	Chapter 15: Small Islands
Coordinating Le	ad Authors: Michelle Mycoo (Trinidad and Tobago), Morgan Wairiu (Solomon Island
Lead Authors: D Shobha Maharaj ((Australia), John	onovan Campbell (Jamaica), Virginie Duvat (France), Yimnang Golbuu (Palau), Germany/Trinidad and Tobago), Johanna Nalau (Australia/Finland), Patrick Nunn Pinnegar (United Kingdom), Olivia Warrick (New Zealand)
Contributing Au Devenish-Nelson and Tobago), Reb Stacy-Ann Robin	thors: Giulia Anderson (USA/New Caledonia), Faye Abigail Cruz (Philippines), Elean (United Kingdom), Kris Ebi (USA), Johanna Loehr (Germany), Roché Mahon (Trinida Jecca McNaught (Australia), Meg Parsons (New Zealand), Jeff Price (United Kingdom) son (Jamaica), Adelle Thomas (Bahamas)
Review Editors:	John Agard (Trinidad and Tobago), Mahmood Riyaz (Maldives)
Chapter Scientis	t: Giulia Anderson (USA/New Caledonia)
Date of Final Dr	aft: 1 October 2021
Notes: TSU Com	piled Version
Table of Conten	is and it is a second
SM15.1 Key References	Risks
AC C	

Chapter 15 Supplementary Material IPCC WGII Sixth Assessment Report

SM15.1 Key Risks

1 2 3

Table SM15.1: Summary of adaptation options to key risks identified for small islands

Key Risks	Risk-oriented adaptation options	Evidence and Agreeme nt	Degree of implementati on with illustrative small island examples	Key enablers	Reduces exposure and vulnerability: yes/no with illustrative examples	Overarching adaptation options supporting implementati on and success	Co-benefits	Disbenefits
Key Risk 1. Loss of marine and coastal biodiversity and ecosystem services	EbA measures (15.4.4). Marine Protected Areas (MPAs), including paired terrestrial and marine protected areas aimed at preventing marine ecosystem degradation, and enhancing climate resilience ((Bates et al., 2019; Carlson et al., 2019).	Medium evidence, low agreemen t (with regard to CC adaptatio n and benefits)	Widespread across small island regions. Some of the largest MPAs globally have been designated around small islands (e.g. Chagos, Hawaii, Galapagos, Cook Islands, Pitcairn). Some advocated for climate resilience purposes, e.g. Pacific islands (McLeod et al., 2019), including Fiji and Papua New Guinea (Le Cornu et al., 2018).	Strong governance and sufficient financial resources to allow for adequate management and enforcement (Schleicher et al., 2019)	Restricting human activities through Marine Protected Areas (MPAs) is assumed to create more resilient biological communities with a greater capacity to resist and recover following climate events. Yet species protected from activities such as fishing can also be vulnerable to climate stressors – the 'Protection Paradox' (see (Bates et al., 2019)).		Secondary benefits for marine biodiversity and coastal economies. Support to food supply. Increased human health and well-being.	
	EbA measures (15.4.4). Active restoration of	Limited evidence,	Replanting of mangroves or	Adaptation taxes and levies imposed on	Active intervention in the form of habitat recreation is assumed to enhance resilience of		Improve water	

Chapter 15 Supplementary Material IPCC WGII Sixth Assessment Report

		•					
coastal and marine ecosystems (e.g., coral reefs, mangrove forests and seagrass meadows)	low agreemen t (with regard to long-term success)	seagrasses and transplantation of corals is becoming common practice in small islands although often only at small scale. For example, artificial reefs are found in the Maldives (Fabian et al., 2013) and in Mauritius (Duvat et al., 2020a); beach nourishment in Tuvalu (Onaka et al., 2017) and Mauritius (Onaka et al., 2015); vegetation planting in Fiji (Veitayaki and Holland, 2017)_and Sicilly (Alagna et al., 2010)_Commit	tourism can provide funding for restoration and protection, e.g. in the British Virgin Islands. Blue bonds are an innovative ocean financing instrument whereby funds raised in international markets are earmarked exclusively for projects deemed 'ocean- friendly' (e.g. Seychelles and Grenada). In the Seychelles, coral restoration programmes and mangrove reforestation are promoted through public-private partnerships, generating opportunities for wetland-tourism (Khan and Amelie, 2015).	natural ecosystems, thereby reducing their vulnerability.	S	quality; reduction in coastal erosion and flood risks since vegetated habitats (and intact coral reefs) help to dissipate wave energy and to protect coastlines; economic benefits.	
	CO CO	vegetation planting in Fiji (Veitayaki and Holland, 2017)_and Sicilly (Alagna et al., 2019). Coral reefs and seagrass are among the most expensive ecosystems to restore.					

		Mangrove restoration projects were typically the largest and the least expensive per hectare. The overall success of restoration projects is variable, in particular success of seagrass replanting is typically relatively low (~38%) worldwide (Bayraktarov et al., 2016).		RENED	S		
Hard protection (15.5.1). Hard shoreline structures sometimes designed to also enhance marine biodiversity	Medium evidence, medium agreemen t	Artificial reefs have been increasingly used in small islands to support reef restoration and reduce beach erosion, e.g. in the Maldives (Fabian et al., 2013), in Mauritius (Duvat et al., 2020a), in Antigua (Cummings et al., 2015).	Adaptation taxes and levies imposed on tourism can provide funding for restoration and protection e.g. British Virgin Islands. In the Caribbean, fiscal instruments are used such as environmental taxes and levies but there is limited evidence of direct reinvestment in conservation and management (Attzs et al., 2014; CANARI, 2019)	Uncertainty on reduction of exposure and vulnerability of marine ecosystems. Usually implemented in order to reduce exposure of human assets/infrastructure, with secondary benefits for marine and coastal biodiversity. Sometimes left as substrates for passive colonisation by marine species (e.g. fish and corals), elsewhere has been introduced alongside active transplantation of coral colonies.		Support to food supply. Secondary benefits for coastal economies (can be a tourism asset in it's own right). Increased human health and well-being.	

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Diversifying Livelihoods (15.5.6). Diversifying fisheries ivelihoods (e.g. to aquaculture and ourism), changing ishing grounds and/or arget species	Limited to medium evidence, medium agreemen t	Examples in the Caribbean and Pacific: wide range of activities ranging from diversification of livelihoods to changing fishing grounds and target species e.g. to take pressure off vulnerable coastal species, e.g. in Antigua, Domican Republic, and Efate (Vanuatu) (Blair and Momtaz, 2018; Lemahieu et al., 2018; Karlsson and McLean, 2020; Turner et al., 2020).	Improved governance/cooperatio n – e.g. a regional strategy to improve coastal fisheries management in a changing climate. Weather insurance to facilitate recovery after an extreme event and enhance resilience, e.g. in Saint Lucia and Grenada via the Caribbean Oceans and Aquaculture Sustainability Facility (Sainsbury et al., 2019)	Yes in both Antiqua and Vanuatu (Blair and Momtaz, 2018). New fishing areas in Vanuatu (Blair and Montaz, 2018) and fishermen go further off-shore in Madacascar (Lemahieu et al., 2018)and Domican Republic (Karlsson and McLean, 2020). A directed switch from targeting vulnerable inshore reef fish, to targeting less sensitive offshore pelagic species, e.g. in Dominica (Pinnegar et al., 2019). Active switch to aquaculture (away from fisheries) to diversify incomes and spread risks e.g. Caribbean (Thomas et al., 2019), Solomon Islands (Dey et al., 2016) including a move toward seaweed farming (e.g. St Lucia).	S	Sustainably managed fisheries, improved food and income security. Greater economic and societal resilience.	
I e r 1 v r r r r r r r	Reef to Ridge cosystem nanagement (Figure 15.4). Improved land use as a key driver of narine ecosystem nealth: better nanagement of forests, nutrients and waste	Limited evidence, medium agreemen t	Mostly in the Caribbean and Pacific, where ridge-to-reef studies are currently focused (e.g., (Brown et al., 2017; Delevaux et	Improved governance	Better management of forests, nutrients and waste water in upland catchments reduces the exposure of coral reefs to human degradation, thereby enhancing their resilience, e.g. Hā'ena and Ka'ūpūlehu in the Hawaiian Archipelago (Delevaux et al., 2018b), American Samoa (Comeros-Raynal et al., 2017).		Improved ecosystem protection services, e.g. against flooding, erosion, landslides, mudflows; improved	

	water in upstream catchments		al., 2018a; Delevaux et al., 2018b)); however, not so much within the Indo-Pacific islands (Rude et al., 2016; Brown et al., 2017). Better forest management in upstream catchments			S	biodiversity; improved human health outcomes; improved livelihoods	
			(and thereby control of sediment run off) can greatly benefit coral reef condition around islands e.g. Kubulau District, Fiji (Delevaux et al., 2018a), Raja Ampat, Indonesia (Rude et al., 2016).					
Key Risk 3. Loss of terrestrial biodiversity and ecosystem services	Decreased deforestation (15.5.4)	Limited to medium evidence, high agreemen t	Mostly in the Caribbean region and Pacific, e.g. in Papua New Guinea (Jupiter et al., 2014), Fiji (Hidalgo et al., 2021),	National Determined Contributions, external funding (e.g. International NGOs), engagement of local landowners, gender sensitive participation, resolution of land ownership governance issues, long-term	Some examples: e.g. increase in forest extent, social benefits in pilot but limited by barriers in implementation (Buckwell et al., 2019), increased acreage forested (SPCR, 2011), reduction in human exposure to natural disasters (hurricanes, landslides), improvement in vulnerability assessment scores UNDP, 2012 #1532}	Mainstreamin g into national policies (Robinson, 2017), filling data gaps e.g. flora and fauna baseline data (Voccia, 2011; Klöck	Increased connectivity between forest fragments (Buckwell et al., 2019), sustainable livelihoods (SPCR,	Little evidence that disbenefits have been considered in adaptation actions more generally (Robinson, 2017)

FINAL DRAFT	Chapter	15 Supplement	tary Material IPCC W	VGII Sixth Assessment Report		
connectivity, heterogeneity and diversity) (15.5.4)	agreemen	Dominican Republic (Monty et al., 2016); Jamaica (SPCR, 2011); Fiji (Daigneault et al., 2016); Tuvalu, Tonga, Samoa (Beyerl et al., 2018); Timor- Leste (Mercer et al., 2014), Micronesia (Hagedoorn et al., 2019).	externally driven (Klöck and Finch, 2019), embedding adaptation within disaster risk reduction e.g. ecosystem-based DRR (Mercer et al., 2014; Monty et al., 2016), NDC, funding, technical assistance, supply materials, provision of land, awareness raising, enforcement of policies from governments and NGOs (Beyerl et al., 2018), sense of shared responsibility (Beyerl et al., 2018), inclusion of Indigenous knowledge and local knowledge (Nalau et al., 2019), social capital (Hagedoorn et al., 2019).	investment in expensive pilot projects (Jupiter et al., 2014) and lack of long term monitoring.	landslides (Mercer et al., 2014), reduced erosion, increased human health and well-being (Beyerl et al., 2018) (Nalau et al., 2018), increased quality of ecosystem services (Nalau et al., 2018), increased quality of ecosystem services (Nalau et al., 2018), increased adaptive capacity (Hagedoorn et al., 2019); supports global mitigation via carbon sequestratio n in both forest and soils	
EbA: Agroforestry and other silvicultural/agroecolo gical practices (e.g. climate-smart agriculture) instead of intensive agriculture and plantation forestry	Medium evidence, high agreemen t	Widespread in the Caribbean and Pacific e.g. Samoa (Chong, 2014), Vanuatu (Buckwell et	Locally funded initiatives implemented by NGOs outperformed those with international funding or implemented by governments and	Limited examples: some increases in adaptive capacity (Tomlinson and Rhiney, 2017)	Improvemen t in climate change awareness, increase local well- being and improved	

Chapter 15 Supplementary Material IPCC WGII Sixth Assessment Report

		Pacific Islands (McLeod et al., 2019; McNamara et al., 2020), Jamaica (Tomlinson and Rhiney, 2017)	with EbA initiatives outperformed those focused on land loss, NDC, shared access and benefit (McNamara et al., 2020), local knowledge e.g. farmers knowledge of crop drought resistance and irrigation, although some local knowledge is counter to SDGs (Beckford, 2018), farmers, private sector for developing technology, financing and investing in local solutions, importance of data (Voccia, 2011). Success of EbA depends on enabling national political, socioeconomic and institutional conditions (Chong, 2014), training (Tomlinson and Rhiney, 2017).		S	issues, improve gender equity (McNamara et al., 2020), improved productivity and livelihoods, increased well-being (Buckwell et al., 2019)	
Watershed management/conservat ion (reforestation, slope revegetation, etc) (15.5.4)	Medium evidence, high agreemen t	Widespread e.g. Samoa (Chong, 2014); Pacific Islands (McNamara et al., 2020); Jamaica, Haiti and Grenada (Mercer et al., 2012); Micronesia	Locally funded initiatives implemented by NGOs outperformed those with international funding or implemented by governments and universities, integrated with EbA initiatives outperformed those focused on land loss, shared access and	Some evidence e.g. improved water security (McLeod et al., 2019), reduced adaptation costs, slope stabilisation (Mercer et al., 2012), reduced vulnerability to drought (McLeod et al., 2019)		Disaster Risk Reduction, Increased water security and quality, greater resiliency to and recovery from wildfires, reduced run-	

Chapter 15 Supplementary Material IPCC WGII Sixth Assessment Report

		(McLeod et al., 2019).	benefit (McNamara et al., 2020), but watershed management less socially and politically acceptable than engineering solutions (Enríquez-de- Salamanca, 2018), communication and trust between stakeholders, sustainable financing mechanisms (Mercer et al., 2012), island remoteness barrier to logistical implementation (McLeod et al., 2019).	RSIONEDI	S	off and sedimentatio n, improvemen t in climate change awareness, increased local well- being and financial stability (McNamara et al., 2020)	
Ridge-to-Reef ecosystem management (Figure 15.4) - Improved landuse as a key driver of terrestrial ecosystem health	Medium evidence, high agreemen t	See above	See above	Limited but slowly increasing evidence to date			
Increasing the connectivity of Protected Areas (PAs) across elevation/climatic gradients to faciltate climate driven redistribution of species via establishment of: (i) new PAs; (ii) forested migration corridors across elevation/climatic gradients or (iii) improving landscape connectivity by permanent protection of	Very limited evidence, high agreemen t	Low degree of new implementatio ns due to chronic terrain limitations combined with competition from human land use needs (especially at low altitudes). However there is currently large variation in terrestrial	(i) Conservation of larger areas of forest habitat surrounding (especially source) PAs; (ii) reforestation of degraded areas to facilitate forest corridors; (iii) increasing and enforcement of forest cover <u>within</u> PAs (e.g. (Scriven et al., 2015)), (iv) intra and inter governmental/island policies towards the coordination of	Yes: especially if landscape connectivity is improved (both protected and non-protected land). E.g. setting up of migration corridors to facilitate movement of species along elevation gradients from isolated low altitude to high altitude PA (e.g. (Scriven et al., 2015))		Disaster Risk Reduction, Improved water security, improved coastal ecosystem health, greater resiliency and recovery from wildfires, reduced	May facilitate movement of Invasive Alien Species

	stepping stones (Figure 15.4)		PA coverage among islands (e.g. Caribbean: ~70% of Guadeloupe vs 1.3% of Barbados) (Gould et al., 2020; Mouillot et al., 2020).	conservation actions/partnerships among multiple PAs <u>and other non-PA</u> <u>natural habitat areas</u> within a given insular region (Monahan and Theobald, 2018; Maharaj et al., 2019); incorporation of 'Other Effective area-based Cobservation Measures' (OECMs)		S	pollution and runoff around water sources, facilitates development of Ridge-to- Reef PAs (e.g. Yap and Chuuk of Federated States of Micronesia) (McLeod et al., 2019).	
	Eradication of Invasive Alien Species (IAS) on islands (15.3.3.3)	Robust evidence, high agreemen t	Widespread degree of implementatio n with > 700 islands (e.g. (Jones et al., 2016)	(i) Integration of changing climate conditions within ongoing prevention, control and eradication strategies by incorporating models of current and future distributions of IAS (Courchamp et al., 2014; Vorsino et al., 2014; Vorsino et al., 2014) (ii) prevention via ongoing vigilance and biosecurity via quarantine, control and monitoring of incoming cargo and goods into islands (Silva-Rocha et al., 2015)	Yes: positive demographic and distributional responses of native species (596 populations), including within IUCN's threatened (critically endangered, endangered and vulnerable categories) following eradication of IAS (including 123 recolonizations by formerly extirpated species) (Jones et al., 2016)		Food security, protection of ecosystem health and services, increased livelihood security	A few native species may be harmed during eradication process - but usually temporary - and alleviates once eradication process is completed (Jones et al., 2016)
KR4. Water insecurity	Rainwater Harvesting (15.3.4.3)	Robust evidence, high	Widespread across small islands.	Socio-cultural & financial - cultural practices and poverty - people may not have	Yes - Heavy reliance on aquifers and rainwater harvesting in small islands, particularly atolls, coupled with overcrowding, population growth, and	Integrated Water Resource	Biodiversity (watershed protection); Health	Dependent on mode of implementati on. Nothing

	agreemen t	Specific examples in the Caribbean - Jamaica (Aladenola et al., 2016); Barbuda (Mycoo, 2018b); In the Pacific (Quigley et al., 2016); Micronesia (Bailey et al., 2018); Solomon Islands (Chan et al., 2020).	the resources to build or purchase more tanks to increase their capacity to store water (McCubbin et al., 2015).	contamination increase the risk of waterborne disease (McIver et al., 2014).	Management - use management and integrated water resources policy implementatio n (Gohar et al., 2019). Governance - whole-of- island approaches foster integrated management practices in	(WASH); Economic (reduced dependence on public supply); Food security	mentioned in the chapter.
Desalination (15.6.1)	Limited evidence, high agreemen t	Relatively limited e.g. Maldives (Shakeela and Becken, 2015); Grenada (Peters, 2019)	Financial - Not explicitly mentioned in the chapter. These general references are possible options: Governance, financial arrangements and human resource capacity [are key] to the successful implement adaptation actions on the ground (Cvitanovic et al., 2016; Scobie, 2016; Beckford, 2018; Ha'apio et al., 2019). In Mauritius, a lack of financial resources for climate change adaptation has been recognised as a specific	Yes - In Barbados, where groundwater is relied upon for food production, urban use, and environmental needs, higher food prices are expected in the future if informed land use management and integrated water resources policy implementation are not put in place to manage groundwater in the short term, even with modest climate change threats (Gohar et al., 2019).	small islands (Remling and Veitayaki, 2016).	Health (WASH); Economic (reduced dependence on public supply)	Energy intensive (carbon footprint)

Reforestation (15.5.4)	Medium evidence, high agreemen t	Examples in the Caribbean and Pacific: Caribbean (McMillen et al., 2016; Mycoo and Donovan, 2017; Wang et al., 2017; McLeod et al., 2019; Nanni et al., 2019); Papua New Guinea (Jupiter et al., 2014): Eiii	impediment in district council level (Williams et al., 2020). Governance - whole- of-island approaches foster integrated management practices in small islands (Remling and Veitayaki, 2016).	Yes - in the Seychelles, reforestation is promoted through public-private partnerships, generating opportunities for wetland-tourism (Khan and Amelie, 2015). Growing evidence suggests high resilience of forest habitats (Keppel et al., 2014; Luke et al., 2017), especially within intact forest ecosystems to hurricanes and cyclones (Goulding et al., 2016).	S	Economic (agroforestr y); Biodiversity (watershed restoration); Food security; disaster risk reduction (DRR)	Dependent on mode of implementati on. Nothing mentioned in the chapter.
Protected Area Management (terestrial) (15.5.4)	Medium evidence, high agreemen t	2014); Fiji (Hidalgo et al., 2021). Widespread across small islands e.g. Samoa (Chong, 2014); Pacific Islands (McNamara et al., 2020); Jamaica, Haiti and Grenada (Mercer et al., 2012); Micronesia (McLeod et al., 2019).	Financial/governance - the success of protected areas is undermined by weak governance due in part to limited financial resources which undermine management and the enforcement of regulations governing activity within them (Schleicher et al., 2019).	Yes - Terrestrial protected areas have shown that forest conservation and rehabilitation yield better (socio-ecological) outcomes as forests stabilize soils and prevent erosion and sequester groundwater pollutants (Carlson et al., 2019) (low to medium evidence, high agreement).		Biodiversity (forest conservation); disaster risk reduction (DRR)	Dependent on mode of implementati on. Nothing mentioned in the chapter.

Key Risk 5. Destruction of settlements and infrastructu re - N.B.: works for submergenc e of reef islands, at least for those islands that host large communitie s and human assets	Hard protection (15.5.1)	Limited evidence, medium agreemen t (with regard to climate change adaptatio n and success)	Widespread in both urban and rural areas on islands, e.g. Barbados (Mycoo, 2014, French Polynesia {Salmon, 2019) (Duvat et al., 2020b), Maldives (Naylor, 2015; Brown et al., 2020), Samoa (Crichton and Esteban, 2018).	External funding (Mycoo, 2018a; Nunn and Kumar, 2018). Social and cultural: hard protection often meets the preference of inhabitants because it is viewed as a 'true' and permanent solution providing value for money, e.g. in the Maldives (Shaig, 2011), in Samoa (Hills et al., 2013), in Comoros (Betzold and Mohamed, 2017). Political-institutional: e.g. supported by the centralization of power at the highest levels of government in favour of hard protection in the Maldives (Ratter et al., 2019); business-as- usual unidirectional approach of coastal risks is in favour of hard protection on Reunion Island (Magnan and Duvat, 2018). Technical, i.e. requires materials and technical skills to be available locally: maladaptive structures showing poor design in the Bahamas (Petzold et al., 2018), Maldives (Kench, 2012), Kiribati (Duvat, 2013) and	Reduces exposure in some places, e.g. Male', Maldives (Duvat et al., 2021) but not in others, e.g. South Tarawa, Kiribati (Duvat, 2013), Puerto Rico (Jackson et al., 2012); increases vulnerability (Nunn et al., 2021)	Limited monitoring and evaluation. What works in short term may not in the long term.	Limited evidence of co-benefits	Beach loss, e.g. in Hawaii (Romine and Fletcher, 2013 and Papua New Guinea {Mann, 2014); erosion acceleration, e.g. on Male' Atoll, Maldives (Rasheed et al., 2020) and in the Bahamas (Petzold et al., 2018); nearby ecosystem degradation through material extraction from reef flat and/or upper beach and/or sand dune, e.g. in South Tarawa, Kiribati (Biribo and Woodroffe, 2013; Duvat, 2013); modeling projects increased SLR impacts
---	-----------------------------	---	---	---	--	--	---------------------------------------	---

			Samoa (Crichton and Esteban, 2018).		S		in areas modified by coastal engineering, e.g. on Male' Atoll, Maldives (Rasheed et al., 2020)
Accommodation (15.5.2)	Limited evidence (with regard to climate change adaptatio n and success)	Relatively limited (e.g. local initiatives in Philippines and Indonesia (Jamero et al., 2017; Esteban et al., 2020)	Technological, financial, institutional, social and cultural (e.g. limited success despite incentives in French Polynesia; (Magnan et al., 2018))	Limited evidence to date		Maintains the functionaliti es of coastal systems and allows their maintenance through landward migration under SLR	
Advance with land raising and/or through the creation of artificial islands (15.5.2)	Limited evidence with regard to climate change adaptatio n (e.g. driven by populatio n growth in the Maldives; (Naylor, 2015)	Limited, e.g. Hulhumale', Maldives (Brown et al., 2020)	Technological, financial, institutional, social and cultural; has a higher potential in urban (compared to rural) areas	Yes where high standard, as in Hulhumale', Maldives (Brown et al., 2020)		Offers new land for economic development , e.g. in the Maldives (Hinkel et al., 2018); generate revenues through sale or lease of land in urban areas, e.g. in the Maldives (Bisaro et al., 2019).	Widespread ecosystem destruction, increased negative impacts of SLR in some places (Parnell and Smithers, 2020)

	Migration, including planned resettlement (15.5.3)	Limited evidence, low agreemen t (with regard to climate change adaptatio n)	Village-scale planned resettlement cases supported by government policy/legislati on e.g. Warraber Island, Torres Strait (Parnell and Smithers, 2020), Vunidogoloa and Denimanu villages, Fiji (Piggott- McKellar et al., 2019)	Often seen as a last resort option due to high economic and socio-cultural cost (McNamara and Des Combes, 2015); Key enablers: participatory inclusion of all social groups in decision making required (e.g. Fiji, (Piggott-McKellar et al., 2019)); financial, especially for small and remote communities (e.g. Torres Strait, Australia; (Parnell and Smithers, 2020) Solomon Islands (Albert et al., 2018)), social-cultural connections (e.g. Fiji, (Piggott-McKellar et al., 2019)), strong governance frameworks, enabling legislation, land availability or ownership (e.g. Torres Strait Islands, Australia; (Parnell and Smithers, 2020), Solomon Islands, (Albert et al., 2018; Bertana, 2020)) and conditions in receiving locations; technical support; residents are generally reluctant to retreat as a result of place attachment and high uncertainties on	Limited examples of successful resettlement that reduces both exposure and vulnerability; reduced exposure locally - e.g. on Nuatambu Island, Solomon Islands (Albert et al., 2018); has created new vulnerabilities at some locations by, for example, bearing significant economic cost, impacting social capital, reducing access to services (e.g. (Albert et al., 2018); Gilbertese resettled in the Solomon Islands; (Weber, 2016; Tabe, 2019))	S	New livelihood opportunitie s	Loss of cultural heritage, impacts on receiving communities
--	--	---	---	--	--	---	--	--

			e conditions offered relocation site, acluding concerns bout livelihood pportunities, as ported in the hilippines (Jamero et ., 2017)	S		
EbA measures (15.5.4)	Medium artier, g M. (F. Medium 20 agreemen M. t, medium (D 20 no in (O 20 M. (O 20	ncreasingly xperienced; ncludes rtificial reefs, g. in the faldives Fabian et al., 013) and in fauritius Duvat et al., 020a), beach ourishment n Tuvalu Dnaka et al., 017) and fauritius Dnaka et al., 015)	nvironmental/physica conditions: potential ffectiveness varies ith site configuration ad boundary ponditions Temmerman et al., 013); Social and ultural; echnological; Major oble of cooperation gencies/external upport for nplementation, e.g. CA in Tuvalu (Onaka al., 2017)and in lauritius (Onaka et , 2015) and of NGOs n the Caribbean ogion (Mercer et al., 012)); IKLK (e.g. acific, Nalau, 2018 91}; Haiti, (Mercer et , 2012)); Financial alau, 2018 #91}; limate awareness tising increases tocess (McNamara et , 2020); Inclusion in ational adaptation oblicies increases the coeptance/implementa on of EbA measures:		Biodiversity strengthenin g; Increased food supply; Increased human health and well-being	

				e.g. considered as a complement to hard protection in Tuvalu; vegetation restoration seen as a key priority to combat erosion in Vanuatu (Hills et al., 2013)		S		
Key Risk 6. Health degradation	Increase public awareness of health risks associated with climate change; provide training to health sector staff on health impacts of climate change; Improve reliability and safety of water storage practices at household and community level (15.6.2)	Limited evidence	e.g. Dominica (Schnitter et al., 2019)	Financial and human resources to implement options, public uptake and buy in	Primarily reduces vulnerability	Building early warning and response systems for climate sensitive health risks, developing emergency plans, integrating climate services into health decision- making systems, strengthening emergency response and surge capacity, improving climate change and health data collection systems (Schnitter et al., 2019)	Increased water security	
Key Risk 7. Economic decline and	Circular migration (15.5.3)	Limited evidence with	Circular migration to Funafuti and	Labour and education opportunities in Funafuti and overseas	Yes on Namumea Atoll (Marino and Lazrus, 2015)	Investment in technology and education	Job and education for migrants	

Chapter 15 Supplementary Material IPCC WGII Sixth Assessment Report

livelihood failure		regard to climate change adaptatio n (mostly a response to economic or social factors)	locations overseas from Nanumea Atoll in Tuvalu reduces pressure on limited freshwater availability, thus reducing exposure to drought (Marino and Lazrus, 2015).	(Marino and Lazrus, 2015)		(Blair and Momtaz, 2018), local and indigeneous knowledge (Blair and Momtaz, 2018; Karlsson and McLean, 2020), financing farm inputs (Guido et al.,	(Marino and Lazrus, 2015)	
	Diversifying livelihoods (15.5.6)	Limited to medium evidence, low agreemen t	Changing fishing grounds and considering weather insurance in Antigua, Domican Republic, and Efate (Vanuatu) (Blair and Momtaz, 2018; Karlsson and McLean, 2020) (Lemahieu et al., 2018; Turner et al., 2020)	Use of Indigeneous knowledge and local knowledge and changing fishing areas (Blair and Momtaz, 2018)	Yes in both Antiqua and Vanuatu (Blair and Momtaz, 2018). New fishing areas in Vanuatu (Blair and Momtaz, 2018) and fishermen go further off-shore in Madacascar (Lemahieu et al., 2018) and Domican Republic (Karlsson and McLean, 2020)	2018)	Diversificati on allows fishermen to fish in new areas and reduces pressure on previous fishing areas (benefits for biodiversity)	New technologies and moving to new areas allows greater catch which puts pressure on the fish stock
	Improved technology & equipment/training (15.5.6)	Limited evidence, medium agreemen t	In Antigua, adaptation strategies have included investments in	Investments in improved technologies and equipment and education (Popke et al.,	Yes in Antiqua and Vanuatu (Blair and Momtaz, 2018) and Jamaica (Popke et al., 2016) and in Pacific Island Countries on the whole (McLeod et al., 2018).		New technologies and education strengthenin	

	improved technologies and equipment, changing fishing grounds and seeking better training and education (Blair and Momtaz, 2018); in Jamaica they involved irrigation technologies due to increased drought and infrequent rainfall (Popke et al., 2016); experimenting with growing salt-tolerant (taro) crops, and relocating crop cultivation inland (McLeod et al., 2018)	2016; Blair and Momtaz, 2018)		S	g (Blair and Momtaz, 2018) (Popke et al., 2016)	
Livestock husbandry (15.5.6)	Limited evidence Limited evidence Limited husbandry in Jamaica (Guido et al., 2018)	Varying expenditure on farm inputs and investments (Guido et al., 2018)	No evidence to date. Limited examples of successful livestock husbandry only in Jamaica (Guido et al., 2018)		Investments in farm inputs (Guido et al., 2018)	

	Adaptive finance/education (15.5.6)	Limited evidence, medium agreemen t	Limited, e.g. in Pueto Rico, women engage in new commercial enterprises (e.g. coffee shops, and food products) that do not rely on traditional coffee supply chains or government assistance (Borges- Méndez and Caron, 2019).	Tourism income provides adaptation finance, investing in education and capacity building, and working with nature rather than against it (Loehr, 2019). Public-private partnerships (Khan and Amelie, 2015]. Ecosystem-based Adaptation initiatives in the Carribean {Mycoo, 2018; Loehr, 2019)	Reduces risk and avoids negative knock-on effects (Loehr, 2019).	S	Generates opportunitie s, e.g. for for wetland tourism (Khan and Amelie, 2015)	
- - - - - - - - - - - - - - - - - - -	Product/Market diversification (15.5.6)	Medium evidence, high agreemen t	Widespread, e.g. in Vanuatu and Fiji, households and communities diversify crops within gardens, garden in different areas within their customary lands & store and preserve certain foodstuffs (Campbell, 2014; McMillen et al., 2014;	Availability of different crops and land (Campbell, 2014; McMillen et al., 2014; Guido et al., 2018; Le Dé et al., 2018) and new markets (Borges- Méndez and Caron, 2019)	Reduces vulnerability to tropical cyclones in Fiji and Vanuatu (Campbell, 2014; McMillen et al., 2014; Le Dé et al., 2018) as adaptation strategy in Jamaica (Guido et al., 2018), and new markets in Puerto Rico (Borges-Méndez and Caron, 2019)		Food security and nutrition (Le Dé et al., 2018) and income security (Borges- Méndez and Caron, 2019)	

			Guido et al., 2018; Le Dé et al., 2018). In Jamaica, there is diversifying cropping patterns and expanding or prioritising other cash crops (e.g. fruits and vegetables) (Popke et al., 2016).			S		
	Adaptation in tourism policies (15.5.6)	Limited evidence, high agreemen t	Limited, e.g. in the British Virgin Islands, policies like adaptation taxes and levies imposed on tourism can provide funding for adaptation measures (Smith, 2017; Mycoo, 2018a).	Implementation of tourism regulations and policies that mainstream climate change adaptations (van der Veeken et al., 2016; Mycoo, 2018a; Becken et al., 2020; Thomas and Benjamin, 2020); taxes and levies imposed on tourism (for example British Virgin Islands' The Environmental Protection and Tourism Improvement Fund Act, 2017 (Smith, 2017; Mycoo, 2018a).	Limited evidence in reducing vulnerability (Smith, 2017; Mycoo, 2018a).			
Key Risk 8. Loss of cultural resources and heritage	Integrating Indigenous Knowledge and Local Knowledge (IKLK) with western science to provide integrated approaches to climate change (15.6.5)	Medium evidence, high agreemen t	Reported in the Pacific, including in Niue, Tonga, Vanuatu and the Solomon Islands (Chand et al.,	Use of IKLK across islands in preparing for disasters and understanding environmental change (Chand et al., 2014; Johnston, 2015; Janif et al., 2016;	Yes, can reduce vulnerability when IKLK supports robust adaptation; No, can increase vulnerability if IKLK no longer provides accurate information	Supporting and integrating IKLK (Blair and Momtaz, 2018; Karlsson and	Can increase climate change information and its understandin g in communities	Reports from Vanuatu indicates that IKLK are at times inaccurate (eg seasonal calendars,

FINAL DRAFT	Chapter 15 Supplementary Material IPCC WGII Sixth Assessment Report			
	2014; Chambers et al., 2017; Chambers et al., 2019); and in the c.g. suggested Caribbean Local and Traditional Knowledge Network to share information (Beckford, 2018)Granderson, 2017; Kelman et al., 2017); social networks in sharing information and helping others Turner, 2020 #1217}; ecotheology increasing people's awareness of the environment (Rubow and Bird, 2016)	McLean, 2020)	, and increase culturally appropriate climate adaptation	biophysical weather indicators) due to climate change (Granderson, 2017)
Hard Protection (15.5.1)	LimitedWidespread in protecting cultural sites and villages agreemen tReduces exposure in some places but not others; increases vulnerability (Nunn et al 2021)2021)	in .,		

References

- Aladenola, O., A. Cashman and D. Brown, 2016: Impact of El Niño and Climate Change on Rainwater Harvesting in a Caribbean State. *Water Resources Management*, **30**(10), 3459-3473, doi:10.1007/s11269-016-1362-2.
- Alagna, A. et al., 2019: Taking advantage of seagrass recovery potential to develop novel and effective meadow rehabilitation methods. *Mar Pollut Bull*, **149**, 110578, doi:10.1016/j.marpolbul.2019.110578.
- Albert, S. et al., 2018: Heading for the hills: climate-driven community relocations in the Solomon Islands and Alaska provide insight for a 1.5 °C future. *Regional Environmental Change*, **18**(8), 2261-2272, doi:10.1007/s10113-017-1256-8.
- Attzs, M., M. Maharaj and G. Boodhan, 2014: Survey and Assessment of Environmental Taxes in the Caribbean. Inter-American Development Bank, Washington DC, USA.
- Bailey, R. T. et al., 2018: Sustainability of rainwater catchment systems for small island communities. *Journal of Hydrology*, **557**, 137-146, doi:10.1016/j.jhydrol.2017.12.016.
- Bates, A. E. et al., 2019: Climate resilience in marine protected areas and the 'Protection Paradox'. *Biological Conservation*, **236**, 305-314, doi:10.1016/j.biocon.2019.05.005.
- Bayraktarov, E. et al., 2016: The cost and feasibility of marine coastal restoration. *Ecological Applications*, **26**(4), 1055-1074, doi:10.1890/15-1077.
- Becken, S., E. Whittlesea, J. Loehr and D. Scott, 2020: Tourism and climate change: evaluating the extent of policy integration. *Journal of Sustainable Tourism*, **28**(10), 1603-1624, doi:10.1080/09669582.2020.1745217.
- Beckford, C., 2018: Climate change resiliency in Caribbean SIDS: building greater synergies between science and local and traditional knowledge. *Journal of Environmental Studies and Sciences*, 8(1), 42-50, doi:10.1007/s13412-017-0440-y.
- Bertana, A., 2020: The role of power in community participation: Relocation as climate change adaptation in Fiji.
 Environment and Planning C: Politics and Space, 38(5), 902-919, doi:10.1177/2399654420909394.
- Betzold, C. and I. Mohamed, 2017: Seawalls as a response to coastal erosion and flooding: a case study from Grande
 Comore, Comoros (West Indian Ocean). *Regional Environmental Change*, 17(4), 1077-1087,
 doi:10.1007/s10113-016-1044-x.
- Beyerl, K., H. A. Mieg and E. Weber, 2018: Comparing perceived effects of climate-related environmental change and adaptation strategies for the Pacific small island states of Tuvalu, Samoa, and Tonga. *Island Studies Journal*, 13(1), 25-44, doi:10.24043/isj.53.
- Biribo, N. and C. Woodroffe, 2013: Historical area and shoreline change of reef islands around Tarawa Atoll, Kiribati.
 Sustainability Science, 8(3), 345-362, doi:10.1007/s11625-013-0210-z.
- Bisaro, A. et al., 2019: Leveraging public adaptation finance through urban land reclamation: cases from Germany, the
 Netherlands and the Maldives. *Climatic Change*, 160(4), 671-689, doi:10.1007/s10584-019-02507-5.
- Blair, A. and S. Momtaz, 2018: Climate change perception and response: Case studies of Fishers from Antigua and
 Efate. Ocean & Coastal Management, 157, 86-94, doi:10.1016/j.ocecoaman.2018.02.015.
- Borges-Méndez, R. and C. Caron, 2019: Decolonizing Resilience: The Case of Reconstructing the Coffee Region of
 Puerto Rico After Hurricanes Irma and Maria. *Journal of Extreme Events*, 06(01),
 doi:10.1142/s2345737619400013.
- Brown, C. J. et al., 2017: Tracing the influence of land-use change on water quality and coral reefs using a Bayesian model. *Sci Rep*, 7(1), 4740, doi:10.1038/s41598-017-05031-7.
- Brown, S. et al., 2020: Land raising as a solution to sea-level rise: An analysis of coastal flooding on an artificial island
 in the Maldives. *Journal of Flood Risk Management*, 13(S1), doi:10.1111/jfr3.12567.
- Buckwell, A. et al., 2019: Social benefit cost analysis of ecosystem-based climate change adaptations: a communitylevel case study in Tanna Island, Vanuatu. *Climate and Development*, 1-16, doi:10.1080/17565529.2019.1642179.
- Campbell, J., 2014: Development, global change and traditional food security in Pacific Island countries. *Regional Environmental Change*, 15(7), 1313-1324, doi:10.1007/s10113-014-0697-6.
- CANARI, 2020: Rising to the climate challenge: Coastal and marine resilience in the Caribbean, Barataria, Trinidad
 and Tobago. Available at: <u>https://canari.org/wp-content/uploads/2020/08/CANARI-Coastal-Marine-Resilience-</u>
 Issue-Paper.pdf.
- Carlson, R. R., S. A. Foo and G. P. Asner, 2019: Land Use Impacts on Coral Reef Health: A Ridge-to-Reef Perspective.
 Frontiers in Marine Science, 6, doi:10.3389/fmars.2019.00562.
- Chambers, L. et al., 2019: Traditional or contemporary weather and climate forecasts: reaching Pacific communities.
 Regional Environmental Change, doi:10.1007/s10113-019-01487-7.
- Chambers, L. et al., 2017: A database for traditional knowledge of weather and climate in the Pacific. *Meteorological Applications*, 24(3), 491-502, doi:10.1002/met.1648.
- Chan, T. et al., 2020: Climate adaptation for rural water and sanitation systems in the Solomon Islands: A community
 scale systems model for decision support. *Sci Total Environ*, **714**, 136681, doi:10.1016/j.scitotenv.2020.136681.
- Chand, S. et al., 2014: Indigenous Knowledge for Environmental Prediction in the Pacific Island Countries. *Weather, Climate, and Society*, 6(4), 445-450, doi:10.1175/wcas-d-13-00053.1.
- Chong, J., 2014: Ecosystem-based approaches to climate change adaptation: progress and challenges. *International Environmental Agreements: Politics, Law and Economics*, 14(4), 391-405, doi:10.1007/s10784-014-9242-9.

2

3

4

5

6

7

8

9

10

11

12

13

Comeros-Raynal, M. et al., 2017: Applying a Ridge to Reef framework to support watershed, water quality, and community-based fisheries management in American Samoa, Agency, A. S. E. P., Pago Pago, American Samoa.
 Courchamp, F. et al., 2014: Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends

Ecol Evol, **29**(3), 127-130, doi:10.1016/j.tree.2014.01.001.

Crichton, R. and M. Esteban, 2018: Chapter 16: Limits to Coastal Adaptation in Samoa: Insights and Experiences. In: *Limits to Climate Change Adaptation*, pp. 283-300. ISBN 978-3-319-64598-8

- Cummings, K., A. Zuke, B. De Stasio and J. Krumholz, 2015: Coral Growth Assessment on an Established Artificial Reef in Antigua. *Ecological Restoration*, **33**(1), 90-95, doi:10.3368/er.33.1.90.
- Cvitanovic, C. et al., 2016: Linking adaptation science to action to build food secure Pacific Island communities. *Climate Risk Management*, **11**, 53-62, doi:10.1016/j.crm.2016.01.003.
- Daigneault, A., P. Brown and D. Gawith, 2016: Dredging versus hedging: Comparing hard infrastructure to ecosystembased adaptation to flooding. *Ecological Economics*, **122**, 25-35, doi:10.1016/j.ecolecon.2015.11.023.
- Delevaux, J. M. S. et al., 2018a: Scenario planning with linked land-sea models inform where forest conservation
 actions will promote coral reef resilience. *Sci Rep*, 8(1), 12465, doi:10.1038/s41598-018-29951-0.
- Delevaux, J. M. S. et al., 2018b: A linked land-sea modeling framework to inform ridge-to-reef management in high
 oceanic islands. *PLoS One*, 13(3), e0193230, doi:10.1371/journal.pone.0193230.
- Dey, M. et al., 2016: Economic impact of climate change and climate change adaptation strategies for fisheries sector in
 Solomon Islands: Implication for food security. *Marine Policy*, 67, 171-178, doi:10.1016/j.marpol.2016.01.004.
- Duvat, V., 2013: Coastal protection structures in Tarawa Atoll, Republic of Kiribati. Sustainability Science, 8(3), 363 379, doi:10.1007/s11625-013-0205-9.
- Duvat, V., A. Anisimov and A. Magnan, 2020a: Assessment of coastal risk reduction and adaptation-labelled responses
 in Mauritius Island (Indian Ocean). *Regional Environmental Change*, 20(110), doi:10.1007/s10113-020-01699-2.
- Duvat, V. et al., 2020b: Contribution of moderate climate events to atoll island building (Fakarava Atoll, French
 Polynesia). *Geomorphology*, **354**(107057), doi:10.1016/j.geomorph.2020.107057.
- Duvat, V. K. E. et al., 2021: Risks to future atoll habitability from climate-driven environmental changes. *WIREs Climate Change*, doi:10.1002/wcc.700.
- Enríquez-de-Salamanca, Á., 2018: Vulnerability reduction and adaptation to climate change through watershed
 management in St. Vincent and the Grenadines. *GeoJournal*, 84(4), 1107-1119, doi:10.1007/s10708-018-9914-z.
- Esteban, M. et al., 2020: Adaptation to sea level rise: Learning from present examples of land subsidence. Ocean &
 Coastal Management, 189, doi:10.1016/j.ocecoaman.2019.104852.
- Fabian, R., M. Beck and D. Potts, 2013: *Reef Restoration for Coastal Defense: A Review*. University of California,
 Santa Cruz, USA.
- GIZ, 2015: Integrated management of transboundary watershed Rio Libon, Deutsche Gesellschaft für Internationale
 Zusammenarbeit. Available at: https://www.giz.de/en/worldwide/24808.html.
- Gohar, A., A. Cashman and F. Ward, 2019: Managing food and water security in Small Island States: New evidence
 from economic modelling of climate stressed groundwater resources. *Journal of Hydrology*, 569, 239-251,
 doi:10.1016/j.jhydrol.2018.12.008.
- Gould, W. A., J. Castro-Prieto and N. L. Álvarez-Berríos, 2020: Climate Change and Biodiversity Conservation in the
 Caribbean Islands. In: *Encyclopedia of the World's Biomes*, pp. 114-125. ISBN 9780128160978.
- Goulding, W., P. Moss and C. McAlpine, 2016: Cascading effects of cyclones on the biodiversity of Southwest Pacific
 islands. *Biological Conservation*, 193, 143-152, doi:10.1016/j.biocon.2015.11.022.
- Granderson, A., 2017: The Role of Traditional Knowledge in Building Adaptive Capacity for Climate Change:
 Perspectives from Vanuatu. *Weather, Climate, and Society*, 9(3), 545-561, doi:10.1175/wcas-d-16-0094.1.
- Guido, Z. et al., 2018: The stresses and dynamics of smallholder coffee systems in Jamaica's Blue Mountains: a case
 for the potential role of climate services. *Climatic Change*, 147(1-2), 253-266, doi:10.1007/s10584-017-2125-7.
- Ha'apio, M. O., R. Gonzalez and M. Wairiu, 2019: Is there any chance for the poor to cope with extreme environmental
 events? Two case studies in the Solomon Islands. *World Development*, **122**, 514-524,
 doi:10.1016/j.worlddev.2019.06.023.
- Hagedoorn, L. et al., 2019: Community-based adaptation to climate change in small island developing states: an
 analysis of the role of social capital. *Climate and Development*, 1-12, doi:10.1080/17565529.2018.1562869.
- Hidalgo, D. et al., 2021: Climate change adaptation planning in remote contexts: insights from community-based
 natural resource management and rural development initiatives in the Pacific Islands. *Climate and Development*,
 1-13, doi:10.1080/17565529.2020.1867046.
- Hills, T., T. J. B. Carruthers, S. Chape and P. Donohoe, 2013: A social and ecological imperative for ecosystem-based
 adaptation to climate change in the Pacific Islands. *Sustainability Science*, 8(3), 455-467, doi:10.1007/s11625 013-0217-5.
- Hinkel, J. et al., 2018: The ability of societies to adapt to twenty-first-century sea-level rise. *Nature Climate Change*,
 8(7), 570-578, doi:10.1038/s41558-018-0176-z.
- Jackson, C., D. Bush and W. Neal, 2012: Documenting beach loss in front of seawalls in Puerto Rico: pitfalls of
 - engineering a small Island nation shore. In: *Pitfalls of Shoreline Stabilization* [Cooper, J. A. G. and O. H. Pilkey (eds.)]. Springer, Netherlands.

61 62

^{978-3-319-64599-5.}

Jamero, M. L. et al., 2017: Small-island communities in the Philippines prefer local measures to relocation in response 1 to sea-level rise. Nature Climate Change, 7(8), 581-586, doi:10.1038/nclimate3344. 2 Janif, S. et al., 2016: Value of traditional oral narratives in building climate-change resilience: insights from rural 3 communities in Fiji. Ecology and Society, 21(2), doi:http://dx.doi.org/10.5751/ ES-08100-210207. 4 Johnston, I., 2015: Traditional warning signs of cyclones on remote islands in Fiji and Tonga. Environmental Hazards, 5 14(3), 210-223, doi:10.1080/17477891.2015.1046156. 6 Jones, H. et al., 2016: Invasive mammal eradication on islands results in substantial conservation gains. PNAS, 113(15), 7 4033-4038, doi:10.1073/pnas.1521179113. 8 Jupiter, S. D. et al., 2014: Principles for integrated island management in the tropical Pacific. Pacific Conservation 9 Biology, 20(2), doi:10.1071/pc140193. 10 Karlsson, M. and E. McLean, 2020: Caribbean Small-Scale Fishers' Strategies for Extreme Weather Events: Lessons 11for Adaptive Capacity from the Dominican Republic and Belize. Coastal Management, 48(5), 456-480, 12 doi:10.1080/08920753.2020.1795971. 13 Kelman, I. et al., 2017: Here and now: perceptions of Indian Ocean islanders on the climate change and migration 14 nexus. Geografiska Annaler: Series B, Human Geography, 99(3), 284-303, doi:10.1080/04353684.2017.1353888. 15 Kench, P., 2012: Compromising Reef Island Shoreline Dynamics: Legacies of the Engineering Paradigm in the 16 Maldives. In: Pitfalls of Shoreline Stabilization [Cooper, J. and O. Pilkey (eds.)], pp. 165-186. ISBN 978-94-007-17 18 4122-5 19 978-94-007-4123-2. Keppel, G., C. Morrison, J. Mever and H. Boehmer, 2014: Isolated and vulnerable: the history and future of Pacific 20 Island terrestrial biodiversity. Pacific Conservation Biology, 20(2). 21 Khan, A. and V. Amelie, 2015: Assessing climate change readiness in Seychelles; implications for ecosystem-based 22 adaptation mainstreaming and marine spatial planning. Regional Environmental Change, 15(4), 721-733, 23 doi:10.1007/s10113-014-0662-4. 24 Klöck, C. and M. Finch, 2019: Dealing with Climate Change on Small Islands: Towards Effective and Sustainable 25 Adaptation? In: Dealing with climate change on small islands: Towards effective and sustainable adaptation, pp. 26 1-15. ISBN 978-3-86395-435-2. 27 Le Cornu, E. et al., 2018: Spatial management in small-scale fisheries: A potential approach for climate change 28 adaptation in Pacific Islands. Marine Policy, 88, 350-358, doi:10.1016/j.marpol.2017.09.030. 29 Le Dé, L., T. Rey, F. Leone and D. Gilbert, 2018: Sustainable livelihoods and effectiveness of disaster responses: a case 30 study of tropical cyclone Pam in Vanuatu. Natural Hazards, 91(3), 1203-1221, doi:10.1007/s11069-018-3174-6. 31 Lemahieu, A. et al., 2018: Local perceptions of environmental changes in fishing communities of southwest 32 33 Madagascar. Ocean & Coastal Management, 163, 209-221, doi:10.1016/j.ocecoaman.2018.06.012. 34 Loehr, J., 2019: The Vanuatu Tourism Adaptation System: a holistic approach to reducing climate risk. Journal of Sustainable Tourism, 28(4), 515-534, doi:10.1080/09669582.2019.1683185. 35 Luke, S. H. et al., 2017: The effects of catchment and riparian forest quality on stream environmental conditions across 36 a tropical rainforest and oil palm landscape in Malaysian Borneo. Ecohydrology, 10(4), e1827, 37 doi:10.1002/eco.1827. 38 Magnan, A. and V. Duvat, 2018: Unavoidable solutions for coastal adaptation in Reunion Island (Indian Ocean). 39 Environmental Science & Policy, 89, 393-400, doi:10.1016/j.envsci.2018.09.002. 40 Magnan, Alexandre K, et al., 2018: Atoll population exposure to marine inundation: the example of the Tuamotu 41 Archipelago (Rangiroa and Tikehau atolls), French Polynesia. VertigO, (Volume 18 Numéro 3), 42 doi:10.4000/vertigo.23607. 43 Maharaj, S. et al., 2019: Assessing protected area effectiveness within the Caribbean under changing climate 44 conditions: A case study of the small island, Trinidad. Land Use Policy, 81, 185-193, 45 doi:10.1016/j.landusepol.2018.09.030. 46 Marino, E. and H. Lazrus, 2015: Migration or Forced Displacement?: The Complex Choices of Climate Change and 47 Disaster Migrants in Shishmaref, Alaska and Nanumea, Tuvalu. Human Organization, 74(4), 341-350, 48 doi:10.17730/0018-7259-74.4.341. 49 McCubbin, S., B. Smit and T. Pearce, 2015: Where does climate fit? Vulnerability to climate change in the context of 50 multiple stressors in Funafuti, Tuvalu. Global Environmental Change, 30, 43-55, 51 52 doi:10.1016/j.gloenvcha.2014.10.007. McIver, L. et al., 2014: Assessment of the health impacts of climate change in Kiribati. Int J Environ Res Public Health, 53 11(5), 5224-5240, doi:10.3390/ijerph110505224. 54 McLeod, E. et al., 2018: Raising the voices of Pacific Island women to inform climate adaptation policies. Marine 55 Policy, 93, 178-185, doi:10.1016/j.marpol.2018.03.011. 56 McLeod, E. et al., 2019: Lessons From the Pacific Islands - Adapting to Climate Change by Supporting Social and 57 Ecological Resilience. Frontiers in Marine Science, 6, doi:10.3389/fmars.2019.00289. 58 McMillen, H., T. Ticktin and H. K. Springer, 2016: The future is behind us: traditional ecological knowledge and 59 resilience over time on Hawai'i Island. Regional Environmental Change, 17(2), 579-592, doi:10.1007/s10113-60 61 016-1032-1. McMillen, H. L. et al., 2014: Small islands, valuable insights: systems of customary resource use and resilience to 62 climate change in the Pacific. Ecology and Society, 19(4), doi:10.5751/es-06937-190444. 63

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

- McNamara, K. and H. Des Combes, 2015: Planning for Community Relocations Due to Climate Change in Fiji. International Journal of Disaster Risk Science, 6(3), 315-319, doi:10.1007/s13753-015-0065-2.
- McNamara, K. E. et al., 2020: An assessment of community-based adaptation initiatives in the Pacific Islands. Nature Climate Change, 10(7), 628-639, doi:10.1038/s41558-020-0813-1.
- Mercer, J., I. Kelman, B. Alfthan and T. Kurvits, 2012: Ecosystem-Based Adaptation to Climate Change in Caribbean Small Island Developing States: Integrating Local and External Knowledge. Sustainability, 4(8), 1908-1932, doi:10.3390/su4081908.
- Mercer, J. et al., 2014: Nation-building policies in Timor-Leste: disaster risk reduction, including climate change adaptation. Disasters, 38(4), 690-718, doi:10.1111/disa.12082.
- Monahan, W. B. and D. M. Theobald, 2018: Climate change adaptation benefits of potential conservation partnerships. PLoS One, 13(2), e0191468, doi:10.1371/journal.pone.0191468.
- Monty, F., R. Murti and N. Furuta, 2016: Helping nature help us: Transforming disaster risk reductionthrough ecosystem management. IUCN, Gland, Switzerland, 82 pp.
- Mouillot, D. et al., 2020: Global correlates of terrestrial and marine coverage by protected areas on islands. Nat Commun, 11(1), 4438, doi:10.1038/s41467-020-18293-z.
- Mycoo, M., 2014: Autonomous household responses and urban governance capacity building for climate change adaptation: Georgetown, Guyana. Urban Climate, 9, 134-154, doi:10.1016/j.uclim.2014.07.009.
- 18 Mycoo, M. and M. Donovan, 2017: A Blue Urban Agenda: Adapting to Cliamte Change in the Coastal Cities of 19 Caribbean and Pacific Small Island Developing States. IBD, Washington, D.C. ISBN 978-1-59782-293-1.
- Mycoo, M., 2018a: Beyond 1.5 °C: vulnerabilities and adaptation strategies for Caribbean Small Island Developing 20 States. Regional Environmental Change, 18(8), 2341-2353, doi:10.1007/s10113-017-1248-8. 21
- Mycoo, M. A., 2018b: Achieving SDG 6: water resources sustainability in Caribbean Small Island Developing States 22 through improved water governance. Natural Resources Forum, 42(1), 54-68, doi:10.1111/1477-8947.12141. 23
- Nalau, J. et al., 2018: The Role of Indigenous and Traditional Knowledge in Ecosystem-Based Adaptation: A Review 24 of the Literature and Case Studies from the Pacific Islands. Weather, Climate, and Society, 10(4), 851-865, 25 doi:10.1175/wcas-d-18-0032.1. 26
- Nanni, A. S. et al., 2019: The neotropical reforestation hotspots: A biophysical and socioeconomic typology of 27 contemporary forest expansion. Global Environmental Change, 54, 148-159, 28 doi:10.1016/j.gloenvcha.2018.12.001. 29
- Naylor, A., 2015: Island morphology, reef resources, and development paths in the Maldives. Progress in Physical 30 Geography, 39(6), 728-749, doi:10.1177/0309133315598269. 31
- Nunn, P. and R. Kumar, 2018: Understanding climate-human interactions in Small Island Developing States (SIDS). 32 33 International Journal of Climate Change Strategies and Management, 10(2), 245-271, doi:10.1108/ijccsm-01-34 2017-0012.
- Nunn, P. D., C. Klöck and V. Duvat, 2021: Seawalls as maladaptations along island coasts. Ocean & Coastal 35 Management, 205, doi:10.1016/j.ocecoaman.2021.105554. 36
- Onaka, S., H. Hashimoto, S. Nashreen Banu Soogun and A. Jheengut, 2015: Coastal Erosion and Demonstration Project 37 as Coastal Adaptation Measures in Mauritius. In: Handbook of Coastal Disaster Mitigation for Engineers and 38 Planners, pp. 561-577. ISBN 9780128010600. 39
- Onaka, S. et al., 2017: Effectiveness of Gravel Beach Nourishment on Pacific Island. Asian and Pacific Coastas, 651-40 41
- 662, doi:10.1142/9789813233812_0059. Parnell, K. E. and S. G. Smithers, 2020: Regional and Local Variability in Coastal Processes in Torres Strait, Australia, 42 and its Importance for Climate Change Planning. Journal of Coastal Research, 95(sp1), doi:10.2112/si95-120.1. 43
- Peters, E. J., 2019: Desalination for augmenting domestic rainwater harvesting in the Grenadines. Proceedings of the 44 Institution of Civil Engineers - Water Management, 172(4), 195-206, doi:10.1680/jwama.16.00097. 45
- Petzold, J., B. Ratter and A. Holdschlag, 2018: Competing knowledge systems and adaptability to sea-level rise in The 46 47 Bahamas. Area, 50(1), 91-100, doi:10.1111/area.12355.
- Piggott-McKellar, A., K. McNamara, P. Nunn and S. Sekinini, 2019: Moving People in a Changing Climate: Lessons 48 from Two Case Studies in Fiji. Social Sciences, 8(133), doi:10.3390/socsci8050133. 49
- Pinnegar, J. et al., 2019: Assessing vulnberability and adaptive capacity of the fisheries sector in Dominica: long-term 50 climate change and catastrophic hurricanes. ICES Joural of Marine Science, 76(5), 1353-1367, 51 52 doi:10.1093/icesjms/fsz052.
- Popke, J., S. Curtis and D. Gamble, 2016: A social justice framing of climate change discourse and policy: Adaptation, 53 resilience and vulnerability in a Jamaican agricultural landscape. Geoforum, 73, 70-80, 54 doi:10.1016/j.geoforum.2014.11.003. 55
- Quigley, N., S. Beavis and I. White, 2016: Rainwater harvesting augmentation of domestic water supply in Honiara, 56 Solomon Islands. Australian Journal of Water Resources, 20(1), 65-77, doi:10.1080/13241583.2016.1173314. 57
- Rasheed, S., S. C. Warder, Y. Plancherel and M. D. Piggott, 2020: Response to tidal flow regime and sediment 58 transportation in North Male' Atoll, Maldives to coastal modification and sea level rise. Ocean Science, 59 doi:10.5194/os-2020-80. 60
- Ratter, B. M. W., A. Hennig and A. Zahid, 2019: Challenges for shared responsibility Political and social framing of 61 coastal protection transformation in the Maldives. Die Erde, 150(3), 169-183, doi:10.12854/erde-2019-426. 62

1 2 3	Remling, E. and J. Veitayaki, 2016: Community-based action in Fiji's Gau Island: a model for the Pacific? <i>International Journal of Climate Change Strategies and Management</i> , 8 (3), 375-398, doi:10.1108/ijccsm-07- 2015-0101
3 4	Robinson, S., 2017: Mainstreaming climate change adaptation in small island developing states. <i>Climate and</i>
5	Development, 11(1), 47-59, doi:10.1080/17565529.2017.1410086.
6	Romine, B. and C. Fletcher, 2013: A Summary of Historical Shoreline Changes on Beaches of Kauai, Oahu, and Maui,
7	Hawaii. Journal of Coastal Research, 288, 605-614, doi:10.2112/jcoastres-d-11-00202.1. Pubow C and C Bird 2016: Eco theological Perponses to Climate Change in Oceania. Worldviews 20(2), 150, 168
0 9	doi:10.1163/15685357-02002003.
10	Rude, J. et al., 2016: Ridge to reef modelling for use within land-sea planning under data-limited conditions. <i>Aquatic</i>
11	Conservation: Marine and Freshwater Ecosystems, 26(2), 251-264, doi:10.1002/aqc.2548.
12	Sainsbury, N. C. et al., 2019: The challenges of extending climate risk insurance to fisheries. <i>Nature Climate Change</i> ,
13	9(12), 890-897, doi:10.1038/841558-019-0045-Z. Schleicher L C A Peres and N Leader-Williams 2019: Conservation performance of tropical protected areas: How
15	important is management? Conservation Letters, 12 (5), doi:10.1111/conl.12650.
16	Schnitter, R. et al., 2019: An Assessment of Climate Change and Health Vulnerability and Adaptation in Dominica.
17	International Journal of Environmental Research and Public Health, 16(1), doi:10.3390/ijerph16010070.
18 19	Scobie, M., 2016: Policy coherence in climate governance in Caribbean Small Island Developing States. <i>Environmental</i> Science & Policy 58 , 16-28, doi:10.1016/j.envsci.2015.12.008
20	Scriven, S. A., J. A. Hodgson, C. J. McClean and J. K. Hill, 2015: Protected areas in Borneo may fail to conserve
21	tropical forest biodiversity under climate change. <i>Biological Conservation</i> , 184, 414-423,
22	doi:10.1016/j.biocon.2015.02.018.
23 24	Shaig, A., 2011: Survey of Climate Change Adaptation Measure in Maldives, Programme, M. o. H. a. E. a. U. N. D., Republic of Maldives
24	Shakeela, A. and S. Becken, 2015: Understanding tourism leaders' perceptions of risks from climate change: an
26	assessment of policy-making processes in the Maldives using the social amplification of risk framework (SARF).
27	Journal of Sustainable Tourism, 23(1), 65-84, doi:10.1080/09669582.2014.918135.
28	Silva-Rocha, I. et al., 2015: Snakes on the Balearic islands: an invasion tale with implications for native biodiversity conservation. $PL \approx S_{10}(4)$, $\alpha \approx 0.121026$, $day = 10(4)$, $\alpha \approx 0.121026$, $day = 0.121026$.
29 30	Smith S 2017: Environmental Levy Takes Effect September 1 Government of the British Virgin Islands British
31	Virgin Islands.
32	SPCR, 2011: Jamaica Strategic Programme for Climate Resilience.
33	Tabe, T., 2019: Climate Change Migration and Displacement: Learning from Past Relocations in the Pacific. <i>Social</i>
34	Sciences, $8(218)$, doi:10.3390/socsci $80/0218$. Temmerman S. et al. 2013: Ecosystem based coastal defence in the face of global change. Nature 504(7478), 70,83
35 36	doi:10.1038/nature12859.
37	Thomas, A. and L. Benjamin, 2020: Chapter 12: Climate change, tourism and sustainable development in the Bahamas.
38	In: Tourism Development, Governance, and Sustainability in the Bahamas [Rolle, S., J. Minnis and I. Bethell-
39	Bennett (eds.)]. Taylor and Francis Group, London, UK.
40 41	mariculture in the Caribbean Nature Sustainability 2(1), 62-70 doi:10.1038/s41893-018-0205-y
42	Tomlinson, J. and K. Rhiney, 2017: Assessing the role of farmer field schools in promoting pro-adaptive behaviour
43	towards climate change among Jamaican farmers. Journal of Environmental Studies and Sciences, 8(1), 86-98,
44	doi:10.1007/s13412-017-0461-6.
45 46	Iurner, R., P. McConney and I. Monnereau, 2020: Climate Change Adaptation and Extreme Weather in the Small- Scale Fisheries of Dominica. <i>Coastal Management</i> 48 (5), 436-455. doi:10.1080/08920753.2020.1795070
40	UNDP. Increasing community adaptation and ecosystem resilience to climate change in Portland Bight (CCAM).
48	Community-Based Adaptation, Jamaica.
49	van der Veeken, S. et al., 2016: Tourism destinations' vulnerability to climate change: Nature-based tourism in Vava'u,
50	the Kingdom of Tonga. <i>Tourism and Hospitality Research</i> , 16 (1), 50-71, doi:10.1177/1467358415611068.
51 52	Change np 121-138
53	Voccia, A., 2011: Climate change: what future for small, vulnerable states? <i>International Journal of Sustainable</i>
54	Development & World Ecology, 19(2), 101-115, doi:10.1080/13504509.2011.634032.
55	Vorsino, A. E. et al., 2014: Modeling Hawaiian ecosystem degradation due to invasive plants under current and future
56 57	climates. <i>PLoS One</i> , 9(5), e95427, doi:10.1371/journal.pone.0095427.
58	Island in the Caribbean. <i>Remote Sensing</i> , 9 (7), doi:10.3390/rs9070731.
59	Weber, E., 2016: Only a pawn in their games? Environmental (?) migration in Kiribati - past, present and future. <i>Die</i>
60	<i>Erde</i> , 147 (2), 153-164, doi:10.12854/erde-147-11.
61	Williams, D., S. Rosendo, O. Sadasing and L. Celliers, 2020: Identifying local governance capacity needs for implementing alignets along adaptation in Mauritium Climate Policy, 20(5), 548,562
62 63	doi:10.1080/14693062.2020.1745743.

ACLEUR