

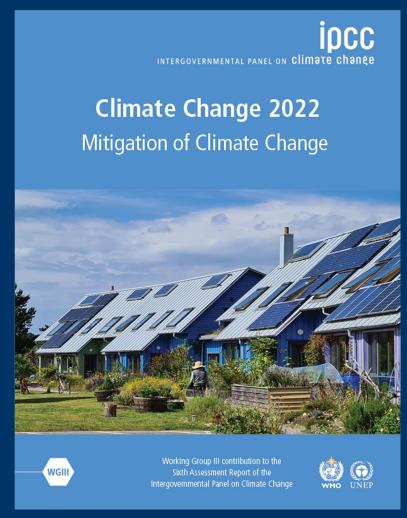
Report by numbers

278 Authors

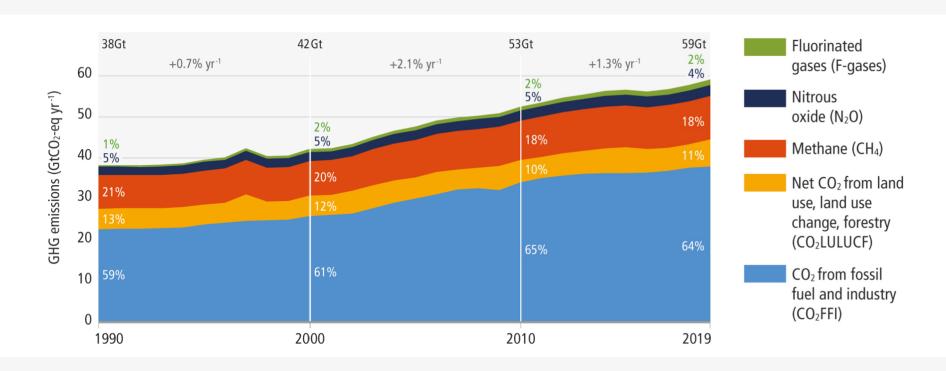
65 Countries

41 % Developing countries 59 % Developed countries

354 Contributing authors


29 % Women / 71 % Men

More than 18,000 scientific papers


59,212 Review comments

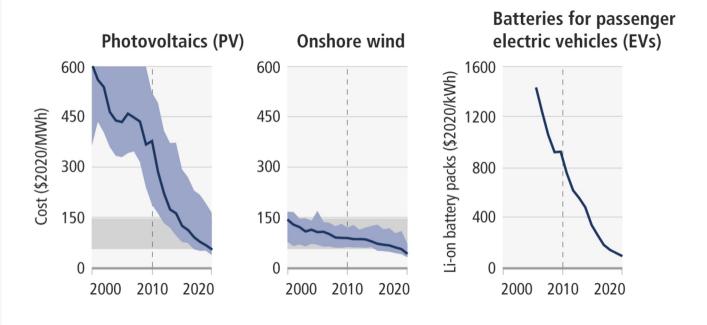
2010-2019: Average annual greenhouse gas emissions at highest levels in human history

We are not on track to limit warming to 1.5 °C.

Unless there are immediate and deep emissions reductions across all sectors, 1.5°C is beyond reach.

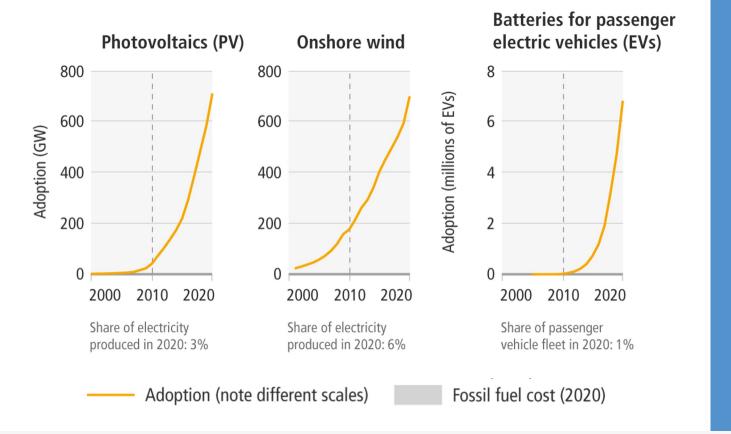
ipcc 💩 🙃

Increased evidence of climate action



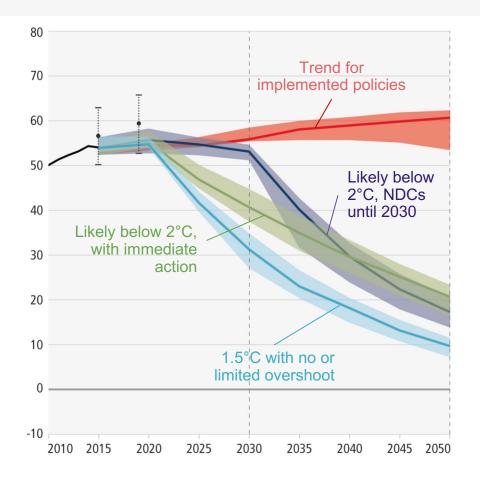
Some countries have achieved a **steady decrease** in emissions **consistent** with limiting warming to **2°C**.

Zero emissions targets have been adopted by at least 826 cities and 103 regions



In some cases, costs for renewables have fallen below those of fossil fuels.

— Market cost

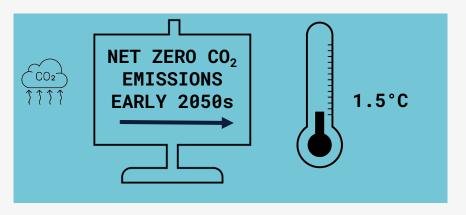

---- AR5 (2010)

WORKING GROUP III – MITIGATION OF CLIMATE CHANGE

Electricity
systems in
some countries
and regions are
already
predominantly
powered by
renewables.

Limiting warming to 1.5 °C

- Global GHG emissions peak before 2025, reduced by 43% by 2030.
- Methane reduced by 34% by 2030


Limiting warming to around 2°C

 Global GHG emissions peak before 2025, reduced by 27% by 2030.

(based on IPCC-assessed scenarios)

The temperature will stabilise when we reach net zero carbon dioxide emissions

(based on IPCC-assessed scenarios)

There are options available **now** in every sector that can at least **halve** emissions by 2030

Demand and services

Land use

Industry

Urban

Buildings

Transport

Sixth Assessment Report

WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

Energy

- major transitions are required to limit global warming
- reduction in fossil fuel use and use of carbon capture and storage
- low- or no-carbon energy systems
- widespread electrification and improved energy efficiency
- alternative fuels: e.g. hydrogen and sustainable biofuels

- potential to bring down global emissions by 40-70% by 2050
- walking and cycling, electrified transport, reducing air travel, and adapting houses make large contributions
- lifestyle changes require systemic changes across all of society
- some people require additional housing, energy and resources for human wellbeing

Sixth Assessment Report

WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

Transport

- reducing demand and low-carbon technologies are key to reducing emissions
- electric vehicles: greatest potential
- battery technology: advances could assist electric rail, trucks
- aviation and shipping: alternative fuels (low-emission hydrogen and biofuels) needed
- Overall, substantial potential but depends on decarbonising the power sector.

- better urban planning, as well as:
- sustainable production and consumption of goods and services,
- electrification (low-emission energy),
- enhancing carbon uptake and storage (e.g. green spaces, ponds, trees)

There are options for existing, rapidly growing and new cities.

- buildings: possible to reach net zero emissions in 2050
- action in this decade is critical to fully capture this potential
- involves retrofitting existing buildings and effective mitigation techniques in new buildings
- requires ambitious policy packages
- zero energy and zero-carbon buildings exist in new builds and retrofits

Sixth Assessment Report

WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

Industry

- using materials more efficiently, reusing, recycling, minimising waste; currently under-used in policies and practice
- basic materials: low- to zero-greenhouse gas production processes at pilot to nearcommercial stage
- achieving net zero is challenging

[Ahsanization/Unsplash, IMF Focus | Industry and Manufacturing CC BY-NC-ND 2.0, Rwanda Green Fund CC BY-ND 2.0, ILO/M. Fossat CC BY-NC-ND 2.0, Stephen Cornwell Pxhere.com]

Carbon Dioxide Removal

- required to counterbalance hard-to-eliminate emissions
- through biological methods: reforestation, and soil carbon sequestration
- new technologies require more research, up-front investment, and proof of concept at larger scales
- essential to achieve net zero
- agreed methods for measuring, reporting and verification required

[Forest Service Northern Region CC BY 2.0, Fiston Wasanga/CIFOR CC BY-NC-ND 2.0, Climeworks]

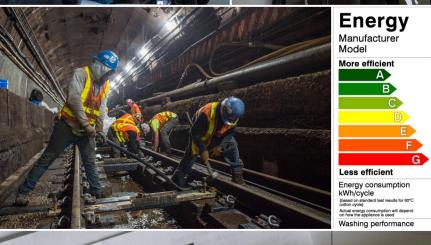
- can provide large-scale emissions reductions and remove and store CO₂ at scale
- protecting and restoring natural ecosystems to remove carbon: forests, peatlands, coastal wetlands, savannas and grasslands
- competing demands have to be carefully managed
- cannot compensate for delayed emission reductions in other sectors

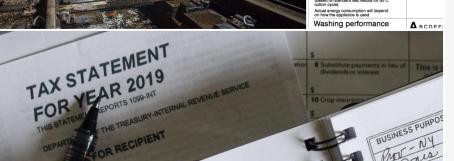
Sixth Assessment Report

WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

Closing investment gaps

- financial flows: 3-6x lower than levels needed by 2030 to limit warming to below 1.5°C or 2°C
- there is sufficient global capital and liquidity to close investment gaps
- challenge of closing gaps is widest for developing countries





Washing machine

1.75

Policies, regulatory and economic instruments

- regulatory and economic instruments have already proven effective in reducing emissions
- policy packages and economy-wide packages are able to achieve systemic change
- ambitious and effective mitigation requires coordination across government and society

[World Bank/Simone D. McCourtie, Dominic Chavez CC BY-NC-ND 2.0, Trent Reeves/MTA Construction & Development CC BY 2.0, IMF Photo/Tamara Merino CC BY-NC-ND 2.0, Olga Delawrence/Unsplash 1

ipcc 💩 🙊

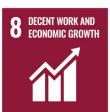
Technology and Innovation

- investment and policies push forward low emissions technological innovation
- effective decision making requires assessing potential benefits, barriers and risks
- some options are technically viable, rapidly becoming cost-effective, and have relatively high public support. Other options face barriers

Adoption of low-emission technologies is slower in most developing countries, particularly the least developed ones.

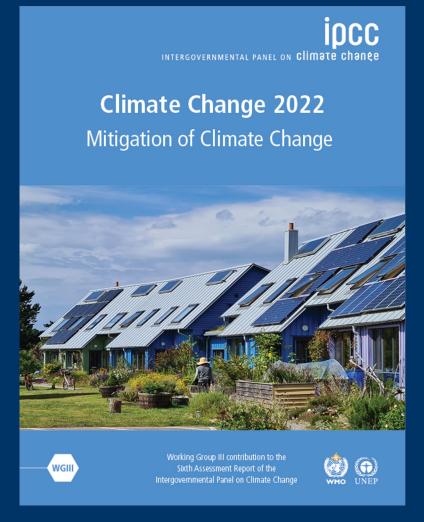
Accelerated climate action is critical to sustainable development

SUSTAINABLE GALS DEVELOPMENT GALS



Mitigation options in urban areas

	Relation with Sustainable Development Goals															
	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17
Urban land use and spatial planning	+	٠	+	+	+	+	+	+	+	٠	+	٠	٠	٠	+	
Electrification of the urban energy system	+	•	+	+	+	+	+	+	+	+	+	•	+	•	+	
District heating and cooling networks	+	_	+				+	+	+		+	+		+	+	
Urban green and blue infrastructure	+	+	+	+		+	+	+	+	٠	+	+	+	+	+	
Waste prevention, minimization and management	+	+	•			+		•	+		+	•	+	+	+	
Integrating sectors, strategies and innovations	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+



Mitigation options in agriculture and forestry

	Relation with Sustainable Development Goals															
	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17
Carbon sequestration in agriculture ¹	+	+	٠			+		+				٠	+	+	+	
Reduce CH ₄ and N ₂ O emission in agriculture			+						٠			+	+	+		
Reduced conversion of forests and other ecosystems ²	•	_	+			+		٠			٠		+	+	•	
Ecosystem restoration, reforestation, afforestation	+	•	+			•		_			+		+	+		
Improved sustainable forest management	+		+			+	٠	+	+		٠		+	+		
Reduce food loss and food waste	+	+	+			+	+			\blacksquare	\blacksquare	+	+	+	+	
Shift to balanced, sustainable healthy diets	•	\blacksquare	+			+	+		٠	+	+	+	+	+		
Renewables supply ³	•	٠	٠			٠	٠	+	+				•	•		

WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

The evidence is clear:
The time for action is now

