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2.SM.1 Historic Greenhouse Gas Emissions 
1990–2019: Dataset Description

This section provides a brief description of the dataset on historic 
greenhouse gas (GHG) emissions compiled for AR6 WGIII (the 
contribution of Working Group III to the IPCC Sixth Assessment 
Report) on climate change mitigation. The dataset is publicly 
available (https://zenodo.org/record/5566761) and has undergone 
additional peer review (Minx et  al. 2021). Sections 2.SM.1 and 
2.SM.2 included in this Supplementary Material are taken (in most 
parts) directly from Minx et al. (2021). It is included here solely to 
provide full transparency over the data used in this report and enable 
easy access to all information.

2.SM.1.1 Overview

The historic emissions dataset used in Chapter  2 provides 
a  comprehensive, synthetic set of estimates for global GHG 
emissions disaggregated by 27 economic sectors and 228 countries 
and territories. Its focus is on anthropogenic GHG emissions: 
natural sources and sinks are not included. Five groups of gases 
are distinguished: (i) CO2  emissions from fossil fuel combustion 
and industry (CO2-FFI); (ii) CO2 emissions from land use, land-use 
change and forestry (CO2-LULUCF); (iii) methane emissions (CH4); 
(iv) nitrous oxide emissions (N2O); (v) fluorinated gases (F-gases) 
comprising hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), 
sulphur hexafluoride (SF6) as well as nitrogen trifluoride (NF3). 
Other F-gases that are internationally regulated as ozone-depleting 
substances under the Montreal Protocol such as chlorofluorocarbons 
(CFCs) and hydrochlorofluorocarbons (HCFCs) are not included. GHG 
emissions data are analysed both in native units (except F-gases) as 
well as in CO2-equivalents (CO2-eq) as commonly done in wide parts 
of the climate change mitigation community using global warming 
potential with a 100-year time horizon (GWP100) from AR6 (Forster 
et al. 2021). The impact of using alternative metric choices in tracking 
aggregated GHG emissions is discussed in Section  2.SM.3 of this 
Supplementary Material. 

The dataset is compiled from four sources: (i) the full EDGARv6.0 
release for CO2-FFI as well as non-CO2 GHGs covering the time period 
1970–2018 (Crippa et al. 2021); (ii) EDGARv6.0 fast-track data for 
CO2-FFI providing preliminary estimates for 2019 and 2020 (Crippa 
et al. 2021); (iii) CO2-LULUCF as the average of three bookkeeping 
models, consistent with the approach of the global carbon project 
(Friedlingstein et al. 2020); and (iv) 2019 non-CO2 emissions based 
on Olivier and Peters (2018). The resulting synthetic dataset as 
presented here has undergone additional peer review (Minx et  al. 
2021).

As shown in Table 2.SM.1, sectoral detail is organised along five major 
economic sectors harmonised with the sector chapters used in this report: 
energy supply (Chapter 6); building (Chapter 9); transport (Chapter 10); 
Industry (Chapter 11); and Agriculture, Forestry and Other Land Use (AFOLU) 
(Chapter 7). A further classification for assigning our 228 countries and 
territories to regions is used, combining the standard Annex I/non-Annex I 
distinction with geographical location, as documented in Annex II of this 

report. The dataset including the sector and region classification, and 
GWP100 by gas can be found at https://zenodo.org/record/5566761.

While there is a growing number of global emissions inventories, 
only a few of them provide a wide coverage of gases, sectors, 
activities, and countries or regions that are sufficiently up to date 
to comprehensively track progress and thereby aid discussions in 
science and policy. Table  2.SM.2 provides an overview of global 
emission inventories. Many inventories focus on individual gases 
and subsets of activities. Few provide sectoral detail and, particularly 
for non-CO2 GHG emissions, there is often a considerable time-lag 
in reporting. GHG emissions reporting under the United Nations 
Framework Convention on Climate Change (UNFCCC) provides 
reliable, comprehensive and up-to-date statistics for Annex I 
countries across all major GHGs. Non-Annex I countries – except 
least-developed countries and small island states for which this is 
not mandatory – provide GHG emissions inventory information 
through biennial update reports (BURs), but with much less stringent 
reporting requirements in terms of sector, gas and time coverage 
(Gütschow et al. 2016; Deng et al. 2021). As a result, many still lack 
a well-developed statistical infrastructure to provide detailed and 
timely reports (Janssens-Maenhout et al. 2019).

https://zenodo.org/record/5566761
https://zenodo.org/record/5566761
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Table  2.SM.1 | Overview of the two-level sector aggregation with reference to assigned source/sink categories conforming to the IPCC reporting 
guidelines (IPCC 2006, 2019) as well as relevant GHGs. 

Sector Sub-sector IPCC (2006) Gases

AFOLU 
(Agriculture, 
Forestry 
and Other 
Land Use)

Biomass burning (agricultural 
waste burning on fields)

3.C.1.b (bio) CH4, N2O

Enteric fermentation 
3.A.1.a.i (fossil), 3.A.1.a.ii (fossil), 3.A.1.b (fossil), 3.A.1.c (fossil), 3.A.1.d (fossil), 
3.A.1.e (fossil), 3.A.1.f (fossil), 3.A.1.g (fossil), 3.A.1.h (fossil)

CH4

Managed soils and pasture 3.C.4 (fossil), 3.C.5 (fossil), 3.C.6 (fossil), 3.C.3 (fossil), 3.C.2 (fossil) CO2, N2O

Manure management 
3.A.2.a.i (fossil), 3.A.2.a.ii (fossil), 3.A.2.b (fossil), 3.A.2.c (fossil), 3.A.2.i (fossil), 
3.A.2.d (fossil), 3.A.2.e (fossil), 3.A.2.f (fossil), 3.A.2.g (fossil), 3.A.2.h (fossil)

CH4, N2O

Rice cultivation 3.C.7 (fossil) CH4

Synthetic fertiliser application 3.C.4 (fossil) N2O

Land use, land-use change, 
and forestry

CO2

Buildings

Non-CO2 (all buildings) 2.F.3 (fossil), 2.F.4 (fossil), 2.G.2.c (fossil)
c-C4F8, C4F10, CF4, HFC-125, HFC-227ea, 
HFC-23, HFC-236fa, HFC-134a, HFC-152a, SF6

Non-residential 1.A.4.a (bio), 1.A.4.a (fossil) CO2, CH4, N2O

Residential 1.A.4.b (bio), 1.A.4.b (fossil) CO2, CH4, N2O

Energy 
systems

Coal-mining fugitive 
emissions

1.B.1.a (fossil), 1.B.1.c (fossil) CO2, CH4

Electricity and heat
1.A.1.a.i (bio), 1.A.1.a.i (fossil), 1.A.1.a.ii (bio), 1.A.1.a.ii (fossil), 1.A.1.a.iii (bio), 
1.A.1.a.iii (fossil)

CO2, CH4, N2O

Oil and gas fugitive emissions
1.B.2.a.iii.2 (bio), 1.B.2.a.iii.2 (fossil), 1.B.2.a.iii.3 (fossil), 1.B.2.a.iii.4 (fossil), 
1.B.2.b.iii.2 (fossil), 1.B.2.b.iii.4 (fossil), 1.B.2.b.iii.5 (fossil), 1.B.2.b.iii.3 (fossil), 
1.B.2.b.ii (fossil), 1.B.2.a.ii (fossil)

CO2, CH4, N2O

Other (energy systems) 
1.A.1.c.ii (bio), 1.A.1.c.ii (fossil), 1.A.1.c.i (bio), 1.A.1.c.i (fossil), 1.A.4.c.i (bio), 
1.A.4.c.i (fossil), 1.A.5.a (bio), 1.A.5.a (fossil), 1.B.1.c (bio), 2.G.1.b (fossil), 5.B 
(fossil), 5.A (fossil)

CO2, CH4, N2O, SF6

Petroleum refining 1.A.1.b (bio), 1.A.1.b (fossil) CO2, CH4, N2O

Industry

Cement 2.A.1 (fossil) CO2

Chemicals

1.A.2.c (bio), 1.A.2.c (fossil), 2.A.2 (fossil), 2.A.4.d (fossil), 2.A.4.b (fossil), 2.A.3 
(fossil), 2.B.1 (fossil), 2.B.2 (fossil), 2.B.3 (fossil), 2.B.5 (fossil), 2.B.8.f (fossil), 
2.B.8.b (fossil), 2.B.8.c (fossil), 2.B.8.a (fossil), 2.B.4 (fossil), 2.B.6 (fossil), 2.B.9.b 
(fossil), 2.D.3 (fossil), 2.G.3.a (fossil), 2.G.3.b (fossil)

CO2, CH4, N2O, c-C4F8, C2F6, C3F8, C4F10, 
C5F12, C6F14, CF4, HFC-125, HFC-134a, 
HFC-143a, HFC-152a, HFC-227ea, HFC-32, 
HFC-365mfc, NF3, SF6, HFC-23

Metals
1.A.1.c.i (fossil), 1.A.1.c.ii (fossil), 1.A.2.a (bio), 1.A.2.a (fossil), 1.A.2.b (bio), 
1.A.2.b (fossil), 1.B.1.c (fossil), 2.C.1 (fossil), 2.C.2 (fossil), 2.C.3 (fossil), 2.C.4 
(fossil), 2.C.5 (fossil), 2.C.6 (fossil)

CO2, CH4, N2O, C2F6, CF4, SF6

Other industry

1.A.2.d (bio), 1.A.2.d (fossil), 1.A.2.e (bio), 1.A.2.e (fossil), 1.A.2.f (bio), 1.A.2.f 
(fossil), 1.A.2.k (fossil), 1.A.2.i (fossil), 1.A.5.b.iii (fossil), 2.F.1.a (fossil), 2.F.2 
(fossil), 2.F.5 (fossil), 2.E.1 (fossil), 2.E.2 (fossil), 2.E.3 (fossil), 2.G.1.a (fossil), 
2.G.2.c (fossil), 2.G.2.b (fossil), 2.G.2.a (fossil), 2.D.1 (fossil), 5.A (fossil)

CO2, CH4, N2O, HFC-125, HFC-134a, HFC-143a, 
HFC-152a, HFC-227ea, HFC-236fa, HFC-245fa, 
HFC-32, HFC-365mfc, C3F8, C6F14, CF4, 
HFC-43-10-mee, HFC-134, HFC-143, HFC-23, 
HFC-41, c-C4F8, C2F6, NF3, SF6, HCFC-141b*, 
HCFC-142b*, C4F10

Waste
4.A.1 (fossil), 4.D.2 (fossil), 4.D.1 (fossil), 4.C.1 (fossil), 4.C.2 (bio), 4.C.2 (fossil), 
4.B (fossil)

CO2, CH4, N2O

Transport

Domestic aviation 1.A.3.a.ii (fossil) CO2, CH4, N2O

Inland shipping 1.A.3.d.ii (bio), 1.A.3.d.ii (fossil) CO2, CH4, N2O

International Aviation 1.A.3.a.i (fossil) CO2, CH4, N2O

International Shipping 1.A.3.d.i (bio), 1.A.3.d.i (fossil) CO2, CH4, N2O

Other (transport)
1.A.3.e.i (bio), 1.A.3.e.i (fossil), 1.A.4.c.ii (fossil), 1.A.4.c.iii (bio), 1.A.4.c.iii 
(fossil)

CO2, CH4, N2O

Rail 1.A.3.c (bio), 1.A.3.c (fossil) CO2, CH4, N2O

Road 1.A.3.b (bio), 1.A.3.b (fossil) CO2, CH4, N2O

Note that EDGARv6.0 distinguishes biogenic CO2 and CH4 sources with a ‘bio’ label, with all other sectors ‘fossil’ by default, even if that source is not related to fossil fuel 
activities. The fossil/bio label is hence not descriptive in nature. Two HCFC gases (denoted with *) are included in the dataset, despite being neither PFCs nor HFCs (and hence 
regulated under Montreal). This is to preserve consistency with current and previous versions of EDGAR, which include these gases. Their total warming effect is low (about 
10 MtCO2-eq in 2019) and the major HCFC sources are not included. Source: Minx et al. (2021).

http://a.ii
http://a.ii
http://a.ii
http://a.ii
http://b.ii
http://a.ii
http://c.ii
http://c.ii
http://c.ii
http://a.ii
http://d.ii
http://d.ii
http://c.ii
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Table 2.SM.2 | Overview of global inventories of GHG emissions. Source: Minx et al. (2021).

Dataset name
Short 
name

Version Gases 
Geographic 
coverage

Activity split Time period Reference Link

Emissions Database 
for Global Atmospheric 
Research

EDGAR 6.0
CO2-FFI, CH4, N2O, 
F-gases: HFCs, PFCs, 
SF6, NF3

228 countries; global
4 main sectors, 
24 subsectors

1970–2018 Crippa et al. (2021)
https://edgar.jrc.ec.europa.eu/
report_2021

Potsdam Real-time 
Integrated Model 
for probabilistic 
Assessment of 
emissions Paths 

PRIMAP-hist 2.3.1
CO2-FFI, CH4, N2O, 
F-gases: HFCs, PFCs, 
SF6, NF3

All UNFCCC member 
states, most non-
UNFCCC territories

4 sectors 1750–2019 Gütschow et al. (2021b)
https://www.pik-potsdam.de/paris-
reality-check/primap-hist/

Community Emissions 
Data System 

CEDS v_2021_02_05
SO2, NOx, BC, OC, 
NH3, NMVOC, CO, 
CO2, CH4, N2O

221 countries 60 sectors
1750–2019
(1970–2019 for 
CH4 and N2O)

Hoesly et al. (2018); McDuffie 
et al. (2020); O’Rourke et al. 
(2021)

http://www.globalchange.umd.edu/ceds/

UNFCCC: Annex I 
Party GHG Inventory 
Submissions

2021
CO2, CH4, N2O, NOx, CO, 
NMVOC, SO2, F-gases: 
HFCs, PFCs, SF6, NF3

Parties included 
in Annex I to the 
Convention

Energy, industry, 
agriculture, LULUCF, 
waste

1990–2019
https://unfccc.int/ghg-inventories-annex-
i-parties/2021

GCP: 
Global Carbon Budget

GCP-GCB 2020 CO2-FFI, CO2-LULUCF
Global, 259 countries 
for FFI

5 main sectors, 
14 subsectors

CO2-LULUCF: 
1850–2019
CO2-FFI: 
1750–2019

Friedlingstein et al. (2020) https://doi.org/10.18160/GCP-2020

Global, Regional, and 
National Fossil-Fuel 
CO2 Emissions 

CDIAC-FF V2017 CO2-FFI 259 countries, global 5 main categories 1751–2017 Gilfillan et al. (2020)
https://energy.appstate.edu/research/
work-areas/cdiac-appstate

Energy Information 
Administration 
International Energy 
Statistics 

EIA 2021 CO2-FFI 230 countries, global 3 fuel types
1980–2018; 
1949–2018 
(global)

EIA (2019)
https://www.eia.gov/international/data/
world

BP Statistical Review 
of World Energy 

BP
2021 70th 
edition

CO2-FFI 108 countries, 7 regions
8 activities,  
3 fossil and  
3 other fuel types

1965–2019 BP (2021) 
https://www.bp.com/en/global/corporate/
energy-economics/statistical-review-of-
world-energy.html

International Energy 
Agency CO2 Emissions 
from Fuel Combustion 

IEA 2021 CO2-FFI 190 countries
3 fossil fuels,  
6 sectors

1971–2020; OECD: 
1960–2020

IEA (2021a,b)
https://www.iea.org/data-and-statistics/
data-product/greenhouse-gas-emissions-
from-energy-highlights

PKU-FUEL
CO2, CO, PM2.5, PM10, TSP, 
BC, OC, SO2, NOx, NH3, 
PAHs

Global (0.1 degree 
grid cells)

6 sectors,  
5 fuel types

1960–2014 http://inventory.pku.edu.cn/

Carbon Monitor CO2-FFI 11 countries, global 6 sectors 2019–very recent Liu et al. (2020) https://carbonmonitor.org/

Bookkeeping of 
land-use emissions 

BLUE 2020 CO2-LULUCF
Global (0.25 degree 
grid cells)

no split 1700–2019
Hansis et al. (2015); updated 
simulations described by 
Friedlingstein et al. (2020)

https://doi.org/10.18160/GCP-2020

OSCAR – an Earth 
system compact model 

OSCAR 2020 CO2-LULUCF Global (10 regions) no split 1701–2019
Gasser et al. (2020); Friedlingstein 
et al. (2020)

https://doi.org/10.18160/GCP-2020

Houghton and Nassikas 
Bookkeeping Model 

H&N 2020 CO2-LULUCF Global (187 countries) no split 1850–2019
Houghton and Nassikas (2017); 
Friedlingstein et al. (2020)

https://doi.org/10.18160/GCP-2020

https://edgar.jrc.ec.europa.eu/report_2021
https://edgar.jrc.ec.europa.eu/report_2021
https://www.pik-potsdam.de/paris-reality-check/primap-hist/
https://www.pik-potsdam.de/paris-reality-check/primap-hist/
http://www.globalchange.umd.edu/ceds/
https://unfccc.int/ghg-inventories-annex-i-parties/2021
https://unfccc.int/ghg-inventories-annex-i-parties/2021
https://doi.org/10.18160/GCP-2020
https://energy.appstate.edu/research/work-areas/cdiac-appstate
https://energy.appstate.edu/research/work-areas/cdiac-appstate
https://www.eia.gov/international/data/world
https://www.eia.gov/international/data/world
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy-highlights
https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy-highlights
https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy-highlights
http://inventory.pku.edu.cn/
https://carbonmonitor.org/
https://doi.org/10.18160/GCP-2020
https://doi.org/10.18160/GCP-2020
https://doi.org/10.18160/GCP-2020
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Dataset name
Short 
name

Version Gases 
Geographic 
coverage

Activity split Time period Reference Link

The Greenhouse 
gas – Air pollution 
INteractions and 
Synergies Model 

GAINS 2020 CO2, CH4, N2O, F-gases Global (172 regions)
3 main sectors, 16 
subsectors

1990–2015
Höglund-Isaksson (2012; 2020); 
Winiwarter et al. (2018) 

https://gains.iiasa.ac.at/models/index.
html

EPA-Global Non-CO2 
Greenhouse Gas 
Emissions 

US-EPA 2019
CH4, N2O, F-gases: HFCs, 
PFCs, SF6

Global (195 countries) 4 major sectors 1990–2015 EPA (2021)
https://www.epa.gov/global-mitigation-
non-co2-greenhouse-gases

GCP – global nitrous 
oxide budget 

GCP/INI 2020 N2O
10 land regions and 3 
oceanic regions

21 natural and human 
sectors

1980–2016 Tian et al. (2020)
https://www.globalcarbonproject.org/
nitrousoxidebudget/

FAOSTAT – Emissions 
Totals

FAOSTAT 2021 CO2, CH4, N2O Global (191 countries) 15 activities in AFOLU 1961–2019
Tubiello et al. (2013, 2021); 
Federici et al. (2015); Tubiello 
(2019)

http://www.fao.org/faostat/en/#data/GT

Fire Inventory from 
NCAR

FINN CO2, CH4, N2O Global Wiedinmyer et al. (2011)

Global fire assimilation 
system

GFAS CO2, CH4, N2O Global Kaiser et al. (2012)

Global fire emissions 
database

GFED CO2, CH4, N2O Global Van der Werf et al. (2017)
https://www.geo.vu.nl/~gwerf/GFED/
GFED4/

Quick fire emissions 
dataset

QFED CO2-LULUCF, CH4, N2O Global Darmenov and da Silva (2013)

https://gains.iiasa.ac.at/models/index.html
https://gains.iiasa.ac.at/models/index.html
https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases
https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases
https://www.globalcarbonproject.org/nitrousoxidebudget/
https://www.globalcarbonproject.org/nitrousoxidebudget/
http://www.fao.org/faostat/en/#data/GT
https://www.geo.vu.nl/~gwerf/GFED/GFED4/
https://www.geo.vu.nl/~gwerf/GFED/GFED4/
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2.SM.1.2 The Emissions Database for Global Atmospheric 
Research (EDGAR)

EDGAR emission estimates included in Chapter 2 emissions dataset 
are derived from the full version 6 release (Crippa et al. 2021). This 
includes CO2 and non-CO2 GHG emission estimates from 1970 to 
2018 computed from stable international statistics, and fast-track 
estimates of fossil CO2 emissions up to the year 2020. The following 
general EDGAR methodological description is largely taken from 
Janssens-Maenhout et  al. (2019). EDGAR bottom-up emission 
inventory estimates are calculated from international activity data 
and emission factors following the 2006 IPCC Guidelines for National 
Greenhouse Gas Inventories (IPCC 2006) – updated according to the 
latest scientific knowledge. Emissions (EMs) from a given sector i in a 
country C accumulated during a year t for a chemical compound x are 
calculated with the country-specific activity data (AD), quantifying 
the activity in sector i, with the mix of j technologies (TECH) and 
with the mix of k (end-of-pipe) abatement measures (EOP) installed 
with the share k for each technology j, the emission rate with an 
uncontrolled emission factor (EF) for each sector i and technology j 
and relative reduction (RED) by abatement measure k, as summarised 
in the following formula:

Equation 2.SM.1

The activity data are sector dependent and vary from fuel combustion 
in energy units of a particular fuel type, to the amount of products 
manufactured, or to the number of animals or the area or yield of 
cultivated crops. The technology mixes, (uncontrolled) emission 
factors and end-of-pipe measures are determined at different levels: 
country-specific, regional, country group (e.g., Annex I/non-Annex I), 
or global. Technology-specific emission factors are used to enable 
an IPCC Tier-2 approach (see Box 2.SM.1), taking into account the 
different management and technology processes or infrastructures 
(e.g., different distribution networks) under specific ‘technologies’, 
and modelling explicitly abatements/ emission reductions – for 
example, the CH4 recovery from coal mine gas at country level under 
the ‘end-of-pipe measures’. As with national inventories, emissions 
are accounted over a period of one calendar year in the country 

or territory in which they took place (i.e., a territorial accounting 
principle) (IPCC 2006, 2019). A more complete description of the 
data sources and methodology for EDGARv6 is provided in Crippa 
et al. (2021).

To compute emissions up to the most recent years, a fast-track 
methodology is applied, as described in Oreggioni et  al. (2021). 
The underlying principle is to extrapolate trends based on observed 
activity patterns in representative sectors. For CO2-FFI emissions, 
the fast track estimates were based on the latest BP coal, oil and 
natural gas consumption data (BP 2021). Emission updates for 
cement, lime, ammonia and ferroalloys production beyond 2018 are 
based on stable statistics. In particular these include US Geological 
Survey statistics, urea production and consumption statistics from 
the International Fertilizer Association, gas flaring statistics from the 
Global Gas Flaring Reduction Partnership, steel production statistics 
from the World Steel Association, and cement clinker production 
statistics from UNFCCC data. Fast-track extensions for non-CO2 GHG 
emissions are based on Olivier and Peters (2018). For CH4 and N2O 
these are based on agricultural statistics from the UN’s Food and 
Agricultural Organization (FAO) (CH4 and N2O), fuel production and 
transmission statistics from the International Energy Agency (IEA) 
and BP (CH4) as well as data from national GHG inventory reports 
on coal production (CH4 recovery) and the production of chemicals 
(N2O abatement) submitted by Annex-I countries to the UNFCCC 
following a common reporting format (CRF) (e.g., UNFCCC 2021). 
For F-gases the fast-track extension was based on the most recent 
national emission inventories, submitted under the UNFCCC (up to 
2018). Given the absence of international statistics, for all remaining 
countries and years, a simple extrapolation was used, with fast-track 
data by Olivier and Peters (2020). Here the procedure was to calculate 
the country- and sector-specific emissions growth between 2018 and 
2019 in Olivier and Peters (2020), then multiply each growth rate 
with the 2018 values in the Chapter 2 emissions data. 

2.SM.1.3 Accounting for CO2 Emissions Land Use, 
Land-use Change and Forestry (CO2-LULUCF)

All fluxes of CO2-LULUCF are considered. This includes CO2 fluxes 
from the clearing of forests and other natural vegetation (by 
anthropogenic fire and/or clear-cut), afforestation, harvest activities, 
land-use related forest degradation, shifting cultivation (cycles of 

Box 2.SM.1 | Methodological Standards for Compiling Greenhouse Gas Inventories According 
to IPCC Guidelines

The 2006 Guidelines for National Greenhouse Gas Inventories and their 2019 refinements by the Intergovernmental Panel on Climate 
Change (IPCC) provide methodological guidance for compiling greenhouse gas (GHG) emissions inventories at different levels of 
sophistication (IPCC 2006, 2019). The levels of methodological complexity for estimating GHG emissions and removals are organised 
according to different tiers. Tier 1 is the most basic method. It applies a simple default methodology as well as default emission factors 
and other parameters defined in the IPCC Guidelines. Tier 2 methods replace those default values by country-specific data and can 
use more detailed calculations and activity data. Tier 3 refers to methods that may apply country-specific equations for calculating 
emissions along with more details regarding activity data, technologies and practices, providing the most granular approach to 
estimation. Tier 2 and Tier 3 are also referred to as higher tier methods and are generally considered to be more accurate than a Tier 1 
method, especially when it comes to reporting changes in emissions over time (IPCC 2006).
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forest clearing for agriculture, then abandonment), and regrowth 
of forests and other natural vegetation following wood harvest or 
abandonment of agriculture, and emissions from peat burning and 
drainage. Some of these activities lead to emissions of CO2 to the 
atmosphere, while others lead to CO2 sinks. CO2-LULUCF therefore 
is the net sum of emissions and removals from all human-induced 
land-use changes and land management. Note that CO2-LULUCF is 
referred to as (net) land-use change emissions, ELUC, in the context 
of the global carbon budget (Friedlingstein et al. 2020). Agriculture 
per se, apart from conversions between different agricultural types, 
does not lead to substantial CO2 emissions as compared to land-use 
changes such as clearing or regrowth of natural vegetation. Therefore, 
CO2 fluxes in the AFOLU sector refer almost exclusively to forestry 
and other land use (changes), while the agricultural part of the sector 
is mainly characterised by CH4 and N2O fluxes.

Since in reality anthropogenic CO2-LULUCF emissions co-occur with 
natural CO2 fluxes in the terrestrial biosphere, models have to be used 
to distinguish anthropogenic and natural fluxes (Friedlingstein et al. 
2020). CO2-LULUCF as reported here is calculated via a bookkeeping 
approach, as originally proposed by Houghton et  al. (2003), 
tracking carbon stored in vegetation and soils before and after 
land-use change. Response curves are derived from the literature 
and observations to describe the temporal evolution of the  decay 
and regrowth of vegetation and soil carbon pools for different 
ecosystems and land-use transitions, including product pools of 
different lifetimes. These dynamics distinguish bookkeeping models 
from the common approach of estimating ‘committed emissions’ 
(assigning all present and future emissions to the time of the land-
use change event), which is frequently derived from remotely-sensed 
land-use area or biomass observations (Ramankutty et  al. 2007). 
Most bookkeeping models also represent the long-term degradation 
of primary forest as the reduction of standing vegetation and soil 
carbon stocks in secondary forests, and include forest management 
practices such as wood harvesting. Since the effects of environmental 
changes are excluded by the bookkeeping approach, bookkeeping 
CO2-LULUCF emissions estimates isolate the effects of anthropogenic 
(land-use-related) drivers.

The definition of CO2-LULUCF emissions by global carbon cycle 
models, as used here and in Canadell et al. (2021), differs from IPCC 
definitions (IPCC 2006) applied in national greenhouse gas inventories 
(NGHGI) for reporting under the climate convention (Grassi et  al. 
2018) and, similarly, from FAO estimates of carbon fluxes on forest 
land (Tubiello et al. 2021). This means that NGHGI data include natural 
terrestrial fluxes caused by changes in environmental conditions, 
such as the effects of rising atmospheric CO2 (CO2-fertilisation), 
climate change, and nitrogen deposition – sometimes called ‘indirect 
effects’ as opposed to the direct anthropogenic effects of land-use 
change and management (Houghton et  al. 2012) (Section  2.2.2.1 
and Chapter 7) – through adoption of the IPCC so-called land-use 
proxy approach when they occur on areas that countries declare 
as managed. Since environmental changes turned the terrestrial 
biosphere into a massive sink, removing about one-third of annual 
anthropogenic emissions in the last decade (Friedlingstein et  al. 
2020), it is unsurprising that global emission estimates are smaller 
based on NGHGI than for global models’ definitions (Figure 2.SM.1). 

About 3.2 GtCO2 yr−1 (for the period 2005–2014) was found to be 
explicable by these conceptual differences in anthropogenic forest 
sink estimation related to the representation of environmental change 
impacts and the areas considered as managed (Grassi et al. 2018). 

These two conceptually different approaches have different aims: 
the global models’ approach separates natural from anthropogenic 
drivers – that is, the effects of changes in environmental conditions 
from effects of land-use change and land management. By contrast, 
the NGHGI approach separates fluxes based on areas, with all those 
occurring on managed land being declared anthropogenic. Given that 
observational data of carbon stocks or fluxes cannot distinguish the 
co-occurring effects of environmental changes and land-use activities, 
an area-based approach that does not require this distinction can 
more consistently be implemented across countries. These conceptual 
differences between global models and NGHGI approaches have 
been acknowledged (Petrescu et al. 2020a; Canadell et al. 2021) and 
approaches have been developed to map the two definitions to each 
other (Grassi et al. 2018, 2021). For non-CO2 GHGs, drivers and areas 
coincide, such that FAOSTAT data for CH4 and N2O is complementary 
to bookkeeping CO2-LULUCF emissions.

Following the approach taken by the global carbon budget 
(Friedlingstein et  al. 2020), the approach taken here is to use the 
average of estimates from three bookkeeping models: Bookkeeping 
of land-use emissions (BLUE) (Hansis et al. 2015), H&N (Houghton 
and Nassikas, 2017), and an earth system compact model (OSCAR) 
(Gasser et al. 2020). Key differences across these estimates, including 
land-use forcing, are summarised in Table 2.SM.4. Since bookkeeping 
models do not include emissions from organic soils, emissions from 
peat fires and peat drainage are added from external datasets: Peat 
burning is based on the Global Fire Emissions Database (GFEDv4) 
(van der Werf et al. 2017) and introduces large interannual variability 
to the CO2-LULUCF emissions due to synergies of land-use and 
climate variability, particularly in Southeast Asia, strongly noticeable 
during El Niño events such as in 1997. Peat drainage is based on 
estimates by Hooijer et  al. (2010) for Indonesia and Malaysia in 
H&N, and added to BLUE and OSCAR from the global FAO data on 
organic soils emissions from croplands and grasslands (Conchedda 
and Tubiello 2020). 

2.SM.2 Uncertainties in GHG Emissions 
Estimates

Estimates of historic GHG emissions – CO2, CH4, N2O and F-gases 
(HFCs, PFCs, SF6, NF3) – are uncertain to different degrees. Assessing 
and reporting uncertainties is crucial in order to understand whether 
available estimates are sufficiently accurate to answer – for example, 
whether GHG emissions are still rising, or if a country has achieved 
an emissions-reduction goal (Marland 2008). These uncertainties can 
be of a scientific nature, such as when a process is not sufficiently 
understood. They also arise from incomplete or unknown parameter 
information (activity data, emission factors, and so on), as well as 
estimation uncertainties from imperfect modelling techniques. There 
are at least three major ways to examine uncertainties in emission 
estimates (Marland et  al. 2009): (i) by comparing estimates made 
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(a) Annual global CO2-FFI emissions

(b) Annual global CO2-LULUCF emissions

(c) Annual global CH4 emissions

(d) Annual global N2O emissions
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Figure 2.SM.1 | Estimates of global anthropogenic greenhouse gas emissions from different data sources 1970–2019. 
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by independent methods and observations (e.g., comparing top-
down vs bottom-up estimates; modelling against remote sensing 
data) (Li et al. 2020; Saunois et al. 2020; Petrescu et al. 2020a, 2021); 
(ii) by comparing estimates from multiple sources and understanding 
sources of variation (Macknick, 2011; Andres et  al. 2012; Andrew 
2020; Ciais et al. 2021); (iii) by evaluating multiple estimates from 
a single source (Hoesly and Smith 2018) including approaches such 
as uncertainty ranges estimated through statistical sampling across 
parameter values applied, for example, at the country or sectoral 
level (Monni et al. 2007; Andres et al. 2014; Solazzo et al. 2021), or to 
spatially distributed emissions (Tian et al. 2019).

Uncertainty estimates can be rather different depending on the 
method chosen. For example, the range of estimates from multiple 
sources is bounded by their interdependency; they can be lower 
than true structural plus parameter uncertainty estimates or than 
estimates made by independent methods. In particular, it is important 
to account for potential bias in estimates, which can result from 
using common methodological or parameter assumptions across 
estimates, or from missing sources, which can result in a systemic 
bias in emission estimates (see N2O discussion below). Independent 
top-down observational constraints are, therefore, particularly useful 
to bound total emission estimates (Petrescu et al. 2021).

Solazzo et  al. (2021) evaluated the uncertainty of EDGAR’s source 
categories and totals for the main GHGs (CO2-FFI, CH4, N2O). This 
study is based on the propagation of the uncertainty associated with 
input parameters (activity data and emission factors) as estimated 
by expert judgement (Tier-1) and compiled by the IPCC (2019, 2006). 
A key methodological challenge is determining how well uncertain 
parameters are correlated between sectors, countries, and regions. 
The more highly correlated parameters (e.g., emission factors) are 
across scales, the higher the resulting overall uncertainty estimate. 
Solazzo et  al. (2021) assume full covariance between the same 
source categories where similar assumptions are being used, and 
independence otherwise. For example, they assume full covariance 
where the same emission factor is used between countries or sectors, 
while assuming independence where country-specific emission 
factors are used. This strikes a balance between extreme assumptions 
(full independence or full covariance in all cases) that are likely 
unrealistic, but still leans towards higher uncertainty estimates. 
When aggregating emission sources, assuming full covariance 

increases the resulting uncertainty estimate. Uncertainties calculated 
with this methodology tend to be higher than the range of values 
from ensemble of dependent inventories (Saunois et al. 2016, 2020). 
The uncertainty of emission estimates derived from ensembles of 
gridded results from bio-physical models (Tian et  al. 2018) adds 
an additional dimension of spatial variability, and is therefore not 
directly comparable with aggregate country or regional uncertainty, 
estimated with the methods discussed above.

This section provides an assessment of uncertainties in GHG emissions 
data at the global level. The uncertainties reported here combine 
statistical analysis, comparisons of global emissions inventories and 
expert judgement of the likelihood of results lying outside a defined 
confidence interval, rooted in an understanding gained from the 
relevant literature. At times, we also use a qualitative assessment 
of confidence levels to characterise the annual estimates from each 
term, based on the type, amount, quality, and consistency of the 
evidence as defined by the IPCC (IPCC 2014). 

Such a comprehensive uncertainty assessment covering all major 
groups of GHGs and considering multiple lines of evidence has 
been missing in the literature. The absence has provided a serious 
challenge for a transparent, scientific reporting of GHG emissions 
in climate change assessments such as those by IPCC’s Working 
Group  III or the UN Emissions Gap Report, which have only more 
recently started to deal with the issue (Blanco et  al. 2014; UNEP 
2020). Most of the available studies in the peer-reviewed literature 
using multiple lines of evidence for their assessment have focused on 
individual gases as in the Global Carbon Budget (Friedlingstein et al. 
2020), the Global Methane Budget (Saunois et al. 2020) or the Global 
Nitrous Oxide Budget (Tian et al. 2020) or covered multiple gases, but 
mainly considered individual lines of evidence (Janssens-Maenhout 
et al. 2019; Solazzo et al. 2021).

We adopt a 90% confidence interval (5th–95th percentile) to report 
the uncertainties in our GHG emissions estimates – that is, there is 
a 90% likelihood that the true value will be within the provided range 
if the errors have a Gaussian distribution, and no bias is assumed. 
This is in line with previous reporting in IPCC AR5 (Blanco et  al. 
2014; Ciais et  al. 2014). Note that national emissions inventories 
submitted to the UNFCCC are requested to report uncertainty using 
a 95% or 2σ confidence interval. The use of this broader uncertainty 

Figure  2.SM.1 (continued): Estimates of global anthropogenic greenhouse gas emissions from different data sources 1970–2019. Top-left panel: 
CO2-FFI emissions from: EDGAR – Emissions Database for Global Atmospheric Research (this dataset) (Crippa et  al. 2021); GCP – Global Carbon Project (Friedlingstein 
et al. 2020; Andrew and Peters 2021); CEDS – Community Emissions Data System (Hoesly et al. 2018; O’Rourke et al. 2021); CDIAC Global, Regional, and National Fossil-
Fuel CO2 Emissions (Gilfillan et  al. 2020); PRIMAP-hist – Potsdam Real-time Integrated Model for probabilistic Assessment of emissions Paths (Gütschow et  al. 2016, 
2021b); EIA – Energy Information Administration International Energy Statistics (EIA 2019); BP – BP Statistical Review of World Energy (BP 2021); IEA – International 
Energy Agency (IEA 2021b; (a); IPPU refers to emissions from industrial processes and product use. Top-right panel: Net anthropogenic CO2-LULUCF emissions from: 
BLUE – Bookkeeping of land-use emissions (Hansis et  al. 2015; Friedlingstein et  al. 2020); DGVM-mean – Multi-model mean of CO2-LULUCF emissions from dynamic 
global vegetation models (Friedlingstein et  al. 2020); OSCAR – an earth system compact model (Friedlingstein et  al. 2020; Gasser et  al. 2020); H&N – Houghton and 
Nassikas Bookkeeping Model (Houghton and Nassikas 2017; Friedlingstein et  al. 2020); for comparison, the net CO2 flux from FAOSTAT (FAO Tier 1) is plotted, which 
comprises net emissions and removals on forest land and from net forest conversion (FAOSTAT 2021; Tubiello et  al. 2021), emissions from drained organic soils under 
cropland/grassland (Conchedda and Tubiello 2020), and fires in organic soils (Conchedda and Tubiello 2020; Prosperi et al. 2020), as well as a net CO2 flux estimate from 
National Greenhouse Gas Inventories (NGHGI) based on country reports to the UNFCCC, which include land-use change, and fluxes in managed lands (Grassi et al. 2021).  
Bottom-left panel: Anthropogenic CH4 emissions from: EDGAR (above); CEDS (above); PRIMAP-hist (above); GAINS – The Greenhouse gas – Air pollution Interactions and 
Synergies Model (Höglund-Isaksson et al. 2020); EPA-2019: Greenhouse gas emission inventory (US-EPA 2019); FAO –FAOSTAT inventory emissions (Tubiello et al. 2013; 
Tubiello 2018; FAOSTAT 2021); Bottom-right panel: Anthropogenic N2O emissions from: GCP – global nitrous oxide budget (Tian et al. 2020); CEDS (above); EDGAR (above); 
PRIMAP-hist (above); GAINS (Winiwarter et al. 2018); EPA-2019 (above); FAO (above). Differences in emissions across different versions of the EDGAR dataset are shown in the 
Supplementary Material (Figure 2.SM.2). Source: Minx et al. (2021).
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interval implies, however, a relatively high degree of knowledge 
about the uncertainty structure of the associated data, particularly 
regarding the distribution of uncertainty in the tails of the probability 
distributions. Such a high degree of knowledge is not present across 
all regions, emission sectors, and species considered here. Note 
that, in some cases below, we convert 1σ uncertainty results from 
the literature to a 90% confidence interval by implicitly assuming 
a normal distribution. While we do this as a necessary assumption 
to obtain a consistent estimate across all GHGs, we note that this 
itself is an assumption that may not be valid. We have made use of 
the best available information in the literature, but note that much 
more work on uncertainty quantification remains to be done. Using 
IPCC uncertainty language, we cannot assign high confidence to the 
robustness of most existing uncertainty estimates.

2.SM.2.1 CO2 Emissions from Fossil Fuels and Industrial 
Processes (CO2-FFI)

Several studies have compared estimates of annual CO2-FFI emissions 
from different global inventories (Macknick 2011; Andres et al. 2012; 
Gütschow et al. 2016; Janssens-Maenhout et al. 2019; Andrew, 2020; 
Petrescu et al. 2020b). However, estimates are not fully independent 
as they all ultimately rely on many of the same data sources. For 
example, all global inventories use one of four global energy datasets 
to estimate CO2 emissions from energy use, and these energy 
datasets themselves all rely on the same national energy statistics, 
with few exceptions (Andrew 2020). Some divergence between these 
estimates (Figure 2.SM.2) are related to differences in the estimation 
methodology, conversion factors, emission coefficients, assumptions 
about combustion efficiency, and calculation errors (Marland et al. 
2009; Andrew 2020). Key differences for nine global datasets are 
highlighted in Table  2.SM.3 (see also Table  2.SM.2 for further 
information on the inventories). 

Another important source of divergence between datasets is 
differences in their respective system boundaries (Macknick 2011; 
Andres et al. 2012; Andrew 2020). Hence, differences across CO2-FFI 
emissions estimates do not reflect full uncertainty due to source data 
dependencies. At the same time, the observed range across estimates 
from different databases exaggerates uncertainty, to the extent that 
they largely originate in system boundary differences (Macknick 
2011; Andrew 2020).

Across global inventories, mean global annual CO2-FFI emissions 
track at 34 ± 2  GtCO2 in 2014, reflecting a variability of about 
±5.4% (Figure  2.SM.1). However, this variability is almost halved 
when system boundaries are harmonised (Andrew 2020). EDGAR 
CO2-FFI emissions, as used there, track at the top of the range as 
shown in Figure  2.SM.1. This is partly due to the comprehensive 
system boundaries of EDGAR, but also due to the assumption of 
100% oxidation of combusted fuels as per IPCC default assumptions. 
Once system boundaries are harmonised, EDGAR continues to track 
at the upper end of the range, but no longer at the top. EDGAR 
CO2-FFI estimates are further well-aligned with emission inventories 
submitted by Annex I countries to the UNFCCC – even though some 
variation can occur for individual countries (Andrew 2020; Minx et al. 
2021). Differences in FFI-CO2 emissions across different versions of 
the EDGAR dataset are shown in Figure 2.SM.2.

Uncertainties in CO2-FFI emissions arise from the combination 
of uncertainty in activity data and uncertainties in emission 
factors including assumptions for combustion completeness and 
non-combustion uses. CO2-FFI emissions estimates are largely derived 
from energy consumption activity data, where data uncertainties are 
comparatively small due to well-established statistical monitoring 
systems, although there are larger uncertainties in some countries 
and time periods (Macknick 2011; Andres et  al. 2012; Ballantyne 
et  al. 2015; Janssens-Maenhout et  al. 2019; Andrew, 2020). Most 

Figure 2.SM.2 | Comparison of estimates from different versions of the EDGAR database for CO2 from fossil fuel combustion and industry. EDGAR v6.0 
FT2020 refers to the Chapter 2 emissions dataset, as documented in this supplementary material and in Minx et al. (2021).
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of the underlying uncertainties are systematic and related to 
underlying biases in the energy statistics and accounting methods 
used (Friedlingstein et  al. 2020). Uncertainties are lower for fuels 
with relatively uniform properties such as natural gas, oil or gasoline, 
and higher for fuels with more diverse properties, such as coal (IPCC 
2006; Blanco et al. 2014). Uncertainties in CO2 emissions estimates 
from industrial processes – that is, non-combustive oxidation of fossil 
fuels and decomposition of carbonates – are higher than for fossil 
fuel combustion. At the same time, products such as cement also take 
up carbon over their life cycle, which are often not fully considered in 
carbon balances (Xi et al. 2016; Sanjuán et al. 2020; Guo et al. 2021). 
However, recent versions of the global carbon budget include specific 
estimates for the cement carbonation sink and estimate average 
annual CO2 uptake at 0.70  GtCO2 for 2010–2019 (Friedlingstein 
et al. 2020).

Uncertainties for energy consumption data (and, therefore, CO2-FFI 
emissions) are generally higher for the first year of their publication 
when less data is available to constrain estimates. In the BP energy 
statistics, 70% of data points are adjusted by an average of 1.3% 
of a country’s total fossil fuel use in the subsequent year, with 
further more modest revisions later on (Hoesly and Smith 2018). 
Uncertainties are also higher for developing countries, where 

statistical reporting systems do not have the same level of maturity 
as in many industrialised countries (Gregg et al. 2008; Marland, 2008; 
Andres et al. 2012; Guan et al. 2012; Korsbakken et al. 2016; Janssens-
Maenhout et al. 2019; Friedlingstein et al. 2019, 2020; Andrew, 2020). 
However, these customary country groupings do not always predict 
the extent to which a country’s energy data has undergone historical 
revisions (Hoesly and Smith 2018). Uncertainties in CO2-FFI emissions 
before the 1970s are higher than for more recent estimates. Over the 
last two to three decades uncertainties have increased again because 
of increased fuel production and consumption in some developing 
countries with less rigorous statistics and more uncertain fuel 
properties (Marland et al. 2009; Ballantyne et al. 2015; Friedlingstein 
et al. 2020).

The global carbon project (Le Quéré et al. 2018; Friedlingstein et al. 
2019, 2020) assesses uncertainties in global anthropogenic CO2-FFI 
emissions estimates within one standard deviation (1σ) as ±5% 
(±10% at 2σ). This is broadly consistent with the ±8.4% uncertainty 
estimate for CDIAC (Andres et al. 2014) as well as the ±7 to ±9% 
uncertainty estimate for EDGARv4.3.2 and v5 (Janssens-Maenhout 
et al. 2019; Solazzo et al. 2021) at 2σ. It remains at the higher end 
of the ±5% to ±10% range provided by Ballantyne et  al. (2015). 
Consistent with the above uncertainty assessments, we present 

Figure 2.SM.3 | Dependencies of selected global energy and CO2 emissions datasets. Here a ‘primary’ emissions dataset is one that calculated emissions directly 
from energy data, rather than collating emissions estimates from other sources. In addition to energy data sources, some emissions datasets include emissions from carbonates, 
which rely on other data sources. Some national data are first collated by regional organisations. ‘UN stats’ is the United Nations Statistics Office (not UNFCCC). Source: 
Andrew (2020).
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uncertainties for global anthropogenic CO2 emissions at ±8% for 
a 90% confidence interval in line with IPCC AR5 (Blanco et al. 2014).

2.SM.2.2 Anthropogenic CO2 Emissions from Land use, 
Land-use Change and Forestry (CO2-LULUCF)

CO2-LULUCF emissions are drawn from three global bookkeeping 
models. For 1990–2019, average net CO2-LULUCF emissions are 
estimated at 6.1, 4.3, and 5.6  GtCO2 yr–1 for Bookkeeping of 
land-use emissions (BLUE), Houghton and Nassikas Bookkeeping 
Model (H&N), and an earth system compact model (OSCAR) 
(Friedlingstein et  al. 2020). Gross emissions 1990–2019 for BLUE, 
H&N, OSCAR are 17, 9.6 and 19 GtCO2 yr–1, while gross removals 
are 11, 5.3, 13  GtCO2 yr–1, respectively. For 1990–2019 maximum 
average differences are 9.1 and 7.8 GtCO2 yr–1 for gross emissions 
and removals, respectively (Friedlingstein et  al. 2020). Note that 
2016–2019 is extrapolated in H&N and 2019 in OSCAR based on 
the anomalies of the net flux for the gross fluxes. Differences in 
the models underlying this observed variability are reported in 
Table 2.SM.4. In the longer term, a consistent general upward trend 
since 1850 across models is reversed during the second part of 
the 20th century. Since the 1980s, however, differing trends across 
models are related to, among other things, different land-use forcings 
(Gasser et al. 2020). Further differences between BLUE and H&N can 
be traced in particular to: (i) differences in carbon densities between 
natural and managed vegetation, or between primary and secondary 
vegetation; (ii) a higher allocation of cleared and harvested material 
to fast turnover pools in BLUE compared to H&N; and (iii) to the 
inclusion sub-grid scale transitions (Bastos et al. 2021). 

Uncertainties in CO2-LULUCF emissions can be more comprehensively 
assessed through comparisons across a suite of dynamic global 
vegetation models (DGVM) (Friedlingstein et al. 2020). DGVM models 
are not included in the CO2-LULUCF mean estimate provided here, 
because the typical DGVM setup includes the loss of additional sink 
capacity. The loss of additional sink capacity arises because DGVMs 
isolate LULUCF emissions from natural fluxes caused by historical 
environmental changes by subtracting a counterfactual simulation 
without land-use change from one with land-use change (Pongratz 
et al. 2014). In particular, forests have increased their carbon density 
over time due to CO2 and other environmental effects beneficial 
for plant growth. The ‘additional sink capacity’ forests would have 
created at the unaltered pre-industrial extent is ‘lost’ through 
land-use change and included in the DGVM estimates of CO2-LULUCF, 
but excluded in bookkeeping estimates that disregard changes in 
carbon densities in response to environmental changes. The loss of 
additional sink capacity makes up about 40% of the DGVM estimate 
in recent years (Obermeier et al. 2021). 

Nonetheless, a CO2-LULUCF estimate from the DGVM multi-model 
mean remains consistent with the average estimate from the 
bookkeeping models, as shown in Figure  2.SM.1. Variation across 
DGVMs is large with a standard deviation at around 1.8 GtCO2 yr–1, 
but is still smaller than the average difference between bookkeeping 
models at 2.6  GtCO2 yr–1 as well as the current estimate of H&N 
(Houghton and Nassikas 2017) and its previous model versions 
(Houghton et  al. 2012). DGVMs differ in methodology, input data 
and how comprehensively they represent land-use-related processes. 
In particular land management, such as crop harvesting, tillage, or 
grazing (all implicitly included in observation-based carbon densities 
of bookkeeping models) can alter CO2 flux estimates substantially, 
but are included to varying extents in DGVMs, thus increasing model 

Table 2.SM.3 | System boundaries and other key features of global FFI-CO2 emissions datasets. Comparison of some important general characteristics of nine 
emissions datasets, with green indicating a characteristic that might be considered a strength. Columns four to six refer to CO2 emission estimates for industrial processes and 
product use. Since all datasets are under development, these details are subject to change. Based on Andrew (2020). Source: Minx et al. (2021).

Primary 
source

Uses IPCC 
emission 
factors

Includes 
venting & 

flaring

Includes 
cement

Includes 
other 

carbonates

Non-fuel 
use based 

on:

Reports 
bunkers 

separately

By fuel 
type

By sector
Includes 
official 

estimates

CDIAC yes no yes yes no
national 

data
yes yes no no

BP yes yes no no no
national 

data
no no no no

IEA yes yes no no no
national 

data
yes yes yes no

EDGAR yes yes yes yes yes
national 

data
yes no yes no

EIA yes no yes no no US data no yes No no

GCP partial no yes yes partial
national 

data
yes yes no yes

CEDS mostly no yes yes yes
national 

data
yes yes yes yes

PRIMAP- 
hist

no no yes yes yes
national 

data
yes no yes yes

UNFCCC CRFs yes partial yes yes yes
national 

data
yes yes yes yes
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spread (Arneth et al. 2017). For all types of models, land-use forcing 
is a major determinant of emissions and removals, and its high 
uncertainty impacts CO2-LULUCF estimates (Bastos et al. 2021). The 
reconstruction of land-use change of the historical past, which has 
to cover decades to centuries of legacy LULUCF fluxes, is based on 
sparse data or proxies (Goldewijk et al. 2017; Hurtt et al. 2020), while 
satellite-based products suffer from complications in distinguishing 
natural from anthropogenic drivers (Hansen et  al. 2013; Li et  al. 
2018) or accounting for small-scale disturbances and degradation 
(Matricardi et  al. 2020). Lastly, regional carbon budgets can be 
substantially over- or under-estimated when the carbon embodied in 
trade products is not accounted for (Ciais et al. 2021).

Friedlingstein et  al. (2020) is taken as the reference point for 
our uncertainty assessment. The Global Carbon Budget provides 
a best-value judgement for the ±1σ absolute uncertainty range of 
CO2-LULUCF emissions at ±2.6  GtCO2 yr–1, constant over the last 
decades. This constant, absolute uncertainty estimate corresponds 
roughly to a relative uncertainty of about ±50% over 1970–2019, 
which is much higher than for most fossil-fuel related emissions, but 
reflects the large model spread and large differences between the 
current estimate of H&N and its previous model versions (Houghton 
et al. 2012). This corresponds to a relative uncertainty of about ±80% 
for a 90% confidence interval (5th–95th percentile). However, here 
we opt for a slightly lower relative uncertainty estimate of about 
±70% for a 90% confidence interval, given that the mean of the 
CO2-LULUCF estimates has been increasing over the last few decades. 
This provides absolute uncertainty estimates that are consistent in 
magnitude with the constant value in Friedlingstein et  al. (2020) 
over time – slightly lower for earlier years and slightly higher for the 
most recent years. Compared to AR5 this is larger than the ±50% 
uncertainty estimate applied in the assessment, but still in line with 
the upper end of the broader relative uncertainty range considered 
of ±50% to ±75% (Blanco et al. 2014). Finally note that much larger 
uncertainties in CO2-LULUCF emissions have been identified across 
the literature, but were traced back to different definitions used 

in various modelling frameworks (Pongratz et  al. 2014) as well as 
inventory data (Grassi et al. 2018).

Uncertainties can be much higher at a national level than at global 
level, since regional biases tend to cancel out. Land-use forcing has 
been identified as major driver of differences at regional and global 
level (Gasser et  al. 2020; Hartung et  al. 2021; Rosan et  al. 2021), 
as have assumptions on carbon densities and the allocation of 
cleared or harvested material to slash or product pools of various 
lifetimes, for which accurate global data over long time periods is 
missing (Bastos et al. 2021). Although the bookkeeping models are 
conceptually similar, the bookkeeping estimates include country-
specific information to different extents: for example, fire suppression 
(for the USA) is included in H&N (Houghton and Nassikas 2017), but 
not the other estimates. H&N includes peat drainage emissions only 
for Southeast Asia, while the FAO emissions estimates for organic soil 
drainage added to BLUE and OSCAR cover all countries (Friedlingstein 
et al. 2020). The effect of smoothing the FAO cropland and pasture 
information, which can be very variable in some countries, with 
a five-year running mean in H&N, while the annual data is used for 
the recent decades in History database of the Global Environment 
(HYDE) underlying BLUE and OSCAR, must also be expected to 
contribute to the spread in estimates on a country level. Overall, 
great care has to be taken when comparing estimates of individual 
countries across models so as not to over-interpret differences.

Finally, note that attempts to constrain the estimates of CO2-LULUCF 
emissions from bookkeeping models and DGVMs by observed 
biomass densities have been undertaken, but were successful only in 
some non-tropical regions (Li et al. 2017). While providing valuable 
independent and observation-driven information, remote-sensing 
derived estimates of carbon stock changes have limited applicability 
for model evaluation for the total CO2-LULUCF flux, since they 
usually only quantify vegetation biomass changes and exclude legacy 
emissions from the pre-satellite era. Further, with the exception 
of the (pan-tropical) estimates by Baccini et  al. (2012) they either 
track committed instead of actual emissions (Tyukavina et al. 2015), 

Table 2.SM.4 | Key differences between global bookkeeping estimates for CO2-LULUCF emissions. 

Bookkeeping model

BLUEa H&Nb OSCARc

Geographical scale of computation 0.25 degree gridscale Country 10 regions and 5 biomes

Carbon densities of soil and vegetation Literature-based Based on country reporting calibrated to DGVMs

Land-use forcing LUH2d,e FAOf LUH2 and FAOd,e,f

Representation of processes (indicative effect on AFOLU CO2 emissions)

Sub-grid scale (‘gross’) land-use transitions yes (↑) no (↓) yes (↑)

Pasture conversion
From all natural vegetation types 
proportionally (↑)

From grasslands first (↓)
From all natural vegetation types 
proportionally (↑)

Distinction rangeland vs pasture yes (↓) no (↑) no (↑)

Coverage peat drainage (as in Global Carbon 
Budget 2020)

World (↑)g South East Asia (↓)h World (↑)g

Notes: DGVM – dynamic global vegetation model; LUH2 and FAO refer to land-use forcing datasets; arrows indicate tendency of process to increase or decrease emissions 
compared to the other estimates’ choice. Source: Minx et al. (2021).
Literature: a Hansis et al. (2015); b Houghton and Nassikas (2017); c Gasser et al. (2020); d Hurtt et al. (2020); e Chini et al. (2021); f FAO (2015); g based on rangeland-pasture 
distinction of the HYDE dataset (Goldewijk et al. 2017) and forest cover map of Hurtt et al. (2020); see Friedlingstein et al. (2020) for details; h Conchedda and Tubiello, (2020); 
i Hooijer et al. (2010).
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combine a static carbon density map with forest cover changes, or 
include the natural land sink (e.g., Baccini et al. 2017) to infer fluxes 
directly from the carbon stock time series. None of these approaches 
therefore fully distinguishes natural from anthropogenic disturbances 
for actual emissions as the CO2-LULUCF emissions estimate provided 
here do, based on bookkeeping models and DGVMs, such that 
a direct evaluation is hampered.

2.SM.2.3 Anthropogenic CH4 Emissions

About 60% of total global methane emissions come from 
anthropogenic sources – that is, they are caused by direct human 
activities since pre-industrial times/pre-agricultural times (Saunois 
et al. 2020). Some studies suggest larger anthropogenic fossil emissions 
than currently estimated (e.g., Hmiel et  al. 2020). Anthropogenic 
methane emissions cover a range of different sectors: livestock 
(enteric fermentation and manure management, rice cultivation, 
fossil fuel production, distribution and use, waste handling (solid and 
water waste) as well as biomass and biofuel burning. About 90% of 
biomass burning events are thought to be triggered by human action 
(Andreae 1991); as biomass burning contributes less than 5% to 
anthropogenic methane emissions, the misallocations of natural fires 
is likely lower than the overall uncertainty. Methane emissions can be 
derived either using bottom-up estimates that rely on anthropogenic 
inventories such as EDGAR (Janssens-Maenhout et  al. 2019), land 
surface models that infer part of natural emissions (Wania et  al. 
2013) or flux observation-based estimates for some specific sources 
such as geological sources (Etiope et  al. 2019). Alternatively, top-
down approaches can be used, such as atmospheric transport models 
that assimilate methane atmospheric observations to estimate past 
methane emissions (Houweling et  al. 2017). These techniques are 
applied to infer emissions for a specific facility, sector, region or other 
aggregation, based on in-situ or satellite-based observations. Satellite 
observations have greatly improved the coverage of available data to 

better constrain top-down approaches. Local or regional studies have 
proved important as independent estimate of inventories while being 
spared of the chemical sink uncertainty (Maasakkers et  al. 2021). 
Some top-down systems aim to optimise certain emission sectors 
based on differences in their spatial and temporal distributions 
(Bergamaschi et al. 2013), while others only solve for net emissions 
at the surface. Then the partitioning of top-down posterior (output) 
fluxes between specific source sectors is carried out with various 
degrees of uncertainty, depending of the methods and the degree 
of refinement of sectors, but often rely on ratios from the prior 
knowledge of fluxes. Comprehensive assessments of methane 
sources and sinks have been provided by Saunois et al. (2016, 2020) 
and Kirschke et al. (2013).

EDGAR (Crippa et  al. 2019, 2021; Janssens-Maenhout et  al. 2019) 
is one of multiple global methane bottom-up inventories available. 
Other inventories – namely GAINS (Höglund-Isaksson 2012; Höglund-
Isaksson et al. 2020), US-EPA (EPA 2011, 2021), CEDS (Hoesly et al. 
2018; McDuffie et  al. 2020; O’Rourke et  al. 2020), PRIMAP-hist 
(Gütschow et  al. 2016, 2021b) as well as FAOSTAT-CH4 (Tubiello 
2013, 2018, 2019; Federici et al. 2015) – can differ in terms of their 
country and sector coverage as well as detail. EDGAR, CEDS, US-EPA 
and GAINS cover all major source sectors (fossil fuels, agriculture and 
waste, biofuel) – except large-scale biomass burning – but this can 
be added from different databases such as FINN (Wiedinmyer et al. 
2011), GFAS (Kaiser et al. 2012), GFED (Giglio et al. 2013) or QFED 
(Darmenov and da Silva 2013). Much like CO2-FFI, these inventories 
of anthropogenic emissions are not completely independent as they 
either follow the same IPCC methodology to derive emissions, rely 
on similar data sources (e.g., FAOSTAT activity data for agriculture, 
reported fossil fuel production), or draw on reported country 
inventory data (Petrescu et al. 2020a). However, they may differ in the 
assumptions and data used for the calculation, and in the choice of 
IPCC Tier levels for the methodology (Box 2.SM.1). For example, while 
the US-EPA inventory uses the reported emissions by the countries 

Figure 2.SM.4 | Comparison of estimates from different versions of the EDGAR database for anthropogenic CH4 emissions. 
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to UNFCCC, other inventories produce their own estimates using 
a consistent approach for all countries, and country-specific activity 
data, emission factor and technological abatement when available. 
FAOSTAT and EDGAR mostly apply a Tier 1 approach to estimate CH4 
emissions while GAINS uses a Tier 2 approach (Box 2.SM.1). CEDS is 
based on pre-existing emission estimates from FAOSTAT and EDGAR, 
which are then scaled to match country-specific inventories, largely 
those reported to UNFCCC.

Global anthropogenic CH4 emission estimates are compared in 
Figure 2.SM.4. EDGARv5.0 has revised total global CH4 emissions by 
about 10 MtCH4 yr–1 compared to the previous version due to a higher 
estimate for the waste sector (Figure 2.SM.1). Subsequent revisions 
of the estimation methodology in EDGARv6 in alignment with the 
IPCC guidelines refinement (IPCC 2019) lead to very substantial 
differences in total CH4 emissions that are up to 50 MtCH4yr–1 lower 
before the 1990s compared to previous versions, but differences are 
smaller ranging from 1–13 MtCH4 yr–1 since the 2000s (Figure 2.SM.1). 
The cause of these differences is a new procedure to separately 

estimate the venting component for gas and oil in the venting and 
flaring sector (1B2a/b2). Differences across different versions of the 
EDGAR dataset are shown in Figure 2.SM.4. US-EPA show the lowest 
estimates, probably due to missing estimates from a significant 
number of countries not reporting to UNFCCC (US-EPA 2020 includes 
estimates from only 195 countries) and incomplete sectoral coverage. 
EDGARv6 estimates of anthropogenic CH4 emissions, as used here, 
are in the upper range of the different inventories across most 
anthropogenic sources. However, none of these inventories cover CH4 
emissions from forest and grassland burning, which amount to about 
10–12 Mt yr–1 globally.

Saunois et  al. (2020) provide estimates of CH4 sources and sinks 
based on bottom-up and top-down approaches associated with 
an uncertainty range based on the minimum and maximum values 
of available studies (because for many individual source and sink 
estimates the number of studies is often relatively small). Thus, they 
do not consider the uncertainty of the individual estimates. As shown 
in Table 2.SM.5, uncertainties in total global CH4 emissions across 

Table 2.SM.5 | Uncertainties estimated for CH4 sources at the global scale: based on ensembles of bottom-up (BU) and top-down (TD) estimates, national 
reports and specific uncertainty assessments of EDGAR. Note: this table is not intended to be exhaustive, but provides uncertainty estimates from some of the key 
literature based on different methodological approaches. Source: Minx et al. (2021).

Estimated 
uncertainty 

in USA 
inventoriesa

Janssens-Maenhout 
et al. (2019) 

EDGARv4.3.2 
uncertainty at 2σ 

Solazzo et al. (2021) 
EDGARv5 uncertainty 

at 2σ

Global 
inventories 
uncertainty 

rangeb

Saunois et al. 
(2020) BU 

uncertainty 
rangec

Saunois et al. 
(2020) TD 

uncertainty 
rangec

Total global 
anthropogenic sources 
(incl. biomass burning)

±6% ±6%

Total global 
anthropogenic sources 
(excl. biomass burning)

±47% –33% to +46% ±8% ±5%

Agriculture 
and waste

±8% ±8%

Rice ±60% 31–38% ±22% ±20%

Enteric fermentation ±10% to 20% ±5% ±8%

Manure management
±20% and up to 
±65%

Landfill and waste
±10% but likely 
much larger

±91% 78–79% ±17%  ±7%

Fossil fuel production 
and use

±20% ±25%

Coal –15% to +20% ±75% 65% 60–74% ±40% ±28%

Oil and gas –20% to +150% 93% ±19% ±15%

Other ±100% ±100% ±64% ±130%*

Biomass and biofuel 
burning

±25% ±25%

Biomass burning ±35%

Biofuel burning Included in ‘Other’ 147% ±24% ±17%

Notes: a Based on NASEM (2018); b Uncertainty calculated as (min-max)/2)/mean*100 from the estimates of year 2017 of the six inventories plotted in Figure 2.SM.1. This 
does not consider uncertainty on each individual estimate; c Uncertainty calculated as (min-max)/2)/mean*100 from individual estimates for the 2008–2017 decade. This does 
not consider uncertainty on each individual estimate, which is probably larger than the range presented here. d Based on EDGARv432 for year 2010 (Janssens-Maenhout et al. 
2019); e Based on Solazzo et al. (2021).
* Mainly due to difficulties in attributing emissions to small specific emission sector.



Emissions Trends and Drivers Chapter 2 Supplementary Material

2SM

2SM-17

all anthropogenic and natural sources are comparatively small at 
±6% – a range larger than errors in transport models only (Locatelli 
et al. 2015). However, this uncertainty on total emissions is probably 
underestimated as the uncertainty in the chemical sink was not 
fully considered in the top-down estimates in Saunois et al. (2020). 
About 90% of the chemical sink of methane is due to the oxidation 
by the hydroxyl radical (OH). Uncertainty on the global burden of 
OH is about ±5%, much lower than uncertainties derived from 
detailed analysis using EDGAR data by Janssens-Maenhout (2019) 
and Solazzo et  al. (2021), reaching around ±45% at 2σ. Saunois 
et al. (2020) reported uncertainty of 10–15%, which translates to an 
uncertainty of about ±10% to ±30% depending on the category, with 
larger uncertainty in the fossil fuel sectors than in the agriculture and 
waste sector (Saunois et al. 2020). However, these uncertainties are 
also underestimated as they do not consider the uncertainty in each 
individual estimate, which includes potential uncertainties in activity 
data, emission factors, and equations used to estimate emissions.

Uncertainties in EDGAR CH4 emissions using a Tier 1 approach are 
estimated at –33% to +46% at 2σ, but there is great variability 
across individual sectors ranging from ±30% (agriculture) to more 
than ±100% (fuel combustion), with high uncertainties in oil and 
gas sector (±93%) and coal fugitive emissions (±65%) (Solazzo et al. 
2021). As an example of developed country with well-established 
emissions reporting, US methane emissions also report large 
uncertainties depending on the sector (NASEM 2018); although the 
activity data uncertainty may be lower than those for less-developed 
countries. For example, global inventories, such as EDGAR, estimate 
uncertainties in national anthropogenic emissions of about ± 32% 
for the 24 member countries of OECD, and up to ±57% for other 
countries, which have more uncertain activity data (Janssens-
Maenhout et al. 2019). 

The 2020 UN emissions gap report (UNEP 2020) gives an uncertainty 
range for global anthropogenic CH4 emissions with one standard 

deviation of ±30% (i.e., ±60% for 2σ). On the other hand, IPCC AR5 
provides a comparatively low estimate at ±20% for a 90% confidence 
interval. Overall, we apply a best value judgement of ±30% for global 
anthropogenic CH4 emissions for a 90% confidence interval. This is 
justified by the larger uncertainties reported in studies on the EDGAR 
dataset (Janssens-Maenhout et al. 2019; Solazzo et al. 2021) as well 
as for FAO activity statistics by Tubiello et al. (2015).

2.SM.2.4 Anthropogenic N2O Emissions

Anthropogenic nitrous oxide (N2O) emissions occur in a number 
of sectors, namely agriculture, fossil fuel and industry, biomass 
burning, and waste. The emissions from the agriculture sector have 
four components: (i) direct and indirect emissions from soil and 
water bodies (inland, coastal, and oceanic waters); (ii) manure left 
on pasture; (iii) manure management; and (iv) aquaculture. Besides 
these main sectors, a final ‘other’ category represents the sum of 
the effects of climate, elevated atmospheric CO2, and land cover 
change. This is a new sector that was developed as part of the global 
N2O budget (Tian et al. 2020) – a recent assessment to quantify all 
sources and sinks of N2O emissions updating previous work (Mosier 
et al. 1998; Kroeze et al. 1999; Mosier and Kroeze, 2000; Syakila and 
Kroeze, 2011). Estimates from the global N2O budget are referred 
to as GCP-N2O since the assessment was facilitated by the Global 
Carbon Project (GCP). Overall, anthropogenic sources contributed 
just over 40% to total global N2O emissions (Tian et al. 2020).

There are a variety of approaches for estimating N2O emissions. 
These include inventories (Tubiello et  al. 2013; Tian et  al. 2018; 
Janssens-Maenhout et  al. 2019), statistical extrapolations of flux 
measurements (Wang et  al. 2020a), and process-based land and 
ocean modelling (Tian et al. 2019; Yang et al. 2020). There are at least 
five relevant global N2O emissions inventories available: EDGAR 
( Crippa et al. 2019, 2021; Janssens-Maenhout et al. 2019), GAINS 

Figure 2.SM.5 | Comparison of estimates from different versions of the EDGAR database for anthropogenic N2O emissions. 
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(Winiwarter et al. 2018), FAOSTAT-N2O (Tubiello et al. 2013; Tubiello 
2018), CEDS (Hoesly et al. 2018; McDuffie et al. 2020; O’Rourke et al. 
2020), PRIMAP-hist (Gütschow et al. 2016, 2021b), and GFED (van 
der Werf et  al. 2017). While EDGAR and GAINS cover all sectors 
except biomass burning, FAOSTAT-N2O is focused on agriculture and 
biomass burning and GFED on biomass burning only. As shown in 
Figure  2.SM.1, EDGAR, GAINS, CEDS and FAOSTAT emissions are 
consistent in magnitude and trend. Recent revisions in estimating 
indirect N2O emissions in EDGARv6 led to an average increase of 
1.5% yr–1 in total N2O emissions estimates between 1999 and 2018 
compared to the two previous versions (differences before 1999 were 
negligible at less than 1% yr–1). Differences across versions of the 
EDGAR dataset are shown in Figure 2.SM.5. The main discrepancies 
across different global inventories are in agriculture, where emissions 
estimates from the global N2O budget and FAOSTAT are, on average, 
1.5  MtN2O yr–1 higher than those from GAINS and EDGAR during 
1990–2016. This is due to higher estimates of direct emissions from 
fertilised soils and manure left on pasture. GCP-N2O provides the 
largest estimate (Figure  2.SM.1), because it synthesised from the 
other three inventories and further informed by additional bottom-
up modelling estimates – and is more comprehensive in scope due to 
the new sector discussed above. EDGAR estimates of anthropogenic 
N2O emissions as used in this dataset should therefore be considered 
as lower bound estimates (see also Table 2.SM.6).

Anthropogenic N2O emissions estimates are subject to considerable 
uncertainty – larger than those from FFI-CO2 or CH4 emissions. N2O 
inventories suffer from high uncertainty on input data, including 
fertiliser use, livestock manure availability, storage and applications 
(Galloway et al. 2010; Steinfeld et al. 2010) as well as nutrient, crops 
and soils management (Ciais et  al. 2014; Shcherbak et  al. 2014). 
Emission factors are also uncertain (Crutzen et  al. 2008; Hu et  al. 
2012; IPCC 2019; Yuan et al. 2019) and several sources are not yet 
well understood (e.g., peatland degradation, permafrost) (Elberling 
et al. 2010; Wagner-Riddle et al. 2017; Winiwarter et al. 2018). Model-
based estimates face uncertainties associated with the specific model 
configuration as well as parametrisation (Buitenhuis et  al. 2018; 
Tian et al. 2018, 2019). Total uncertainty is also large, because N2O 
emissions are dominated by emissions from soils, where the level of 
process understanding is rapidly changing. 

For EDGAR, uncertainties in N2O emissions are estimated based on 
default values (IPCC 2006) at ±42% for 24 OECD90 countries and at 
±93% for other countries for a 95% confidence interval (Janssens-
Maenhout et  al. 2019). However, Solazzo et  al. (2021) arrive at 
substantially larger values allowing for correlation of uncertainties 
between sectors, countries and regions. At a sector level, uncertainties 
are larger for agriculture (263%) than for energy (113%), waste 
(181%), industrial processes and product use (14%) and other 
(112%). In the recent Emissions Gap Report (UNEP 2020) relative 
uncertainties for global anthropogenic N2O emissions are estimated 
at ±50% for a 68% (1σ) confidence interval. This is larger than the 
±60% uncertainties reported in IPCC AR5 for a 90% confidence 
interval (Blanco et al. 2014), but is comparable with the ranges for 
anthropogenic emissions in the global N2O budget (Tian et al. 2020). 
Overall, we assess the relative uncertainty for global anthropogenic 
N2O emissions at ±60% for a 90% confidence interval.

2.SM.2.5 Fluorinated Gases

Fluorinated gases comprise over a dozen different species that 
are primarily used as refrigerants, solvents and aerosols. Here we 
compare global emissions of F-gases estimated in EDGAR to top-
down estimates from the 2018 World Meteorological Organization’s 
(WMO) Scientific Assessment of Ozone Depletion (Engel and Rigby 
2018; Montzka and Velders 2018). The top-down estimates were 
based on measurements by the Advanced Global Atmospheric 
Gases Experiment (AGAGE) (Prinn et al. 2018) and National Oceanic 
and Atmospheric Administration (NOAA) (Montzka et  al. 2015), 
assimilated into a global box model – using the method described in 
Rigby et al. (2014) and Engel and Rigby, et al. (2018). Uncertainties 
in  the top-down estimates are due to measurement and transport 
model uncertainty. As F-gas emissions are almost entirely 
anthropogenic in nature, top-down estimates of anthropogenic 
fluxes are much better known than CO2, CH4, N2O, where large 
natural fluxes contribute to the observed trends. For substances 
with relatively short lifetimes (~50 years or less), uncertainties are 
typically dominated by uncertainties in the atmospheric lifetimes. 
Comparisons between the EDGAR and WMO 2018 estimates were 
available for HFCs 125, 134a, 143a, 152a, 227ea, 23, 236fa, 245fa, 
32, 365mfc and 43-10-mee, PFCs CF4, C2F6, C3F8 and c-C4F8, SF6 and 

Table 2.SM.6 | Comparison of four global N2O inventories: EDGAR (Crippa et al. 2019; Janssens-Maenhout et al. 2019); GCP (Tian et al. 2020); GAINS 
(Winiwarter et al. 2018; Höglund-Isaksson et al. 2020); FAOSTAT (Tubiello et al. 2013; Tubiello 2018). Source: Minx et al. (2021).

Reported emissions in 2015 (in MtN2O)

Name
Time 

coverage
Geographical 

coverage
Activity split

IPCC
Emissions 

factors
Agriculture

Fossil 
fuel and 
industry

Biomass 
burning

Waste 
and 

waste 
sector

Other Total

EDGAR 1970–2018
Global,  
226 countries

4 main sectors, 
24 sub-sectors

Yes 6.2 2.3 0.05 0.4 – 8.9

GCP 1980–2016
Global,  
10 regions

5 main sectors, 
14 sub-sectors

No 8.4 1.6 1.1 0.6 0.3 11.9

GAINS
1990–2015 
(every 5 years)

Global,  
172 regions

3 main sectors, 
16 sub-sectors

No 6.8 1.3 – 0.7 – 8.8

FAOSTAT 1961–2019
Global,  
231 countries

2 main sectors, 
9 sub-sectors

Yes 8.3 – 0.9 – – 9.2
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NF3 (EDGARv6 only). For the higher molecular weight PFCs (C4F10, 
C5F12, C6F14, C7F16), top-down estimates were not available in WMO 
(2018). Top-down estimates have previously been published for these 
compounds (Ivy et al. 2012), however, this comparison is not included 
here due to their very low emissions. For a small number of species, 

global top-down estimates are available for some years, based on 
an atmospheric model independent to that used in WMO (2018), 
although most of these inversions use similar measurement datasets: 
Fortems-Cheiney et  al. (2015) for HFC-134a; Lunt et  al. (2015) for 

Figure 2.SM.6 | Comparison of top-down and bottom-up estimates for individual species of fluorinated gases in Olivier and Peters (2020) (EDGARv5FT) 
and EDGARv6 for 1980–2016. C4F10, C5F12, C6F14 and C7F16 are excluded. Top-down estimates from WMO 2018 (Engel and Rigby 2018; Montzka and Velders 2018) are 
shown as blue lines with blue shading indicating 1σ uncertainties. Bottom-up estimates from EDGARv5 and v6 (the emissions data used in Chapter 2) are shown in red dotted 
lines and purple dashed lines, respectively. Top-down estimates for some species are shown from Rigby et al. (2010), Fortems-Cheiney et al. (2015) and Lunt et al. (2015). 
Source: Minx et al. (2021).
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HFC-134a; and –125, –152a, –143a and –32 and Rigby et al. (2010) 
for SF6.

The comparison of global top-down and bottom-up emissions for 
EDGARv6 and Olivier and Peters (2020) (EDGARv5FT) F-gas species 
(excluding heavy PFCs) is shown in Figure  2.SM.6 for the years 
1980–2016 (or a subset thereof, depending on the availability of 
the top-down estimates). Where available, the various top-down 
estimates agree with each other within uncertainties. The magnitude 
of the difference between the WMO (2018) and EDGAR estimates 
varies markedly between species, years and versions of EDGAR; for 
several HFCs, the top-down and bottom-up estimates often agree 
within uncertainties for EDGARv6 (but much less often in v5), whereas 
for c-C4F8, the top-down estimate is more than 100 times the EDGAR 
estimates. Some similarities and differences have been previously 
noted for earlier versions of EDGAR (Mühle et al. 2010, 2019; Rigby 
et al. 2010; Lunt et al. 2015). For SF6, the relatively close agreement 
between EDGARv4.0 and a top-down estimate has been discussed 
in Rigby, et al. (2010). They estimated uncertainties in EDGARv4.0 of 
±10% to ±15%, depending on the year, and top-down values were 
consistent within these uncertainties. However, the agreement is now 
poorer during the 1980s in EDGARv6. For some PFCs (e.g., CF4, C2F6), 
it was previously noted that some assumptions within EDGARv4.0 
had been validated against atmospheric observations, hence 
EDGAR might be considered a hybrid of top-down and bottom-up 

methodologies for these species (Mühle et al. 2010). However, it is 
unclear for which other species similar validation has taken place, or 
how these assumptions vary between versions of EDGAR. 

When species are aggregated into F-gas total emissions, weighted by 
their current 100-year GWPs based on IPCC AR6 (Forster et al. 2021), 
we note that, in the left panel of Figure 2.SM.7, the Olivier and Peters 
(2020) (EDGARv5FT) estimates are around 10% lower than the WMO 
2018 values in the 1980s. Subsequently, EDGARv5FT estimates grow 
more rapidly than the top-down values and are almost 30% higher 
than WMO 2018 by the 2010s. EDGARv6 emissions are around 10% 
lower than the WMO 2018 values throughout. Given that detailed 
uncertainty estimates are not available for all EDGAR F-gas species, 
we base our uncertainty estimate solely on this comparison with the 
top-down values (Figure 2.SM.7, left panel), and therefore suggest 
a conservative uncertainty in aggregated F-gas emissions of ±30% 
for a 90% confidence interval. For individual species, the magnitude 
of this discrepancy can be orders of magnitude larger.

The F-gases in EDGAR exclude species such as chlorofluorocarbons 
(CFCs) and hydrochlorofluorocarbons (HCFCs), which are groups of 
substances regulated under the Montreal Protocol. Historically, total 
CO2-eq F-gas emissions have been dominated by the CFCs (Engel and 
Rigby 2018). In particular, during the 1980s, peak annual emissions due 
to CFCs reached 9.1 ± 0.4 GtCO2-eq yr–1 (Figure 2.SM.7), comparable 

1980 1990 2000 2010

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1980 1990 2000 2010

0

1

2

3

4

5

6

7

8

9

HFCs + PFCs + SF6 (+NF3)

 

HFCs + PFCs + SF6 (EDGAR v5FT; Olivier and Peters, 2020)

 HFCs + PFCs + SF6 + NF3  (WMO, 2018) HCFC-22, -141b, -142b (WMO, 2018)

CFC-11, -12, -113 (WMO, 2018)

 
CO

2-e
qu

iv
al

en
t e

m
is

si
on

s 
(G

t y
r–

1 )

HFCs + PFCs + SF6 (+NF3)   CFCs + HCFCs

Figure 2.SM.7 | Comparison between top-down estimates and bottom-up EDGAR inventory data on GHG emissions for 1980–2016. Left panel: Total 
GWP100-weighted emissions based on IPCC AR6 (Forster et al. 2021) of F-gases in Olivier and Peters (2020) (EDGARv5FT) (red dashed line, excluding C4F10, C5F12, C6F14 and 
C7F16) and EDGARv6 (purple dashed line) (Crippa et al. 2021) compared to top-down estimates based on AGAGE and NOAA data from WMO (2018) (blue lines; Engel and 
Rigby (2018); Montzka and Velders (2018)). Right panel: Top-down aggregated emissions for the three most abundant CFCs (–11, –12 and –113) and HCFCs (–22, –141b, 
–142b) not covered in bottom-up emissions inventories are shown in green and orange. For top-down estimates the shaded areas between two respective lines represent 1σ 
uncertainties. Source: Minx et al. (2021).
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to that of CH4, and substantially larger than the 2019 emissions of the 
gases included in EDGARv5FT and v6 (1.4 GtCO2-eq). Subsequently, 
following the controls of the Montreal Protocol, emissions of CFCs 
declined substantially, while those of HCFCs and HFCs rose, such that 
CO2-eq emissions of the HFCs, HCFCs and CFCs were approximately 
equal by 2016, with a smaller contribution from PFCs, SF6, NF3 and 
some more minor F-gases. Therefore, the GWP-weighted F-gas 
emissions in EDGAR, which are dominated by the HFCs, represent 
less than half of the overall CO2-eq F-gas emissions in 2016.

2.SM.2.6 Aggregated GHG Emissions

Based on the assessment of relevant uncertainties above, constant, 
relative uncertainty estimates for GHGs are applied at a 90% 
confidence interval that range from relatively low for CO2 FFI 
(±8%), to intermediate values for CH4 and F-gases (±30%), to 
higher values for N2O (±60%) and CO2 from LULUCF (±70%). To 
aggregate these and estimate uncertainties for total GHGs in terms 
of CO2-eq emissions, the square root of the squared sums of absolute 
uncertainties for individual (groups of) gases are taken, using 100-
year global warming potentials (GWP100) with values from IPCC AR6 
(Forster et al. 2021, Section 7.6 and Supplementary Material 7.SM.6) 
to weight emissions of non-CO2 gases but excluding uncertainties in 
the metric itself. An estimate of this ‘metric uncertainty’ is provided 
in the next section. Overall, this uncertainty assessment is broadly 
in line with IPCC AR5 (Blanco et al. 2014), but provides important 
adjustments in the evaluation of uncertainties of individual gases 
(CH4, F-gases, CO2-LULUCF) as well as the approach in reporting total 
uncertainties across GHGs. 

2.SM.2.7 Uncertainties of GHG Emission Metrics Used 
to Report Aggregated Emissions

GHG emission metrics are necessary if emissions of non-CO2 gases 
and CO2 are to be aggregated into CO2-eq emissions (Section 2.3). 
GWP100 is the most common metric and has been adopted for 
emissions reporting under the transparency framework for the Paris 
Agreement (UNFCCC 2019), but many alternative metrics exist in the 
scientific literature. The most appropriate choice of metric depends 
on the climate policy objective and the specific use of the metric to 
support that objective (i.e., why do we want to aggregate or compare 
emissions of different gases? What specific actions do we wish 
to inform?).

Different metric choices and time horizons can result in very different 
weightings of the emissions of short-lived climate forcers (SLCFs), 
such as CH4. For example, 1t CH4 represents as much as 81 tCO2-eq 
if a global warming potential (GWP) is used with a time horizon of 
20 years, or as little as 5.4t CO2-eq if the global temperature change 
potential (GTP) is used with a time horizon of 100 years (Forster et al. 
2021a). More recent metric developments that compare emissions 
in new ways – e.g., the additional warming from sustained changes 
in SLCF emissions compared to pulse emissions of CO2 – increase 
the range of metric values further and can even result in negative 

metric values for SLCFs, if their emissions are falling rapidly (Allen 
et al. 2018; Cain et al. 2019; Collins et al. 2019; Lynch et al. 2020).

The contribution of SLCF emissions to total GHG emissions expressed 
in CO2-eq thus depends critically on the choice of GHG metric and its 
time horizon. However, even for a given choice, the metric value for 
each gas is also subject to uncertainties. For example, the GWP100 
for biogenic CH4 has changed from 21 based on the IPCC Second 
Assessment Report (SAR) in 1995 to 28 or 34 based on IPCC AR5 
(excluding or including climate-carbon cycle feedbacks), and to 27 
based on IPCC AR6. These changes and remaining uncertainties 
arise from parametric uncertainties, differences in methodological 
choices, and changes in metric values over time due to changing 
background conditions.

Parametric uncertainties arise from uncertainties in climate sensitivity, 
radiative efficacy and atmospheric lifetimes of CO2 and non-CO2 
gases, etc. The WGI contribution to AR6 assessed the parametric 
uncertainty of GWP for CH4 as ±32% and ±40% for time horizons 
of 20 and 100 years, ±43% and ±47% for N2O, and ±26–31 and 
±33–38% for various F-gases (Forster et al. 2021). The uncertainty 
of GTP100 for CH4 was estimated at ±83%, which is larger than the 
uncertainty in a forcing-based metric due to uncertainties in climate 
responses to forcing (e.g., transient climate sensitivity). 

Methodological choices introduce a different type of uncertainty, 
namely which indirect effects are included in the calculation of metric 
values and the strength of those feedbacks. For CH4, indirect forcing 
caused by photochemical decay products (mainly tropospheric ozone 
and stratospheric water vapour) contributes almost 40% of the total 
forcing from CH4 emissions. More than half of the changes in GWP100 
values for CH4 in successive IPCC assessments from 1995 to 2013 are 
due to re-evaluations of these indirect forcings. In addition, warming 
due to the emission of non-CO2 gases extends the lifetime of CO2 
already in the atmosphere through climate-carbon cycle feedbacks 
(Friedlingstein et  al. 2013). Including these feedbacks results in 
higher metric values for all non-CO2 gases, but the magnitude of 
this effect is uncertain – for example, AR5 found the GWP100 value 
for CH4 without climate-carbon cycle feedbacks to be 28, whereas 
including this feedback would raise the value to between 31 and 34 
(Myhre et al. 2013; Gasser et al. 2016; Sterner and Johansson 2017). 
The AR6 includes climate-carbon cycle feedbacks (Forster et al. 2021). 
These parametric uncertainties associated with different feedbacks 
are incorporated into the above uncertainty estimates by WGI.

A third uncertainty arises from changes in metric values over time. 
Metric values depend on the radiative efficacy of CO2 and non-
CO2 emissions, which in turn depend on the changing atmospheric 
background concentrations of those gases. Rising temperature can 
further affect the lifetime of some gases and hence their contribution 
to forcing over time for different emission scenarios (Reisinger 
et  al. 2011). Successive IPCC assessments take changing starting-
year background conditions into account, which explains part of 
the changes in GWP100 metric values in different reports. Applying 
a single metric value to a multi-decadal historical time series of 
emissions is therefore only an approximation of the correct metric 
value for any given emissions year – as, for example, the correct 
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GWP100 value for CH4 emitted in the year 1970 will be different to 
the GWP100 value for an emission in the year 2018. However, the 
literature does not offer a complete set of GWP100 metric values 
for past concentrations and climate conditions covered in our time 
series.

Overall, we estimate the uncertainty in GWP100 metric values, if 
applied to an extended historical emission time series, as ±50% 
for CH4 and other SLCFs, and ±40% for non-CO2 gases with longer 
atmospheric lifetimes (specifically, those with lifetimes longer than 20 
years). If uncertainties in GHG metrics are considered and assumed to 
be independent for each gas (which may lead to an underestimate), 
the overall uncertainty of total GHG emissions in 2019 increases from 
±11% to ±13%. However, these GWP-related uncertainties are not 
included in the global, regional or sectoral emissions estimates in the 
remainder of the assessment. 

The WGIII assessment uses GWP100 metric values from the WGI 
contribution to AR6 (Forster et  al. 2021) as a default metric when 
presenting aggregated emissions and removals of different GHGs 
(Cross-Chapter Box 2, Supplementary Material Section 2.SM.3, and 
Annex II.8).

2.SM.3 GHG Emission Metrics

2.SM.3.1 Definition and Scope

GHG emission metrics are used to compare climate effects of 
different GHGs and to aggregate emissions and removals of different 
GHGs, such as for national inventory reporting and development 
of mitigation policies. GHG emission metrics provide simplified 
information about the effects that emissions of different gases GHGs 
have on global temperature or other aspects of climate, usually 
expressed relative to the effect of emitting CO2. 

The common glossary for the IPCC Sixth Assessment Report (AR6) 
defines GHG emission metrics as follows:

A simplified relationship used to quantify the effect of emitting a unit 
mass of a given greenhouse gas (GHG) on a specified key measure 
of climate change. A relative GHG emission metric expresses the 
effect from one gas relative to the effect of emitting a unit mass of 
a reference GHG on the same measure of climate change. There are 
multiple emission metrics, and the most appropriate metric depends 
on the application. GHG emission metrics may differ with respect to: 
(i) the key measure of climate change they consider; (ii) whether they 
consider climate outcomes for a specified point in time or integrated 
over a specified time horizon; (iii) the time horizon over which the 
metric is applied; (iv) whether they apply to a single emission pulse, 
emissions sustained over a period of time, or a combination of both; 
and (v) whether they consider the climate effect from an emission 
compared to the absence of that emission or compared to a reference 
emissions level or climate state.

Notes: most relative GHG emission metrics (such as the global 
warming potential (GWP), global temperature change potential 

(GTP), global damage potential, and GWP*), use carbon dioxide (CO2) 
as the reference gas. Emissions of non-CO2 gases, when expressed 
using such metrics, are often referred to as ‘carbon dioxide equivalent’ 
emissions. A metric that establishes equivalence regarding one key 
measure of the climate system response to emissions does not imply 
equivalence regarding other key measures. The choice of a metric, 
including its time horizon, should reflect the policy objectives for 
which the metric is applied.

Emission metrics also exist for aerosols, but these are not commonly 
used in climate policy. This assessment focuses on GHG emission 
metrics only.

Parties to the Paris Agreement decided in the Paris Agreement 
Rulebook to report aggregated emissions based on the global 
warming potential with a time horizon of 100 years (GWP100) 
from AR5, or to use GWP100 values from a subsequent IPCC report 
as agreed upon by the CMA (UNFCCC 2019, 18/CMA.1), and to 
account for their second and subsequent Nationally Determined 
Contributions in accordance with this approach (UNFCCC 2019, 
4/CMA.1). However, parties can report supplemental information 
about aggregate emissions and removals using other GHG emission 
metrics (e.g., global temperature change potential) expressed in 
CO2-eq and assessed by the IPCC.

Apart from international reporting and accounting, countries or 
sectors might consider other GHG emission metrics to help achieve 
specific domestic policy objectives. A clear assessment of metrics 
can help decision-makers determine the consistency between policy 
goals and metrics and avoid potentially inadvertent consequences of 
alternative metric choices.

This Supplementary Material provides additional explanations, 
references and figures to the assessment of GHG emission metrics 
from a mitigation perspective in Cross-Chapter Box  2 on GHG 
emission metrics in Chapter 2. Both the Cross-Chapter Box and this 
Supplementary Material build on the physical science assessment of 
GHG emission metrics by WGI (Forster et al. 2021, Section 7.6).

2.SM.3.2 Key Characteristics of Pulse Emission Metrics 
GWP and GTP

The global warming potential (GWP) and the global temperature 
change potential (GTP) were the main metrics assessed in AR5 
(Myhre et al. 2013; IPCC 2014; Kolstad et al. 2014). GWP with a time 
horizon of 100 years (GWP100) is the predominant metric used in 
literature assessed by WGIII.

These metrics compare the effect on climate of emitting a unit mass 
of a non-CO2 gas over a chosen time horizon with the effect of 
emitting the same unit mass of CO2. GWP compares CO2 and non-CO2 
emissions based on the radiative forcing they would cause integrated 
over the entire time horizon, whereas GTP compares emissions based 
on the global mean surface temperature change they would cause 
only at the end point of the chosen time horizon.
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The WGI contribution to AR6 includes updated values for these 
metrics based on updated scientific understanding of the response 
of the climate system to emissions of different gases, including 
changing background concentrations (Forster et  al. 2021). It also 
assess new metrics published since AR5. Metric values in AR6 include 
climate-carbon cycle feedbacks by default; this provides an important 
update and clarification from AR5 which reported metric values both 
with and without such feedbacks (Table 2.SM.7).

By far the most commonly used, static time horizon for GWP, 
including in reporting under the UNFCCC and the Paris Agreement, is 
100 years, but other time horizons (e.g., GWP20, GWP500) have also 
been applied (recent examples include Tanaka et al. 2019, 2021; and 
Skytt et al. 2020).

For GTP, both static and dynamic time horizons are used in the literature. 
A static GTP evaluates warming due to an emissions pulse at the end 
point of the stated time horizon (Shine et al. 2005). For example, the 
static GTP100 would evaluate emissions occurring in 2020 based on 
the warming they would cause in the year 2120, whereas emissions 
occurring in 2030 would be evaluated based on the warming they 
would cause in the year 2130. By contrast, the dynamic GTP (Shine 
et  al. 2007) evaluates each emission based on its contribution to 
warming in a specified future target year. Depending on application, 
this can be the year in which global average temperature is expected 
to peak within a mitigation scenario, or any other time-bound 
temperature-related climate target. Policy-relevant time horizons and 
resulting metric values for the dynamic GTP therefore depend on the 
chosen temperature goal and implied target year.

The time horizon of a dynamic GTP shrinks for successive emissions 
as the target year is approached, which increases the weight given to 
emissions of short-lived climate forcers (SLCFs) such as CH4 over time. 
For example, for a climate policy goal of limiting warming to 1.5°C 
with no or limited overshoot (scenario Category C1 in Chapter 3), 
global average surface temperature would peak by around 2055. To 
compare the importance of abating non-CO2 and CO2 emissions in 
any given year relative to that policy goal, emissions occurring in the 
year 2020 would be evaluated using GTP35, whereas emissions in 
2030 would be evaluated using GTP25, and so on (see Table 2.SM.7 
for illustrative values).

A key limitation of pulse emission metrics such as GWP and GTP, 
noted in AR5 and emphasised in more recent literature (Allen et al. 
2018; Cain et al. 2019; Collins et al. 2019; Allen et al. 2021; see Forster 
et  al. 2021 for the WGI assessment), is that metric values depend 
strongly on the selected time horizon, given that warming from a CH4 
emission pulse declines over time, whereas warming from a pulse of 

CO2 is nearly constant over centuries. Universal use of a single metric 
and time horizon can thus result in mismatches between policy goals 
and actual climate outcomes. Moreover, ‘CO2 equivalence’ of pulse 
emissions based on GWP or GTP does not imply equivalent climate 
outcomes from cumulative emissions, nor at all times even from 
a single emissions pulse.

This is illustrated in Figure 2.SM.8, which shows that the warming 
from CH4 emissions sustained at a constant rate is greater than 
the warming from an ‘equivalent’ (based on GWP100) amount 
of sustained CO2 emissions for the first 100 years, but the rate of 
warming from sustained CH4 emissions declines over time and the 
total warming becomes less than that from sustained CO2 emissions 
beyond the first century. The different cumulative behaviour of CO2 
and SLCF emissions is particularly relevant in mitigation scenarios: 
each tonne of additional CO2 emissions causes further warming 
until emissions reach net zero (Canadell et  al. 2021). By contrast, 
declining SLCF emissions can result in a declining SLCF contribution 
to global temperature since the warming from past emissions does 
not persist and declines over time. This behaviour is well known and 
can be readily replicated with simple climate models (Figure 2.SM.8) 
but cumulative SLCF emissions based on GWP100 do not capture this 
decline (Lynch et al. 2020).

A more detailed discussion of recently developed step-change 
metrics GWP* (Allen et al. 2018; Cain et al. 2019; Smith et al. 2021) 
and combined global temperature change potential (CGTP) (Collins 
et  al. 2019) and their ability to reproduce temperature changes 
resulting from sustained changes in SLCF emissions is provided in 
Forster et al. (2021). These metrics indicate greater climate benefits 
from rapid and sustained CH4 reductions compared to CO2 over the 
next few decades than if such reductions are weighted by GWP100, 
while conversely, sustained methane increases have greater adverse 
climate impacts (Collins et al. 2019; Lynch et al. 2020; Brazzola et al. 
2021). However, as indicated in Figure  2.SM.8, the warming from 
CH4 (or conversely, the benefits of CH4 reduction) do not continue to 
accumulate at the initial rate.

2.SM.3.3 Relationship of GWP and GTP to Cost-benefit 
and Cost-effectiveness Frameworks

The GWP with a static time horizon approximates the global damage 
potential – that is, the notion that the emission of a non-CO2 forcer 
at any point in time should be weighted by the marginal economic 
damages from this emission, relative to the marginal damages from 
emitting a unit mass of CO2 (Reilly and Richards 1993; Kandlikar 
1996; Kolstad et al. 2014). 

Table 2.SM.7 | Illustrative metric values for CH4 under a range of metrics and time horizons. GWP and GTP compare pulse emissions of non-CO2 gases with 
a pulse emission of CO2. Combined global temperature change potential (CGTP) compares a sustained step-change in non-CO2 emissions with a pulse emission of CO2. Values 
are based on Forster et al. (2021).

GWP20 GWP100 GWP500 GTP20 GTP30 GTP50 GTP100
CGTP50
(years)

CGTP100
(years)

CH4 (fossil) 82.5 29.8 10 54.4 30.6 13.2 7.5 2823 3531

CH4 (biogenic) 80.8 27.0 7.3 51.7 27.9 10.3 4.7 2701 3254
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The GWP time horizon can be linked to the social discount rate used 
in the global damage potential to calculate the net present value 
of economic damages over time from each emission. Recent studies 
(Sarofim and Giordano 2018; Mallapragada and Mignone 2019) 
confirm earlier work (Fuglestvedt et al. 2003; Boucher 2012) that, for 
methane, GWP100 is consistent with a discount rate of about 3%, 
with the specific value depending on the gas and other assumptions 
such as non-linearity of damages with warming. Detailed sensitivity 
analysis by Sarofim and Giordano (2018) gives an interquartile 
range of 2.7–4.1% for the implied discount rate for GWP100 in the 
case of CH4, depending on a range of assumptions about climate 
scenarios, shape of damage functions, climate feedbacks and global 
economic growth. GWP20 would imply much higher discount rates 
of 11.1–14.6%, given the stronger weighting of near-term effects on 
climate. Use of a single discount rate based on pure time preference 
and future growth in wealth and its effects (known as the simple 
Ramsey rule) can be problematic (Drupp et al. 2018) but no studies 
so far have evaluated metrics with varying discount rates over 
time. In addition, the relationship between GWP time horizon and 
discount rate is not universal as it depends on the lifetime of the SLCF 
(Fuglestvedt et al. 2003).

Shindell et al. (2017) evaluated the social cost of methane emissions 
directly based on time-varying changes in climate and inferred 
economic damages, and found a wide range of possible values 
This reflects the range of judgements in determining social costs of 
pollutants including non-climate effects. However, their results are 
broadly consistent with a GWP100-based weighting of CH4 relative 
to CO2 when similar discount rates and consistent assumptions 
about climate-related damages and the temperature dependence of 
damage functions are chosen for both gases. 

These studies indicate that, even though the GWP100 was not 
designed to meet any economic objectives and was not designed 
as a damage potential, the discount rate implied in GWP100 for CH4 
is broadly similar to social discount rates of 3–5% that are used in 
integrated assessment models (Chapter  3) and investments with 
multi-decadal lifetimes (Giglio et al. 2015; HM Treasury 2018).

In principle, GHG emission metrics focused on cost-effectiveness 
are better matched to the Paris Agreement’s temperature goal 
than cost-benefit metrics, and are also supported by the UNFCCC 
principle that mitigation policies and measures should be cost-
effective (Johansson, 2011; Tol et  al. 2012; Tanaka et  al. 2020). In 
cost-effectiveness metrics, values for SLCF emissions necessarily 
change over time since the closer SLCF emissions occur to the target 
year, the greater their contribution to climate change in that year 
(Aaheim and Mideksa 2017). The dynamic GTP (Shine et  al. 2007) 
reflects such a cost-effectiveness approach by providing information 
on the marginal contribution of SLCF emissions in any given year 
to the expected peak warming at a future date (Tol et  al. 2012; 
Mallapragada and Mignone 2017; Tanaka et al. 2020). However, the 
dynamic GTP does not fully match the optimal weighting of gases in 
least-cost mitigation pathways (also referred to as the global cost 
potential; e.g., Michaelis 1992; Manne and Richels 2001) because 
overall mitigation costs and hence the economically optimal amount 
and timing of SLCF abatement also depends on the discount rate 
as well as treatment of uncertainties, not only their contribution to 
warming in the target year (Johansson 2011; Ekholm 2014; Strefler 
et al. 2014; Tanaka et al. 2020).

The GTP with any static time horizon (e.g., GTP50 or GTP100) is 
not clearly matched to either a cost-benefit or a cost-effectiveness 
framework, as the year for which temperature outcomes are evaluated 
would shift forward each year and hence would not match the year 

Figure 2.SM.8 | Temperature responses over time to emission pulses and sustained and declining emissions of CO2 and CH4. Left: Single emissions pulse of 
1 tCH4 and 27 tCO2. Middle panels: Sustained annual emission (top) of 1 tCH4 and 27 tCO2, and temperature response (bottom). Right: Emissions linearly declining from 
1 tCH4 and 27 tCO2 in year zero, to zero emissions of both gases in year 100 (top), and temperature outcome (bottom). The amount of 27 tCO2 is chosen for illustrative purposes 
as it represents the ‘CO2-equivalent’ emission of 1t CH4 based on GWP100. Temperature responses are based on response functions from Forster et al. (2021).
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when the global temperature limit is reached or the overall damages 
caused by each emission (Tol et al. 2012; Edwards and Trancik 2014; 
Strefler et al. 2014; Mallapragada and Mignone 2017). However, use 
of GTP with a static time horizon may be relevant where it is applied 
to emissions only in a given year or finite period, and if the time 
horizon matches a relevant climate policy goal (Fuglestvedt et  al. 
2010; Grewe and Dahlmann 2015; Balcombe et al. 2018).

2.SM.3.4 Global Cost-effectiveness of Physical-based 
Pulse Emission Metrics

A number of studies since AR5 have evaluated the impact of 
different pulse GHG emission metrics and time horizons on the 
global economic costs of limiting global average temperature 
change to a pre-determined level, including to likely below 2°C and 
to 1.5°C (Ekholm et al. 2013; Deuber et al. 2014; Strefler et al. 2014; 
Huntingford et  al. 2015; Van Den Berg et  al. 2015; Harmsen et  al. 
2016; Tanaka et al. 2020). These studies show consistently, with very 
few exceptions, that global costs to achieve the same temperature 
target below 2°C in 2100, or the same peak temperature before 
2100, are higher if CH4 emissions are weighted consistently less 
than indicated by GWP100 (e.g., if using GTP100 or GWP500). The 
increase in global mitigation costs ranges from a few percent to more 
than 30% in most studies, depending not only on the specific metric 
values used but also on the temperature limit, degree of overshoot, 
and abatement costs and potentials of different gases assumed in 
those studies. These studies also indicate, albeit less consistently and 
less significantly than for GTP100, that global mitigation costs would 
also increase if CH4 emissions are valued consistently more highly 
than in GWP100 (e.g., using GWP20). Collectively, these studies 
indicate that, even though GWP100 does not represent the most 
cost-effective metric and time horizon choice possible (Tanaka et al. 
2020), it is more cost-effective than any of the other static metrics 
and time horizons that have been tested in economic models and are 
used most commonly in the scientific literature.

Studies available for AR5 suggested that using a dynamic GTP or 
economic optimisation approaches, which defer high-cost CH4 
abatement until closer to the target year, could reduce global 
abatement costs compared to GWP100 by a few percent (Manne and 
Richels 2001; Shine et al. 2007; Johansson 2011; Reisinger et al. 2012). 
More recent studies confirm this theoretical cost saving in principle. 
However, these studies also demonstrate that the extent to which this 
cost saving would be realised depends on a range of assumptions, 
including the stringency of the target, degree of policy foresight, the 
speed with which CH4 emissions can be reduced as metric values 
increase, allowance for any temporary temperature overshoot for 
end-of-century targets, the shape of marginal abatement cost curves, 
and the treatment of uncertainty (Ekholm et al. 2013; Strefler et al. 
2014; Huntingford et al. 2015; Van Den Berg et al. 2015; Harmsen 
et al. 2016; Tanaka et al. 2020).

One reason why the literature shows only a limited, if any, reduction 
in global mitigation costs from using dynamic GTP or economic 
optimisation compared to GWP100 lies in the broad similarity of 
the metric values or exchange rates for CH4 for temperature limits 

of likely below 2°C and lower. For such temperature limits, peak 
temperature would be reached between about 2050 and 2080 
(Chapter 3). This means that emissions occurring in the year 2030 
would be weighted by GTP20 to GTP50, but emissions in the year 
2040 by GTP10 to GTP40, and so on. Across such time horizons, the 
numerical values of the dynamic GTP for CH4 (as the main short-
lived GHG) over the next few decades are broadly comparable on 
average to GWP100 (Table  2.SM.7). Since a large fraction of the 
total abatement potential for CH4 is assumed to be available at 
relatively low costs (Harmsen et al. 2019) or co-abated with fossil 
CO2 (Rogelj et al. 2014), abatement choices based on GWP100 differ 
little in such pathways from those based on the dynamic GTP or 
economic optimisation. For modelled mitigation pathways that likely 
limit warming to 2°C or below and with limited overshoot, GWP100 
therefore results in overall abatement levels and costs at the global 
scale that are not very different from those based on dynamic GTP or 
economic optimisation, even though GWP100 reflects a cost-benefit 
rather than cost-effectiveness framework. However, differences can 
be more pronounced for individual sectors.

A common feature of virtually all GHG emission metrics studies to 
date is that they use a single emission metric (either static GWP or 
GTP, or dynamic GTP with predictably changing values) to inform 
abatement choices over the entire 21st century and beyond. This is 
not well matched to the new scenario logic proposed by Rogelj et al. 
(2019) for the Paris Agreement, which suggests that separate policy 
choices exist regarding the timing and magnitude of the temperature 
peak and the post-peak rate of temperature decline. This new scenario 
logic has not yet been used to evaluate GHG metrics, but Tanaka 
et  al. (2021) show that global cost reductions could be obtained 
by using GWP100 as a starting metric and updating the GWP time 
horizon in discrete steps, depending on when and by how much the 
temperature goal might be exceeded based on actual emissions. This 
approach could reduce mitigation costs by a few percent, relative 
to GWP100 being used throughout the 21st century, in very high 
overshoot scenarios that reach the long-term temperature goal 
of 1.5°C or 2°C only in the 22nd century. For such scenarios, the 
most cost-effective weighting of SLCF emissions is generally less 
than GWP100 in the next few decades, but two to three times 
higher than GWP100 once temperature has peaked. These findings 
strengthen the conclusions by Fuglestvedt et al. (2018) and Tanaka 
and O’Neill (2018) that the choice of GHG metric is particularly 
important for the rate of temperature decline once net zero GHG 
emissions have been reached.

2.SM.3.5 Role of GHG Emission Metrics at the Sectoral 
Level Including Lifecycle Assessment

The AR5 noted that the choice of metric and time horizon could have 
significant implications for regions or sectors with high fractions 
of SLCF emissions (Brennan and Zaitchik 2013; Myhre et  al. 2013; 
IPCC 2014; Strefler et al. 2014). The choice of GHG emission metric 
is therefore linked not only to cost-effectiveness but also to equity. 
Sectoral and national perspectives on mitigation pathways, including 
GHG emission metrics to inform such pathways, may therefore differ 
from a global least-cost perspective (Klinsky and Winkler 2018), but 
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the literature has not provided a consistent framework for assessing 
GHG emission metrics based on a wider set of equity principles.

The shifting of costs between emitters due to different metrics has 
been demonstrated for the case of agriculture in New Zealand, which 
has a high fraction of enteric methane emissions. Even though global 
mitigation costs to limit warming to below 2°C would be lower 
under GWP100 than GTP100, costs to farmers would be greater 
under GWP100 than GTP100 if climate policy were to price all 
GHG emissions and place the cost burden on emitters (Dorner and 
Kerr 2017).

Various studies evaluated the extent to which cost-effective sectoral 
abatement strategies might change under different climate metrics. 
In some instances (e.g., for transport and fuel choices), the choice of 
metric can change abatement preferences and timing (Edwards and 
Trancik 2014; Edwards et al. 2016; Edwards et al. 2017). Similarly, the 
magnitude of the climate impact from aviation when expressed in 
CO2-equivalents depends strongly on the choice of emission metric 
and time horizon, as SLCF emissions and contrails enhance warming 
significantly over days to decades, in addition to the warming from 
CO2 that occurs over centuries to millennia (Fuglestvedt et al. 2010; 
Azar and Johansson 2012; Deuber et  al. 2013; Lund et  al. 2017; 
Lee et  al. 2021). For the energy sector, Tanaka et  al. (2019) show 
that switching from coal to gas (which has lower CO2 but higher 
CH4 emissions) for energy supply offers consistent climate benefits 
regardless of metric and time horizon unless CH4 leakage rates are 
very high and a short-term metric (GWP20) is selected. Lynch and 
Pierrehumbert (2019) show that the climate impact of cultured meat 
(which they assume to have higher CO2 but lower CH4 emissions than 
cattle meat and a lower GHG footprint based on GWP100) increases 
over time, given the cumulative warming from CO2 emissions. 
Substituting cattle meat with cultured meat would result in lower 
warming for at least the next several decades but could eventually 
result in higher warming than cattle meat, if this substitution is 
sustained over centuries and if the carbon intensity of energy supply 
for the manufacture of cultured meat does not decline.

For some sectors, mitigation strategies and the relative merit of 
specific technologies or practices compared to others (such as 
intensive vs extensive agricultural production and mitigation options, 
or choices to reduce air pollutants with a climate forcing effect) 
have been shown to be relatively robust against the choice of metric 
(Reisinger and Ledgard 2013; Ledgard and Reisinger 2014; Reisinger 
et al. 2017; Åström and Johansson 2019). Clark et al. (2020) show that 
current emissions trends in the global food system alone would be 
sufficient to exceed a 1.5°C temperature limit and associated global 
emission targets even if GWP* is used to calculate CO2-equivalent 
emissions. This indicates that the importance of limiting food system 
emissions is not an artefact of using GWP100 as GHG emission 
metric, though it can change the quantification of CO2-eq emissions 
over time. Even if the most effective mitigation option does not 
depend strongly on the choice of GHG emission metric, the cost to 
emitters (if emissions were priced based on their CO2-equivalent 
values as part of national policies) can depend strongly on the GHG 
metric (Dorner and Kerr 2017).

The United Nations Environment Programme Society of 
Environmental Toxicology and Chemistry (UNEP-SETAC) task force 
on lifecycle assessment (LCA) recommended that at least two, but 
potentially even three, metrics with divergent weightings for SLCFs 
(GWP100 and GTP100 and potentially also GWP20) be used to better 
understand the extent to which GHG metric choices may implicitly 
or inadvertently affect reported carbon footprints (Cherubini 
et al. 2016; Levasseur et al. 2016; Jolliet et al. 2018). This matches 
recommendations by other researchers for the use of multiple 
metrics (Grewe and Dahlmann 2015; Ocko et  al. 2017; Balcombe 
et al. 2018; Cooper et al. 2020; Allen et al. 2021) especially where 
there is no unambiguous policy goal for a sectoral or entity-level 
LCA. While there is a strong agreement in the literature that using 
multiple metrics provides a more nuanced understanding of the 
climate effects of emissions, there is no strong consensus specific 
pairs or sets of metrics to use (e.g., GWP20 and GWP100, or GWP100 
and GTP100). GWP* has only had limited use in LCA so far, mainly 
to understand the impact of sustained changes in CH4 emissions 
resulting from system changes or lifetime dietary choices, consistent 
with its focus on the effect of sustained emission changes (Clark et al. 
2020; Barnsley et al. 2021).

Some studies use simple climate models or pulse-response functions 
to understand the climate impacts of emissions of different gases 
directly rather than relying on emission metrics (Berntsen and 
Fuglestvedt 2008; Reisinger and Clark 2017; Lynch and Pierrehumbert 
2019; Mayfield et  al. 2019; Cooper et  al. 2020; Lee et  al. 2021; 
Reisinger et  al. 2021). Treating GHGs with different lifetimes 
separately supports the targeted treatment of different pollutants 
and avoids embedding value judgements about the climate outcome 
of concern, time horizons and reference levels into GHG emission 
metrics. This does not avoid the need for such value judgements to be 
made, but can allow them to be made more explicitly.

2.SM.3.6 Difference Between Marginal and Additional 
Warming and Relationship to Metrics 

Cross-Chapter Box  2 in Chapter  2 notes that GWP* can calculate 
negative CO2-eq emissions, while GWP or GTP calculate positive 
CO2-eq emissions for the same CH4 emissions path.

Rapidly declining CH4 emissions can have a negative CO2-warming-
equivalent value based on GWP* because SLCF emissions that 
decline at a sufficient rate result in declining temperature, relative 
to the warming at a previous point in time caused by past SLCF 
emissions from that same source. The rate at which SLCF emissions 
have to decline to result in a roughly constant contribution to 
warming depends on the emissions history, changing background 
concentrations, and lifetime of the gas; for global CH4 emissions, this 
has been estimated at about 0.3% per year (Forster et al. 2021).

GWP or GTP always assign a positive CO2-equivalent value to 
SLCF emissions because every SLCF emission from any source 
results in increased future radiative forcing and higher global 
average temperature than would be the case without this emission, 
regardless of whether the rate of SLCF emissions is rising or declining 
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over time. The amount of climate change (integrated radiative 
forcing, or temperature change at a given point in time) that occurs 
from these emissions, relative to the absence of these emissions 
(everything else being equal), has also been referred to as ‘marginal 
warming’ (Reisinger et al. 2021), in alignment with the concepts of 
marginal damages and marginal costs that underpin the economics 
literature on multi-pollutant problems (Michaelis 1992, 1999; Reilly 
and Richards 1993; Kandlikar 1996; Manne and Richels 2001; Tol 
et al. 2012).

Figure 2.SM.9 illustrates these different perspectives: in an Illustrative 
Mitigation Pathway that limits warming to 1.5°C with no or limited 
overshoot (IMP-Ren15) (Chapter  3 and Annex III), the marginal 
warming from future CH4 emissions is always positive and can be 
comparable to the marginal warming from future CO2 emissions. That 
is, emissions of CH4 and CO2 from 2020 onwards (or any other specified 
reference year) both result in future global temperature being higher 
than it would be without those future emissions. Marginal warming is 
relevant for choices about the effort and costs that might be justified 
(from a damages, cost-benefit or cost-effectiveness perspective) to 
mitigate future emissions of either gas. The specific policy objective 
can then help determine what specific metric and time horizon would 
be optimal to use, provided that metrics are applied in a way that 
captures this marginal warming from future emissions. Information 
about marginal warming by definition does not include warming 
from past emissions that may continue into the future.

Warming relative to a given reference point provides a different 
perspective: the contribution from CH4 emissions to global warming 
declines with declining emissions, whereas the contribution from 
CO2 emissions to global warming continues to rise even when its 
emissions decline, and this contribution keeps rising until CO2 
emissions are reduced to net zero. CO2 therefore remains and 
becomes the increasingly dominant driver of anthropogenic warming 
in virtually all emission scenarios (see also WGI Summary for 
Policymakers, Figure SPM.4). This information is relevant for policies 
and perspectives that are concerned with the changing contribution 
of individual gases and sectors to global warming over multiple 
decades, including their historical emissions (e.g., Lynch et al. 2021). 
Figure  2.SM.9 shows that, for CO2, the marginal and additional 
warming from future emissions is virtually identical, whereas the 
marginal and additional warming from future CH4 emissions point in 
opposite directions in a mitigation pathway. Marginal metrics such 
as GWP and GTP, and step/pulse metrics such as GWP* (as applied 
in the literature so far) can differ substantially in the CO2 emissions 
they calculate as ‘equivalent’ to CH4 emissions, because they focus 
on different aspects of climate change. The specific policy objective 
(e.g., a focus on cost-effective abatement, a cost-benefit approach, 
or a focus on additional warming compared to a reference level) is 
therefore crucial for choosing and applying a metric that matches 
a given objective.

Figure 2.SM.9 | CO2 (top) and CH4 (bottom) emissions (left) and simulated temperature response (middle and right), for an Illustrative Mitigation 
Pathway (IMP-Ren15) that would limit likely warming to below 2°C. The middle panels show the modelled overall warming from the given CO2 and CH4 emissions 
trajectories (thick solid lines), the contribution to past and future warming from past emissions (up to 2020; thin solid lines), and the contribution to warming in the year 2020 
from past emissions (dashed lines). The marginal warming from future CO2 and CH4 emissions (i.e., the difference between warming caused by emissions up to 2020, and 
warming caused by past and future emissions) are shown as shaded areas and solid arrows. The additional warming (i.e., the temperature change relative to the warming in 
2020) is indicated by hollow arrows. The right panels show the marginal warming from CO2 and CH4 emissions from 2020 onwards (i.e., the increase in global average surface 
temperature that would occur with, compared to without, those emissions). Figure adapted from Reisinger et al. (2021); temperature responses are modelled using the pulse-
response functions used in the assessment of GHG emission metrics by Forster et al. (2021).
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2.SM.3.7 Influence of GHG Emission Metrics on the 
Timing of Reported Net Zero GHG Emissions

Cross-Chapter Box 2 in Chapter 2 notes that different metric choices 
can alter the reported quantity of CO2-eq emissions and the time 
at which net zero GHG emissions are calculated to be reached, or 
whether net zero GHG emissions are reached at all. This is also an 
important conclusion from the assessment by WGI (Forster et  al. 
2021) building on Fuglestvedt et al. (2018) and Tanaka and O’Neill 
(2018), and highlighted by Schleussner et  al. (2019) in relation to 
Article 4.1 of the Paris Agreement.

The degree to which reported CO2-eq emissions would differ under 
alternative metrics, for the same actual emissions of different gases, 
is illustrated in Figure 2.SM.10. It shows calculated CO2-eq emissions 
for four different IMPs from Chapter  3 (IMP-REN15, IMP-SP, 
IMP-REN2, and IMP-GS; see Chapter 3 for details on these pathways) 
for an illustrative range of metrics. 

The following metrics and time horizons are used:

• GWP100 (using values from the Second Assessment Report (SAR); 
Fifth Assessment Report with and without climate-carbon cycle 
feedbacks (AR5-ccfb, and AR5-nofb); and the Sixth Assessment 
Report (AR6))

• GTP100 (using AR6 values)
• GWP20 (using AR6 values)
• GWP* (using the formula in Lynch et al. 2020, using AR6 values 

for GWP100).1

Overall, differences in the timing of net zero GHG (CO2-eq) emissions 
are smaller for different versions of GWP100 than for fundamentally 
different choices of metric and/or time horizon (GWP20 or GTP100), 
and differ materially for GWP*. 

Using GWP100 values from different IPCC assessment reports has 
a  relatively minor effect on CO2-eq emissions. It shifts the timing 
of net zero emissions by up to 10 years for those pathways that 
reach net zero before 2100. For pathways that reach net zero GHG 
emissions only very late in the 21st century, this could result in net 
zero not being reached at all before 2100 under some versions of 
GWP100. For example, IMP-GS reaches net zero GHG emissions in 
2095 for GWP100 (SAR) but remains (just) above zero until after 
2100 for GWP100 (AR5-ccfb) and for GWP100 (AR6).

Using GTP100 gives consistently lower weighting to SLCF emissions 
compared to GWP100. This brings the year of net zero GHG 
emissions  forward by 12–18 years compared to GWP100 (AR6), 
since the remaining gross SLCF emissions would be aggregated into 
lower CO2-eq emissions and hence would be compensated by a lower 
amount of net negative CO2 emissions, which is reached earlier. 

1 The GWP* formula was applied to the following gases: CH4, HFC-134a, HFC-32, HFC-43-10-mee, HFC-152a, HFC-365-mfc. The parameters used in the calculation are 
based on the atmospheric lifetime of CH4 and are not necessarily matched to other short-lived gases. Results should therefore be seen as indicative only; the existing 
literature provides parameters only for CH4. Using further updated parameters from Smith et al. (2021) would not change the overall results substantially.

The difference in timing of net zero GHG emissions under GTP100 
compared to GWP100 depends on the magnitude of SLCF (mostly CH4) 
emissions at that point, as well as the slope of the emissions pathway 
when approaching net zero. IMP-SP has the largest reductions in CH4 
emissions and hence the difference between GTP100 and GWP100 
is relatively smaller than for other pathways. Conversely, IMP-Ren2 
relatively high residual CH4 emissions. Therefore, expressing 
CO2-equivalent emissions using GTP100 has a bigger impact on total 
CO2-eq emissions compared to GWP100.

Using GWP20 gives consistently higher weighting to SLCF emissions 
compared to GWP100. This shifts the year of net zero emissions back 
by more than 20 years, as more net negative CO2 emissions are 
needed to balance residual SLCF emissions; again the extent to 
which timing shifts depends on the amount of CH4 emissions in the 
different pathways. Under GWP20, only IMP-REN2 reaches net zero 
in 2100 as it has the largest net-negative CO2 emissions in 2100 
of those four pathways; the three other pathways would remain at 
greater than net zero GHG emissions in 2100.

Using GWP* as a metric results in a significant change, not only in 
the timing of net zero emissions, but also the overall shape of the 
CO2-eq emissions pathway. In the two pathways consistent with 
limiting warming to 1.5°C with no or limited overshoot (IMP-Ren15 
and IMP-SP), CO2-equivalent emissions using GWP* drop well below 
net zero before 2040 but then rebound again. IMP-Ren15 returns to 
net-positive GHG emissions before returning to net zero by 2100, 
while IMP-SP has emissions close to net zero for most of the second 
half of the 21st century. 

CO2-equivalent emissions using GWP* for IMP-GS follow a similar 
shape but have higher overall levels; net GHG emissions would briefly 
reach net zero in 2040 before returning to positive levels and dropping 
to net zero by 2080. For IMP-Ren2, CO2-equivalent emissions based 
on GWP* look more similar to the emissions pathway based on other 
metrics but reach net zero GHG emissions about 20 years earlier than 
if using GWP100. 

The reason for those different shapes of CO2-equivalent emission 
trajectories under GWP* is that this metric translates rapid reductions 
of CH4 emissions into negative CO2-equivalent emissions. IMP-Ren2 
pathway has less rapid reductions of CH4 emissions in the near term 
than the three other pathways. The rapid reduction of methane in 
these three pathways results in a significantly faster and greater 
reduction of total CO2-equivalent emissions under GWP*. As a result, 
net zero GHG emissions would be reached well before 2050, although 
(depending on further reductions) only temporarily in some pathways 
as the reduction of CH4 emissions does not continue at the same rate.

Note that the different reported CO2-equivalent emissions do not 
affect the climate outcome, as the actual emissions of individual 
gases in these pathways are unchanged. What Figure 2.SM.10 shows 
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is only how the global aggregated emissions and removals would be 
reported for each pathway under different metrics.

The significant differences in the timing of net zero GHG emissions 
imply, however, that alternative emissions pathways that reach the 
same net zero GHG emissions target, but do so based on different 
GHG metrics, would necessarily result in different climate outcomes 
and would imply different levels of ambition to reach such an 
emissions target.

This is because depending on the GHG emission metric, a given 
amount of residual SLCF emissions in mitigation pathways would 
require different amounts of carbon dioxide removal (CDR) to achieve 

net zero GHG emissions. Emission metrics that give less weight to 
ongoing SLCF emissions imply a lesser rate of CO2 removal and hence 
greater overall warming and/or lesser reduction in warming over time 
after net zero GHG emissions have been reached. Conversely, a given 
amount of CDR would permit different rates of SLCF emissions to 
achieve net zero GHG emissions under different metrics. This would 
result in different amounts of warming contributed by SLCF emissions 
in addition to the warming from CO2.

For a given net zero target in a given year, using different metrics 
to monitor and verify achievement of that target therefore results 
in different levels of peak warming and different contributions of 
individual gases to this warming, and different rates of temperature 

Figure 2.SM.10 | GHG emissions expressed in CO2-eq, for four illustrative mitigation pathways (IMPs) from Chapter 3, using a range of GHG emission 
metrics assessed in AR6 (for details, see text). Illustrative Mitigation Pathways (IMPs) explore different ways of achieving long-term temperature goals. The four IMPs 
shown here are: higher Renewable Energy (IMP-Ren2 and IMP-Ren15); Gradual Strengthening of current policies (IMP-GS); and a Shifting Pathway (IMP-SP). Each of these 
pathways can be implemented with different levels of ambition. The IMP-Ren2 and IMP-GS (top panels) are consistent with limiting warming likely below 2°C, while IMP-Ren15 
and IMP-SP (bottom panels) are consistent with limiting warming to 1.5°C with no or limited overshoot. (Box 3.1, 3.2.5, Annex III).
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change if net zero GHG emissions are sustained after the peak 
(Fuglestvedt et al. 2018; Tanaka and O’Neill 2018; Schleussner et al. 
2019). This is before taking into account how the use of different 
GHG emission metrics might shape abatement choices leading up to 
an emission target.

2.SM.4 Trade as a Driver of Global 
GHG Emissions

This section assesses how trade openness and liberalisation may 
have changed the global level of GHG emissions, and complements 
Sections 2.3 and 2.4 in Chapter  2. It does not describe whether 
trade has shifted emissions between countries (transfer of embodied 
emissions) or has changed the level of emissions in individual 
countries (this is described in Chapter 2, Section 2.3). The effect of 
international emissions trading schemes, mechanisms, and policies 
are described in Chapter 2, Sections 2.8 and 14.5, respectively. 

The question of whether international trade drives increases or 
decreases in global GHG emissions is difficult to answer since it not 
only depends on the emissions intensity of traded products, but also 
on the synergistic influence of trade on economic growth, income, 
consumption patterns, and the diffusion of low-carbon technologies 
or practices. All of these in turn are drivers of GHG emissions and the 
counterfactual question to answer is: What would happen without 
trade? (Jakob and Marschinski 2013). Trade also affects emissions 
through enhancing innovation and exchanging technologies between 
trading partners. These complex interactions are currently not fully 
understood (limited evidence, low agreement) (Cherniwchan et  al. 
2017). Consumption-based accounting alone (Chapter 2, Section 2.3) 
is therefore not suited to assess whether or not trade is driving global 
GHG emissions (Jakob and Marschinski 2013; Kander et  al. 2015; 
Jiborn et al. 2018).

Only very few studies over the AR6 target time frame of 2010–2019 
investigated the impacts of trade. Studies investigating global CO2 
emissions changes between 1995 and 2007/2008 found that the 
contribution of trade was moderately positive, whereas increases in 
overall and per capita consumption levels contributed much more 
strongly to the increase and improved technology had a significant 
decreasing effect (Arto and Dietzenbacher 2014; Hoekstra et  al. 
2016). A recent study modelled that international trade in 2015 
increased global GDP by 10% and global total GHG emissions by 2% 
compared to a scenario where there was no trade (Wu et al. 2021). 

Lin et al. (2019) investigated different scenarios on trade restrictions 
and found that a scenario with significant trade barriers based on 
additional 25% of tariffs would reduce global CO2 emissions by 6.3% 
and GDP by 9.0%. On the other hand, the free trade scenario would 
increase global export volume by 5.4% and global CO2 emissions 
by 1.2% for the base year of 2014 because of enhanced global 
production, especially in developing regions with high emissions 
intensities (Lin et al. 2019). It seems, however, that increased global 
GHG emissions only occur when the free trade agreements are 
between developed and developing countries (Nemati et  al. 2019) 

because emissions reductions in the former group are counteracted 
by higher increases in the latter group of countries (Yao et al. 2019). 

In contrast, one study suggests that international trade avoided 
15  GtCO2 emissions globally between 1995 and 2009, when 
compared to a hypothetical situation without trade (López et  al. 
2018). Zhu and Jiang (2019) found that the recent slowdown in 
globalisation from 2012 to 2016 did not lower but instead increased 
global CO2 emissions by 202 Mt. This is because the consumption 
of domestic intermediate and final products increased in many 
countries, in particular in China and India, leading to increased 
domestic and therefore global CO2 emissions (Mi et al. 2017; Guan 
et al. 2018; Khochiani and Nademi 2019; Liu et al. 2019; Wang and 
Jiang 2019; Zheng et al. 2019; Wang et al. 2020c). Partly, this is due 
to the fact that non-OECD countries have a higher emissions intensity 
than OECD economies at the aggregate level (Zhu and Jiang 2019; 
González-Torres et al. 2021). Scenario modelling of the USA-China 
trade war in 2018–2019 showed an increase in global CO2 emissions, 
despite a decrease in global economic output (Lu et al. 2020). This was 
because the modelled change in trade patterns as a consequence of 
the trade war meant that increased emissions from land-use changes 
and higher production in some countries far exceeded the reductions 
through structural effects in other countries (Lu et al. 2020).

In summary, there is low agreement and limited evidence on how 
international trade influences global GHG emissions. Since the 
pricing of energy resources and GHG emissions is inconsistent 
across countries, the overall outcome of trade on global emissions 
is coincidental rather than by design. If shifts in production are 
accompanied by large-scale transfers of and investment in low-
carbon technologies in carbon-intensive countries, the effects of 
trade on emissions can be mitigated (Jiang and Green 2017; Gozgor 
et  al. 2020). While such investments and knowledge transfers are 
more likely to come from net importing nations leading in low-carbon 
technology, net exporters can help by targeting carbon-intensive 
export industries with additional mitigation measures (Ren et  al. 
2014; Liu et al. 2015b; Ji et al. 2017). Section 13.7 of this report deals 
with international interactions of national mitigation policies.
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2.SM.5 Supporting Figures

Figure  2.SM.11 | Global GHG emissions trends 1990–2019 by individual (groups of) gases and in aggregate: GHGs (black); CO2-FFI (light green); 
CO2-LULUCF (dark green); CH4 (blue); N2O (orange); fluorinated gases (pink). Aggregate GHG emissions trends by groups of gases reported in  GtCO2-eq 
converted based on global warming potential with a 100-year time horizon (GWP100) from IPCC AR5 (Myhre et  al. 2013). Coloured shadings show the associated 
uncertainties at a 90% confidence interval without considering uncertainties in GDP and population data (see below). First column shows emissions trends in absolute 
levels (GtCO2-eq). Second column shows per capita emissions trends (tCO2-eq per capita) using UN population data for normalisation (World Bank 2021). Third 
column shows emissions trends per unit of GDP (kgCO2-eq per USD) using GDP data in constant USD2010 from the World Bank for normalisation (World Bank 2021).  
Data: Minx et al. (2021).
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Figure 2.SM.12 | Global GHG emissions trends 1990–2019: CH4 (blue); N2O (orange). Aggregate GHG emissions trends by groups of gases reported in original 
mass units. Coloured shadings show the associated uncertainties at a 90% confidence interval without considering uncertainties in GDP and population data (see below). First 
column shows emissions trends in absolute levels (MtCO2-eq). Second column shows per capita emissions trends (kg per capita) using UN population data for normalisation 
(World Bank 2021). Third column shows emissions trends per unit of GDP (g per USD) using GDP data in constant USD2010 from the World Bank for normalisation (World 
Bank 2021). Data: Minx et al. (2021).
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Figure 2.SM.13 | Change in regional GHGs from multiple perspectives and their underlying drivers. Panel (a): Regional GHG emissions trends (in GtCO2-eq yr–1) 
for 1990–2019. GHG emissions from international aviation and shipping are not assigned to individual countries and shown separately. Panels (b) and (c): Changes in GHG 
emissions for the 20 largest emitters (as of 2019) for 1990–2019 in relative (% annual change) and absolute terms (GtCO2-eq). Panels (d) and (e): GHG emissions per capita 
and per unit of GDP in 2019 for the 20 largest emitters (as of 2019). GDP estimated using constant international purchasing power parity (USD2017). Emissions are converted 
into CO2-equivalents based on global warming potential with a 100-year time horizon (GWP100) from IPCC’s AR6 (Forster et al. 2021). The yellow dots represent the emissions 
data from UNFCCC-CRFs (2021) that were accessed through Gütschow et al. (2021a). Net LULUCF CO2 emissions are included in panel (a), based on the average of three 
bookkeeping models (Chapter 2, Section 2.2), but are excluded in panels (b) to (e) due to a lack of country resolution.
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Figure 2.SM.14 | Total annual anthropogenic GHG emissions by major economic sector and their underlying trends by region. Panel (a): Trends in total 
annual anthropogenic GHG emissions (in GtCO2-eq yr–1) by major economic sector. Panel (b): Trends in total annual anthropogenic GHG emissions (in GtCO2-eq yr–1) by 
major economic sector and region. Panels (c) and (d): Largest sub-sectoral changes in GHG emissions for the reporting period 1990–2019 in relative (% annual change) and 
absolute terms (GtCO2-eq). Emissions are converted into CO2-equivalents based on global warming potential with a 100-year time horizon (GWP100) from IPCC’s AR6. Based 
on Lamb et al. (2021); Data: Crippa et al. (2021); Minx et al. (2021). 
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