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12.SM.1 Detailed Explanation of the Data on 
Costs and Potentials in Section 12.2

12.SM.1.1 Introduction

In this Supplementary Material, background information is 
provided on the way the data on costs and potentials has been 
synthesised. Section  12.SM.1.2 provides information on how the 
extended Table  12.4 on costs and potentials of mitigation options 
was constructed using the input of the sectoral chapters and 
other information. Section  12.SM.1.3 provides information on the 
construction of Figure SPM.7 in the Summary for Policymakers.

12.SM.1.2 Data on Emission Scenarios and Mitigation 
Potentials (Table 12.4)

Energy sector

For the energy sector, the starting point for determining the mitigation 
potential was UNEP (2017), which was also published as Blok et al. 
(2020). This assessment was checked for key updates that substantially 
influence the ranges as reported in these literature sources.

The reference emissions scenario in the World Energy Outlook 2016 
report (IEA 2016) was compared to the preferred reference scenario 
for this assessment, World Energy Outlook 2019 (IEA 2019b). There is 
limited change in the overall parameters between the World Energy 
Outlooks of 2019 and 2016. Total electricity production in 2030 was 
marginally higher (0.6%) and the average fossil fuel emissions factor 
2.4% lower in WEO2019 as compared to WEO2016. A substantially 
higher contribution of wind and solar energy was seen in the reference 
scenario (Current Policies), leading to a reduction of the remaining 
potential by 0.50 and 0.95 gigatonnes of carbon dioxide (GtCO2) for 
wind and solar respectively. In contrast, the contribution of nuclear 
energy in the reference scenario has become smaller. For all other 
low-carbon sources the differences are small.

Estimating the potential deployment of low-carbon electricity 
sources by 2030 is difficult. The technical potentials are significant, 
and for all technologies are higher or much higher than the potentials 
identified by UNEP (2017). In many cases, the technical potential of 
electricity-generating technologies is even much higher than the 
anticipated electricity demand projected for 2030, see for example 
recent assessments for solar energy (Creutzig et  al. 2017; Dupont 
et al. 2020), onshore wind energy (Bosch et al. 2017), offshore wind 
energy (Bosch et al. 2018) and hydropower (Hoes et al. 2017).

There are few studies that explicitly explore the limits of deployment 
of technologies by 2030. For solar energy a group of solar energy 
experts (Haegel et  al. 2019) showed the feasibility of achieving 
10 terawatt (TW) of installed photovoltaic energy capacity in 2030, 
which is higher than the highest end of the 8.2 TW estimate in the 
UNEP (2017) report. Bogdanov et  al. (2019) provide a somewhat 
lower contribution of solar energy in 2030 (installed power 7 TW), 
but a somewhat higher contribution from wind energy than 
assumed before, at 3.3 TW. Combined with a substantially higher 

full-load equivalent hours of wind turbines (3200 hours yr–1 versus 
2600 hours yr–1), this leads to a higher production and associated 
avoided emissions compared to UNEP (2017). Combined with 
the  higher reference levels for solar and wind energy, this brings 
the achievable mitigation potential range for 2030 for solar energy 
to 2 to 7 GtCO2 (from 3 to 6 GtCO2) and for wind energy to 2.1 to 
5.6 GtCO2-eq (from 2.6 to 4.1 GtCO2).

Regarding nuclear energy, IEA (2019a) explores the role of lifetime 
extensions of nuclear power plants. The report shows that an extra 
80 GW can stay online by 2030, which would be equivalent to about 
0.4 GtCO2 of avoided emissions. This is well below the potential 
estimate in UNEP (2017) and could be part of the realisation of that 
potential, compensating for the fact that the potential for new-built 
power plants in the timeframe until 2030 will gradually decrease 
given the long lead times required to get nuclear power plants online 
(IEA 2019b). Based on these considerations, the potential for nuclear 
energy is not updated from the figures presented in UNEP (2017).

For other low-carbon electricity sources, no studies were found that 
led to a downward or upward revision of the potentials identified 
in UNEP (2017).

The mitigation cost data per electricity generation technology were 
provided in Chapter 6. The starting point was electricity production cost 
data for 2019 and 2030 provided by the International Energy Agency 
(IEA) for four marker regions: Asia (China), Asia (India), Europe, and 
North America. For these regions, mitigation costs were  calculated 
for two scenarios, the first in which coal-fired power  plants are 
replaced,  and the second in which natural-gas fired power plants 
are replaced, leading to a total of eight cases. Although these cases 
cannot be used to determine an accurate global distribution of 
mitigation costs, they are considered sufficiently representative for 
the range of mitigation costs for each technology.

For onshore wind and utility solar energy, the mitigation costs 
end up in the negative cost bins, if we compare the full levelised 
cost of electricity (LCOE) of these technologies with the full LCOE 
of conventional power production. However, if solar and wind 
energy develop rapidly, they will not necessarily replace existing 
capacity, but rather just avoid the fuel and other operational costs 
of existing power plants. Taking that into account, the mitigation 
costs will become higher. In many cases negative costs still occur, 
but also costs in the ranges of 0 to 50 USD tCO2-eq–1 (for wind) 
and 0 to 100 USD tCO2-eq–1 (for solar) occur. This full range of cost 
bins is used, noting that the majority of the potential will be in the 
negative cost bin. The latter is also confirmed by the analysis of the 
historic development of electricity production costs in Chapter  6 
(Figure SPM.5). Offshore wind currently is more expensive, but also 
here negative costs are expected by 2030. For nuclear energy, costs 
can vary widely, largely region-dependent, the cases end up in the 
cost bins ranging from negative to over 100 USD tCO2-eq–1. For 
bioenergy, carbon capture and storage and bioenergy combined with 
carbon capture and storage (BECCS), mitigation costs virtually all end 
up in the range of 50 to 200 USD tCO2-eq–1. For hydropower and 
geothermal, energy costs in the range of 0 to 100 USD tCO2-eq–1 are 
assumed. It should be stressed that costs vary widely depending on 
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local and regional conditions (see also Section 6.4.7), but the cost 
ranges presented here are considered to represent how the various 
technologies compare in mitigation costs, along with the variability 
per technology.

Methane emission reductions (excluding AFOLU)

Data for methane (CH4) emissions reductions from coal, oil and 
natural gas operations, solid waste and wastewater were provided 
by three organisations: the International Institute for Applied 
Systems Analysis (IIASA), the Netherlands Environmental Assessment 
Agency PBL and the US Environmental Protection Agency (EPA). For 
oil and gas, data from the IEA were also used. In this analysis, as 
far as possible global warming potentials (GWPs) as established in 
the Sixth Assessment Report are used: 27 for biogenic methane and 
28.9 for fossil methane (Cross-Chapter Box 2 in Chapter 2).

The analysis by IIASA is reported in Höglund-Isaksson et al. (2020). 
Data were provided by Mrs Lena Höglund-Isaksson (most recent 
version on 27 October 2021). The data were reported in EUR tCO2

–1 
and allocated to USD tCO2

–1 cost bins using a USD to EUR ratio of 0.86.

The analysis by the Netherlands Environmental Assessment Agency 
PBL is reported in Harmsen et  al. (2019a). Data were provided by 
Mr  Mathijs Harmsen in Excel format (1 February 2021), see also 
Harmsen et  al. (2019b). Cumulative relative emissions reduction 

potentials were provided. The relative emissions reductions were 
applied to the Shared Socio-economic Pathway 2 (SSP2) baseline 
provided with the PBL dataset and subsequently organised in cost bins.

The analysis by the United States Environmental Protection Agency is 
reported in US EPA (2019). Data were downloaded via the Non-CO2 
Greenhouse Gas Data Tool (US EPA 2021), which provides cumulative 
cost data, and organised in cost bins. The mitigation potentials were 
corrected for the GWPs used in AR6. However, as EPA originally uses 
a GWP of 25, there may still be a small mismatch over the cost bins.

Data from the IEA for oil and gas were downloaded from the 
Methane Tracker Database (IEA 2021). Costs are given in USD per 
British thermal unit (BTU), these were converted using a conversion 
factor of 21.5 kg methane per million BTU.

The results are shown in Table  12.SM.1.1. There are notable 
differences between the sources in mitigation potentials. There is 
however a fair agreement between the data sources as to whether 
mitigation potentials typically appear in lower or higher cost ranges. 
In the table, a ‘best estimate’ per cost bin is also presented, based 
on an average of the estimates. For coal, oil and gas, PBL and IIASA 
are each allocated half of the weight of the other sources, based on 
the observation that PBL relies heavily on IIASA for these sources. 
For the ‘less than zero’ cost bin, data from PBL were not taken into 
account as these potentials are already included in the baseline.  

Table 12.SM.1.1 | Methane mitigation potentials for the year 2030 for coal mining, oil and gas operations, waste and wastewater from four different 
sources. For comparison, the reference emissions are also given. A ‘best estimate’ per source is given in italics. Sources: see text.

Sector/ 
data source

Cost ranges (USD tCO2-eq–1) Total mitigation 
potential (GtCO2-eq)

Reference 2030 
emissions (GtCO2-eq)<0 0–20 20–50 50–100 100–200 >200

Coal

IIASA 0.06 0.22 0.05 0.02 0.00 0.00 0.36 1.21

EPA 0.01 0.64 0.02 0.01 0.00 0.00 0.68 0.91

PBL 0.15 0.02 0.03 0.00 0.00 0.20 1.28

Best estimate 0.04 0.41 0.03 0.02 0.00 0.00 0.50

Oil and gas

IIASA 0.56 0.19 0.20 0.05 0.00 0.00 1.01 2.88

EPA 0.12 0.23 0.03 0.01 0.29 0.00 0.67 1.78

PBL 0.41 0.04 0.29 0.00 0.00 0.74 3.28

IEA 0.26 1.30 0.06 0.00 0.00 0.00 1.61 2.15

Best estimate 0.31 0.61 0.07 0.06 0.10 0.00 1.15

Solid waste

IIASA 0.43 0.03 0.03 0.03 0.02 0.02 0.56 1.49

EPA 0.24 0.15 0.07 0.10 0.12 0.00 0.68 1.19

PBL 0.14 0.08 0.01 0.10 0.15 0.48 1.04

Best estimate 0.33 0.11 0.06 0.04 0.08 0.06 0.69a

Wastewater

IIASA 0.05 0.05 0.07 0.04 0.01 0.00 0.21 0.61

EPA 0.00 0.04 0.03 0.03 0.16 0.00 0.27 0.68

PBL 0.01 0.01 0.02 0.03 0.07 0.14 0.84

Best estimate 0.02 0.03 0.04 0.03 0.07 0.02 0.22

a This number is the summation over the cost bins and can be higher than all the values per institute because PBL is not taken into account for the negative bin.
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The uncertainty ranges are determined by the lowest and highest 
value per cost bin. Cumulative uncertainty ranges are based on 
cumulative values and are in relative terms substantially smaller.

Agriculture, forestry and other land-use (AFOLU) change

The data for agriculture, forestry and land-use change were obtained 
from Chapter  7 (Table  7.3), where potentials below a certain cost 
level are provided. These values were converted into cost bins in 
Table 12.4 by calculating the additional potential when going from 
one cost level to the next. The uncertainty ranges of the cost bin were 
scaled down proportionally from the cumulative values.

Buildings

The data for buildings were obtained from Chapter 9. A more extended 
overview than in Table 12.4, with a breakdown for developing and 
developed countries, can be found in Tables 9.SM.2 and 9.SM.3.

Transport

For the transport sector, the following assessment was made, partly 
based on information from Chapter 10.

Data for the technical options for passenger cars were taken from ICCT1 
(2019). The authors explore the potential of rapid further fuel economy 
technologies (50% reduction in per kilometre CO2 emissions for new 
passenger vehicles in 2030 compared to 2005) and fast adoption of 
electric vehicles (35% of sales in 2030). This share in new vehicle sales is 
comparable with what is assumed in Chapter 10 (30%) and estimated 
in BNEF (2021). For heavy duty trucks the reduction in per kilometre 
CO2 emissions for new vehicles is 35% in 2035 compared to 2005, 
and the share of electric vehicles sales is 19% in 2030. The emissions 
reduction in freight transport is comparable to the potential calculated 
in IEA (2020b). According to ICCT (2019) the fuel economy measures 
are cost effective, that is, negative costs per tonne of CO2 avoided. 
Electric light duty vehicles currently still are often more expensive over 
the lifetime than vehicles with internal combustion engines. Costs of 
batteries are falling rapidly (Section 2.5.3) and  it is expected that price 
parity with conventional vehicles is reached in the late 2020s (BNEF, 
2021), meaning that lifecycle benefits will already exceed costs prior to 
that date. This means that mitigation costs will be highly variable until 
2030, so no mitigation costs could be assigned to this technology. The 
same is valid for electric heavy duty vehicles.

Data for the impact of modal shifts in passenger transport are taken 
from ITDP and UC Davis2 (2015). They calculate that costs, both for 
the shift to public transport and the shift to cycling, are lower than 
for transport by passenger cars.

For aviation, limited estimates are available. Emissions reduction 
potentials (excluding biofuels) in the range of 0.12 to 0.32 GtCO2 
are reported (ICAO 2019; ICCT 2020; IEA 2020), but underlying 
assumptions are not very well documented.

1 Data were kindly provided by Zifei Yang, International Council on Clean Transportation, Washington DC, USA.
2 Data were kindly provided by Taylor Reich, Institute for Transportation and Development Policy, New York, USA.

For shipping, in Chapter  10 an emissions reduction potential of 
39% (range 30 to 56%) compared to business as usual is quoted 
(Section  10.6.4), which translates to 0.7 GtCO2, using an average 
business-as-usual emissions of approximately 1.8 GtCO2 (Bouman 
et  al. 2017). It is assumed that one-third of the potential is for 
biofuels, which are excluded here, as this is a separate category in 
this overview. The review study by Bouman et al. (2017) quotes earlier 
studies which found that ‘it is possible to improve energy efficiency 
and reduce emissions in a cost effective manner, either with zero 
costs or with net cost savings’, and so it is assumed that the potential 
will mostly be in the below-zero cost bin.

IRENA (2016) estimates that 10% of the fuels for the transport sector 
can be in the form of biofuels in 2030. For the calculation of avoided 
CO2 emissions, the approach in UNEP (2017) is used. Mitigation costs 
for transportation biofuels are uncertain. Transportation biofuels are 
currently mostly more expensive than regular fuels, but they could 
move closer to parity with regular fuels, especially if next generation 
biofuels are applied (Junqueira et  al. 2017; IEA Bioenergy 2020). 
Given this uncertainty, it can be expected that costs will end up in 
the range of 0 to 100 USD tCO2-eq–1, although the distribution over 
the cost bins is uncertain.

Industry

The data for industry were obtained from Chapter 11 (Sections 11.4.1 
and 11.4.2, and Figure 11.13). The reference shows an increase in 
CO2 emissions from 2017 to 2030 of 28%. For comparison, industrial 
final energy use increases by 24% in the Current Policies scenario 
of the World Energy Outlook 2019 (IEA 2019b) (no data on CO2 
emissions are available for the World Energy Outlook scenario). This 
suggests that the Chapter 11 reference emissions are slightly higher 
than in the World Energy Outlook (assuming no major fuel shifts in 
the Current Policies scenario).

Fluorinated gases

Data for fluorinated gas emissions reductions were taken from 
three sources. Data from IIASA are taken directly from Purohit 
and Höglund-Isaksson (2017). The analysis by the United States 
Environmental Protection Agency is reported in US EPA (2019). 
Data were downloaded via the Non-CO2 Greenhouse Gas Data 
Tool (US EPA 2021), which provides cumulative cost data, and were 
subsequently organised in cost bins. The analysis by the Netherlands 
Environmental Assessment Agency PBL is reported in Harmsen et al. 
(2019a), Data were provided by Mr Mathijs Harmsen in Excel format 
(1 February 2021), see also Harmsen et  al. (2019b). Cumulative 
relative emissions reductions were provided. The emissions reduction 
potentials for the various gases were summed together and 
subsequently organised in cost bins.

The results are presented in Table  12.SM.1.2. There are notable 
differences between the sources in mitigation potentials. There is, 
however, a fair agreement that most of the potential appears in 
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the lower cost ranges. In the table, a ‘best estimate’ per cost bin 
is also presented, using an average value per cost bin. For the ‘less 
than zero’ cost bin, data from PBL were not taken into account as 
these potentials are already included in the baseline. The uncertainty 
ranges are determined by the lowest and highest value per cost bin. 
Cumulative uncertainty ranges are based on cumulative values and 
are, in relative terms, substantially smaller.

Carbon dioxide removal options not treated previously in this 
Supplementary Material

The information for direct air carbon capture and storage and 
enhanced weathering is that reported in Section 12.3.

12.SM.1.3 Construction of Figure SPM.7 for the Summary 
for Policymakers

Figure SPM.7 is directly derived from Table  12.4, considering  
the following:

• The mid-range numbers were used. If no mid-range was provided, 
the average of the low and high extremes was selected.

• For the demand-side options in AFOLU the so-called feasible 
potential was used.

• Options for which no potential was estimated were excluded from 
Figure SPM.7, to avoid the impression that the potential is zero.

• For options stretching over more than one cost range, without an 
indication of the share of each cost range, a smooth transition 
between the colours was applied (this was done for the energy 
sector and the buildings sector, and for the option biofuels in 
transportation).

• For solar energy and wind energy, the notion that ‘the majority of 
the potential is in the negative cost bin’ is translated in the picture 
by putting 60% of the potential in that cost bin. The rest is evenly 
distributed over the other cost bins. As raised in the previous 
point, the transition between the cost bins was smoothed to 
avoid the impression of high precision over the cost bins.

• Uncertainty ranges were indicated with error bars. The error bars 
represent the uncertainty in the total potential per option. In 
most cases, the uncertainty range can be derived directly from 
Table 12.4. For AFOLU, the ranges presented in Table 7.3 for the 
options with costs less than 100 USD tCO2-eq–1 were used. For 
the emissions reduction of methane (excluding in AFOLU) and 

fluorinated gases, the lowest and highest potential cumulative 
potential found for the various estimates were used as the lowest 
and highest bound of the error bars presented.

12.SM.2 Feasibility Assessment of DACCS, 
Enhanced Weathering, Ocean 
Fertilisation and ‘Blue Carbon’ 
As Presented in Section 12.3.1.4

The following tables include the line of sight on which the feasibility 
assessment of the carbon dioxide removal methods (direct air 
carbon capture and storage (DACCS), enhanced weathering (EW), 
ocean fertilisation and ‘blue carbon’) was based, presented in 
Section  12.3.1.4, Figure  12.4. The identification of barriers and 
enablers of the deployment of these carbon dioxide removal 
methods is organised according to six dimensions of feasibility, 
each comprised of a number of indicators (Annex II.12): geophysical 
feasibility (Table  12.SM.2.1), environmental-ecological feasibility 
(Table  12.SM.2.2), technological feasibility (Table  12.SM.2.3), 
economic feasibility (Table  12.SM.2.4), socio-cultural feasibility 
(Table 12.SM.2.5) and institutional feasibility (Table 12.SM.2.6). The 
tables also provide an overview of the factors affecting the feasibility 
of DACCS, EW, ocean fertilisation and ‘blue carbon’ and how they 
differ across context (e.g.,  region), time (e.g.,  2030 versus 2050), 
and scale (e.g.,  small versus large). See Section  6.4, Annex II.11 
and Annex II.12 for the full methodology adopted for assessing the 
feasibility of mitigation response options, including the descriptions 
of the indicators. For ease of reference note that the level of 
evidence is denoted as LE to mean “Limited Evidence”, NE to mean 
“No Evidence”, and NA to mean “Not Applicable”.

Table 12.SM.1.2 | Methane mitigation potentials for fluorinated gases for 2030 from three different sources. For comparison, the reference emissions are also 
given. A ‘best estimate’ per source is given in italics. Sources: see text.

Data source
Cost ranges (USD tCO2-eq–1) Total emissions reduction 

potential (GtCO2-eq)<0 0–20 20–50 50–100 100–200 >200

IIASA 0.50 0.90 0.10 0.00 0.00 0.00 1.50

EPA 0.01 0.55 0.01 0.07 0.05 0.00 0.70

PBL 0.58 0.42 0.20 0.05 0.00 1.25

Best estimate 0.26 0.68 0.18 0.09 0.03 0.00 1.24
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Table 12.SM.2.1 | Line of sight and role of context for indicators in the geophysical feasibility dimension for the assessment of direct air carbon capture 
and storage (DACCS), enhanced weathering (EW), ocean fertilisation and ‘blue carbon’.

Geophysical feasibility dimension

Indicator: Physical potential Indicator: Geophysical resources Indicator: Land use

Line of sight Role of context Line of sight Role of context Line of sight Role of context

DACCS
Fuss et al. (2018);  
Breyer et al. (2020)

Depends on where 
DAC is employed; 
Locational flexibility of 
DACCS can help identify 
a suitable region

Dooley (2013);  
Kearns et al. (2017)

Depends on where 
DAC is employed; 
Locational flexibility of 
DACCS can help identify 
a suitable region

Socolow et al. (2011); 
Smith et al. (2016);  
Fuss et al. (2018)

EW

Lackner et al. (1995); 
Renforth (2012); 
Taylor et al. (2016); 
Kelemen et al. (2019); 
Renforth (2019); 
Beerling et al. (2020)

Hartmann et al. (2013); 
Beerling et al. (2018); 
Strefler et al. (2018); 
Renforth (2019); 
Amann et al. (2020); 
Beerling et al. (2020)

Silicate rock formations, 
silicate rock dust 
stockpiles, construction 
and demolition waste

Beerling et al. (2020), LE

Existing croplands, 
co-deployable 
with afforestation/
reforestation/ 
BECCS/biochar

Ocean 
fertilisation

Bopp et al. (2013); 
Siegel et al. (2014); Trull 
et al. (2015); Boyd et al. 
(2019); GESAMP (2019)

Potential is high but 
90% of removed 
carbon is released back 
into the atmosphere 
within a year

Bopp et al. (2013); 
Siegel et al. (2014); Trull 
et al. (2015); Boyd et al. 
(2019); GESAMP (2019)

NA

Blue carbon

Sondak et al. (2017); 
Wilcox et al. (2017); 
NASEM (2019); Gattuso 
et al. (2021)

Depends on ecosystem 
type and areas covered

NA Gattuso et al. (2021)

(–) Coastal area is used, 
could be applicable for 
other purposes;  
(+) could be alternative 
for land-based CDR

Table 12.SM.2.2 | Line of sight and role of context for indicators in the environmental-ecological feasibility dimension for the assessment of direct air 
carbon capture and storage (DACCS), enhanced weathering (EW), ocean fertilisation and ‘blue carbon’.

Environmental-ecological feasibility dimension

Indicator: Air pollution
Indicator: Toxic waste, 

ecotoxicity and eutrophication
Indicator: Water quantity 

and quality
Indicator: Biodiversity

Line of sight
Role of 
context

Line of sight
Role of 
context

Line of sight
Role of 
context

Line of sight
Role of 
context

DACCS

Jacobson 
(2019); Deutz 
and Bardow 
(2021); Terlouw 
et al. (2021)

Deutz and 
Bardow (2021); 
Terlouw 
et al. (2021)

Smith et al. 
(2016); Fasihi 
et al. (2019); 
Fuhrman 
et al. (2020)

Depends on the 
technology; some 
technologies 
consume water 
while others 
generate it

NE

EW LE
Air-blown rock 
dust, reduction in 
NOx emissions

NE NE NE

Ocean 
fertilisation

NA

Fuhrman and 
Capone (1991); 
DFO (2010); 
Oschlies et al. 
(2010); Silver 
et al. (2010); 
Trick et al. (2010); 
Williamson  
et al. (2012)

Fuhrman 
and Capone 
(1991); DFO 
(2010); Oschlies 
et al. (2010); 
Williamson et al. 
(2012); Minx 
et al. (2018)

Fuhrman 
and Capone 
(1991); DFO 
(2010); Oschlies 
et al. (2010); 
Williamson et al. 
(2012); Minx 
et al. (2018)

Blue carbon
Howard et al. 
(2017); Hamilton 
and Friess (2018)

N’Yeurt et al. 
(2012); Howard 
et al. (2017); 
Hamilton and 
Friess (2018)

NE

Sondak et al. 
(2017); NASEM 
(2019); Gattuso 
et al. (2021)
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 Table 12.SM.2.3 | Line of sight and role of context for indicators in the technological feasibility dimension for the assessment of direct air carbon 
capture and storage (DACCS), enhanced weathering (EW), ocean fertilisation and ‘blue carbon’.

Technological feasibility dimension

Indicator: Simplicity Indicator: Technological scalability
Indicator: Maturity and technology 

readiness

Line of sight Role of context Line of sight Role of context Line of sight Role of context

DACCS Nemet (2019)
Fasihi et al. (2019); 
Nemet (2019); 
Realmonte et al. (2019)

Royal Society and Royal 
Academy of Engineering 
(2018); Larsen et al. 
(2019); NASEM (2019); 
IEA (2020)

EW
Renforth (2012); Strefler 
et al. (2018)

Straightforward, utilises 
existing technology

Beerling et al. (2020)

Upscaling is potentially 
straightforward, 
infrastructure (e.g., road, 
rail) already in place for 
handling harvests of 
equivalent mass

Royal Society and 
Royal Academy of 
Engineering (2018)

Components of 
technology are 
mature, including the 
application of minerals 
to land, however 
commercially operating 
supply chains for CO2 
removal are immature, 
longitudinal field-scale 
demonstrations 
are required

Ocean 
fertilisation

Blain et al. (2008); 
Williamson et al. (2012); 
Trull et al. (2015); 
GESAMP (2019)

Blain et al. (2008); 
Williamson et al. (2012); 
Trull et al. (2015); 
GESAMP (2019)

Williamson and Bodle 
(2016); GESAMP (2019)

Blue carbon
Sondak et al. (2017); 
NASEM (2019);  
Gattuso et al. (2021)

Depends on ecosystem 
type and areas covered

Sondak et al. (2017); 
NASEM (2019);  
Gattuso et al. (2021)

Depends on ecosystem 
type and areas covered

Sondak et al. (2017); 
NASEM (2019);  
Gattuso et al. (2021)

Depends on ecosystem 
type and areas covered

Table 12.SM.2.4 | Line of sight and role of context for indicators in the economic feasibility dimension for the assessment of direct air carbon capture 
and storage (DACCS), enhanced weathering (EW), ocean fertilisation and ‘blue carbon’.

Economic feasibility dimension

Indicator: Costs in 2030 and long term Indicator: Employment effects and economic growth

Line of sight Role of context Line of sight Role of context

DACCS

Sinha et al. (2017); Fuss et al. (2018);  
Keith et al. (2018); NASEM (2019);  
McQueen et al. (2021); 
Shayegh et al. (2021)

Learning could bring down the costs 
substantially, which depends on the 
deployment scenario

Larsen et al. (2019)

EW
Most accurate costs so far 
from Beerling et al. (2020)

Developed countries: 
160–190 USD tCO2–

–1 removed; 
developing countries cheaper: 
55–120 USD tCO2

–1

NE
Potential to increase employment 
in mining, transport sectors

Ocean 
fertilisation

Boyd (2008); Denman (2008); Harrison 
(2013); Jones (2014); Minx et al. (2018); 
Gattuso et al. (2021)

Depends on nutrient production and 
its delivery to the application area, 
but currently cost is very uncertain 
and could be expensive

NE

Blue carbon
Siikamäki et al. (2012); Nelson (2013); 
Bayraktarov et al. (2016); Narayan et al. 
(2016); Gattuso et al. (2021)

Climate mitigation cost is very high, 
but cost effectiveness considering other 
ecosystem services could be very high

LE Potential to increase employment
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Table 12.SM.2.5 | Line of sight and role of context for indicators in the socio-cultural feasibility dimension for the assessment of direct air carbon capture 
and storage (DACCS), enhanced weathering (EW), ocean fertilisation and ‘blue carbon’.

Socio-cultural feasibility dimension

Indicator: Public acceptance Indicator: Effects on health and well-being Indicator: Distributional effects

Line of sight Role of context Line of sight Role of context Line of sight Role of context

DACCS
Bellamy et al. (2013); 
Cox et al. (2020)

Very few 
countries examined

NE NE

EW
Pidgeon and Spence 
(2017); Cox et al. (2020)

US and UK public 
support for limited trials 
with careful monitoring, 
public concern if it 
involved opening 
new mines

NE

Respirable dust means 
caution required during 
application, not a barrier 
to implementation

Beerling et al. (2018)

Ocean 
fertilisation

Minx et al. (2018); 
GESAMP (2019)

NA

Blain et al. (2008); 
Williamson et al. (2012); 
Trull et al. (2015); 
GESAMP (2019)

Blue carbon
Howard et al. (2017); 
Hamilton and 
Friess (2018)

Howard et al. (2017); 
Hamilton and 
Friess (2018)

Sondak et al. (2017); 
Bindoff et al. (2019)

Depends on 
available areas and 
suitable ecosystems

Table 12.SM.2.6 | Line of sight and role of context for indicators in the institutional feasibility dimension for the assessment of direct air carbon capture 
and storage (DACCS), enhanced weathering (EW), ocean fertilisation and ‘blue carbon’.

Institutional feasibility dimension

Indicator: Political acceptance
Indicator: Institutional capacity and 

governance, cross-sectoral coordination
Indicator: Legal and 

administrative feasibility

Line of sight Role of context Line of sight Role of context Line of sight Role of context

DACCS
Meckling and Biber 
(2021)

NE NE

EW Cox and Edwards (2019)

On-climate co-benefits 
may be valuable in terms 
of the policy ‘demand 
pull’ for CDR

LE

NA:  All components 
of the supply chain 
are already practised 
commercially

May not be limiting for 
natural silicate rock 
given existing protocols 
for fertiliser, potentially 
limiting for alkaline 
wastes/by-products

Ocean 
fertilisation

Minx et al. (2018); 
GESAMP (2019)

Minx et al. (2018); 
GESAMP (2019)

Minx et al. (2018); 
GESAMP (2019)

Blue carbon Kuwae and Hori (2019)
Nelson (2013);  
Kuwae and Hori (2019)

Nelson (2013);  
Kuwae and Hori (2019)
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12.SM.3 The Link Between Co-benefits and 
Adverse Side Effects of Mitigation 
Actions and the SDGs

The following tables (Tables  12.SM.3.1 and 12.SM.3.2) present 
examples of the information used in the construction of Figure 12.9. 
Table 12.SM.3.1 provides examples of mitigation actions that fall into 
the groups of actions shown in Figure 12.9 in the different sectors. 
Note that the mapping is intended to be illustrative and is not 
intended to be exhaustive.

Table 12.SM.3.1 | Examples of mitigation actions in the different sectors.

Types of mitigation actions Examples of sector application

A. Energy efficiency

Energy: Reducing the auxiliary load of fossil and renewable power stations

Transport: Advances in vehicle technologies to make them more fuel efficient such as vehicle lightweighting, accessory load management, 
powertrain systems optimisations, and aerodynamics (Kammen and Sunter 2016)

Industry: Efficient motors and pumps, increased heat integration

Buildings: Thermal insulation and efficient heating, ventilation, and air conditioning systems (Cao et al. 2016; Kammen and Sunter 2016)

Urban systems: (Amado et al. 2016)

AFOLU: Increased efficiency in pumping

B. Fuel changes
Transport: Shift from liquid fossil fuels to biofuels, synthetic fuels produced from renewables and CO2 recycling

Industry: Shift to natural gas and bioenergy as sources of energy in industrial processes (Åhman et al. 2017)

C. Planning
Transport: Improved public transport systems

Urban systems: Including greenhouse gas (GHG) considerations in decisions surrounding urban development intensity (Wang et al. 2015)

D. AFOLU actions AFOLU: Wetland restoration, biochar and BECCCS (Smith et al. 2019)

E. Renewable energy

Energy: Shift from fossil fuels to the various renewable alternatives such as wind, solar, geothermal, wave and bioenergy options

Transport: Electric vehicles, biofuels in land and aviation transport (Mathiesen et al. 2015)

Industry: Use of bioenergy and other renewable sources for heating and cooling (Fais et al. 2016), producing hydrocarbons in processes based 
on renewable electricity (e.g., methane from power-to-gas conversion) (Åhman et al. 2017)

Buildings: Distributed/embedded renewable energy technologies coupled with smart grids (Cao et al. 2016)

Urban systems: Urban solar thermal energy, for space and domestic water heating (Kammen and Sunter 2016)

AFOLU: Solar PV for pumping, solar energy in greenhouses (Hassanien et al. 2016)

F. Feedstock change Industry: Replacing fossil feedstock with biomass in the petrochemicals industry (Åhman et al. 2017)

G. Process change
Industry: Producing virgin steel without process-related emissions through the introduction of new concepts such as process-integrated CCS 
and electrification (electrowinning) or bio-methane/hydrogen direct reduction (Åhman et al. 2017)

Table 12.SM.3.2 | Examples of co-benefits and adverse side effects, linked to different mitigation actions. The letters A to G link to the groups of mitigation 
actions shown in Table 12.SM.3.1.

Types of mitigation action Examples of co-benefits Examples of adverse side effects

I. Climate resilience

Improved insulation to reduce building energy demand also provides 
resilience to increasing temperatures (A).

Integrated planning of urban systems and infrastructure to mitigate 
emissions can incorporate climate resilience (C).

Afforestation and reforestation in the AFOLU sector can help biodiversity, 
reduce erosion and increase land productivity, thereby increasing climate 
resilience (D).

Distributed renewable energy infrastructure is less vulnerable to climate 
impacts than large centralised infrastructure (E).

II. Energy security

Energy efficiency results in a lower primary energy demand to achieve the 
same productive energy and hence increases energy security (A). Renewable 
energy reduces requirements for fossil inputs which may be in finite supply, 
imported, and/or vulnerable to policy, legislation and penalties on fossil fuels. 
This can contribute to greater energy security for a country or region (B).
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Types of mitigation action Examples of co-benefits Examples of adverse side effects

III. Investment, growth

More efficient energy use, switching to more efficient and locally sourced 
fuels and renewable energy options can be linked to greater resource 
efficiency and lower productive energy costs, and thus can have positive 
economic growth outcomes (A, B, E).

Depending on the application, switching to alternative fuels, 
alternative feedstocks and new processes may require significant 
technology development, high capital inputs and be more 
expensive, resulting in negative impacts on investment and 
growth (B, F, G).

IV. Employment
Job opportunities can be created in energy efficiency, AFOLU and renewable 
energy actions (A, D, E).

Job losses can be experienced during the transition to increased 
efficiency, alternative fuels and processing routes (A, B, D, E, G). 
The growing literature on ‘just transitions’ describes this concern 
in the energy sector.

Reducing deforestation could lead to reduced employment 
opportunities for those dependent on firewood for sale (D).

V. Biodiversity, ecosystem 
services, soil

Many alternative fuels, various actions in the AFOLU sector and renewable 
energy options require lower inputs of primary resources and thus have 
a lower impact on biodiversity, ecosystem services and soil (B, D, E).

VI. Water pollution
Alternative fuels, feedstocks and processes, actions in the AFOLU sector and 
renewable energy options may require lower water inputs and give rise to 
lower pollutant loads than the options they are replacing (B, E, D, F, G).

Although alternative feedstocks and processes may be less GHG 
intensive than current options, some could have potential for 
negative water pollution impacts (F, G).

VII. Air pollution
Alternative fuels, feedstocks and processes, and renewable energy options 
may give rise to lower air pollutant loads than the options they are replacing, 
which are often based on fossil fuels (B, E, F, G).

Although alternative feedstocks and processes may be less GHG 
intensive than current options, there is potential for greater local 
air pollution impacts. An example here is diesel vehicles which 
have lower GHGs but higher local air pollutants than petroleum 
ones (F, G).

VIII. Energy access

Energy efficiency, alternative fuels and renewable options can provide 
affordable and reliable energy supply to areas that are both currently served 
and unserved with electricity and other energy carriers (A, B, E).

Sustainable harvesting of forestry resources can contribute to energy access 
in communities reliant on these sources for supply (E).

Reducing deforestation could lead to reduced energy access for 
those dependent on collecting firewood from forests for use (D).

IX. Poverty alleviation

Energy efficient technologies can contribute to lower costs of energy, thereby 
increasing access and reducing poverty (A).

Afforestation can provide increased access to firewood and protection 
of diversity which can lead to positive economic outcomes (D) 
(Smith et al. 2019).

Renewable energy can help increased energy access which can contribute 
to poverty alleviation through access to lighting, pumping for agriculture, 
and so on (E).

Reducing deforestation could lead to reduced incomes 
and increased hardship for those dependent on firewood 
for use and sale (D).

X. Food and water security

Climate mitigation interventions in the AFOLU sector can help increase 
land productivity, reduce erosion, and protect biodiversity, which can all 
contribute to enhanced food and water security (D) (Smith et al. 2019).

Renewable energy technologies typically require lower water inputs 
than fossil fuel options, thereby increasing water availability for other 
uses and hence increasing water security (E).

XI. Health

Energy efficiency, alternative fuels and renewable energies can result 
in lower indoor and outdoor air pollution impacts, thereby contributing 
to positive health outcomes (A, B, E).

Agriculture mitigation options can include lower pesticide and fertiliser 
application rates, thereby reducing negative impacts on the health of 
surrounding communities (D).

XII. Noise, congestion etc
Alternative fuel vehicles and integrated urban planning approaches can help 
reduce noise and congestion (B, C).

XIII. Political stability, democracy
Integrated planning approaches which include climate 
mitigation considerations can support political stability and democracy 
in decision-making (C).

Sources include: Ürge-Vorsatz et al. (2014); Buonocore et al. (2016); Åhman et al. (2017); Kerr et al. (2017); Cohen et al. (2019); Forouli et al. (2019); Smith et al. (2019);  
Van de Ven et al. (2019); Karlsson et al. (2020).
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