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SM3.1  Section 3.1 1 
 2 
SM3.1.1  SROCC Burning Embers 3 
 4 

 5 
 6 
Figure SM3.1: Projected impacts and risks for ocean regions and ecosystems. As assessed by SROCC (IPCC, 2019 7 
 8 
 9 
SM3.2  Section 3.3 10 
 11 
SM3.2.1  Combined Climate Stressors 12 
 13 
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 1 
Figure SM3.2: The effects of single and combined stressors on the performance of marine ectothermic animals. 2 
Performance relates to survival, development, condition, growth, calcification and metabolism, which ultimately 3 
modulate population extinction risk. Solid symbols and vertical bars, effect size ±95% confidence (extremely likely) 4 
intervals. The interaction of rising temperature and oxygen limitation has the most detrimental effect on organismal 5 
performance. S = salinity, T = temperature, O = Oxygen. Modified from Reddin et al. (2020). 6 
 7 
 8 
SM3.2.2  Understanding Sources Uncertainty in Climate Projections from Marine Ecological Models 9 
 10 
The use of global and regional marine ecosystem and fisheries models (e.g., in ensembles such as Fish-MIP, 11 
Tittensor et al., 2018) provides opportunities to investigate the influence of different sources of uncertainty 12 
on model projections at different temporal and spatial scales. Fish-MIP global modelling experiments have 13 
shown that different model assumptions regarding the effects of temperature and changes in primary and 14 
secondary production, combined with the degree of food-web complexity and feedbacks, can lead to 15 
substantial differences in marine animal biomass under future projections under separate and combined 16 
physical and biogeochemical drivers (Heneghan et al., 2021). These include directional differences in 17 
projections, particularly at smaller spatial scales (Tittensor et al., 2018), and in comparison with regional 18 
marine ecosystem models (Pethybridge et al., 2020). It is clear that much more work is needed to advance 19 
the nature of coupling physical, biogeochemical and ecological models as well as appropriate combinations 20 
of models and data across different scales. 21 
  22 
Global Fish-MIP model ensemble experiments have been restricted to the use of only a few ESMs which 23 
does not provide enough information to assess whether there is a decrease in the uncertainty of Fish-MIP 24 
models compared with CMIP ensembles (Lotze et al., 2019). Single-model ensembles have been used, 25 
however, to assess the relative influence of different sources of uncertainty on impacts of regional 26 
projections, spanning a wider range of ESM outputs (Payne et al., 2016). For example, using a regional 27 
model of the Bering Sea, Reum et al. (2020) showed that in the short- to medium-term ecological processes 28 
contributed substantially to model uncertainty, but that ESM and scenario uncertainty became the overriding 29 
sources of variation in the long-term. Similar results have been found with species distribution models at the 30 
global scale, but when examined for single species or regions, internal variability of ecological models also 31 
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can be very large (Cheung et al., 2016a; Cheung et al., 2016b), highlighting the need to track multiple 1 
sources of uncertainty for confidence assessment in models. 2 
 3 
 4 
SM3.3  Section 3.4 5 
 6 
SM3.3.1  Assessment of the Impact of Storms and Tropical Cyclones on Estuaries and Soft-Sediment 7 

Coasts 8 
 9 
Estuarine ecosystems and their phytoplankton (Carrasco Navas-Parejo et al., 2020), vegetation (Mo et al., 10 
2020), fish (Matich et al., 2020) and birds (Field et al., 2019; Wilkinson et al., 2019), can be resilient to the 11 
impacts of storms and tropical cyclones (medium confidence). Nevertheless, the passage of storms can also 12 
manifest subtly in, for example, reduced body condition of juvenile fish (Matich et al., 2020), and can also 13 
have counterintuitive effects by, for example, reducing erosion rates by moving sediments onshore (Wang et 14 
al., 2020). In some instances, heavy precipitation can flush estuaries, resulting in net erosion; in others, 15 
runoff from adjacent land can increase nutrient loads, causing or exacerbating eutrophication, stimulating 16 
HABs (Phlips et al., 2020) and sometimes causing large-scale marine mammal, bird, and fish kills (Adams et 17 
al., 2019). 18 
 19 
Effects of tropical cyclones on mangroves are variable (high confidence). They range from beneficial 20 
(Castañeda-Moya et al., 2020; Feher et al., 2020), through minor damage (Armitage et al., 2019) or recovery 21 
over a period of less than a decade (Branoff, 2020), culminating in regime shifts involving peat collapse and 22 
transition to mudflats (Chambers et al., 2019; Osland et al., 2020). Saltmarsh vegetation is more resilient to 23 
intense storms (medium confidence) (Armitage et al., 2019; Mo et al., 2020), with sediments showing limited 24 
amounts of long-term erosion, and sometimes even accretion (Xie et al., 2017), especially when suspended 25 
sediments are not advected too far away from the site of erosion (Leonardi et al., 2018). 26 
 27 
On sandy beaches (Section 3.4.2.6), although extreme storms can both remove and create habitat for 28 
shorebirds, losses of existing habitat are generally small, even when considering only the impacted portion of 29 
species’ distributions (Maslo et al., 2019). When considering the full species’ distributions, impacts are often 30 
negligible (Field et al., 2019). Projected loss of beach habitat to SLR and urbanisation remains a substantial 31 
risk, however. 32 
 33 
SM3.3.2  Additional Background for the Assessment of Semi-Enclosed Seas (SES) 34 
 35 
Recent warming and changes in other environmental conditions in SES, with ecological and biogeochemical 36 
ramifications, have been attributed to climate change (high confidence) (e.g., Adloff et al., 2015; Shirvani et 37 
al., 2015; The BACC II Author Team, 2015). The Persian Gulf, characterized by extreme seasonal 38 
fluctuations in temperature and salinity, has shown an increase in frequency of extreme events, increases in 39 
salinity and declines in oxygen content. The latter changes, combined with substantial reduction in 40 
freshwater discharge and an increase in coastal eutrophication, have triggered changes in biogeochemical 41 
cycles (high confidence) (Al-Said et al., 2018; Ben-Hasan et al., 2018; Al-Yamani and Naqvi, 2019; Ben-42 
Hasan and Christensen, 2019). In the Red Sea, ocean acidification and MHWs are the main climate-impact 43 
drivers, along with warming (high confidence) (Steiner et al., 2018; Genevier et al., 2019). Increasing MHW 44 
frequency, decreases in precipitation, accelerating SLR and extreme winter weather events have been 45 
reported for the Mediterranean Sea (high confidence) (Adloff et al., 2015; Cramer et al., 2018; Darmaraki et 46 
al., 2019). Important changes in thermohaline circulation have been reported in the Black Sea, including 47 
erosion of the cold intermediate layer that controls the important exchange of oxygen between surface and 48 
deep water masses (high confidence) (Cannaby et al., 2015; Miladinova et al., 2017). In the Baltic Sea, 49 
changes in rainfall and river runoff have been described, with a decreased influx of seawater (from the North 50 
Sea) and prolonged hypoxia in deeper parts of the basin representing major stressors for different ecosystem 51 
components (high confidence) (The BACC II Author Team, 2015; Räisänen, 2017). 52 
 53 
The size and number of OMZs are increasing worldwide and in most SES (high confidence) (Global Ocean 54 
Oxygen Network, 2018), with growing impacts on fish species and ecosystem functioning. In the Persian 55 
Gulf and Red Sea, increasing nutrient loads associated with coastal activities and warming has increased the 56 
size of OMZs (high confidence) (Al-Said et al., 2018; Lachkar et al., 2019). OMZs represent an even greater 57 
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problem in the Black and Baltic Seas, with broad implications for ecosystem function and services (e.g. 1 
Levin et al., 2009), especially where actions to reduce nutrient loading from land have not been unable to 2 
reduce the OMZ coverage (high confidence) (Carstensen et al., 2014; Miladinova et al., 2017; Global Ocean 3 
Oxygen Network, 2018). In the Baltic Sea, OMZs are affecting the spawning areas of cod, Gadus morhua 4 
(high confidence) (Hinrichsen et al., 2016), while in the Black Sea, the combined effect of OMZs and 5 
warming is influencing the distribution and physiology of fish species, and their migration and schooling 6 
behavior in the overwintering grounds (medium confidence) (Güraslan et al., 2017). Cascading effects on 7 
food webs have been reported in the Baltic, where detrimental effects of changing oxygen levels on 8 
zooplankton production, pelagic and piscivorous fish are influencing seasonal succession and species 9 
composition of phytoplankton (high confidence) (Viitasalo et al., 2015). 10 
 11 
SM3.3.3  Calculating Changes in Phenology Shifts 12 
 13 
SM3.3.3.1  Database 14 
This analysis updates the database of Poloczanska et al. (2013), which had 109 time-series from 31 studies 15 
and was used in AR5 WGII Chapter 30 (Hoegh-Guldberg et al., 2014). The new studies were found by 16 
searching ISI Web of Science and Google Scholar using keywords “phenology” and “marine”. As in the 17 
original database, all observations had to meet three criteria:  18 

• Criterion 1. Time series had to be at least 19 years in duration to minimise bias associated with 19 
short-term responses to natural climate variability (median time series duration was 45 years). 20 

• Criterion 2. The end date of the time series had to be 1990 or later. 21 

• Criterion 3. Studies had to directly test, or at a minimum discuss, their results in relation to expected 22 
impacts of climate change (Poloczanska et al., 2013).  23 

This process resulted in the addition of 306 time series from 79 studies. 24 
  25 
Each observation in the database was a time series of a species or a group of species (e.g., total zooplankton). 26 
Observations included cases where phenological responses were consistent with climate change (earlier 27 
occurrence with warming), inconsistent with climate change, or there was no change. Data were included 28 
from time series that were continuous (n = 388), intermittent (n = 14), and from two periods in time (n = 13). 29 
Quantitative estimates of shifts in phenology were taken directly from the published papers, calculated from 30 
information in tables or the Supplement, or digitised from figures. We used data reported as days per decade 31 
to examine mean rates of shifts. 32 
  33 
To avoid duplication and to minimise spatial autocorrelation, the latitude and longitude of each observation 34 
was used to assign each observation to a Longhurst Province, a commonly used global bioregionalisation 35 
(Longhurst et al., 1995). We considered time series of the same species in different Longhurst Provinces as 36 
unique observations, but where we found multiple time series for the same species in a Longhurst Province, 37 
we used the mean phenological shift and randomly selected an observation for consistency (see Analysis 38 
below). The data used in the analysis below are available in Table SM3.1. 39 
  40 
SM3.3.3.2  Analysis 41 
To estimate rates of consistency with climate change among taxonomic groups (taxa), we analysed the 42 
observations using a generalised linear model with a binomial error structure and a binary response variable 43 
(0 = Not consistent; 1 = Consistent) (n = 413). To analyse the magnitude and direction of observed 44 
phenological shifts (days per decade) by different taxonomic groups, we used a linear model with a normal 45 
error structure (n = 312). In both models, the same four predictors were used. The first was taxonomic group 46 
(with levels for Phytoplankton, Zooplankton, Meroplankton, Benthic invertebrates, Plants, Fish, Reptiles, 47 
Seabirds, Mammals), so we could test for differences across groups in Consistency and the magnitude and 48 
direction of phenological shift. We included the remaining predictors to account for potential issues 49 
associated with publication bias (Parmesan and Yohe, 2003). The second predictor in the models, number of 50 
species in each study, was included because previous analyses have found that studies that included few 51 
species (e.g., single species studies) tend to have a larger effect size (Parmesan and Yohe, 2003). The third 52 
predictor was the duration of the study, because shorter studies might be more likely to report more 53 
consistent impacts of climate change and greater phenology shifts. The final predictor included was the mid-54 
year of the time series, to test whether more-recent time series might be more likely to observe more 55 
consistent impacts of climate change and greater phenology shifts, as climate change accelerates. For 56 
modelling consistency, we removed from the model any taxonomic group that had no variance (i.e., all time 57 

ACCEPTED V
ERSIO

N 

SUBJE
CT TO FIN

AL E
DITS



FINAL DRAFT Chapter 3 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SM3-6 Total pages: 88 

series were consistent with climate change) because their inclusion destabilised error estimation. These 1 
points were plotted in the final output without error (since it is impossible to determine error without 2 
variance). 3 
 4 
 5 

 6 
Figure SM3.3: Observed responses to climate change based on a systematic review of the Web of Science for marine 7 
phenology studies longer than 19 years in duration. Error envelopes indicate 95% (extremely likely) confidence interval. 8 
(a) Proportion of phenology observations (showing means and extremely likely range) that are attributed to climate 9 
change (i.e., generally showing earlier timing) by duration of study in years (adjusted for taxon). The dashed line at 0.5 10 
indicates random chance. (b) Shifts in timing that are attributed to climate change by duration of study (adjusted for 11 
taxon). The dashed line at 0 indicates no shift. Negative shifts are earlier, positive shifts are later. The observations 12 
summarised in panels (a) and (b) have been collected over the global oceans (see locations in Figure 3.16a) and include 13 
n=297,277 observations of phenology shifts that are attributed (at least partly) to climate change, and n=1168 14 
observations of phenology shifts that are inconsistent with climate change (see Section 3.4.3.2).  15 
 16 
 17 

ACCEPTED V
ERSIO

N 

SUBJE
CT TO FIN

AL E
DITS



FINAL DRAFT Chapter 3 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SM3-7 Total pages: 88 

Table SM3.1: Data used to create Figure 3.16 in Section 3.4.3. Longhurst codes: NECS = Northeast Atlantic shelves, PSAW = Western Pacific subarctic gyres, SARC = Atlantic 1 
sub-Arctic, NWCS = Northwest Atlantic shelves, ARCT = Atlantic Arctic, CCAL = California Current, APLR = Austral Polar, NADR = North Atlantic Drift, NASE = Northeast 2 
Atlantic subtropical gyre, BRAZ = Brazilian current coast, MEDI = Mediterranean Sea, BPLR = Boreal polar, ALSK = Alaska coastal downwelling, FKLD = Southwest Atlantic 3 
shelves, CARB = Caribbean, SANT = Subantarctic water ring, AUSW = Western Australian and Indonesian coast, GFST = Gulf Stream, BERS = North Pacific epicontinental Sea, 4 
KURO = Kuroshio current, PSAW = Western Pacific subarctic gyres, SANT = Subarctic water ring, EAFR = East African coast. 5 

Reference Database Longhurst Latitude Longitude Group Species LastYear MidYear Duration NumOfReps Consistent Shift 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton Acartia clausi 2012 2000 25 24 1 -6.4 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Acartia spp. 1998 1982 45 49 1 -0.81 

(Costello et al., 2006) AR5 NWCS 41.50 -71.35 Holozooplankton Acartia tonsa 2003 1977 53 2 1 0 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Actinotrocha spp. 1994 1984 21 25 1 NA 
(Descamps et al., 
2019) Current PSAW 52.35 -176.93 Seabirds Aethia cristatella 2015 2001.5 28 16 0 0 
(Descamps et al., 
2019) Current PSAW 52.35 -176.93 Seabirds Aethia psittacula 2015 2003 25 16 1 -0.08 
(Descamps et al., 
2019) Current PSAW 52.35 -176.93 Seabirds Aethia pusilla 2015 1998.5 34 16 0 0.09 
(Descamps et al., 
2019) Current PSAW 52.35 -176.93 Seabirds Aethia pygmaea 2015 2001.5 28 16 1 -0.18 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Aglantha digitale 1994 1984 21 25 1 NA 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Agonus cataphractus 2013 1986.5 54 30 1 NA 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Alaurina spp. 1994 1984 21 25 1 NA 

(Wanless et al., 2009) AR5 NECS 56.18 -2.56 Seabirds Alca torda 2006 1990.5 36 7 0 -0.04 
(Descamps et al., 
2019) Current SARC 70.37 31.13 Seabirds Alca torda 2013 1997.5 32 16 1 -0.03 

(Bucci et al., 2020) Current NWCS 44.90 -66.70 Phytoplankton 
Alexandrium 
catenella 2014 2001 27 1 1 -7.5 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton 
All other colourless 
dinoflagellates 2012 2000 25 24 0 6.4 

(Moe et al., 2009) AR5 ARCT 77.00 15.55 Seabirds Alle alle 2012 1992.5 46 2 1 -0.66 
(Lombardo et al., 
2019) Current NWCS 36.00 -76.50 Fish Alosa aestivalis 2016 1994.5 44 1 1 -4.33 

(Chevillot et al., 2017) Current NECS 45.42 -0.86 Fish Alosa alosa 2010 1997.5 26 7 1 NA 

(Chevillot et al., 2017) Current NECS 45.42 -0.86 Holozooplankton Alosa bifilosa 2010 1997.5 26 7 1 NA 

(Chevillot et al., 2017) Current NECS 45.42 -0.86 Fish Alosa fallax 2010 1997.5 26 7 1 NA 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Alosa 
pseudoharengus 2015 1992.5 48 35 1 -3 
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(Cobb, 2020) Current NWCS 
43.27 -70.98 

Fish 

Alosa 
pseudoharengus and 
Alosa aestivalis 2016 1997.5 38 1 1 -3.5 

(Chevillot et al., 2017) Current NECS 45.42 -0.86 Fish Alosa reguis 2010 1997.5 26 7 0 NA 
(Quinn and Adams, 
1996) Current CCAL 45.64 -121.94 Fish Alosa sapidissima 1992 1965 55 1 1 -6.89 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Alosa sapidissima 2012.5 1993.25 48 35 1 -4 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Amblyraja radiate 2014 1990.5 48 35 0 NA 

(Burthe et al., 2012) Current NECS 56.50 -1.50 Fish Ammodytes marinus 2006 1994.5 24 4 0 2.58 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Ammodytes tobianus 2013 1986.5 54 30 0 NA 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Holozooplankton 

Amphidinium 
crassum 2016 2004.5 24 29 1 -7.24 

(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Anarhichas lupus 2014 1990.5 48 35 1 NA 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Meroplankton Anemone larvae 2012 2000 25 24 1 -1.6 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Anguilla anguilla 2013 1986.5 54 30 0 NA 

(Thaxton et al., 2020) Current NWCS 34.60 -77.20 Meroplankton Anguilla rostrata 2013 1999.5 28 9 1 -0.1 
(Chambers et al., 
2014) Current AUSW -28.77 113.85 Seabirds Anous stolidus 2010 2000.5 20 4 0 NA 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Aphanizomenon spp. 2016 2004.5 24 29 1 -3.03 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton Appendicularians 2012 2000 25 24 0 2 
(Barbraud and 
Weimerskirch, 2006) AR5 APLR -66.66 140.00 Seabirds Aptenodytes forsteri 2004 1977 55 9 0 0.31 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Arachnactes 1994 1984 21 25 1 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Argentina sialis 2008 1979.5 58 43 0 2 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Argyropelecus 
sladeni 2008 1979.5 58 43 1 -5.85 

(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Arnoglossus laterna 2013 1986.5 54 30 0 NA 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Asterias rubens 1994 1984 21 25 1 NA 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton 

Asterionellopsis 
glacialis 2011 1985.166 45 49 1 -9.5 

(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Atherina presbyter 2013 1986.5 54 30 0 NA 
(Van Walraven et al., 
2015) Current NECS 53.57 6.94 Holozooplankton Aurelia aurita 2010 1985 51 2 1 -7.66 
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(Atkinson et al., 2015) Current NECS 
50.25 -4.21 

Phytoplankton 

Autotrophic 
dinoflagellate 
biomass 2012 2000 25 24 0 1.6 

(Ramp et al., 2015) Current NWCS 49.90 -64.50 Mammals 
Balaenoptera 
physalus 2010 1997 27 2 1 -10.37 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Bathylagus pacificus 2008 1979.5 58 43 0 4.6 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Bathylagus wesethi 2008 1979.5 58 43 0 4.4 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Belone belone 2013 1986.5 54 30 1 NA 

(Schlüter et al., 2010) AR5 NECS 54.18 7.90 Holozooplankton Beroe gracilis 2004 1989.5 30 2 1 -9.33 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton Bodonids 2012 2000 25 24 1 -5.2 

(Thaxton et al., 2020) Current NWCS 34.60 -77.20 Meroplankton Brevoortia tyrannus 2013 1999.5 28 9 1 -10.9 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Brosme brosme 2014 1990.5 48 35 0 NA 

(McGinty et al., 2011) Current NADR 49.50 -9.00 Holozooplankton 
Calanus 
finmarchicus 2008 1983 51 7 1 -1.56 

(McGinty et al., 2011) Current NASE  -15.00 Holozooplankton 
Calanus 
finmarchicus 2008 1983 51 7 1 -0.59 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton 

Calanus 
finmarchicus 2006.4 1984.7 45 49 1 -1.84 

(McGinty et al., 2011) Current SARC 60.00 -10.00 Holozooplankton 
Calanus 
finmarchicus 2008 1983 51 7 1 -2.97 

(Persson et al., 2012) Current SARC 66.33 33.66 Holozooplankton Calanus glacialis 2010 1987 47 2 1 NA 

(McGinty et al., 2011) Current NADR 49.50 -9.00 Holozooplankton 
Calanus 
helgolandicus 2008 1983 51 7 1 -2.3 

(McGinty et al., 2011) Current NASE 41.00 -15.00 Holozooplankton 
Calanus 
helgolandicus 2008 1983 51 7 1 -1.48 

(McGinty et al., 2011) Current NECS 53.00 -6.00 Holozooplankton 
Calanus 
helgolandicus 2008.4 1989.9 39 7 1 0.94 

(McGinty et al., 2011) Current SARC 60.00 -10.00 Holozooplankton 
Calanus 
helgolandicus 2008 1983 51 7 1 -2.08 

(Burthe et al., 2012) Current NECS 56.50 -1.50 Holozooplankton Calanus I-IV 2006 1994.5 24 4 1 -6.33 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Callionymus lyra 2013 1986.5 54 30 1 NA 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Cancer borealis 2014 1990.5 48 35 1 NA 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Cancer irroratus 2014 1990.5 48 35 1 NA 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Candacia armata 2007 1990 45 49 1 0.73 

(Greve et al., 1996) Current NECS 54.19 7.90 Meroplankton Carcinus maenas 1994 1984 21 25 1 NA 
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(Monsinjon et al., 
2019) Current BRAZ -12.57 -38.00 Reptiles Caretta caretta 2014 2001.5 26 1 1 -2.2 

(Mazaris et al., 2008) AR5 MEDI 37.73 20.89 Reptiles Caretta caretta 2002 1993 19 1 1 -11.58 

(Hawkes et al., 2007) AR5 NWCS 33.83 -77.95 Reptiles Caretta caretta 2005 1994 23 1 1 0 
(Barbraud and 
Weimerskirch, 2006) AR5 APLR -66.66 140.00 Seabirds 

Catharacta 
maccormicki 2004 1977 55 9 0 0.11 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton 

Centropages 
hamatus 2002 1980 45 49 1 -3.13 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Centropages typicus 2008.666 1990.333 45 49 1 -4.47 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Centropritstis striata 2014 1990.5 48 35 1 NA 

(Sauve et al., 2019) Current BPLR 71.33 -155.68 Seabirds 
Cepphus grylle 
mandtii 2017 1996.5 42 1 1 -1.86 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Ceratium furca 2011 1985.166 45 49 1 -2.49 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Ceratium fusus 2011 1985.166 45 49 1 -8.22 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Ceratium horridum 2009 1983.5 45 49 1 -4.84 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Ceratium lineatum 2009 1983.5 45 49 1 -4.08 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Ceratium longipes 2009 1983.5 45 49 0 -0.21 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton 

Ceratium 
macroceros 2009 1983.5 45 49 1 -8.79 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Ceratium tripos 2009 1983.5 45 49 1 -7.27 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Ceratoscopelus 
townsendi 2008 1979.5 58 43 1 -0.7 

(Scharfe and 
Wiltshire, 2019) Current NECS 54.18 7.90 Phytoplankton Ceratulina pelagica 2015 1988.5 54 8 1 0.39 

(Bertram et al., 2001) AR5 ALSK 50.87 -129.08 Seabirds 
Cerorhinca 
monocerata 2007 1996 25 4 1 -4.44 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton 
Chaetoceros 
(Hyalochaete) 2016 1987 59 12 1 -1.75 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton 
Chaetoceros 
(Phaeoceros) 2016 1987 59 12 0 -0.34 

(Scharfe and 
Wiltshire, 2019) Current NECS 54.18 7.90 Phytoplankton Chaetoceros spp. 2015.333 1993.833 54 8 1 -10.43 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Chaetognaths 2007 1990 45 49 1 -2.13 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Chauliodus macouni 2008 1979.5 58 43 1 -0.6 
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(van Walraven et al., 
2017)  Current NECS 53.57 6.94 Fish 

Chelidonichthys 
lucerna 2013 1986.5 54 30 1 NA 

(Émond et al., 2020) Current NWCS 47.50 -63.00 Meroplankton Chionoecetes opilio 2012 1997 31 2 1 NA 

(Guinder et al., 2010) Current FKLD -38.72 -62.27 Phytoplankton Chl-a 2007 1992.5 30 1 1 -12.33 
(Philippart et al., 
2003) AR5 NECS 53.00 4.80 Phytoplankton Chl-a 2011.5 1998.625 29 2 1 -0.42 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Chromis 
punctipinnis 2008 1979.5 58 43 0 3 

(Van Walraven et al., 
2015) Current NECS 53.57 6.94 Holozooplankton 

Chrysaora 
hysoscella 2010 1985 51 2 1 -10.01 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton 

Chrysochromulina 
spp. 2016 2004.5 24 29 0 1.94 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Meroplankton Cirripede ciprid 2007 1990 45 49 1 1.52 

(Greve et al., 1996) Current NECS 54.19 7.90 Meroplankton Cirripede nauplii 2003 1992 21 25 1 1.6 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Citharichthys 
sordidus 2008 1979.5 58 43 0 2.95 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Citharichthys 
stigmaeus 2008 1979.5 58 43 0 16 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Clione limacina 2002 1980 45 49 0 3.21 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Clupea harengus 2004.5 1985.75 54 30 1 -7.69 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Clupea harengus 2014 1990.5 48 35 1 NA 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton Coccolithophore 2012 2000 25 24 0 9.6 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton 
Colourless 
flagellates 2012 2000 25 24 1 -7.2 

(Burthe et al., 2012) Current NECS 56.50 -1.50 Holozooplankton Copepod nauplii 2009 1997.25 24 4 1 -2.11 

(Edwards et al., 2006) AR5 NECS 56.00 3.00 Holozooplankton Copepods 2005 1981.5 48 1 1 NA 

(Edwards et al., 2006) AR5 NECS 55.00 5.00 Holozooplankton Corycaeus spp. 2002 1980 45 49 0 5.57 
(Philippart et al., 
2003) AR5 NECS 53.00 4.80 Invertebrates Crangon crangon 2001 1992 19 2 1 -30.39 

(Greve et al., 1996) Current NECS 54.19 7.90 Meroplankton Crangonidae 1994 1984 21 25 1 NA 

(Cherkiss et al., 2020) Current CARB 25.16 -80.83 Reptiles Crocodylus acutus 2016 1998.25 39 1 1 -5.8 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton Ctenophores 2012 2000 25 24 1 -26.4 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Cumacea 2002 1980 45 49 1 -2.77 

(Hosia et al., 2014) Current NECS 58.42 8.75 Holozooplankton Cyanea spp. 2010.5 1993.5 19 1 0 2.59 
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(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Cyclopterus lumpus 2013 1986.5 54 30 0 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Cyclothone signata 2008 1979.5 58 43 1 -4.35 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton 
Cylindrotheca 
closterium 2016 1987 59 12 0 -0.68 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Meroplankton Cyphonautes larvae 2002 1980 45 49 1 -2.72 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Danaphos oculatus 2008 1979.5 58 43 1 -9.3 
(Barbraud and 
Weimerskirch, 2006) AR5 APLR -66.66 140.00 Seabirds Daption capense 2004 1977 55 9 0 1.28 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Meroplankton Decapod larvae 2007 1990 45 49 1 -0.99 

(Hauser et al., 2017) Current BPLR 69.47 -171.69 Mammals 
Delphinapterus 
leucas 2012 2002.5 20 1 1 11.33 

(Scharfe and 
Wiltshire, 2019) Current NECS 54.18 7.90 Phytoplankton Detonula pumila 2015 1988.5 54 8 1 -4.33 
(Wiltshire and Manly, 
2004) AR5 NECS 54.18 7.90 Phytoplankton Diatoms 2009 1994.125 41 1 1 -4.55 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish 

Dicentrarchus 
labrax 2013 1986.5 54 30 0 NA 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton 

Dinobryon 
faculiferum 2016 2004.5 24 29 1 -16.3 

(Tunin-Ley et al., 
2009) AR5 NASE 41.00 -14.00 Phytoplankton Dinoflagellates 2005 1956.5 98 1 1 NA 

(Hjerne et al., 2019) Current NECS 58.80 17.63 Phytoplankton Dinoflagellates 2011 1997.25 35 1 1 -3.76 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton 

Dinophysis 
acuminata 2016 2004.5 24 29 1 -16.37 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Dinophysis spp. 2009 1983.5 45 49 1 -4.73 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Diogenichthys 
attanticus 2008 1979.5 58 43 1 -2.3 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton 
Ditrichocorycaeus 
anglicus 2012 2000 25 24 0 0.8 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton Ditylum brightwelli 2015.5 1987.75 59 12 1 -2.94 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton 

Dolichospermum 
spp. 2016 2004.5 24 29 1 -27.45 

(Langan et al., 2021) Current NWCS 41.50 -71.40 Fish Doryteuthis pealeii 2016 1987.5 58 5 1 -2.88 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Holozooplankton Ebria tripartita 2016 2004.5 24 29 1 -24.99 

(Greve et al., 1996) Current NECS 54.19 7.90 Meroplankton 
Echinocardium 
cordatum 1994 1984 21 25 1 NA 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Meroplankton Echinoderm larvae 2007 1990 45 49 1 -7.16 
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(Chevillot et al., 2017) Current NECS 45.42 -0.86 Fish 
Engraulis 
encrasicolus 2011.5 1992 26 7 1 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Engraulis mordax 2008 1979.5 58 43 1 -3 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton Eucampia zodiacus 2015.666 1987.5 59 12 0 6.23 

(Hindell et al., 2012) Current SANT -54.62 158.85 Seabirds Eudyptes schlegeli 1999 1981.5 36 1 1 -1.08 

(Cullen et al., 2009) AR5 AUSW -38.50 145.16 Seabirds Eudyptula minor 2002.5 1985.25 40 1 0 3.45 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton Euterpina acutifrons 2012 2000 25 24 0 5.2 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Eutriptiella spp. 2016 2004.5 24 29 1 -0.28 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Evadne spp. 2003 1988.25 45 49 1 -6.41 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Meroplankton Fish eggs 2002.666 1988 45 49 1 -5.84 

(Greve et al., 1996) AR5 NECS 54.19 7.90 Meroplankton Fish larvae 1998.8 1986.4 19 25 1 -17.68 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Fragilaria spp. 2009 1983.5 45 49 1 -4.09 

(Wanless et al., 2009) AR5 NECS 56.18 -2.56 Seabirds Fratercula arctica 2006 1990.5 36 7 0 1.11 
(Descamps et al., 
2019) Current SARC 69.07 15.17 Seabirds Fratercula arctica 2016 1999 35 16 1 -0.32 

(Bertram et al., 2001) AR5 ALSK 50.87 -129.08 Seabirds Fratercula cirrhata 2005.333 1992.333 25 4 1 -7.24 
(Descamps et al., 
2019) Current ALSK 54.18 -164.83 Seabirds 

Fratercula 
corniculata 2015 2001.5 28 16 0 0.26 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Fritillaria borealis 1994 1984 21 25 0 NA 

(Wanless et al., 2009) AR5 NECS 56.18 -2.56 Seabirds Fulmarus glacialis 2006 1988.5 36 7 1 0.16 
(Barbraud and 
Weimerskirch, 2006) AR5 APLR -66.66 140.00 Seabirds 

Fulmarus 
glacialoides 2004 1977 55 9 0 3.87 

(Morgan et al., 2013) Current GFST 43.00 -51.00 Fish Gadus morhua 2009 1992 35 2 0 6.35 
(McQueen and 
Marshall, 2017) Current NECS 53.50 -5.00 Fish Gadus morhua 2013.666 1994.833 32 2 1 -10.57 

(Morgan et al., 2013) Current NWCS 48.00 -51.00 Fish Gadus morhua 2012.333 1990.5 38 2 0 10.66 
(McQueen and 
Marshall, 2017) Current SARC 60.00 1.00 Fish Gadus morhua 2014 1999.5 30 2 1 -6.58 

(Greve et al., 1996) Current NECS 54.19 7.90 Meroplankton Galathea spp. 1994 1984 21 25 1 NA 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton 

Gammarid 
amphipods 2007 1990 45 49 1 -0.97 

(Chevillot et al., 2017) Current NECS 45.42 -0.86 Fish 
Gasterosteus 
aculeatus 2011.5 1992 26 7 1 NA 

(Greve et al., 1996) Current NECS 54.19 7.90 Meroplankton Gastropod larvae 2003 1992 21 25 1 0.8 
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(Scharfe and 
Wiltshire, 2019) Current NECS 54.18 7.90 Phytoplankton 

Guindardia 
delicatula 2015 1988.5 54 8 1 -11.8 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton Gyrodinium spp. 2012 2000 25 24 1 -15.6 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton Gyrosigma spp. 2016 1987 59 12 1 0.4 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Harpacticoida 2002 1980 45 49 1 -4.98 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Helicolenus 
dactylopterus 2014 1990.5 48 35 1 NA 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Hemiselmis spp. 2016 2004.5 24 29 0 7.57 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Hemitripterus 
americanus 2014 1990.5 48 35 1 NA 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Heterocapsa rotunda 2016 2004.5 24 29 1 -15.74 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton 

Heterocapsa 
triquetra 2016 2004.5 24 29 0 10.65 

(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Hippoglossina 
oblonga 2015 1989 48 35 1 -3.14 

(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Hippoglossoides 
platessoides 2014 1990.5 48 35 1 NA 

(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Hippoglossus 
hippoglossus 2014 1990.5 48 35 1 NA 

(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Homarus 
americanus 2014 1990.5 48 35 1 NA 

(Émond et al., 2020) Current NWCS 47.50 -63.00 Meroplankton Hyas spp. 2012 1997 31 2 1 NA 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish 

Hyperoplus 
lanceolatus 2013 1986.5 54 30 0 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Icichthys lockingtoni 2008 1979.5 58 43 1 -5.6 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Idiacanthus 
antrostomus 2008 1979.5 58 43 1 -3 

(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Illex illecebrosus 2014 1990.5 48 35 1 NA 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Holozooplankton Katablepharis spp. 2016 2004.5 24 29 1 -7.28 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton Katodinium spp. 2012 2000 25 24 1 -3.2 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton 

Labidocera 
wollastoni 2002 1980 45 49 1 -2.52 

(Thaxton et al., 2020) Current NWCS 34.60 -77.20 Meroplankton Lagodon rhomboides 2013 1999.5 28 9 1 -1.5 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Meroplankton Lamellibranch larvae 2002.666 1988 45 49 1 4.22 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Lanice conchilega 1994 1984 21 25 1 NA 
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(Descamps et al., 
2019) Current ALSK 54.18 -164.83 Seabirds Larus glaucescens 2015 2004.5 22 16 1 -0.08 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Larvacea 2002 1980 45 49 1 -6.68 

(Thaxton et al., 2020) Current NWCS 34.60 -77.20 Meroplankton 
Leiostomus 
xanthurus 2013 1999.5 28 9 1 -2.1 

(Scharfe and 
Wiltshire, 2019) Current NECS 54.18 7.90 Phytoplankton 

Leptocylindricus 
minimus 2015 1988.5 54 8 1 -28.31 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Lestidiops ringens 2008 1979.5 58 43 1 -7.3 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Leucoraja erinacea 2014 1990.5 48 35 0 NA 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Leucoraja ocellata 2014 1990.5 48 35 0 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Leuroglossus stilbius 2008 1979.5 58 43 0 1.2 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Limacina retroversa 2002 1980 45 49 0 8.37 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Limanda ferruginea 2014 1990.5 48 35 1 NA 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Limanda limanda 2013 1986.5 54 30 1 NA 

(Greve et al., 1996) Current NECS 54.19 7.90 Meroplankton Liocarcinus spp. 1994 1984 21 25 1 NA 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Liparis liparis 2013 1986.5 54 30 0 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Lipolagus ochotensis 2008 1979.5 58 43 1 -3.2 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Liza aurata 2013 1986.5 54 30 0 NA 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Loligo pealeii 2014 1990.5 48 35 1 NA 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Lophius 
gastrophysus 2014 1990.5 48 35 0 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Lyopsetta exilis 2008 1979.5 58 43 1 -0.7 

(Beukema et al., 2009) AR5 NECS 53.00 6.00 Invertebrates 
Macoma balthica 
rubra 2007 1988 39 1 1 -5.38 

(Barbraud and 
Weimerskirch, 2006) AR5 APLR -66.66 140.00 Seabirds 

Macronectes 
giganteus 2004 1982 45 9 0 1.91 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Magelona spp. 1994 1984 21 25 1 NA 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton Medusae 2012 2000 25 24 0 2.4 

(Ramp et al., 2015) Current NWCS 49.90 -64.50 Mammals 
Megaptera 
novaeangliae 2010 1998.5 24 2 1 -11.67 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Melamphaes 
lugubris 2008 1979.5 58 43 0 3 
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(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Melanogrammus 
aeglefinus 2014 1990.5 48 35 1 NA 

(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Merluccius 
bilinearis 2014 1990.5 48 35 0 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Merluccius 
productus 2008 1979.5 58 43 1 -3 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton Mesodinium rubrum 2014 2002.25 25 24 0 -14.28 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton Metridia lucens 2012 2000 25 24 1 -8.4 

(Thaxton et al., 2020) Current NWCS 34.60 -77.20 Meroplankton 
Micropogonias 
undulatus 2013 1999.5 28 9 1 -14.4 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton Microsetella spp. 2012 2000 25 24 0 11.2 

(Costello et al., 2006) AR5 NWCS 41.50 -71.35 Holozooplankton Mnemiopsis leidyi 2003 1977 53 2 1 -11.13 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton 

Monoraphidium 
contortum 2016 2004.5 24 29 1 -13.92 

(Peer and Miller, 
2014) Current NWCS 37.52 -76.10 Fish Morone saxatilis 2012 1995.5 20 1 1 -3 

(Wanless et al., 2009) AR5 NECS 55.00 -5.00 Seabirds Morus bassanus 2007 1993.5 28 1 0 2.1 

(Thaxton et al., 2020) Current NWCS 34.60 -77.20 Meroplankton Mugil cephalus 2013 1999.5 28 9 1 -9.1 

(Langan et al., 2021) Current NWCS 41.50 -71.40 Fish 
Myoxocephalus 
octodecemspinosus 2016 1987.5 58 5 0 5.03 

(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish 

Myoxocephalus 
scorpius 2013 1986.5 54 30 1 NA 

(Thaxton et al., 2020) Current NWCS 34.60 -77.20 Meroplankton Myrophis punctatus 2013 1999.5 28 9 1 -14.5 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Myxocephalus 
octodecemspinosus 2014 1990.5 48 35 1 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Nannobrachium 
regale 2008 1979.5 58 43 0 0.7 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Nannobrachium 
ritteri 2008 1979.5 58 43 1 -4.8 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton Navicula spp. 2016 1987 59 12 0 -1.57 

(Bertram et al., 2001) AR5 BERS 50.00 145.00 Holozooplankton 
Neocalanus 
plumchrus 1996 1985.5 22 4 1 -22 

(Bertram et al., 2001) AR5 CCAL 48.65 -126.67 Holozooplankton 
Neocalanus 
plumchrus 1998 1986.5 24 4 1 -13 

(Mackas et al., 1998) AR5 PSAE 50.00 -145.00 Holozooplankton 
Neocalanus 
plumchrus 1996 1982 29 1 1 -10.34 

(Chevillot et al., 2017) Current NECS 45.42 -0.86 Holozooplankton Neomysis integer 2010 1997.5 26 7 1 NA 
(McGeady et al., 
2021) Current NECS 53.75 -4.75 Meroplankton Nephrops norvegicus 2010 1996 29 1 1 -11.94 

(Greve et al., 1996) Current NECS 54.19 7.90 Phytoplankton Noctiluca scintillans 2003.75 1989.25 21 25 1 4.03 
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(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Nodularia spp. 2016 2004.5 24 29 0 21.25 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Obelia spp. 1994 1984 21 25 0 NA 
(Barbraud and 
Weimerskirch, 2006) AR5 APLR -66.66 140.00 Seabirds Oceanites oceanicus 2004 1981.5 46 9 0 1.01 
(Descamps et al., 
2019) Current ALSK 54.18 -164.83 Seabirds 

Oceanodroma 
furcata 2015 1998.5 34 16 1 -0.74 

(Descamps et al., 
2019) Current ALSK 54.18 -164.83 Seabirds 

Oceanodroma 
leucorhoa 2015 2005 21 16 1 -0.53 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Odontella aurita 2008 1983.666 45 49 1 -4.69 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Odontella sinensis 2011 1985.166 45 49 1 3.41 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Oikopleura dioica 1994 1984.25 21 25 1 -2.83 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Oithona spp. 2007 1990 45 49 1 -1.65 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton Oncaea spp. 2012 2000 25 24 0 0.4 

(Kovach et al., 2013) Current ALSK 58.38 -134.65 Fish 
Oncorhynchus 
clarkii 2010 1995 31 2 1 -1.15 

(Taylor, 2008) Current ALSK 58.38 -134.65 Fish 
Oncorhynchus 
gorbuscha 2007.5 1992 34 1 1 -3.21 

(Kovach et al., 2015) Current ALSK 58.38 -134.64 Fish Oncorhynchus keta 2010 1995.5 30 4 1 -3.93 
(Rubenstein et al., 
2019) Current CCAL 49.65 -125.44 Fish Oncorhynchus keta 2016.333 2003.333 34 2 1 -4.34 

(Kovach et al., 2015) Current ALSK 58.38 -134.64 Fish 
Oncorhynchus 
kisutch 2010 1995.5 30 4 1 -4.64 

(Rubenstein et al., 
2019) Current CCAL 49.65 -125.44 Fish 

Oncorhynchus 
kisutch 2015 1998.5 34 2 1 -8 

(Robards and Quinn, 
2002) Current CCAL 47.44 -120.84 Fish 

Oncorhynchus 
mykiss 1998 1977.125 49 1 0 -0.19 

(Kovach et al., 2015) Current ALSK 58.38 -134.64 Fish Oncorhynchus nerka 2010 1995.5 30 4 0 1.61 

(Crozier et al., 2011) Current CCAL 46.24 -124.00 Fish Oncorhynchus nerka 2000.333 1976 75 1 1 -4.22 

(Kovach et al., 2015) Current ALSK 58.38 -134.64 Fish 
Oncorhynchus 
tshawytscha 2010 1995.5 30 4 0 0.81 

(Kovach et al., 2012) Current ALSK 58.38 -134.65 Fish 
Oncorhyncus 
gorbuscha 2011 1997 29 1 1 NA 

(Morita, 2018) Current KURO 43.27 141.37 Fish 
Oncorhyncus 
gorbuscha 2017 2005 25 1 1 -2.92 

(Chambers et al., 
2014) Current AUSW -32.30 115.69 Seabirds 

Onychoprion 
anaethetus 2011 1998.5 26 4 0 NA 

(Chambers et al., 
2014) Current AUSW -28.77 113.85 Seabirds Onychoprion fuscata  2010 2000.5 20 4 0 NA 
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(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Oocystis spp. 2016 2004.5 24 29 1 -54.08 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Ophiura spp. 1994 1984 21 25 1 NA 
(Ahas and Aasa, 
2006) AR5 NECS 58.20 24.30 Fish Osmerus eperlanus 2003 1978.5 48 1 1 -0.08 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton Other ciliates 2012 2000 25 24 1 -28.8 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Oxyjulis californica 2008 1979.5 58 43 1 -6.9 
(Barbraud and 
Weimerskirch, 2006) AR5 APLR -66.66 140.00 Seabirds Pagodroma nivea 2004 1987 35 9 0 -0.23 

(Greve et al., 1996) Current NECS 54.19 7.90 Meroplankton Pagurus spp. 1994 1984 21 25 0 NA 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton 

Para-pseudocalanus 
spp. 1998 1982 45 49 1 -2.71 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Paralia sulcata 2009 1983.5 45 49 1 -1.83 

(Thaxton et al., 2020) Current NWCS 34.60 -77.20 Meroplankton 
Paralichthys 
albigutta 2013 1999.5 28 9 1 -13.9 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Paralichthys 
californicus 2008 1979.5 58 43 0 5.3 

(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Paralichthys 
dentatus 2014.333 1992.5 48 35 1 -5.17 

(Thaxton et al., 2020) Current NWCS 34.60 -77.20 Meroplankton 
Paralichthys 
lethostigma 2013 1999.5 28 9 1 -2.8 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Paramysis spp. 1994 1984 21 25 0 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Parophrys vetulus 2008 1979.5 58 43 1 -1.8 

(Moore et al., 2011) AR5 NECS 50.58 -4.32 Invertebrates Patella depressa 2007 1976.5 62 2 1 -10.2 

(Moore et al., 2011) AR5 NECS 50.58 -4.32 Invertebrates Patella vulgata 2007 1976.5 62 2 0 3.3 

(Langan et al., 2021) Current NWCS 41.50 -71.40 Fish Peprilus triacanthus 2016 1987.5 58 5 1 -6.36 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Peridiniella catenata 2016 2004.5 24 29 1 -38.61 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton Phaeocystis spp. 2012 2000 25 24 1 -6 
(Frederiksen et al., 
2004) AR5 NECS 56.18 -2.55 Seabirds 

Phalacrocorax 
aristotelis 2005 1989.25 34 3 1 -3.72 

(Descamps et al., 
2019) Current BERS 57.13 -170.28 Seabirds Phalacrocorax urile 2015 2000 31 16 1 -0.16 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Pholis gunnellus 2013 1986.5 54 30 1 NA 

(Burthe et al., 2012) Current NECS 56.50 -1.50 Phytoplankton 
Phytoplankton 
Colour Index 2006 1994.5 24 4 1 -5.76 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton 

Plagioselmis 
prolonga 2016 2004.5 24 29 0 5.1 
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(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton 

Planctonema 
lauterbornii 2016 2004.5 24 29 0 3.14 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Planktolyngba spp. 2016 2004.5 24 29 1 -26.63 

(Schlüter et al., 2010) AR5 NECS 54.18 7.90 Holozooplankton Pleurobrachia pileus 2000.666 1987.833 30 2 1 -10.47 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish 

Pleuronectes 
platessa 2008.5 1986.75 54 30 0 -10 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Pleuronichthys 
verticalis 2008 1979.5 58 43 0 5.6 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Podon spp. 2002.666 1988 45 49 1 -2.52 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish 

Pollachius 
pollachius 2013 1986.5 54 30 1 NA 

(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Pollachius virens 2013 1986.5 54 30 0 NA 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Pollachius virens 2014 1990.5 48 35 1 NA 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Meroplankton Polychaete larvae 2007 1990 45 49 1 1.52 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish 

Pomatoschistus 
minutus 2013 1986.5 54 30 0 NA 

(Diaz-Almela et al., 
2007) AR5 MEDI 41.00 7.00 Plants Posidonia oceanica 2004 1988.5 32 1 1 NA 

(Langan et al., 2021) Current NWCS 41.50 -71.40 Fish Prionotus evolans 2016 1987.5 58 5 1 -7.74 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Proboscia alata 2009 1983.5 45 49 1 -6.78 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton Proboscia inermis 2016 1987 59 12 0 1.68 
(Scharfe and 
Wiltshire, 2019) Current NECS 54.18 7.90 Phytoplankton 

Prorocentrum 
micans 2015 1988.5 54 8 1 -8.65 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Prorocentrum spp. 2009 1983.5 45 49 1 -5.72 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Protomyctophum 
crockeri 2008 1979.5 58 43 1 -1.4 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Holozooplankton 

Protoperidinium 
bipes 2016 2004.5 24 29 1 -21.35 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Holozooplankton 

Protoperidinium 
brevipes 2016 2004.5 24 29 1 -2.76 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton 

Protoperidinium 
spp. 2010 1989 45 49 1 -3.85 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton 
Pseudo-nitzschia 
delicatissima 2016 1987 59 12 1 -3.35 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton 
Pseudo-nitzschia 
seriata 2016 1987 59 12 1 -1.46 
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(Scharfe and 
Wiltshire, 2019) Current NECS 54.18 7.90 Phytoplankton 

Pseudo-nitzschia 
spp. 2015 1988.5 54 8 1 -28.31 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton 

Pseudocalanus 
elongatus 2007 1990 45 49 1 -4.09 

(Persson et al., 2012) Current SARC 66.33 33.66 Holozooplankton 
Pseudocalanus 
minutus 2010 1987 47 2 1 NA 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Pseudopedinella spp. 2016 2004.5 24 29 1 -26.66 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Pseuodopleuronectes 
americanus 2014 1990.5 48 35 1 NA 

(Schroeder et al., 
2009) AR5 CCAL 37.70 -123.00 Seabirds 

Ptychoramphus 
aleuticus 2006 1991.666 19 2 0 4 

(Barbraud and 
Weimerskirch, 2006) AR5 APLR -66.66 140.00 Seabirds Pygocelis adeliae 2004 1977 55 9 0 0.51 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Pyramimonas spp. 2016 2004.5 24 29 1 -15.81 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton 

Rhizosolenia 
hebetata 2009 1983.5 45 49 1 -0.89 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton 

Rhizosolenia 
imbricata 2011 1985.166 45 49 1 -8.59 

(Scharfe and 
Wiltshire, 2019) Current NECS 54.18 7.90 Phytoplankton 

Rhizosolenia 
setigera 2015 1988.5 54 8 1 -10.22 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton 
Rhizosolenia 
styliformis 2016 1987 59 12 1 -2.31 

(Volkov and 
Pozdnyakov, 2021) Current BPLR 73.00 125.00 Seabirds Rhodostethia rosea 2013 1997.5 32 1 1 NA 

(Byrd et al., 2008) AR5 BERS 57.00 -169.00 Seabirds Rissa brevirostris 2005 1990 31 4 1 -8.35 
(Descamps et al., 
2019) Current PSAW 52.35 -176.93 Seabirds Rissa brevirostris 2015 2000 31 16 1 -0.44 
(Descamps et al., 
2019) Current ALSK 58.92 -152.17 Seabirds Rissa tridactyla 2016 1999 35 16 0 0.04 

(Byrd et al., 2008) AR5 BERS 57.00 -169.00 Seabirds Rissa tridactyla 2005 1990 31 4 1 -6.1 

(Moe et al., 2009) AR5 BPLR 78.90 12.22 Seabirds Rissa tridactyla 2008 1989 39 2 0 1.3 
(Frederiksen et al., 
2004) AR5 NECS 56.18 -2.55 Seabirds Rissa tridactyla 2005 1990.75 22 3 0 4.81 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton Sagitta spp. 1994 1984 21 25 1 NA 

(Otero et al., 2014) Current ARCT 65.75 -14.90 Fish Salmo salar 2008 1998.5 20 3 1 NA 

(Otero et al., 2014) Current BPLR 53.56 -56.35 Fish Salmo salar 2008 1989 39 3 1 NA 
(Kennedy and Crozier, 
2010) AR5 NECS 55.20 -6.53 Fish Salmo salar 2007.611 1992.416 31 1 1 3.31 

(Juanes et al., 2004) AR5 NWCS 41.25 -72.35 Fish Salmo salar 2000.162 1986.135 23 1 1 -7.9 

(Otero et al., 2014) Current SARC 70.03 22.96 Fish Salmo salar 2009 1998.5 23 3 1 NA 
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(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Salmo trutta 2013 1986.5 54 30 0 NA 

(Kovach et al., 2013) Current ALSK 58.38 -134.65 Fish Salvelinus malma 2010 1995 31 2 1 -0.68 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Sardina pilchardus 2013 1986.5 54 30 0 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Sardinops sagax 2008 1979.5 58 43 1 -11.1 

(Fitchett et al., 2019) Current EAFR -29.85 31.02 Fish Sardinops sagax 2012 1979.5 66 1 0 1.3 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Scomber japonicus 2008 1979.5 58 43 1 -1 
(Kanamori et al., 
2019) Current KURO 35.00 141.00 Fish Scomber japonicus 2017 1997.5 40 1 0 4.24 
(Jansen and Gislason, 
2011) Current NECS 56.95 11.30 Fish Scomber scombrus 2010.5 1992 22 1 1 -23.4 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Scomber scombrus 2014 1990.5 48 35 1 NA 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish 

Scophthalmus 
maximus 2013 1986.5 54 30 0 NA 

(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish 

Scophthalmus 
rhombus 2013 1986.5 54 30 0 NA 

(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish 

Scopthalmus 
aquosus 2014 1990.5 48 35 0 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Sebastes aurora 2008 1979.5 58 43 1 -5.4 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Sebastes diploproa 2008 1979.5 58 43 1 -12.3 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Sebastes fasciatus 2014 1990.5 48 35 1 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Sebastes goodei 2008 1979.5 58 43 0 6.7 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Sebastes jordani 2008 1979.5 58 43 1 -2.8 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Sebastes paucispinis 2008 1979.5 58 43 0 1.6 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton Siphonophores 2012 2000 25 24 1 -2.4 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton 

Skeletonema 
costatum 2012 1986 45 49 0 -2.19 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Skeletonema marinoi 2016 2004.5 24 29 1 -52.51 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton 
Small Peridinium 
spp. 2012 2000 25 24 1 -12.8 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Snowella spp. 2016 2004.5 24 29 0 6.32 

(Fincham et al., 2013) Current NECS 51.00 -4.75 Fish Solea solea 2008.875 1992.125 27 1 1 -7.45 

(Wanless et al., 2009) AR5 NECS 56.18 -2.56 Seabirds 
Somateria 
mollissima 2006 1988.5 36 7 1 0.19 
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(D’Alba et al., 2010) AR5 SARC 64.02 -22.71 Seabirds 
Somateria 
mollissima 2006 1991.5 30 1 1 -2.8 

(Chambers et al., 
2014) Current SANT -44.04 65.22 Seabirds 

Spheniscus 
magellanicus 2006 1994.5 24 4 0 NA 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton 
Spioniden 
metatrocha 1994 1984 21 25 0 NA 

(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Sprattus sprattus 2013 1986.5 54 30 0 NA 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Squalus acanthias 2014 1990.5 48 35 0 NA 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Stenobrachius 
leucopsarus 2008 1979.5 58 43 1 -1.7 

(Langan et al., 2021) Current NWCS 41.50 -71.40 Fish Stenotomus chrysops 2016 1987.5 58 5 1 -2.1 

(Wanless et al., 2009) AR5 NECS 56.18 -2.56 Seabirds Sterna hirundo 2006 1988.5 36 7 1 -0.45 

(Wanless et al., 2009) AR5 NECS 56.18 -2.56 Seabirds Sterna paradisaea 2002 1976 36 7 1 -2.26 

(Wanless et al., 2009) AR5 NECS 56.18 -2.56 Seabirds Sterna sandvicensis 2006 1988.5 36 7 1 -0.18 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Stomias atriventer 2008 1979.5 58 43 0 1.2 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Phytoplankton Strombidium spp. 2012 2000 25 24 1 -3.2 

(Atkinson et al., 2015) Current NECS 50.25 -4.21 Holozooplankton Subeucalanus spp. 2012 2000 25 24 0 2 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Symbolophorus 
californiensis 2008 1979.5 58 43 1 -6.15 

(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Syngnathus acus 2013 1986.5 54 30 1 NA 
(Descamps et al., 
2019) Current ALSK 54.18 -164.83 Seabirds 

Synthliboramphus 
antiquus 2015 2006 19 16 1 -0.21 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Tarletonbeania 
crenularis 2008 1979.5 58 43 1 1.65 

(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Teleaulax spp. 2016 2004.5 24 29 1 -45.2 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Holozooplankton Telonema subtile 2016 2004.5 24 29 1 -35.06 

(Greve et al., 1996) Current NECS 54.19 7.90 Holozooplankton 
Temora 
longicaudata 1994 1984 21 25 1 NA 

(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Temora longicornis 2006.666 1991.5 45 49 0 -3.17 
(Appelqvist and 
Havenhand, 2016) Current NECS 58.25 11.35 Invertebrates Teredo navalis 2006 1988.5 36 1 1 3.92 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Tetragonurus cuvieri 2008 1979.5 58 43 0 3.5 

(Wiltshire et al., 2010) AR5 NECS 54.18 7.90 Phytoplankton 
Thalassionema 
nitzschoides 2006 1984 45 1 1 NA 

(Chivers et al., 2020) Current NECS 55.00 5.00 Phytoplankton 
Thalassionema 
nitzscioides 2015.5 1987.75 59 12 1 1.33 
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(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Thalassiosira baltica 2016 2004.5 24 29 1 -21.41 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton Thalassiosira spp. 2012 1986 45 49 0 -3.36 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Phytoplankton 

Thalassiothrix 
longissima 2009 1983.5 45 49 1 -1.94 

(Barbraud and 
Weimerskirch, 2006) AR5 APLR -66.66 140.00 Seabirds 

Thalassoica 
antarctica 2004 1992 25 9 0 12.64 

(Dufour et al., 2010) AR5 NADR 46.00 -13.00 Fish Thunnus alalunga 2009 1990.333 39 2 1 -2.77 

(Dufour et al., 2010) AR5 NADR 46.00 -13.00 Fish Thunnus thynnus 2005 1993.833 25 2 1 -10 
(Edwards and 
Richardson, 2004) AR5 NECS 55.00 5.00 Holozooplankton Tomopteris spp. 2002 1980 45 49 1 -4.19 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Trachurus 
symmetricus 2008 1979.5 58 43 1 -6.7 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton 
Triphoturus 
mexicanus 2008 1979.5 58 43 1 -6.2 

(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Trisopterus luscus 2013 1986.5 54 30 1 NA 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Trisopterus minutus 2013 1986.5 54 30 1 NA 
(Descamps et al., 
2019) Current ALSK 54.18 -164.83 Seabirds Uria aalge 2015 1998.5 34 16 0 0.07 

(Byrd et al., 2008) AR5 BERS 57.00 -169.00 Seabirds Uria aalge 2005 1990 31 4 0 1.3 
(Schroeder et al., 
2009) AR5 CCAL 37.70 -123.00 Seabirds Uria aalge 2006.666 1992.333 19 2 1 -2.4 
(Frederiksen et al., 
2004) AR5 NECS 56.18 -2.55 Seabirds Uria aalge 2005.6 1990.8 21 3 0 0.82 
(Descamps et al., 
2019) Current ALSK 54.18 -164.83 Seabirds Uria lomvia 2016 1999 35 16 1 -0.31 

(Byrd et al., 2008) AR5 BERS 57.00 -169.00 Seabirds Uria lomvia 2005 1990 31 4 0 2.36 

(Gaston et al., 2005) AR5 BPLR 74.04 -90.03 Seabirds Uria lomvia 2003.5 1992.5 26 1 1 -2.5 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Urophycis chuss 2014.666 1989.5 48 35 0 8.86 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Urophycis regia 2014 1990.5 48 35 1 NA 
(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Urophycis tenuis 2014 1990.5 48 35 1 NA 

(Cherry et al., 2013) Current BPLR 59.71 -85.25 Mammals Ursus maritimus 2013.714 2001.285 19 1 1 -1.46 

(Asch, 2015) Current CCAL 34.00 -122.00 Meroplankton Vinciguerria lucetia 2008 1979.5 58 43 1 -5.6 
(Forsblom et al., 
2019) Current NECS 59.70 24.50 Phytoplankton Woronichinia spp. 2016 2004.5 24 29 1 -13.92 
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(Henderson et al., 
2017) Current NWCS 40.00 -71.00 Fish Zoarces americanus 2015 1989 48 35 1 9.78 
(van Walraven et al., 
2017) Current NECS 53.57 6.94 Fish Zoarces viviparus 2013 1986.5 54 30 1 NA 

 1 
 2 
SM3.4  Section 3.5 3 
 4 
 5 
Table SM3.2: Climate-sensitive human pathogens associated with an aquatic-system infection route. Mode, type of evidence and strength assessment of climate influence are based 6 
on Nichols et al. (2018). Acronyms: CA Cost analysis; CEO Circumstantial evidence only; CSS Cross sectional survey; EACI Ecological association between climate and infections; 7 
EACO Ecological association between climate and outbreaks; FTA Fault Tree Analysis; GAMTS Generalised additive model time series; GDSE Gastrointestinal and dermatological 8 
symptoms and exposure; HSM Hindsight suitability model; LR Literature review; MLM Multi-level modelling; MM Mathematical modelling; MMF Microbiological monitoring of 9 
flooding; MMO Microbiological monitoring of outbreaks; MMST Microbiological monitoring with salinity and temperature; NBM Negative binomial model; OI Outbreak 10 
investigation; PMCC pairwise-matched case-control study; PORA Post outbreak rainfall analysis; POTA Post outbreak temperature analysis; POWE Post outbreak water 11 
examination; RAI Review of animal infections; RCS Retrospective cohort study; RILO Rodent investigation linked to outbreak; RRM Rainfall runoff model; RSA Rainy season 12 
association; RSE Recreational swimming exposure; SA Spatial analysis; SCS Sporadic case series; SFA Seasonal factor analysis; TSAT Time series analysis of temperature; QMRA 13 
Quantitative microbial risk assessment; WMR Water microbiology and rainfall. 14 

Pathogen How Climate Might Affect Disease Occurrence Strength of Evidence 
for Water-Related 
Infections 

Type of Infection 
Route 

Type of Study Linking Climate 
and Infection 

Acanthamoeba A. polyphaga linked to contact lens washing and hygiene is important. Infections 
linked to flooding (presumed contamination of potable water). Water 
contamination links. 

Freshwater/Seawater 
– Strong 

Waterborne PMCC; LR 

Adenovirus Subgroups A–E cause upper respiratory infections, conjunctivitis, febrile illness, 
sore throat and swollen glands. The enteric subgroup F adenoviruses Ad40 and 
Ad41 cause gastroenteritis in children. Contamination of groundwater used as a 
drinking water source and from faecal or respiratory contamination of untreated 
recreational waters. Swimming pool outbreaks. 

Freshwater/Seawater 
– Moderate 
  

Waterborne POWE; OI 

Astrovirus Astroviruses cause diarrhoea in children under five years old. Viruses are excreted 
in faeces, and they will be present in sewage. Contact with contaminated 
recreational waters may be a risk factor. Outbreaks are often mixed. Outbreak 
linked to flood water contamination of shellfish with several viruses. 

Freshwater/Seawater 
– Weak 
  

Waterborne POWE 
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Campylobacter spp. 

  
The commonest bacterial cause of diarrhoea. Most infections are sporadic, but 
waterborne outbreaks linked to camp sites, travelling abroad, hospitals and large 
communities. Infection is commonly derived from contaminated poultry and water 
for the chicken flocks may be one source of contamination. Campylobacter spp. 
are spiral/curved organisms when isolated from patients and change to a more 
resistant coccal stage when present in water. Most human infections are caused by 
C. jejuni, C. coli and C. lari. Campylobacter fetus subsp. fetus can cause human 
infections, with septicaemia and gall bladder infection being more common than 
with the other species. C. upsaliensis, C. hyointestinalis subsp. lawsonii and C. 
hyointestinalis subsp. hyointestinalis are occasionally isolated from diarrheal 
patients. Infection through contaminated drinking water—heavy rainfall. 

  
Freshwater/Seawater 
– Strong, outbreaks 
represent a small 
percentage of cases 
  

 
Waterborne 
  

  
PORA; EACI 

Cryptosporidium Cause diarrhea in young mammals and in humans but cannot grow in the 
environment. Large waterborne outbreaks have been reported throughout the 
world. Oocysts are excreted in faeces and sewage. Many species (C. hominis, C. 
parvum, C. meleagridis, C. cuniculus, C. ubiquitum, C. viatorum, C. canis, C. felis, 
C. suis, C. scrofarum, C. bovis, and C. muris) and genotypes of C. parvum) can 
cause human disease. Rainfall can contribute to drinking water contamination from 
both human and animal faeces. 

Freshwater/seawater 
– Strong 
  

Waterborne SA; SFA; OI; POWE; FTA; 
RSA 

Cyanobacteria spp. Grow as blooms or mats, mostly within freshwater bodies. There are a large variety 
of species, many producing potent toxins that can cause acute and chronic disease 
in mammals, including man. The toxins include microcystins, nodularins, 
anatoxins, Saxitoxins, aplysiatoxins, cylindrospremopsins, beta-methyl-amino-L-
alanine (BMAA) and lipopolysaccharides. Algal blooms are more commonly 
found in eutrophic (eutrophic waters have a high concentration of nutrients) inland 
waters. Human health risks arise if the water is consumed untreated, if people 
bathe or participate in water contact sports in waters with a scum or heavy bloom 
and if contaminated water is used in renal dialysis. There have been some notable 
outbreaks associated with cyanobacterial toxins with a high mortality rate in 
dialysis patients. There are also associations between exposure to cyanobacterial 
toxins and long-term health risks including cancer. The risks from BMAA linked 
to neurological disease are unclear. Climate influence on algal blooms. Human 
recreational and drinking water exposures. 

Freshwater/seawater 
– Strong for 
outbreaks linked to 
peritoneal dialysis 
  

Water toxicosis CEO 
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Cyanobacteria— 
Microcystis spp. 

M. aeruginosa is a common cyanobacteria found in eutrophic waters. It can cause 
hepatic failure and diarrhoea in man and other animals. An association was found 
between drinking water from a reservoir contaminated with M. aeruginosa and 
raised liver enzymes in a population in New South Wales, Australia. Other toxic 
species include M. viridis and M. botrys. 

Freshwater – Strong 
  

Water toxicosis GDSE 

Dinoflagellates and 
diatoms 

These are protozoan organisms that can produce a range of potent toxins. They 
occur predominantly in saltwater and, under the right conditions, can produce 
blooms that cause ‘red tides’ that can cause toxic effects in fish and other sea-life. 
The toxins can accumulate within shellfish, causing paralytic shellfish poisoning 
(PSP), diarrhetic shellfish poisoning (DSP), neurotoxic shellfish poisoning (NSP), 
Amnesic Shellfish Poisoning (ASP). Some of the toxins can also accumulate 
through passing up the food chain to give carnivorous fish that are toxic (ciguatera 
toxin). Coastal blooms causing respiratory symptoms, ciguatera and shellfish 
poisoning. Blooms of dinoflagellates are linked to weather and nutrients. 

Freshwater/seawater 
– Strong 
  

Toxin 
contamination of 
marine foods 

CEO 

Dracunculus 
medinensis 

Dracunculus medinensis life cycle involves the water flea Cyclops. It is the cause 
of dracontiasis. Human infection results from the consumption of water 
contaminated with infected water fleas. The adult worm emerges on the foot or leg, 
and rhabditoid larvae are released into the water where they re-infect water fleas. 
There is a WHO-led worldwide programme to eradicate Guinea Worm. Rainfall 
contamination of source waters. Infection is associated with water scarcity and the 
start of the rainy season. 

Freshwater – Strong 
  

Waterborne RSA 

Enteroviruses Gross contamination of drinking water leading to enterovirus outbreaks. Freshwater/Seawater 
– Moderate 
  

Waterborne OI; QMRA 

Escherichia coli— 
Shiga cytotoxigenic 

Infection through contaminated drinking water—heavy rainfall. Freshwater/Seawater 
– Strong 
  

Waterborne CA; OI 

Fasciola hepatica A liver fluke (helminth) that is common in herbivores that graze in wet pasture. 
The parasite requires a snail as an intermediate host, and man is occasionally 
infected through the consumption of aquatic plants, particularly watercress, 
contaminated with the metacercaria. 

Freshwater – Strong 
  

Water based RAI 
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Giardia spp. Grows attached to the small intestinal lining and causes malabsorption in people. 
The parasite can be isolated from the faeces of wild and domestic animals, and 
waterborne outbreaks are usually associated with recreational water use. The 
parasite cyst, which is found in faeces, is moderately resistant to chlorine. The 
modes of transmission remain unclear. Giardia can be transmitted through 
recreational and drinking water, although hygiene is also important. 

Freshwater/Seawater 
– Strong 
  

Waterborne CSS 

Hepatitis A Hepatitis A virus causes hepatitis and can be acquired person-to-person, through 
contaminated water, shellfish, and foods eaten raw or washed in contaminated 
water and waterborne routes. Infection resulting from sewage contamination of 
source waters and shellfish. Some rainfall associations. 

Freshwater/Seawater 
– Strong 
  

Waterborne PORA; SFA 

Hepatitis E Hepatitis E virus has a genome of single stranded RNA. Epidemiological evidence 
suggests that the disease can be transmitted by drinking water contaminated with 
faeces or contact with an environment contaminated with faeces. Pigs may be an 
important reservoir of infection. Infections in the UK are associated with overseas 
travel. Large waterborne outbreaks. 

Freshwater/Seawater 
– Strong 
  

Waterborne OI 

Leptospira spp. Tightly coiled spiral bacteria that cause Weil’s Disease (jaundice) in people. 
Infection is from rodents and agricultural and domestic animals, usually through 
exposure to contaminated water or urine. Drinking or exposing wounds or mucous 
membranes to contaminated water can result in infection. Infection through natural 
water contaminated by rodent urine and occasionally through non chlorinated 
drinking water. Outbreaks follow heavy rainfall and flooding and occasionally 
abnormally low rainfall. 

Freshwater – Strong 
  

Waterborne OI; RILO; SA; RCS; NBM; 
CSS 

Microsporidia Enterocytozoon bieneusi infection is linked to transmission through food and 
water. Encephalitozoon hellem keratoconjunctivitis possibly related to water or 
mud. Link to rainy season in Singapore. 

Freshwater/Seawater 
– Weak 
  

Waterborne RSA 

Naegleria fowleri Colonises thermally polluted waters. Infections in the Southern US are seasonal, 
with more in the summer. Infections in cattle are also seasonal. Infections may 
increase in some countries with warmer temperatures. Runoff from heavy rains 
introduces this organism into lakes, ponds, and surface waters. 

Freshwater – Strong, 
links to water 
contamination 
  

Waterborne SCS 

Norovirus Is mostly transmitted person-to-person. Transmission has also been indicated via 
contaminated ice, stored water on cruise ships, borehole water and contaminated 
recreational bathing waters. Municipal drinking water supplies have been 
implicated in outbreaks of gastroenteritis, usually following contamination by 

Freshwater/Seawater 
– Strong 
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sewage. Strongly seasonal. Link to shellfish contaminated from infected faeces. 
Coastal water contamination linked to rainfall. 

Rotavirus Rotavirus. Rotaviruses are part of the Reovirus family and have a double stranded 
RNA genome. Exposure is by contact with infected individuals or contaminated 
water or other materials. Group C rotaviruses have been identified throughout the 
world. Group B rotaviruses have caused large outbreaks of diarrheal illness in 
mainland China. The virus entered the population as a result of faecal 
contamination of water supplies drawn from rivers, and then spread through the 
population by person-to-person contact. Waterborne outbreaks in developing 
countries. 

Freshwater/Seawater 
– Weak 
  

Waterborne   

Sapovirus A calicivirus, formerly called “Sapporo-like virus” (SLV), is a classic or typical 
calicivirus and is associated with relatively mild gastroenteritis in children. 
Outbreak linked to flood water contamination of shellfish with several viruses. 

Freshwater – Weak 
  

Unknown POWE 

Schistosoma spp. These are flukes (helminth) which are transmitted through the contamination of 
water with faeces containing the ova. Cases linked to flooding and land surface 
temperature. 

Freshwater – Strong 
  

Water based OI; SA; RRM; MM; MLM 

Schistosoma 
japonicum 

Infection is found in Eastern Asia including Japan and Korea. Links to rainfall and 
temperature. 

Freshwater – Strong 
  

Water based CSS 

Schistosoma 
mansoni 

The life cycle involves the ova hatching and infecting specific snail species, and 
the cercaria infect people occupationally or recreationally exposed to contaminated 
water through the skin. 

Freshwater – Strong 
  

Water based OI; SA 

Toxoplasma gondii A protozoan parasite which occurs in a wide range of warm-blooded animals. The 
only definitive host in which the full sexual cycle has been observed is members of 
the cat family (Felidae), which excrete the oocysts which contaminate the 
environment and source waters. People can be infected from consuming food or 
water that is contaminated with oocysts or the consumption of undercooked meat 
which contains tissue cysts. Infection can be a particular problem for pregnant 
women and immunocompromised patients. Some evidence that heavy rainfall can 
precede outbreaks. 

Freshwater/Seawater 
– Strong 
  

Waterborne OI; SA 

Vibrio cholerae Causes cholera, a disease that is characterised by acute and life-threatening 
diarrhoea and dehydration usually in epidemic outbreaks. Cholera is transmitted 
through drinking water, shellfish and contaminated food. The disease is usually 
restricted to less developed countries where drinking water and waste disposal are 
poor, and to migrant populations associated with drought, flood, famine and war. 
Evidence of links to rainfall over the last century. 

Freshwater/Seawater 
– Strong 
  

Waterborne GAMTS; EACO; POWE 
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Vibrio 
parahaemolyticus 

Inhabits estuarine and marine environments. It can cause food-poisoning through 
the contamination of seafood. V. parahaemolyticus associated with raised water 
temperature. 

Seawater – Moderate 
  

Foodborne 
through seafood 

RSE 

Vibrio vulnificus Vibrio vulnificus can cause severe, soft tissue infections, septicaemia, and deaths. 
Infection is through the consumption of contaminated seafood (particularly raw 
oysters). V. vulnificus infection increased following hurricane Katrina. 

Seawater – Strong 
  

Waterborne; 
Foodborne 
through seafood 

MMF; HSM; MMST; OI 

Vibrio spp. (other 
than V. cholerae) 

A variety of Vibrio spp. can cause human disease, including the halophilic V. 
parahaemolyticus, V. fluvialis, V. hollisae and the non-halophilic vibrios non-O1 
V. cholerae and V. mimicus. Cholera is a classical waterborne disease, and the 
water route is still important in developing countries. There is no evidence that 
vibrios are able to cause human disease by growing within water distribution 
systems. Vibrio spp. are part of normal marine flora and can be found in marine, 
estuarine and river water. These organisms proliferate during the summer months. 
People are infected through the consumption of raw or undercooked contaminated 
shellfish, other foods and faecally contaminated water. A large infective dose is 
required to initiate infection and person-to-person transmission does not occur. 
Infections in the United Kingdom tend to be in travellers returning from 
developing countries. Non-cholera V. cholera in warmer Baltic waters. 

Freshwater (V. 
cholerae)/Seawater 
(Vibrio spp. including 
V. cholerae) – Strong  

Waterborne MMO; OI; TSAT; WMR; 
POTA 

 1 
 2 
 3 
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SM3.5  Section 3.6 1 
 2 
SM3.5.1  Assessment of the Potential of Marine and Coastal Adaptation Solutions 3 
 4 
The below text supports Figure 3.23 and Tables 3.28, 3.29 and 3.30 in Section 3.6.2. 5 
 6 
SM3.5.1.1   Socio-Institutional Adaptation 7 
 8 
Knowledge diversity. There is high agreement that successful ocean and coastal adaptation needs to 9 
incorporate the diversity of knowledge systems, moving beyond technical and scientific knowledge to also 10 
incorporate Indigenous Knowledge (IK) and Local Knowledge (LK) (Norström et al., 2020; Petzold et al., 11 
2020; Gianelli et al., 2021; Schlingmann et al., 2021). Knowledge diversity guarantees an enriching 12 
understanding of ecological, technical, and political aspects of adaptation (Norström et al., 2020) while 13 
conciliating nature world views (Coscieme et al., 2020). Considering IK and LK systems is more beneficial 14 
for the communities (high confidence) (Nalau et al., 2018; Sultana et al., 2019; Owen, 2020; Gianelli et al., 15 
2021), increases their resilience (robust evidence) (Ford et al., 2020), and is relevant and transferable beyond 16 
the local scale (medium evidence) (Schlingmann et al., 2021). Implementing knowledge diversity in marine 17 
and coastal systems adaptation ranges from ecotourism (Section 3.6.3.1.3) to conservation (Section 3.6.3.2.1) 18 
and from small island developing states (SIDS) to the Arctic (Section 3.6.3.4.1). 19 
 20 
Socially inclusive policies. Socially inclusive policies that promote participation of all groups are able to 21 
address existing vulnerabilities in coastal communities, and promote adaptation and transformational change 22 
(high agreement, low evidence) (Brodie Rudolph et al., 2020; Ford et al., 2020; Friedman et al., 2020). 23 
Examples are described in Sections 3.6.3.4.1 and 3.6.3.4.2. 24 
 25 
Participation. Participation in decision making and adaptation processes is recommended across a range of 26 
different hazards and contexts (Brodie Rudolph et al., 2020; Claudet et al., 2020; Sumaila et al., 2021), and 27 
has the potential to improve adaptation outcomes (medium confidence) (Hügel and Davies, 2020). Section 28 
3.6.3 shows some examples of participation for fisheries and mariculture (Section 3.6.3.1.2), and in 29 
Indigenous communities (Section 3.6.3.4.1). 30 
 31 
Livelihood diversification. Diversification of livelihoods is a common response strategy in coastal 32 
communities exposed to climate impacts such as coastal flooding, ocean extreme events, and changes in 33 
abundance and diversity of marine resources for food or income (high confidence) (Mohamed Shaffril et al., 34 
2020; Owen, 2020; Biswas and Mallick, 2021). Livelihood diversification entails a transformative change 35 
(Barnes et al., 2020; Biswas and Mallick, 2021), where dependence on marine systems is alleviated by 36 
engaging in additional sources of income, formally or informally, temporarily or permanently. Evidence 37 
shows that livelihood diversification in marine and coastal systems dependent communities reduces climate 38 
risks (Mohamed Shaffril et al., 2020; Owen, 2020; Pinsky, 2021), and confers flexibility to individuals which 39 
is key for adaptive capacity (medium evidence) (Blanchard et al., 2017; Cinner and Barnes, 2019; Taylor et 40 
al., 2021). However, diversification depends on the agency of the individuals and existing vulnerabilities and 41 
inequities can cause diversification to result in maladaptation outcomes (high agreement) (Cinner and 42 
Barnes, 2019; Ford et al., 2020; Ojea et al., 2020). Therefore we assess with medium confidence the ability of 43 
livelihood diversification alone to address the impacts of climate change in coastal communities. Livelihood 44 
diversification as a response to climate change is further assessed in fisheries and mariculture (Section 45 
3.6.3.1.2), coastal communities (Cross-Chapter Box SLR in Chapter 3), and tourism (Section 3.6.3.1.3). 46 
 47 
Mobility. Mobility of coastal livelihoods is a common practice in many regions of the world, such as the 48 
Pacific Islands (Chapter 15), that has been reported as a response to climate change impacts such as coastal 49 
flooding and extreme events. When individuals are given the choice about mobility, they use this response in 50 
order to minimise climate risks and benefit their livelihoods (medium evidence) (Barnett and McMichael, 51 
2018). An example of mobility includes fishing (Section 3.6.3.1.2). 52 
 53 
Migration. Coastal livelihoods facing severe climate change impacts often respond with migration, as a 54 
critical livelihood diversification strategy (Maharjan et al., 2020; Biswas and Mallick, 2021; Zickgraf, 2021). 55 
Migration often involves different spatiotemporal scales than mobility (Barnett and McMichael, 2018), and it 56 
could be considered an adaptation solution for some coastal and island populations in the cases of extreme 57 
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events, but also as a response to more gradual changes (e.g., coastal erosion from SLR, Zickgraf, 2021). 1 
There is low confidence that migration alone can be a resilient response to climate change impacts in ocean 2 
and coastal systems (Section 3.6.3.1.1). The maladaptive outcomes of mobility and migration (and 3 
relocation, Section 3.6.3.1.1) are influenced by the mobility of vulnerable groups, the regions where the 4 
displacement occurs and the capacities that these individuals possess (Dandy et al., 2019; Maharjan et al., 5 
2020). Examples of migration include island dwellers (Section 3.6.3.1.1).  6 
 7 
Finance and market mechanisms. Financial mechanisms and credit provision for marine-dependent 8 
livelihoods are effective for overcoming impacts from SLR (Hinkel et al., 2018; Moser et al., 2019; 9 
Woodruff et al., 2020) and extreme events (medium evidence) (Shaffril et al., 2017; Dunstan et al., 2018; 10 
Sainz et al., 2019). Market mechanisms include payment for ecosystem services that can directly or 11 
indirectly, through mitigation, contribute to adaptation outcomes in marine and coastal systems (Cross-12 
Chapter Box NATURAL in Chapter 2, Himes-Cornell et al., 2018; Brathwaite et al., 2021). There is high 13 
confidence in the potential of improved financial and market mechanisms for ocean adaptation, as they are 14 
key for transitioning into future ocean sustainability (Chapter 18, Sumaila et al., 2021). Examples of 15 
implementation of finance and economic mechanisms are further assessed in Section 3.6.3.4.2. 16 
 17 
Disaster response programs. In the occurrence of coastal and ocean extreme events, coastal communities 18 
and marine dependent livelihoods can respond following existing disaster response programs, which confer 19 
resilience to communities and contribute to adaptation when designed to be inclusive, participatory and 20 
adaptive (high confidence) (Nurhidayah and McIlgorm, 2019). Disaster response programs need adequate 21 
finance that combines viable economic investments and risk financing instruments (Jongman, 2018). Recent 22 
evidence suggests that the analysis and understanding of communications data during disaster responses is 23 
key to avoid maladaptation outcomes (high agreement) (Nichols et al., 2019). Disaster response programs 24 
can be implemented with climate services (Section 3.6.3.4.3), and examples include the tourism cruise ship 25 
sector (Section 3.6.3.1.3). 26 
 27 
Multi-level ocean governance. The multi-scale nature of ocean and coastal climate change risk demands 28 
adaptation solutions at multiple levels of governance (high confidence) (Miller et al., 2018; Gilfillan, 2019; 29 
Holsman et al., 2019; Obura et al., 2021), which consider the objectives and perceptions of all stakeholders 30 
to support local implementation of broad strategies (Miller et al., 2018). However, current ocean governance 31 
is complex and fragmented (Scobie, 2019b; Haas et al., 2021), and faces challenges that intersect with 32 
climate adaptation. Therefore, there is high agreement in the need to transition into multi-level governance to 33 
respond to the challenges of climate change in the oceans (Chapter 18, Haas et al., 2021). 34 
 35 
Institutional transboundary agreements. At the international level, institutional agreements for the 36 
management of transboundary marine resources are key for a sustainable future given current impacts on 37 
marine species distribution due to climate change (high agreement) (Mason et al., 2020; Melbourne-Thomas 38 
et al., 2021). Existing climate adaptive transboundary agreements are scarce (Melbourne-Thomas et al., 39 
2021; Sumby et al., 2021) and need to be re-designed in order to address the challenges of climate-induced 40 
marine species distributional changes (medium confidence) (Engler, 2020; Oremus et al., 2020). Despite the 41 
need for new instruments, adhering to existing ocean conservation and resource management international 42 
agreements contributes to sustainable ocean futures and climate change adaptation (Haas et al., 2021). 43 
Examples are implemented in fisheries (Section 3.6.3.1.2, Cross-Chapter Box MOVING SPECIES in 44 
Chapter 5). 45 
 46 
SM3.5.1.2  Built Infrastructure and Technology 47 
 48 
Accommodation and relocation. Asset accommodation and relocation in the marine and coastal 49 
environment is amongst the most commonly discussed adaptations to climate hazards such as SLR and 50 
coastal extreme events (Hanson and Nicholls, 2020; Monios and Wilmsmeier, 2020). Planned relocation is a 51 
response to extreme events and SLR in coastal regions and it has the advantage of maintaining community 52 
and social structures (Zickgraf, 2021), but can lead to maladaptation in cases where individuals are not 53 
included in decision making and where no monitoring exists (Zickgraf, 2021). While there is high confidence 54 
that relocation reduces coastal risk, there are important social and economic costs linked to such 55 
interventions (Cross-Chapter Box SLR in Chapter 3) and they require transformative changes in the longer 56 
run (Magnan et al., 2020). 57 
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 1 
Protection and beach and shore nourishment. As an alternative to hard structures, a common response to 2 
beach erosion around the world is beach nourishment (Barbier, 2014; Oppenheimer et al., 2019; Pinto et al., 3 
2020; Toimil et al., 2020; Elko et al., 2021). This practice involves supplementing existing beach sediments 4 
with sediment sourced from adjacent ecosystems. Part of the appeal of beach nourishment is that it provides 5 
relatively rapid results, but it invariably also entails poorly quantified trade-offs between efficacy, long-term 6 
cost, utility to beach users and ecological damage (de Schipper et al., 2021). Protection with seawalls and 7 
beach and shore nourishment constrains the development of ecosystem-based adaptation and the associated 8 
co-benefits, and can have negative consequences on coastal ecosystems (Sections 3.4.2.4 –3.4.2.6, Cross-9 
Chapter Box SLR in Chapter 3). However, protection may be a feasible alternative for densely populated and 10 
urbanized coastal areas (Barnard et al., 2021; Neijnens et al., 2021). Therefore, there is medium confidence 11 
on the ability of protection with beach and shore nourishment to reduce climate change impacts in coastal 12 
systems. Combined solutions, including soft or nature-based infrastructure (Section 3.6.2.3) and socio-13 
institutional approaches (Section 3.6.2.2) achieve better outcomes when implemented together (Cross-14 
Chapter Box SLR in Chapter 3, Gattuso et al., 2018; Foti et al., 2020; Reguero et al., 2020; Seddon et al., 15 
2020). Examples of implementation of these solutions are further assessed in Section 3.6.3.1.1.  16 
 17 
Early-warning systems. AR5 and SROCC mention that early-warning systems can support decision-18 
making, decrease economic losses from extreme events, and aid in the enterprises and development of 19 
adaptive management systems for coastal systems and fisheries (Hoegh-Guldberg et al., 2014; Bindoff et al., 20 
2019; Collins et al., 2019). Such systems have potential risks in the form of erroneous forecasts, resulting in 21 
unintended consequences (e.g., forecast leading to increased exploitation of a resource or, decrease in 22 
tourism) and exacerbation of inequality due to geographical unevenness of development and access (Section 23 
3.6.3.2.4, Soares et al., 2018). Early-warning systems may also be at risk of disruption by non-climate 24 
events, as demonstrated by the recent interruptions of maintenance and monitoring of ocean and coastal 25 
observing systems owing to COVID-19 (Northrop et al., 2020). 26 
 27 
Seasonal and dynamic forecasts. Rapid expansion of hindcast data, remote-sensing data, and computational 28 
power have led to the proliferation of real-time and seasonal forecasts of temperature extremes, MHWs and 29 
their impacts (Liu et al., 2018; Holbrook et al., 2020; Spillman and Smith, 2021), storm surges and wave-30 
driven flooding (Fernández-Montblanc et al., 2019; Winter et al., 2020), water quality and HABs (Bever et 31 
al., 2021; Davidson et al., 2021), and the distribution of living marine resources (Payne et al., 2017; 32 
Tommasi et al., 2017; Hazen et al., 2018). These tools have the capacity to contribute to monitoring, early 33 
warning systems, adaptive management and ecosystem-based management, as improvements in the spatial 34 
scale for management are being reached (high confidence) (Tommasi et al., 2017). There is high confidence 35 
that capacity-building and broad engagement of stakeholders from communities, governments and industries 36 
is critical to creating early-warning systems with forecasts that can be properly interpreted by users and be 37 
effectively incorporated into monitoring, management and decision-making (Section 3.6.3.2.4).  38 
 39 
Monitoring. Monitoring systems that address both climate change hazards, ecosystem impacts and social 40 
vulnerabilities in marine social-ecological systems, are a key priority for adaptation to climate hazards in 41 
coastal areas (high agreement) (Nichols et al., 2019; Claudet et al., 2020; Wilson et al., 2020). For ocean 42 
extreme events, specific event-based monitoring can help managers and stakeholders in decision making in 43 
real time (Holbrook et al., 2020). Monitoring and detection of marine species range shifts is key to 44 
adaptation (Melbourne-Thomas et al., 2021). However, monitoring efforts and costs differ across regions, 45 
where the most remote ocean systems regularly lack such actions (Claudet et al., 2020), and where there is a 46 
lack of standardized methods and open access information in global terms (Rilov et al., 2020; A. Maureaud 47 
et al., 2021; Melbourne-Thomas et al., 2021), therefore, there is medium confidence on the potential of 48 
monitoring systems alone in supporting adaptation in marine and ocean systems. Examples of implemented 49 
monitoring systems are shown for MPAs (Section 3.6.3.2.1), climate services (Section 3.6.3.2.4) and 50 
fisheries (Section 3.6.3.1.2). 51 
 52 
Ecological interventions: habitat development, active restoration, and assisted evolution. The near-term 53 
nature of climate risk to coastal systems has led to increased research and investment in technological 54 
interventions to support and enhance species’ and ecosystems’ capacity to adapt to climate change (Jones et 55 
al., 2018; Boström-Einarsson et al., 2020; Kleypas et al., 2021). Unlike traditional marine conservation 56 
(‘passive’) approaches (Section 3.6.2.3), which aim to allow ecosystems to naturally recover from 57 
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disturbance, ecological interventions and engineering approaches aim to accelerate recovery of damaged 1 
systems and promote ecological or biological adaptation to future climate change (Jones et al., 2018; 2 
Kleypas et al., 2021). Artificial habitat development, for example, has the potential to stabilize shorelines 3 
and increase fisheries productivity in rocky reef systems (Gilby et al., 2018). Active restoration involves 4 
reintroducing species or augments existing populations, for example, propagating and transplanting heat-5 
tolerant coral species (Boström-Einarsson et al., 2020; Rinkevich, 2021). More controversial interventions 6 
like assisted evolution, in which genes are manipulated to accelerate natural selection, has been investigated 7 
for corals (National Academies of Sciences, 2019), kelp (Morris et al., 2020) and other habitat-forming 8 
species (Bulleri et al., 2018). The effectiveness and feasibility of these solutions are further assessed for 9 
existing restoration efforts in Section 3.6.3.2.2. 10 
 11 
SM3.5.1.3  Marine and Coastal Nature-Based Solutions  12 
 13 
Habitat restoration. Marine habitat restoration increases biodiversity (high confidence) (McLeod et al., 14 
2019), and protects shorelines and coastal livelihoods from climate oceanic hazards in the near term (high 15 
confidence) (Colls et al., 2009; Arkema et al., 2017; Espeland and Kettenring, 2018; McLeod et al., 2019). 16 
To date, restoration efforts have predominantly focused on typically productive coastal habitats, including 17 
coral reefs, seagrasses, mangroves, saltmarshes, oyster reefs and kelp forests (Bayraktarov et al., 2016; 18 
Espeland and Kettenring, 2018; Gilby et al., 2018; Reguero et al., 2018; McLeod et al., 2019; Duarte et al., 19 
2020a) that provide critical nursery or foraging habitats for commercially or culturally important species. 20 
Although habitat restoration can enhance fish-stock production (Ermgassen et al., 2016; McLeod et al., 21 
2019), bring socio-cultural benefits by promoting stewardship and community involvement (Hein et al., 22 
2019), and benefit recreational use and tourism (Section 3.6.3.2, Weatherdon et al., 2016; Hoegh-Guldberg 23 
et al., 2018; Agyeman, 2019), there is limited evidence that it can safeguard fish-stock production in future 24 
climate conditions (McLeod et al., 2019) or restore coastal habitats after conversion to alternate states 25 
(Sections 3.4.2.1, 3.4.2.3, 3.6.2.3, Hein et al., 2017; Fox et al., 2019; Hein et al., 2021). There is also 26 
substantial evidence that simply restoring habitats to mid-20th century states will not enable them to persist 27 
in the medium term, without substantial emissions reductions (medium to high confidence) (Sections 3.4.2.1, 28 
3.4.2.3, 3.4.2.5, 3.4.2.6), because benefits are challenging to quantify and include time-delayed responses 29 
associated with the rebuilding of biological communities (McLeod et al., 2019). Finally, habitat restoration 30 
can limit loss of ecosystem services related to recreational use and traditional tourism (medium confidence) 31 
(Weatherdon et al., 2016; Hoegh-Guldberg et al., 2018) while benefiting ecotourism (Agyeman, 2019). See 32 
an assessment of implemented restoration efforts in marine systems in Section 3.6.3.2.2. 33 
 34 
Marine protected areas and OECMs. Marine Protected Areas (MPAs) are the most widely implemented 35 
approach to conserving marine biodiversity and have long provided the foundation for initiatives at local to 36 
international scales (Rilov et al., 2020; Arafeh-Dalmau et al., 2021). MPAs and networks of MPAs that are 37 
well designed and enforced provide well-known conservation and socio-cultural benefits to people, because 38 
they protect biodiversity and ecosystem functioning that support delivery of important ecosystem services 39 
including food supply, recreation, scenic beauty and water regulation (Section 3.5, Edgar et al., 2014; Gill et 40 
al., 2017; Wilson et al., 2020; Ovando et al., 2021; Sala et al., 2021). However, the effectiveness of current 41 
MPA networks to assist in climate-change adaptation is equivocal (Tittensor et al., 2019; Wilson et al., 42 
2020), as climate change impacts are rarely incorporated in management (high confidence) (Section 43 
3.6.3.2.1, Rilov et al., 2020; Arafeh-Dalmau et al., 2021). If carefully designed to address climate change, 44 
strategically placed and well enforced, they hold great potential to deliver better adaptation outcomes (high 45 
confidence) (e.g., Queirós et al., 2016; Roberts et al., 2017; Maxwell et al., 2020a; Arafeh-Dalmau et al., 46 
2021; Sala et al., 2021). An additional spatial conservation instrument that contributes to ocean protection 47 
and adaptation of coastal livelihoods are the Other Effective area-based Conservation Measures (OECMs) 48 
(Gurney et al., 2021). These are areas managed by ocean-dependent communities that are recognized for the 49 
contribution of such management and interaction to marine conservation (Maxwell et al., 2020b; Gurney et 50 
al., 2021). Recognizing these areas can benefit adaptation through the increased ecological and social 51 
resilience that such management regimes confer (Section 3.6.3.2.1). 52 
 53 
Conservation of climate refugia. Marine regions that retain climate and biodiversity conditions for longer 54 
periods of time under climate change impacts are considered climate refugia (Wilson et al., 2020; Arafeh-55 
Dalmau et al., 2021). There is low evidence but high agreement (medium confidence) that protecting these 56 
areas can increase the resilience of marine ecosystems in the face of ocean warming and MHW, (Rilov et al., 57 
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2020; Arafeh-Dalmau et al., 2021), facilitate marine species shifts (Cross-Chapter Box MOVING SPECIES 1 
in Chapter 5, Wilson et al., 2020) and help avoid species extinctions and extirpations. But it is not 2 
recommended as the only climate adaptation solution for marine conservation (Tittensor et al., 2019; Wilson 3 
et al., 2020). Recent evidence points that the selection of marine climate refugia areas needs to be guided by 4 
both socioeconomic criteria and broadly applicable climate-change metrics such as climate velocity (Brito-5 
Morales et al., 2018; Arafeh-Dalmau et al., 2021). 6 
 7 
Transboundary MSP and ICZM. Marine spatial Planning (MSP) is an often participatory process to 8 
allocate spatial and temporal distribution of human uses in the ocean, with the aim to reduce conflicts and 9 
reach sustainability (Gissi et al., 2019; Frazão Santos et al., 2020). After several decades of development of 10 
MSP initiatives and MSP processes in more than half of EEZs, 25 countries have already implemented or 11 
have government approved plans, most of them in economically developed nations (Frazão Santos et al., 12 
2020). The potential of MSP to incorporate adaptation goals is important but limited so far by the lack of 13 
consideration of climate change in the plans (robust evidence) (Gissi et al., 2019; Frazão Santos et al., 2020), 14 
and the lack of consideration of socio-cultural goals (Pennino et al., 2021). MSP that incorporates climate 15 
change impacts and adaptation in the design can contribute to support climate adaptation from a multi-sector 16 
perspective and through existing policy frameworks (low evidence) (Tittensor et al., 2019; Frazão Santos et 17 
al., 2020; Rilov et al., 2020). However, climate resilient MSP would require a transformation in current 18 
policy systems, as plans would need to be dynamic and incorporate new jurisdictions, climatic predictions 19 
and novel expertise (Frazão Santos et al., 2020; Pennino et al., 2021). In this context, Transboundary Marine 20 
Spatial Planning (TMSP), a process of international cooperation in the marine space to resolve conflicts 21 
across nations (Li and Jay, 2020) holds promise to adapt to the shifting nature of climate change impacts in 22 
the oceans, ad make MSP robust to climate change impacts (Pinsky et al., 2021). Integrated Coastal Zone 23 
Management (ICZM or ICM) differs from MSP in that it focuses on the land-sea interface (Frazão Santos et 24 
al., 2020). Recent evidence supports the need to integrate disaster response programs and adaptation goals in 25 
ICZM (low evidence) (Rosendo et al., 2018), and to overcome the existing implementation challenges for 26 
governments to be able to use ICZM for climate change adaptation (Rosendo et al., 2018). Examples of MSP 27 
and ICZM implementation are further assessed in Section 3.6.3.1.3 (tourism) and Section 3.6.3.2.1 28 
(conservation).  29 
 30 
Sustainable Harvesting. Harvesting marine resources at rates that are ecologically sustainable increases the 31 
resilience of marine systems to climate change, while providing important ecosystem services to marine 32 
dependent communities (Chapter 5). Sustainable harvesting is recognized as a nature-based solution that 33 
contributes to adaptation by safeguarding the provision of marine food services (Section 3.5.3), related 34 
cultural services (Section 3.5.6) and food security, while reducing marine systems ecological vulnerability 35 
(high confidence) (Gattuso et al., 2018; Burden and Fujita, 2019; Duarte et al., 2020a). Further assessment is 36 
performed for fisheries and mariculture practices (Section 3.6.3.1.2). 37 
 38 
Climate adaptive management. Climate adaptive management of ocean and coastal resources allows to 39 
iteratively update management with climate knowledge and information available for the system, with 40 
observed and projected changes in the environment and with the experience of “learning by doing” (Rilov et 41 
al., 2020; Wilson et al., 2020). There is high agreement on the need to incorporate climate adaptive 42 
management in marine resources in order to adapt to the impacts of species distribution (Cross-Chapter Box 43 
MOVING SPECIES in Chapter 5, Wilson et al., 2020; Melbourne-Thomas et al., 2021) and other climate 44 
change multiple hazards (Rilov et al., 2019). There are examples of implementation of adaptive management 45 
in many contexts such as MPAs (Nickols et al., 2019), fisheries management, mangroves (Sections 3.6.3.1.2, 46 
3.6.3.2.1, 3.6.3.2.2, Ellison et al., 2020). 47 
 48 
Ecosystem-based management. Ecosystem-based management is an approach to manage ocean and coastal 49 
systems that focuses on the habitats and ecosystems as management units, where initiatives can follow a set 50 
of key principles (Long et al., 2015). It incorporates many of the above-mentioned tools and processes 51 
(Harvey et al., 2018), such as participatory processes; conservation tools, MSP and ICZM, adaptive 52 
management and sustainable harvesting, among others. By incorporating climate adaptive measures and 53 
focusing on the ecosystems, this approach benefits the adaptation of marine ecosystems and supports the 54 
provision of ecosystem services under climate change (high confidence) (Fernandino et al., 2018; Lowerre-55 
Barbieri et al., 2019). When developing nature-based adaptation measures, there is an increase in the 56 
ecosystem resilience and a decrease socio-economic vulnerability to climate change (Miller et al., 2018; 57 
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Holsman et al., 2019; McLeod et al., 2019; Seddon et al., 2020). An increasing number of vulnerability and 1 
risk assessments of climate change and impacts of multiple stressors on species, habitats and natural 2 
communities (e.g., Holsman et al., 2017; Pinsky et al., 2019; Samhouri et al., 2019; Gissi et al., 2021), on 3 
ecosystem services (Kurniawan et al., 2016; Stewart-Sinclair et al., 2020a), and on associated vulnerabilities 4 
and risks to social systems (Gaichas et al., 2018; Thiault et al., 2019) support the development of NbS for 5 
adaptation. 6 
 7 
EBA Hotspots. Mangroves and coral reefs have been identified as EbA hotspots (Figure 3.25) because they 8 
line shores that are highly vulnerable to tropical storms and SLR, and they protect at least 5.3 and 3.4 million 9 
people living within 2 km of the coast, respectively (Section 3.4.2.5, Cross-Chapter Box SLR in Chapter 3, 10 
Jones et al., 2020; Menéndez et al., 2020; Van Coppenolle and Temmerman, 2020). At least 38% of 11 
mangroves that intersect with EbA hotspots are under some level of protection (Jones et al., 2020), which is 12 
especially important considering recent analyses, which show global yearly emissions of 23.5–38.7 Tg yr−1 13 
due to losses of mangroves (Ouyang and Lee, 2020). Greater levels of protection would improve the 14 
potential of these EbA, especially in countries with low adaptive capacity (Friess et al., 2019), and this 15 
potential could be further enhanced by incorporating mangrove restoration (Jones et al., 2020; Menéndez et 16 
al., 2020).17 
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Table SM3.3: Background materials and data for Figure 3.23 and 3.24. Includes levels of feasibility and effectiveness in Figures 3.23 and 3.24. Includes the full Feasibility 1 

assessment in Figure 3.24. 2 

Adaptation 

Solution 

Technical & Economic 

Feasibility 

Supporting 

references 

Technical & 

Economic 

Institutional and Geophysical 

Feasibility 

Supporting 

references 

Institutional 

and 

Geophysical 

Socio-Ecological Feasibility Supporting 

references 

Socio-

Ecological 

Feasibility 

Feasibilit

y 

(general) 

Effectiveness Supporting 

references 

Effectiveness 

Knowledge 

diversity 

High - Incorporation of 

various knowledge systems 

is at the early stages of 

implementation but is 

transversal to other systems 

and sectors (i.e. 

Agriculture, biodiversity 

conservation, etc.). it is in 

the phase of adaptation 

planning and early 

implementation. There are 

no high associated 

economic costs, unknown 

productivity, low technical 

requirements. 

(Pasquini and 

Cowling, 2015; 

Dawson et al., 

2020) 

Medium – IK and LK are 

transferable across regions. 

Institutions are not currently 

designed to incorporate knowledge 

diversity, and act as a barrier, so do 

laws and regulations in many places 

of the world. Global institutions 

greatly support knowledge diversity, 

also the SDGs. 

(Stephenson et 

al., 2016; 

Schlingmann et 

al., 2021) 

High - Environmental feasibility is 

high as knowledge diversity is 

related to higher ecological 

resilience. Socially, diversity of 

knowledge systems is also 

increasing social-ecological 

resilience and supporting 

ecosystem services related to 

culture and identity. 

(FAO, 2015a; 

Ross et al., 

2019; Terra 

Stori et al., 

2019; Ford et 

al., 2020) 

High Low – needs 

combination with 

other solutions. 

Facilitates the 

implementation and 

success of 

adaptation tools 

such as EbA, 

(Nalau et al., 2018; 

Peñaherrera-Palma 

et al., 2018; 

Raymond-

Yakoubian and 

Daniel, 2018; 

Coscieme et al., 

2020 ; Owen, 2020) 

  

Socially 

inclusive 

policies 

High - Technical readiness 

is medium based on an 

adaptation planning and 

early implementation stage, 

however socially inclusive 

policies are transversal to 

systems and sectors and 

their implementation is 

well known. Economic 

feasibility is high as no 

high costs are expected. 

(Archer et al., 2014) Medium - Not applicable 

geophysical. Institutions can support 

at all levels social inclusion and 

applications differ across countries, 

while supported by the SDGs. 

However current governance system 

may limit inclusive policies. 

(Devereux, 

2016; Bennett, 

2018) 

High - Ecological feasibility is 

high as there are no known trade-

offs between inclusive processes 

and biodiversity ecosystem 

services, and there is a win-win 

situation. Social feasibility is high 

as social aspects, including equity 

in access to resources and 

recognition and inclusion of all 

stakeholders within policy 

planning and implementation, are 

key to success. 

(Anderson, 

2015; Basel 

et al., 2020; 

McNamara et 

al., 2020; 

Ogier et al., 

2020; 

Williams et 

al., 2020) 

High Low – needs 

combination with 

other solutions. 

Facilitates finance 

and market 

mechanisms, 

monitoring 

systems, among 

others, for 

adaptation. 

(Tommasi et al., 

2017; Claudet et al., 

2020; A. Maureaud 

et al., 2021; Sumaila 

et al., 2021) 

  

Participation High - broadly 

implemented approaches, 

trans-sectorial, with low 

economic and 

technological constraints. 

New successful approaches 

to co-generate adaptation 

solutions. 

(van der Voorn et 

al., 2017; Flood et 

al., 2018; Johnson et 

al., 2020) 

Low - Unequal opportunities for co-

management and participation across 

institutions, low co-management in 

industrial fisheries, tourism or marine 

conservation and restoration. Not 

largely implemented in existing 

governance across sectors. 

Geophysical not applicable. 

(Nursey-Bray 

et al., 2018; 

Brodie 

Rudolph et al., 

2020) 

High - Increases environmental 

resilience and reduces inequities 

due to secure access to resources. 

Allows for co-management 

systems for marine resources. 

Improves education. 

(Ojea et al., 

2017; 

Koenigstein 

et al., 2020; 

Voorberg and 

Van der 

Veer, 2020; 

Gianelli et 

al., 2021) 

Medium High – potential to 

improve adaptation 

outcomes and 

identify impacts 

and adaptation 

needs. 

(Rumore et al., 

2016; Hügel and 

Davies, 2020) 
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Livelihood 

diversification 

Medium - Implementation 

expanding, low technical 

constraints however 

economic constraints given 

the available income 

deriving alternatives in 

place, which will require 

public and private 

investments (i.e., 

Aquaculture, tourism, blue 

energy, etc.). 

(Deb and Haque, 

2016; Gephart et al., 

2020; Mohamed 

Shaffril et al., 2020; 

Owen, 2020; 

Biswas and Mallick, 

2021; Sumaila et al., 

2021) 

Low - Rigid institutions and systems 

to allow livelihood diversification, 

unknown political acceptability, 

existing legal and regulatory actions 

(i.e., licenses). Requires 

transformational change. 

(Peck and 

Pinnegar, 

2018; Ojea et 

al., 2020; 

Biswas and 

Mallick, 2021) 

Low - Environmentally has the 

potential of increasing pressure in 

the marine environment with other 

uses (if conducted non 

sustainable). Socially it is 

constrained by the learning 

capacity of people and it has the 

risks of resource detachment, loss 

of cultural identity and 

professional pride. 

(Hossain et 

al., 2018; 

Cinner and 

Barnes, 2019; 

Fabinyi, 

2020; Pham, 

2020) 

Low Medium –-reduces 

climate risks and 

provides adaptive 

capacity, but does 

not necessarily 

engage all 

individuals due to 

agency. 

(Cinner and Barnes, 

2019; Ford et al., 

2020; Mohamed 

Shaffril et al., 2020; 

Ojea et al., 2020; 

Owen, 2020; Pinsky, 

2021; Taylor et al., 

2021) 

Mobility Medium - Early planning 

stage and little 

implementation. Mobility 

is a tradition for livelihoods 

in some specific regions. In 

fisheries, industrial fleets 

are able to move but 

economic costs are often 

subsidized. Small-scale 

fleet do not have much 

mobility options, or they 

come at high costs. 

(Jarre et al., 2013; 

Pinsky et al., 2018; 

Fulton et al., 2019b; 

Frazão Santos et al., 

2020) 

Medium – Mixed regulations and 

governance to favor mobility of 

livelihoods or within industries. 

Current regulations allow for high 

fish mobility in high-capacity fishing 

countries, but management 

regulations often do not match 

shifting fishing grounds. 

 

 

 

(Cross-Chapter 

Box MOVING 

SPECIES in 

Chapter 5, 

Young et al., 

2019; Bell et 

al., 2021) 

Low - Environmental feasibility is 

low as it can diminish resource 

availability elsewhere. Social 

feasibility is low as conflicts can 

arise between communities, 

countries, industries and increase 

vulnerabilities of specific groups 

(women, indigenous peoples, 

migrants). This is particularly 

problematic where the 

communities have long cultural 

associations with fisheries, and/or 

where few other employment 

opportunities exist. 

(Jarre et al., 

2013; Ojea et 

al., 2020; 

Gonzalez-

Mon et al., 

2021) 

Medium Medium – given 

the choice and 

under specific 

circumstances 

livelihoods engage 

in mobility to 

reduce risk. 

(Barnett and 

McMichael, 2018) 

Migration Medium - Adaptation 

planning and early 

implementation; technical 

feasibility is moderate but 

economic feasibility is low 

due to high costs of re-

location, building new 

infrastructures, loss 

infrastructure spaces, etc. 

However, in some specific 

settings, migration 

(planned relocation) may 

be a lower cost solution 

than protection. 

(Birk and 

Rasmussen, 2014; 

Islam et al., 2014; 

Khan et al., 2018b; 

Stephens et al., 

2018; Siders et al., 

2019) 

Low - Not always physically feasible 

due to borders and international 

regulations. Institutions globally and 

at the national or regional level are 

not ready for trans-boundary re-

location and migration, can interfere 

with international agreements on 

human rights. Few countries have 

currently included migration in 

national climate change 

commitments.  

(Wilkinson et 

al., 2016; 

Scobie, 2019a) 

Low - Although migration can 

alleviate risks (i.e. sea-level rise 

for human populations), it has 

substantial political, social and 

economic costs, and sometimes it 

is simply impractical, as in the 

case of coastal megacities. 

(Gibbs, 2015; 

Bordner et 

al., 2020) 

Low Medium – is a 

common response 

for incremental 

impacts and 

hazards, but often 

results in 

maladaptation 

outcomes. 

(Biswas and 

Mallick, 2021; 

Zickgraf, 2021) 

Finance & 

market 

mechanisms 

High - Known technical 

feasibility from adaptation 

planning and early 

implementation. High 

economic feasibility from 

cost effective market 

mechanisms. Finance 

mechanisms require 

private/public investment 

and innovative solutions 

(Bott and Braun, 

2019; Ware and 

Banhalmi-Zakar, 

2020; Sumaila et al., 

2021) 

Medium – Multi-scale reach. 

Political acceptability varies across 

countries, existing regulations 

support mechanisms that are already 

functioning in other sectors and can 

be ready to transfer to the marine 

realm; varying transparency of 

processes. 

(Lowe et al., 

2019) 

Medium - Environmental 

feasibility is medium as these 

mechanisms can promote one 

ecosystem service and detriment 

others, although they can be 

designed for win-win solutions 

(i.e., Carbon and biodiversity), it is 

not always possible. Socially, these 

instruments usually do not 

recognize traditional livelihoods, 

(Donner and 

Webber, 

2014; Hinkel 

et al., 2018; 

Klöck and 

Nunn, 2019; 

Claudet et al., 

2020; Ojea et 

al., 2020; 

Tompkins et 

Medium High – effective for 

reducing impacts of 

SLR and extreme 

events. 

(Shaffril et al., 2017; 

Dunstan et al., 2018; 

Hinkel et al., 2018; 

Moser et al., 2019; 

Sainz et al., 2019; 

Woodruff et al., 

2020) 
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that have been already 

tested. 

minorities without land tenure and 

other social facets, and can 

exacerbate existing inequalities. 

Design in the mechanisms and 

equitable access can increase their 

feasibility, but more development 

of the instruments is needed. 

Barriers are greater in low to mid-

income countries. 

al., 2020; 

Sumaila et 

al., 2021) 

Disaster 

response 

programs 

High - Technical feasibility 

is high given the 

widespread 

implementation. Economic 

costs and investments can 

be significant, but benefits 

are high. It requires viable 

economic investments and 

risk financing instruments. 

(Stewart et al., 

2015; Dawson et al., 

2016; Jongman, 

2018; Quinn et al., 

2019) 

High – Scales of risk can match the 

scales of responses. Institutions allow 

the implementation and maintenance 

of DRP and are common in every 

nation and in international treaties.  

(Rosendo et al., 

2018) 

High - high social and 

environmental feasibility as they 

address impacts in livelihoods, and 

they could also benefit ecosystem 

services provision. When 

inclusive, participatory and 

adaptive, they confer resilience to 

communities. 

(Cvitanovic 

et al., 2016; 

Nurhidayah 

and 

McIlgorm, 

2019) 

High Low – solution 

reduces impacts 

however it depends 

on design and 

innovations, needs 

coordination with 

climate adaptation 

and generally has a 

science policy gap. 

(Izumi et al., 2019; 

Busayo and 

Kalumba, 2021) 

Multi-level 

ocean 

governance 

High - allowing for 

multiple bodies and a 

polycentric governance 

system in the oceans is not 

necessarily constrained by 

economic costs and 

benefits of technology. 

(Armitage, 2007) High - Broad scalability, existing 

instruments and institutions; feasible 

in most countries where high 

governance and transparent decision 

making is present. Globally high 

feasibility. Required for land-sea 

interactions. 

(Mahon and 

Fanning, 2019; 

Schlüter et al., 

2020) 

Medium - Social feasibility is 

medium as an asymmetric 

distribution of power to make 

decisions for resource control or 

uses has impeded interagency 

collaboration. This is not 

necessarily always the 

case. Environmental feasibility is 

high as it is recognized to increase 

socio-ecological resilience. 

(Ho et al., 

2012; Ojea et 

al., 2017; 

Miller et al., 

2018) 

High High – allows for 

integration of 

policy making 

across levels for 

sectors such as 

fisheries. 

Polycentric 

governance is 

effective in 

adaptation. 

(Brodie Rudolph et 

al., 2020; Partelow 

et al., 2020; Schlüter 

et al., 2020) 

Institutional 

transboundary 

agreements 

Medium - They are on 

early planning and little 

implementation. 

Transboundary agreements 

can be constrained by 

economic negotiations over 

quotas and or 

compensations. 

Technologically, they may 

require adaptive 

management or other 

systems that require a 

degree of technical capacity 

(Pinsky et al., 2018; 

Melbourne-Thomas 

et al., 2021; Sumby 

et al., 2021) 

Low - Lack of an international 

regulatory framework or convention 

for climate induced transboundary 

agreements. Existing regional 

fisheries management platforms that 

are transboundary but countries have 

a strong role. Existing fishing 

agreements and policies are not 

considering climate change impacts 

and may need to be re-designed. 

(Gaines et al., 

2018; Engler, 

2020; Oremus 

et al., 2020) 

High - High feasibility in 

environmental and social terms as 

trade-offs are not expected if 

agreements address sustainability 

and equity issues. Risk of denying 

access to resources to 

communities, and of shifting 

pressure to other regions. 

(Mason et al., 

2020; 

Palacios-

Abrantes et 

al., 2020; 

Melbourne-

Thomas et 

al., 2021) 

Medium High – institutional 

agreements and 

cooperation in 

sectors such as 

fisheries 

contributes to 

adaptation and 

offsetting climate 

change impacts. 

(Oremus et al., 

2020; Haas et al., 

2021) 
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Accommodati

on and re-

location 

Low - At the stage of 

adaptation planning and 

early implementation; 

technology is advanced but 

economic costs are high. 

(Masria et al., 2015; 

Hanson and 

Nicholls, 2020; 

Monios and 

Wilmsmeier, 2020) 

Medium - Diverse political support 

for this option; shift in international 

institutions towards nature-based 

solutions. Geophysically constrained 

by the environment and urbanization 

of coastlines. 

(Vikolainen et 

al., 2017) 

Low - Low environmental 

feasibility due to irreversible 

environmental change. Medium 

social feasibility as sometimes 

these are socially accepted but 

other times can cause conflicts. 

Effects to communities outside of 

the immediate community need to 

be considered as well as local 

impacts. It is important that 

stakeholders be involved in 

decision-making to ensure that 

impacts are understood and agreed 

upon. 

(Shelton, 

2014; 

Zickgraf, 

2021) 

Low High – relocation 

can be planned 

with participatory 

processes to 

achieve higher 

effectiveness, and 

may be required in 

the long run. 

(Cross-Chapter Box 

SLR in Chapter 3, 

Magnan et al., 2020; 

Zickgraf, 2021) 

Protection & 

beach and 

shore 

nourishment 

Medium - At the stage of 

adaptation planning and 

early implementation, high 

economic returns and 

technological ready, 

includes however large 

economic costs. 

(Bayraktarov et al., 

2016; Samora-

Arvela et al., 2017; 

Pinto et al., 2018) 

High - High political support at the 

international level and increasing 

support nationally. Geophysical 

possible although limited by row 

materials and footprint 

(Nicholls, 

2018) 

Medium - Low environmental 

feasibility as it can involve 

interventions that transform the 

natural habitats, although with the 

objective of maintaining 

ecosystem, services. Medium 

social feasibility as these measures 

are generally accepted although if 

not well-designed, they can 

disbenefit certain groups. 

Protection may be a feasible option 

for highly populated coastal areas. 

(Gattuso et 

al., 2018; 

Barnard et 

al., 2021; de 

Schipper et 

al., 2021; 

Neijnens et 

al., 2021) 

Medium Medium – 

protection and soft 

infrastructure is 

effective in the 

short term and 

required under 

highly developed 

coastlines. But is 

ineffective in the 

longer term as it is 

a barrier to NbS. 

(Gattuso et al., 2018; 

Bevacqua et al., 

2020; Kirezci et al., 

2020; de Schipper et 

al., 2021) 

Early warning 

systems 

High - Technology is 

mature and widespread use. 

Economic barriers linked to 

access to technology and 

information. 

Implementation continues 

to expand. 

(Dembele et al., 

2019) 

High - High political acceptability 

and supporting institutions. 

(Leal Filho et 

al., 2018) 

Medium - early-warning systems 

can aid decision making, 

diversification of enterprises and 

development of adaptable 

management systems for coastal 

systems and fisheries. However it 

has implementation risks as 

increasing inequalities due to 

access. 

(Soares et al., 

2018; 

Bindoff et al., 

2019) 

high High (Hoegh-Guldberg et 

al., 2014; Bindoff et 

al., 2019; Collins et 

al., 2019) 

Seasonal and 

dynamic 

forecasts 

Medium - Implementation 

is widespread, 

technologically ready 

however technology 

requires high capacity and 

economic costs are 

significant. Combining 

seasonal forecasting and 

climate projections in 

dynamic model forecasts 

might provide a pragmatic 

option for marine 

industries, including 

fisheries, aquaculture, and 

(Recha et al., 2015; 

Payne et al., 2017; 

Tommasi et al., 

2017; Hobday et al., 

2018) 

High - High political acceptability 

and supporting institutions. Need to 

share information and data across 

jurisdictions. 

(Hobday et al., 

2016; A. 

Maureaud et 

al., 2021) 

High - Rapid expansion of remote-

sensing data, computational ability 

and ocean modelling have led to 

the proliferation of real-time and 

seasonal forecasts of marine 

heatwaves and associated impacts 

as well as the abundance and 

distribution of living marine 

resources (Payne et al., 2017). 

(Payne et al., 

2017; 

Hobday et 

al., 2018) 

high High – improved 

technologies match 

management scales 

and can be 

incorporated into 

many adaptation 

solutions, for 

different hazards 

and sectors. 

(Tommasi et al., 

2017; Winter et al., 

2020; Davidson et 

al., 2021; Spillman 

and Smith, 2021) 
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tourism to adapt to future 

climate risk by changing 

practices or relocating. 

Monitoring 

systems 

Medium - Technology is 

widely implemented and 

currently available and 

used. Economic quotas 

vary across regions where 

there is large gaps in ocean 

and coastal monitoring 

across the oceans. 

(Kurekin et al., 

2019; Claudet et al., 

2020) 

Medium - Diverse political 

acceptability: institutions differ at the 

national and local level on the 

engagement on these technologies 

and investing in climate change 

monitoring. There is uneven access 

and lack of shared information and 

open data in general. 

(Rilov et al., 

2020; A. 

Maureaud et 

al., 2021; 

Melbourne-

Thomas et al., 

2021) 

Medium – high feasibility for 

environmental monitoring in 

protected areas and management 

agencies. Medium social 

acceptance for social monitoring in 

sectors such as fishing. Benefits of 

monitoring vessel activity to avoid 

illegal harvesting. 

(Bell et al., 

2013; 

Lubchenco 

and Grorud-

Colvert, 

2015; Cabral 

et al., 2018; 

Kurekin et 

al., 2019) 

Medium Medium – 

monitoring is 

effective for 

climate adaptive 

management 

however there has 

many barriers 

towards 

implementation. 

(Rilov et al., 2020; 

A. Maureaud et al., 

2021; Melbourne-

Thomas et al., 2021) 

  

Habitat 

development 

Low - Low stage of 

implementation with 

vulnerability assessment 

and early planning. High 

economic costs related to 

technology, which is at the 

earlier stages. 

(Gilby et al., 2018) Medium - Geographical feasibility 

may be moderately limited by marine 

spatial planning and uses; 

institutional feasibility has the 

regulations and support for these 

actions 

(Boerema and 

Meire, 2017; 

von Haaren et 

al., 2019) 

Medium - Medium ecological and 

social feasibility as it has the 

potential to alleviate some of the 

risks posed by climate change. 

Possible risks in implementing 

assisted migration: invasive 

species, mortality and investment 

loss if the species. Restoration 

activities may be ineffective or 

may lead to undesirable social 

impacts with endangered species 

or impacts from increased 

recreational use of restored habitat. 

 (Buckley 

and Crone, 

2008; 

Bindoff et al., 

2019) 

Medium Medium – high has 

the potential to 

stabilize shorelines 

and increase 

fisheries 

productivity in 

rocky reef systems 

but little evidence 

on effectiveness. 

(Gilby et al., 2018) 

Active 

restoration 

High - This restoration is 

expanding over marine 

systems, needs high 

investments but it's 

economically productive. 

Technology is accessible 

and feasible as of today.  

(Bayraktarov et al., 

2016; Basconi et al., 

2020; Duarte et al., 

2020a) 

High - The geographical feasibility is 

high, it does not require extensive 

areas limiting other uses, and it may 

reduce hazards. Regulations and 

policies are in place to regulate 

stressors and allow for restoration 

and conservation of ecosystems 

broadly.  

(Larkin et al., 

2019) 

Medium - High feasibility to 

recover ecosystem services 

provision that benefits livelihoods 

and their resilience. There can be 

conflicting uses, but these can be 

addressed with inclusive processes, 

and the benefits are supposed to 

outweigh losses in most cases. 

  

(Fadli et al., 

2012; 

Gattuso et al., 

2018; 

Boström-

Einarsson et 

al., 2020; 

Hafezi et al., 

2021) 

high High – achieves 

species recovery 

and reintroduction. 

(Boström-Einarsson 

et al., 2020; 

Rinkevich, 2021) 
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Assisted 

evolution 

Medium - Implementation 

is widespread however 

technical capacity can be a 

barrier and at the early 

stages. Moderate to high 

cost. 

(van Oppen et al., 

2015) 

Medium - No significant barriers in 

geophysical feasibility, as these 

interventions are small scale. 

Institutional feasibility is medium 

due to political acceptability and the 

lack of an existing regulatory and 

legal framework 

(Thiele, 2020) Medium - Medium ecological and 

social feasibility as it has the 

potential to alleviate some of the 

risks posed by climate change. 

Translocated plants and animals 

may carry pathogens or parasites 

affecting the health of native 

populations, be maladapted to 

other non-climate related changes, 

or may cause a change in genetic 

composition or population 

structure of native organisms, a 

loss of genetic diversity, or a 

breakdown of coadapted gene 

complexes. A counter argument 

here may be that with climate 

change and severe declines on the 

horizon, the spread and dominance 

of selected keystone species might 

be a better outcome than total loss. 

(Laikre et al., 

2010; van 

Oppen et al., 

2015; 

Anthony et 

al., 2017; 

Gattuso et al., 

2018) 

medium Medium -potential 

to conserve species 

and habitats from 

future change. 

(Bulleri et al., 2018; 

National Academies 

of Sciences, 2019; 

Boström-Einarsson 

et al., 2020; 

Fredriksen et al., 

2020; Morris et al., 

2020; Kleypas et al., 

2021) 

Habitat 

restoration 

Medium - adaptation 

planning and early to mid-

implementation, high costs. 

(Williams et al., 

2015; Bayraktarov 

et al., 2016; Pinto et 

al., 2018; Duarte et 

al., 2020a) 

Medium - Medium scope; not 

economies of scale, scalability 

limited and depends on habitats (i.e. 

Mangroves more scalable than 

seagrasses); helps hazard risk 

reduction (mitigation). 

(Duarte et al., 

2020a; 

Bertolini and 

da Mosto, 

2021; Braun de 

Torrez et al., 

2021) 

High - Supports ecosystem 

services and biodiversity reducing 

their vulnerability to climate 

change, provides ecological 

resilience, social co-benefits. May 

have varying social acceptability 

given other habitat uses (fishing, 

infrastructure, etc.) 

(Shelton, 

2014; 

Gattuso et al., 

2018) 

Medium High – has proven 

effective from local 

to regional to 

global scales. Has 

associated co-

benefits from 

mitigation to 

ecosystem services 

to coastal 

livelihoods. 

(Silver et al., 2019; 

Duarte et al., 2020a; 

Gordon et al., 2020; 

Braun de Torrez et 

al., 2021) 

Marine 

protected 

areas (MPAs) 

& OECMs 

High - MPAs already in 

place, widely implemented. 

There are additional costs 

of increasing enforcement, 

spill over economic effects. 

OECMs have high 

technical feasibility as they 

only require recognition of 

an existing management 

system. 

(Takasaki, 2016; 

Maxwell et al., 

2020b; Rilov et al., 

2020; Arafeh-

Dalmau et al., 2021; 

Gurney et al., 2021) 

High - High geophysical feasibility 

given the current network of MPAs 

and OECMs potential initiatives 

already in place, high institutional 

readiness given the regulatory 

framework of marine protection  

(Roberts et al., 

2018; Tittensor 

et al., 2019) 

High – Support ecosystem services 

and biodiversity although these can 

be impacted by climate change 

significantly. Provide ecological 

resilience. Some MPAs have 

associated social conflicts and 

acceptability issues, but these are 

already existing. This can be 

minimized if inclusiveness and 

participatory processes are 

incorporated 

(Edgar et al., 

2014; Gill et 

al., 2017; 

Wilson et al., 

2020; 

Ovando et 

al., 2021; 

Sala et al., 

2021) 

High Medium – as 

current MPAs are 

not expected to be 

effective against 

climate change 

impacts in the mid-

term, where 

adaptive 

management, 

dynamic 

conservation and/or 

conservation of 

climate refugia may 

be needed. 

(Tittensor et al., 

2019; Wilson et al., 

2020) 
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Conservation 

of Climate 

refugia 

Low - adaptation planning 

stage, no implementation 

yet, extent of new MPAs 

unknown. 

(Roberts et al., 

2017; Rilov et al., 

2020; Arafeh-

Dalmau et al., 2021) 

Low - Physically feasible and in a 

large-scale application but probably 

dynamic over time. Institutional 

bodies and agreements are not 

prepared for these dynamic 

conservation tools. Climate change 

not yet incorporated in conservation 

planning. 

(Tittensor et 

al., 2019; Rilov 

et al., 2020; 

Arafeh-Dalmau 

et al., 2021) 

High - Supports ecosystem 

services under climate change 

more efficiently and increases 

ecological and social resilience in 

the longer term. Limits social 

acceptability as access rights and 

marine uses can be limited. Loss of 

access to natural resources may 

result in burdens on communities 

and livelihood shifts, and may 

result in inequitable distribution of 

benefits. Design and 

implementation should be 

inclusive and participatory, 

combining participation with 

climate change metrics. 

(Brito-

Morales et 

al., 2018; 

Wilson et al., 

2020; 

Arafeh-

Dalmau et 

al., 2021) 

Medium High – models and 

experiments show 

potential 

effectiveness of 

conserving climate 

refugia. 

(Rilov et al., 2020; 

Wilson et al., 2020; 

Arafeh-Dalmau et 

al., 2021) 

Transboundar

y MSP and 

ICZM 

High- - large 

implementation processes 

of MSP and ICZM in most 

countries in the world. 

Potential for transboundary 

MSP. 

(Frazão Santos et 

al., 2020; Li and 

Jay, 2020) 

Medium - Coastal use change and 

planning is feasible and broad in 

scope, but institutional needs for 

transboundary integrated coastal and 

ocean spatial management are at the 

infancy (i.e. ABNJ treaty). 

Additionally, existing MSP and 

ICZM lack considerations of climate 

change adaptation. 

(Gissi et al., 

2019; Frazão 

Santos et al., 

2020) 

High - Well-designed ICZM and 

MSP across jurisdictions can 

guarantee access rights and 

sustainable resource use, that 

generates social and ecological co-

benefits. 

(Free et al., 

2020) 

High High - MSP that 

incorporates 

climate change 

impacts and 

adaptation in the 

design can 

contribute to 

support climate 

adaptation from a 

multi-sector 

perspective and 

through existing 

policy frameworks. 

Little evidence 

exists for 

transboundary MSP 

and ICZM. 

(Tittensor et al., 

2019; Frazão Santos 

et al., 2020; Rilov et 

al., 2020) 

Sustainable 

harvesting 

Medium - 30% stocks not 

managed sustainably, 

problems of enforcement, 

access to assets, capacity 

shortfalls and perverse 

subsidies. High potential 

for sustainable mariculture. 

Tools known and 

implemented broadly, 

requires fleet adjustments 

in some cases and ending 

illegal fishing. Sustainable 

fisheries and mariculture 

stabilize income and create 

opportunities for value-

addition.  

(International 

Council for Science, 

2017; Khan et al., 

2018a; Costello et 

al., 2020b) 

High - Global institutions are ready 

and advocating for sustainable 

fisheries management, including 

RFMOs, SDGs. National institutions 

vary in readiness, but overall global 

feasibility is high.  

(Miller et al., 

2010; Burden 

and Fujita, 

2019; Duarte et 

al., 2020a) 

High - Increases provisioning 

ecosystem services in different 

systems and allows for social co-

benefits if access is guaranteed and 

regulations are inclusive. Reduces 

the number of species at risk from 

climate change. Supports 

intergenerational equity and 

inclusive and participatory policies 

(i.e. co-management). 

(International 

Council for 

Science, 

2017; Le 

Blanc et al., 

2017; 

Cheung et al., 

2018) 

(Allison, 

2011) 

High Medium- 

sustainable 

harvesting 

effectively reduced 

the impacts of 

climate change, 

however it may not 

be sufficient for 

specific systems 

(i.e. tropical coral 

reefs) and or 

regions that expect 

large maximum 

catch potential 

losses. 

(Gaines et al., 2018; 

Free et al., 2020; 

Lam et al., 2020; 

Sumaila and Tai, 

2020) 
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Climate 

adaptive 

management 

Low - requires data rich 

assessments and ecological 

and climate monitoring. 

Adaptive management is 

effective but high costs for 

countries with scientific 

shortfalls. Very limited 

implementation so far. 

(Huntington et al., 

2017; Paulus et al., 

2019; Holsman et 

al., 2020) 

High - Scope yet is small but 

institutions existing can incorporate 

adaptive fisheries management 

without broad transformations; it is 

physically feasible and helps hazard 

risk reduction 

(Pentz et al., 

2018) 

High - there are no significant 

environmental barriers, as it 

increases ecosystem services (food 

provisioning), SDG2. It can have 

social co-benefits or differ in 

acceptability, in order to increase 

acceptability, design should be 

inclusive and distribution across 

the globe 

(Pinsky et al., 

2018) 

Medium High – scarce 

examples of 

implementation but 

models and 

evidence shows 

high effectiveness 

to reduce risks and 

foster adaptation in 

fisheries and 

conservation. 

(Asch, 2015; Levin 

and Möllmann, 

2015; Fulton et al., 

2019a; Nickols et 

al., 2019) 

Ecosystem-

based 

management 

Medium - Implementation 

is expanding, requires 

economic resources but 

less than adaptive fisheries 

management, data poor 

management is possible. 

Increasing implementation 

in fisheries management. 

(Wamsler et al., 

2016; Bryndum-

Buchholz et al., 

2021) 

Medium - Scope so far is small but 

can be scaled up to regional 

management. Institutions are not 

ready, but it may not require 

important transformations. It 

contributes to risk reduction and 

resilience. 

(Alexander et 

al., 2019) 

High - High ecological feasibility 

due to the co-benefits and the 

support to biodiversity and 

ecosystem services. High 

acceptability, supports 

intergenerational equity, allows for 

participation, co-management and 

inclusive processes. 

(Leslie and 

McLeod, 

2007; 

Fernandino et 

al., 2018; 

Lowerre-

Barbieri et 

al., 2019) 

Medium High- Ecosystem-

based management 

can incorporate 

many adaptation 

solutions, can 

reduce climate 

impacts in fisheries 

in the near-term, 

and under low 

emission scenarios. 

(Harvey et al., 2018; 

Karp et al., 2019; 

Holsman et al., 

2020) 

 1 
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SM3.5.2  Fisheries Adaptation to Climate Change 1 
 2 
Adaptation to climate impacts in fisheries and mariculture most commonly begins with harvesters moving. 3 
Mobility allows fishing fleets and fishers to adapt to shifting marine species distributions (high agreement) 4 
(Section 3.5.3, 3.4.3.1, Peck and Pinnegar, 2018; Pinsky et al., 2018; Frazão Santos et al., 2020). Following 5 
preferred species is challenging: well-developed, regionally coordinated fisheries can fail to match climate-6 
driven range shifts of target species (Pinsky and Fogarty, 2012); in some cases, target species may vacate 7 
designated fishing grounds (Bell et al., 2021). An alternative is diversifying fishing locations, as occurred 8 
when the squid fishery in Baja California Sur (Mexico) faced drastic decreases in catches before collapsing 9 
(Gonzalez-Mon et al., 2021). However, fishery relocation can disrupt cultural associations, or worsen scarce 10 
employment opportunities (e.g., Jarre et al., 2013). Even mobile oceanic fisheries, like the industrial tuna 11 
fleet, face falling revenues from tracking shifting target species (Bell et al., 2021). Overall, there is limited 12 
evidence on the positive or maladaptive implications of relocation (Magnan et al., 2020; Islam et al., 2021). 13 
 14 
Diversification of harvests, tactics, and livelihoods is a common adaptation strategy that can help address 15 
climate impacts to fisheries and mariculture (high confidence) (Galappaththi et al., 2017; Blair and Momtaz, 16 
2018; Miller et al., 2018; Peck and Pinnegar, 2018; Robinson et al., 2020; Gonzalez-Mon et al., 2021). 17 
Harvest diversification increases yields and livelihood stability in commercial and small-scale fisheries (high 18 
confidence) (Cline et al., 2017; Young et al., 2019; Barnes et al., 2020; Robinson et al., 2020). Tactics may 19 
include changing fishing gear or vessel power, or combining different income-generating activities within 20 
the fishing and mariculture sectors (Ojea et al., 2020). Livelihood diversification includes transitioning from 21 
wild fisheries to mariculture (Gephart et al., 2020; Ojea et al., 2020), or to other marine sectors like 22 
ecotourism, or leaving marine sectors entirely. Coastal and offshore mariculture is expected to continue 23 
growing to meet increasing seafood demand (Costello et al., 2020a) despite constraints from climate change 24 
(Froehlich et al., 2018a; Froehlich et al., 2020) and sustainability (Corten et al., 2017; Theuerkauf et al., 25 
2019; Costello et al., 2020a), and it requires its own set of adaptations including technological (Froehlich et 26 
al., 2018b; Cottrell et al., 2020) and socio-institutional changes (Galappaththi et al., 2020). (A full 27 
assessment of mariculture and fisheries within food systems is found in Chapter 5.) Increasing tourism is a 28 
commonly reported diversification strategy for fishers (Wood et al., 2013; Cinner, 2014), but this action has 29 
a limited ability to improve or maintain the well-being of fishing communities (high confidence) (Lasso and 30 
Dahles, 2018; Fabinyi, 2020; Pham, 2020) as they become dependent on tourism flows and seasonality. 31 
Social capital and land tenure can support successful transitions among sectors (low evidence) (Diedrich et 32 
al., 2019; Fabinyi, 2020) and livelihoods also benefit from participating in co-management systems to 33 
confront the impacts of climate change (medium evidence) (Voorberg and Van der Veer, 2020; Gianelli et 34 
al., 2021). 35 
 36 
Technology and infrastructure adaptations can improve marine harvest efficiency, reduce risk, and support 37 
resource management goals (Friedman et al., 2020; Bell et al., 2021; Melbourne-Thomas et al., 2021), but 38 
their ability to overcome climate-change impacts remains uncertain (Bell et al., 2020). For example, the 39 
tropical tuna industry use aggregation devices to increase efficiency, but the ability of these devices to offset 40 
climatic impacts is uncertain (Rubio et al., 2020). Technologies like satellite-tracked vessel-monitoring 41 
systems facilitate enforcement of marine reserves (Bradley et al., 2019; White et al., 2020) and identify 42 
illegal, unreported and unregulated fishing activity (Lubchenco and Grorud-Colvert, 2015; Cabral et al., 43 
2018; Kurekin et al., 2019), thereby helping alleviate overfishing, a major detrimental interacting driver 44 
(Section 3.5.3). However, the degree to which these technologies can overcome expected climate-change 45 
impacts (Bell et al., 2013; Erauskin-Extramiana et al., 2019) is unquantified, as are any associated ecological 46 
consequences. 47 
 48 
Improving capacity to predict anomalous conditions in coastal and marine ecosystems (Jacox et al., 2019; 49 
Holbrook et al., 2020; Jacox et al., 2020), storm-driven flooding in reef-lined coasts (Scott et al., 2020; 50 
Winter et al., 2020) and fisheries stock recruitment (Payne et al., 2017; Tommasi et al., 2017; Muhling et al., 51 
2018) can improve forecasts of coastal and marine resources. These can enhance sustainability of wild-52 
capture fisheries (high confidence) (Blanchard et al., 2017; Tommasi et al., 2017) and inform fisheries and 53 
mariculture decision-making at management-relevant time scales (Payne et al., 2017; Tommasi et al., 2017; 54 
Hobday et al., 2018). Combining seasonal and multi-year climate projections in dynamic model forecasts 55 
helps marine industries consider longer-term adaptations such as changing practices or relocating (medium 56 
confidence) (Tommasi et al., 2017; Hobday et al., 2018; Merryfield et al., 2020). These tools will be most 57 

ACCEPTED V
ERSIO

N 

SUBJE
CT TO FIN

AL E
DITS



FINAL DRAFT Chapter 3 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SM3-45 Total pages: 88 

effective when they are accessible to decision makers and local communities (see Section 3.6.3.3) (Tommasi 1 
et al., 2017; A. Maureaud et al., 2021). 2 
 3 
At the global level, eliminating overexploitation very likely benefits fisheries adaptation to climate change 4 
(Burden and Fujita, 2019; Free et al., 2019; Sumaila and Tai, 2020). Regulating landing sizes is a simple 5 
strategy that addresses both climate change and overexploitation impacts (Queirós et al., 2018; Thompson et 6 
al., 2020). Controlling overfishing may also decrease methylmercury bioaccumulation in pelagic Atlantic 7 
finfish (Schartup et al., 2019). But more sophisticated approaches like adaptive management, which 8 
anticipates and responds to changes in both fishery productivity and distribution, can not only reduce 9 
fisheries impacts but also improve fisheries yields and profits (high confidence) (Costello et al., 2016; Gaines 10 
et al., 2018; Pinsky et al., 2018; IPBES, 2019; Karp et al., 2019). Management that adjusts the timing of 11 
fishery closures and uses timed stock assessment surveys or hatchery releases might also effectively address 12 
climate-driven changes in phenology (Section 3.4.3.2) that alter the seasonality of harvests (low evidence) 13 
(Asch, 2015) and decrease the dependability of seasonal employment and cultural activities (Section 3.5.6). 14 
Achieving sustainable fishing practices together with strong mitigation (RCP2.6) is projected to reduce the 15 
number of fisheries target species at risk in 2100 by 63% (Cheung et al., 2018), but the implementation of 16 
climate-adaptive management in global fisheries remains limited (Holsman et al., 2020). 17 
 18 
Ecosystem-based fisheries management is widely legislated (Bryndum-Buchholz et al., 2021), and can 19 
reduce climate impacts in fisheries in the near-term, especially under low-emission scenarios (Karp et al., 20 
2019; Holsman et al., 2020). Multi-species ecosystem-based management outperforms single-species 21 
management (Fulton et al., 2019a) and has been proposed as an effective tool for addressing regime shifts 22 
(Section 3.4.3.3.3, Levin and Möllmann, 2015). Ecosystem-based management, however, poses substantial 23 
challenges for nations that lack the necessary resources or information (Fernandino et al., 2018). Awareness 24 
and integration of social-ecological contexts in policy and management promotes equitable strategies for 25 
sustainable fisheries and mariculture and for reducing risks of unintended negative social impacts on regions 26 
or sectors (Cochrane, 2021). 27 
 28 
Transboundary agreements on shifting fisheries will reduce the risk of overharvesting and depletion of 29 
resources at the trailing edges of their distributions (high agreement, medium confidence) (Gaines et al., 30 
2018). Permits tradable across political boundaries could also address this challenge, but limited evidence is 31 
available regarding their efficacy (Pinsky et al., 2018). One promising approach for migratory species is the 32 
'Vessel Day Scheme', a cap-and-trade system (Aqorau et al., 2018) that allows allocated fishing days to be 33 
exchanged among countries as El Niño shifts the tropical Pacific skipjack tuna distribution while preserving 34 
license revenue for all participating countries. However, this approach is not expected to fully accommodate 35 
projected tuna distributional shifts, requiring additional management adjustment (Bell et al., 2021). Other 36 
proposed adaptation strategies incorporate fisheries management and climate-smart conservation under the 37 
negotiations on areas beyond national jurisdiction (Pinsky et al., 2018; Tittensor et al., 2019; Frazão Santos 38 
et al., 2020), and in the CBD areas designed as other effective area-based conservation measures (OECMs) 39 
(Tittensor et al., 2019). 40 
 41 
Despite the potential for adaptive management to achieve sustainable fisheries, outcomes will very likely be 42 
inequitable (Gaines et al., 2018; Free et al., 2020; Lam et al., 2020). Many tropical and low-income countries 43 
will not be able to offset all climate change impacts on fisheries or mariculture with management and policy 44 
reforms (high confidence) (Frazão Santos et al., 2020; Free et al., 2020; Bell et al., 2021), owing to the 45 
unequal geographic distribution of climate impacts and hazards (high confidence). In addition, fisheries 46 
reforms and adaptive management are less developed in the most climate-vulnerable and fisheries-dependent 47 
nations (high confidence) (Thiault et al., 2019; Lam et al., 2020; Bell et al., 2021). Human adaptations that 48 
reduce climate-driven risks to food provision can have positive or negative effects on marine resource 49 
management and socioeconomic systems (limited evidence, high agreement) (see also Section 3.6, Chapter 50 
5, and detailed in Barange et al., 2018). To overcome these limitations, community-level analyses that 51 
account for environmental and social conditions as well as policy history are required to support adaptation 52 
planning (high confidence) (Dubik et al., 2019; Rogers et al., 2019) so that climate risk of individual fishing 53 
communities and responses by local ecosystems and social systems can be considered in the context of 54 
neighbouring communities. Flexible and polycentric governance approaches have facilitated some short-term 55 
successes in achieving equitable, sustainable fisheries practices, but these may be challenging to implement 56 
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where other governance systems, especially hierarchical systems, are well-established (Cvitanovic et al., 1 
2018; Bell et al., 2020). 2 
 3 
SM3.5.3  Multilateral Environmental Agreements and Climate Change 4 
 5 
Several established global agreements and regional, sectoral, or scientific bodies do already address climate 6 
adaptation and resilience, including the UN Framework Convention on Climate Change (UNFCCC), the UN 7 
Convention on Biological Diversity (CBD), Sustainable Development Goal 14 (Section 3.6.4), Regional 8 
Seas Conventions and Action Plans, and the Convention on Wetlands (Ramsar). All of these except Ramsar 9 
also address reducing other stressors, and regional fisheries management organizations and agreements 10 
(RFMOs/RFMAs) and the International Seabed Authority (ISA) seek to reduce non-climate stressors also. 11 
UNFCCC and CBD also address finance mechanisms necessary for climate action (Conservation 12 
International and IUCN, 2021; Sumaila et al., 2021). 13 
 14 
Reduction of non-climate stressors and adaptation to climate impacts has advanced slowly and unevenly 15 
under existing agreements and established bodies (medium evidence, high agreement). Parties to the 16 
UNFCCC’s Paris Agreement have developed Nationally Determined Contributions (NDCs) and adaptation 17 
communications detailing their plans to reduce greenhouse gas emissions and adapt to climate change; in 18 
2017, only 9% of coastal nations’ NDCs lacked marine considerations (Gallo et al., 2017). By 2020, more 19 
than 50 nations presented blue carbon strategies (Duarte et al., 2020a) intended to contribute to both 20 
mitigation and adaptation, and 29% of Parties proposed restoring and protecting marine habitats for 21 
adaptation (Seddon et al., 2020). National adaptation communications include a diverse suite of products 22 
(Christiansen et al., 2020) whose ocean focus has not been assessed. Under the UN CBD, in 2011 nations 23 
pledged to protect 10% of the global ocean by 2020 (the Aichi targets) by achieving sustainable harvest and 24 
management of marine resources, alleviating other anthropogenic pressures on marine ecosystems, and 25 
expanding coverage and effectiveness of MPAs and OECMs (CBD, 2020; CBD Secretariat, 2020), but as of 26 
August 2021, these targets were not met as only 7.74% of marine areas are protected (UNEP-WCMC, 2021). 27 
The 18 Regional Seas Conventions under the UN Environmental Programme, encompassing 146 nations, 28 
have advanced regional action on common marine environmental concerns, such as marine pollution, 29 
biodiversity, area-based measures, monitoring, and climate change adaptation (Johnson et al., 2021), all of 30 
which influence, and are influenced by, climate impacts. Since 1971, the Ramsar Convention has advanced 31 
coordinated action to monitor and sustainably manage wetlands, contributing to greater resilience, but this 32 
work has not been explicitly coupled to climate considerations (Finlayson et al., 2017). RFMOs and other 33 
regional fisheries bodies facilitate international cooperation on high-seas fishing, but opinions vary on 34 
whether they have adequately prevented overfishing and marine ecosystem degradation (Lodge et al., 2007), 35 
two major drivers interacting with climate impacts on ocean and coastal systems (Sections 3.4–3.6). The ISA 36 
organizes and controls mineral resources-related activities in areas beyond national jurisdiction (International 37 
Seabed Authority, 2021); although mineral extraction has not begun, vigorous debate exists about the 38 
potential short-term climate mitigation advances from accessing critical minerals to support sustainable 39 
technology versus potential long-term mitigation and adaptation impacts from influencing marine 40 
biodiversity and other deep-sea ecosystem functions (Koschinsky et al., 2018; Niner et al., 2018; Weaver et 41 
al., 2018; Carver et al., 2020; Kung et al., 2021; Tilot et al., 2021). 42 
 43 
 Many opportunities exist for policies being implemented or developed now to support climate adaptation 44 
and mitigation opportunities as well as plan for probable climate impacts. Some exist in the growing 45 
implementation of national and international marine spatial planning (especially in South American and 46 
African coastal countries (Ehler and Fanny, 2009; Wright et al., 2019; Frazão Santos et al., 2020), and others 47 
are associated with the marine biological diversity beyond national jurisdictions (BBNJ) treaty being 48 
negotiated now by the UN, which will set targets for protection and sustainable use of the high seas 49 
(including the deep sea) and integrate planning, use, and environmental impact assessment of activities 50 
(Leary, 2019; Levin et al., 2020; Orejas et al., 2020). Opportunities also exist to update long-standing 51 
agreements, such as Regional Seas and RFMOs (Billé et al., 2017; Pentz et al., 2018; Johnson et al., 2021), 52 
and Ramsar (Hettiarachchi et al., 2015), with climate-informed targets and actions to achieve interacting 53 
objectives of climate mitigation and adaptation, reduction of non-climate impacts, and protection of 54 
biodiversity.55 
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SM3.5.4  Data Supporting Figure 3.25 1 
 2 
 3 
Table SM3.4: Background materials and data for Past Implementation of marine nature-based solutions in Figure 3.25a	4 
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l 
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the year 

of 
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were 
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of 

initiation 
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of 
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l 
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of 
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Table SM3.5: Background materials and data for coral reef adaptation pathways in Figure 3.25b. Based on assessment of effectiveness at maintaining >20% coral cover, with 1 
ongoing = likely (>66%), uncertain1= more likely than not to likely (50-66%), and uncertain2 = unlikely to more likely than not (33-50%). “Best management” practices = refers to 2 
reducing fishing pressure and elimination of non-climate stressors (e.g., removal of Crown-of-Thorns starfish); “Enhanced coral” = interventions like assisted would increase coral 3 
thermal tolerance (e.g., assisted evolution or assisted gene flow); Reef shading” = efforts to decrease incident radiation, “Change livelihoods” = reduces community reliance on coral 4 
reef services.	5 

Coral Reefs 1˚ 1–1.5˚ 1.5-2˚ 2-2.5˚ 2.5-3˚ 3-4˚ Confidence 
Level 

Rationale References 

Best 
Management 

starts ongoing uncertain2    very high consensus of model results for reduction of grazing fish 
pressure (Caribbean) and crown-of-thorns starfish removal 
(Australia) 

(Anthony et al., 2019; 
National Academies of 
Sciences Engineering and 
Medicine, 2019) 

Coral 
restoration 

starts uncertain1 uncertain2    high restoration without coral enhancement (e.g., assisted evolution, 
assisted gene flow) ineffective beyond 1.5C warming, 
following SR1.5, SROCC and Section 3.4.2.2  

Section 3.4.2.1 (drawn from 
text on restoration) 

(+) Enhanced 
coral 

 starts ongoing uncertain1 uncertain2  medium consensus of model results combining best management and 
introduction of more heat-tolerant corals "outplanting warm-
adapted coral juveniles" in Anthony et al. (2019). 

(Anthony et al., 2019; 
National Academies of 
Sciences Engineering and 
Medicine, 2019) 

(+) Reef 
Shading 

 starts ongoing uncertain1 uncertain2  medium consensus of model results combining best management, 
introduction of more heat-tolerant corals, and artificial reef 
shading 

(Anthony et al., 2019; 
National Academies of 
Sciences Engineering and 
Medicine, 2019) 

Changing 
livelihoods 

 starts ongoing ongoing ongoing ongoing very high drawn from very high confidence in reef degradation with 
>1.5C warming and no management; supported consensus of 
the two model results with no management applied, and by 
other available projection studies which do not simulate 
management (see 3.4.2.1, no evolution case) (e.g., Logan et al., 
2021) 

(Section 3.4.2.1, Anthony et 
al., 2019; National 
Academies of Sciences 
Engineering and Medicine, 
2019) 

 6 
 7 
Table SM3.6: Background materials and data for Mangrove Adaptation Pathways in Figure 3.25c	8 

Mangrove 1˚ 1-1.5˚ 1.5-2˚ 2-2.5˚ 2.5-3˚ 3-4˚ Confidence 
Level 

Rationale References 

Restoration/ 
revegetation 

starts ongoing ongoing ongoing uncertain uncertain very high mangroves are resistant to increase in temperature, 
though it is uncertain how much temperature may 

(Duarte et al., 2020a; 
Friess et al., 2020) 
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affect the recruitment of new plants and the 
availability of suitable space 

Conservation starts ongoing ongoing uncertain   high without interventions that allow mangroves to 
migrate landward, mangroves will likely suffer 
significant losses by mid-century, even under SSP1-
2.6; by the end of the century, the risk of severe 
mangrove losses resulting from SLR ranges from 
very likely under SSP1-2.6 to extremely likely under 
SSP5-8.5. will be not able to survive SLR projected 
at  

(Section 3.4.2.5, Duarte 
et al., 2020a) 

Payment for 
ecosystem services 
and C market 

 starts ongoing ongoing ongoing uncertain high the C market and PES strategies will depend on the 
success of other intervention to provide C stock at 
long term 

(Macreadie et al., 2019) 

Diversify livelihoods  starts ongoing ongoing uncertain uncertain medium  (Duarte et al., 2020a; 
Stewart-Sinclair et al., 
2020b) 

migration & 
relocation (people) 

 starts ongoing ongoing uncertain  low  (Duarte et al., 2020a; 
Lovelock and Reef, 
2020) 

hard 
infrastructure/retreat 

 starts ongoing ongoing ongoing uncertain low  (Duarte et al., 2020a; 
Lovelock and Reef, 
2020) 

	1 
 2 
SM3.5.5 Data Supporting Figure 3.26 3 
 4 
 5 
Table SM3.7: Background materials and data for Figure 3.26	6 

Group From  To Interaction Agreement Author Scores References 

     1 2 3 4 5  

 SDG13 14.1-Reduce 
pollution 

2 100 2 2 2 2 2 (International Council for Science, 2017; Le Blanc et al., 2017; Nilsson et al., 
2018) 

 SDG13 14.2-
Protection 

3 100 3 3 3 3 3 (Hoegh-Guldberg and Bruno, 2010; Le Blanc et al., 2017; Pecl et al., 2017) 
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and 
restoration 

 SDG13 14.3-Reduce 
OA 

3 100 3 3 3 3 3 (Le Blanc et al., 2017; Nilsson et al., 2018) (Hoegh-Guldberg and Bruno, 2010) 

 SDG13 14.4-
Sustainable 
fishing 

2 80 3 2 2 2 2 (Le Blanc et al., 2017; Pecl et al., 2017) 

 SDG13 14.5-
Conservation 

2 100 2 2 2 2 2 (Le Blanc et al., 2017) 

 SDG13 14.6-No 
overfishing 
subsidies 

0 80 0 1 0 0 0 (Sumaila et al., 2010; Pinsky et al., 2018) 

 SDG13 14.7-
Sustainable 
resources 

3 100 3 3 3 3 3 (Nilsson et al., 2016; Nilsson et al., 2018; Wabnitz et al., 2018) (International 
Council for Science, 2017) 

 SDG13 14.A-
Knowledge 

3 80 2 3 3 3 3 (International Council for Science, 2017) (Pecl et al., 2017) 

 SDG13 14.B-SSF 1 60 1 1 1 0 2 (FAO, 2015b) 

 SDG13 14.C-Sea law 3 100 3 3 3 3 3 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.1-Reduce Marine 
Pollution 

SDG1-No 
Poverty 

2 80 2 1 2 2 2 (Shahidul Islam and Tanaka, 2004; International Council for Science, 2017; Le 
Blanc et al., 2017) 

Society 14.2-Protect and Restore 
Ecosystems 

SDG1-No 
Poverty 

2 60 2 2 2 3 1 (International Council for Science, 2017; Le Blanc et al., 2017) 

Society 14.3-Reduce Ocean 
Acidification 

SDG1-No 
Poverty 

2 60 1 3 1 2 1 (International Council for Science, 2017) 

Society 14.4-Sustainable 
Fishing 

SDG1-No 
Poverty 

2 60 2 2 2 3 2 (Allison, 2011; International Council for Science, 2017; Le Blanc et al., 2017) 

Society 14.5-Conserve Coastal 
and Marine Areas 

SDG1-No 
Poverty 

1 40 -1 1 1 3 2 (International Council for Science, 2017; Le Blanc et al., 2017; Singh et al., 
2018) 
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Society 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG1-No 
Poverty 

0 60 -1 -1 -1 2 2 (Allison, 2011; Le Blanc et al., 2017) 

Society 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG1-No 
Poverty 

3 60 3 2 2 3 2 (International Council for Science, 2017; Le Blanc et al., 2017; Singh et al., 
2018) 

Society 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG1-No 
Poverty 

2 40 1 0 2 2 2 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.B- Support Small-
scale Fisheries 

SDG1-No 
Poverty 

3 100 3 3 3 3 2 (Le Blanc et al., 2017) 

Society 14.C-Implement and 
Enforce International Sea 
Law 

SDG1-No 
Poverty 

1 40 1 0 2 1 2 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.1-Reduce Marine 
Pollution 

SDG2-Zero 
Hunger 

2 80 3 1 3 1 3 (Shahidul Islam and Tanaka, 2004) 

Society 14.2-Protect and Restore 
Ecosystems 

SDG2-Zero 
Hunger 

2 60 2 2 2 2 2 (Kawarazuka and Béné, 2011; Béné et al., 2016; International Council for 
Science, 2017) 

Society 14.3-Reduce Ocean 
Acidification 

SDG2-Zero 
Hunger 

2 60 1 1 2 3 1 (Hoegh-Guldberg et al., 2017; Le Blanc et al., 2017) 

Society 14.4-Sustainable Fishing SDG2-Zero 
Hunger 

2 60 3 1 2 3 2 (Allison, 2011; International Council for Science, 2017; Le Blanc et al., 2017) 

Society 14.5-Conserve Coastal 
and Marine Areas 

SDG2-Zero 
Hunger 

1 40 1 -1 1 2 1 (International Council for Science, 2017; Le Blanc et al., 2017; Singh et al., 
2018)  

Society 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG2-Zero 
Hunger 

0 60 -1 -1 1 0 1 (Allison, 2011; Le Blanc et al., 2017) 

Society 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG2-Zero 
Hunger 

2 60 3 1 2 3 1 (Béné et al., 2016; FAO, 2016; Le Blanc et al., 2017) 

Society 14.A-Increase Scientific 
Knowledge, Research 

SDG2-Zero 
Hunger 

2 40 1 2 2 2 1 (Le Blanc et al., 2017) 
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and Technology for 
Ocean Health 

Society 14.B- Support Small-
scale Fisheries 

SDG2-Zero 
Hunger 

3 100 2 3 3 3 2 (Le Blanc et al., 2017) 

Society 14.C-Implement and 
Enforce International Sea 
Law 

SDG2-Zero 
Hunger 

1 40 1 0 2 1 2 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.1-Reduce Marine 
Pollution 

SDG3- Good 
Health and 
wellbeing 

3 80 3 3 3 2 3 (Le Blanc et al., 2017) 

Society 14.2-Protect and Restore 
Ecosystems 

SDG3- Good 
Health and 
wellbeing 

2 40 1 1 2 2 3 (HLPE, 2014; IPCC, 2014b; IPCC, 2014a; Béné et al., 2016) 

Society 14.3-Reduce Ocean 
Acidification 

SDG3- Good 
Health and 
wellbeing 

1 80 1 1 2 1 1 (Vezzulli et al., 2012) 

Society 14.4-Sustainable Fishing SDG3- Good 
Health and 
wellbeing 

2 40 1 2 2 3 3 (Le Blanc et al., 2017) 

Society 14.5-Conserve Coastal 
and Marine Areas 

SDG3- Good 
Health and 
wellbeing 

1 40 0 0 1 2 1 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG3- Good 
Health and 
wellbeing 

0 80 0 0 0 0 1 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018) (Singh et al., 2018) 

Society 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG3- Good 
Health and 
wellbeing 

2 60 1 1 2 3 1 (Perry, 2010) 

Society 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG3- Good 
Health and 
wellbeing 

2 60 1 2 1 2 2 (Calcabrini et al., 2017; Le Blanc et al., 2017) 
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Society 14.B- Support Small-
scale Fisheries 

SDG3- Good 
Health and 
wellbeing 

2 40 1 1 2 2 3 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.C-Implement and 
Enforce International Sea 
Law 

SDG3- Good 
Health and 
wellbeing 

2 60 1 1 2 1 3 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.1-Reduce Marine 
Pollution 

SDG4-
Quality 
Education 

0 80 0 0 1 0 0 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.2-Protect and Restore 
Ecosystems 

SDG4-
Quality 
Education 

0 60 0 0 1 0 1 (Vladimirova and Le Blanc, 2016) 

Society 14.3-Reduce Ocean 
Acidification 

SDG4-
Quality 
Education 

0 80 0 0 1 0 0 NA (authors discussion) 

Society 14.4-Sustainable Fishing SDG4-
Quality 
Education 

1 60 0 1 2 0 0 NA (authors discussion) 

Society 14.5-Conserve Coastal 
and Marine Areas 

SDG4-
Quality 
Education 

0 100 0 0 0 0 0 NA (authors discussion) 

Society 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG4-
Quality 
Education 

0 80 0 1 0 0 0 NA (authors discussion) 

Society 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG4-
Quality 
Education 

1 80 1 1 1 1 0 NA (authors discussion) 

Society 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG4-
Quality 
Education 

1 80 1 1 1 1 0 NA (authors discussion) 

Society 14.B- Support Small-
scale Fisheries 

SDG4-
Quality 
Education 

1 60 0 0 2 0 1 NA (authors discussion) ACCEPTED V
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Society 14.C-Implement and 
Enforce International Sea 
Law 

SDG4-
Quality 
Education 

0 60 0  1 0 0 NA (authors discussion) 

Society 14.1-Reduce Marine 
Pollution 

SDG5-
Gender 
Equality 

2 60 1 2 1 2 2 (Harper et al., 2013; Bellante et al., 2016) 

Society 14.2-Protect and Restore 
Ecosystems 

SDG5-
Gender 
Equality 

1 40 0 0 1 3 2 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.3-Reduce Ocean 
Acidification 

SDG5-
Gender 
Equality 

1 40 1 0 1 3 2 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.4-Sustainable Fishing SDG5-
Gender 
Equality 

1 60 1 0 1 3 1 (Allison, 2011) 

Society 14.5-Conserve Coastal 
and Marine Areas 

SDG5-
Gender 
Equality 

1 40 0 0 1 3 1 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018; Singh et al., 2018) 

Society 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG5-
Gender 
Equality 

1 60 0 0 0 2 1 (Schuhbauer et al., 2017) 

Society 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG5-
Gender 
Equality 

1 80 1 1 1 3 1 (Le Blanc et al., 2017) 

Society 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG5-
Gender 
Equality 

2 60 1 1 1 3 2 (Le Blanc et al., 2017) 

Society 14.B- Support Small-
scale Fisheries 

SDG5-
Gender 
Equality 

2 40 1 3 1 3 2 (Harper et al., 2013; Le Blanc et al., 2017) 

Society 14.C-Implement and 
Enforce International Sea 
Law 

SDG5-
Gender 
Equality 

1 40 1 0 1 3 1 (McLeod et al., 2018; Michalena et al., 2020) ACCEPTED V
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Society 14.1-Reduce Marine 
Pollution 

SDG6-Clean 
Water and 
Sanitation 

3 80 3 3 3 3 2 (Ferrario et al., 2014) 

Society 14.2-Protect and Restore 
Ecosystems 

SDG6-Clean 
Water and 
Sanitation 

2 60 2 2 2 3 1 (Luh et al., 2017; Pecl et al., 2017) 

Society 14.3-Reduce Ocean 
Acidification 

SDG6-Clean 
Water and 
Sanitation 

1 40 1 0 1 2 1 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018) (Singh et al., 2018) 

Society 14.4-Sustainable Fishing SDG6-Clean 
Water and 
Sanitation 

1 60 0 0 0 2 1 (Hassan et al., 2008) 

Society 14.5-Conserve Coastal 
and Marine Areas 

SDG6-Clean 
Water and 
Sanitation 

2 60 1 2 2 2 1 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018) (Singh et al., 2018) 

Society 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG6-Clean 
Water and 
Sanitation 

0 80 0 0 0 0 1 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018) (Singh et al., 2018) 

Society 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG6-Clean 
Water and 
Sanitation 

1 60 1 -1 1 3 1 (Holding et al., 2016; UN, 2019) 

Society 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG6-Clean 
Water and 
Sanitation 

1 60 1 0 1 2 1 (Racault et al., 2019) 

Society 14.B- Support Small-
scale Fisheries 

SDG6-Clean 
Water and 
Sanitation 

1 60 0 0 1 1 1 (Rangel Soares et al., 2002; FAO, 2009) 

Society 14.C-Implement and 
Enforce International Sea 
Law 

SDG6-Clean 
Water and 
Sanitation 

1 80 1 0 1 1 1 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018) (Singh et al., 2018) 

Society 14.1-Reduce Marine 
Pollution 

SDG7-
Affordable 
and clean 
energy 

2 40 3 2 2 3 -1 (European Commission, 2012; Copping et al., 2014; Ellabban et al., 2014; Rilov 
et al., 2020) 

ACCEPTED V
ERSIO

N 

SUBJE
CT TO FIN

AL E
DITS



FINAL DRAFT Chapter 3 Supplementary Material IPCC WGII Sixth Assessment Report 

Do Not Cite, Quote or Distribute SM3-60 Total pages: 88 

Society 14.2-Protect and Restore 
Ecosystems 

SDG7-
Affordable 
and clean 
energy 

0 40 0 -2 2 2 -1 (Wright, 2015; Fuso Nerini et al., 2018) 

Society 14.3-Reduce Ocean 
Acidification 

SDG7-
Affordable 
and clean 
energy 

0 80 0 0 1 0 0 NA (authors discussion) 

Society 14.4-Sustainable Fishing SDG7-
Affordable 
and clean 
energy 

-1 60 0 -2 0 0 -1 (Copping et al., 2014) 

Society 14.5-Conserve Coastal 
and Marine Areas 

SDG7-
Affordable 
and clean 
energy 

-1 40 0 -2 -1  -1 (Wright, 2015; Rilov et al., 2020) 

Society 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG7-
Affordable 
and clean 
energy 

0 100 0 0 0 0 0 NA 

Society 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG7-
Affordable 
and clean 
energy 

2 60 1 2 2 2 1 (Blechinger et al., 2016) 

Society 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG7-
Affordable 
and clean 
energy 

3 60 3 2 3 3 2 (Gegg and Wells, 2019) 

Society 14.B- Support Small-
scale Fisheries 

SDG7-
Affordable 
and clean 
energy 

0 100 0 0 0 0 0 NA (authors discussion) 

Society 14.C-Implement and 
Enforce International Sea 
Law 

SDG7-
Affordable 
and clean 
energy 

1 60 2 1 1 2 1 (Wright, G., 2014) ACCEPTED V
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Economy 14.1-Reduce Marine 
Pollution 

SDG8-
Decent Work 
and 
Economic 
Growth 

1 40 1 -1 2 2 1 (International Council for Science, 2017) (Jang et al., 2014; Krelling et al., 
2017) 

Economy 14.2-Protect and Restore 
Ecosystems 

SDG8-
Decent Work 
and 
Economic 
Growth 

1 40 -1 -1 3 1 1 (International Council for Science, 2017) (Gillett and Lightfoot, 2001; Allison, 
2011; Béné et al., 2016) 

Economy 14.3-Reduce Ocean 
Acidification 

SDG8-
Decent Work 
and 
Economic 
Growth 

1 80 1 0 1 1 1 (International Council for Science, 2017) (Gillett and Lightfoot, 2001; Allison, 
2011; Béné et al., 2016) 

Economy 14.4-Sustainable Fishing SDG8-
Decent Work 
and 
Economic 
Growth 

2 80 2 -1 2 2 2 (International Council for Science, 2017) (Allison, 2011; Le Blanc et al., 2017) 

Economy 14.5-Conserve Coastal 
and Marine Areas 

SDG8-
Decent Work 
and 
Economic 
Growth 

1 60 -1 1 1 2 1 (International Council for Science, 2017) (Russi et al., 2016; Le Blanc et al., 
2017) 

Economy 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG8-
Decent Work 
and 
Economic 
Growth 

0 40 -1 -1 0 0 1 (Le Blanc et al., 2017) 

Economy 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG8-
Decent Work 
and 
Economic 
Growth 

3 60 3 2  3 3 (International Council for Science, 2017; Le Blanc et al., 2017) 

Economy 14.A-Increase Scientific 
Knowledge, Research 

SDG8-
Decent Work 

2 40 1 3 2 3 2 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018) (Singh et al., 2018) 
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and Technology for 
Ocean Health 

and 
Economic 
Growth 

Economy 14.B- Support Small-
scale Fisheries 

SDG8-
Decent Work 
and 
Economic 
Growth 

2 40 2 1 3 2 3 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018) (Singh et al., 2018) 

Economy 14.C-Implement and 
Enforce International Sea 
Law 

SDG8-
Decent Work 
and 
Economic 
Growth 

1 40 1 0 3 1 2 (Russi et al., 2016) 

Economy 14.1-Reduce Marine 
Pollution 

SDG9-
Industry, 
Innovation 
and 
Infrastructure 

0 40 0 -1 2 -1 1 (Anderson et al., 2017) 

Economy 14.2-Protect and Restore 
Ecosystems 

SDG9-
Industry, 
Innovation 
and 
Infrastructure 

0 60 0 0 2 -1 0 NA (authors discussion) 

Economy 14.3-Reduce Ocean 
Acidification 

SDG9-
Industry, 
Innovation 
and 
Infrastructure 

0 80 0 0 1 0 0 NA (authors discussion) 

Economy 14.4-Sustainable Fishing SDG9-
Industry, 
Innovation 
and 
Infrastructure 

1 60 0 1 2 0 0 NA (authors discussion) 

Economy 14.5-Conserve Coastal 
and Marine Areas 

SDG9-
Industry, 
Innovation 

0 60 0 0 1 -1 0 NA (authors discussion) ACCEPTED V
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and 
Infrastructure 

Economy 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG9-
Industry, 
Innovation 
and 
Infrastructure 

0 40 0 1 1 -1 0 NA (authors discussion) 

Economy 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG9-
Industry, 
Innovation 
and 
Infrastructure 

1 60 0 0 2 0 1 (Blechinger et al., 2016) 

Economy 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG9-
Industry, 
Innovation 
and 
Infrastructure 

2 60 0 2 2 3 2 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018) (Singh et al., 2018) 

Economy 14.B- Support Small-
scale Fisheries 

SDG9-
Industry, 
Innovation 
and 
Infrastructure 

1 40 0 0 2 3 2 NA (authors discussion) 

Economy 14.C-Implement and 
Enforce International Sea 
Law 

SDG9-
Industry, 
Innovation 
and 
Infrastructure 

0 40 0 0 2 -1 1 NA (authors discussion) 

Economy 14.1-Reduce Marine 
Pollution 

SDG10-
Reduced 
Inequalities 

1 40 1 0 2 0 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Economy 14.2-Protect and Restore 
Ecosystems 

SDG10-
Reduced 
Inequalities 

1 60 1 0 2 1 1 (Beck et al., 2018; Naidoo et al., 2019) 

Economy 14.3-Reduce Ocean 
Acidification 

SDG10-
Reduced 
Inequalities 

1 80 1 1 1 0 1 (White et al., 2000) ACCEPTED V
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Economy 14.4-Sustainable Fishing SDG10-
Reduced 
Inequalities 

1 40 2 1 2 0 1 (Allison, 2011) 

Economy 14.5-Conserve Coastal 
and Marine Areas 

SDG10-
Reduced 
Inequalities 

0 60 -1 -1 1 -1 1 (Le Blanc et al., 2017; Singh et al., 2018) 

Economy 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG10-
Reduced 
Inequalities 

1 60 1 2 1 2 1 (Le Blanc et al., 2017; Schuhbauer et al., 2017) 

Economy 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG10-
Reduced 
Inequalities 

3 100 3 3 3 3 3 (Le Blanc et al., 2017) 

Economy 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG10-
Reduced 
Inequalities 

1 80 1 1 2 1 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Economy 14.B- Support Small-
scale Fisheries 

SDG10-
Reduced 
Inequalities 

2 60 2 2 3 2 3 (Le Blanc et al., 2017) 

Economy 14.C-Implement and 
Enforce International Sea 
Law 

SDG10-
Reduced 
Inequalities 

1 80 1 1 2 1 1 (Nilsson et al., 2016; International Council for Science, 2017; Nilsson et al., 
2018) (Singh et al., 2018) 

Society 14.1-Reduce Marine 
Pollution 

SDG11-
Sustainable 
Cities and 
Communities 

2 60 1 3 2 2 2 (International Council for Science, 2017) 

Society 14.2-Protect and Restore 
Ecosystems 

SDG11-
Sustainable 
Cities and 
Communities 

2 40 1 1 2 3 2 (Marzeion and Levermann, 2014; International Council for Science, 2017; 
Reimann et al., 2018) 

Society 14.3-Reduce Ocean 
Acidification 

SDG11-
Sustainable 
Cities and 
Communities 

1 60 1 2 1 2 1 (International Council for Science, 2017) (Heron et al., 2017) ACCEPTED V
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Society 14.4-Sustainable Fishing SDG11-
Sustainable 
Cities and 
Communities 

1 60 1 1 2 1 2 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.5-Conserve Coastal 
and Marine Areas 

SDG11-
Sustainable 
Cities and 
Communities 

1 60 1 2 1 2 1 (International Council for Science, 2017) 

Society 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG11-
Sustainable 
Cities and 
Communities 

1 40 1 0 1 2 2 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG11-
Sustainable 
Cities and 
Communities 

1 40 1 0 1 3 2 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG11-
Sustainable 
Cities and 
Communities 

1 60 1 1 2 2 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.B- Support Small-
scale Fisheries 

SDG11-
Sustainable 
Cities and 
Communities 

1 60 1 0 1 1 2 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.C-Implement and 
Enforce International Sea 
Law 

SDG11-
Sustainable 
Cities and 
Communities 

1 80 1 0 1 1 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Economy 14.1-Reduce Marine 
Pollution 

SDG12-
Responsible 
Consumption 
and 
Production 

2 60 3 1 3 3 1 (International Council for Science, 2017) (Grizzetti et al., 2013) 

Economy 14.2-Protect and Restore 
Ecosystems 

SDG12-
Responsible 
Consumption 

2 60 1 3 3 3 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 
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and 
Production 

Economy 14.3-Reduce Ocean 
Acidification 

SDG12-
Responsible 
Consumption 
and 
Production 

1 80 1 1 1 2 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Economy 14.4-Sustainable Fishing SDG12-
Responsible 
Consumption 
and 
Production 

2 60 2 3 3 3 1 (International Council for Science, 2017) 

Economy 14.5-Conserve Coastal 
and Marine Areas 

SDG12-
Responsible 
Consumption 
and 
Production 

1 80 1 1 1 2 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Economy 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG12-
Responsible 
Consumption 
and 
Production 

1 40 0 3 1 2 1 (Le Blanc et al., 2017) 

Economy 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG12-
Responsible 
Consumption 
and 
Production 

2 60 1 2 1 3 1 (International Council for Science, 2017) 

Economy 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG12-
Responsible 
Consumption 
and 
Production 

1 80 1 1 2 1 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Economy 14.B- Support Small-
scale Fisheries 

SDG12-
Responsible 
Consumption 
and 
Production 

1 100 1 1 1 1 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) ACCEPTED V
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Economy 14.C-Implement and 
Enforce International Sea 
Law 

SDG12-
Responsible 
Consumption 
and 
Production 

1 60 1 1 2 2 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.1-Reduce Marine 
Pollution 

SDG16-
Peace and 
Justice 

1 60 1 0 1 0 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.2-Protect and Restore 
Ecosystems 

SDG16-
Peace and 
Justice 

1 60 1 0 2 1 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.3-Reduce Ocean 
Acidification 

SDG16-
Peace and 
Justice 

1 60 1 0 1 0 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.4-Sustainable Fishing SDG16-
Peace and 
Justice 

1 60 -1 2 2 1 2 (Brashares et al., 2014) 

Society 14.5-Conserve Coastal 
and Marine Areas 

SDG16-
Peace and 
Justice 

-1 60 -1 0 0 -1 -1 (Singh et al., 2018) 

Society 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG16-
Peace and 
Justice 

0 60 0 1 0 0 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG16-
Peace and 
Justice 

1 60 1 0 1 1 2 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG16-
Peace and 
Justice 

1 60 1 0 1 1 2 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Society 14.B- Support Small-
scale Fisheries 

SDG16-
Peace and 
Justice 

1 60 1 1 1 2 2 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) ACCEPTED V
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Society 14.C-Implement and 
Enforce International Sea 
Law 

SDG16-
Peace and 
Justice 

1 60 1 2 1 1 2 (Pinsky et al., 2018) 

Economy 14.1-Reduce Marine 
Pollution 

SDG17-
Partnerships 
for the Goals 

0 60 1 0 1 -1 1 (Nilsson et al., 2018) 

Economy 14.2-Protect and Restore 
Ecosystems 

SDG17-
Partnerships 
for the Goals 

1 60 1 0 1 1 2 (Unger et al., 2016) 

Economy 14.3-Reduce Ocean 
Acidification 

SDG17-
Partnerships 
for the Goals 

1 60 1 0 1 0 1 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Economy 14.4-Sustainable Fishing SDG17-
Partnerships 
for the Goals 

1 40 1 0 1 -1 2 (Unger et al., 2016) 

Economy 14.5-Conserve Coastal 
and Marine Areas 

SDG17-
Partnerships 
for the Goals 

0 100 0 0 0 0 0 NA (authors discussion) 

Economy 14.6- End Subsidies 
Contributing to 
Overfishing 

SDG17-
Partnerships 
for the Goals 

1 60 0 1 0 0 2 NA (authors discussion) 

Economy 14.7-Increase the 
Economic Benefits from 
Sustainable Use of 
Marine Resources 

SDG17-
Partnerships 
for the Goals 

1 40 1 0 1 3 2 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Economy 14.A-Increase Scientific 
Knowledge, Research 
and Technology for 
Ocean Health 

SDG17-
Partnerships 
for the Goals 

1 60 1 1 1 2 2 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Economy 14.B- Support Small-
scale Fisheries 

SDG17-
Partnerships 
for the Goals 

1 60 1 0 1 1 2 (Nilsson et al., 2016; Nilsson et al., 2018) (International Council for Science, 
2017) (Singh et al., 2018) 

Economy 14.C-Implement and 
Enforce International Sea 
Law 

SDG17-
Partnerships 
for the Goals 

2 40 3 1 3 1 2 (Unger et al., 2016) 
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