sharp, B.R. and Bowmann, D.M.J.S. 2004. Patterns of long-term woody vegetation change in a sandstone-plateau savanna woodland, Northern Territory, Australia. Journal of Tropical Ecology, 20:259-270.	2004	Australasia	Australia	Shrub/woodl and cover gain	1948	1993
Tng et al 2011	2011	Australasia	Australia	Forest cover gain	1951- 55	2008
Tng et al 2011	2011	Australasia	Australia	Forest cover gain	1955	2008
Tng et al 2011	2011	Australasia	Australia	Forest cover gain	1949	2008
Tng et al 2011	2011	Australasia	Australia	Forest cover gain	1951	2008
Tng et al 2011	2011	Australasia	Australia	Forest cover gain	1950	2008
Williamson, G.J., Boggs, G.S. and Bowman, D.M., 2011. Late 20th century mangrove encroachment in the coastal Australian monsoon tropics parallels the regional increase in woody biomass. Regional Environmental Change. 11, 19-27.	2011	Australasia	Australia	Shrub/woodl and cover gain	1974	2004
Witt et al 2006	2006	Australasia	Australia	Shrub/woodl and cover gain	1930	1995
Witt, G.B., Harrington, R.A., and Page, M.J. 2009. Is'vegetation thickening' occurring in Queensland's mulga lands – a 50-year aerial photographic analysis. Austral Journal of Botany, 57:572-582.	2009	Australasia	Australia	Shrub/woodl and cover gain	1950	2000
Witt, G.B., Harrington, R.A., and Page, M.J. 2009. Is'vegetation thickening' occurring in Queensland's mulga lands – a 50-year aerial photographic analysis. Austral Journal of Botany, 57:572-582.	2009	Australasia	Australia	Shrub/woodl and cover gain	1950	2000
Witt, G.B., Harrington, R.A., and Page, M.J. 2009. Is'vegetation thickening' occurring in Queensland's mulga lands – a 50-year aerial photographic analysis. Austral Journal of Botany, 57:572-582.	2009	Australasia	Australia	Shrub/woodl and cover gain	1950	2000

Ondei, S., Prior, L. D., Vigilante, T., & Bowman, D. M. (2017). Fire and cattle disturbance affects vegetation structure and rain forest expansion into savanna in the Australian monsoon tropics. <i>Journal of</i> <i>biogeography</i> , 44(10), 2331-2342.	2017	Australasia	Australia	Forest cover gain	1949	2005
Ondei, S., Prior, L. D., Vigilante, T., & Bowman, D. M. (2017). Fire and cattle disturbance affects vegetation structure and rain forest expansion into savanna in the Australian monsoon tropics. <i>Journal of</i> <i>biogeography</i> , 44(10), 2331-2342.	2017	Australasia	Australia	Forest cover gain	1949	2005
Banfai, D. S., & Bowman, D. M. (2006). Forty years of lowland monsoon rainforest expansion in Kakadu National Park, northern Australia. <i>Biological Conservation</i> , <i>131</i> (4), 553-565.	2006	Australasia	Australia	Forest cover gain	1964	2004
Stanton, P., Stanton, D., Stott, M., & Parsons, M. (2014). Fire exclusion and the changing landscape of Queensland's Wet Tropics Bioregion 1. The extent and pattern of transition. <i>Australian Forestry</i> , <i>77</i> (1), 51-57.	2014	Australasia	Australia	Forest cover gain	1980	2013
Endress, B.A. and Chinea, J.D., 2001. Landscape Patterns of Tropical Forest Recovery in the Republic of Palau 1. Biotropica, 33(4), pp.555-565.	2001	Australasia	Palau	Forest cover gain	1947	1992
Florentine, S.K. and Westbrooke, M.E., 2004. Evaluation of alternative approaches to rainforest restoration on abandoned pasturelands in tropical north Queensland, Australia. Land Degradation & Development, 15(1), pp.1-13.	2004	Australasia	Australia	Forest cover gain	1970	2003
Anderson, K., Fawcett, D., Cugulliere, A., Benford, S., Jones, D., & Leng, R. (2020). Vegetation expansion in the subnival Hindu Kush Himalaya. Global Change Biology, 26(3), 1608–1625. https://doi.org/10.1111/gcb.14919	2020	Asia	Nepal	Shrub/woodl and cover gain	1993	2018
Anderson, K., Fawcett, D., Cugulliere, A., Benford, S., Jones, D., & Leng, R. (2020). Vegetation expansion in the subnival Hindu Kush Himalaya. Global Change Biology, 26(3), 1608–1625. https://doi.org/10.1111/gcb.14919	2020	Asia	Nepal	Shrub/woodl and cover gain	1993	2018
B. B. Baker & R. K. Moseley (2007) Advancing Treeline and Retreating Glaciers: Implications for Conservation in Yunnan, P.R. China, Arctic, Antarctic, and Alpine Research, 39:2, 200-209, DOI: 10.1657/1523- 0430(2007)39[200:ATARGI]2.0.CO;2	2007	Asia	China	Forest cover gain		
Blok D, Sass-Klaassen U, Schaepman-Strub G, Heijmans M M P D, Sauren P and Berendse F 2011 What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8 1169–79	2011	Asia	Russia	Shrub/woodl and cover gain		
Brandt, J.S., Haynes, M.A., Kuemmerle, T., Waller, D.M. and Radeloff, V.C., 2013. Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation. 158, 116-127.	2013	Asia	China	Shrub/woodl and cover gain	1990	2009

Esper, J., & Schweingruber, F. H. (2004). Large-scale treeline changes recorded in Siberia. <i>Geophysical Research Letters</i> , <i>31</i> (6).	2004	Asia	Russia	Shrub/woodl and cover gain		
Esper, J., & Schweingruber, F. H. (2004). Large-scale treeline changes recorded in Siberia. <i>Geophysical Research Letters</i> , <i>31</i> (6).	2004	Asia	Russia	Shrub/woodl and cover gain		
Esper, J., & Schweingruber, F. H. (2004). Large-scale treeline changes recorded in Siberia. <i>Geophysical Research Letters</i> , <i>31</i> (6).	2004	Asia	Russia	Shrub/woodl and cover gain		
Feng, Q., Jiang, X., Wang, X., and Cao, S. (2015). What has caused desetification in China? Nature Scientific Reports 5:15998.	2015	Asia	China	Grass cover loss	1983	2012
Feng, Q., Jiang, X., Wang, X., and Cao, S. (2015). What has caused desetification in China? Nature Scientific Reports 5:15998.	2015	Asia	China	Grass cover loss	1983	2012
Feng, Q., Jiang, X., Wang, X., and Cao, S. (2015). What has caused desetification in China? Nature Scientific Reports 5:15998.	2015	Asia	China	Grass cover loss	1983	2012
Feng, Q., Jiang, X., Wang, X., and Cao, S. (2015). What has caused desetification in China? Nature Scientific Reports 5:15998.	2015	Asia	China	Grass cover loss	1983	2012
Forbes B C, Fauria M M and Zetterberg P 2010 Russian arctic warming and 'greening' are closely tracked by tundra shrub willows Glob. Change Biol. 16 1542–54	2010	Asia	Russia	Shrub/woodl and cover gain		
Gervais, B. R., & MacDonald, G. M. (2000). A 403-year record of July temperatures and treeline dynamics of Pinus sylvestris from the Kola Peninsula, northwest Russia. <i>Arctic, Antarctic, and Alpine Research, 32</i> (3), 295-302.	2000	Asia	Russia	Forest cover gain		
Kudo, G., Amagai, Y., Hoshino, B., & Kaneko, M. (2011). Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: pattern of expansion and impact on species diversity. Ecology and Evolution, 1(1), 85-96.	2011	Asia	Japan	Herbaceous cover gain	1977	2009
Li, Z., Chen, Y., Li, W., Deng, H., & Fang, G. (2015). Potential impacts of climate change on vegetation dynamics in Central Asia. Journal of Geophysical Research: Atmospheres, 120(24), 12345-12356.	2015	Asia	Central asia	Shrub/woodl and cover gain	1980	2013
Liu, F., Zhang, H., Qin, Y., Dong, J., Xu, E., Yang. Y., Zhang, G., and Xiao, X. (2016). Semi-natural areas of Tarim Basin in northwest China: Linkage to desertification. Science of the Total Environment 573, 178-188.	2016	Asia	China	Grass cover loss	1990	2010
Mazepa, V. S. (2005). Stand density in the last millennium at the upper tree-line ecotone in the Polar Ural Mountains. <i>Canadian Journal of</i> <i>Forest Research</i> , <i>35</i> (9), 2082-2091.	2005	Asia	Russia	Forest cover gain		
Meshinev, T., Apostolova, I., & Koleva, E. (2000). Influence of warming on timberline rising: a case study on Pinus peuce Griseb. in Bulgaria. <i>Phytocoenologia</i> , $30(3/4)$, 431-438.	2000	Asia	Bulgaria	Forest cover gain		

Moiseev, P. A. (2002). Effect of climatic changes on radial increment and age structure formation in high-mountain larch forests of the Kuznetsk Ala Tau. <i>Russian Journal of</i> <i>Ecology</i> , 33(1), 7-13.	2002	Asia	Russia	Forest cover gain		
Puyravaud, J.P., Dufour, C. and Aravajy, S., 2003. Rain forest expansion mediated by successional processes in vegetation thickets in the Western Ghats of India. Journal of Biogeography. 30, 1067-1080.	2003	Asia	India	Shrub/woodl and cover gain		
SHIYATOV, S. G. (2003). Rates of change in the upper treeline ecotone in the Polar Ural Mountains. <i>Nature</i> , <i>394</i> , 739-743.	2003	Asia	Russia	Forest cover gain	1910	2000
SHIYATOV, S. G. (2003). Rates of change in the upper treeline ecotone in the Polar Ural Mountains. <i>Nature</i> , <i>394</i> , 739-743.	2003	Asia	Russia	Forest cover gain	1910	2000
Shiyatov, S. G., Terent'Ev, M. M., & Fomin, V. V. (2005). Spatiotemporal dynamics of forest-tundra communities in the Polar Urals. <i>Russian Journal of Ecology</i> , <i>36</i> (2), 69- 75.	2005	Asia	Russia	Forest cover gain	1910	2000
Shiyatov, S. G., Terent'Ev, M. M., & Fomin, V. V. (2005). Spatiotemporal dynamics of forest-tundra communities in the Polar Urals. <i>Russian Journal of Ecology</i> , <i>36</i> (2), 69- 75.	2005	Asia	Russia	Forest cover gain	1910	2000
Shiyatov, S. G., Terent'ev, M. M., Fomin, V. V., & Zimmermann, N. E. (2007). Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century. <i>Russian Journal of Ecology</i> , <i>38</i> (4), 223-227.	2007	Asia	Russia	Forest cover gain	1910	2000
Shrestha, B. B., Ghimire, B., Lekhak, H. D., & Jha, P. K. (2007). Regeneration of treeline birch (Betula utilis D. Don) forest in a trans- Himalayan dry valley in central Nepal. <i>Mountain Research and</i> <i>Development</i> , <i>27</i> (3), 259-268.	2007	Asia	Nepal	Forest cover gain		
Zhang, D. 2019. China's forest expansion in the last three plus decades: Why and how? Forest Policy and Economics 98:75–81.	2019	Asia	China	Forest cover gain	1977	2013
Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, H., Liang, E., & Peñuelas, J. (2018). Moisture- mediated responsiveness of treeline shifts to global warming in the Himalayas. <i>Global</i> <i>change biology</i> , <i>24</i> (11), 5549-5559.	2018	Asia	Nepal	Forest cover gain	1865	2015
Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, H., Liang, E., & Peñuelas, J. (2018). Moisture- mediated responsiveness of treeline shifts to global warming in the Himalayas. <i>Global</i> <i>change biology</i> , <i>24</i> (11), 5549-5559.	2018	Asia	Nepal	Forest cover gain	1865	2015
Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, H., Liang, E., & Peñuelas, J. (2018). Moisture- mediated responsiveness of treeline shifts to global warming in the Himalayas. <i>Global</i> <i>change biology</i> , <i>24</i> (11), 5549-5559.	2018	Asia	Nepal	Forest cover gain	1865	2015

Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, H., Liang, E., & Peñuelas, J. (2018). Moisture- mediated responsiveness of treeline shifts to global warming in the Himalayas. <i>Global</i> <i>change biology</i> , <i>24</i> (11), 5549-5559.	2018	Asia	Nepal	Forest cover gain	1865	2015
Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, H., Liang, E., & Peñuelas, J. (2018). Moisture- mediated responsiveness of treeline shifts to global warming in the Himalayas. <i>Global</i> <i>change biology</i> , <i>24</i> (11), 5549-5559.	2018	Asia	Nepal	Forest cover gain	1865	2015
Sigdel, S. R., Wang, Y., Camarero, J. J., Zhu, H., Liang, E., & Peñuelas, J. (2018). Moisture- mediated responsiveness of treeline shifts to global warming in the Himalayas. <i>Global</i> <i>change biology</i> , <i>24</i> (11), 5549-5559.	2018	Asia	Nepal	Forest cover gain	1865	2015
Du, H., Liu, J., Li, M. H., Büntgen, U., Yang, Y., Wang, L., & He, H. S. (2018). Warming- induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. <i>Global Change Biology</i> , <i>24</i> (3), 1256- 1266.	2018	Asia	China	Forest cover gain) 1890
Du, H., Liu, J., Li, M. H., Büntgen, U., Yang, Y., Wang, L., & He, H. S. (2018). Warming- induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. <i>Global Change Biology</i> , <i>24</i> (3), 1256- 1266.	2018	Asia	China	Forest cover gain	1891	1996
Du, H., Liu, J., Li, M. H., Büntgen, U., Yang, Y., Wang, L., & He, H. S. (2018). Warming- induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. <i>Global Change Biology</i> , <i>24</i> (3), 1256- 1266.	2018	Asia	China	Forest cover gain	1996	2005
Gatti, R. C., Callaghan, T., Velichevskaya, A., Dudko, A., Fabbio, L., Battipaglia, G., & Liang, J. (2019). Accelerating upward treeline shift in the Altai Mountains under last-century climate change. <i>Scientific reports</i> , 9(1), 1-13.	2019	Asia	Russia	Forest cover gain	1950	2002
Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., & Poulter, B. (2015). Detection and attribution of vegetation greening trend in China over the last 30 years. <i>Global change</i> <i>biology</i> , <i>21</i> (4), 1601-1609.	2015	Asia	China	Forest cover gain	1982	2009
Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., & Poulter, B. (2015). Detection and attribution of vegetation greening trend in China over the last 30 years. <i>Global change</i> <i>biology</i> , <i>21</i> (4), 1601-1609.	2015	Asia	China	Forest cover gain	1982	2009
Salmon, V. G., A. L. Breen, J. Kumar, M. J. Lara, P. E. Thornton, S. D. Wullschleger, and C. M. Iversen. 2019. Alder Distribution and Expansion Across a Tundra Hillslope: Implications for Local N Cycling. Frontiers in Plant Science 10:1–15.	2019	North America	United States	Shrub/woodl and cover gain	1956	2014
Joly, K., M. J. Cole, and R. R. Jandt. 2007. Diets of overwintering Caribou, rangifer tarandus, track decadal changes in Arctic Tundra vegetation. Canadian Field-Naturalist 121:379–383.	2007	North America	United States	Herbaceous cover gain	1981	2005

Terskaia, A., Dial, R. J., & Sullivan, P. F. (2020). Pathways of tundra encroachment by trees and tall shrubs in the western Brooks Range of Alaska. <i>Ecography</i> , <i>43</i> (5), 769-778.	2020	North America	United States	Shrub/woodl and cover gain	1952	2015
Terskaia, A., Dial, R. J., & Sullivan, P. F. (2020). Pathways of tundra encroachment by trees and tall shrubs in the western Brooks Range of Alaska. <i>Ecography</i> , <i>43</i> (5), 769-778.	2020	North America	United States	Shrub/woodl and cover gain	1952	2015
Terskaia, A., Dial, R. J., & Sullivan, P. F. (2020). Pathways of tundra encroachment by trees and tall shrubs in the western Brooks Range of Alaska. <i>Ecography</i> , <i>43</i> (5), 769-778.	2020	North America	United States	Forest cover gain	1952	2015
Lloyd, A. H., & Fastie, C. L. (2003). Recent changes in treeline forest distribution and structure in interior Alaska. <i>Ecoscience</i> , <i>10</i> (2), 176-185.	2003	North America	United States	Forest cover gain	1850	2002
Lloyd, A. H., & Fastie, C. L. (2003). Recent changes in treeline forest distribution and structure in interior Alaska. <i>Ecoscience</i> , 10(2), 176-185.	2003	North America	United States	Forest cover gain	1850	2002
Lloyd, A. H. (2005). Ecological histories from Alaskan tree lines provide insight into future change. Ecology, 86(7), 1687-1695.	2005	North America	United States	Forest cover gain		
Lloyd, A. H. (2005). Ecological histories from Alaskan tree lines provide insight into future change. Ecology, 86(7), 1687-1695.	2005	North America	United States	Forest cover gain		
Villarreal, S., Hollister, R.D., Johnson, D.R., Lara, M.J., Webber, P.J. & Tweedie, C.E. (2012). Tundra vegetation change near Barrow, Alaska (19722010). <i>Environ. Res. Lett.</i> , 7.	2012	North America	United States	Shrub/woodl and cover gain	1972	2010
Villarreal, S., Hollister, R.D., Johnson, D.R., Lara, M.J., Webber, P.J. & Tweedie, C.E. (2012). Tundra vegetation change near Barrow, Alaska (19722010). <i>Environ. Res. Lett.</i> , 7.	2012	North America	United States	Grass cover loss	1972	2010
Tape, K., Sturm, M. & Racine, C. (2006). The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. <i>Glob. Chang. Biol.</i> , 12, 686–702.	2006	North America	United States	Shrub/woodl and cover gain	1945	2002
Sturm, M., Racine, C.H. and Tape, K.D. (2001) Increasing shrub abundance in the Arctic. Nature 411,546–547.	2001	North America	USA	Forest cover gain	1950	2000
Sturm, M., Racine, C.H. and Tape, K.D. (2001) Increasing shrub abundance in the Arctic. Nature 411,546–547.	2001	North America	USA	Shrub/woodl and cover gain	1950	2000
Duchesne, R. R., Chopping, M. J., Tape, K. D., Wang, Z., & Schaaf, C. L. B. (2018). Changes in tall shrub abundance on the North Slope of Alaska, 2000–2010. Remote Sensing of Environment, 219(December 2016), 221–232. https://doi.org/10.1016/j.rse.2018.10.013	2018	North America	United States	Shrub/woodl and cover gain	2000	2010
Duchesne, R. R., Chopping, M. J., Tape, K. D., Wang, Z., & Schaaf, C. L. B. (2018). Changes in tall shrub abundance on the North Slope of Alaska, 2000–2010. Remote Sensing of Environment, 219(December 2016), 221–232. https://doi.org/10.1016/j.rse.2018.10.014	2018	North America	United States	Shrub/woodl and cover gain	2000	2010

Duchesne, R. R., Chopping, M. J., Tape, K. D., Wang, Z., & Schaaf, C. L. B. (2018). Changes in tall shrub abundance on the North Slope of Alaska, 2000–2010. Remote Sensing of Environment, 219(December 2016), 221–232. https://doi.org/10.1016/j.rse.2018.10.015	2018	North America	United States	Shrub/woodl and cover gain	2000	2010
Duchesne, R. R., Chopping, M. J., Tape, K. D., Wang, Z., & Schaaf, C. L. B. (2018). Changes in tall shrub abundance on the North Slope of Alaska, 2000–2010. Remote Sensing of Environment, 219(December 2016), 221–232. https://doi.org/10.1016/j.rse.2018.10.016	2018	North America	United States	Shrub/woodl and cover gain	2000	2010
Duchesne, R. R., Chopping, M. J., Tape, K. D., Wang, Z., & Schaaf, C. L. B. (2018). Changes in tall shrub abundance on the North Slope of Alaska, 2000–2010. Remote Sensing of Environment, 219(December 2016), 221–232. https://doi.org/10.1016/j.rse.2018.10.017	2018	North America	United States	Shrub/woodl and cover gain	2000	2010
Naito, A. T., and D. M. Cairns. 2015. Patterns of shrub expansion in Alaskan arctic river corridors suggest phase transition. Ecology and Evolution 5:87–101.	2015	North America	United States	Shrub/woodl and cover gain	1950	2010
Lloyd, A. H., and C. L. Fastie. 2002. Spatial and temporal variability in the growth and climate response of tree line trees in Alaska. Climatic Change 52:481–509.	2002	North America	United States	Forest cover gain	1923	1996
Dial R J, Berg E E, Timm K, McMahon A and Geck J 2007 Changes in the alpine forest- tundra ecotone commensurate with recent warming in southcentral Alaska: evidence from orthophotos and field plots J. Geophys. Res. 112 G04015	2007	North America	USA	Shrub/woodl and cover gain		
Berg, E.E., Hillman, K.M., Dial, R. and DeRuwe, A., 2009. Recent woody invasion of wetlands on the Kenai Peninsula Lowlands, south-central Alaska: a major regime shift after 18 000 years of wet Sphagnum-sedge peat recruitment. Canadian Journal of Forest Research. 39, 2033-2046.	2009	North America	Alaska	Shrub/woodl and cover gain	1951	1998
Tape, K.D., Hallinger, M., Welker, J.M. & Ruess, R.W. (2012). Landscape Heterogeneity of Shrub Expansion in Arctic Alaska. <i>Ecosystems</i> , 15, 711–724.	2012	North America	United States	Shrub/woodl and cover gain	1950	2006
Brodie, J. F., C. A. Roland, S. E. Stehn, and E. Smirnova. 2019. Variability in the expansion of trees and shrubs in boreal Alaska. Ecology 100:1–10.	2019	North America	United States	Forest cover gain	1906	2016
 Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., BRET-HARTE, M. S., Ewers, B. E., & Cleary, M. B. (2008). Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14(3), 615-623. 	2008	North America	United States	Shrub/woodl and cover gain		
Beck, P.S.A., Juday, G.P., Alix, C., Barber, V.A., Winslow, S.E., Sousa, E.E., Heiser, P., Herriges, J.D., & Goetz, S.J. 2011. Changes in forest productivity across Alaska consistent with biome shift. Ecology Letters, 14:373-379.	2011	North America	United States	Forest cover gain	1982	2008

Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sass-Klaassen, U., & Lévesque, E. (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 1-15.	2011	North America	USA	Shrub/woodl and cover gain	~50 yr	
Lloyd, A. H. (2005). Ecological histories from Alaskan tree lines provide insight into future change. Ecology, 86(7), 1687-1695.	2005	North America	United States	Forest cover gain		
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R. F., & Friedl, M. A. (2020). Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology, 26(2), 807-822.	2020	North America	USA	Herbaceous cover gain	1984	2014
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R. F., & Friedl, M. A. (2020). Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology, 26(2), 807-822.	2020	North America	USA	Forest type change	1984	2014
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R. F., & Friedl, M. A. (2020). Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology, 26(2), 807-822.	2020	North America	USA	Shrub/woodl and cover gain	1984	2014
Myers-Smith I H, Hik D S, Kennedy C, Cooley D, Johnstone J F, Kenney A J and Krebs C J 2011 Expansion of canopy-forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada Ambio 40 610–23	2011	North America	Canada	Shrub/woodl and cover gain		
Myers-Smith I H 2011 Shrub encroachment in arctic and alpine tundra: mechanisms of expansion and ecosystem impacts PhD thesis University of Alberta	2011	North America	Canada	Shrub/woodl and cover gain		
Myers-Smith, I. H., and D. S. Hik. 2018. Climate warming as a driver of tundra shrubline advance. Journal of Ecology 106:547–560.	2018	North America	Canada	Shrub/woodl and cover gain	2009	2013
Lantz, T. C., P. Marsh, and S. V. Kokelj. 2013. Recent Shrub Proliferation in the Mackenzie Delta Uplands and Microclimatic Implications. Ecosystems 16:47–59.	2013	North America	Canada	Shrub/woodl and cover gain	1972	2004
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R. F., & Friedl, M. A. (2020). Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology, 26(2), 807-822.	2020	North America	Canada/Alas ka	Shrub/woodl and cover gain	1984	2014
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R. F., & Friedl, M. A. (2020). Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology, 26(2), 807-822.	2020	North America	Canada/Alas ka	Forest type change	1984	2014

Jackson, M. M., Topp, E., Gergel, S. E., Martin, K., Pirotti, F., & Sitzia, T. (2016). Expansion of subalpine woody vegetation over 40 years on Vancouver Island, British Columbia, Canada. <i>Canadian Journal of</i> <i>Forest Research</i> , <i>46</i> (3), 437-443.	2016	North America	Canada	Forest cover gain	1962	2005
Jackson, M. M., Topp, E., Gergel, S. E., Martin, K., Pirotti, F., & Sitzia, T. (2016). Expansion of subalpine woody vegetation over 40 years on Vancouver Island, British Columbia, Canada. Canadian Journal of Forest Research, 46(3), 437-443.	2016	North America	Canada	Shrub/woodl and cover gain	1962	2005
Jackson, M. M., Topp, E., Gergel, S. E., Martin, K., Pirotti, F., & Sitzia, T. (2016). Expansion of subalpine woody vegetation over 40 years on Vancouver Island, British Columbia, Canada. Canadian Journal of Forest Research, 46(3), 437-443.	2016	North America	Canada	Shrub/woodl and cover gain	1962	2005
Mackay J R and Burn C R 2011 A century (1910–2008) of change in a collapsing pingo, Parry Peninsula, Western Arctic Coast, Canada Permafr. Periglac. 22 266–72	2011	North America	Canada	Shrub/woodl and cover gain		
Jackson, M. M., Topp, E., Gergel, S. E., Martin, K., Pirotti, F., & Sitzia, T. (2016). Expansion of subalpine woody vegetation over 40 years on Vancouver Island, British Columbia, Canada, Canadian Journal of Forest	2016	North America	Canada	Forest cover gain	1962	2005
Research, 46(3), 437-443. Laroque, C. P., Lewis, D. H., & Smith, D. J. (2000). Treeline dynamics on southern Vancouver Island, British Columbia. Western Geography, 10(11), 43-63.	2000	North America	Canada	Forest cover gain		
Laroque, C. P., Lewis, D. H., & Smith, D. J. (2000). Treeline dynamics on southern Vancouver Island, British Columbia. Western Geography, 10(11), 43-63.	2000	North America	Canada	Forest cover gain		
Zald, H.S., 2008. Extent and spatial patterns of grass bald land cover change (1948–2000), Oregon Coast Range, USA. In Herbaceous Plant Ecology (pp. 153-165). Springer, Dordrecht.	2008	North America	United States	Forest cover gain	1948	2000
Bai, Y., Broersma, K., Thompson, D. and Ross, T.J., 2004. Landscape-level dynamics of grassland-forest transitions in British Columbia. Journal of Range Management. 66- 75.	2004	North America	British Colombia of Canada	Forest cover gain	1960	1990
Miller, E.A. and Halpern, C.B., 1998. Effects of environment and grazing disturbance on tree establishment in meadows of the central Cascade Range, Oregon, USA. Journal of Vegetation Science, 9(2), pp.265-282.	1998	North America	United States	Forest cover gain	1983	1993
Takaoka, S. and Swanson, F.J., 2008. Change in extent of meadows and shrub fields in the central western Cascade Range, Oregon. The Professional Geographer. 60, 527-540.	2008	North America	USA	Forest cover gain	1946	2000
Taylor, A.H., 1995. Forest expansion and climate change in the mountain hemlock (Tsuga mertensiana) zone, Lassen Volcanic National Park, California, USA. Arctic and alpine Research. 27, 207-216.	1995	North America	United States	Forest cover gain	1842	1990

Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1951	1994
Miller, R.F. & Rose, J.A. (1999). Fire history and western Juniper encroachment in sagebrush steppe. Journal of Range Management, 52(6), 550-559.	1999	North America	United States	Shrub/woodl and cover gain	1875	1995
Di Orio, A.P., Callas, R. and Schaefer, R.J., 2005. Forty-eight year decline and fragmentation of aspen (Populus tremuloides) in the South Warner Mountains of California. Forest Ecology and Management. 206,307-313.	2005	North America	United States	Forest/woodl and decline	1946	1994
Millar, C.I., Westfall, R.D. and Delany, D.L., 2007. Response of high-elevation limber pine (Pinus flexilis) to multiyear droughts and 20th- century warming, Sierra Nevada, California, USA. Canadian Journal of Forest Research, 37(12), pp.2508-2520.	2007	North America	Unites States	Forest/woodl and decline	1985	1995
McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, 112(5), 1458-1463.	2015	North America	United States	Forest cover gain	1930	2000
McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, 112(5), 1458-1463.	2015	North America	United States	Forest type change	1930	2000
Lubetkin, K. C., Westerling, A. L., & Kueppers, L. M. (2017). Climate and landscape drive the pace and pattern of conifer encroachment into subalpine meadows. <i>Ecological Applications</i> , 27(6), 1876-1887.	2017	North America	United States	Forest cover gain	1920	2013
Guarín, A. and Taylor, A.H., 2005. Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. Forest ecology and management, 218(1-3), pp.229-244.	2005	North America	Unites States	Forest/woodl and decline	1986	1992
Van Mantgem, P.J. and Stephenson, N.L., 2007. Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecology Letters, 10(10), pp.909-916.	2007	North America	United States	Forest/woodl and decline	1983	2004
McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, 112(5), 1458-1463.	2015	North America	United States	Forest cover gain	1930	2000

McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, 112(5), 1458-1463.	2015	North America	United States	Forest type change	1930	2000
Millar, C. I., Westfall, R. D., Delany, D. L., King, J. C., & Graumlich, L. J. (2004). Response of subalpine conifers in the Sierra Nevada, California, USA, to 20th-century warming and decadal climate variability. Arctic, Antarctic, and Alpine Research, 36(2), 181-200.	2004	North America	United States	Forest cover gain	1945	1976
Millar, C. I., Westfall, R. D., Delany, D. L., King, J. C., & Graumlich, L. J. (2004). Response of subalpine conifers in the Sierra Nevada, California, USA, to 20th-century warming and decadal climate variability. Arctic, Antarctic, and Alpine Research, 36(2), 181-200.	2004	North America	United States	Forest cover gain	1920	1945
Millar, C. I., Westfall, R. D., Delany, D. L., King, J. C., & Graumlich, L. J. (2004). Response of subalpine conifers in the Sierra Nevada, California, USA, to 20th-century warming and decadal climate variability. Arctic, Antarctic, and Alpine Research, 36(2), 181-200.	2004	North America	United States	Forest cover gain	1980	2002
Millar, C. I., Westfall, R. D., Delany, D. L., King, J. C., & Graumlich, L. J. (2004). Response of subalpine conifers in the Sierra Nevada, California, USA, to 20th-century warming and decadal climate variability. Arctic, Antarctic, and Alpine Research, 36(2), 181-200.	2004	North America	United States	Forest cover gain	1900	2002
Ferrell, G.T., Otrosina, W.J. and DeMars, C.J., 1994. Predicting susceptibility of white fir during a drought-associated outbreak of the fir engraver, Scolytus centralis, in California. Can. J. For. Res. 24: 301-305.	1994	North America	Unites States	Forest/woodl and decline	1986	1992
Macomber, S.A. and Woodcock, C.E., 1994. Mapping and monitoring conifer mortality using remote sensing in the Lake Tahoe Basin. Remote sensing of environment, 50(3), pp.255- 266.	1994	North America	Unites States	Forest/woodl and decline	1986	1992
Morris, C., Badik, K.J., Morris, L.R., and Weltz, M.A. (2016). Integrating precipitation, grazing, past effects and interactions in longterm vegetation change. Journal of Arid Environments, 124, 111-117.	2016	North America	United States	Herbaceous cover gain	1969	2011
Syphard, A. D., T. J. Brennan, and J. E. Keeley. 2019. Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern California. Diversity and Distributions 25: 90–101.	2018	North America	United States	Herbaceous cover gain	1943	2014
Miller, R.F. & Rose, J.A. (1995). Historic expansion of Juniperus occidentalis (western juniper) in southeastern Oregon. The Great Basin Naturalist, 55(1), 37-45.	1995	North America	United States	Shrub/woodl and cover gain	1880	1985

Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1881	1990
Park, I. W., Hooper, J., Flegal, J. M., & Jenerette, G. D. (2018). Impacts of climate, disturbance and topography on distribution of herbaceous cover in Southern California chaparral: Insights from a remote-sensing method. Diversity and Distributions, 24(4), 497-508.	2018	North America	United States	Herbaceous cover gain		2008
Köchy, M. and Wilson, S.D., 2001. Nitrogen deposition and forest expansion in the northern Great Plains. Journal of Ecology. 89, 807-817.	2001	North America	Canada	Shrub/woodl and cover gain	1930	1995
Van Mantgem, P.J., Stephenson, N.L., Byrne, J.C., Daniels, L.D., Franklin, J.F., Fulé, P.Z., Harmon, M.E., Larson, A.J., Smith, J.M., Taylor, A.H. and Veblen, T.T., 2009. Widespread increase of tree mortality rates in the western United States. Science, 323(5913), pp.521-524.	2009	North America	United States	Forest/woodl and decline	1955	2007
Burkhardt, J.W., & Tisdale, E.W. (1976). Causes of Juniper invasion in southwest Idaho. Ecology, 57(3), 472-484.	1976	North America	United States	Shrub/woodl and cover gain	1870	1970
McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, 112(5), 1458-1463.	2015	North America	United States	Forest cover gain	1930	2000
McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, 112(5), 1458-1463.	2015	North America	United States	Forest type change	1930	2000
Smithers, B. V., North, M. P., Millar, C. I., & Latimer, A. M. (2018). Leap frog in slow motion: Divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests. <i>Global Change</i> <i>Biology</i> , <i>24</i> (2), e442-e457.	2018	North America	United States	Forest cover gain	1950	2016
Luckman 1990	1990	North America	Canada	Forest cover gain		
Savage, M., 1997. The role of anthropogenic influences in a mixed-conifer forest mortality episode. Journal of Vegetation Science, 8(1), pp.95-104.	1997	North America	Unites States and Mexico	Forest/woodl and decline	1984	early 1990s
McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, 112(5), 1458-1463.	2015	North America	United States	Forest cover gain	1930	2000

McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, 112(5), 1458-1463.	2015	North America	United States	Forest type change	1930	2000
Bekker, M.F., 2005. Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana, USA. Arctic, Antarctic, and Alpine Research. 37, 97-107.	2005	North America	United States	Shrub/woodl and cover gain	1730	2004
Blackburn, W.H., & Tueller, P.T. (1970). Pinyon and juniper invasion in black sagebrush communities in east-central Nevada. Ecology, 51(5), 841-848.	1970	North America	United States	Forest cover gain	1720	1960
Köchy, M. and Wilson, S.D., 2001. Nitrogen deposition and forest expansion in the northern Great Plains. Journal of Ecology. 89, 807-817.	2001	North America	Canada	Shrub/woodl and cover gain	1930	1995
Köchy, M. and Wilson, S.D., 2001. Nitrogen deposition and forest expansion in the northern Great Plains. Journal of Ecology. 89, 807-817.	2001	North America	Canada	Shrub/woodl and cover gain	1930	1995
Mast, J. N., & Wolf, J. J. (2004). Ecotonal changes and altered tree spatial patterns in lower mixed-conifer forests, Grand Canyon National Park, Arizona, USA. <i>Landscape</i> <i>Ecology</i> , <i>19</i> (2), 167-180.	2004	North America	United States	Forest cover gain	1860	2000
Sankey, T.T. and Germino, M.J., 2008. Assessment of juniper encroachment with the use of satellite imagery and geospatial data. Rangeland Ecology & Management. 61, 412- 418.	2008	North America	United States	Shrub/woodl and cover gain	1985	2005
Arno, S. F., & Gruell, G. E. (1986). Douglas- fir encroachment into mountain grasslands in southwestern Montana. <i>Journal of Range</i> <i>Management</i> , 272-276.	1986	North America	United States	Forest cover gain	1700	1980
Briggs, J.M., Schaafsma, H. and Trenkov, D., 2007. Woody vegetation expansion in a desert grassland: Prehistoric human impact?. Journal of Arid Environments, 69(3), pp.458-472.	2007	North America	United States	Shrub/woodl and cover gain	1940	2001
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1940	2001
Gitlin, A.R., Sthultz, C.M., Bowker, M.A., Stumpf, S., Paxton, K.L., Kennedy, K., Muñoz, A., Bailey, J.K. and Whitham, T.G., 2006. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology, 20(5), pp.1477-1486.	2006	North America	United States	Forest/woodl and decline	2000	2004
Gitlin, A.R., Sthultz, C.M., Bowker, M.A., Stumpf, S., Paxton, K.L., Kennedy, K., Muñoz, A., Bailey, J.K. and Whitham, T.G., 2006. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology, 20(5), pp.1477-1486.	2006	North America	United States	Forest/woodl and decline	2000	2004

Gitlin, A.R., Sthultz, C.M., Bowker, M.A., Stumpf, S., Paxton, K.L., Kennedy, K., Muñoz, A., Bailey, J.K. and Whitham, T.G., 2006. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology, 20(5), pp.1477-1486.	2006	North America	United States	Forest/woodl and decline	2000	2004
Gitlin, A.R., Sthultz, C.M., Bowker, M.A., Stumpf, S., Paxton, K.L., Kennedy, K., Muñoz, A., Bailey, J.K. and Whitham, T.G., 2006. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology, 20(5), pp.1477-1486.	2006	North America	United States	Forest/woodl and decline	2000	2004
Gitlin, A.R., Sthultz, C.M., Bowker, M.A., Stumpf, S., Paxton, K.L., Kennedy, K., Muñoz, A., Bailey, J.K. and Whitham, T.G., 2006. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology, 20(5), pp.1477-1486.	2006	North America	United States	Forest/woodl and decline	2000	2004
Gitlin, A.R., Sthultz, C.M., Bowker, M.A., Stumpf, S., Paxton, K.L., Kennedy, K., Muñoz, A., Bailey, J.K. and Whitham, T.G., 2006. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology, 20(5), pp.1477-1486.	2006	North America	United States	Forest/woodl and decline	2000	2004
Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sass-Klaassen, U., & Lévesque, E. (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 1-15.	2011	North America	Canada	Shrub/woodl and cover gain	2006	2011
Andruko, R., Danby, R., & Grogan, P. (2020). Recent Growth and Expansion of Birch Shrubs Across a Low Arctic Landscape in Continental Canada: Are These Responses More a Consequence of the Severely Declining Caribou Herd than of Climate Warming? Ecosystems. https://doi.org/10.1007/s10021- 019-00474-7	2020	North America	Canada	Shrub/woodl and cover gain	2006	2016
Mueller, R.C., Scudder, C.M., Porter, M.E., Talbot Trotter III, R., Gehring, C.A. and Whitham, T.G., 2005. Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. Journal of Ecology, 93(6), pp.1085-1093.	2005	North America	Unites States	Forest/woodl and decline	1996	1996
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1946	1998
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1960	2000
McClaran, M. P. 2003. A century of vegetation change on the Santa Rita Experimental Range. Pages 16–33 in Santa Rita Experimental Range: one-hundred years (1903–2003) of accomplishments and contributions. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Tucson, Arizona, USA.	2003	North America	USA	Shrub/woodl and cover gain	1960	2000
--	------	------------------	---------------	----------------------------------	------	------
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1936	1966
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1966	1996
Brown, A.L., 1950. Shrub invasion of southern Arizona desert grassland. Journal of Range Management, 3(3), 172-177.	1950	North America	USA	Herbaceous cover gain	1931	1949
Donato, Daniel C., Brian J. Harvey, and Monica G. Turner. "Regeneration of montane forests 24 years after the 1988 Yellowstone fires: A fire-catalyzed shift in lower treelines?." <i>Ecosphere</i> 7.8 (2016): e01410.	2016	North America	United States	Herbaceous cover gain	1988	2012
Donato, Daniel C., Brian J. Harvey, and Monica G. Turner. "Regeneration of montane forests 24 years after the 1988 Yellowstone fires: A fire-catalyzed shift in lower treelines?." <i>Ecosphere</i> 7.8 (2016): e01410.	2016	North America	United States	Forest cover gain	1988	2012
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1967	2005
Maher, E. L., & Germino, M. J. (2006). Microsite differentiation among conifer species during seedling establishment at alpine treeline. <i>Ecoscience</i> , <i>13</i> (3), 334-341.	2006	North America	United States	Forest cover gain		
Maher, E. L., & Germino, M. J. (2006). Microsite differentiation among conifer species during seedling establishment at alpine treeline. <i>Ecoscience</i> , <i>13</i> (3), 334-341.	2006	North America	United States	Forest cover gain		
Worrall, J.J., Egeland, L., Eager, T., Mask, R.A., Johnson, E.W., Kemp, P.A. and Shepperd, W.D., 2008. Rapid mortality of Populus tremuloides in southwestern Colorado, USA. Forest Ecology and Management, 255(3- 4), pp.686-696.	2008	North America	United States	Forest/woodl and decline	2005	2006
Köchy, M. and Wilson, S.D., 2001. Nitrogen deposition and forest expansion in the northern Great Plains. Journal of Ecology. 89, 807-817.	2001	North America	Canada	Shrub/woodl and cover gain	1930	1995

Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., BRET-HARTE, M. S., Ewers, B. E., & Cleary, M. B. (2008). Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14(3), 615-623.	2008	North America	United States	Shrub/woodl and cover gain		
 Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., BRET-HARTE, M. S., Ewers, B. E., & Cleary, M. B. (2008). Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14(3), 615-623. 	2008	North America	United States	Shrub/woodl and cover gain		
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1936	1983
Hennessy et al 1983	1983	North America	USA	Shrub/woodl and cover gain	1937	1996
Knapp 2008	2008	North America	USA	Shrub/woodl and cover gain	1937	1996
Laliberte, A.S., Rango, A., Havstad, K.M., Paris, J.F., Beck, R.F., McNeely, R., Gonzalez, A.L. 2004. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sensing of Environment, 93(1-2):198-210	2004	North America	USA	Shrub/woodl and cover gain	1937	2003
Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., BRET-HARTE, M. S., Ewers, B. E., & Cleary, M. B. (2008). Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14(3), 615-623.	2008	North America	United States	Shrub/woodl and cover gain		
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1937	2003
 Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4). 	2011	North America	United States	Forest cover gain	1935	1996
Collins, S.L. and Xia, Y., 2014. Long-term dynamics and hotspots of change in a desert grassland plant community. The American Naturalist, 185(2), pp.E30-E43.	2014	North America	United States	Herbaceous cover gain	1989	2008

Allen, C.D., & Breshears, D.D. 1998. Drought- induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation. Proceedings of the National Academy of Science 95 , 14839-14842.	1998	North America	United States	Shrub/woodl and cover gain	1935	1975
Zier, J. L., & Baker, W. L. (2006). A century of vegetation change in the San Juan Mountains, Colorado: an analysis using repeat photography. <i>Forest Ecology and</i> <i>Management</i> , 228(1-3), 251-262.	2006	North America	United States	Forest cover gain		
Zier, J. L., & Baker, W. L. (2006). A century of vegetation change in the San Juan Mountains, Colorado: an analysis using repeat photography. <i>Forest Ecology and</i> <i>Management, 228</i> (1-3), 251-262.	2006	North America	United States	Forest cover gain		
Zier, J. L., & Baker, W. L. (2006). A century of vegetation change in the San Juan Mountains, Colorado: an analysis using repeat photography. <i>Forest Ecology and</i> <i>Management</i> , 228(1-3), 251-262.	2006	North America	United States	Forest cover gain	<	0
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1960	1990
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Forest cover gain	1870	2006
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Forest cover gain	1930	1995
Dyer, J.M., & Moffett, K.E. (1999). Meadow invasion from high-elevation spruce-fir forest in south-central New Mexico. The Southwestern Naturalist, 44(4), 444-456.	1999	North America	United States	Forest cover gain	1936	1994
Formica, A., E. C. Farrer, I. W. Ashton, and K. N. Suding. 2014. Shrub expansion over the past 62 years in Rocky Mountain alpine tundra: Possible causes and consequences. Arctic, Antarctic, and Alpine Research 46:616–631.	2014	North America	United States	Shrub/woodl and cover gain	1946	2008
Bock, J.H. & Bock, C.E. (1984). Effect of fires on woody vegetation in the pine-grassland ecotone of the Southern Black Hills. The American Midland Naturalist, 112(1), 35-42.	1984	North America	United States	Forest/woodl and decline	1979	1981
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1960	1983

Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1960	1983
Köchy, M. and Wilson, S.D., 2001. Nitrogen deposition and forest expansion in the northern Great Plains. Journal of Ecology. 89, 807-817.	2001	North America	Canada	Shrub/woodl and cover gain	1930	1995
Ansley, R.J., Wu, X.B. and Kramp, B.A. (2001). Observation: Long-Term Increases in Mesquite Canopy Cover in a North Texas Savanna. Journal of Range Management, 54(2), 171-176.	2001	North America	USA	Shrub/woodl and cover gain	1976	1995
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1976	1995
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1937	1999
Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., BRET-HARTE, M. S., Ewers, B. E., & Cleary, M. B. (2008). Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14(3), 615-623.	2008	North America	United States	Shrub/woodl and cover gain		
Asner, G. P., Archer, S., hughes, r. F., Ansley, R. J., & Wessman, C. A. 2003. Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937–1999. Global Change Biology, 9(3), 316-335.	2003	North America	USA	Shrub/woodl and cover gain	1937	1999
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1960	1983
Archer, S., Boutton, T.W. and Hibbard, K.A. (2001). Trees in Grasslands: Biogeochemical Consequences of Woody Plant Expansion. Global Biogeochemical Cycles in the Climate System, 115-137.	2001	North America	USA	Shrub/woodl and cover gain	1941	1983
Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., BRET-HARTE, M. S., Ewers, B. E., & Cleary, M. B. (2008). Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14(3), 615-623.	2008	North America	United States	Shrub/woodl and cover gain		

Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Shrub/woodl and cover gain	1956	2000
Knight, C.L., Briggs, J.M. and Nellis, M.D., 1994. Expansion of gallery forest on Konza Prairie research natural area, Kansas, USA. Landscape Ecology. 9, 117-125.	1994	North America	United States	Forest cover gain	1939	1985
Bragg, T.B. and Hulbert, L.C., 1976. Woody plant invasion of unburned Kansas bluestem prairie. Journal of Range Management. 29, 19- 24.	1976	North America	USA	Forest cover gain	1937	1969
Gehring, J.L., & Bragg, T.B. (1992). Changes in prairie vegetation under eastern red cedar (Juniperus virginiana L.) in an eastern Nebraska bluestem prairie. The American Midland Naturalist, 128(2), 209-217.	1992	North America	United States	Forest cover gain	1960	1982
Briggs, J.M., Hoch, G.A. and Johnson, L.C., 2002. Assessing the rate, mechanisms, and consequences of the conversion of tallgrass prairie to Juniperus virginiana forest. Ecosystems. 5, 578-586.	2002	North America	United States	Forest cover gain	1969	1978
Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., BRET-HARTE, M. S., Ewers, B. E., & Cleary, M. B. (2008). Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14(3), 615-623.	2008	North America	United States	Shrub/woodl and cover gain		
Minnesota Department of Natural Resources. 2007. Federal conditions report 2007. 24 pp. http://fhm.fs.fed.us/fhh/fhh_07/mn_fhh_07.pdf	2007	North America	United States	Forest/woodl and decline	2004	2007
Faber-Langendoen, D. and Tester, J.R., 1993. Oak mortality in sand savannas following drought in east-central Minnesota. Bulletin of the Torrey Botanical Club, pp.248-256.	1993	North America	Unites States	Forest/woodl and decline	1987	1989
Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Forest cover gain	1979	2002
Aguilar, A., 2003. Patterns of forest regeneration In Celaque National Park, Honduras. Online Journal of Space Communication, 3, p.31.	2003	North America	Honduras	Forest cover gain	1987	1998
Wijdeven, S.M. and Kuzee, M.E., 2000. Seed availability as a limiting factor in forest recovery processes in Costa Rica. Restoration ecology, 8(4), pp.414-424.	2000	North America	Costa Rico	Forest cover gain	1993	1995
Chazdon, R.L., Brenes, A.R. and Alvarado, B.V., 2005. Effects of climate and stand age on annual tree dynamics in tropical second-growth rain forests. Ecology, 86(7), pp.1808-1815.	2005	North America	Costa Rica	Forest cover gain	1997	2003

Turner, M.G., Pearson, S.M., Bolstad, P. and Wear, D.N., 2003. Effects of land-cover change on spatial pattern of forest communities in the Southern Appalachian Mountains (USA). Landscape Ecology, 18(5), pp.449-464.	2003	North America	United States	Forest cover gain	1950	1990
Mitchell, C.E., Turner, M.G. and Pearson, S.M., 2002. Effects of historical land use and forest patch size on myrmecochores and ant communities. Ecological applications, 12(5), pp.1364-1377.	2002	North America	United States	Forest cover gain	1900	2002
Copenheaver, C.A., Fuhrman, N.E., Stephens Gellerstedt, L., & Gellerstedt, P.A. (2004). Tree encroachment in forest openings: A case study from Buffalo Mountain, Virginia. Castanea, 69(4), 297-308.	2004	North America	United States	Shrub/woodl and cover gain	1920	1990
Cavanaugh, K.C., Kellner, J.R., Forde, A.J., Gruner, D.S., Parker, J.D., Rodriguez, W., & Feller, I.C. (2013). Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Science, 111(2), 723-727.	2013	North America	United States	Shrub/woodl and cover gain	1984	2011
Condit, R., Hubbell, S.P. and Foster, R.B., 1995. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological monographs, 65(4), pp.419-439.	1995	North America	Panama	Forest/woodl and decline	1982	1985
Atkins, J. W., Epstein, H. E., & Welsch, D. L. (2018). Using Landsat imagery to map understory shrub expansion relative to landscape position in a mid-Appalachian watershed. Ecosphere, 9(10). https://doi.org/10.1002/ecs2.2404	2018	North America	United States	Shrub/woodl and cover gain	1986	2011
Lavoie, C., & Payette, S. (1994). Recent fluctuations of the lichen-spruce forest limit in subarctic Quebec. <i>Journal of Ecology</i> , 725- 734.	1994	North America	Canada	Forest cover gain		
Angers-Blondin, S., and S. Boudreau. 2017. Expansion dynamics and performance of the dwarf shrub Empetrum hermaphroditum (Ericaceae) on a Subarctic sand dune system, Nunavik (Canada). Arctic, Antarctic, and Alpine Research 49:201–211.	2017	North America	Canada	Herbaceous cover gain	2007	2012
Lescop-Sinclair, Kateri, and Serge Payette. "Recent advance of the arctic treeline along the eastern coast of Hudson Bay," <i>Journal of</i> <i>Ecology</i> (1995): 929-936.	1995	North America	Canada	Forest cover gain		
Ropars P and Boudreau S 2012 Shrub expansion at the forest tundra ecotone: spatial heterogeneity linked to local topography Environ. Res. Lett. at press	2012	North America	Canada	Shrub/woodl and cover gain	1957	2008
Ropars P and Boudreau S 2012 Shrub expansion at the forest tundra ecotone: spatial heterogeneity linked to local topography Environ. Res. Lett. at press	2012	North America	Canada	Shrub/woodl and cover gain	1957	2008
Hill G B and Henry G H R 2011 Responses of High Arctic wet sedge tundra to climate warming since 1980 Glob. Change Biol. 17 276–87	2011	North America	Canada	Shrub/woodl and cover gain	1981	2005

Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., BRET-HARTE, M. S., Ewers, B. E., & Cleary, M. B. (2008). Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14(3), 615-623.	2008	North America	United States	Shrub/woodl and cover gain		
Boulanger-Lapointe, N., E. Lévesque, S. Boudreau, G. H. R. Henry, and N. M. Schmidt. 2014. Population structure and dynamics of Arctic willow (Salix arctica) in the High Arctic. Journal of Biogeography 41:1967– 1978.	2014	North America	Canada	Herbaceous cover gain	1988	2009
Hudson, J., and G. Henry. 2009. Increased plant biomass in a High Arctic heath community from 1981 to 2008. Ecology 90:2657–2663.	2009	North America	Canada	Shrub/woodl and cover gain	1995	2007
Huang, H., J. C. Zinnert, L. K. Wood, D. R. Young, and P. D'Odorico. 2018. Non-linear shift from grassland to shrubland in temperate barrier islands. <i>Ecology</i> 99:1671–1681.	2018	North America	United States	Shrub/woodl and cover gain	1984	2016
Sittaro, F., Paquette, A., Messier, C., & Nock, C. A. (2017). Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. <i>Global</i> <i>Change Biology</i> , <i>23</i> (8), 3292-3301.	2017	North America	Canada	Forest cover gain	1970	2012
Jones, A.R.C. and Hendershot, W.H., 1989. Maple decline in Quebec: a discussion of possible causes and the use of fertilizers to limit damage. The Forestry Chronicle, 65(4), pp.280-287.	1989	North America	Eastern North America	Forest/woodl and decline	1980	1990
Brice, M. H., Cazelles, K., Legendre, P., & Fortin, M. J. (2019). Disturbances amplify tree community responses to climate change in the temperate–boreal ecotone. <i>Global Ecology and</i> <i>Biogeography</i> , 28(11), 1668-1681.	2019	North America	Canada	Forest cover gain	1970	2016
Foster, D.R., Motzkin, G. and Slater, B., 1998. Land-use history as long-term broad-scale disturbance: regional forest dynamics in central New England. Ecosystems, 1(1), pp.96-119.	1998	North America	United States	Forest cover gain	1830	1985
Brice, M. H., Cazelles, K., Legendre, P., & Fortin, M. J. (2019). Disturbances amplify tree community responses to climate change in the temperate-boreal ecotone. <i>Global Ecology and</i> <i>Biogeography</i> , 28(11), 1668-1681.	2019	North America	Canada	Forest cover gain	1970	2016
Parés-Ramos, I., Gould, W. and Aide, T., 2008. Agricultural abandonment, suburban growth, and forest expansion in Puerto Rico between 1991 and 2000. Ecology and Society, 13.	2008	North America	Puerto Rico	Forest cover gain	1991	2000
Tremblay, B., Lévesque, E. & Boudreau, S. (2012). Recent expansion of erect shrubs in the Low Arctic: Evidence from Eastern Nunavik. <i>Environ. Res. Lett.</i> , 7.	2012	North America	Canada	Shrub/woodl and cover gain	1964	2003
Tremblay, B., Lévesque, E. & Boudreau, S. (2012). Recent expansion of erect shrubs in the Low Arctic: Evidence from Eastern Nunavik. <i>Environ. Res. Lett.</i> , 7.	2013	North America	Canada	Forest cover gain	1964	2003

2010	North America	Canada	Shrub/woodl and cover gain	1964	2003
2002	North America	Puerto Rico	Forest cover gain	1936	1995
2007	North America	Canada	Forest/woodl and decline	~1700	present
2011	North America	Canada	Shrub/woodl and cover gain	1985	2001
2007	North America	Canada	Forest cover gain	1940	2007
2011	North America	Canada	Shrub/woodl and cover gain		
2011	North America	Canada	Shrub/woodl and cover gain		
2011	North America	Greenland	Shrub/woodl and cover gain	1968	2007
2009	North America	Canada	Shrub/woodl and cover gain		
2004	North America	United States	Forest cover gain	1945	1976
2015	North America	United States	Forest cover gain	1930	2000
	2010 2002 2007 2011 2011 2011 2011 2011	2010North America2002North America2007North America2011North America2011North America2011North America2011North America2011North America2012North America2013North America2014North America2015North America	2010North AmericaCanada2002North AmericaPuerto Rico2007North AmericaCanada2011North AmericaCanada2011North AmericaCanada2011North AmericaCanada2011North AmericaCanada2011North AmericaCanada2011North AmericaCanada2011North AmericaCanada2012North AmericaGreenland2003North AmericaCanada2004North AmericaCanada2015AmericaUnited States	2010North AmericaCanadaShrub/woodl and cover gain2002North AmericaCanadaForest cover gain2011North AmericaCanadaShrub/woodl and cover gain2011North AmericaCanadaShrub/woodl and cover gain2011North AmericaCanadaShrub/woodl and cover gain2011North AmericaCanadaShrub/woodl and cover gain2011North AmericaCanadaShrub/woodl and cover gain2011North AmericaCanadaShrub/woodl and cover gain2011North AmericaCanadaShrub/woodl 	2010North MericaCanadaShrub/woodl agin19642002North MericaPuerto RicoForest cover and decline19362007North MericaCanadaForest/woodl and decline19862010North MericaCanadaShrub/woodl agin19862007North MericaCanadaForest cover gain19402010North MericaCanadaShrub/woodl agin19402011North MericaCanadaShrub/woodl agin19402011North MericaCanadaShrub/woodl agin19402011North MericaCanadaShrub/woodl agin19402011North MericaCanadaShrub/woodl agin19402011North MericaCanadaShrub/woodl and cover gain19402011North MericaCanadaShrub/woodl and cover gain19482012North MericaCanadaShrub/woodl and cover gain19482013North MericaCanadaShrub/woodl and cover gain19482014North MericaCanadaShrub/woodl and cover gain19482015North MericaCanadaShrub/woodl and cover gain19482014North MericaCanadaShrub/woodl and cover gain19482015North MericaCanadaShrub/woodl and cover gain19482014North M

McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, 112(5), 1458-1463.	2015	North America	United States	Forest type change	1930	2000
Hollister, R. D., J. L. May, K. S. Kremers, C. E. Tweedie, S. F. Oberbauer, J. A. Liebig, T. F. Botting, R. T. Barrett, and J. L. Gregory. 2015. Warming experiments elucidate the drivers of observed directional changes in tundra vegetation. Ecology and Evolution 5:1881– 1895.	2015	North America	United States	Shrub/woodl and cover gain	1994	2012
Benedict, J. B. (1984). Rates of tree-island migration, Colorado Rocky Mountains, USA. <i>Ecology</i> , <i>65</i> (3), 820-823.	1984	North America	United States	Forest cover gain	C	
Daly, C., & Shankman, D. (1985). Seedling establishment by conifers above tree limit on Niwot Ridge, Front Range, Colorado, USA. <i>Arctic and Alpine Research</i> , <i>17</i> (4), 389- 400.	1985	North America	United States	Forest cover gain		
Weisberg, Peter J., and William L. Baker. "Spatial variation in tree seedling and krummholz growth in the forest-tundra ecotone of Rocky Mountain National Park, Colorado, USA." <i>Arctic and Alpine Research</i> 27, no. 2 (1995): 116-129.	1995	North America	United States			
Elliott, G. P., & Baker, W. L. (2004). Quaking aspen (Populus tremuloides Michx.) at treeline: a century of change in the San Juan Mountains, Colorado, USA. <i>Journal of</i> <i>Biogeography</i> , <i>31</i> (5), 733-745.	2004	North America	United States	Forest type change		
Coop, J. D., & Givnish, T. J. (2007). Spatial and temporal patterns of recent forest encroachment in montane grasslands of the Valles Caldera, New Mexico, USA. <i>Journal of</i> <i>Biogeography</i> , 34(5), 914-927.	2007	North America	United States	Forest cover gain		
Andersen, M. D., & Baker, W. L. (2005). Reconstructing landscape-scale tree invasion using survey notes in the Medicine Bow Mountains, Wyoming, USA. <i>Landscape</i> <i>Ecology</i> , <i>21</i> (2), 243-258.	2005	North America	United States	Forest cover gain	1895	2005
Cocke, A. E., Fule, P. Z., & Crouse, J. E. (2005). Forest change on a steep mountain gradient after extended fire exclusion: San Francisco Peaks, Arizona, USA. <i>Journal of</i> <i>Applied Ecology</i> , 42(5), 814-823.	2005	North America	United States	Forest cover gain	1876	2000
Moore, M. M., & Huffman, D. W. (2004). Tree encroachment on meadows of the north rim, Grand Canyon National Park, Arizona, USA. <i>Arctic, Antarctic, and Alpine</i> <i>Research, 36</i> (4), 474-483.	2004	North America	United States	Forest cover gain	1930	2000
Klasner, F. L., & Fagre, D. B. (2002). A half century of change in alpine treeline patterns at Glacier National Park, Montana, USA. <i>Arctic,</i> <i>Antarctic, and Alpine Research</i> , <i>34</i> (1), 49-56.	2002	North America	United States	Forest cover gain	1945	1991
Butler, D. R., & DeChano, L. M. (2001). Environmental change in Glacier National Park, Montana: an assessment through repeat photography from fire lookouts. Physical Geography, 22(4), 291-304.	2001	North America	United States	Forest cover gain		

FINAL DRAFT	Chapter 2 Sup	plementary M	laterial IPC	C WGII Sixth Ass	sessment	Report
Alftine K.J., Malanson G.P. & Fagre D.F. (2003). Feedback-driven response to multidecadal climatic variability at an all treeline. <i>Physical Geography</i> , 24, 520-53	3. 2003 35.	North America	United State	Forest cover gain	1940	1980
Baker, W., & Weisberg, P. (1997). Using to model tree population parameters in th Rocky Mountain National Park forest-tu ecotone. Journal of Biogeography, 24(4), 526.	g GIS ne ndra 1997 , 513-	North America	United State	Forest cover s gain		
Weisberg, P. J., Lingua, E., & Pillai, R. I (2007). Spatial patterns of pinyon–junipe woodland expansion in central Nevada. <i>Rangeland Ecology &</i> <i>Management</i> , 60(2), 115-124.	3. er 2007	North America	United State	Shrub/woodl s and cover gain		
Bunn, A. G., Waggoner, L. A., & Graum L. J. (2005). Topographic mediation of g in high elevation foxtail pine (Pinus balfouriana Grev. et Balf.) forests in the Nevada, USA. <i>Global Ecology and</i> <i>Biogeography</i> , 14(2), 103-114.	lich, rowth Sierra 2005	North America	United State	Forest cover s gain	< <u>_</u>	2001
Vale, T. R. (1987). Vegetation change ar purposes in the high elevations of Yosem National Park, California. <i>Annals of the</i> <i>Association of American Geographers</i> , 7 1-18.	nd park nite 1987 7(1),	North America	United State	Forest cover gain		
Brink, V.C. (1959). A directional change subapline forest-heath ecotone in Gariba Park, British Columbia. Ecology, 40(1),	in the ldi 1959 10-16.	North America	Canada	Forest cover gain	1918	1958
Danby, R. K., & Hik, D. S. (2007). Varia contingency and rapid change in recent subarctic alpine tree line dynamics. <i>Journ</i> <i>Ecology</i> , 95(2), 352-363.	ubility, nal of 2007	North America	Canada	Forest cover gain	1947	1989
Epstein, H. E., Calei, M. P., Walker, M. Stuart Chapin III, F., & Starfield, A. M. Detecting changes in arctic tundra plant communities in response to warming ove decadal time scales. <i>Global Change Biology</i> , <i>10</i> (8), 1325-1334.	D., 2004). er 2004	North America	United State	Shrub/woodl s and cover gain		
Suarez, F., Binkley, D., Kaye, M. W., & Stottlemyer, R. (1999). Expansion of for stands into tundra in the Noatak National Preserve, northwest Alaska. <i>Ecoscience</i> , 465-470.	est 1999 6(3),	North America	United State	Forest cover gain		
Beckage, B., Osborne, B., Gavin, D. G., C., Siccama, T., & Perkins, T. (2008). A upward shift of a forest ecotone during 4 years of warming in the Green Mountain Vermont. Proceedings of the National Academy of Sciences, 105(11), 4197-420	Pucko, rapid 0 2008 s of 2008	North America	United State	Forest type s change	1962	2005
Gamache, I., & Payette, S. (2005). Latitu response of subarctic tree lines to recent climate change in eastern Canada. <i>Journa</i> <i>Biogeography</i> , <i>32</i> (5), 849-862.	al of 2005	North America	Canada	Forest cover gain		
Gamache, I., & Payette, S. (2004). Heigh growth response of tree line black spruce recent climate warming across the forest of eastern Canada. <i>Journal of Ecology</i> , 9 835-845.	nt e to -tundra 2004 2(5),	North America	Canada	Forest cover gain		
Gamache, I., & Payette, S. (2005). Latitu response of subarctic tree lines to recent climate change in eastern Canada. <i>Journa</i> <i>Biogeography</i> , <i>32</i> (5), 849-862.	adinal 2005 al of	North America	Canada	Forest cover gain		

Gamache, I., & Payette, S. (2005). Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. <i>Journal of</i> <i>Biogeography</i> , 32(5), 849-862.	2005	North America	Canada	Forest cover gain		
Pereg, D., & Payette, S. (1998). Development of black spruce growth forms at treeline. <i>Plant</i> <i>Ecology</i> , <i>138</i> (2), 137-147.	1998	North America	Canada	Forest cover gain		~1998
Caccianiga, M., & Payette, S. (2006). Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). <i>Journal of</i> <i>Biogeography</i> , <i>33</i> (12), 2120-2135.	2006	North America	Canada	Forest cover gain		
Caccianiga, M., & Payette, S. (2006). Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). <i>Journal of</i> <i>Biogeography</i> , <i>33</i> (12), 2120-2135.	2006	North America	Canada	Forest cover gain	20	0
Caccianiga, M., & Payette, S. (2006). Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). <i>Journal of</i> <i>Biogeography</i> , <i>33</i> (12), 2120-2135.	2006	North America	Canada	Forest cover gain		
Caccianiga, M., & Payette, S. (2006). Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). <i>Journal of Biogeography</i> , 33(12), 2120-2135.	2006	North America	Canada	Forest cover gain		
Vallée, S., & Payette, S. (2004). Contrasted growth of black spruce (Picea mariana) forest trees at treeline associated with climate change over the last 400 years. <i>Arctic, Antarctic, and</i> <i>Alpine Research, 36</i> (4), 400-406.	2004	North America	Canada	Forest cover gain	1800	2000
Körner, C., Sarris, D. and Christodoulakis, D., 2005. Long-term increase in climatic dryness in the East-Mediterranean as evidenced for the island of Samos. Regional Environmental Change, 5(1), pp.27-36.	2005	Europe	Greece	Forest/woodl and decline	2000	2000
Cerrillo, R.N., Varo, M.A., Lanjeri, S. and Clemente, R.H., 2007. Cartografía de defoliación en los pinares de pino silvestre (Pinus sylvestris L.) y pino salgareño (Pinus nigra Arnold.) en la Sierra de los Filabres. Revista Ecosistemas, 16(3).	2007	Europe	Spain	Forest/woodl and decline	2004	2006
Peñuelas, J., Lloret, F. and Montoya, R., 2001. Severe drought effects on Mediterranean woody flora in Spain. Forest Science, 47(2), pp.214-218.	2001	Europe	Spain	Forest/woodl and decline	1994 & 1998	1994 & 1998
Markalas, S., 1992. Site and stand factors related to mortality rate in a fir forest after a combined incidence of drought and insect attack. Forest Ecology and Management, 47(1- 4), pp.367-374.	1992	Europe	Greece	Forest/woodl and decline	1987	1989
van Gils, H., Batsukh, O., Rossiter, D., Munthali, W. and Liberatoscioli, E., 2008. Forecasting the pattern and pace of Fagus forest expansion in Majella National Park, Italy. Applied Vegetation Science, 11(4), pp.539-546.	2008	Europe	Italy	Forest cover gain	1975	2003

Mancino, G., Nolè, A., Ripullone, F. and Ferrara, A., 2014. Landsat TM imagery and NDVI differencing to detect vegetation change: assessing natural forest expansion in Basilicata, southern Italy. iForest-Biogeosciences and Forestry, 7(2), p.75.	2014	Europe	Italy	Forest cover gain	1984	2010
Barbati, A., Corona, P., Salvati, L. and Gasparella, L., 2013. Natural forest expansion into suburban countryside: Gained ground for a green infrastructure?. Urban Forestry & Urban Greening. 12, 36-43.	2013	Europe	Italy	Shrub/woodl and cover gain	1974	2008
Acosta, A., Carranza, M.L. and Giancola, M., 2005. Landscape change and ecosystem classification in a municipal district of a small city (Isernia, Central Italy). Environmental Monitoring and Assessment, 108(1-3), pp.323- 335.	2005	Europe	Italy	Forest cover gain	1954	1992
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Bulgaria	Forest cover gain		
Peñuelas, J., Ogaya, R., Boada M., & Jump, A. S. 2007. Migration, invasion and decline: changes in recruitment andforest structure in a warming-linked shift of European beechforest in Catalonia (NE Spain). Ecography 30 , 829- 837.	2007	Europe	Spain	Forest cover gain	1920	2003
Peñuelas, J., Ogaya, R., Boada M., & Jump, A. S. 2007. Migration, invasion and decline: changes in recruitment andforest structure in a warming-linked shift of European beechforest in Catalonia (NE Spain). Ecography 30 , 829- 837.	2007	Europe	Spain	Forest cover gain	1910	2007
Peñuelas, J., Ogaya, R., Boada M., & Jump, A. S. 2007. Migration, invasion and decline: changes in recruitment andforest structure in a warming-linked shift of European beechforest in Catalonia (NE Spain). Ecography 30 , 829- 837.	2007	Europe	Spain	Forest type change	1910	2007
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	macedonia	Forest cover gain	1934	2010
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Italy	Forest cover gain	1954	2007
Ameztegui, A., Coll, L., Brotons, L., & Ninot, J. M. (2016). Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. <i>Global Ecology and</i> <i>Biogeography</i> , 25(3), 263-273.	2016	Europe	Spain	Forest cover gain	1956	2006

FINAL DRAFT

Feuillet, T., Birre, D., Milian, J., Godard, V., Clauzel, C., & Serrano-Notivoli, R. (2020). Spatial dynamics of alpine tree lines under global warming: What explains the mismatch between tree densification and elevational upward shifts at the tree line ecotone?. Journal of Biogeography, 47(5), 1056-1068.	2019	Europe	France	Forest cover gain	1953	2015
Feuillet, T., Birre, D., Milian, J., Godard, V., Clauzel, C., & Serrano-Notivoli, R. (2020). Spatial dynamics of alpine tree lines under global warming: What explains the mismatch between tree densification and elevational upward shifts at the tree line ecotone?. Journal of Biogeography, 47(5), 1056-1068.	2019	Europe	France	Forest cover gain	1953	2015
Feuillet, T., Birre, D., Milian, J., Godard, V., Clauzel, C., & Serrano-Notivoli, R. (2020). Spatial dynamics of alpine tree lines under global warming: What explains the mismatch between tree densification and elevational upward shifts at the tree line ecotone?. Journal of Biogeography, 47(5), 1056-1068.	2020	Europe	France	Forest cover gain	1953	2015
Feuillet, T., Birre, D., Milian, J., Godard, V., Clauzel, C., & Serrano-Notivoli, R. (2020). Spatial dynamics of alpine tree lines under global warming: What explains the mismatch between tree densification and elevational upward shifts at the tree line ecotone?. Journal of Biogeography, 47(5), 1056-1068.	2020	Europe	France	Forest cover gain	1953	2015
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Spain	Forest cover gain	1956	2006
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Bulgaria	Forest cover gain		
Mouillot, F., Ratte, J.P., Joffre, R., Mouillot, D. and Rambal, S., 2005. Long-term forest dynamic after land abandonment in a fire prone Mediterranean landscape (central Corsica, France). Landscape Ecology, 20(1), pp.101- 112.	2005	Europe	France	Forest cover gain	1960	1990
Vennetier, M., Vila, B., Liang, E.Y., Guibal, F., Thabeet, A. and Gadbin-Henry, C., 2007. Impact of climate change on pine forest productivity and on the shift of a bioclimatic limit in a Mediterranean area. Options Méditerranéennes, Série A, 75, pp.189-197.	2007	Europe	France	Forest/woodl and decline	2003	2008
Vennetier, M., Cecillon, L., Guénon, R., Schaffhauser, A., Vergnoux, A., Boichard, J.L., Bottéro, J.Y., Brun, J.J., Carrara, M., Cassagne, N. and Chandioux, O., 2008. Etude de l'impact d'incendies de forêt répétés sur la biodiversité et sur les sols: recherche d'indicateurs. Rapport final. Cemagref, Ministère de l'Agriculture et de la pêche, Union Européenne, Aix en Provence, 236.	2008	Europe	France	Forest/woodl and decline	2006	2008

Preiss, E., Martin, J.L. and Debussche, M., 1997. Rural depopulation and recent landscape changes in a Mediterranean region: consequences to the breeding avifauna. Landscape ecology, 12(1), pp.51-61.	1997	Europe	France	Shrub/woodl and cover gain	1978	1992
Argenti, G., Bianchetto, E., Ferretti, F., Giulietti, V., Milandri, M., Pelleri, F., Romagnoli, P., Signorini, M.A. and Venturi, E., 2006. Caratterizzazione di un'area pascoliva in fase di abbandono attualmente utilizzata in modo estensivo (S. Paolo in Alpe- S. Sofia, FC). Forest@-Journal of Silviculture and Forest Ecology, 3(3), p.387.	2006	Europe	Italy	Forest cover gain	1955	1997
Agnoletti, M., 2007. The degradation of traditional landscape in a mountain area of Tuscany during the 19th and 20th centuries: Implications for biodiversity and sustainable management. Forest ecology and Management, 249(1-2), pp.5-17.	2007	Europe	Italy	Forest cover gain	1832	2000
Vertui, F. and Tagliaferro, F., 1998. Scots pine (Pinus sylvestris L.) die-back by unknown causes in the Aosta Valley, Italy. Chemosphere, 36(4-5), pp.1061-1065.	1998	Europe	Italy	Forest/woodl and decline	1985	1998
Laiolo, P., Dondero, F., Ciliento, E. and Rolando, A., 2004. Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. Journal of Applied Ecology, 41(2), pp.294-304.	2004	Europe	Italy	Forest cover gain	1954	2002
Gellrich, M., Baur, P., Robinson, B.H. and Bebi, P., 2008. Combining classification tree analyses with interviews to study why sub- alpine grasslands sometimes revert to forest: A case study from the Swiss Alps. Agricultural Systems, 96(1-3), pp.124-138.	2008	Europe	Switzerland	Forest cover gain	1950	2000
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Slovenia	Forest cover gain		
Rigling, A., Bigler, C., Eilmann, B., Feldmeyer-Christe, E., Gimmi, U., Ginzler, C., & Wohlgemuth, T. (2013). Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. <i>Global</i> <i>Change Biology</i> , 19(1), 229-240.	2013	Europe	Switzerland	Forest type change	1983	2003
Rigling, A., Bigler, C., Eilmann, B., Feldmeyer-Christe, E., Gimmi, U., Ginzler, C., & Wohlgemuth, T. (2013). Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. <i>Global</i> <i>Change Biology</i> , <i>19</i> (1), 229-240.	2013	Europe	Switzerland	Forest type change	1983	2003
Wermelinger, B., Rigling, A., Schneider Mathis, D. and Dobbertin, M., 2008. Assessing the role of bark-and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecological Entomology, 33(2), pp.239-249.	2008	Europe	Switzerland	Forest/woodl and decline	2001	2005

Kienast, F., Flühler, H. and Schweingruber, F.H., 1981. Jahrringanalysen an Föhren (Pinus silvestris L.) aus immissionsgefährdeten Beständen des Mittelwallis (Saxon, Schweiz). Mitteilungen der Eidgenössischen Anstalt für das Forstliche Versuchswesen, 57, pp.415-32.	1981	Europe	Switzerland	Forest/woodl and decline	1960	1978
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Italy	Forest cover gain	1954	2018
Bolliger, J., Kienast, F., Soliva, R. and Rutherford, G., 2007. Spatial sensitivity of species habitat patterns to scenarios of land use change (Switzerland).' Landscape Ecology, 22(5), pp.773-789.	2007	Europe	Switzerland	Forest cover gain	1979	1997
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Switzerland	Forest cover gain	1954	2018
Minerbi, S., 1993. Wie gesund sind unsere Walder? 10. Bericht uber den Zustand der Walder in Su dtirol. Agrar-und Forstbericht, Autonome Provinz Bozen. Assessorate fur Land-und Forstwirtschaft, p.40.	1993	Europe	Italy	Forest/woodl and decline	1992	1992
Cannone, N., S. Sgorbati, and M. Guglielmin. 2007. Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment 5:360–364.	2007	Europe	Switzerland	Shrub/woodl and cover gain	1953	2003
Tasser, E. and Tappeiner, U., 2002. Impact of land use changes on mountain vegetation. Applied vegetation science, 5(2), pp.173-184.	2002	Europe	Italy	Forest cover gain	1932	1998
Tappeiner, U., Tasser, E., Leitinger, G., Cernusca, A. and Tappeiner, G., 2008. Effects of historical and likely future scenarios of land use on above-and belowground vegetation carbon stocks of an alpine valley. Ecosystems, 11(8), pp.1383-1400.	2008	Europe	Austria	Forest cover gain	1865	2003
Cech, T., Perny, L.B., 2000. Kiefernsterben in Tirol. Forstschutz-aktuell 22, 12–15.	2000	Europe	Austria	Forest/woodl and decline	1991	1997
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	2015	Europe	Moldova	Forest cover gain	1915	2012
Petercord, R., 2008. Future endangerment of the European beech by bark and wood boring beetles in BadenWürttemberg. Mitteilungen der Deutsche Gesellschaft für Allgemeine und Angewandte Entomologie, 16, pp.247-250.	2008	Europe	Germany	Forest/woodl and decline	2003	2006
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Slovakia	Forest cover gain	1950	2018

Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	2015	Europe	Ukraine	Forest cover gain	1917	2012
Treml, V., Wild, J., Chuman, T., & Potůčková, M. 2010. Assessing the change in cover of non-indigenous dwarf-pine using aerial photographs, a case study from the Hrubý Jeseník MTS., the Sudetes. Journal of Landscape Ecology, 3(2), 90-104.	2010	Europe	Czechia	Forest cover gain	1971/1 973	2003
Treml, V., Wild, J., Chuman, T., & Potůčková, M. 2010. Assessing the change in cover of non-indigenous dwarf-pine using aerial photographs, a case study from the Hrubý Jeseník MTS., the Sudetes. Journal of Landscape Ecology, 3(2), 90-104.	2010	Europe	Czechia	Forest cover gain	1971/1 973	2003
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Czech republic	Forest cover gain	1936	2005
Treml, V., Wild, J., Chuman, T., & Potůčková, M. 2010. Assessing the change in cover of non-indigenous dwarf-pine using aerial photographs, a case study from the Hrubý Jeseník MTS., the Sudetes. Journal of Landscape Ecology, 3(2), 90-104.	2010	Europe	Czechia	Forest cover gain	1971/1 973	2003
Treml, V., Wild, J., Chuman, T., & Potůčková, M. 2010. Assessing the change in cover of non-indigenous dwarf-pine using aerial photographs, a case study from the Hrubý Jeseník MTS., the Sudetes. Journal of Landscape Ecology, 3(2), 90-104.	2010	Europe	Czechia	Forest cover gain	1971/1 973	2003
Treml, V., Wild, J., Chuman, T., & Potůčková, M. 2010. Assessing the change in cover of non-indigenous dwarf-pine using aerial photographs, a case study from the Hrubý Jeseník MTS., the Sudetes. Journal of Landscape Ecology, 3(2), 90-104.	2010	Europe	Czechia	Forest cover gain	1971/1 973	2003
Treml, V., Wild, J., Chuman, T., & Potůčková, M. 2010. Assessing the change in cover of non-indigenous dwarf-pine using aerial photographs, a case study from the Hrubý Jeseník MTS., the Sudetes. Journal of Landscape Ecology, 3(2), 90-104.	2010	Europe	Czechia	Forest cover gain	1971/1 973	2003
Treml, V., Wild, J., Chuman, T., & Potůčková, M. 2010. Assessing the change in cover of non-indigenous dwarf-pine using aerial photographs, a case study from the Hrubý Jeseník MTS., the Sudetes. Journal of Landscape Ecology, 3(2), 90-104.	2010	Europe	Czechia	Forest cover gain	1971/1 973	2003

i.

Siwkcki, R. and Ufnalski, K., 1998. Review of oak stand decline with special reference to the role of drought in Poland. European Journal of Forest Pathology, 28(2), pp.99-112.	1998	Europe	Poland	Forest/woodl and decline	1979	1987
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	2015	Europe	Belarus	Forest cover gain	1930	2012
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	2015	Europe	Russia	Forest cover gain	1917	2012
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	2015	Europe	Russia	Forest cover gain	1975	2012
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	2015	Europe	Lithuania	Forest cover gain	1922	2012
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	2015	Europe	Russia	Forest cover gain	1921	2012
Olsson, E.G.A., Austrheim, G. and Grenne, S.N., 2000. Landscape change patterns in mountains, land use and environmental diversity, Mid-Norway 1960–1993. Landscape ecology, 15(2), pp.155-170.	2001	Europe	Norway	Forest cover gain	1964	1989
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Norway	Forest cover gain	1915	2007
Truong, C., Palmé, A. E., & Felber, F. (2007). Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: genetic and ecological study in northern Sweden. <i>Journal of evolutionary</i> <i>biology</i> , 20(1), 369-380.	2007	Europe	Sweden	Forest cover gain		
Vowles, T., Lovehav, C., Molau, U. & Björk, R.G. (2017). Contrasting impacts of reindeer grazing in two tundra grasslands. <i>Environ. Res.</i> <i>Lett.</i> , 12.	2017	Europe	Sweden	Shrub/woodl and cover gain	1995	2012
Olsson, E.G.A., Austrheim, G. and Grenne, S.N., 2000. Landscape change patterns in mountains, land use and environmental diversity, Mid-Norway 1960–1993. Landscape ecology, 15(2), pp.155-170.	2000	Europe	Norway	Forest cover gain	1963	1993
Kjallgren & Kullman 1998	1998	Europe	Sweden	Forest cover gain		

Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1969	2009
Tsvetkov, V.F., Tsvetkov, V.I., 2007. The problem of spruce forests—mortality in the Arkhangelsk Region. In: Dying Spruce Forests of Arkhangelsk Region. Problems and Means of their Solution, Department of Forest Complex of Arkhangelsk Region, Arkhangelsk, Russian Federation, pp. 20–30.	2007	Europe	Russia	Forest/woodl and decline	2004	2006
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1969	2010
Frost, G. V., H. E. Epstein, D. A. Walker, G. Matyshak, and K. Ermokhina. 2013. Patterned- ground facilitates shrub expansion in Low Arctic tundra. Environmental Research Letters 8:015035.	2013	Europe	Russia	Shrub/woodl and cover gain	1968	2010
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1968	2003
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1968	2004
Frost, G. V., H. E. Epstein, D. A. Walker, G. Matyshak, and K. Ermokhina. 2013. Patterned- ground facilitates shrub expansion in Low Arctic tundra. Environmental Research Letters 8:015035.	2013	Europe	Russia	Shrub/woodl and cover gain	1968	2010
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1968	2010
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1968	2011
Vowles, T., Lovehav, C., Molau, U. & Björk, R.G. (2017). Contrasting impacts of reindeer grazing in two tundra grasslands. <i>Environ. Res.</i> <i>Lett.</i> , 12.	2017	Europe	Sweden	Shrub/woodl and cover gain	1995	2012
Cudlín, Pavel, Matija Klopčič, Roberto Tognetti, Frantisek Máli&, Concepción L. Alados, Peter Bebi, Karsten Grunewald et al. "Drivers of treeline shift in different European mountains." <i>Climate Research</i> 73, no. 1-2 (2017): 135-150.	2017	Europe	Northern Scandes	Forest cover gain	1958	2008
Molau, U. 2010. Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecology and Diversity 3:29–34.	2010	Europe	Sweden	Shrub/woodl and cover gain	1995	2006
Rundqvist, S., Hedenås, H., Sandström, A., Emanuelsson, U., Eriksson, H., Jonasson, C., <i>et</i> <i>al.</i> (2011). Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. <i>Ambio</i> , 40, 683–692.	2011	Europe	Sweden	Shrub/woodl and cover gain	1976	2010

Rundqvist, S., Hedenås, H., Sandström, A., Emanuelsson, U., Eriksson, H., Jonasson, C., <i>et</i> <i>al.</i> (2011). Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. <i>Ambio</i> , 40, 683–692.	2011	Europe	Sweden	Forest cover gain	1976	2010
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1965	2010
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Forest cover gain	1965	2010
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1966	2010
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Forest cover gain	1966	2010
Kapfer, J., and K. Popova. 2020. Changes in subarctic vegetation after one century of land use and climate change. Journal of Vegetation Science 00:1–12.	2020	Europe	Russia	Shrub/woodl and cover gain	1930	2016
Kapfer, J., and K. Popova. 2020. Changes in subarctic vegetation after one century of land use and climate change. Journal of Vegetation Science 00:1–12.	2020	Europe	Russia	Herbaceous cover gain	1930	2016
Kapfer, J., and K. Popova. 2020. Changes in subarctic vegetation after one century of land use and climate change. Journal of Vegetation Science 00:1–12.	2020	Europe	Russia	Grass cover loss	1930	2016
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1966	2009
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Forest cover gain	1966	2009
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1966	2009
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Forest cover gain	1966	2009
Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–1277.	2014	Europe	Russia	Shrub/woodl and cover gain	1965	2009
Schmidt, N. M., Kristensen, D. K., Michelsen, A. & Bay, C. 2012. High Arctic plant community responses to a decade of ambient warming. Biodiversity, 12, 191-199.	2012	Europe	Greenland	Grass cover loss	1997	2008
Hofgaard, A., Kullman, L., & Alexandersson, H. (1991). Response of old-growth montane Picea abies (L.) Karst. forest to climatic variability in northern Sweden. New Phytologist, 119(4), 585-594.	1991	Europe	Sweden	Forest cover gain	1938	1988

Julio Camarero, J., & Gutiérrez, E. (2007). Response of Pinus uncinata recruitment to climate warming and changes in grazing pressure in an isolated population of the Iberian system (NE Spain). <i>Arctic, Antarctic, and</i> <i>Alpine Research, 39</i> (2), 210-217.	2007	Europe	Spain	Forest cover gain		
Camarero, J. J., & Gutiérrez, E. (2004). Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. <i>Climatic change</i> , <i>63</i> (1- 2), 181-200.	2004	Europe	Spain	Forest cover gain	1900	1997
Camarero, J. J., & Gutiérrez, E. (2004). Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. <i>Climatic change</i> , <i>63</i> (1- 2), 181-200.	2004	Europe	Spain	Forest cover gain	1900	1997
Motta, R., & Nola, P. (2001). Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. <i>Journal of Vegetation Science</i> , <i>12</i> (2), 219-230.	2001	Europe	Italy	Forest cover gain		0
Motta, R., & Nola, P. (2001). Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. <i>Journal of Vegetation Science</i> , <i>12</i> (2), 219-230.	2001	Europe	Italy	Forest cover gain		
Didier, L. (2001). Invasion patterns of European larch and Swiss stone pine in subalpine pastures in the French Alps. <i>Forest</i> <i>Ecology and Management</i> , <i>145</i> (1-2), 67-77.	2001	Europe	Switzerland	Forest type change	1950	2000
Vittoz, P., Rulence, B., Largey, T., & Freléchoux, F. (2008). Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic, Antarctic, and Alpine Research, 40(1), 225-232.	2008	Europe	Switzerland	Forest cover gain		
Vittoz, P., Rulence, B., Largey, T., & Freléchoux, F. (2008). Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic, Antarctic, and Alpine Research, 40(1), 225-232.	2008	Europe	Switzerland	Forest cover gain		
Gehrig-Fasel, J., Guisan, A., & Zimmermann, N. E. (2007). Tree line shifts in the Swiss Alps: climate change or land abandonment?. <i>Journal</i> <i>of vegetation science</i> , <i>18</i> (4), 571-582.	2007	Europe	Switzerland	Forest cover gain	1985	1997
Gehrig-Fasel, J., Guisan, A., & Zimmermann, N. E. (2007). Tree line shifts in the Swiss Alps: climate change or land abandonment?. <i>Journal of vegetation science</i> , <i>18</i> (4), 571-582.	2007	Europe	Switzerland	Forest cover gain	1985	1997
Vittoz, P., Rulence, B., Largey, T., & Freléchoux, F. (2008). Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic, Antarctic, and Alpine Research, 40(1), 225-232.	2008	Europe	Switzerland	Forest cover gain		

Motta, R., Nola, P., & Piussi, P. (2002). Long- term investigations in a strict forest reserve in the eastern Italian Alps: spatio-temporal origin and development in two multi-layered subalpine stands. <i>Journal of Ecology</i> , <i>90</i> (3), 495-507.	2002	Europe	Italy	Forest cover gain	1920	2000
Motta, R., Nola, P., & Piussi, P. (2002). Long- term investigations in a strict forest reserve in the eastern Italian Alps: spatio-temporal origin and development in two multi-layered subalpine stands. <i>Journal of Ecology</i> , <i>90</i> (3), 495-507.	2002	Europe	Italy	Forest cover gain		2000
Kern, Z., & Popa, I. (2008). Changes of frost damage and treeline advance for swiss Stone Pine in the Calimani Mts.(Eastern Carpathians, Romania). <i>Acta Silvatica et Lignaria</i> <i>Hungarica</i> , <i>4</i> , 39-48.	2008	Europe	Romania	Forest cover gain	1910	2006
Dullinger, S., Dirnböck, T., & Grabherr, G. (2003). Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. <i>Arctic, Antarctic,</i> <i>and Alpine Research</i> , <i>35</i> (4), 434-441.	2003	Europe	Austria	Forest cover gain		
LinLinderholm, H. W. (2002). Twentieth- century Scots pine growth variations in the central Scandinavian Mountains related to climate change. Arctic, Antarctic, and Alpine Research, 34(4), 440-449.derholm 2002	2002	Europe	Sweden	Forest cover gain	1931	1960
Grace, J., & Norton, D. A. (1990). Climate and growth of Pinus sylvestris at its upper altitudinal limit in Scotland: evidence from tree growth-rings. <i>The Journal of Ecology</i> , 601- 610.	1990	Europe	United Kingdom	Forest cover gain		
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research, 37</i> (3), 284-296.	2005	Europe	Norway	Forest cover gain		
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research, 37</i> (3), 284-296.	2005	Europe	Norway	Forest cover gain		
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research, 37</i> (3), 284-296.	2005	Europe	Norway	Forest cover gain		
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research</i> , <i>37</i> (3), 284-296.	2005	Europe	Norway	Forest cover gain		
Kullman, L. (2003). Recent reversal of Neoglacial climate cooling trend in the Swedish Scandes as evidenced by mountain birch tree-limit rise. Global and planetary change, 36(1-2), 77-88.n 2003	2003	Europe	Sweden	Forest cover gain		
Kullman, L. (1983). Past and present tree-lines of different species in the Handolan valley, central Sweden. In <i>Tree-Line Ecology:</i> <i>Proceedings of the Northern Quebec Tree-Line</i> <i>Conference. Centre d'etudes nordiques,</i> <i>Universite Laval, Quebec, 1983.</i>	1983	Europe	Sweden	Forest cover gain		
Kullman, L. (2002). Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. <i>Journal of ecology</i> , <i>90</i> (1), 68-77.	2002	Europe	Sweden	Forest cover gain	1950	2000

Kullman, L. (2005, January). Pine (Pinus sylvestris) treeline dynamics during the past millennium—a population study in west- central Sweden. In <i>Annales Botanici</i> <i>Fennici</i> (pp. 95-106). Finnish Zoological and Botanical Publishing Board.	2005	Europe	Sweden	Forest cover gain	1950	2000
Kullman, L. (1996). Rise and demise of cold- climate Picea abies forest in Sweden. <i>New</i> <i>Phytologist</i> , <i>134</i> (2), 243-256.	1996	Europe	Sweden	Shrub/woodl and cover gain		
Kullman, L. (1993). Pine (Pinus sylvestris L.) tree-limit surveillance during recent decades, Central Sweden. <i>Arctic and Alpine</i> <i>Research</i> , 25(1), 24-31.	1993	Europe	Sweden	Forest cover gain		
Hofgaard, A. (1997). Inter-relationships between treeline position, species diversity, land use and climate change in the central Scandes Mountains of Norway. <i>Global</i> <i>Ecology and Biogeography Letters</i> , 419-429.	1997	Europe	Norway	Forest cover gain	< C	2
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Autio, J. (2006). Environmental factors controlling the position of the actual timberline and treeline on the fells of Finnish Lapland. Acta Universitatis Ouluensis A Scientiae Rerum Naturalium, 452.	2006	Europe	Finland	Forest cover gain		
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Wilson S D and Nilsson C 2009 Arctic alpine vegetation change over 20 years Glob. Change Biol. 15 1676–84	2009	Europe	Sweden	Shrub/woodl and cover gain		
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research</i> , <i>37</i> (3), 284-296.	2005	Europe	Sweden	Forest cover gain		
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research, 37</i> (3), 284-296.	2005	Europe	Sweden	Forest cover gain		

Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research</i> , <i>37</i> (3), 284-296.	2005	Europe	Sweden	Forest cover gain		
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research, 37</i> (3), 284-296.	2005	Europe	Sweden	Forest cover gain		
Hallinger M and Wilmking M 2011 No change without a cause—why climate change remains the most plausible reason for shrub growth dynamics in Scandinavia New Phytol. 189 902–8	2011	Europe	Sweden	Shrub/woodl and cover gain		
Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sass-Klaassen, U., & Lévesque, E. (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 1-15.	2011	Europe	Sweden	Shrub/woodl and cover gain	< <u>,</u>	0
Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sass-Klaassen, U., & Lévesque, E. (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 1-15.	2011	Europe	Sweden	Shrub/woodl and cover gain		
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research</i> , <i>37</i> (3), 284-296.	2005	Europe	Norway	Forest cover gain		
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research</i> , <i>37</i> (3), 284-296.	2005	Europe	Norway	Forest cover gain		
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research, 37</i> (3), 284-296.	2005	Europe	Norway	Forest cover gain		

Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the Scandes Mountains. <i>Arctic, Antarctic, and Alpine</i> <i>Research</i> , <i>37</i> (3), 284-296.	2005	Europe	Norway	Forest cover gain		
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Juntunen, V., Neuvonen, S., Norokorpi, Y., & Tasanen, T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. <i>Arctic</i> , 348-361.	2002	Europe	Finland	Forest cover gain	1983	1999
Ravolainen V T, Bråthen K A, Ims R A, Yoccoz N G, Henden J-A and Killengreen S T 2011 Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores Basic Appl. Ecol. 12 643–53	2011	Europe	Norway	Shrub/woodl and cover gain	2006	2008
Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sass-Klaassen, U., & Lévesque, E. (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 1-15.	2011	Europe	Sweden	Shrub/woodl and cover gain		
Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sass-Klaassen, U., & Lévesque, E. (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 1-15.	2011	Europe	Sweden	Shrub/woodl and cover gain		
Cuevas, J. G. (2002). Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. <i>Journal of</i> <i>Ecology</i> , <i>90</i> (1), 52-60.	2002	South America	Chile	Forest cover gain	1920	1980
Passos, F. B., Marimon, B. S., Phillips, O. L., Morandi, P. S., das Neves, E. C., Elias, F., & Junior, B. H. M. (2018). Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and "Cerrado" biomes. Brazilian Journal of Botany, 41(3), 611-619.	2018	South America	Brazil	Shrub/woodl and cover gain	2008	2015
Passos, F. B., Marimon, B. S., Phillips, O. L., Morandi, P. S., das Neves, E. C., Elias, F., & Junior, B. H. M. (2018). Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and "Cerrado" biomes. Brazilian Journal of Botany, 41(3), 611-619.	2018	South America	Brazil	Shrub/woodl and cover gain	2008	2015

Srur, A. M., Villalba, R., Rodríguez-Catón, M., Amoroso, M. M., & Marcotti, E. (2018). Climate and Nothofagus pumilio establishment at upper treelines in the Patagonian Andes. <i>Frontiers in Earth Science</i> , <i>6</i> , 57.	2015	South America	Argentina	Forest cover gain		
DURIGAN, G Observation on the southern cerrados and their relationships with the core area. In: T. Pennington; P. Lewis Gwilym; F. A. Ratter. (Org.). Neotropical Savannas and Dry Forests: Diversity, Biogeography and Conservation. London: Taylor & Francis, 2006, v., p. 67-77.	2006	South America	Brazil	Shrub/woodl and cover gain	1962	2003
DURIGAN, G. ; SARAIVA, I. R. ; GURGEL- GARRIDO, L. M. A. ; GARRIDO, M. A. O. ; PECHE FILHO, A Fitossociologia e evolução da densidade da vegetacao do cerrado, Assis-SP Boletim Técnico If, São Paulo, v. 41, p. 59-78, 1987	1987	South America	Brazil	Shrub/woodl and cover gain	1962	1984
PINHEIRO, E.S ; DURIGAN, G.2009 . Spatial and temporal dynamics (1962-2006) of Cerrado vegetation types in a protected area, southeastern Brazil. Revista Brasileira de Botânica 32:441- 454, 2009.	2009	South America	Brazil	Shrub/woodl and cover gain	1962	2006
Unpublished data	TBC	South America	Brazil	Shrub/woodl and cover gain	2006	2011
Unpublished data	TBC	South America	Brazil	Shrub/woodl and cover gain	2005	2012
Unpublished data	TBC	South America	Brazil	Shrub/woodl and cover gain	2005	2012
Pinheiro, M.H.O. 2006. Composição e estrutura de uma comunidade savânica em gradiente topográfico no município de Corumbataí (SP, Brasil). Tese de Doutorado. Universidade Estadual Paulísta Júlio de Mesquista Filho - UNESP (Biologia Vegetal). 117 p.	2006	South America	Brazil	Shrub/woodl and cover gain	1962	2005
Cardoso, E.; Moreno, M.I.C.; Bruna, E.M.; Vasconcelos, H.F. 2009. CHANGES IN CERRADO VEGETATION PHYSIOGNOMIES: 18 YEARS OF ECOLOGICAL SUCCESSION AT ESTAÇÃO ECOLÓGICA DO PANGA, UBERLÂNDIA - MG. Caminhos da Geografia, 10(32):254-268	2009	South America	Brazil	Forest cover gain	1987	2005
Rosan, T. M., Aragão, L. E., Oliveras, I., Phillips, O. L., Malhi, Y., Gloor, E., & Wagner, F. H. (2019). Extensive 21st-century woody encroachment in South America's savanna. <i>Geophysical Research</i> <i>Letters</i> , 46(12), 6594-6603.	2019	South America	Brazil	Shrub/woodl and cover gain	2001	2015
Aide, T. M., Grau, H. R., Graesser, J., Andrade-Nuñez, M. J., Aráoz, E., Barros, A. P., & Peralvo, M. (2019). Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite image interpretation and expert validation. Global change biology, 25(6), 2112-2126.	2019	South America	Bolivia	Forest cover gain	2001	2014

Rezende, A.V. 2002. Diversidade, estrutura, dinâmica e prognose do crescimento de um cerrado sensu stricto submetido a diferentes distúrbios por desmatamento. Curitiba, 2002. Tese (Doutorado em Engenharia Florestal). Universidade Federal do Paraná.	2002	South America	Brazil	Shrub/woodl and cover gain	1995	2000
Eugênio, C.U.O. 2011. Dinâmica temporal do estrato herbáceo-arbustivo em comunidades campestres no Brasil Central. 110f. Tese (Mestrado em Engenharia Florestal), Universidade de Brasília, Brasília - DF	2011	South America	Brazil	Shrub/woodl and cover gain	2000	2009
Almeida, R.F. 2013. O cerrado sensu stricto da Fazenda Água Limpa, Brasília, DF:mudanças florísticas em 27 anos de monitoramento. Brasília, 2013. 46 p.Dissertação (Mestrado em Botânica). Universidade de Brasília	2013	South America	Faz Água Limpa, DF	Shrub/woodl and cover gain	1985	2012
Souza, A.J.B. 2010. Estrutura e dinâmica da vegetação lenhosa de cerrado sensu stricto no período de 19 anos, na reserva ecológica do IBGE, Distrito Federal, Brasil. 66 f. Tese (Mestrado em Ecologia), Universidade de Brasília, Brasília – DF.	2010	South America	Brazil	Shrub/woodl and cover gain	1991	2009
Mews,H.A.; Marimon, B.S.; Maracahipes,L. 2011. Dinâmica da comunidade lenhosa de um Cerrado Típico na região Nordeste do Estado de Mato Grosso, Brasil. Biota Neotrop., 11(1): 73-82.	2011	South America	Brazil	Shrub/woodl and cover gain	2002	2006
Lima, E.S.; Lima, H.S.; Ratter, J.A. 2009. Mudanças pós-fogo na estrutura e composição da vegetação lenhosa.em um cerrado mesotrófico, no período de cinco anos (1997- 2002) em Nova Xavantina – MT. Cerne, Lavras, 15(4): 468-480	2009	South America	Brazil	Shrub/woodl and cover gain	1997	2002
Roitman, I.; Felfili, J.M. Felfili; Rezende, A.V. 2008. Tree Dynamics of a Fire-Protected Cerrado Sensu Stricto Surrounded by Forest Plantations, over a 13-year Period (1991-2004) in Bahia, Brazil. Plant Ecology, 197 (2): 255- 267.	2008	South America	Brazil	Shrub/woodl and cover gain	1991	2004
Rosan, T. M., Aragão, L. E., Oliveras, I., Phillips, O. L., Malhi, Y., Gloor, E., & Wagner, F. H. (2019). Extensive 21st-century woody encroachment in South America's savanna. <i>Geophysical Research</i> <i>Letters</i> , 46(12), 6594-6603.	2019	South America	Brazil	Forest cover gain	2001	2015
Rosan, T. M., Aragão, L. E., Oliveras, I., Phillips, O. L., Malhi, Y., Gloor, E., & Wagner, F. H. (2019). Extensive 21st-century woody encroachment in South America's savanna. <i>Geophysical Research</i> <i>Letters</i> , 46(12), 6594-6603.	2019	South America	Brazil	Grass cover loss	2001	2015
Aide, T. M., Grau, H. R., Graesser, J., Andrade-Nuñez, M. J., Aráoz, E., Barros, A. P., & Peralvo, M. (2019). Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite image interpretation and expert validation. Global change biology, 25(6), 2112-2126.	2019	South America	Peru	Forest cover gain	2001	2014
Aquino, F.G. ; Walter, B.M.T.; Ribeiro, J.F. 2007. Dinâmica de populações de espécies lenhosas de cerrado, Revista Árvore, Viçosa- MG, 31(5):793-803	2007	South America	Brazil	Shrub/woodl and cover gain	1995	2002

Aquino, F.G. ; Walter, B.M.T.; Ribeiro, J.F. 2007. Dinâmica de populações de espécies lenhosas de cerrado, Revista Árvore, Viçosa- MG, 31(5):793-804	2007	South America	Brazil	Shrub/woodl and cover gain	1995	2002
Rosan, T. M., Aragão, L. E., Oliveras, I., Phillips, O. L., Malhi, Y., Gloor, E., & Wagner, F. H. (2019). Extensive 21st-century woody encroachment in South America's savanna. <i>Geophysical Research</i> <i>Letters</i> , <i>46</i> (12), 6594-6603.	2019	South America	Brazil	Shrub/woodl and cover gain	2001	2015
Günter, S., Weber, M., Erreis, R. and Aguirre, N., 2007. Influence of distance to forest edges on natural regeneration of abandoned pastures: a case study in the tropical mountain rain forest of Southern Ecuador. European Journal of Forest Research, 126(1), pp.67-75.	2007	South America	Eucador	Forest cover gain	1964	2002
Aide, T. M., Grau, H. R., Graesser, J., Andrade-Nuñez, M. J., Aráoz, E., Barros, A. P., & Peralvo, M. (2019). Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite image interpretation and expert validation. Global change biology, 25(6), 2112-2126.	2019	South America	Ecuador	Forest cover gain	2001	2014
Moret, P., Muriel, P., Jaramillo, R., & Dangles, O. (2019). Humboldt's Tableau Physique revisited. <i>Proceedings of the National</i> <i>Academy of Sciences</i> , <i>116</i> (26), 12889-12894.	2019	South America	Ecuador	Shrub/woodl and cover gain	1802	2017
Aide, T. M., Grau, H. R., Graesser, J., Andrade-Nuñez, M. J., Aráoz, E., Barros, A. P., & Peralvo, M. (2019). Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite image interpretation and expert validation. Global change biology 25(6), 2112-2126	2019	South America	Colombia	Forest cover gain	2001	2014
Silva, L.C., Haridasan, M., Sternberg, L.S., Franco, A.C. and Hoffmann, W.A., 2010. Not all forests are expanding over central Brazilian savannas. Plant and Soil. 333, 431-442.	2010	South America	Brazil	Shrub/woodl and cover gain		
Silva, L.C., Sternberg, L., Haridasan, M., Hoffmann, W.A., MIRALLES-WILHELM, F.E.R.N.A.N.D.O. and Franco, A.C., 2008. Expansion of gallery forests into central Brazilian savannas. Global Change Biology. 14, 2108-2118.	2008	South America	Brazil	Shrub/woodl and cover gain	at least 3000- 4000 yrs ago	
Lara, A., Villalba, R., Wolodarsky-Franke, A., Aravena, J. C., Luckman, B. H., & Cuq, E. (2005). Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35 40'–55 S) in the Chilean Andes. Journal of Biogeography, 32(5), 879-893.	2005	South America	Chile	Shrub/woodl and cover gain	1829	1996
Lara, A., Villalba, R., Wolodarsky-Franke, A., Aravena, J. C., Luckman, B. H., & Cuq, E. (2005). Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35 40'–55 S) in the Chilean Andes. Journal of Biogeography, 32(5), 879-893.	2005	South America	Chile	Forest cover gain	1762	1996

Lara, A., Villalba, R., Wolodarsky-Franke, A., Aravena, J. C., Luckman, B. H., & Cuq, E. (2005). Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35 40'–55 S) in the Chilean Andes. Journal of Biogeography, 32(5), 879-893.	2005	South America	Chile	Forest cover gain	1768	1996
Lara, A., Villalba, R., Wolodarsky-Franke, A., Aravena, J. C., Luckman, B. H., & Cuq, E. (2005). Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35 40'–55 S) in the Chilean Andes. Journal of Biogeography, 32(5), 879-893.	2005	South America	Chile	Forest cover gain	1752	1996
Lara, A., Villalba, R., Wolodarsky-Franke, A., Aravena, J. C., Luckman, B. H., & Cuq, E. (2005). Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35 40'–55 S) in the Chilean Andes. Journal of Biogeography, 32(5), 879-893.	2005	South America	Chile	Forest cover gain	1763	1996
Cuevas, J. G. (2000). Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. <i>Journal of Ecology</i> , 88(5), 840-855.	2000	South America	Chile	Forest cover gain	•	
Cierjacks, A., Wesche, K., & Hensen, I. (2007). Potential lateral expansion of Polylepis forest fragments in central Ecuador. <i>Forest</i> <i>Ecology and Management</i> , <i>242</i> (2-3), 477-486.	2007	South America	Ecudor	Forest cover gain		
Bader, M. Y., van Geloof, I., & Rietkerk, M. (2007). High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. <i>Plant Ecology</i> , <i>191</i> (1), 33-45.	2007	South America	Ecuador	Forest cover gain		
Daniels, L. D., & Veblen, T. T. (2003). Regional and local effects of disturbance and climate on altitudinal treelines in northern Patagonia. <i>Journal of Vegetation</i> <i>Science</i> , 14(5), 733-742	2003	South America	Patagonia	Forest cover gain		
Daniels, L. D., & Veblen, T. T. (2003). Regional and local effects of disturbance and climate on altitudinal treelines in northern Patagonia. <i>Journal of Vegetation</i> <i>Science</i> , 14(5), 733-742.	2003	South America	Patagonia	Forest cover gain		
Cuevas, J. G. (2000). Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. <i>Journal of Ecology</i> , <i>88</i> (5), 840-855.	2000	South America	Chile	Forest cover gain		
Cuevas, J. G. (2002). Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. <i>Journal of</i> <i>Ecology</i> , 90(1), 52-60.	2002	South America	Chile	Forest cover gain	1800	1850
Byers, A. C. (2000). Contemporary landscape change in the Huascarán National Park and buffer zone, Cordillera Blanca, Peru. <i>Mountain</i> <i>Research and Development</i> , 20(1), 52-63.	2000	South America	Peru	Forest cover gain	1936	1998
Cerrillo, R.N., Varo, M.A., Lanjeri, S. and Clemente, R.H., 2007. Cartografía de defoliación en los pinares de pino silvestre (Pinus sylvestris L.) y pino salgareño (Pinus nigra Arnold.) en la Sierra de los Filabres. Revista Ecosistemas, 16(3).	2007	Europe	Spain	Forest/woodl and decline	2004	2006

Kienast, F., Flühler, H. and Schweingruber,F.H., 1981. Jahrringanalysen an Föhren (Pinussilvestris L.) aus immissionsgefährdetenBastinden das Mittelwallis (Savan Schwein)1981EuropeSwitzerlandForest/woodl1960	1978
Mitteilungen der Eidgenössischen Anstalt für das Forstliche Versuchswesen, 57, pp.415-32.	
Körner, C., Sarris, D. and Christodoulakis, D., 2005. Long-term increase in climatic dryness in the East-Mediterranean as evidenced for the 2005 Europe Greece Forest/woodl island of Samos. Regional Environmental Change, 5(1), pp.27-36.	2000
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	2000
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	1930
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	1922
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	1921
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.2015EuropeRussiaForest/woodl and decline1700	1917
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon2015EuropeUkraineForest/woodl and decline1700budgets. Global change biology, 21(8), pp.3049-3061.2015EuropeUkraineForest/woodl and decline1700	1917
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	1915
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.2015EuropeRussiaForest/woodl and decline1700	1975

Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	2015	Europe	Russia	Forest/woodl and decline	1700	2012
Kuemmerle, T., Kaplan, J.O., Prishchepov, A.V., Rylsky, I., Chaskovskyy, O., Tikunov, V.S. and Müller, D., 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Global change biology, 21(8), pp.3049-3061.	2015	Europe	Russia	Forest/woodl and decline	1700	1939
LinLinderholm, H. W. (2002). Twentieth- century Scots pine growth variations in the central Scandinavian Mountains related to climate change. Arctic, Antarctic, and Alpine Research, 34(4), 440-449.derholm 2002	2002	Europe	Sweden	Forest/woodl and decline	1901	1930
LinLinderholm, H. W. (2002). Twentieth- century Scots pine growth variations in the central Scandinavian Mountains related to climate change. Arctic, Antarctic, and Alpine Research, 34(4), 440-449.derholm 2002	2002	Europe	Sweden	Forest/woodl and decline	1961	1990
Markalas, S., 1992. Site and stand factors related to mortality rate in a fir forest after a combined incidence of drought and insect attack. Forest Ecology and Management, 47(1- 4), pp.367-374.	1992	Europe	Greece	Forest/woodl and decline	1987	1989
Minerbi, S., 1993. Wie gesund sind unsere Walder? 10. Bericht uber den Zustand der Walder in Su dtirol. Agrar-und Forstbericht, Autonome Provinz Bozen. Assessorate fur Land-und Forstwirtschaft, p.40.	1993	Europe	Italy	Forest/woodl and decline	1992	1992
Peñuelas, J., Lloret, F. and Montoya, R., 2001. Severe drought effects on Mediterranean woody flora in Spain. Forest Science, 47(2), pp.214-218.	2001	Europe	Spain	Forest/woodl and decline	1994 & 1998	1994 & 1998
Petercord, R., 2008. Future endangerment of the European beech by bark and wood boring beetles in BadenWürttemberg. Mitteilungen der Deutsche Gesellschaft für Allgemeine und Angewandte Entomologie, 16, pp.247-250.	2008	Europe	Germany	Forest/woodl and decline	2003	2006
Schilli, S., Dobbertin, M., Rigling, A., Bucher, H.U. 2008. Waldfohrensterben um chur und im Wallis. Bundner Wald, 70-74.	2008	Europe	Switzerland	Forest/woodl and decline	2002	2007
Siwkcki, R. and Ufnalski, K., 1998. Review of oak stand decline with special reference to the role of drought in Poland. European Journal of Forest Pathology, 28(2), pp.99-112.	1998	Europe	Poland	Forest/woodl and decline	1979	1987
Solberg, S., 2004. Summer drought: a driver for crown condition and mortality of Norway spruce in Norway. Forest Pathology, 34(2), pp.93-104.	2004	Europe	Norway	Forest/woodl and decline	1988	2001
Tsopelas, P., Angelopoulos, A., Economou, A. and Soulioti, N., 2004. Mistletoe (Viscum album) in the fir forest of Mount Parnis, Greece. Forest ecology and management, 202(1-3), pp.59-65.	2004	Europe	Greece	Forest/woodl and decline	2000	2002

Tsvetkov, V.F., Tsvetkov, V.I., 2007. The problem of spruce forests—mortality in the Arkhangelsk Region. In: Dying Spruce Forests of Arkhangelsk Region. Problems and Means of their Solution, Department of Forest Complex of Arkhangelsk Region, Arkhangelsk, Russian Federation, pp. 20–30.	2007	Europe	Russia	Forest/woodl and decline	2004	2006
Vennetier, M., Cecillon, L., Guénon, R., Schaffhauser, A., Vergnoux, A., Boichard, J.L., Bottéro, J.Y., Brun, J.J., Carrara, M., Cassagne, N. and Chandioux, O., 2008. Etude de l'impact d'incendies de forêt répétés sur la biodiversité et sur les sols: recherche d'indicateurs. Rapport final. Cemagref, Ministère de l'Agriculture et de la pêche, Union Européenne, Aix en Provence, 236.	2008	Europe	France	Forest/woodl and decline	2006	2008
Vennetier, M., Vila, B., Liang, E.Y., Guibal, F., Thabeet, A. and Gadbin-Henry, C., 2007. Impact of climate change on pine forest productivity and on the shift of a bioclimatic limit in a Mediterranean area. Options Méditerranéennes, Série A, 75, pp.189-197.	2007	Europe	France	Forest/woodl and decline	2003	2008
Vertui, F. and Tagliaferro, F., 1998. Scots pine (Pinus sylvestris L.) die-back by unknown causes in the Aosta Valley, Italy. Chemosphere, 36(4-5), pp.1061-1065.	1998	Europe	Italy	Forest/woodl and decline	1985	1998
Wermelinger, B., Rigling, A., Schneider Mathis, D. and Dobbertin, M., 2008. Assessing the role of bark-and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecological Entomology, 33(2), pp.239-249.	2008	Europe	Switzerland	Forest/woodl and decline	2001	2005
Cech, T., Perny, L.B., 2000. Kiefernsterben in Tirol. Forstschutz-aktuell 22, 12–15.	2000	Europe	Austria	Forest/woodl and decline	1991	1997
Ermolenko, A., 2008, August. Climate change and mass-scale forest dieback: regional, national and international aspects. In Oral presentation at: International Conference "Adaptation of Forests and Forest Management to Changing Climate with.	2008	Asia	Russia	Forest/woodl and decline	2005	2008
Fisher, M. and Gardner, A.S., 1995. The status and ecology of a Juniperus excelsa subsp. polycarpos woodland in the northern mountains of Oman. Vegetatio, 119(1), pp.33- 51.	1995	Asia	Saudi Arabia and Oman	Forest/woodl and decline	~1990	~1995
Khan, J.A., Rodgers, W.A., Johnsingh, A.J.T. and Mathur, P.K., 1994. Tree and shrub mortality and debarking by sambar Cervus unicolor (Kerr) in Gir after a drought in Gujarat, India. Biological Conservation, 68(2), pp. 149-154.	2001	Asia	India	Forest/woodl and decline	1987	1987
Kinnaird, M.F. and O'Brien, T.G., 1998. Ecological effects of wildfire on lowland rainforest in Sumatra. Conservation Biology, 12(5), pp.954-956.	1998	Asia	Indonesia	Forest/woodl and decline	1997	1998

Lim, J.H., Chun, J.H., Woo, S.Y. and Kim, Y.K., 2008, August. Increased declines of Korean fir forest caused by climate change in Mountain Halla, Korea. In Oral Presentation At: International Conference "Adaptation of Forests and Forest Management to Changing Climate with Emphasis on Forest Health: A Review of Science, Policies, and Practices", Umea, Sweden, FAO/IUFRO (pp. 25-28).	2008	Asia	South Korea	Forest/woodl and decline	2003	2008
Nakagawa, M., Tanaka, K., Nakashizuka, T., Ohkubo, T., Kato, T., Maeda, T., Sato, K., Miguchi, H., Nagamasu, H., Ogino, K. and Teo, S., 2000. Impact of severe drought associated with the 1997–1998 El Nino in a tropical forest in Sarawak. Journal of Tropical Ecology, 16(3), pp.355-367.	2000	Asia	Malaysia	Forest/woodl and decline	1997	1998
Nishimua, T.B., Suzuki, E., Kohyama, T. and Tsuyuzaki, S., 2007. Mortality and growth of trees in peat-swamp and heath forests in Central Kalimantan after severe drought. Plant Ecology, 188(2), pp.165-177.	2007	Asia	Indonesia	Forest/woodl and decline	1997	1998
Pandit, M.K., Manish, K. and Koh, L.P., 2014. Dancing on the roof of the world: ecological transformation of the Himalayan landscape. BioScience, 64(11), pp.980-992.	2014	Asia	Afganistan, Pakistan, India, Nepal, Bhutan, China, TAR, Northern Myanmar	Forest/woodl and decline	1960	1990
Semerci, A., Sanlı, B.N., Sahin, O., Celik, O., Balkız, G.B., Ceylan, S. and Argun, N., 2008, August. Examination of tree mortalities in semi-arid central Anatolian region of Turkey during last six-year period (2002–2007). In Book of Abstracts of the International Conference "Adaptation of Forests and Forest Management to Changing Climate with Emphasis on Forest Health: A Review of Science, Policies, and Practices", Umea, Sweden, FAO/IUFRO (p. 262).	2008	Asia	Turkey	Forest/woodl and decline	2002	2007
Van Nieuwstadt, M.G. and Sheil, D., 2005. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. Journal of Ecology, 93(1), pp.191-201.	2005	Asia	Indonesia & Malaysia	Forest/woodl and decline	1997	1998
Wang, H.B., Zhang, Z., Kong, X.B., Lui, S.C., Shen, Z.R., 2007. Preliminary deduction of potential distribution and alternative hosts of invasive pest, Dendroctonus	2007	Asia	China	Forest/woodl and decline	1998	2001
valens (Coleoptera: Scolytidae). Scientia Silvae Sinicae 143, 71–76.						
upper montane rain forests of Sri Lanka. GeoJournal, 17(2), pp.245-248.	1988	Asia	Sri Lanka	Forest/woodl and decline	176	1980
Woods, P., 1989. Effects of logging, drought, and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica, pp.290-298.	1989	Asia	Malaysia	Forest/woodl and decline	1982	1983

Giampietro, R. 2005. Modificações na estrutura e composição florística de matas ciliares na região do Médio Paranapanema (1992-2004). 118 f. Dissertação (Mestrado em Ciências da Engenharia Ambiental), Universidade de São Paulo, São Carlos, SP.	2005	South America	Brazil	Forest/woodl and decline	1992	2004
Giampietro, R. 2005. Modificações na estrutura e composição florística de matas ciliares na região do Médio Paranapanema (1992-2004). 118 f. Dissertação (Mestrado em Ciências da Engenharia Ambiental), Universidade de São Paulo, São Carlos, SP.	2005	South America	Brazil	Forest/woodl and decline	1992	2004
Kok, K., Verweij, P. A., & Beukema, H. (1995). Effects of cutting and grazing on Andean treeline vegetation. <i>Biodiversity and</i> <i>Conservation of Neotropical Montane Forest.</i> <i>Biodiversity and Conservation of Neotropical</i> <i>Montane Forests</i> , 527-539.	1995	South America	Colombia	Forest/woodl and decline	20	2
Phillips, O.L., Aragão, L.E., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C.A. and Van Der Heijden, G., 2009. Drought sensitivity of the Amazon rainforest. Science, 323(5919), pp.1344-1347.	2009	South America	Amazon Basin	Forest/woodl and decline	2005	2005
Rolim, S.G., Jesus, R.M., Nascimento, H.E., Do Couto, H.T. and Chambers, J.Q., 2005. Biomass change in an Atlantic tropical moist forest: the ENSO effect in permanent sample plots over a 22-year period. Oecologia, 142(2), pp.238-246.	2005	South America	Brazil	Forest/woodl and decline	1986, 1997	1989, 1999
Silva, L.C., Haridasan, M., Sternberg, L.S., Franco, A.C. and Hoffmann, W.A., 2010. Not all forests are expanding over central Brazilian savannas. Plant and Soil. 333, 431-442.	2010	South America	Brazil	Forest/woodl and decline		
Suarez, M.L., Ghermandi, L. and Kitzberger, T., 2004. Factors predisposing episodic drought-induced tree mortality in Nothofagus- site, climatic sensitivity and growth trends. Journal of Ecology, 92(6), pp.954-966.	2004	South America	Argentina	Forest/woodl and decline	1998	1999
Williamson, G.B., Laurance, W.F., Oliveira, A.A., Delamônica, P., Gascon, C., Lovejoy, T.E. and Pohl, L., 2000. Amazonian tree mortality during the 1997 El Nino drought. Conservation Biology, 14(5), pp.1538-1542.	2000	South America	Brazil	Forest/woodl and decline	1997	1997
Aide, T. M., Grau, H. R., Graesser, J., Andrade-Nuñez, M. J., Aráoz, E., Barros, A. P., & Peralvo, M. (2019). Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite image interpretation and expert validation. Global change biology, 25(6), 2112-2126.	2019	South America	Venezuela	Forest/woodl and decline	2001	2014
Aide, T. M., Grau, H. R., Graesser, J., Andrade-Nuñez, M. J., Aráoz, E., Barros, A. P., & Peralvo, M. (2019). Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite image interpretation and expert validation. Global change biology, 25(6), 2112-2126.	2019	South America	Argentina	Forest/woodl and decline	2001	2014

Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest/woodl and decline	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest/woodl and decline	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest/woodl and decline	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest/woodl and decline	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest/woodl and decline	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest/woodl and decline	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest/woodl and decline	1964	2004
Banfai, Daniel S., and David MJS Bowman. "Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia." Biological Conservation 131.4 (2006): 553-565.	2006	Australasia	Australia	Forest/woodl and decline	1964	2004
Fensham, R.J. and Fairfax, R.J., 2005. Preliminary assessment of gidgee (Acacia cambagei) woodland thickening in the Longreach district, Queensland. The Rangeland Journal, 27(2), pp.159-168.	2005	Australasia	Australia	Forest/woodl and decline	2005	2005
Fensham, R.J. and Fairfax, R.J., 2007. Drought-related tree death of savanna eucalypts: Species susceptibility, soil conditions and root architecture. Journal of Vegetation Science, 18(1), pp.71-80.	2007	Australasia	Australia	Forest/woodl and decline	2004	2004
Fensham, R.J. and Holman, J.E., 1999. Temporal and spatial patterns in drought- related tree dieback in Australian savanna. Journal of Applied Ecology, 36(6), pp.1035- 1050.	1999	Australasia	Australia	Forest/woodl and decline	1992	1996
Fensham, R.J., Fairfax, R.J. and Ward, D.P., 2009. Drought-induced tree death in savanna. Global Change Biology, 15(2), pp.380-387.	2009	Australasia	Australia	Forest/woodl and decline	1946	2002
Fensham, R.J., Fairfax, R.J. and Ward, D.P., 2009. Drought-induced tree death in savanna. Global Change Biology, 15(2), pp.380-387.	2009	Australasia	Australia	Forest/woodl and decline	1990	2002

FINAL DRAFT	Chapter 2 Su	pplementary M	laterial IPCC	WGII Sixth Ass	sessment	Report
Hosking, G.P. and Hutcheson, J.A., 1988. Mountain beech (Nothofagus solandri var cliffortioides) decline in the Kaweka Rang North Island, New Zealand. New Zealand Journal of Botany, 26(3), pp.393-400.	ge, 1988	3 Australasia	New Zealand	Forest/woodl and decline	1984	1987
Hosking, G.P. and Kershaw, D.J., 1985. R beech death in the Maruia Valley South Is New Zealand. New Zealand Journal of Bc 23(2), pp.201-211.	Red sland, 1985 otany, 1985	5 Australasia	New Zealand	Forest/woodl and decline	1978	1980
Sharp, B.R. and Bowmann, D.M.J.S. 2004 woody vegetation increase confined to seasonally inundated lowlands in an Austr tropical savanna, Victoria River District, Northern Territory. Austral Ecology, 29:6 683.	4. Net ralian 2004 67-	Australasia	Australia	Forest/woodl and decline	1948	1995
Gitlin, A.R., Sthultz, C.M., Bowker, M.A. Stumpf, S., Paxton, K.L., Kennedy, K., M A., Bailey, J.K. and Whitham, T.G., 2006 Mortality gradients within and among dominant plant populations as barometers ecosystem change during extreme drough Conservation Biology, 20(5), pp.1477-148	., [uñoz, 2006 of t. 86.	North America	United States	Forest/woodl and decline	2000	2004
Gitlin, A.R., Sthultz, C.M., Bowker, M.A. Stumpf, S., Paxton, K.L., Kennedy, K., M A., Bailey, J.K. and Whitham, T.G., 2006 Mortality gradients within and among dominant plant populations as barometers ecosystem change during extreme drough Conservation Biology, 20(5), pp.1477-148	., [uñoz, 2006 of t. 86.	North America	United States	Forest/woodl and decline	2000	2004
Gitlin, A.R., Sthultz, C.M., Bowker, M.A. Stumpf, S., Paxton, K.L., Kennedy, K., M A., Bailey, J.K. and Whitham, T.G., 2006 Mortality gradients within and among dominant plant populations as barometers ecosystem change during extreme drough Conservation Biology, 20(5), pp.1477-148	, uñoz, 2000 of t. 86.	North America	United States	Forest/woodl and decline	2000	2004
Gitlin, A.R., Sthultz, C.M., Bowker, M.A. Stumpf, S., Paxton, K.L., Kennedy, K., M A., Bailey, J.K. and Whitham, T.G., 2006 Mortality gradients within and among dominant plant populations as barometers ecosystem change during extreme drough Conservation Biology, 20(5), pp.1477-148	, luñoz, 2000 of t. 86.	North America	United States	Forest/woodl and decline	2000	2004
Gitlin, A.R., Sthultz, C.M., Bowker, M.A. Stumpf, S., Paxton, K.L., Kennedy, K., M A., Bailey, J.K. and Whitham, T.G., 2006 Mortality gradients within and among dominant plant populations as barometers ecosystem change during extreme drough Conservation Biology, 20(5), pp.1477-148	, [uñoz, 2006 of t. 86.	North America	United States	Forest/woodl and decline	2000	2004
Gitlin, A.R., Sthultz, C.M., Bowker, M.A. Stumpf, S., Paxton, K.L., Kennedy, K., M A., Bailey, J.K. and Whitham, T.G., 2006 Mortality gradients within and among dominant plant populations as barometers ecosystem change during extreme drough Conservation Biology, 20(5), pp.1477-148	., [uñoz, 2006 of t. 86.	North America	United States	Forest/woodl and decline	2000	2004
Guarín, A. and Taylor, A.H., 2005. Droug triggered tree mortality in mixed conifer f in Yosemite National Park, California, US Forest ecology and management, 218(1-3) pp.229-244.	ght orests SA. 2005),	North America	Unites States	Forest/woodl and decline	1986	1992

2002	North America	Canada	Forest/woodl and decline	1990	1997	
2008	North America	Canada	Forest/woodl and decline	2002	2004	
1989	North America	Eastern North America	Forest/woodl and decline	1980	1990	
2008	North America	Canada	Forest/woodl and decline	2000	2006	
1994	North America	Unites States	Forest/woodl and decline	1986	1992	
2007	North America	Unites States	Forest/woodl and decline	1985	1995	
2007	North America	United States	Forest/woodl and decline	2004	2007	
2005	North America	Unites States	Forest/woodl and decline	1996	1996	
2009	North America	United States	Forest/woodl and decline	2001	2004	
2003	North America	Unites States	Forest/woodl and decline	1984	1989	
2007	North America	Canada	Forest/woodl and decline	~1700	present	
2014	North America	United States	Forest/woodl and decline	2007	2013	
	2002 2008 1989 2008 2007 2007 2007 2007 2003 2003	2002North America2008North America1989North America2008North America1994North America2007North America2007North America2005North America2009North America2003North America2004North America2005North America2007North America2008North America2009North America2003North America2004North America2005North America	2002North AmericaCanada2008North AmericaCanada1989North AmericaCanada2008North AmericaUnites States2007North AmericaUnites States2007North AmericaUnites States2007North AmericaUnites States2007North AmericaUnites States2007North AmericaUnites States2005North AmericaUnites States2005North AmericaUnites States2007North AmericaUnites States2008North AmericaUnites States2009North AmericaUnites States2003North AmericaUnites States2004North AmericaCanada2005North AmericaCanada2007North AmericaCanada2008North AmericaCanada2009North AmericaCanada2009North AmericaCanada2009North AmericaCanada2009North AmericaCanada2009North AmericaCanada2009North AmericaCanada2009North AmericaCanada2009North AmericaCanada2009North AmericaCanada2009North AmericaCanada2009North AmericaCanada2009North AmericaCanada<	2002North AmericaCanadaForest/woodl2008AmericaCanadaand decline1989AmericaEatern North CanadaForest/woodl2008AmericaCanadaForest/woodl1904AmericaUnites StateForest/woodl2007AmericaUnites StateForest/woodl2007AmericaUnites StateForest/woodl2007AmericaUnites StateForest/woodl2007AmericaUnites StateForest/woodl2008AmericaUnites StateForest/woodl2009AmericaUnites StateForest/woodl2009AmericaIcanadaForest/woodl2009AmericaIcanadaForest/woodl2009AmericaIcanadaForest/woodl2009AmericaIcanada <t< td=""><td>2002North MerricaCanadaForest/woodl and decline90022008North MerricaEastern North AmericaForest/woodl and decline19802008North MerricaCanadaForest/woodl and decline20001904North MerricaUnites State and declineForest/woodl and decline19802007North MerricaUnites State and declineForest/woodl and decline19802007North MerricaUnites State and declineForest/woodl and decline19802007North MerricaUnites State and declineForest/woodl and decline19802007North MerricaUnites State and declineForest/woodl and decline19802008North MerricaUnites State and declineForest/woodl and decline19802009North MerricaUnites State and declineForest/woodl and decline19802009North MerricaUnites State and declineForest/woodl and decline19802009North MerricaUnites State and declineForest/woodl and decline19802009North MerricaUnites State and declineForest/woodl and decline19802003North MerricaCanadaForest/woodl and decline19802004North MerricaCanadaForest/woodl and decline19802005North MerricaCanadaForest/woodl and decline1980<</td></t<>	2002North MerricaCanadaForest/woodl and decline90022008North MerricaEastern North AmericaForest/woodl and decline19802008North MerricaCanadaForest/woodl and decline20001904North MerricaUnites State and declineForest/woodl and decline19802007North MerricaUnites State and declineForest/woodl and decline19802007North MerricaUnites State and declineForest/woodl and decline19802007North MerricaUnites State and declineForest/woodl and decline19802007North MerricaUnites State and declineForest/woodl and decline19802008North MerricaUnites State and declineForest/woodl and decline19802009North MerricaUnites State and declineForest/woodl and decline19802009North MerricaUnites State and declineForest/woodl and decline19802009North MerricaUnites State and declineForest/woodl and decline19802009North MerricaUnites State and declineForest/woodl and decline19802003North MerricaCanadaForest/woodl and decline19802004North MerricaCanadaForest/woodl and decline19802005North MerricaCanadaForest/woodl and decline1980<	
consequences. Global Chang Biology 20, 893– 907.						
--	------	------------------	-----------------------------	-----------------------------	------	----------------
Pratt, R.B., Jacobsen, A.L., Ramirez, A.R., Helms, A.M., Traugh, C.A., Tobin, M.F., Heffner, M.S., and Davis, S.D. (2014). Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Global Chang Biology 20, 893– 907.	2014	North America	United States	Forest/woodl and decline	2007	2013
Pratt, R.B., Jacobsen, A.L., Ramirez, A.R., Helms, A.M., Traugh, C.A., Tobin, M.F., Heffner, M.S., and Davis, S.D. (2014). Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Global Chang Biology 20, 893– 907.	2014	North America	United States	Forest/woodl and decline	2007	2013
Pratt, R.B., Jacobsen, A.L., Ramirez, A.R., Helms, A.M., Traugh, C.A., Tobin, M.F., Heffner, M.S., and Davis, S.D. (2014). Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Global Chang Biology 20, 893– 907.	2014	North America	United States	Forest/woodl and decline	2007	2013
Savage, M., 1997. The role of anthropogenic influences in a mixed-conifer forest mortality episode. Journal of Vegetation Science, 8(1), pp.95-104.	1997	North America	Unites States and Mexico	Forest/woodl and decline	1984	early 1990s
Starkey, D.A., Oliveria, F., Mangini, A. and Mielke, M., 2004. Oak decline and red oak borer in the interior Highlands of Arkansas an Missouri: natural phenomena, severe Occurrences. Gen. Tech. Rep. SRS-73. Asheville, NC: US Department of Agriculture, Forest Service, Southern Research Station. pp. 217-222.	2004	North America	United States	Forest/woodl and decline	1990	2002
Van Mantgem, P.J. and Stephenson, N.L., 2007. Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecology Letters, 10(10), pp.909-916.	2007	North America	United States	Forest/woodl and decline	1983	2004
Van Mantgem, P.J., Stephenson, N.L., Byrne, J.C., Daniels, L.D., Franklin, J.F., Fulé, P.Z., Harmon, M.E., Larson, A.J., Smith, J.M., Taylor, A.H. and Veblen, T.T., 2009. Widespread increase of tree mortality rates in the western United States. Science, 323(5913), pp.521-524.	2009	North America	United States	Forest/woodl and decline	1955	2007
Venturas, M.D., MacKinnon, E.D., Dario, H.L., Jacobsen, A.L., Pratt, B., and Davis, S.D. (2016). Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California's historic drought of 2014. PloS ONE 11(7), e0159145.	2016	North America	United States	Forest/woodl and decline	2012	2014

Worrall, J.J., Egeland, L., Eager, T., Mask, R.A., Johnson, E.W., Kemp, P.A. and Shepperd, W.D., 2008. Rapid mortality of Populus tremuloides in southwestern Colorado, USA. Forest Ecology and Management, 255(3- 4), pp.686-696.	2008	North America	United States	Forest/woodl and decline	2005	2006
Donato, Daniel C., Brian J. Harvey, and Monica G. Turner. "Regeneration of montane forests 24 years after the 1988 Yellowstone fires: A fire-catalyzed shift in lower treelines?." <i>Ecosphere</i> 7.8 (2016): e01410.	2016	North America	United States	Forest/woodl and decline	1988	2012
Syphard, A. D., Brennan, T. J., & Keeley, J. E. (2019). Extent and drivers of vegetation type conversion in Southern California chaparral. <i>Ecosphere</i> , <i>10</i> (7), e02796.	2019	North America	United States	Forest/woodl and decline	1953	2016
Fettig, C. J., Mortenson, L. A., Bulaon, B. M., & Foulk, P. B. (2019). Tree mortality following drought in the central and southern Sierra Nevada, California, US. Forest Ecology and Management, 432, 164-178.	2019	North America	United States	Forest/woodl and decline	2014	2017
Fettig, C. J., Mortenson, L. A., Bulaon, B. M., & Foulk, P. B. (2019). Tree mortality following drought in the central and southern Sierra Nevada, California, US. Forest Ecology and Management, 432, 164-178.	2019	North America	United States	Forest/woodl and decline	2014	2017
Fettig, C. J., Mortenson, L. A., Bulaon, B. M., & Foulk, P. B. (2019). Tree mortality following drought in the central and southern Sierra Nevada, California, US. Forest Ecology and Management, 432, 164-178.	2019	North America	United States	Forest/woodl and decline	2014	2017
Fettig, C. J., Mortenson, L. A., Bulaon, B. M., & Foulk, P. B. (2019). Tree mortality following drought in the central and southern Sierra Nevada, California, US. Forest Ecology and Management, 432, 164-178.	2019	North America	United States	Forest/woodl and decline	2014	2017
Paddock III, W. A., Davis, S. D., Pratt, R. B., Jacobsen, A. L., Tobin, M. F., López-Portillo, J., & Ewers, F. W. (2013). Factors determining mortality of adult chaparral shrubs in an extreme drought year in California. Aliso: A Journal of Systematic and Evolutionary Botany, 31(1), 49-57.	2013	North America	United States	Forest/woodl and decline	1998	2002
Venturas, M. D., MacKinnon, E. D., Dario, H. L., Jacobsen, A. L., Pratt, R. B., & Davis, S. D. (2016). Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California's historic drought of 2014. PloS one, 11(7), e0159145.	2016	North America	United States	Forest/woodl and decline		
Pratt, R. B., Jacobsen, A. L., Ramirez, A. R., Helms, A. M., Traugh, C. A., Tobin, M. F., & Davis, S. D. (2014). Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Global change biology, 20(3), 893-907.	2014	North America	United States	Forest/woodl and decline		
Syphard, A. D., Brennan, T. J., & Keeley, J. E. (2019). Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern California. Diversity and Distributions, 25(1), 90-101.	2019	North America	United States	Forest/woodl and decline	1943	2014

Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116(G4).	2011	North America	United States	Forest/woodl and decline	1960	1983
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Grass cover loss	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P., Diouf, A. A., & Abel, C. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Communications biology, 2(1), 1- 10.	2019	Africa	Sahel	Grass cover loss	1987	2016
Li, W., Buitenwerf, R., Munk, M., Amoke, I., Bøcher, P. K., & Svenning, J. C. (2020). Accelerating savanna degradation threatens the Maasai Mara socio-ecological system. Global Environmental Change, 60, 102030.	2020	Africa	Kenya	Grass cover loss	1985	2016
Venter, Z. S., Scott, S. L., Desmet, P. G., & Hoffman, M. T. (2020). Application of Landsat-derived vegetation trends over South Africa: Potential for monitoring land degradation and restoration. Ecological Indicators, 113, 106206.	2020	Africa	South Africa	Grass cover loss	1987	2013
DENITOLIATIA						
Réflexions sur le déperissement du Cèdre de l'Atlas des Aurès (Algérie). Association Forêt Méditerranéenne, 14 rue Louis Astouin, 13002 MARSEILLE, France.	2006	Africa	Algeria	Forest/woodl and decline	2000	2008
BENTOUATI, A. and BARTTEAU, M., Réflexions sur le déperissement du Cèdre de l'Atlas des Aurès (Algérie). Association Forêt Méditerranéenne, 14 rue Louis Astouin, 13002 MARSEILLE, France. Eckhardt, H. C., Wilgen, B. W., & Biggs, H. C. (2000). Trends in woody vegetation cover in the Kruger National Park, South Africa, between 1940 and 1998. African Journal of Ecology, 38(2), 108-115.	2006 2000	Africa Africa	Algeria South Africa	Forest/woodl and decline Forest/woodl and decline	2000 1940	2008 1998
BENTOUATI, A. and BARTTEAU, M., Réflexions sur le déperissement du Cèdre de l'Atlas des Aurès (Algérie). Association Forêt Méditerranéenne, 14 rue Louis Astouin, 13002 MARSEILLE, France. Eckhardt, H. C., Wilgen, B. W., & Biggs, H. C. (2000). Trends in woody vegetation cover in the Kruger National Park, South Africa, between 1940 and 1998. African Journal of Ecology, 38(2), 108-115. El Abidine, A.Z., 2003. Forest decline in Morocco: causes and control strategy. Science et changements planetaires/Secheresse, 14(4), pp.209-218.	2006 2000 2003	Africa Africa Africa	Algeria South Africa Morocco	Forest/woodl and decline Forest/woodl and decline Forest/woodl and decline	2000 1940 2002	2008 1998 2008
 BENTOUATI, A. and BARTTEAU, M., Réflexions sur le déperissement du Cèdre de l'Atlas des Aurès (Algérie). Association Forêt Méditerranéenne, 14 rue Louis Astouin, 13002 MARSEILLE, France. Eckhardt, H. C., Wilgen, B. W., & Biggs, H. C. (2000). Trends in woody vegetation cover in the Kruger National Park, South Africa, between 1940 and 1998. African Journal of Ecology, 38(2), 108-115. El Abidine, A.Z., 2003. Forest decline in Morocco: causes and control strategy. Science et changements planetaires/Secheresse, 14(4), pp.209-218. Foden, W., Midgley, G.F., Hughes, G., Bond, W.J., Thuiller, W., Hoffman, M.T., Kaleme, P., Underhill, L.G., Rebelo, A. and Hannah, L., 2007. A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Diversity and Distributions, 13(5), pp.645-653. 	2006 2000 2003 2007	Africa Africa Africa	Algeria South Africa Morocco Namibia	Forest/woodl and decline Forest/woodl and decline Forest/woodl and decline	2000 1940 2002 1904	2008 1998 2008 2002
 BENTOUATI, A. and BARTTEAU, M., Réflexions sur le déperissement du Cèdre de l'Atlas des Aurès (Algérie). Association Forêt Méditerranéenne, 14 rue Louis Astouin, 13002 MARSEILLE, France. Eckhardt, H. C., Wilgen, B. W., & Biggs, H. C. (2000). Trends in woody vegetation cover in the Kruger National Park, South Africa, between 1940 and 1998. African Journal of Ecology, 38(2), 108-115. El Abidine, A.Z., 2003. Forest decline in Morocco: causes and control strategy. Science et changements planetaires/Secheresse, 14(4), pp.209-218. Foden, W., Midgley, G.F., Hughes, G., Bond, W.J., Thuiller, W., Hoffman, M.T., Kaleme, P., Underhill, L.G., Rebelo, A. and Hannah, L., 2007. A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Diversity and Distributions, 13(5), pp.645-653. Goetze, D., Hörsch, B., & Porembski, S. (2006). Dynamics of forest–savanna mosaics in north-eastern Ivory Coast from 1954 to 2002. Journal of Biogeography, 33(4), 653- 664. 	2006 2000 2003 2007 2006	Africa Africa Africa Africa	Algeria South Africa Morocco Namibia Guinea	Forest/woodl and decline Forest/woodl and decline Forest/woodl and decline Forest/woodl and decline	2000 1940 2002 1904	2008 1998 2008 2002

FINAL DRAFT	Chapter	r 2 Supple	mentary Ma	iterial IPCC	WGII Sixth Asso	essment I	Report
Lwanga, J.S., 2003. Localized t following the drought of 1999 a Kibale National Park, Uganda. of Ecology, 41(2), pp.194-196.	rree mortality at Ngogo, African Journal	2003	Africa	Uganda	Forest/woodl and decline	1999	1999
Macgregor, S.D. and O'Connor Patch dieback of Colophospern a dysfunctional semi-arid Afric Austral Ecology, 27(4), pp.385	, T.G., 2002. hum mopane in an savanna. -395.	2002	Africa	South Africa	Forest/woodl and decline	1988	1992
Mapaure, I. N., & Campbell, B. Changes in miombo woodland around Sengwa Wildlife Resear Zimbabwe, in relation to elepha fire. African Journal of Ecology 219.	. M. (2002). cover in and rch Area, ants and y, 40(3), 212-	2002	Africa	Zimbabwe	Forest/woodl and decline	1958	1996
Mapaure, I. N., & Campbell, B. Changes in miombo woodland around Sengwa Wildlife Resear Zimbabwe, in relation to elepha fire. African Journal of Ecology 219.	. M. (2002). cover in and rch Area, ants and y, 40(3), 212-	2002	Africa	Zimbabwe	Forest/woodl and decline	1958	1996
Mapedza, E., Wright, J., & Faw An investigation of land cover of Mafungautsi Forest, Zimbabwe participatory mapping.Applied Geography, 23(1), 1-21.	vcett, R. (2003). change in , using GIS and	2003	Africa	Zimbabwe	Forest/woodl and decline	1976	1996
Mosugelo, D. K., Moe, S. R., R Nellemann, C. (2002). Vegetati during a 36-year period in north National Park, Botswana.Africa Ecology, 40(3), 232-240.	ingrose, S., & on changes hern Chobe an Journal of	2002	Africa	Botswana	Forest/woodl and decline	1962	1998
O'Connor, T. G. (2001). Effect catchment dams on downstrean seasonal river in semi-arid Afri savanna. Journal of Applied Ec 1314-1325.	of small n vegetation of a can ology, 38(6),	2001	Africa	South Africa	Forest/woodl and decline	1991	1991
O'connor, T.G., 1998. Impact o drought on a semi-arid Colophe mopane savanna. African Journ Forage Science, 15(3), pp.83-9	f sustained ospermum al of Range & 1.	1998	Africa	South Africa	Forest/woodl and decline	1982	1997
Tafangenyasha, C. (1997). Tree Gonarezhou National Park (Zin between 1970 and 1983. Journa Environmental Management,49	e loss in the nbabwe) Il of (3), 355-366.	1997	Africa	Zimbabwe	Forest/woodl and decline	1970	1984
Tafangenyasha, C., 2001. Decli mountain acacia, Brachystegia Gonarezhou National Park, sou Zimbabwe. Journal of Environn Management, 63(1), pp.37-50.	ne of the glaucescens in theast nental	2001	Africa	Zimbabwe	Forest/woodl and decline	1970	1982
Tafangenyasha, C., 2001. Decli mountain acacia, Brachystegia Gonarezhou National Park, sou Zimbabwe. Journal of Environr Management, 63(1), pp.37-50.	ne of the glaucescens in theast nental	2001	Africa	Zimbabwe	Forest/woodl and decline	1991	1992
Van Langevelde, F., Van De Va Kumar, L., Van De Koppel, J., Van Andel, J., & Rietkerk, M Effects of fire and herbivory on savanna ecosystems. Ecology, 8	ijver, C. A., De Ridder, N., 1. (2003). the stability of 84(2), 337-350.	2003	Africa	Tanzania	Forest/woodl and decline	1971	1996

FINAL DRAFT	Chapter 2 Supp	olementary Ma	aterial IPCC	WGII Sixth Asse	essment]	Report
Van Langevelde, F., Van De Vijver, C. A Kumar, L., Van De Koppel, J., De Ridde Van Andel, J., & Rietkerk, M. (2003). Effects of fire and herbivory on the stabil savanna ecosystems. Ecology, 84(2), 337	A., r, N., 2003 lity of 7-350.	Africa	Tanzania	Forest/woodl and decline	1971	1996
Viljoen, A.J., 1995. The influence of the 1991/92 drought on the woody vegetation the Kruger National Park. Koedoe, 38(2) pp.85-97.	n of 1995	Africa	South Africa	Forest/woodl and decline	1991	1993
Ward, D., Hoffman, M. T., & Collocott, 4 (2014). A century of woody plant encroachment in the dry Kimberley savar South Africa. African Journal of Range & Forage Science, (ahead-of-print), 1-15.	S. J. nna of 2014 &	Africa	South Africa	Forest/woodl and decline	1919	2010
 Brandt, M., Hiernaux, P., Rasmussen, K. Tucker, C. J., Wigneron, J. P., Diouf, A. & Abel, C. (2019). Changes in rainfall distribution promote woody foliage produin the Sahel. Communications biology, 2 10. 	, A., uction (1), 1-	Africa	Sahel	Forest/woodl and decline	1987	2016
Brandt, M., Hiernaux, P., Rasmussen, K. Tucker, C. J., Wigneron, J. P., Diouf, A. & Abel, C. (2019). Changes in rainfall distribution promote woody foliage produ- in the Sahel. Communications biology, 2 10.	, A., uction (1), 1-	Africa	Sahel	Forest/woodl and decline	1987	2016
Li, W., Buitenwerf, R., Munk, M., Amok Bøcher, P. K., & Svenning, J. C. (2020). Accelerating savanna degradation threate Maasai Mara socio-ecological system. G Environmental Change, 60, 102030.	te, I., ens the 2020 lobal	Africa	Kenya	Forest/woodl and decline	1985	2016
Venter, Z. S., Scott, S. L., Desmet, P. G., Hoffman, M. T. (2020). Application of Landsat-derived vegetation trends over S Africa: Potential for monitoring land degradation and restoration. Ecological Indicators, 113, 106206.	outh 2020	Africa	South Africa	Forest/woodl and decline	2004	2018
White, J. D. M., Jack, S. L., Hoffman, M Puttick, J., Bonora, D., Visser, V., & Feb E. C. (2016). Collapse of an iconic conife long-term changes in the demography of Widdringtonia cedarbergensis using repe photography. BMC ecology, 16(1), 1-11.	. T., ruary, er: 2016 at	Africa	South Africa	Forest/woodl and decline	1931	2013
Matusick, G., Ruthrof, K. X., Kala, J., Brouwers, N. C., Breshears, D. D., & Ha G. E. S. J. (2018). Chronic historical drou legacy exacerbates tree mortality and cro dieback during acute heatwave-compoun drought. Environmental Research Letters, 13(9), 095002.	rdy, ught wn 2018 ded	Australasia	Australia	Forest/woodl and decline	2010	
Brouwers, N. C., Mercer, J., Lyons, T., P P., Veneklaas, E., & Hardy, G. (2013). C and landscape drivers of tree decline in a Mediterranean ecoregion. <i>Ecology and</i> <i>Evolution</i> , 3(1), 67-79.	limate 2013	Australasia	Australia	Forest/woodl and decline	2002	2008
Zhang, C., Wang, X., Li, J., & Hua, T. (2 Identifying the effect of climate change of desertification in northern China via trend analysis of potential evapotranspiration a precipitation. <i>Ecological Indicators</i> , <i>112</i> , 106141.	2020). on d 2020 nd	Asia	China	Grass cover loss	1990	2000

Zhang, C., Wang, X., Li, J., & Hua, T. (2020). Identifying the effect of climate change on desertification in northern China via trend analysis of potential evapotranspiration and precipitation. <i>Ecological Indicators</i> , <i>112</i> , 106141.	2020	Asia	China	Grass cover loss	1990	2000
Zhang, C., Wang, X., Li, J., & Hua, T. (2020). Identifying the effect of climate change on desertification in northern China via trend analysis of potential evapotranspiration and precipitation. <i>Ecological Indicators</i> , <i>112</i> , 106141.	2020	Asia	China	Grass cover loss	1990	2000
Mahmoudi, P., Kalim, D., & Amirmoradi, M. R. (2011). Investigation of Iran Vulnerability Trend to Desertification with approach of climate change. In Second International Conference on Environmental Science and Development IPCBEE; IACSIT Press: Singapore (Vol. 4, pp. 63-67).	2011	Asia	Iran	Grass cover loss	1976	2005
Mahmoudi, P., Kalim, D., & Amirmoradi, M. R. (2011). Investigation of Iran Vulnerability Trend to Desertification with approach of climate change. In Second International Conference on Environmental Science and Development IPCBEE; IACSIT Press: Singapore (Vol. 4, pp. 63-67).	2011	Asia	Iran	Grass cover loss	1976	2005
Barbosa, H. A., Kumar, T. L., & Silva, L. R. M. (2015). Recent trends in vegetation dynamics in the South America and their relationship to rainfall. <i>Natural Hazards</i> , 77(2), 883-899.	2015	South America	Argentina	Grass cover loss	1998	2014
Barbosa, H. A., Kumar, T. L., & Silva, L. R. M. (2015). Recent trends in vegetation dynamics in the South America and their relationship to rainfall. <i>Natural Hazards</i> , 77(2), 883-899.	2015	South America		Shrub/woodl and cover gain	1998	2014
Javed, A., Jamal, S., & Khandey, M. Y. (2012). Climate change induced land degradation and socio-economic deterioration: a remote sensing and gis based case study from Rajasthan, India.	2012	Asia	India	Grass cover loss	1998	2010
Burrell, A. L., Evans, J. P., & De Kauwe, M. G. (2020). Anthropogenic climate change has driven over 5 million km 2 of drylands towards desertification. <i>Nature communications</i> , <i>11</i> (1), 1-11.	2020	Australia		Grass cover loss	1982	2015
Burrell, A. L., Evans, J. P., & De Kauwe, M. G. (2020). Anthropogenic climate change has driven over 5 million km 2 of drylands towards desertification. <i>Nature communications</i> , <i>11</i> (1), 1-11.	2020	Africa	Namibia	Grass cover loss	1982	2015

¹ 2 3 4 5 6

IPCC Risk Levels

Level	Undetectable (White)	Moderate (Yellow)	High (Red)	Very High (Purple)
Definition	No associated impacts are detectable and	Associated impacts are both detectable and attributable to climate change with at least	Severe and widespread impacts that are judged	Very high risk is indicated by all specific criteria for

Table SM2.5: Key risks to terrestrial and freshwater ecosystems from climate change. Details of temperature levels for risk transitions for the burning embers diagram Figure 2.11. see 2.5.4

attributable to climate change.medium confidence, also accounting for the other specific criteria for key risks.to be high on one or more criteria for assessing key riskskey risks, inclu limited ability adapt.	luding y to
--	----------------

Key Risk – Biodiversity Risk due to climate change. Loss of species erodes ecosystem integrity,

functioning, provisioning of services (including climate regulation, food and water) and resilience to extreme events and future climate change.

4 5

Risk Transition	Global means temperature of pre-industrial	surface change above l period (°C)	Confidence	Description
Undetectable to Moderate	minimum	0.6°C	High	
	median	0.08°C		Observations of the first species to lose >50% of range due to climate change, rendering them in the IUCN category of "endangered". Many local population extinctions observed in the most sensitive species, global extinction of species attributable to climate change first start being detected.
	maximum	1.0°C		
Moderate to High	minimum	0.875°C	Medium	い
	median	1.58°C		> 10% of species are projected to lose >50% of their range. Increasing number of taxa that show high extinction risk (>10% of the species in the taxa), weighted by role the species in the taxa play in performing services to ecosystems and humans, e.g. pollinators, detritivores. This is 1000x natural background rates of species' extinctions
	maximum	2.025°C		
High to Very High	minimum	1.6°C	Medium	
	median	2.07°C		> 20% of species are projected to lose >50% of their range. Increasing number of taxa that now show greater than 20% of the species in the taxa at high risk of extinction.
P	maxîmum	2.55°C		Above this warming level, risk of extinction rises non-linearly. In the worst-case scenario (10 th percentile of the models at 4.5°C), many taxa show >50% of the species in that taxa at high risk of extinction.

6 7 8

9

Key Risk - Wildfire considerably degrades ecosystems, substantially increases carbon emissions, and increases illnesses and death of people

Risk Transition	Global mean surface temperature change above pre-industrial period (°C)		Confidence	Description
Undetectable to Moderate	minimum	0.6°C	High	Field research and statistical analyses have detected and attributed increases in the area burned by wildfire

Risk Transition	Global mean temperature o pre-industrial	surface change above l period (°C)	Confidence	Description
				above natural levels (see references in description for maximum); Global mean surface temperature change of 0.6°C in the 1990s, in the middle of the period of observed changes (IPCC 2018 SR15)
	median	0.75°C		Median between the minimum and maximum values.
	maximum	0.9°C		Field research and statistical analyses have detected and attributed increases in the area burned by wildfire above natural levels in western North America from 1984 to 2017 (Chapter 2.4.4.2.1, Abatzoglou and Williams 2016, Partain et al. 2016, Kirchmeier-Young et al. 2019, Mansuy et al. 2019); Increases in burned area detected in the Amazon, Australia, and Siberia from a combination of climate and non-climate factors (Chapter 2.4.4.2.3, Ponomarev et al. 2016, van Marle et al. 2017, da Silva et al. 2018, Lindenmayer and Taylor 2020); Wildfires in the Arctic are contributing to permafrost thaw and soil carbon release (Brown et al. 2015, Natali et al. 2019, Walker et al. 2019); These changes have already occurred at a temperature increase of 1.1 ± 0.1 °C between the periods 1850-1900 and 2006-2015 (IPCC 2018 SR15).
Moderate to High	minimum	1.5°C	Medium	Projected increases in burned area, fire frequency, or fire weather across extensive areas globally, lower estimate (Gonzalez et al. 2010, Moritz et al. 2012, Flannigan et al. 2013, Burton et al. 2018, Abatzoglou et al. 2019)
	median	2.0°C		Projected increases in burned area or fire frequency above natural levels on all continents due to anthropogenic climate change (Gonzalez et al. 2010, Moritz et al. 2012); emergence of anthropogenic signal from natural variation in fire weather for a third of global area (Flannigan et al. 2013, Knorr et al. 2016, Burton et al. 2018, Abatzoglou et al. 2019); increase of burned area in areas where fire had been rare or absent, particularly Arctic tundra (Lehtonen et al. 2016, Young et al. 2017) (Chapter 2.5.5.2)
P	maximum	2.5°C		Projected increases in burned area, fire frequency, or fire weather across extensive areas globally, upper estimate (Gonzalez et al. 2010, Moritz et al. 2012, Flannigan et al. 2013, Burton et al. 2018, Abatzoglou et al. 2019)
High to Very High	minimum	3.0°C	Medium	Wildfire-induced conversion of up to half the area of Amazon rainforest to grassland, lower threshold estimates (Lenton et al. 2008, Salazar and Nobre 2010, Lyra et al. 2016)
	median	4.0°C		Wildfire-induced conversion of up to half the area of Amazon rainforest to grassland (Oyama and Nobre 2003, Sampaio et al. 2007, Lenton et al. 2008, Nepstad et al. 2008, Malhi et al. 2009, Salazar and Nobre 2010, Settele et al. 2014, Lyra et al. 2016,

Risk Transition	Global mean surface temperature change above pre-industrial period (°C)		Confidence	Description
				Zemp et al. 2017, Brando et al. 2020); up to doubling of burned area in areas where fire had been rare or absent, particularly the Amazon (Le Page et al. 2017, Brando et al. 2020) and Arctic tundra (Lehtonen et al. 2016, Veraverbeke et al. 2017) substantially increasing global carbon emissions (Chapter 2.4.4.4, 2.5.5.2)
	maximum	4.5°C		Wildfire-induced conversion of up to half the area of Amazon rainforest to grassland, higher threshold estimate (Lenton et al. 2008, Salazar and Nobre 2010, Lyra et al. 2016)

3 4 Key Risk - Anthropogenic climate change cause widespread death of trees, damage ecosystems, and reduce provision of water and other services to people

Risk Transition	Global mean temperature of above pre-ind period (°C)	surface change lustrial	Confidence	Description
Undetectable to Moderate	minimum median	0.3°C	High	Field research and statistical analyses have detected and attributed to anthropogenic climate change increases in tree mortality in temperate and tropical ecosystems in the period 1945-2007 (see references in description for maximum); Global mean surface temperature change of 0.3°C in the 1970s, in the middle of the period of observed changes (IPCC 2018 SR15). Median between the minimum and maximum values.
	maximum	0.9°C		Field research and statistical analyses have detected and attributed to anthropogenic climate change increases in tree mortality in temperate and tropical ecosystems in the period 1945-2007 (van Mantgem et al. 2009, Gonzalez et al. 2012, le Polain de Waroux and Lambin 2012). Drought has induced these cases of tree mortality, with pest infestations and wildfire also causing much of the tree mortality in temperate forests. These changes have already occurred at a temperature increase of $0.9 \pm 0.1^{\circ}$ C between the periods 1850-1900 and 2006-2015 (IPCC 2018 SR15). (Sections 2.4.4.3; 2.5.5.3). Numerous other cases of drought-induced tree mortality have been detected around the world (Allen et al. 2010, Allen et al. 2015, Bennett et al. 2015, Martinez-Vilalta et al. 2016, Greenwood et al. 2017, Hartmann et al. 2018), consistent with but not formally attributed to anthropogenic climate change.
Moderate to High	minimum	1°C	Medium	Approximate lower bound of projections of more extensive tree mortality (see references in description for median)
	median	1.5°C		Models project increasingly extensive drought-induced tree mortality at continued moderate temperature increases. In western North America, one-tenth of

Risk Transition	Global mean temperature of above pre-ind period (°C)	surface change lustrial	Confidence	Description
				forest area is highly vulnerable to drought-induced mortality under RCP8.5 by 2050 (Buotte et al. 2019) and increased evapotranspiration in conifer forests increases the fraction of the area at risk of tree mortality 15-20% per degree Celsius {Goulden et al. 2019). In boreal forest, fire-induced tree mortality from climate change under RCP8.5 could reduce the extent of spruce forest (<i>Picea sp.</i>) 8-44% by 2100 (Pastick et al. 2017). (Section 2.5.5.3).
	maximum	2°C		Approximate upper bound of projections of more extensive tree mortality (see references in description for median).
High to Very High	minimum	2.5°C	Medium	Approximate lower bound of projections of tree mortality of half the area of forest biomes (see references in description for median)
	median	3.5°C		Models project risks of mortality of up to half of forest area in different biomes. Climate change under RCP8.5 could cause drought-induced tree mortality and the loss of half of Northern Hemisphere conifer forest area by 2100 (McDowell et al. 2016). In southeast France, the most extreme summer temperatures could increase post-fire mortality of many broadleaf and conifer species 50% (Dupire et al. 2019). In Amazon rainforests, a lack of buffering capacity for plant moisture during drought increases the risk of tree mortality and, combined with increased fire from climate change and deforestation, the possibility of a tipping point of massive forest dieback and a biome shift to grassland (Oyama and Nobre 2003, Sampaio et al. 2007, Nepstad et al. 2016, Zemp et al. 2017, Brando et al. 2014, Lyra et al. 2016, Zemp et al. 2017, Brando et al. 2020). In Guinean tropical deciduous forest in Africa, climate change under RCP8.5 could increase mortality 700% by 2100 or 400% under lower emissions (RCP4.5) (Claeys et al. 2019).
	maximum	4 .5°C		Approximate upper bound of projections of tree mortality of half the area of forest biomes (see references in description for median)

Key Risk	- Ecosystem carbor	n loss from tipping	g points of loss	of tropical fore	st and Arctic permafrost
		· · · · · · · · · · · · · · · · · · ·	9 1 • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

1	
6	

Risk Transition	Global mean temperature pre-industria	surface change above l levels °C	Confidence	Description
Undetectable to Moderate	minimum	0.6°C	Medium	Primary tropical forest comprised a net source of carbon to the atmosphere, 2001-2019 (emissions 0.6 Gt y ⁻¹ , net 0.1 Gt y ⁻¹) (Harris et al. 2021). Anthropogenic climate change has thawed Arctic

Risk Transition	Global mean temperature pre-industria	surface change above l levels °C	Confidence	Description
				permafrost (Guo et al. 2020), carbon emissions 1.7 ± 0.8 Gt y ⁻¹ , 2003-2017 (Natali et al. 2019). (See more details in description for maximum); Global mean surface temperature change of 0.6°C in 2000 (IPCC 2018 SR15)
	median	0.75°C		Median between the minimum and maximum values.
	maximum	0.9°C		Primary tropical forest comprised a net source of carbon to the atmosphere, 2001-2019 (emissions 0.6 Gt y ⁻¹ , net 0.1 Gt y ⁻¹) (Harris et al. 2021). Amazon as a whole was a net carbon emitter, 2003-2008 (Exbrayat et al. 2015, Yang et al. 2018), from deforestation for agriculture and livestock (De Sy et al. 2015, 2019). Amazon deforestation emitted 0.17 \pm 0.05 Gt y ⁻¹ carbon, 2001-2015 (Silva Junior et al. 2020); fires emitted 0.12 \pm 0.14 Gt y ⁻¹ carbon, 2003-2015 (Aragao et al. 2018). Amazon carbon loss from deforestation and degradation 0.5 Gt y ⁻¹ , 2010-2019 (Qin et al. 2021). Intact old-growth Amazon rainforest may have become a net carbon source, 2010-2019 {Qin et al. 2021). Anthropogenic climate change has thawed Arctic permafrost (Guo et al. 2020), carbon emissions 1.7 \pm 0.8 Gt y ⁻¹ , 2003-2017 (Natali et al. 2019). These changes have already occurred at a temperature increase of 0.9°C between the periods 1850-1900 and 2006-2015 (IPCC 2018 SR15).
Moderate to High	minimum	1.5°C	Medium	Limiting the global temperature increase to 1.5°C, compared to 2°C could reduce projected permafrost CO ₂ losses by 2100 by 24.2 Gt C (median) (Comyn- Platt et al. 2018).
PC.	median	2°C		Mean temperature increase of 2°C could reduce permafrost area ~15% by 2100 (Comyn-Platt et al. 2018) and emit 20-58 Gt (von Deimling et al. 2015), 46–51 Gt (Comyn-Platt et al. 2018), 27-100 Gt (Schaefer et al. 2014) carbon by 2100. Globally, most soil carbon emissions would come from Arctic tundra, with climate change under RCP8.5 causing a soil carbon loss of 55 ± 50 Gt carbon by 2050, increasing atmospheric CO ₂ by 25 ppm (Crowther et al. 2016). Wildfire-induced conversion of Amazon rainforest area to grassland (Lenton et al. 2008, Salazar and Nobre 2010, Lyra et al. 2016, Nobre et al. 2016, Boulton et al. 2017, Zemp et al. 2017, Marengo et al. 2018) of approximately 5% at 2°C increase (Lyra et al. 2016), much of Amazon evergreen to deciduous forest 2-3°C (Salazar and Nobre 2010).
	maximum	3°C		Much of Amazon evergreen to deciduous forest 2-3°C (Salazar and Nobre 2010).
High to Very High	minimum	3°C	Low	Under RCP8.5, models project potential permafrost carbon losses by 2100 of 28–113 Gt (Koven et al. 2015), 11–143 Gt (Gasser et al. 2018), 42-141 Gt (von Deimling et al. 2015), 37–170 Gt (Schuur et al. 2015),

Risk Transition	Global mean surface temperature change above pre-industrial levels °C		Confidence	Description
				or 35-205 Gt (Schaefer et al. 2014) carbon, potentially increasing global average temperatures $0.29 \pm 0.21^{\circ}$ C (Schaefer et al. 2014). Lower bound of temperature projection of RCP8.5 (IPCC 2013 AR5 WG I).
	median	4°C		Under RCP8.5, models project potential permafrost carbon losses by 2100 of 28–113 Gt (Koven et al. 2015), 11–143 Gt (Gasser et al. 2018), 42-141 Gt (von Deimling et al. 2015), 37–170 Gt (Schuur et al. 2015), or 35-205 Gt (Schaefer et al. 2014) carbon, potentially increasing global average temperatures $0.29 \pm 0.21^{\circ}$ C (Schaefer et al. 2014). Wildfire-induced conversion of up to half the area of Amazon rainforest to grassland (Oyama and Nobre 2003, Sampaio et al. 2007, Nepstad et al. 2016, Zemp et al. 2017, Brando et al. 2014, Lyra et al. 2016, Zemp et al. 2017, Brando et al. 2020). This could occur at a 4-5°C temperature increase above the pre-industrial period (Salazar and Nobre 2010). The potentially abrupt nature of this and its fundamental impact on global biogeochemistry mark the melting of permafrost as a tipping point (Schaefer et al. 2014).
	maximum	5°C		Amazon forest dieback could occur at a 4-5°C temperature increase above the pre-industrial period (Salazar and Nobre 2010).

1 2

3

Key Risk – Ecosystem structure change

Risk Transition	Global mean temperature pre-industrial	surface change above period (°C)	Confidence	Description
Undetectable to Moderate	minimum	0.5°C	High	
	median	1.5°C		Landscape and larger scale shifts in ecosystem structure and function. Changes attributable to climate change or interactions with changing disturbance regime, climate and rising CO ₂ already observed at 0.5°C increase, with shifts initially detected in boreal forests, tundra, and tropical grasslands
	maximum	3.0°C		
Moderate to High	minimum	2.0°C	Medium	
	median	3.2°C		Landscape and larger scale shifts in ecosystem structure and function. Global observations that agree with future projections with at least 10% of the area of key ecosystems affected, from Box 2.1. <i>Medium</i> <i>confidence</i> because existing observations and projections are not available for all biomes.
	maximum	4.5°C		

Risk Transition	Global mean s temperature c pre-industrial	surface change above period (°C)	Confidence	Description
High to Very High	minimum	3.0°C	Medium	
	median	4.5°C		Increasing risk of landscape and larger scale shifts in ecosystem structure and function. Most information derived for tropical forest, boreal forest, savannas, and tundra. More than 50% of several ecosystems may experience shifts in structure and function.
	maximum	5.0°C		

Table SM2.6:	References used to create the Cro	oss-Chapter Box ILLNESS Table	1, in Chapter 2, by region
	Cholera	Dengue	Malaria
Global	(Escobar et al., 2015; Nichols et al., 2018; Watts et al., 2019)	(Campbell et al., 2015; Guzman and Harris, 2015)	(Gething et al., 2010; Phillips et al., 2017; Organization, 2020)
Africa	(Mendelsohn and Dawson, 2008; Paz, 2009; Nkoko et al., 2011; Reyburn et al., 2011; Magny et al., 2012; Jutla et al., 2013a; Rebaudet et al., 2013; Jutla et al., 2015; Leckebusch and Abdussalam, 2015; Sigudu et al., 2015; Moore et al., 2017; Watts et al., 2019)	(Caldwell et al., 2021)	(Hay et al., 2002; Pascual et al., 2006; Alonso et al., 2011; Omumbo et al., 2011; Chaves et al., 2012; Siraj et al., 2014; Bhatt et al., 2015; Boyce et al., 2016; Shah et al., 2019; Abiodun et al., 2020; Chirombo et al., 2020; Makinde and Abiodun, 2020; Matthew, 2020; Siya et al., 2020; Kassam et al., 2021)
Asia	(Sack et al., 2003; Agtini et al., 2005; Huq et al., 2005; Koelle et al., 2005; Emch et al., 2008; Magny et al., 2008; Emch et al., 2010; Hashizume et al., 2010; Goel and Jiang, 2011; Jutla et al., 2011; Akanda et al., 2013; Ali et al., 2013; Jutla et al., 2013a; Jutla et al., 2013b; Yue et al., 2014; Xu et al., 2016; Roobthaisong et al., 2017; Watts et al., 2019; Campbell et al., 2020)	(Nagao et al., 2003; Chakravarti and Kumaria, 2005; Kanchana et al., 2005; Thammapalo et al., 2005; Bangs et al., 2006; Arcari et al., 2007; Wu et al., 2007; Dahal, 2008; Halide and Ridd, 2008; Nagao et al., 2008; Hsieh and Chen, 2009; Lu et al., 2009; Wu et al., 2009; Hii et al., 2012; Dhimal et al., 2014a; Dhimal et al., 2014b; Dhimal et al., 2015a; Dhimal et al., 2015b; Xiang et al., 2017; Acharya et al., 2018; Li et al., 2019; Tuladhar et al., 2019; Adhikari and Subedi, 2020; Gyawali et al., 2020; Liu et al., 2020; Metelmann et al., 2021; Riad et al., 2021; Seah et al., 2021)	(Dhimal et al., 2014a; Dhimal et al., 2014c; Dhimal et al., 2015a; Emeto et al., 2020; Kumar et al., 2020; Wangdi et al., 2020; Faradiba, 2021; Sri Rejeki et al., 2021)
Australasia	(Watts et al., 2019)	(Bi et al., 2001; Kearney et al., 2009; Hu et al., 2010; Akter et al., 2020)	
Central America	(Watts et al., 2019)	(Herrera-basto et al., 1992; Lozano-Fuentes et al., 2012; Colón-González et al., 2013; Hernández-Ávila et al., 2013; Stewart-Ibarra and Lowe, 2013; Stewart-Ibarra et al., 2013; Dantés et al., 2014; Lowe et al.,	(Pinault and Hunter, 2011; Manguin and Dev, 2018; Ferreira and Castro, 2019; Fletcher et al., 2020)

FINAL DRAF	T Chapte	er 2 Supplementary Material IPC	CC WGII Sixth Assessment Report
		2017; Watts et al., 2020; Caldwell et al., 2021)	
South America	(Gil et al., 2004; Martinez- Urtaza et al., 2008; Ryan et al., 2018; Watts et al., 2019)	(Estallo et al., 2020; Robert et al., 2020)	(Siraj et al., 2014; Manguin and Dev, 2018; Ferreira and Castro, 2019; Laneri et al., 2019; Douine et al., 2020; Rozo, 2020; Grillet et al., 2021)
Europe	(Vezzulli et al., 2012; Vezzulli et al., 2016; Watts et al., 2019)	(Bouzid et al., 2014; Robert et al., 2020)	(Fischer et al., 2020; Boualam et al., 2021)
North America	(Louis Valérie et al., 2003; Vezzulli et al., 2016; Watts et al., 2019)	(Añez and Rios, 2013; Fredericks and Fernandez- Sesma, 2014; Butterworth et al., 2017; Lowe et al., 2018; Robert et al., 2019; Robert et al., 2020; Watts et al., 2020)	
Small Islands	(Jutla et al., 2013b; Alam et al., 2014; Watts et al., 2019)	(Morin et al., 2015)	(Ferreira and Castro, 2019)

References

- Abatzoglou, J. T. and A. P. Williams, 2016: Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences, 113(42), 11770-11775, doi:10.1073/pnas.1607171113.
- Aben, R. C. H. et al., 2017: Cross continental increase in methane ebullition under climate change. Nature Communications, 8, doi:10.1038/s41467-017-01535-y.
- Abiodun, G. J. et al., 2020: Investigating the Resurgence of Malaria Prevalence in South Africa Between 2015 and 2018: A Scoping Review. The Open Public Health Journal, 13(1), doi:10.2174/1874944502013010119.
- Acharya, B. K. et al., 2018: Present and Future of Dengue Fever in Nepal: Mapping Climatic Suitability by Ecological Niche Model. Int J Environ Res Public Health, 15(2), doi:10.3390/ijerph15020187.
- Adhikari, N. and D. Subedi, 2020: The alarming outbreaks of dengue in Nepal. Tropical Medicine and Health, 48(1), 5, doi:10.1186/s41182-020-0194-1.
- Adrian, R. et al., 2009: Lakes as sentinels of climate change. Limnology and Oceanography, 54(6), 2283-2297, doi:10.4319/lo.2009.54.6 part 2.2283.
- Adrian, R., S. Wilhelm and D. Gerten, 2006: Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology, 12(4), 652-661, doi:https://doi.org/10.1111/j.1365-2486.2006.01125.x.
- AghaKouchak, A., L. Y. Cheng, O. Mazdiyasni and A. Farahmand, 2014: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophysical Research Letters, 41(24), 8847-8852, doi:10.1002/2014g1062308.
- Agtini, M. D. et al., 2005: The burden of diarrhoea, shigellosis, and cholera in North Jakarta, Indonesia: findings from 24 months surveillance. BMC Infectious Diseases, 5(1), 89, doi:10.1186/1471-2334-5-89.
- Aguirre-Gutiérrez, J. et al., 2019: Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecology Letters, 22(5), 855-865, doi:10.1111/ele.13243.
- Akanda, A. S. et al., 2013: Population Vulnerability to Biannual Cholera Outbreaks and Associated Macro-Scale Drivers in the Bengal Delta. The American Society of Tropical Medicine and Hygiene, 89(5), 950-959, doi:10.4269/ajtmh.12-0492.
- Akter, R. et al., 2020: Different responses of dengue to weather variability across climate zones in Queensland, Australia. Environmental Research, 184, 109222, doi:10.1016/j.envres.2020.109222.
- Alam, M. T. et al., 2014: Monitoring Water Sources for Environmental Reservoirs of Toxigenic Vibrio cholerae O1, Haiti - Volume 20, Number 3-March 2014 - Emerging Infectious Diseases journal - CDC. doi:10.3201/eid2003.131293.
- Ali, M., D. R. Kim, M. Yunus and M. Emch, 2013: Time Series Analysis of Cholera in Matlab, Bangladesh, during 1988-2001. Journal of Health, Population and Nutrition, 31(1), 11-19, doi:10.3329/jhpn.v31i1.14744.
- Allen, C. D., D. D. Breshears and N. G. McDowell, 2015: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6(8), 1-55.
- Allen, C. D. et al., 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684, doi:10.1016/j.foreco.2009.09.001.
- Alonso, D., M. J. Bouma and M. Pascual, 2011: Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proceedings of the Royal Society B: Biological Sciences, 278(1712), 1661-1669, doi:10.1098/rspb.2010.2020.
- Amano, T., R. J. Smithers, T. H. Sparks and W. J. Sutherland, 2010: A 250-year index of first flowering dates and its 42 response to temperature changes. Proceedings of the Royal Society B: Biological Sciences, 277(1693), 2451-2457. 43
- Anderegg, W. R. L. et al., 2016: Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-44 induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of 45 America, 113(18), 5024-5029, doi:10.1073/pnas.1525678113. 46
- Anderson, L. O. et al., 2018: Vulnerability of Amazonian forests to repeated droughts. Philos Trans R Soc Lond B Biol 47 Sci, 373(1760), doi:10.1098/rstb.2017.0411. 48
- Añez, G. and M. Rios, 2013: Dengue in the United States of America: A Worsening Scenario? BioMed Research 49 International, 2013, e678645, doi:10.1155/2013/678645. 50
- Arcari, P., N. Tapper and S. Pfueller, 2007: Regional variability in relationships between climate and dengue/DHF in 51 Indonesia. Singapore Journal of Tropical Geography, 28(3), 251-272, doi:10.1111/j.1467-9493.2007.00300.x. 52
- Armour, J., 1974: Parasitic gastroenteritis in cattle. Vet Rec, 95(17), 391-395, doi:10.1136/vr.95.17.391. 53
- Arneth, A. et al., 2016: Future vegetation-climate interactions in Eastern Siberia: an assessment of the competing 54 effects of CO2 and secondary organic aerosols, Atmospheric Chemistry and Physics, 16, 1-20, 55 doi:doi:10.5194/acp-16-1-2016. 56
- Bakker, E. S. et al., 2016: Combining paleo-data and modern exclosure experiments to assess the impact of megafauna 57 extinctions on woody vegetation. Proceedings of the National Academy of Sciences, 113(4), 847-855. 58
- Bangs, M. J., R. P. Larasati, A. L. Corwin and S. Wuryadi, 2006: Climatic factors associated with endemic dengue in 59 Palembang, Indonesia: implications of short-term meteorological events on virus transmission. Southeast Asian J 60 Trop Med Public Health, 37(6), 14. 61
- Barger, I., 1997: Control by management. Veterinary Parasitology, 72(3-4), 493-506, doi:10.1016/S0304-62 4017(97)00113-1. 63

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

Bartlett, M. K., M. Detto and S. W. Pacala, 2019: Predicting shifts in the functional composition of tropical forests under increased drought and CO. *Ecology Letters*, 22(1), 67-77, doi:10.1111/ele.13168.
Bartosiewicz, M., I. Laurion, F. Clayer and R. Maranger, 2016: Heat-Wave Effects on Oxygen, Nutrients, and

Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake. *Environmental Science & Technology*, 50(12), 6267-6275, doi:10.1021/acs.est.5b06312.

Bartosiewicz, M. et al., 2019: Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. *Limnology and Oceanography Letters*, 0(0), doi:10.1002/lol2.10117.

Beaulieu, J. J., T. DelSontro and J. A. Downing, 2019: Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. *Nature Communications*, 10, doi:10.1038/s41467-019-09100-5.

- Beckage, B. et al., 2008: A Rapid Upward Shift of a Forest Ecotone during 40 Years of Warming in the Green Mountains of Vermont. *Proceedings of the National Academy of Sciences - PNAS*, 105(11), 4197-4202, doi:10.1073/pnas.0708921105.
- Beerling, D. J. and C. P. Osborne, 2006: The origin of the savanna biome. *Global Change Biology*, 12(11), 2023-2031, doi:<u>https://doi.org/10.1111/j.1365-2486.2006.01239.x</u>.
- Bennett, A. C., N. G. McDowell, C. D. Allen and K. J. Anderson-Teixeira, 2015: Larger trees suffer most during drought in forests worldwide. *Nature Plants*, 1(10), 15139.

Bergkemper, V., P. Stadler and T. Weisse, 2018: Moderate weather extremes alter phytoplankton diversity—A microcosm study. *Freshwater Biology*, 63(10), 1211-1224, doi:10.1111/fwb.13127.

- Berzaghi, F. et al., 2019: Carbon stocks in central African forests enhanced by elephant disturbance. *Nature Geoscience*, 12(9), 725-+, doi:10.1038/s41561-019-0395-6.
- Beveridge, I., A. L. Pullman, R. R. Martin and A. Barelds, 1989: Effects of temperature and relative humidity on
 development and survival of the free-living stages of Trichostrongylus colubriformis, T. rugatus and T. vitrinus.
 Veterinary Parasitology, 33(2), 143-153.
- Bhatt, S. et al., 2015: The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015.
 Nature, 526(7572), 207-211, doi:10.1038/nature15535.
- Bi, P. et al., 2001: Climate Variability and the Dengue Outbreak in Townsville, Queensland, 1992-93. *Environmental Health*, 55-61.
- Bjorkman, A. D. et al., 2019: Status and trends in Arctic vegetation: Evidence from experimental warming and long term monitoring. *Ambio*, 1-15.
- Bjorkman, A. D. et al., 2018: Plant functional trait change across a warming tundra biome. *Nature*, 562(7725), 57.

Blenckner, T. et al., 2007: Large-scale climatic signatures in lakes across Europe: a meta-analysis. *Global Change Biology*, 13(7), 1314-1326, doi:<u>https://doi.org/10.1111/j.1365-2486.2007.01364.x</u>.

- Bodmer, P., J. Wilkinson and A. Lorke, 2020: Sediment Properties Drive Spatial Variability of Potential Methane
 Production and Oxidation in Small Streams. *Journal of Geophysical Research: Biogeosciences*, 125(1),
 doi:10.1029/2019jg005213.
- Boit, A. et al., 2016: Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.
 Global Change Biology, 22(11), 3689-3701, doi:10.1111/gcb.13355.
- Bonai, D. et al., 2016: The response of tropical rainforests to drought-lessons from recent research and future prospects.
 Annals of Forest Science, 73, 27-44, doi:10.1007/s13595-015-0522-5.
- Bond, W. J. and G. F. Midgley, 2000: A proposed CO2-controlled mechanism of woody plant invasion in grasslands
 and savannas. *Global Change Biology*, 6(8), 865-869.
- Bond, W. J. and G. F. Midgley, 2012: Carbon dioxide and the uneasy interactions of trees and savannah grasses.
 Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588), 601-612, doi:10.1098/rstb.2011.0182.
- Bosco, A. et al., 2015: Outbreak of acute fasciolosis in sheep farms in a Mediterranean area arising as a possible
 consequence of climate change. *Geospat Health*, 9(2), 319-324, doi:10.4081/gh.2015.354.
- Boualam, M. A., B. Pradines, M. Drancourt and R. Barbieri, 2021: Malaria in Europe: A Historical Perspective. *Front Med (Lausanne)*, 8, 691095, doi:10.3389/fmed.2021.691095.
- Boulton, C. A., B. B. B. Booth and P. Good, 2017: Exploring uncertainty of Amazon dieback in a perturbed parameter
 Earth system ensemble. *Global Change Biology*, 23(12), 5032-5044, doi:10.1111/gcb.13733.
- Bouzid, M. et al., 2014: Climate change and the emergence of vector-borne diseases in Europe: case study of dengue
 fever. *BMC Public Health*, 14(1), 781, doi:10.1186/1471-2458-14-781.
- Boyce, R. et al., 2016: Severe Flooding and Malaria Transmission in the Western Ugandan Highlands: Implications for
 Disease Control in an Era of Global Climate Change. *J Infect Dis*, 214(9), 1403-1410, doi:10.1093/infdis/jiw363.
- Brink, V. C., 1959: A Directional Change in the Subalpine Forest-Heath Ecotone in Garibaldi Park, British Columbia.
 Ecology (Durham), 40(1), 10-16, doi:10.2307/1929917.
- Buitenwerf, R., W. J. Bond, N. Stevens and W. S. W. Trollope, 2012: Increased tree densities in South African
 savannas: > 50 years of data suggests CO2 as a driver. *Global Change Biology*, 18(2), 675-684,
- 59 doi:10.1111/j.1365-2486.2011.02561.x.
- Butterworth, M. K., C. W. Morin and A. C. Comrie, 2017: An Analysis of the Potential Impact of Climate Change on
 Dengue Transmission in the Southeastern United States. *Environmental Health Perspectives*, 125(4), 579-585,
 doi:10.1289/EHP218.

- Caldwell, J. M. et al., 2021: Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. *Nature Communications*, 12(1), 1233, doi:10.1038/s41467-021-21496-7.
- Caminade, C., J. Van Dijk, M. Baylis and D. Williams, 2015: Modelling recent and future climatic suitability for fasciolosis in Europe. *Geospat Health*, 9(2), 301, doi:10.4081/gh.2015.352.

Campbell, A. M., M.-F. Racault, S. Goult and A. Laurenson, 2020: Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables. *International Journal of Environmental Research and Public Health*, 17(24), doi:10.3390/ijerph17249378.

Campbell, L. P. et al., 2015: Climate change influences on global distributions of dengue and chikungunya virus vectors. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 370(1665), 20140135, doi:10.1098/rstb.2014.0135.

Carpenter, S., A. Wilson and P. S. Mellor, 2009: Culicoides and the emergence of bluetongue virus in northern Europe. *Trends in Microbiology*, 17(4), 172-178, doi:10.1016/j.tim.2009.01.001.

- Catalán, N., R. Marcé, D. N. Kothawala and L. J. Tranvik, 2016: Organic carbon decomposition rates controlled by water retention time across inland waters. *Nature Geoscience*, 9(7), 501-504, doi:10.1038/ngeo2720.
- Chadburn, S. E. et al., 2017: An observation-based constraint on permafrost loss as a function of global warming. *Nature Climate Change*, 7(5), 340-+, doi:10.1038/nclimate3262.
- Chakravarti, A. and R. Kumaria, 2005: Eco-epidemiological analysis of dengue infection during an outbreak of dengue
 fever, India. *Virology Journal*, 2(1), 32, doi:10.1186/1743-422X-2-32.

Chaves, L. F., M. Hashizume, A. Satake and N. Minakawa, 2012: Regime shifts and heterogeneous trends in malaria
 time series from Western Kenya Highlands. *Parasitology*, 139(1), 14-25, doi:10.1017/S0031182011001685.

- Chessman, B. C., 2009: Climatic changes and 13-year trends in stream macroinvertebrate assemblages in New South
 Wales, Australia. *Global Change Biology*, 15(11), 2791-2802, doi:DOI 10.1111/j.1365-2486.2008.01840.x.
- Chirombo, J. et al., 2020: Childhood malaria case incidence in Malawi between 2004 and 2017: spatio-temporal
 modelling of climate and non-climate factors. *Malaria Journal*, 19(1), 5, doi:10.1186/s12936-019-3097-z.
- Chuine, I. and J. Régnière, 2017: Process-Based Models of Phenology for Plants and Animals. *Annual Review of Ecology, Evolution, and Systematics*, 48(1), 159-182, doi:10.1146/annurev-ecolsys-110316-022706.
- Colls, M. et al., 2019: Effects of Duration, Frequency, and Severity of the Non-flow Period on Stream Biofilm
 Metabolism. *Ecosystems*, 22(6), 1393-1405.
- Colón-González, F. J., C. Fezzi, I. R. Lake and P. R. Hunter, 2013: The Effects of Weather and Climate Change on
 Dengue. *PLOS Neglected Tropical Diseases*, 7(11), e2503, doi:10.1371/journal.pntd.0002503.
- Comte, L. and G. Grenouillet, 2013: Do stream fish track climate change? Assessing distribution shifts in recent
 decades. *Ecography*, 36(11), 1236-1246, doi:10.1111/j.1600-0587.2013.00282.x.
- Comyn-Platt, E. et al., 2018: Carbon budgets for 1.5 and 2 degrees C targets lowered by natural wetland and permafrost
 feedbacks. *Nature Geoscience*, 11(8), 568-+, doi:10.1038/s41561-018-0174-9.
- Cook, B. I. et al., 2012a: Sensitivity of spring phenology to warming across temporal and spatial climate gradients in
 two independent databases. *Ecosystems*, 15(8), 1283-1294.
- Cook, B. I., E. M. Wolkovich and C. Parmesan, 2012b: Divergent responses to spring and winter warming drive
 community level flowering trends. *Proceedings of the National Academy of Sciences*, 109(23), 9000-9005,
 doi:10.1073/pnas.1118364109.
- 40 Coope, G. R., 1995: Insect faunas in ice age environments: why so little extinction. *Extinction rates*, 55-74.
- Cooper, H. V. et al., 2020: Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm
 plantation. *Nature Communications*, 11(1), doi:10.1038/s41467-020-14298-w.
- Cooper, S. D. et al., 2015: Physicochemical and biological responses of streams to wildfire severity in riparian zones.
 Freshwater Biology, 60(12), 2600-2619, doi:10.1111/fwb.12523.
- Craufurd, P. Q. and T. R. Wheeler, 2009: Climate change and the flowering time of annual crops. *Journal of Experimental botany*, 60(9), 2529-2539.
- Creed, I. et al., 2018: Global change-driven effects on dissolved organic matter composition: Implications for food webs
 of northern lakes. *Global Change Biology*, 24(8), 3692-3714, doi:10.1111/gcb.14129.
- da Silva, S. S. et al., 2018: Dynamics of forest fires in the southwestern Amazon. *Forest Ecology and Management*,
 424, 312-322, doi:10.1016/j.foreco.2018.04.041.
- Dahal, S., 2008: Climatic determinants of malaria and kala-azar in Nepal. Special Issue on World Health Day 2008
 theme: Protecting Health from Climate Change, 12(1), 32-37.
- Dahm, C. N. et al., 2015: Extreme water quality degradation following a catastrophic forest fire. *Freshwater Biology*,
 60(12), 2584-2599, doi:10.1111/fwb.12548.
- Danby, R. K. and D. S. Hik, 2007: Variability, Contingency and Rapid Change in Recent Subarctic Alpine Tree Line
 Dynamics. *The Journal of ecology*, 95(2), 352-363, doi:10.1111/j.1365-2745.2006.01200.x.
- Daniel, M., V. Danielová, B. Kříž and I. Kott, 2004: An attempt to elucidate the increased incidence of tick-borne
 encephalitis and its spread to higher altitudes in the Czech Republic. *International Journal of Medical Microbiology Supplements*, 293, 55-62, doi:https://doi.org/10.1016/S1433-1128(04)80009-3.
- Daniel, M. et al., 2006: Risk assessment and prediction of Ixodes ricinus tick questing activity and human tick-borne
 encephalitis infection in space and time in the Czech Republic. *International Journal of Medical Microbiology*,
 296, 41-47, doi:https://doi.org/10.1016/j.ijmm.2006.02.008.

15

1	Dantés, H. G., J. A. Farfán-Ale and E. Sarti, 2014: Epidemiological Trends of Dengue Disease in Mexico (2000–2011):
2	A Systematic Literature Search and Analysis. PLOS Neglected Tropical Diseases, 8(11), e3158,
3	doi:10.1371/journal.pntd.0003158.
4	Daufresne, M., P. Bady and J. F. Fruget, 2007: Impacts of global changes and extreme hydroclimatic events on
5	macroinvertebrate community structures in the French Rhone River. Oecologia, 151(3), 544-559,
6	doi:10.1007/s00442-006-0655-1.
7	Davies-Barnard, T. et al., 2015: Quantifying the relative importance of land cover change from climate and land-use in
8	the representative concentration pathways. Global Biogechemical Cycles, doi:10.1002/2014gb004949.
9	de Eyto, E. et al., 2016: Response of a humic lake ecosystem to an extreme precipitation event: physical, chemical, and
10	biological implications. Inland Waters, 6(4), 483-498, doi:10.5268/iw-6.4.875.
11	De Senerpont Domis, L. E., JJ
12	Gsell, AS
13	Huszar, VLM et al., 2013: Plankton dynamics under different climatic conditions in space and time. Freshwater
14	<i>Biology</i> , 58, 463-482.
15	de Wit, H. A. et al., 2016: Current browning of surface waters will be further promoted by wetter climate.
16	Environmental Science & Technology Letters, 3(12), 430-435.
17	Death, R. G., I. C. Fuller and M. G. Macklin, 2015: Resetting the river template: the potential for climate-related
18	devibiting //devi arg/10.1111/frub.12620
19	uol. <u>nups.//doi.org/10.1111/1W0.12059</u> .
20	<i>Enidamiology and Control</i> 10, e00150, doi:https://doi.org/10.1016/j.pareni.2020.e00150
21	DelSontro T I I Beaulieu and I A Downing 2018: Greenhouse gas emissions from lakes and impoundments:
22	Unscaling in the face of global change Limnology and Oceanography Letters 3(3) 64-75
23	doi:10.1002/lol2.10073
25	Denfeld B A et al. 2018: A synthesis of carbon dioxide and methane dynamics during the ice-covered period of
25	northern lakes Limnology and Oceanography Letters 3(3) 117-131
27	Dennis, R. L. H., 1993: <i>Butterflies and climate change</i> , Manchester University Press, ISBN 0-7190-4033-7.
28	Desanker, P. et al., 2001: Africa, In: Climate Change 2001: Impacts, Adaptation, and Vulnerability, Contribution of
29	Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change [McCarthy,
30	J. J., O. F. Canziani, N. A. Leary, D. J. Dokken and K. S. White (eds.)]. Cambridge University Press, Cambridge,
31	United Kingdom and New York, NY, USA, pp. 487-531. ISBN 0521807689.
32	Devi, N. et al., 2008: Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during
33	the 20th century. Global Change Biology, 14(7), 1581-1591.
34	Dhimal, M., B. Ahrens and U. Kuch, 2014a: Species composition, seasonal occurrence, habitat preference and
35	altitudinal distribution of malaria and other disease vectors in eastern Nepal. Parasites & Vectors, 7(1), 540,
36	doi:10.1186/s13071-014-0540-4.
37	Dhimal, M., B. Ahrens and U. Kuch, 2015a: Climate Change and Spatiotemporal Distributions of Vector-Borne
38	Diseases in Nepal – A Systematic Synthesis of Literature. PLoS ONE, 10(6), e0129869,
39	doi:10.1371/journal.pone.0129869.
40	Dhimal, M. et al., 2021a: Impact of Climate Change on Health and Well-Being of People in Hindu Kush Himalayan
41	Region: A Narrative Review. Frontiers in Physiology, 12, 1-13.
42	Dhimal, M. et al., 2015b: Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes
43	albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS
44	Neglected Tropical Diseases, 9(3), e0003343, doi:10.13/1/journal.pnid.0003343.
45	Altitudinal Transact in Central Neral Discribution of Dengue and Lymphatic Filanasis vectors along an
40	Annudinal Transect in Central Nepal. PLos Neglecieu Tropicul Diseuses, 8(7), e5055,
4/	Dhimal M et al. 2021b: Climate change and its association with the expansion of vectors and vector horne diseases in
40	the Hindu Kuch Himalayan region: A systematic synthesis of the literature Advances in Climate Change
49 50	Research 12(3) 421-429 doi:https://doi.org/10.1016/j.accre.2021.05.003
51	Dhimal M et al. 2014c: Spatio-temporal distribution of malaria and its association with climatic factors and vector-
52	control interventions in two high-risk districts of Nepal Malaria Journal 13(1) 457 doi:10.1186/1475-2875-13-
53	457.
54	Dial, R. J. et al., 2007: Changes in the alpine forest-tundra ecotone commensurate with recent warming in southcentral
55	Alaska: Evidence from orthophotos and field plots, <i>Journal of geophysical research</i> . <i>Biogeosciences</i> , 112(G4).
56	doi:10.1029/2007JG000453.
57	Douine, M. et al., 2020: Malaria in Gold Miners in the Guianas and the Amazon: Current Knowledge and Challenges.
58	Curr Trop Med Rep, 7(2), 37-47, doi:10.1007/s40475-020-00202-5.
59	Eby, L. A., O. Helmy, L. M. Holsinger and M. K. Young, 2014: Evidence of climate-induced range contractions in bull
60	trout Salvelinus confluentus in a Rocky Mountain watershed, USA. PLoS ONE, 9(6).
61	Ehleringer, J. R., T. E. Cerling and M. D. Dearing, 2002: Atmospheric CO2 as a global change driver influencing plant-
62	animal interactions. Integrative and Comparative Biology, 42(3), 424-430.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

- Ellison, D. et al., 2017: Trees, forests and water: Cool insights for a hot world. *Global Environmental Change-Human and Policy Dimensions*, 43, 51-61, doi:10.1016/j.gloenvcha.2017.01.002.
- Elmendorf, S. C. et al., 2012a: Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. *Ecology letters*, 15(2), 164-175.
- Elmendorf, S. C. et al., 2012b: Plot-scale evidence of tundra vegetation change and links to recent summer warming. *Nature climate change*, 2(6), 453-457.

Elmendorf, S. C. et al., 2015: Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. *Proceedings of the National Academy of Sciences*, 112(2), 448-452.

Emch, M. et al., 2008: Local Environmental Predictors of Cholera in Bangladesh and Vietnam. *The American Journal* of Tropical Medicine and Hygiene Am J Trop Med Hyg, 78(5), 823-832, doi:10.4269/ajtmh.2008.78.823.

- Emch, M. et al., 2010: Local population and regional environmental drivers of cholera in Bangladesh. *Environmental Health*, 9(1), 2, doi:10.1186/1476-069X-9-2.
- Emeto, T. I. et al., 2020: Disparities in Risks of Malaria Associated with Climatic Variability among Women, Children and Elderly in the Chittagong Hill Tracts of Bangladesh. *International Journal of Environmental Research and Public Health*, 17(24), 9469, doi:10.3390/ijerph17249469.
- Escobar, L. E. et al., 2015: A global map of suitability for coastal *Vibrio cholerae* under current and future climate conditions. *Acta Tropica*, 149, 202-211, doi:10.1016/j.actatropica.2015.05.028.
- Estallo, E. L. et al., 2020: A decade of arbovirus emergence in the temperate southern cone of South America: dengue,
 Aedes aegypti and climate dynamics in Córdoba, Argentina. *Heliyon*, 6(9), e04858,
 doi:10.1016/j.heliyon.2020.e04858.
- Ettinger, A. K. et al., 2021: Spatial and temporal shifts in photoperiod with climate change. *New Phytologist*, 230(2),
 462-474.
- Faradiba, F., 2021: The effect of rainfall on the spread of malaria in Indonesia. *International Journal of Community Medicine and Public Health*, 8(3), 1146-1150.
- Fenn, M., E. Allen and L. Geiser, 2011: Mediterranean California, Chapter 13. In: Pardo, LH; Robin-Abbott, MJ;
 Driscoll, CT, eds. Assessment of Nitrogen deposition effects and empirical critical loads of Nitrogen for
 ecoregions of the United States. Gen. Tech. Rep. NRS-80. Newtown Square, PA: US Department of Agriculture,
 Forest Service, Northern Research Station: 143-169., 80, 143-169.
- Ferreira, M. U. and M. C. Castro, 2019: Malaria Situation in Latin America and the Caribbean: Residual and Resurgent
 Transmission and Challenges for Control and Elimination. In: *Malaria Control and Elimination* [Ariey, F., F. Gay
 and R. Ménard (eds.)]. Springer, New York, NY, pp. 57-70. ISBN 978-1-4939-9550-9.
- Fettig, C. J., L. A. Mortenson, B. M. Bulaon and P. B. Foulk, 2019: Tree mortality following drought in the central and
 southern Sierra Nevada, California, US. *Forest Ecology and Management*, 432, 164-178,
 doi:10.1016/j.foreco.2018.09.006.
- Ficker, H., M. Luger and H. Gassner, 2017: From dimictic to monomictic: empirical evidence of thermal regime
 transitions in three deep alpine lakes in Austria induced by climate change. *Freshwater Biology*, 62(8), 1335 1345.
- Finstad, A. et al., 2016: From greening to browning: Catchment vegetation development and reduced S-deposition
 promote organic carbon load on decadal time scales in Nordic lakes. *Scientific Reports*, 6, doi:10.1038/srep31944.
- Finstad, A. G. et al., 2014: Unimodal response of fish yield to dissolved organic carbon. *Ecology Letters*, 17(1), 36-43,
 doi:10.1111/ele.12201.
 Fischer, L. et al., 2020: Rising temperature and its impact on receptivity to malaria transmission in Europe: A
- Fischer, L. et al., 2020: Rising temperature and its impact on receptivity to malaria transmission in Europe: A
 systematic review, *Travel Medicine and Infectious Disease*, 36, 101815, doi:10.1016/j.tmaid.2020.101815.
- Fletcher, I. K. et al., 2020: The Relative Role of Climate Variation and Control Interventions on Malaria Elimination
 Efforts in El Oro, Ecuador: A Modeling Study. *Frontiers in Environmental Science*, 8,
 doi:10.3389/fenvs.2020.00135.
- 47 Ford, E. B., 1945: Butterflies, Collins, London.

Fredericks, A. C. and A. Fernandez-Sesma, 2014: The Burden of Dengue and Chikungunya Worldwide: Implications
 for the Southern United States and California. *Annals of Global Health*, 80(6), 466-475,
 doi:10.1016/j.aogh.2015.02.006.

- Friedman, J. and J. H. Willis, 2013: Major QTL s for critical photoperiod and vernalization underlie extensive variation
 in flowering in the M imulus guttatus species complex. *New Phytologist*, 199(2), 571-583.
- Gang, C. et al., 2017: Modeling the dynamics of distribution, extent, and NPP of global terrestrial ecosystems in
 response to future climate change. *Global and Planetary Change*, 148, 153-165,
 doi:10.1016/j.gloplacha.2016.12.007.
- Gething, P. W. et al., 2010: Climate change and the global malaria recession. *Nature*, 465(7296), 342-345,
 doi:10.1038/nature09098.
- Gibson, T. E. and G. Everett, 1976: The Ecology Of The Free-Living Stages of Haemonchus Contortus. *British Veterinary Journal*, 132(1), 50-59, doi:10.1016/S0007-1935(17)34787-5.
- Gil, A. I. et al., 2004: Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. *Environmental Microbiology*, 6(7), 699-706, doi:<u>https://doi.org/10.1111/j.1462-2920.2004.00601.x</u>.
- Gill, A. L. et al., 2015: Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of
 autumn phenology studies. *Annals of botany*, 116(6), 875-888.

2

3

4 5

6

7

8

9

10

11

12

- Goel, A. K. and S. C. Jiang, 2011: Association of Heavy Rainfall on Genotypic Diversity in <i>V. cholerae</i> Isolates from an Outbreak in India. *International Journal of Microbiology*, 2011, 230597, doi:10.1155/2011/230597.
- Gonzalez, P., R. P. Neilson, J. M. Lenihan and R. J. Drapek, 2010: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. *Global Ecology and Biogeography*, 19(6), 755-768, doi:10.1111/j.1466-8238.2010.00558.x.
- Gonzalez, P., C. Tucker and H. Sy, 2012: Tree density and species decline in the African Sahel attributable to climate. *Journal of Arid Environments*, 78, 55-64, doi:10.1016/j.jaridenv.2011.11.001.
- Gordo, O., 2007: Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. *Climate research*, 35(1-2), 37-58.
- Greenwood, S. et al., 2017: Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. *Ecology Letters*, 20(4), 539-553, doi:10.1111/ele.12748.
- Grillet, M. E. et al., 2021: Malaria in Southern Venezuela: The hottest hotspot in Latin America. *PLOS Neglected Tropical Diseases*, 15(1), e0008211, doi:10.1371/journal.pntd.0008211.
- 14 Guzman, M. G. and E. Harris, 2015: Dengue. *The Lancet*, 385(9966), 453-465, doi:10.1016/S0140-6736(14)60572-9.
- Gyawali, N., B. J. Johnson, S. M. Dixit and G. J. Devine, 2020: Patterns of dengue in Nepal from 2010–2019 in relation
 to elevation and climate. *Transactions of The Royal Society of Tropical Medicine and Hygiene*,(traa131),
 doi:10.1093/trstmh/traa131.
- Haider, N. et al., 2018: The annual, temporal and spatial pattern of Setaria tundra outbreaks in Finnish reindeer: a
 mechanistic transmission model approach. *Parasites & Vectors*, 11, doi:10.1186/s13071-018-3159-z.
- Halide, H. and P. Ridd, 2008: A predictive model for Dengue Hemorrhagic Fever epidemics. *International Journal of Environmental Health Research*, 18(4), 253-265, doi:10.1080/09603120801966043.
- Halvorsen, O., 2012: Reindeer parasites, weather and warming of the Arctic. *Polar Biology*, 35, doi:10.1007/s00300 012-1209-0.
- Halvorsen, O. et al., 1979: Infection in reindeer with the nematode Elaphostrongylus rangiferi Mitskevich in relation to
 climate and distribution of intermediate hosts. *Proceedings of the Second International Reindeer/Caribou Symposium*, 8(B), 449-455.
- Halvorsen, O. and A. Skorping, 1982: The Influence of Temperature on Growth and Development of the Nematode
 Elaphostrongylus Rangiferi in the Gastropods Arianta Arbustorum and Euconulus Fulvus. *Oikos*, 38(3), 285-290,
 doi:10.2307/3544666.
- Handeland, K. et al., 2019: Elaphostrongylus and Dictyocaulus infections in Norwegian wild reindeer and red deer
 populations in relation to summer pasture altitude and climate. *International Journal for Parasitology: Parasites and Wildlife*, 10, 188-195, doi:10.1016/j.ijppaw.2019.09.003.
- Hansson, L.-A. et al., 2013: Food-chain length alters community responses to global change in aquatic systems. *Nature Climate Change*, 3(3), 228-233.
- Harrison, S. P., M. L. LaForgia and A. M. Latimer, 2018: Climate-driven diversity change in annual grasslands:
 Drought plus deluge does not equal normal. *Global change biology*, 24(4), 1782-1792.
- Hartmann, H. et al., 2018: Research frontiers for improving our understanding of drought-induced tree and forest
 mortality. *New Phytologist*, 218(1), 15-28, doi:10.1111/nph.15048.
- 39 Hashizume, M. et al., 2010: Cholera in Bangladesh: Climatic Components of Seasonal Variation. *Epidemiology*, 21(5).
- Havens, K. et al., 2016: Extreme weather events and climate variability provide a lens to how shallow lakes may
 respond to climate change. *Water*, 8(6), 229.
- Hay, S. I. et al., 2002: Hot topic or hot air? Climate change and malaria resurgence in East African highlands. *Trends in Parasitology*, 18(12), 530-534, doi:https://doi.org/10.1016/S1471-4922(02)02374-7.
- Herawati, H. and H. Santoso, 2011: Tropical forest susceptibility to and risk of fire under changing climate: A review of
 fire nature, policy and institutions in Indonesia. *Forest Policy and Economics*, 13(4), 227-233,
 doi:10.1016/j.forpol.2011.02.006.
- Hernández-Ávila, J. E. et al., 2013: Nation-Wide, Web-Based, Geographic Information System for the Integrated
 Surveillance and Control of Dengue Fever in Mexico. *PLOS ONE*, 8(8), e70231,
 doi:10.1371/journal.pone.0070231.
- Herrera-basto, E., D. R. Prevots, M. L. Zarate and L. Silva, 1992: First reported outbreak of classical dengue fever at
 1,700 meters above sea level in.
- Higgins, S. I. and S. Scheiter, 2012: Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. *Nature*,
 advance online publication, 10.1038/nature11238,
- 54 doi:http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature11238.html#supplementary-information.
- Hii, Y. L. et al., 2012: Forecast of Dengue Incidence Using Temperature and Rainfall. *PLoS Neglected Tropical Diseases*, 6(11), doi:10.1371/journal.pntd.0001908.
- Hoberg, E. et al., 2013: Chapter 15. Parasites. 2013. In: Arctic Biodiversity Assessment : Status and trends in Arctic
 biodiversity (The Conservation of Arctic Flora and Fauna (CAFF), Arctic Council) : 420–449.
 (http://www.arcticbiodiversity.is/index.php/the-report/chapters/parasites). pp. 420-449.
- Hoffmann, W. A. and R. B. Jackson, 2000: Vegetation–climate feedbacks in the conversion of tropical savanna to
 grassland. *Journal of Climate*, 13(9), 1593-1602.
- Holden, Z. A. et al., 2018: Decreasing fire season precipitation increased recent western US forest wildfire activity.
 Proceedings of the National Academy of Sciences, 115(36), E8349-E8357, doi:10.1073/pnas.1802316115.

1 2 3	Hsieh, Y. H. and C. W. S. Chen, 2009: Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks. <i>Tropical Medicine & International Health</i> , 14(6), 628-638, doi:10.1111/j.1365- 3156 2009 02277 x
5	15150.2007/02/17.A.
4 5 6	Australia: a time series predictive model. <i>Occupational and Environmental Medicine</i> , 67(5), 307-311, doi:10.1136/oem.2008.044966
7	Huisman L et al. 2018: Cyanobacterial blooms. Natura Raviaus Microbiology, 16(8), 471-483
0	Huntingford C et al. 2013: Simulated regilience of tropical rainforests to CO2 induced climate change. Nature
0	Consisting 6(4), 268, 272, doi:10.1029/mage1741
9	Geoscience, 0(4), 208-275, doi:10.1058/ngeo1741.
10	Huq, A. et al., 2005: Critical Factors influencing the Occurrence of vibrio cholerae in the Environment of Bangiadesn.
11	Applied and Environmental Microbiology, /1(8), 4645-4654, doi:10.1128/AEM./1.8.4645-4654.2005.
12	Isaak, D. J. et al., 2010: Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in
13	a mountain river network. <i>Ecol Appl</i> , 20(5), 1350-1371, doi:10.1890/09-0822.1.
14	Isaak, D. J. et al., 2016: Slow climate velocities of mountain streams portend their role as refugia for cold-water
15	biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 113(16), 4374-
16	4379, doi:10.1073/pnas.1522429113.
17	Jacobsen, A. L. and R. B. Pratt, 2018: Extensive drought-associated plant mortality as an agent of type-conversion in
18	chaparral shrublands. New Phytologist, 219(2), 498-504.
19	Jaric, I. et al., 2019: Susceptibility of European freshwater fish to climate change: Species profiling based on life-
20	history and environmental characteristics. Global Change Biology, 25(2), 448-458, doi:10.1111/gcb.14518.
21	Jutla, A. et al., 2013a: A water marker monitored by satellites to predict seasonal endemic cholera. Remote Sensing
22	Letters, 4(8), 822-831, doi:10.1080/2150704X.2013.802097.
23	Jutla, A. et al., 2015: Satellite Based Assessment of Hydroclimatic Conditions Related to Cholera in Zimbabwe, PLOS
24	ONE, 10(9), e0137828, doi:10.1371/journal.pone.0137828.
25	Jutla A et al. 2013b: Environmental Factors Influencing Enidemic Cholera. The American Society of Tropical
26	Medicine and Hygiene 89(3) 597-607 doi:10.4269/aitmb.12-0721
20	Jutla A S et al. 2011: Warming Oceans Phytonlankton and River Discharge: Implications for Cholera Outbreaks
21 28	The American Society of Tronical Medicine and Hydrane 85(2) 303-308 doi:10.4269/aitmb.2011.11-0181
20	Kanchana N et al. 2005: ANALVSIS OF SDATIAL FACTORS AFFECTING DENGUE EDIDEMICS USING GIS
29	IN THAT AND Proceedings of the VCDS Conference 774 777
30	IN IMAILAND. Froceedings of the KSKS Conference, //4-///.
31	Kangur, K. et al., 2010: Changes in water temperature and chemistry preceding a massive kill of bottom-dweining lish:
32	an analysis of high-frequency buoy data of shallow Lake Vortsjarv (Estonia). Iniana Waters, 6(4), 555-542,
33	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
34	Kasprzak, P. et al., 2017: Extreme weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake.
35	<i>Ecosystems</i> , $20(8)$, $140/-1420$, doi: <u>http://dx.doi.org.ezproxy.lib.utexas.edu/10.100//s10021-01/-0121-4</u> .
36	Kassam, N. A. et al., 2021: 1en years of monitoring malaria trend and factors associated with malaria test positivity
37	rates in Lower Moshi. <i>Malaria Journal</i> , 20(1), 193, doi:10.1186/s12936-021-03/30-1.
38	Kearney, M. et al., 2009: Integrating biophysical models and evolutionary theory to predict climatic impacts on species'
39	ranges: the dengue mosquito Aedes aegypti in Australia. <i>Functional Ecology</i> , 23(3), 528-538,
40	doi: <u>https://doi.org/10.1111/j.1365-2435.2008.01538.x</u> .
41	Keller, P. et al., 2020: Global CO 2 emissions from dry inland waters share common drivers across ecosystems. <i>Nature</i>
42	communications, 11(1), 1-8.
43	Kgope, B. S., W. J. Bond and G. F. Midgley, 2010: Growth responses of African savanna trees implicate atmospheric
44	[CO2] as a driver of past and current changes in savanna tree cover. Austral Ecology, 35(4), 451-463.
45	Kirchmeier-Young, M. C. et al., 2019: Attribution of the Influence of Human-Induced Climate Change on an Extreme
46	Fire Season. Earth's Future, 7(1), 2-10, doi:10.1029/2018EF001050.
47	Kirdyanov, A. V. et al., 2012: 20th century tree-line advance and vegetation changes along an altitudinal transect in the
48	Putorana Mountains, northern Siberia. Boreas, 41(1), 56-67.
49	Kirillin, G., 2010: Modeling the impact of global warming on water temperature and seasonal mixing regimes in small
50	temperate lakes. Boreal Environment Research, 15(2), 279-293.
51	Kirillin, G. and T. Shatwell, 2016: Generalized scaling of seasonal thermal stratification in lakes. <i>Earth-Science</i>
52	Reviews, 161, 179-190, doi:10.1016/j.earscirev.2016.08.008.
53	Koelle, K. et al., 2005: Refractory periods and climate forcing in cholera dynamics. <i>Nature</i> , 436(7051), 696-700,
54	doi:10.1038/nature03820.
55	Kraemer, B., T. Mehner and R. Adrian, 2017: Reconciling the opposing effects of warming on phytoplankton biomass
56	in 188 large lakes. Scientific Reports, 7. doi:10.1038/s41598-017-11167-3.
57	Kritzberg, E. S. et al., 2020: Browning of freshwaters: Consequences to ecosystem services underlying drivers and
58	potential mitigation measures. Ambio. 49(2), 375-390. doi:10.1007/s13280-019-01227-5
59	Kuha, J. et al., 2016: Response of boreal lakes to enisodic weather-induced events. <i>Inland Waters</i> , 6(4), 523-534
60	doi:10 5268/iw-6 4 886
61	Kullman L and L Öberg 2009: Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a
62	landscape ecological perspective Journal of Ecology 97(3) 415-479

TINAL DRATT Chapter 2 Supprementary Material II CC with Sixth Assessment Report
Kumar, P. et al., 2020: Modeling an association between malaria cases and climate variables for Keonjhar district of Odisha, India: a Bayesian approach. <i>J Parasit Dis</i> , 44(2), 319-331, doi:10.1007/s12639-020-01210-y.
Kutz, S. J. et al., 2013: Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Global Change Biology 19(11) 3254-3262 doi:10.1111/gcb.12315
Kutz, S. J., E. P. Hoberg, L. Polley and E. J. Jenkins, 2005: Global warming is changing the dynamics of Arctic host–
parasite systems. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 272(1581), 2571-2576, doi:10.1098/rspb.2005.3285.
Laaksonen, S., 2010: Setaria tundra, an emerging parasite of reindeer, and an outbreak it caused in Finland in 2003-2006.
Laaksonen, S. and A. Oksanen, 2010: Setaria tundra outbreak in reindeer in Finland. <i>Rangifer</i> , 27, doi:10.7557/2.27.3.276.
Laaksonen, S. et al., 2010: Climate Change Promotes the Emergence of Serious Disease Outbreaks of Filarioid Nematodes. <i>EcoHealth</i> , 7(1), 7-13, doi:10.1007/s10393-010-0308-z.
Laaksonen, S. et al., 2009: Vectors and transmission dynamics for Setaria tundra (Filarioidea; Onchocercidae), a parasite of reindeer in Finland. <i>Parasites & Vectors</i> , 2(1), 3, doi:10.1186/1756-3305-2-3.
Lambrechts, L. et al., 2011: Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti.
Proceedings of the National Academy of Sciences, 108(18), 7460-7465, doi:10.1073/pnas.1101377108.
Lambrinos, J. G., 2006: Spatially variable propagule pressure and herbivory influence invasion of chaparral shrubland by an exotic grass. <i>Oecologia</i> , 147(2), 327-334.
Laneri, K. et al., 2019: Climate drivers of malaria at its southern fringe in the Americas. <i>PLOS ONE</i> , 14(7), e0219249, doi:10.1371/journal.pone.0219249.
le Polain de Waroux, Y. and E. F. Lambin, 2012: Monitoring degradation in arid and semi-arid forests and woodlands:
The case of the argan woodlands (Morocco). Applied Geography, 32(2), 777-786, doi:10.1016/i.apgeog.2011.08.005
Leckebusch G C and A F Abdussalam 2015: Climate and socioeconomic influences on interannual variability of
cholera in Nigeria. <i>Health & Place</i> . 34, 107-117, doi:https://doi.org/10.1016/j.healthplace.2015.04.006.
Lee, C. G., S. H. Cho and C. Y. Lee, 1995: Metacercarial production of Lymnaca viridis experimentally infected with Easciola hepatica. <i>Veterinary Parasitology</i> , 58(4), 313-318. doi:https://doi.org/10.1016/0304-4017(94)00725-R
Leifeld, J., C. Wust-Gallev and S. Page, 2019: Intact and managed peatland soils as a source and sink of GHGs from
1850 to 2100. Nature Climate Change, 9(12), 945-+, doi:10.1038/s41558-019-0615-5.
Leonelli, G., M. Pelfini, U. M. di Cella and V. Garavaglia, 2011: Climate warming and the recent treeline shift in the
European Alps: the role of geomorphological factors in high-altitude sites. Ambio, 40(3), 264-273.
Levine, N. D. and F. L. Andersen, 1973: Development and Survival of Trichostrongylus colubriformis on Pasture. <i>The Journal of Parasitology</i> , 59(1), 147-165, doi:10.2307/3278592.
Li, R. et al., 2019: Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue.
Proceedings of the National Academy of Sciences, 116(9), 3624-3629, doi:10.1073/pnas.1806094116.
Lindgren, E. and R. Gustafson, 2001: Tick-borne encephalitis in Sweden and climate change. <i>The Lancet</i> , 358(9275), 16-18, doi:https://doi.org/10.1016/S0140-6736(00)05250-8.
Liu, K. et al., 2020: Climate factors and the East Asian summer monsoon may drive large outbreaks of dengue in China.
<i>Environmental Research</i> , 183, 109190, doi: <u>https://doi.org/10.1016/j.envres.2020.109190</u> .
<i>Ecoscience</i> 10(2) 176-185
Louis Valérie, R. et al., 2003: Predictability of Vibrio cholerae in Chesapeake Bay. <i>Applied and Environmental</i>
Microbiology, 69(5), 2//3-2/85, doi:10.1128/AEM.69.5.2//3-2/85.2003.
Medicine 15(7) e1002613 doi:10.1371/journal.pmed.1002613
Lowe R et al. 2017: Climate services for health: predicting the evolution of the 2016 dengue season in Machala
Ecuador. The Lancet Planetary Health, 1(4), e142-e151, doi:10.1016/S2542-5196(17)30064-5.
Lozano-Fuentes, S. et al., 2012: The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México. <i>The</i>
American Journal of Tropical Medicine and Hygiene, 87(5), 902-909, doi:10.4269/ajtmh.2012.12-0244.
Lu, L. et al., 2009: Time series analysis of dengue fever and weather in Guangzhou, China. BMC Public Health, 9(1),
395, doi:10.1186/1471-2458-9-395.
Luckman, B. and T. Kavanagh, 2000: Impact of climate fluctuations on mountain environments in the Canadian
Rockies. Ambio: A journal of the human environment, 29(7), 371-380.
Ma, K. et al., 2010: A half-century of changes in China's lakes: Global warming or human influence? <i>Geophysical</i>
Research Letters, 5 /(24), n/a-n/a, doi:10.1029/2010g1045514.
Academy of Sciences 105(46) 17676 doi:10.1073/pnas.0809654105
Magny, G. C. d. et al., 2012; Cholera Outbreak in Senegal in 2005; Was Climate a Factor? PLOS ONE 7(8) e44577
doi:10.1371/journal.pone.0044577.
Makinda O. S. and G. L. Abiadum. 2020; The impact of rainfall and temperature on malaria dynamics in the KyraZulu

Makinde, O. S. and G. J. Abiodun, 2020: The impact of rainfall and temperature on malaria dynamics in the KwaZulu Natal province, South Africa. *Communications in Statistics: Case Studies, Data Analysis and Applications*, 6(2),
 97-108, doi:10.1080/23737484.2019.1699000.

1	Manguin, S. and V. Dev, 2018: Towards Malaria Elimination: A Leap Forward. BoD – Books on Demand, 454 pp.
2	ISBN 978-1-78923-550-0.
3	Mansuy, N. et al., 2019: Contrasting human influences and macro-environmental factors on fire activity inside and
4	outside protected areas of North America. <i>Environmental Research Letters</i> , 14(6), doi:10.1088/1748-
5	9326/ab1bc5.
6	Marcé, R. et al., 2019: Emissions from dry inland waters are a blind spot in the global carbon cycle. <i>Earth-Science</i>
7	Reviews, 188, 240-248, doi:10.1016/j.earscirev.2018.11.012.
8	Martinez-Urtaza, J. et al., 2008: Emergence of Asiatic Vibrio Diseases in South America in Phase With El Niño.
9	Epidemiology, 19(6).
10	Martínez-Valladares, M. et al., 2013: Prevalence of gastrointestinal nematodes and Fasciola hepatica in sheep in the
11	northwest of Spain: relation to climatic conditions and/or man-made environmental modifications. Parasites &
12	Vectors, 6(1), 282, doi:10.1186/1756-3305-6-282.
13	Martinez-Vilalta, J. and F. Lloret, 2016: Drought-induced vegetation shifts in terrestrial ecosystems: The key role of
14	regeneration dynamics. <i>Global and Planetary Change</i> , 144, 94-108, doi:10.1016/j.gloplacha.2016.07.009.
15	Matthew, O. L. 2020: Investigating climate suitability conditions for malaria transmission and impacts of climate
16	variability on mosquito survival in the humid tropical region: a case study of Obafemi Awolowo University
17	Campus Ile-Ife south-western Nigeria International Journal of Riometeorology 64(3) 355-365
19	doi:10.1007/s00484-019-01814-x
10	McGuire A D et al. 2018: Assessing historical and projected carbon balance of Alaska: A synthesis of results and
20	policy/management implications. Ecological Applications 28(6), 1306-1412, doi:10.1002/eap.1768
20	McInture P L et al. 2015: Twentieth-century shifts in forest structure in California: Denser forests smaller trees and
21	increased dominance of ooks. Proceedings of the National Academy of Sciences, 112(5), 1458, 1463
22	doi:10.1072/pnos.1/10186112
23	doi.10.10/5/pilas.1410100112. Makannan 7 A. W. I. Dilay and D. E. Grant 2019, 21st contury tundra durbification could enhance not corban
24	unteles of North America Arctic tundre under an DCD2 5 alimete trainetory. Environmental Research Latters
25	12(5) 1. 10 1099/1749 022(1.199
26	13(3), doi:10.1088/1/48-9320/adoi28.
27	Mendelsonn, J. and T. Dawson, 2008: Climate and cholera in KwaZulu-Natal, South Africa: The role of environmental
28	factors and implications for epidemic preparedness. International Journal of Hygiene and Environmental Health,
29	211(1), 156-162, doi: <u>https://doi.org/10.1016/j.ijheh.2006.12.002</u> .
30	Mercado, L. M. et al., 2018: Large sensitivity in land carbon storage due to geographical and temporal variation in the
31	thermal response of photosynthetic capacity. New Phytologist, 218(4), 1462-14//, doi:10.1111/nph.15100.
32	Metelmann, S. et al., 2021: Assessing the suitability for Aedes albopictus and dengue transmission risk in China with a
33	delay differential equation model. PLOS Neglected Tropical Diseases, 15(3), e0009153,
34	doi:10.1371/journal.pntd.0009153.
35	Mihailović, D. T. et al., 2020: Assessment of climate change impact on the malaria vector Anopheles hyrcanus, West
36	Nile disease, and incidence of melanoma in the Vojvodina Province (Serbia) using data from a regional climate
37	model. <i>PLOS ONE</i> , 15(1), e0227679, doi:10.1371/journal.pone.0227679.
38	Millar, C. I. et al., 2004: Response of subalpine conifers in the Sierra Nevada, California, USA, to 20th-century
39	warming and decadal climate variability. Arctic, Antarctic, and Alpine Research, 36(2), 181-200.
40	Mod, H. K. and M. Luoto, 2016: Arctic shrubification mediates the impacts of warming climate on changes to tundra
41	vegetation. Environmental Research Letters, 11(12), doi:124028 10.1088/1748-9326/11/12/124028.
42	Moncrieff, G. R., S. Scheiter, W. J. Bond and S. I. Higgins, 2014: Increasing atmospheric CO2 overrides the historical
43	legacy of multiple stable biome states in Africa. New Phytol, 201(3), 908-915, doi:10.1111/nph.12551.
44	Moncrieff, G. R. et al., 2016: The future distribution of the savannah biome: model-based and biogeographic
45	contingency. Philosophical Transactions of the Royal Society B-Biological Sciences, 371(1703), doi:20150311
46	10.1098/rstb.2015.0311.
47	Mooij, W. M. et al., 2007: Predicting the effect of climate change on temperate shallow lakes with the ecosystem model
48	PCLake. Hydrobiologia, 584(1), 443-454, doi:10.1007/s10750-007-0600-2.
49	Moore, S. M. et al., 2017: El Niño and the shifting geography of cholera in Africa. Proceedings of the National
50	Academy of Sciences, 114(17), 4436, doi:10.1073/pnas.1617218114.
51	Morin, C. W. et al., 2015: Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR. PLOS
52	Neglected Tropical Diseases, 9(8), e0004002, doi:10.1371/journal.pntd.0004002.
53	Mouthon, J. and M. Daufresne, 2015: Resilience of mollusc communities of the River Saone (eastern France) and its
54	two main tributaries after the 2003 heatwave. Freshwater Biology, 60(12), 2571-2583, doi:10.1111/fwb.12540.
55	Muller, M., 2018: Cape Town's drought: don't blame climate change. <i>Nature</i> , 559(7713), 174-176,
56	doi:10.1038/d41586-018-05649-1.
57	Myers-Smith, I. H. et al., 2011: Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities.
58	Environmental Research Letters, 6(4), 045509, doi:10.1088/1748-9326/6/4/045509.
59	Myers-Smith, I. H. et al., 2019: Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra
60	vegetation change. Ecological Monographs, 89(2), e01351.
61	Nagao, Y., P. Svasti, A. Tawatsin and U. Thavara, 2008: Geographical structure of dengue transmission and its
62	determinants in Thailand, Epidemiology & Infection, 136(6), 843-851, doi:10.1017/S0950268807008990

- Nagao, Y. et al., 2003: Climatic and social risk factors for Aedes infestation in rural Thailand. Tropical Medicine & 1 International Health, 8(7), 650-659, doi:10.1046/j.1365-3156.2003.01075.x. 2 Nichols, G., I. Lake and C. Heaviside, 2018: Climate change and water-related infectious diseases. Atmosphere, 9(10), 3 385, doi:10.3390/atmos9100385. 4 Nilsson, C., L. E. Polvi and L. Lind, 2015: Extreme events in streams and rivers in arctic and subarctic regions in an 5 uncertain future. Freshwater Biology, 60(12), 2535-2546, doi:10.1111/fwb.12477. 6 Nkoko, D. B. et al., 2011: Dynamics of Cholera Outbreaks in Great Lakes Region of Africa, 1978–2008. Emerging 7 Infectious Disease journal, 17(11), 2026, doi:10.3201/eid1711.110170. 8 Nobre, C. A. et al., 2016: Land-use and climate change risks in the Amazon and the need of a novel sustainable 9 development paradigm. Proceedings of the National Academy of Sciences of the United States of America, 10 113(39), 10759-10768, doi:10.1073/pnas.1605516113. 11O'Connor, L. J., S. W. Walkden-Brown and L. P. Kahn, 2006: Ecology of the free-living stages of major 12 trichostrongylid parasites of sheep. Veterinary Parasitology, 142(1), 1-15, doi:10.1016/j.vetpar.2006.08.035. 13 Omumbo, J. A. et al., 2011: Raised temperatures over the Kericho tea estates: revisiting the climate in the East African 14 highlands malaria debate. Malaria Journal, 10(1), 12, doi:10.1186/1475-2875-10-12. 15 Organization, W. H., 2020: World malaria report 2020: 20 years of global progress and challenges. Geneva. Available 16 at: https://www.who.int/publications/i/item/9789240015791. 17 Ostberg, S. et al., 2018: The Biosphere Under Potential Paris Outcomes. Earth's Future, 6(1), 23-39, 18 19 doi:10.1002/2017EF000628. Ostberg, S., W. Lucht, S. Schaphoff and D. Gerten, 2013: Critical impacts of global warming on land ecosystems. Earth 20 Syst. Dynam., 4(2), 347-357, doi:10.5194/esd-4-347-2013. 21 Otto, F. E. L. et al., 2018: Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. 22 Environmental Research Letters, 13(12), 124010, doi:10.1088/1748-9326/aae9f9. 23 Pachzelt, A. et al., 2015: Potential impact of large ungulate grazers on African vegetation, carbon storage and fire 24 regimes. Global Ecology and Biogeography, 24(9), 991-1002, doi:10.1111/geb.12313. 25 Page, S. E. and A. J. Baird, 2016: Peatlands and Global Change: Response and Resilience. Annual Review of 26 Environment and Resources, 41, 35-57, doi:10.1146/annurev-environ-110615-085520. 27 Page, S. E. and A. Hooijer, 2016: In the line of fire: the peatlands of Southeast Asia. Philos Trans R Soc Lond B Biol 28 Sci, 371(1696), 20150176, doi:10.1098/rstb.2015.0176. 29 Pandey, B. D. et al., 2015: Detection of Chikungunya Virus in Nepal. The American Journal of Tropical Medicine and 30 Hygiene, 93(4), 697-700, doi:10.4269/ajtmh.15-0092. 31 Pandey, K. et al., 2017: Evidence of Chikungunya virus circulation in the Terai region of Nepal in 2014 and 2015. 32 Transactions of The Royal Society of Tropical Medicine and Hygiene, 111(7), 294-299, 33 doi:10.1093/trstmh/trx059. 34 Parmesan, C. and G. Yohe, 2003: A globally coherent fingerprint of climate change impacts across natural systems. 35 Nature, 421(6918), 37-42, doi:10.1038/nature01286. 36 Partain, J. L. et al., 2016: AN ASSESSMENT OF THE ROLE OF ANTHROPOGENIC CLIMATE CHANGE IN THE 37 ALASKA FIRE SEASON OF 2015. Bulletin of the American Meteorological Society, 97(12), S14-S18, 38 doi:10.1175/bams-d-16-0149.1. 39 Pascual, M. et al., 2006: Malaria resurgence in the East African highlands: Temperature trends revisited. Proceedings of 40 the National Academy of Sciences, 103(15), 5829, doi:10.1073/pnas.0508929103. 41 Payette, S., 2007: Contrasted dynamics of northern Labrador tree lines caused by climate change and migrational lag. 42 Ecology, 88(3), 770-780. 43 Payette, S., L. Filion, L. Gauthier and Y. Boutin, 1985: Secular climate change in old-growth tree-line vegetation of 44 northern Quebec. Nature, 315(6015), 135-138. 45 Paz, S., 2009: Impact of Temperature Variability on Cholera Incidence in Southeastern Africa, 1971–2006. EcoHealth, 46 6(3), 340-345, doi:10.1007/s10393-009-0264-7. 47 Pekel, J., A. Cottam, N. Gorelick and A. Belward, 2016: High-resolution mapping of global surface water and its long-48 term changes. Nature, 540(7633), 418-+, doi:10.1038/nature20584. 49 Penuelas, J. and M. Boada, 2003: A global change-induced biome shift in the Montseny mountains (NE Spain). Global 50 change biology, 9(2), 131-140. 51 Phillips, M. A. et al., 2017: Malaria. Nature Reviews Disease Primers, 3(1), 1-24, doi:10.1038/nrdp.2017.50. 52 Phoenix, G. K. and J. W. Bjerke, 2016: Arctic browning: extreme events and trends reversing arctic greening. Global 53 change biology, 22(9), 2960-2962. 54
- Phuyal, P. et al., 2020: Spatiotemporal Distribution of Dengue and Chikungunya in the Hindu Kush Himalayan Region:
 A Systematic Review. *International Journal of Environmental Research and Public Health*, 17(18), 6656,
 doi:http://dx.doi.org.ezproxy.lib.utexas.edu/10.3390/ijerph17186656.
- Piao, S. et al., 2019: Plant phenology and global climate change: Current progresses and challenges. *Global change biology*, 25(6), 1922-1940.
- Piccolroaz, S., M. Toffolon, C. T. Robinson and A. Siviglia, 2018: Exploring and Quantifying River Thermal Response
 to Heatwaves. *Water*, 10(8), 1098, doi:<u>http://dx.doi.org.ezproxy.lib.utexas.edu/10.3390/w10081098</u>.

1	Pinault, L. L. and F. F. Hunter, 2011: Malaria Knowledge, Concern, Land Management, and Protection Practices
2	among Land Owners and/or Managers in Lowland versus Highland Ecuador. Malar Res Treat, 2011,
3	doi:10.4061/2011/765125.
4	Platonov, A. E. et al., 2008: Epidemiology of West Nile infection in Volgograd, Russia, in relation to climate change
5	and mosquito (Diptera: Culicidae) bionomics. Parasitology Research, 103(1), 45-53, doi:10.1007/s00436-008-
6	1050-0.
7	Platonov, A. E. et al., 2014: The Incidence of West Nile Disease in Russia in Relation to Climatic and Environmental
8	Factors. International Journal of Environmental Research and Public Health, 11(2), 1211-1232,
9	doi:10.3390/ijerph110201211.
10	Platts, P. J. et al., 2019: Habitat availability explains variation in climate-driven range shifts across multiple taxonomic
11	groups. Scientific reports, 9(1), 1-10.
12	rolley, H. W., H. S. Mayeux, H. B. Johnson and C. K. Hischler, 1997. Autospheric CO2, son water, and sinuo/grass
13	1810s on rangenands. Kangenand Ecology & Management/Journal of Kange Management Archives, 50(5), 278-
14	Poulin R 2006: Global warming and temperature-mediated increases in cercarial emergence in trematode parasites
16	Parasitology, doi:10.1017/S0031182005008693.
17	Pritchard, G. C. et al., 2005: Emergence of fasciolosis in cattle in East Anglia. <i>Veterinary Record</i> , 157(19), 578-582.
18	doi:https://doi.org/10.1136/vr.157.19.578.
19	Pun, S. B., A. Bastola and R. Shah, 2014: First report of Chikungunya virus infection in Nepal. The Journal of Infection
20	in Developing Countries, 8(06), 790-792, doi:10.3855/jidc.3701.
21	Qiu, C. J. et al., 2020: The role of northern peatlands in the global carbon cycle for the 21st century. <i>Global Ecology</i>
22	and Biogeography, doi:10.1111/geb.13081.
23	Quirk, J., C. Bellasio, D. Johnson and D. Beerling, 2019: Response of photosynthesis, growth and water relations of a
24	savannah-adapted tree and grass grown across high to low CO2. Annals of botany, 124, 77-90,
25	doi:10.1093/aob/mcz048.
26	Radeloff, V. C. et al., 2015: The rise of novelty in ecosystems. <i>Ecological Applications</i> , 25(8), 2051-2068.
27	Heterogeneous Environmental Determinants. <i>Llafact Dis</i> 208(suppl 1) S08 S106 doi:10.1003/infdis/iit202
20	Reu B et al. 2014: Euture no-analogue vegetation produced by no-analogue combinations of temperature and
30	insolation Global Ecology and Riogeography 23(2), 156-167, doi:10.1111/geb.12110
31	Revburn, R. et al., 2011: Climate Variability and the Outbreaks of Cholera in Zanzibar, East Africa: A Time Series
32	Analysis. <i>The American journal of tropical medicine and hygiene</i> , 84, 862-869, doi:10.4269/ajtmh.2011.10-0277.
33	Riad, M. H., L. W. Cohnstaedt and C. M. Scoglio, 2021: Risk Assessment of Dengue Transmission in Bangladesh
34	Using a Spatiotemporal Network Model and Climate Data. The American Journal of Tropical Medicine and
35	Hygiene, 104(4), 1444-1455, doi:10.4269/ajtmh.20-0444.
36	Robert, M. A., R. C. Christofferson, P. D. Weber and H. J. Wearing, 2019: Temperature impacts on dengue emergence
37	in the United States: Investigating the role of seasonality and climate change. <i>Epidemics</i> , 28, 100344,
38	doi:10.1016/j.epidem.2019.05.003.
39	Robert, M. A., A. M. Stewart-Ibarra and E. L. Estallo, 2020: Climate change and viral emergence: evidence from
40	Acdes-borne arboviruses. Current Opinion in Virology, 40, 41-47, doi:10.1016/j.coviro.2020.05.001.
41	A2(16), 6771, 6770
42	Rodell M et al. 2018; Emerging trends in global freshwater availability. <i>Nature</i> , 557(7707), 651-659
44	doi:10.1038/s41586-018-0123-1
45	
46	Roobthaisong, A. et al., 2017: Molecular Epidemiology of Cholera Outbreaks during the Rainy Season in Mandalay,
47	Myanmar. The American Journal of Tropical Medicine and Hygiene, 97(5), 1323-1328, doi:10.4269/ajtmh.17-
48	0296.
49	Rose, H., T. Wang, J. van Dijk and E. R. Morgan, 2015: GLOWORM-FL: A simulation model of the effects of climate
50	and climate change on the free-living stages of gastro-intestinal nematode parasites of ruminants. <i>Ecological</i>
51	<i>Modelling</i> , 297, 232-245, doi:10.1016/j.ecolmodel.2014.11.033.
52	Kozo, S. V., 2020: Unintended effects of illegal economic activities: Illegal gold mining and malaria. <i>World</i>
33 54	Development, 150, 105119, 001.10.1010/J.Woriddev.2020.105119.
54 55	Equador International Journal of Environmental Research and Public Health 15(3)
56	doi:10.3390/ijernh15030486
57	Sack, R. B. et al., 2003: A 4-Year Study of the Epidemiology of Vibrio cholerae in Four Rural Areas of Bangladesh I
58	Infect Dis, 187(1), 96-101, doi:10.1086/345865.
59	Salih, N. E. and J. N. R. Grainger, 1982: The effect of constant and changing temperatures on the development of the
60	eggs and larvae of Ostertagia circumcincta. Journal of Thermal Biology, 7(1), 35-38.
61	Sanches, L. et al., 2019: Global regulation of methane emission from natural lakes. Scientific Reports, 9,
62	doi:10.1038/s41598-018-36519-5.

- Scheiter, S. et al., 2018: How vulnerable are ecosystems in the Limpopo province to climate change? *South African Journal of Botany*, 116, 86-95.
- Scheiter, S. and S. I. Higgins, 2009: Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. *Global Change Biology*, 15(9), 2224-2246, doi:10.1111/j.1365-2486.2008.01838.x.
- Seah, A., J. Aik, L.-C. Ng and C. C. Tam, 2021: The effects of maximum ambient temperature and heatwaves on dengue infections in the tropical city-state of Singapore – A time series analysis. *Science of The Total Environment*, 775, 145117, doi:10.1016/j.scitotenv.2021.145117.

Seekell, D. et al., 2015: The influence of dissolved organic carbon on primary production in northern lakes. *Limnology and Oceanography*, 60(4), 1276-1285, doi:10.1002/lno.10096.

- Settele, J. et al., 2014: Terrestrial and inland water systems. In: Climate Change 2014: Impacts, Adaptation, Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the IPCC [Field, C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea and L. L. White (eds.)]. Cambridge University Press, Cambridge, pp. 271-359.
- Shah, M. M. et al., 2019: Malaria smear positivity among Kenyan children peaks at intermediate temperatures as predicted by ecological models. *Parasites & Vectors*, 12(1), 288, doi:10.1186/s13071-019-3547-z.
- Shatwell, T., R. Adrian and G. Kirillin, 2016: Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes. *Scientific Reports (Nature Publisher Group)*, 6, 24361, doi:http://dv.doi.org.org/prov/lib.ut/2010/1028/org/24261

doi:http://dx.doi.org.ezproxy.lib.utexas.edu/10.1038/srep24361.

- Shatwell, T., W. Thiery and G. Kirillin, 2019: Future projections of temperature and mixing regime of European temperate lakes. *Hydrology and Earth System Sciences*, 23(3), 1533-1551, doi:10.5194/hess-23-1533-2019.
- Shrestha, M. et al., 2019: Molecular evidence supports the expansion of visceral leishmaniasis towards non-program districts of Nepal. *BMC Infectious Diseases*, 19(1), 444, doi:10.1186/s12879-019-4083-3.
- Shrestha, M. et al., 2018: Visceral leishmaniasis from a non-endemic Himalayan region of Nepal. *Parasitology Research*, 117(7), 2323-2326, doi:10.1007/s00436-018-5887-6.
- Sigudu, T. T., K. S. Tint and B. Archer, 2015: Epidemiological description of cholera outbreak in Mpumalanga Province, South Africa, December 2008–March 2009. Southern African Journal of Infectious Diseases, 30(4), 125-128, doi:10.1080/23120053.2015.1107263.
- Siraj, A. S. et al., 2014: Altitudinal Changes in Malaria Incidence in Highlands of Ethiopia and Colombia. *Science*, 343(6175), 1154-1158, doi:10.1126/science.1244325.
- Siya, A. et al., 2020: Malaria patterns across altitudinal zones of Mount Elgon following intensified control and prevention programs in Uganda. *BMC Infectious Diseases*, 20(1), 425, doi:10.1186/s12879-020-05158-5.
- Slingsby, J. et al., 2017: Intensifying postfire weather and biological invasion drive species loss in a Mediterranean-type biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 114(18), 4697-4702, doi:10.1073/pnas.1619014114.
- Smit, A. and G. L. Velthof, 2010: Comparison of indices for the prediction of nitrogen mineralization after destruction of managed grassland. *Plant and soil*, 331(1), 139-150.
- Smith, G., 1990: The population biology of the free-living phase of Haemonchus contortus. *Parasitology*, 101(2), 309-316, doi:10.1017/S003118200006337X.
- Smithers, B. V., M. P. North, C. I. Millar and A. M. Latimer, 2018: Leap frog in slow motion: Divergent responses of
 tree species and life stages to climatic warming in Great Basin subalpine forests. *Global Change Biology*, 24(2),
 E442-E457, doi:10.1111/gcb.13881.
- Solomon, C. T. et al., 2015: Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes:
 current knowledge and future challenges. *Ecosystems*, 18(3), 376-389.
- Sousa, P. M. et al., 2018: The 'Day Zero'Cape Town drought and the poleward migration of moisture corridors.
 Environmental Research Letters, 13(12), 124025.
- Southcott, W. H., G. W. Major and I. A. Barger, 1976: Seasonal pasture contamination and availability of nematodes
 for grazing sheep. *Australian journal of agricultural research*.
- Sri Rejeki, D. S., S. Suratma and S. M. Wijayanti, 2021: Climate and Malaria in Indonesia. ASRO, 24(03),
 doi:10.36295/ASRO.2021.24374.
- Stålhandske, S., K. Gotthard and O. Leimar, 2017: Winter chilling speeds spring development of temperate butterflies.
 Journal of Animal Ecology, 86(4), 718-729, doi:10.1111/1365-2656.12673.
- Stan, K. and A. Sanchez-Azofeifa, 2019: Tropical dry forest diversity, climatic response, and resilience in a changing
 climate. *Forests*, 10(5), 1-19, doi:10.3390/f10050443.
- Stephenson, N. L. et al., 2018: Patterns and correlates of giant sequoia foliage dieback during California's 2012–2016
 hotter drought. *Forest ecology and management*, 419, 268-278.
- Stevens, N., C. E. Lehmann, B. P. Murphy and G. Durigan, 2017: Savanna woody encroachment is widespread across
 three continents. *Global change biology*, 23(1), 235–244.
- Stewart-Ibarra, A. M. and R. Lowe, 2013: Climate and Non-Climate Drivers of Dengue Epidemics in Southern Coastal
 Ecuador. *The American Journal of Tropical Medicine and Hygiene*, 88(5), 971-981, doi:10.4269/ajtmh.12-0478.
- Stewart-Ibarra, A. M. et al., 2013: Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors
 in Ecuador: Implications for Targeted Control. *PLOS ONE*, 8(11), e78263, doi:10.1371/journal.pone.0078263.

- Stockwell, J. D. et al., 2020: Storm impacts on phytoplankton community dynamics in lakes. *Global Change Biology*, 26(5), 2756-2784, doi:10.1111/gcb.15033.
- Stoner, D. C. et al., 2018: Climatically driven changes in primary production propagate through trophic levels. *Global Change Biology*, 24(10), 4453-4463, doi:10.1111/gcb.14364.
- Suarez, F., D. Binkley, M. W. Kaye and R. Stottlemyer, 1999: Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska. *Ecoscience*, 6(3), 465-470.
- Syphard, A. D., T. J. Brennan and J. E. Keeley, 2019: Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern California. *Diversity and Distributions*, 25(1), 90-101.
- Tape, K., M. Sturm and C. Racine, 2006: The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. *Global change biology*, 12(4), 686-702.
- Thammapalo, S., V. Chongsuwiwatwong, D. McNeil and A. Geater, 2005: The climatic factors influencing the occurrence of dengue hemorrhagic fever in Thailand. *The Southeast Asian Journal of Tropical Medicine and Public Health*, 36(1), 191-196.
- Thornley, J. H. M. and J. France, 2016: Blue tongue A modelling examination of fundamentals Seasonality and chaos. *Journal of Theoretical Biology*, 403, 17-29, doi:10.1016/j.jtbi.2016.05.003.
- Thrane, J., D. Hessen and T. Andersen, 2014: The Absorption of Light in Lakes: Negative Impact of Dissolved Organic Carbon on Primary Productivity. *Ecosystems*, 17(6), 1040-1052, doi:10.1007/s10021-014-9776-2.
- Tokarevich, N. et al., 2017: Impact of air temperature variation on the ixodid ticks habitat and tick-borne encephalitis incidence in the Russian Arctic: the case of the Komi Republic. *International Journal of Circumpolar Health*, 76(1), 1298882, doi:10.1080/22423982.2017.1298882.
- Tokarevich, N. K. et al., 2011: The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia. *Global Health Action*, 4(1), 8448, doi:10.3402/gha.v4i0.8448.
- Tryland, M., V. Ravolainen and Å. Ø. Pedersen, 2018: Climate Change: Potential Impacts on Pasture Resources, Health and Diseases of Reindeer and Caribou. In: *Reindeer and Caribou*. CRC Press. ISBN 978-0-429-48961-7.
- Tuladhar, R., A. Singh, A. Varma and D. K. Choudhary, 2019: Climatic factors influencing dengue incidence in an epidemic area of Nepal. *BMC Research Notes*, 12(1), 131, doi:10.1186/s13104-019-4185-4.
- Turetsky, M. R. et al., 2020: Carbon release through abrupt permafrost thaw. *Nature Geoscience*, 13(2), 138-143, doi:10.1038/s41561-019-0526-0.
- Urrutia-Cordero, P., M. K. Ekvall and L.-A. Hansson, 2016: Local food web management increases resilience and buffers against global change effects on freshwaters. *Scientific reports*, 6, 29542.
- Urrutia-Cordero, P. et al., 2017: Phytoplankton diversity loss along a gradient of future warming and brownification in
 freshwater mesocosms. *Freshwater Biology*, 62(11), 1869-1878, doi:10.1111/fwb.13027.
- van der Kolk, H.-J. et al., 2016: Potential Arctic tundra vegetation shifts in response to changing temperature,
 precipitation and permafrost thaw. *Biogeosciences*, 13(22), 6229-6245, doi:10.5194/bg-13-6229-2016.
- van Dijk, J., G. P. David, G. Baird and E. R. Morgan, 2008: Back to the future: Developing hypotheses on the effects of
 climate change on ovine parasitic gastroenteritis from historical data. *Veterinary Parasitology*, 158(1), 73-84,
 doi:10.1016/j.vetpar.2008.08.006.
- van Dijk, J., N. D. Sargison, F. Kenyon and P. J. Skuce, 2010: Climate change and infectious disease: helminthological
 challenges to farmed ruminants in temperate regions. *Animal: an International Journal of Animal Bioscience; Cambridge*, 4(3), 377-392, doi:<u>http://dx.doi.org.ezproxy.lib.utexas.edu/10.1017/S1751731109990991</u>.
- van Mantgem, P. et al., 2009: Widespread Increase of Tree Mortality Rates in the Western United States. *Science*,
 323(5913), 521-524, doi:10.1126/science.1165000.
- Venter, Z. S., M. D. Cramer and H.-J. Hawkins, 2018: Drivers of woody plant encroachment over Africa. *Nature communications*, 9(1), 2272.
- Vezzulli, L. et al., 2012: Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios.
 The ISME Journal, 6(1), 21-30, doi:10.1038/ismej.2011.89.
- Vezzulli, L. et al., 2016: Climate influence on *Vibrio* and associated human diseases during the past half-century in the
 coastal North Atlantic. *Proceedings of the National Academy of Sciences of the United States of America*, 113(34),
 E5062-E5071, doi:10.1073/pnas.1609157113.
- Walther, G.-R., S. Beißner and R. Pott, 2005: Climate change and high mountain vegetation shifts. In: *Mountain ecosystems*. Springer, pp. 77-96.
- Wang, S. R. et al., 2018: Potential shift from a carbon sink to a source in Amazonian peatlands under a changing
 climate. *Proceedings of the National Academy of Sciences of the United States of America*, 115(49), 12407-12412,
 doi:10.1073/pnas.1801317115.
- Wangdi, K. et al., 2020: A spatio-temporal analysis to identify the drivers of malaria transmission in Bhutan. *Scientific Reports*, 10(1), 7060, doi:10.1038/s41598-020-63896-7.
- Wardle, P. and M. Coleman, 1992: Evidence for rising upper limits of four native New Zealand forest trees. *New Zealand Journal of Botany*, 30(3), 303-314.
- Wårlind, D., B. Smith, T. Hickler and A. Arneth, 2014: Nitrogen feedbacks increase future terrestrial ecosystem carbon
 uptake in an individual-based dynamic vegetation model. *Biogeosciences*, 11(21), 6131-6146, doi:10.5194/bg-11 6131-2014.

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

- Warszawski, L. et al., 2013: A multi-model analysis of risk of ecosystem shifts under climate change. *Environmental Research Letters*, 8(4), doi:10.1088/1748-9326/8/4/044018.
- Watts, M. J. et al., 2020: Influence of socio-economic, demographic and climate factors on the regional distribution of dengue in the United States and Mexico. *International Journal of Health Geographics*, 19(1), 1-15, doi:10.1186/s12942-020-00241-1.
- Watts, N. et al., 2019: The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. *The Lancet*, 394(10211), 1836-1878, doi:10.1016/S0140-6736(19)32596-6.
- Weyhenmeyer, G. A., R. A. Müller, M. Norman and L. J. Tranvik, 2016: Sensitivity of freshwaters to browning in response to future climate change. *Climatic Change*, 134(1-2), 225-239.
- Williams, A. P. et al., 2020: Large contribution from anthropogenic warming to an emerging North American megadrought. *Science*, 368(6488), 314-+, doi:10.1126/science.aaz9600.
- Willis, S. G. et al., 2009: Assisted colonization in a changing climate: a test-study using two UK butterflies. *Conservation Letters*, 2(1), 46-52.
- Wolkovich, E. M. et al., 2012: Warming experiments underpredict plant phenological responses to climate change. *Nature*, 485(7399), 494-497.
- Wood, T. M., S. A. Wherry, S. Piccolroaz and S. F. Girdner, 2016: Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099. US Geological Survey.
- Woolway, R. I. and C. J. Merchant, 2019: Worldwide alteration of lake mixing regimes in response to climate change. *Nature Geoscience*, 12(4), 271-276.
- Wu, P.-C. et al., 2007: Weather as an effective predictor for occurrence of dengue fever in Taiwan. *Acta Tropica*, 103(1), 50-57, doi:10.1016/j.actatropica.2007.05.014.
- Wu, P.-C. et al., 2009: Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in
 subtropical Taiwan. *Science of The Total Environment*, 407(7), 2224-2233, doi:10.1016/j.scitotenv.2008.11.034.
- Xiang, J. et al., 2017: Association between dengue fever incidence and meteorological factors in Guangzhou, China,
 2005–2014. *Environmental Research*, 153, 17-26, doi:10.1016/j.envres.2016.11.009.
- Xie, Y. et al., 2015: Green-up of deciduous forest communities of northeastern North America in response to climate
 variation and climate change. *Landscape ecology*, 30(1), 109-123.
- Xu, M. et al., 2016: Environmental factor analysis of cholera in China using remote sensing and geographical
 information systems. *Epidemiol. Infect.*, 144(5), 940-951, doi:10.1017/S095026881500223X.
- Young, D. J. N. et al., 2019: Post-fire forest regeneration shows limited climate tracking and potential for drought induced type conversion. *Ecology*, 100(2), e02571.
- Yue, Y. et al., 2014: Influence of climate factors on Vibrio cholerae dynamics in the Pearl River estuary, South China.
 World Journal of Microbiology and Biotechnology, 30(6), 1797-1808, doi:10.1007/s11274-014-1604-5.
- Zhang, D., 2019: China's forest expansion in the last three plus decades: Why and how? *Forest Policy and Economics*,
 98, 75-81.
- Zlatanović, S., J. Fabian, K. Premke and M. Mutz, 2018: Shading and sediment structure effects on stream metabolism
 resistance and resilience to infrequent droughts. *Science of The Total Environment*, 621, 1233-1242,
 doi:10.1016/j.scitotenv.2017.10.105.
- Zwart, J. A. et al., 2016: Metabolic and physiochemical responses to a whole-lake experimental increase in dissolved
 organic carbon in a north-temperate lake. *Limnology and Oceanography*, 61(2), 723-734.
- 42 43