
WG III contribution to the Sixth Assessment Report 
List of corrigenda to be implemented 

The corrigenda listed below will be implemented in the SM during copy-editing. 
 

 

CHAPTER 9 – Supplementary Material 
 

Document 
(Chapter, 

Annex, Supp. 
Material) 

Page 
(Based on 
the final 
pdf FGD 
version) 

Line Detailed information on correction to make 

Chapter 9 
Supplementary 
Material 

13 5-6 Table SM9.5 header row, replace "Country" with 
"Country/region" 

 



Final Government Distribution  Chapter 9 IPCC AR6 WGIII 

 

 SM9-1  Total pages: 69 

 1 

Chapter 9: Buildings – Supplementary material 2 

SM9.1 Supplementary information to Section 9.4 3 

Figure 9.11 shows a summary of the available technologies with climate change mitigation potential in 4 

buildings. Here, an extended list of such technologies is presented (Table SM9.1 to Table SM9.3). 5 

 6 

 7 
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Table SM9.1 Technology strategies contributing to sufficiency aspects. Adapted from  1 

Typology – technology Advantages Disadvantages Energy savings 

Value [%] Conditions/comments 

Passive strategies for walls 

Insulation materials - These materials can be used in the 

different building envelope parts (floor, 

wall, ceiling and roof) 

- They have a clear impact on improving the 

u-value of historic buildings (retrofitting) 

- Proper installation of insulation using 

energy-efficient materials reduces the heat 

loss or heat gain, which leads to the 

reduction of energy cost as the result 

- Conventional insulation materials are derived 

from petrochemical substances 

- New organic/sustainable materials are more 

expensive than conventional materials 

- If the insulation barrier is broken or without a 

correct design, thermal bridges may appear  

(Jedidi and Benjeddou 2018; Capozzoli et al. 

2013; Asdrubali et al. 2012) 

28-37% in winter  

45 – 64% in summer 

(Cabeza et al. 2010) 

Conventional insulation 

materials (PUR; MW, XPS) 

Mediterranean continental 

climate 

Experimentally tested  

Up to 30% of cooling 

energy reduction 

(Kameni Nematchoua et 

al. 2020) 

Conventional insulation 

materials + PCM 

Tropical climate 

Simulation 

Up to 38.83% reduction 

in the heating season 

(Annibaldi et al. 2020) 

Calcium silicate in heritage 

buildings 

Mediterranean climate 

Simulation 

Reduced energy losses 

by 57% and energy 

gains by 39% (Varela 

Luján et al. 2019) 

External Thermal Insulation 

Composite Systems (ETICS) 

in existing buildings 

Mediterranean continental 

climate 

Experimentally tested  

 

Trombe wall 

- Capability to be integrated with new 

technologies such as PV systems. 

- Reduction of building's energy 

consumption and decrease of moisture and 

humidity of interior spaces in humid 

regions. 

- The indoor temperatures are more stable 

than in most other passive systems. 

Prevention of excessive sunshine 

penetration into the inhabited space. 

- Installation is relatively inexpensive, 

where construction would normally be 

masonry, or for retrofitting existing 

buildings with uninsulated massive 

exterior walls. 

- The time delay between absorption of the 

solar energy, and delivery of the thermal 

- In regions with mild winters and hot summers, 

over heating problems may outweigh the 

winter benefits. 

- In a climate with extended cloudy periods, 

without employing the adequate operable 

insulation, the wall may become heat sink. 

- Trombe walls have low thermal resistance 

causing to transfer the heat flux from the 

inside to the outside of a building during the 

night or prolonged cloudy periods. 

- The amount of gained heat is unpredictable 

due to changes occur in solar intensity. 

- Trombe walls are aesthetically appealing 

20% (Bojić et al. 2014) Annual heating – 

Mediterranean climate  

Simulation 

18.2%  and 42.2%  

(Bevilacqua et al. 

2019b) 

Heating cold climate and 

cooling cold climate 

Simulation 
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energy to the living space can be used for 

night-time heating. 

- Trombe wall not only provides thermal 

comfort in the spaces connected to itself, 

but also contributes to the enhanced 

thermal comfort condition of adjacent 

spaces 

 

Vertical Greenery 

Systems (Green walls / 

Green facades) 

- Enhancing building aesthetics. 

- Improving the acoustic properties. 

- Reduction of heat gains and losses. 

- Ability to be integrated with existing 

buildings. 

- Providing a living environment for 

mosquitoes, moths, etc. 

- Requiring significant, and consistent 

maintenance measures. 

- Water drainage can be involved in 

complexities, and difficulties. 

58.9 % Green wall 

33.8 % Green facade 

(Coma et al. 2017) 

Cooling season warm climate 

Experimental study 

37.7% and 50% (Djedjig 

et al. 2015b) 

Hot climate 

Cold climate 

Cooling Savings  

Simulation 

12% (Chen et al. 2013b) Cooling savings 

Tropical climate 

Experimental 

20.5 % (Haggag et al. 

2014b) 

Cooling savings 

Hot climate 

Experimental 

 

PCM Wall systems 

- Availability at different temperatures 

- High volumetric energy storage 

- Low thermal conductivity 

- Flammability 

- Low thermal and chemical stability 

19 – 26% (Khoshbakht 

et al. 2016) 

Heating savings 

Mediterranean climate 

Experimental 

0 up to 29% (Saffari et 

al. 2017b) 

Heating savings in different 

climates  

Simulation 

9.28% (Seong and Lim 

2013b) 

Annual cooling savings  

Temperate climate 

Simulation 

 

AAC Walls (Autoclaved 

aerated concrete) 

- High volumetric energy storage 

- AAC walls are light weight concrete, and 

fire resistance. 

- Production cost per unit is higher than other 

ordinary concretes 

- It is not as strong as conventional concrete 

- The process of autoclaving concrete requires 

significant energy consumption 

7% (Radhi 2011) Annual  

Dry desert climate 

Experimental and simulation  

 

Double Skin Walls 

- Provision of sufficient visual connection 

with the surroundings 

- Facilitation of entering a large amount of 

daylight without glare 

- Offering attractive aesthetic values 

- Higher cost for designing, construction, and 

maintenance compared to traditional single 

facades 

- Increase weight of building structure 

- Risk of overheating during sunny days 

28-33% (Pomponi et al. 

2016b)  

Heating savings 

Cooling 

-- 

Average of reviews 
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- Promotion of natural ventilation and 

thermal comfort without any electricity 

demand 

- Acoustic insulation 

- Additional maintenance and operational costs 

- Increased airflow velocity inside the cavity 

- Potential issues associated to fire propagation 

8 – 9% (Andjelković et 

al. 2016) 

Heating 

Cooling 

-- 

Moderate climate 

-- 

Simulation 

51 %  and 16% 

(Khoshbakht et al. 2016) 

Annual savings of temperate 

and subtropical climate 

Simulation 

 

 

 

Passive strategies for roofs 

 

Cool Roofs 

- Reduction of the solar heat gain in the 

building increasing the solar reflectance of 

the roof surface 

- improvement of indoor and outdoor 

thermal conditions in summer and the 

decrease of the building energy demand 

- May also cause significant heating penalties 

during cold seasons 

- Not appropriate in cold climates 

0.3 – 27 % (Rosado and 

Levinson 2019b) 

Cooling season 

Warm climate 

Simulation 

17 – 25% 

(Costanzo et al. 2016b) 

Cooling season 

Mediterranean climate 

Simulation 

 

Roof ponds 

- Processes indirect evaporative cooing 

and/or radiant cooling are combined to 

provide passive cooling 

- They can also be used for passive heating 

in winter 

- Knowledge available on design and 

operation of the systems 

- Useful in arid and temperate climates; can 

be used in humid climates 

- Performance is not affected by building 

orientation 

- They do not increase indoor humidity 

- Increase weight of building 

- Only to be used in flat roofs 

- Affection of accessibility of roof for other uses 

- Potential leakage and contamination of water 

- Only useful for one- or two-story buildings 

30% (Spanaki et al. 

2014b)  

Annual savings 

Mediterranean climate 

Simulation  

 - Enhancing building aesthetics. 

- Improving the acoustic properties. 

- Reduction of heat gains and losses. 

- Increase weight of building 

- Maintenance  

7-16% (Coma et al. 

2016b) 

Cooling season 

Mediterranean climate 
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Green roofs - Ability to be integrated with existing 

buildings. 

- Reducing greenhouse gas emissions, air 

pollution and urban heat island effects in 

highly populated areas 

15.2% (Yang et al. 

2015) 

Cooling season 

Sub-tropical climate 

Experimental 

 1 

Cabeza and Chàfer 2020; Bojić et al. 2014; Bevilacqua et al. 2019a; Coma et al. 2017; Djedjig et al. 2015a; Chen et al. 2013a; Haggag et al. 2014a; Khoshbakht 2 

et al. 2017; Saffari et al. 2017a; Seong and Lim 2013a; Radhi 2011; Pomponi et al. 2016a; Andjelković et al. 2016; Rosado and Levinson 2019a; Costanzo et 3 

al. 2016a; Spanaki et al. 2014a; Coma et al. 2016a; Yang et al. 2015; Cabeza et al. 2010; Kameni Nematchoua et al. 2020; Annibaldi et al. 2020; Varela Luján 4 

et al. 2019; Jedidi and Benjeddou 2018; Capozzoli et al. 2013; Asdrubali et al. 2012 5 

  6 
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Table SM9.2 Technology strategies contributing to efficiency aspects. 1 

 2 

Typology – technology Advantages Disadvantages Energy savings 

Value [%] Conditions/comments 

Thermally activated 

building systems  

(TABS) 

- Reduce energy and cost operation - TABS with high thermal mass, as hollow core 

slabs or active concrete core, have significant 

slow response time. 

- The performance evaluations of real building 

systems using active slabs for ventilation are 

still rough limited 

17- 24% (Prívara et al. 

2011) 

- Ceiling radiant heating 

panels 

- Monitoring 

15% (Sourbron et al. 

2013)  

- Ceiling radiant heating 

panels 

- Simulation 

Heat Pumps - Low maintenance system 

- Low cost (ASHP) 

- Three technologies available (Air-source 

heat pump (ASHP), ground source heat 

pumps (GSHP), water source heat 

pumps (WSHP)) 

- High space requirements. 

- Complex control optimization algorithm to 

achieve maximum energy savings.  

- outdoor air-source evaporators demand 

defrosting 

17 – 25 % (ASHP) (Ling 

et al. 2020) 

 

- Case study 

 

10 % cooling (Peng et al. 

2020) 

--- 

-18.43% to 14.78% 

(Zhang et al. 2020b) 

--- 

60 % (Mi et al. 2020) - Last case coupled with 

PVT 

Organic Rankine Cycles - Significant energy recovery 

- Reduction of peak demand 

- Efficient as heat recovery system 

 

- High space requirements. 

- High capital cost 

 

41% in the cooling 

season, 63% in the 

heating season, 9% in 

the intermediate season 

(Dong et al. 2020) 

- High-rise apartment 

building 

Adiabatic/Evaporative 

condensers 

- Used in hot climates to enhance the heat 

rejection process by using the cooling 

effect of evaporation 

- Pre-coolers that draw ambient air 

through spray mist or porous 

humidification pads. Adiabatic 

evaporation of water in the entering 

airstream boosts the cooling capacity of 

direct expansion vapour-compression 

refrigeration, or reduces work load of the 

compressor 

- Frost formation is the most detrimental and 

significant problem that happens on the finned-

tube evaporator in air conditioning and 

refrigerating systems 

15-58% (Harby et al. 

2016) 

- Hot dry climate 

- Simulation 
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- Spray Mist Adiabatic Cooling 

Nominally Air-Cooled Condensers can 

work as retrofit of existing plant and 

equipment 

Smart ventilation - Reduces energy consumption and costs 

- Improve internal air quality 

- Sometimes energy overconsumption appear Up to 60%  (Liu et al. 

2019) 

--- 

Heat recovery system - No cross contamination depending of the 

type of heat recovery system 

- High efficiency, especially in temperate 

climates 

 

- Difficult to integrate depending of the type of 

heat recovery system 

- Larger than conventional air-handling units  

- Expensive both in capital and operation costs 

 

8% 

(Vakiloroaya et al. 

2014a) 

- Annual  

- Humid climate 

- Experimental 

60.6% 

(Mahmoud et al. 2020) 

- 4.8 COP of the 

proposed district 

heating 

Fuel cells - Can use hydrogen as energy fuel 

- Allows micro-CHP 

- Can be used in all climates 

- Reduced CO2 emissions 

- No noise during operation 

- High capital cost 

- High space requirements 

35% (Romdhane and 

Louahlia-Gualous 2018) 

- Single-family house in 

France 

- PEMFC 

15% (Gong et al. 2019) - PEMFC and SOFC 

Thermal energy storage - Significant reduction of electricity costs 

- Required smaller ducts 

- Increase in flexibility 

- Three technologies available (sensible, 

latent and thermochemical energy 

storage) 

- COP lower than conventional vapour 

compression systems 

- Expensive both in capital and operation costs 

- More complex systems 

12-37% (Alam et al. 

2019) (Omara and 

Abuelnour 2019) 

- Latent heat storage 

system  

19-26% (de Gracia et al. 

2013) 

30-50% (Navarro et al. 

2016a) 

 

- Active façade with 

PCM 

- Cooling and heating 

- Arid climates 

 

- Activated concrete slab 

with PCM 

- Cooling and heating 

- Arid climates 

 

21% to 26% in summer 

and from 41% to 59% 

during winter (Fallahi et 

al. 2010) 

 

- Sensible TES with 

concrete thermal mass 

with mechanical or 

natural ventilation 
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40-70% (Fallahi et al. 

2010) 

- Aquifer TES (ATES) 

- Large scale TES 

 

 

 

 

Strategies for cooling 

Direct evaporative 

cooling 

- Reduction of pollution emissions 

- Life cycle cost effectiveness 

- Reduction of peak demand 

- Cheap 

- Not good when ambient humidity >40% 

- Humidity Increase 

70% 

(Mujahid Rafique et al. 

2015) 

- Hot and dry climate 

 

Indirect evaporative 

cooling 

- Higher air quality than direct 

evaporative cooling 

- No humidity increase 

- More efficient than vapour compression 

systems 

- Installation and operation more complex than 

direct evaporative systems 

50% (Mujahid Rafique 

et al. 2015) 

- Hot climate 

 

Liquid pressure 

amplification 

- Significant energy savings - Energy savings potential limited to low ambient 

temperatures 

- More expensive than conventional vapour 

compression systems 

25.3% (Vakiloroaya et 

al. 2014b) 
-Simulation 

 

Ground-coupled - Less noise and GHG emissions than 

conventional vapour compression 

systems 

- Requirements of earth surface 

- Very high upfront costs 

- Expensive both in capital and operation costs 

50 % (Soltani et al. 

2019) 

- Ground-coupled heat pump 

system 

Chilled-ceiling - Less refrigeration use due to use of 

cooled water instead of chilled water 

- Unable to moderate indoor humidity 

- Risk of condensation at cold surface 

10% (Imanari et al. 

1999) 

- 70%  of  the  ceiling surface 

covered by radiant  ceiling  

panels 

Desiccant cooling - Humidity control is improved when 

coupled with conventional systems 

- Corrosive materials 

- Large response time 

- Crystallization of materials maybe a problem 

- Expensive both in capital and operation costs 

77% (Mujahid Rafique 

et al. 2015) 

-Dunkle cycle 

Ejector cooling - More simple installation, maintenance 

and construction than conventional 

compression systems 

- Need of a heat source >80ºC 

- Lower COP than conventional compression 

systems 

14.52% (Yu et al. 2020) -Simulation 

-R236ea Refrigerant 

Variable refrigerant 

flow 

- Efficient in part load conditions - Requirement of extra control systems 

- Cannot provide full control of humidity 
17% (Lee et al. 2018) -Simulation 

-Building temp set-point 

24ºC 
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Adapted from Prívara et al. 2011; Sourbron et al. 2013; Ling et al. 2020; Peng et al. 2020; Zhang et al. 2020b; Dong et al. 2020; Harby et al. 2016; Liu et al. 1 

2019; Vakiloroaya et al. 2014a; Mahmoud et al. 2020; Romdhane and Louahlia-Gualous 2018; Gong et al. 2019; de Gracia et al. 2013; Navarro et al. 2016b; 2 

Fallahi et al. 2010; Mujahid Rafique et al. 2015; Soltani et al. 2019; Imanari et al. 1999; Yu et al. 2020; Lee et al. 2018; Sarbu and Sebarchievici 2014; Irshad 3 

et al. 2019; Luo et al. 2017; Hohne et al. 2019; Zhang et al. 2019; Omara and Abuelnour 2019; Alam et al. 2019; Zhu et al. 2015; Cansevdi et al. 2010; Yu and 4 

Chan 2009; Jassim 2017; Cabeza and Chàfer 2020 5 

 6 

 7 

  8 
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Table SM9.3 Technology strategies contributing to renewables.  1 

 2 

Typology – technology Advantages Disadvantages Energy savings 

Value [%] Conditions/comments 

Geothermal energy or ground source 

heat pumps 

- Abundant and clean 

- Provides year around low cost heating 

and cooling using district energy 

technology 

- Not affected by climate 

- Expensive start-up and 

maintenance due to corrosion 

- Risk of toxic emissions 

- Subsidence, landscape change, 

and polluting waterways 

- Long construction time 

- Hard to assess resource 

- High cost 

cooling 30–50% 

 

heating 20–40% 

 

(Sarbu and Sebarchievici 

2014) 

Warm-climate region, 

Atlanta (cooling- 

dominated climate) 

-- 

Simulation 

 

 

Solar energy PV - Abundant supply 

- Less environmental damage compared 

to other renewable options 

- Passive and active systems with the 

option to also provide cooling during 

warmer seasons using absorption 

chillers 

- Medium – high cost depending of the 

system used 

- Storage and backup issues 

- Not constant supply 

 

 22 % (Irshad et al. 2019) Energy saving potential 

-- 

PV integrated with the TE 

(thermoelectric 

technologies) 

 

12 – 25 % (Luo et al. 

2017) 

Double skin façade using 

photovoltaic blinds (PV-

DSF) 

-- 

Changsha, 

Hunanprovince, China 

-- 

Summer conditions 

Solar thermal - Abundant and clean supply 

- Less environmental damage compared 

to other renewable options 

- Significant energy savings 

- Storage and backup issues 

- Not constant supply 

 

30% (Ahmadi et al. 

2021) 

 

Simulation 

HEAT4COOL 
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 Winter 75.8%, summer 

51.5%. 

(Hohne et al. 2019) 

Hybrid solar 

Electric water heater 

Biomass energy - Abundant with a wide variety of 

feedstock and conversion technologies 

- Indigenous fuel production and 

conversion technology in developing 

countries 

- Low cost 

- May release GHGs during 

biofuel production 

- Landscape change and 

deterioration of soil productivity 

94.98% (Zhang et al. 

2019) 

 

Hybrid solar-biomass 

 

16 – 94 % (Pardo et al. 

2020) 

 

Adapted from Irshad et al. 2019; Luo et al. 2017; Cabeza and Chàfer 2020 1 

 2 
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SM9.2 Supplementary information to Section 9.5 1 

Table SM9.4 presents the details to develop Figure 9.14.  2 

 3 

Table SM9.4 GHG mitigation potentials for categories of NT interventions for Residential (R) and Non-4 
Residential (NR) buildings. N.f., not found. 5 

Region Non-technological 

climate mitigation 

solution 

Residential 

buildings 

Commercial 

buildings 

References 

AF Africa Active management and 

operation 

n.f. 10% (McGibbon et al. 2014) 

 

DEV 

Developed 

Countries 

Active management and 

operation 

53% n.f. (Ivanova and Büchs 2020b; Cantzler 

et al. 2020; Harris et al. 2021a; Mata 

et al. 2020d; Dugast and Soyeux 

2019; Ellsworth-Krebs 2020b; 

Volochovic et al. 2012b; Sköld et al. 

2018b; Niamir et al. 2020; Faber et 

al. 2012; climate foundation 2018; 

Thomas et al. 2017) 

 Circular and sharing 

economy 

n.f. 15-75% 

 Flexible comfort 2-20% n.f. 

 Limited/sufficient comfort 

levels 

1-50% n.f. 

 Multiple or unspecified 

behavioural changes 

2-27% 8% 

 Passive management and 

operation 

5-6% n.f. 

 Social and organizational 

innovations 

3% 3% 

Worldwide Active management and 

operation 

5% n.f. (van Sluisveld et al. 2016; Ivanova 

and Büchs 2020; Cantzler et al. 

2020; Harris et al. 2021) 
 Circular and sharing 

economy 

40-81% n.f. 

 Limited/sufficient comfort 

levels 

3-25% n.f. 

 Multiple or unspecified 

behavioural changes 

1-30% n.f. 

 Passive management and 

operation 

20% n.f. 

 6 

 7 

  8 
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SM9.3 Supplementary information to Section 9.8 1 

Table SM9.5 summarizes the results of 17 studies from 12 different countries showing the price 2 

premium of energy efficient dwellings. 3 

 4 

Table SM9.5 Premium price for rent and sale in residential buildings with high energy performance 5 
and/or green features 6 

Ref Study Country  

From energy 

rating X to Y 

(Y/X) 

Impact of energy 

performance Comments 

    Sale Rent  

1 Tajani et al., 2018 Italy (Bari) A / [B,C,D,E,F] 27.9%  
Evaluation based on energy 

performance certificates    G / [B,C,D,E,F] -26.4%  

2 Ayala et al., 2016 Spain 

[A,B,C] / 

[D,E,F,G] 9.8%  

Evaluation based on energy 

performance certificates 

3 

Marmolejo-Duarte 

and Chen, 2019 Spain (Barcelona) A / G 7.8%  
Evaluation based on energy 

performance certificates    D / G 3.3%  

4 

Kahn and Kok, 

2014 US (California) 

[Green label] / 

[non-labelled 

homes] 5.0%  

Green labels considered 

comprise LEED, GreenPoint 

or Energy Star  

 Fuerst et al., 2015 UK (England) [A,B] / D 5.0%  

Evaluation based on energy 

performance certificates 

   C / D 1.8%  

5   E / D -0.7%  

   F / D -0.9%  

 Cajias et al., 2019 Germany A+ / D  0.9% 

Evaluation based on energy 

performance certificates 

   A / D  1.4% 

6   B / D  0.1% 

   C / D  0.2% 

   F / D  -0.1% 

   G / D  -0.3% 

   H / D  -0.5% 

 Hyland et al., 2013 Ireland A / D 9.3% 1.8% 

Evaluation based on energy 

performance certificates 

7   B / D 5.2% 3.9% 

   [F,G] / D -10.6% -3.2% 

8 Högberg, 2013 Sweden 

10% 

improvement in 

energy 

performance  4.0%   

9 Davis et al., 2015 UK (Belfast) B / D 28.0%  

Evaluation based on energy 

performance certificates 

   C / D 4.9%  

   G / D -2.0%  

10 Jensen et al. 2016 Denmark [A,B] / D 6.2%  Evaluation based on energy 

performance certificates after 

the advertising requirement 

implemented by 1 July 2010 

   C / D 5.1%  

   E / D -5.4%  
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   F / D -12.9%  

   G / D -24.3%  

11 Fuerst et al. 2016 Finland (Helsinki) [A,B,C] / D 1.5-3.3%  

Evaluation based on energy 

performance certificates. The 

lower value in estimated when 

a set of detailed 

neighbourhood characteristics 

are included. Results of 

models 2 and 3 are presented 

here. 

12 

Cadena and 

Thomson, 2015 US (Texas) 

Green 

designation / No 0.7%  

The models B, D, and F 

presented here incorporating 

as independent variable at 

least one green designation or 

green/energy efficient feature 

   

Green features / 

No 1.7%  

   

Energy efficient 

features / No 5.8%  

13 

Jayantha and Man, 

2013 Hong Kong 

Green 

certification / 

No certification 3.4-6.4%  

BEAM certification and GBC 

Award are used as the 

measurement of green 

residential buildings.  

14 

Brounen and Kok, 

2011 Netherlands A / D 10.2%  

Evaluation based on energy 

performance certificates 

   B / D 5.6%  

   C / D 2.2%  

   F / D -2.5%  

   G / D -5.1%  

15 Deng et al., 2012 Singapore 

Platinum / No 

certification 21.0%  

Evaluation of dwellings 

awarded with a Green Mark. 

   

[Gold plus, 

Gold] / No 

certification 15.0%  

   

Green mark / No 

certification 10.0%  

16 Zheng et al., 2012 China (Beijing) 

Green features / 

No 17.7% -8.5% 

Dwellings with green 

characteristics in relation to 

conventional ones. 

17 Koirala et al. 2014 US 

Existence of 

energy 

efficiency 

building energy 

codes / No  23.3% 

The existence of the codes 

IECC2003 

through IECC2006 for 

American households is 

evaluated in this study 

 1 

 2 

 3 

  4 
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SM9.4 Supplementary information to Section 9.9 1 

Box SM9.1 presents an example of a policy package, to complement, Section 9.9. 2 

 3 

START BOX SM9.1 HERE 4 

 5 

Box SM9.1 EU policy package for energy efficiency of buildings 6 

Buildings consume 40% of final energy in the EU and are responsible for 36% of the EU CO2 emissions 7 

(Renovation Wave, 2020). In the EU the majority of buildings are already built, with several buildings 8 

between 50 and 20 years old, i.e., built before energy performance requirements were part of building 9 

energy codes, therefore having poor energy performances. The current energy renovation rate is 1% per 10 

year, with many renovations only marginally improving the energy performances. At the current 11 

renovation rate, the target to decarbonise the building stock in the EU by 2050 will be largely missed. 12 

The EU has developed over the years a comprehensive policy package of several policy instruments, 13 

aiming at reducing energy consumption, integrating renewable energies and thus mitigating GHG 14 

emissions from buildings (Economidou et al. 2020).  15 

In 1992, a first EU law (Save Directive) encouraged EU Member States (MSs) to adopt energy 16 

performance standards in building energy codes, this resulted in mix action by MSs, with only a few 17 

adopting stringent energy performances requirements. To reinforce the action by MSs and align it, in 18 

2002 the EU adopted the Energy Performance Buildings Directive (EPBD, 2002), requiring MSs to 19 

adopt minimum efficiency performance standards for buildings according to a common methodology 20 

both for new and existing buildings, when undergoing major renovation (Bertoldi P. 2019). The EPBD 21 

is a regulatory measure, with its implementation left to individual MSs. This has resulted in very 22 

different levels of stringency among MSs. In addition, the enforcement of control on the application of 23 

the energy performance requirements is left to national authorities and finally delegated to local 24 

authorities, who may lack the technical knowledge or manpower to check compliance with legal 25 

requirements. This has resulted in low compliance with normative requirements in many MSs. The 26 

2002 EPBD has also introduce the obligation to show an energy performance certificate when a building 27 

is sold or rented (information policy) (Li et al. 2019a). In 2010, the EPBD was amended by introducing 28 

the requirements for MSs to set the national energy requirement for new and existing buildings at the 29 

cost-optimal level and providing a common methodology for calculating it (Zangheri et al. 2018; 30 

Corgnati et al. 2013). The 2010 EPBD introduced the requirement for all new buildings to be nearly 31 

zero energy (nZEBs) by 2021, however definitions of nZEB are again left to EU Member States, which 32 

have different requirements for energy consumption limits and contribution of renewables (D’Agostino 33 

and Mazzarella 2019; Attia et al. 2017; Grove-Smith et al. 2018; Economidou et al. 2020). In 20018 the 34 

latest amendment of the EPBD introduced the requirements for MSs to prepare a Long Term Renovation 35 

Strategies (LTRSs) with an overarching decarbonisation target of the national building stock by 2050. 36 

In late 2021 the Commission will propose a new amendment to align it with the new -55% GHG target 37 

for 2030 and the decarbonisation goal of 2050. 38 

The 2012 Energy Efficiency Directive (EED) requested MSs: to adopt smart meters and smart billing 39 

and to charge consumers on their real heating energy consumption; to remove the split-incentive 40 

barriers; to foster energy efficient procurement by public authorities; to renovate each year at least 3% 41 

of the building stock of central governments. Article 7 of the EED established the obligation for MSs 42 

to set up mandatory obligation for energy companies to save at least 1.5% of their energy sales by 43 

implementing energy efficiency actions in end-users, including measure on buildings (Fawcett et al, 44 

2019 or alternative policy measures delivering the same amount of energy savings (Rosenow and Bayer 45 

2017). The EED encourages the setting up of financing programmes for the renovation of buildings. 46 
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MSs have implemented a number of financial mechanisms such as low interest loans, grants, guarantees 1 

funds, revolving funds etc. (Bertoldi 2020). Moreover, the EU Regional and Cohesion Funds are also 2 

used by MSs for the renovation of existing buildings. Some of the instruments used at national level to 3 

finance the renovation of dwellings occupied by low-income families result from the auctioning of 4 

allowances under the EU Emissions Trading Scheme, which is used in some MSs. 5 

The EU has an overall binding economy-wide domestic emission reductions target of at least 55% by 6 

2030 compared to 1990 and, for sectors of the economy not covered by the EU Emission Trading 7 

System, the Effort Sharing Regulation (2018) set a target to reduce emissions by 30% by 2030 compared 8 

to 2005 (this target will include only buildings direct emissions), with specific mandatory targets for 9 

individual MSs.  10 

In addition, there is an overall mandatory EU energy saving target set at reducing primary energy by 11 

32.5% against a BaU scenario, each MSs must contribute to reaching this target (but no mandatory 12 

individual targets for MSs). As results, in order to contribute to the EU target, individual MSs have 13 

adopt a range of national policies and measures for the building sector in addition to the EU EPBD 14 

LTRSs requirements as described in the National Energy and Climate Plans of 2020.  15 

To complement measures for the overall performance of buildings, regulatory measures focuses on the 16 

building equipment and technical services such as air conditioners, boilers, lightings, domestic 17 

appliances. In the EU minimum energy performance requirements for appliances and equipment are 18 

adopted at EU level under the EcoDesign Directive (2005). The energy efficiency requirements are the 19 

same for all the MSs and now all the major building technical equipment are covered by dedicated 20 

regulation under the Ecodesign. As example the removal from sale of incandescent and halogen lamps 21 

has been implemented under the Eco-design Directive. 22 

In the EU over 10000 cities taking part in the Covenant of Mayors initiative (Palermo et al. 2020) have 23 

adopted measures to improve the energy efficieny of public and private as part of the city planning or 24 

city building permits. 25 

Despite the comprehensiveness of the EU policy package, the monitoring of the progress made in 26 

reducing GHG from the EU building stock shows that the EU would miss its buildings’ decarbonisation 27 

target for 2050. The following issues were identified as major obstacles to Europe’s decarbonisation 28 

strategy of the building stock. The inconsistencies between the overarching target of a decarbonised 29 

building stock by 2050 and the energy requirement in case of major renovation of existing buildings. 30 

Both requirements are included in the EPBD. As of today, there is enough evidence about the lock-in 31 

effect of the renovation requirements included in the EPBD. The complexity, and sometimes the 32 

impossibility, of bundling public finance targeting GHG mitigation of buildings, with private finance. 33 

The Smart Finance for Smart Building (SFSB) initiative addresses this issue only partially. The lack of 34 

rigorous MV&E for both buildings (including the Energy Performance Gap) and appliances 35 

performances, which reduce the level of expected savings. There is no concrete measure to avoid the 36 

direct rebound effect and the current energy prices are relatively low. In addition, there are no specific 37 

policies and measures at EU level to address energy sufficiency. Regulations and technical standards 38 

do not include the life cycle CO2 emissions in the performance of the buildings. The complexity of the 39 

governance structure at different levels (EU, National, Regional and Local), with many options left to 40 

individual MSs, for example the definition of Near Zero Energy Buildings. The complexity of managing 41 

several instruments, often dealt by different national ministries and departments (industry, environment, 42 

construction, urbanisation, etc.) and, finally, the disconnect between high-level EU targets and the lack 43 

of ambition of individual policies, which makes the decarbonisation of the EU building stock more 44 

challenging. The 2020 Renovation Wave Communication addresses the above issues, in particular on 45 

financing renovation of buildings. As indicated the planned revision of the EPBD and EED in 2021 will 46 

partly address the above shortcoming, by addressing the new 2030 target and climate neutrality at 2050. 47 

Moreover, the EU financing instrument for the post-Covid recovery, the “EU Next Generation”, has 48 
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earmarked funding for the climate transition, including building renovations. EU MSs have to prepare 1 

national Resilience and Recovery Plans. In addition, the EU launched the New Bauhaus Initiative, 2 

which aims to change and improve EU citizens daily life in buildings by creating a new lifestyle that 3 

matches sustainability, low carbon and affordability with good design. Finally the EU Commission has 4 

proposed to extend the EU Emission Trading Systems to buildings. 5 

END BOX SM9.1 HERE 6 

  7 
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SM9.5 Supplementary information to Section 9.9 1 

Table SM9.6 details the feasibility assessment presented in Figure 9.20.  2 

 3 

 4 

 5 

 6 
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Table SM9.6. Context and line of sight for the feasibility assessment of mitigation options in the buildings sector 1 

 Geophysical Dimension 

Mitigation Optionsa Physical potential Geophysical recourses Land Use 

Building design and 
performance [S] 

Not Applicable Not Applicable Not Applicable 

Change in construction 
methods and circular 
economy [S] 

It is expected that in advanced construction methods (e.g. BIM – Building Information Modelling, industrialization and rationalization, design for deconstruction/disassembly, digital fabrication and design for performance) there is a 
reduction in the consumption of raw materials and natural resources. Design for deconstruction/disassembly allows increasing the reuse potential of building materials and elements. Materials reuse avoid impacts related to the 
consumption of virgin resources and end-of-life wastes. This decreases pressure for geophysical resources and land use. 

Agustí-Juan et al. (2017), Agustí-Juan et al. (2017a), Ahmed and Tsavdaridis (2018), Alhumayani et al. (2020), Brambilla et al. (2019), Huang et al. (2021), Diyamandoglu and Fortuna (2015), Eckelman et al. (2018), Habert et al. (2020), 
Kuzmenko et al. (2020), González Mahecha et al. (2020), Saade et al. (2020), Santos et al. (2020), Soust-Verdaguer et al. (2017) (Cabeza et al. 2014; Geyer et al. 2016; Ingrao et al. 2014; Ortiz et al. 2009; Vadenbo et al. 2017; Junnila et al. 
2018; Mata et al. 2020a; L.K et al. 2020b) Cavalliere et al. (2019), Chau et al. (2017), Hong et al. (2015),  Ghayeb, Razak, and Sulong (2020), Kakkos et al. (2020),  Li and Zheng (2020), Navarro-rubio, Pineda and García-martínez (2019), Röck 
et al. (2018), Soust-Verdaguer, Llatas, and Moya (2020), Yu et al. (2021) 

Envelope improvement 
[E] 

Not applicable in historical and heritage buildings where modifications to 
facade are difficult / Transparent insulation materials (TIM)  have the 
advantage of allowing the use of daylight / Green Roofs enhance building 
aesthetics and reduce heat gains and losses / Thermal mass is not always 
beneficial in relation to thermal comfort and energy consumption / Phase 
change materials (PCM) reduce internal temperature fluctuations in 
buildings, providing better thermal comfort to occupants / Trombe walls are 
aesthetically appealing, but in regions with mild winters and hot summers, 
overheating problems may outweigh the winter benefits. 

Conventional insulation materials are derived from petrochemical substances but 
new sustainable insulation materials have been developed / To consider green 
roofs as an environmentally friendly technology, the selection of efficient and 
sustainable components is extremely important. Green walls are still controversial 
/ Improvements in thermal inertia can be achieved with the use of materials with 
high density, such as concrete or rammed earth or phase change materials (PCM) 
/ The process of autoclaving concrete requires significant energy consumption. 

Not Applicable 

(Cabeza et al. 2018; Cabeza and Chàfer 2020), (Sun et al. 2018a; Cabeza et al. 2020) (Lidelöw et al. 2019; Cascone et al. 2018; Pérez et al. 2014; Olsthoorn et al. 2017; Bhamare et al. 2019; Belussi et al. 2019; Omrany et al. 2016; Navarro 
et al. 2016a); (Aditya et al. 2017; Charoenkit and Yiemwattana 2016; Laborel-Préneron et al. 2016; Tatsidjodoung et al. 2013; Kalnæs Simen Edsjøand Jelle 2015; Shafigh et al. 2018; Irshad et al. 2019; Cascone et al. 2018) 

Heating, ventilation and 

air conditioning (HVAC) 

[E] 

High space requirements in buildings. NA, with the exception of CO2 storage, through CO2 based refrigerants. Not Applicable 

(Zhang et al. 2020a; Prívara et al. 2011; Ling et al. 2020; Dong et al. 2020; Peng et al. 2020; Gong et al. 2019; Mi et al. 2020) (Abas et al. 2014; Dilshad et al. 2020; Bamisile et al. 2019) 

Efficient Appliances [E] 

There are technical limitations to energy efficiency, but there is much room 

for improvement, especially in developing countries. 
Not Applicable Not Applicable 

(Singh et al. 2019; Saheb et al. 2018; González-Mahecha et al. 2019a; González Mahecha et al. 2020) 

Change in construction 

materials [E] 

Some low carbon construction materials are already used in civil construction. The physical availability of materials (e.g. wood, bamboo, bio-concretes, earth, 

concrete with limestone and supplementary cementitious materials and limestone calcined clay cement) is abundant, although there may be some regional 

scarcity depending on the scale of adoption. 

For bio-based materials, feedstock can be developed in degraded areas. 

However, land competition with agriculture, food and other industrial 

uses (e.g. cellulose) can happen. 

Peñaloza et al. (2016), Pomponi et al. (2020), Churkina et al. (2020), Soust-Verdaguer et al. (2020), Zea Escamilla and Habert (2014), Zea Escamilla et al. (2016), Escamilla et al. (2018), Chang et al. (2018), Ruggieri et al. (2017), Pittau et al. 

(2018), Rosse Caldas et al. (2020), Arrigoni et al. (2018), Ben-Alon et al. (2019), Alhumayani et al. (2020), Van Den Heede and De Belie (2012), Nakic (2018),  Cancio Díaz et al. (2017), Pillai et al. (2019) (L.K et al. 2020a; Teixeira et al. 2016; 

Cancio Díaz et al. 2017; Pillai et al. 2019) Fouquet et al. (2015), Berriel et al. (2016), Celik et al. (2015) 
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 Geophysical Dimension 

Mitigation Optionsa Physical potential Geophysical recourses Land Use 

Demand Side 

Management (active 

management 

operation, digitalization 

and flexible comfort 

requirements) [E] 

Not Applicable Not Applicable Not Applicable 

Renewable energy 

production [R] 
Large untapped potential for most technologies / Rural areas have a great 

potential for renewable energy sources.  
Most technologies not limited by materials. Not Applicable 

 (Capellán-Pérez et al. 2017; Calvert and Mabee 2015; Poggi et al. 2018) 

a [S] Sufficiency; [E] Efficiency; [R] Renewable Energy 

 1 

 Environmental-ecological Dimension 

Mitigation Optionsa Air pollution 
Toxic waste, ecotoxicity 

eutrophication 
Water quantity and quality Biodiversity 

Building design and 
performance [S] 

As a result of the reduced consumption of natural resources and reduced air pollution levels.  
Green roofs and walls, particularly if connected to other green spaces, 
enhance urban biodiversity. 

(Joimel et al. 2018; Mayrand and Clergeau 2018a; Sunikka-Blank et al. 2012)(Hui and Chan 2011) 

Change in construction 
methods and circular 
economy [S] 

The use of Building Information Modelling (BIM) together with the Life Cycle Assessment (LCA) methodology allows a faster, holistic and more assertive assessment of the potential environmental impacts of a building project, reducing 
impacts throughout the project’s life cycle. Advanced construction methods are expected to reduce the consumption of raw materials and natural resources and associated environmental impacts during the production of these materials. 
In addition, it is expected a decrease in waste generation. However, some trade-offs between environmental impacts can occur, depending on products/processes.  
Reduced environmental impact depends on solutions and materials. Potential rebound for reduced ownership. 

(Cabeza et al. 2014; Geyer et al. 2016; Ortiz et al. 2009; Mata et al. 2020a; Ingrao et al. 2014; Vadenbo et al. 2017; L.K et al. 2020b; Junnila et al. 2018) Agustí-Juan et al. (2017), Agustí-Juan et al. (2017a), Ahmed and Tsavdaridis (2018), 
Alhumayani et al. (2020), Brambilla et al. (2019), Huang et al. (2021), Diyamandoglu and Fortuna (2015), Eckelman et al. (2018), Habert et al. (2020), (Kuzmenko et al. 2020), González Mahecha et al. (2020), Saade et al. (2020), Santos et al. 
(2020), Soust-Verdaguer et al. (2017) (André and Jorge 2013; Volk et al. 2019; Amal et al. 2017; Mohit et al. 2020) (Ajayi et al. 2015; Schiller et al. 2018; Osmani 2012; Lu and Yuan 2013; Cossu and Williams 2015) (Zink and Geyer 2017) 

Envelope improvement 
[E] 

Eliminate major sources (both direct and indirect) 
of poor air quality (indoor and outdoor). 

As a result of the reduced consumption of natural 
resources and reduced air pollution levels.  

Reduced energy demand can lead to reduced water 
consumption for thermal cooling at energy production 
facilities.  

Reduced air pollution levels achieved by mitigation actions improves 
biodiversity.  

(MacNaughton et al. 2018; Levy et al. 2016; Balaban and Puppim de Oliveira 2017; Thema et al. 2017); (Mzavanadze 2018; Thema et al. 2017); (Holland et al. 2015; Fricko et al. 2016; McCollum et al. 2018); (Mayrand and Clergeau 2018b; 
Joimel et al. 2018; Hui and Chan 2011; Thema et al. 2017; Mzavanadze 2018) 
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 Environmental-ecological Dimension 

Mitigation Optionsa Air pollution 
Toxic waste, ecotoxicity 

eutrophication 
Water quantity and quality Biodiversity 

Heating, ventilation and 
air conditioning (HVAC) 
[E] 

Eliminate major sources (both direct and indirect) 
of poor air quality (indoor and outdoor).  

As a result of the reduced consumption of natural 
resources and reduced air pollution levels.  

Reduced energy demand can lead to reduced water 
consumption for thermal cooling at energy production 
facilities.  

Reduced air pollution levels achieved by mitigation actions improves 
biodiversity. 

(Thema et al. 2017; Levy et al. 2016; Balaban and Puppim de Oliveira 2017; MacNaughton et al. 2018) (Fricko et al. 2016; Holland et al. 2015; McCollum et al. 2018) (Thema et al. 2017; Mzavanadze 2018) (Ferreira et al. 2017) 

Efficient Appliances [E] 

Eliminate major sources (both direct and indirect) 
of poor air quality (indoor and outdoor).The 
promotion of improved cook-stoves and other 
modern energy-efficient cooking appliances, are 
of paramount importance to improve indoor air 
quality in several developing countries. 

Positive impacts as a result of the reduced 
consumption of natural resources and reduced air 
pollution levels. On the other hand, a switch to 
more efficient appliances could result in negative 
impacts from increased resource use, which can 
be mitigated by avoiding premature replacement 
and maximizing the recycling of old appliances  

Reduced energy demand can lead to reduced water 
consumption for thermal cooling at energy production 
facilities.  

Reduced air pollution levels due to mitigation actions improves 
biodiversity. 

(Rosenthal et al. 2018; Steenland et al. 2018; Goldemberg et al. 2018; Thema et al. 2017; Levy et al. 2016; Balaban and Puppim de Oliveira 2017; MacNaughton et al. 2018) (Thema et al. 2017; Mzavanadze 2018) (Fricko et al. 2016; Holland 
et al. 2015; McCollum et al. 2018) (Thema et al. 2017; Mzavanadze 2018) (Smith et al. 2016) 

Change in construction 
materials [E] 

Engineered wood/bamboo products normally use 
petroleum-based adhesives, which can release 
toxic gases (e.g. formaldehyde and Volatile 
Organic Compounds - VOCs).  
Life cycle assessment studies show that the 
production of raw earth materials is less polluting 
than conventionally used materials such as 
concrete, ceramics and steel, and production of 
concrete with supplementary cementitious 
materials (SCM) replacing cement or clinker is less 
polluting. 

Some biomass treatment processes uses toxic 
materials and substances. The use of fertilizers in 
forestry activities can increase eutrophication. 
Life cycle assessment studies show that the 
production of raw earth materials is less polluting 
than conventionally used materials such as 
concrete, ceramics and steel, and production of 
concrete with supplementary cementitious 
materials (SCM) replacing cement or clinker is less 
polluting. 

An increase in water demand can be observed during the 
forest activities. 

Normally monoculture production is encouraged and can put pressure on 
native forest areas. 

Peñaloza et al. (2016), Pomponi et al. (2020), Churkina et al. (2020), Soust-Verdaguer et al. (2020), Zea Escamilla and Habert (2014), Zea Escamilla et al. (2016), Escamilla et al. (2018), Chang et al. (2018), Ruggieri et al. (2017), Pittau et al. 
(2018), Rosse Caldas et al. (2020), Arrigoni et al. (2018), Ben-Alon et al. (2019), Alhumayani et al. (2020), Van Den Heede and De Belie (2012), Nakic (2018),  Cancio Díaz et al. (2017), Pillai et al. (2019), Widder (2017), Teixeira et al. (2016) 
(Heeren et al. 2015; Pauliuk et al. 2021a) (Harb et al. 2018; Xiong et al. 2019; Sotayo et al. 2020), Celik et al. (2015) 

Demand Side 
Management (active 
management 
operation, digitalization 
and flexible comfort 
requirements) [E] 

Support interventions can eliminate major 
sources (both direct and indirect) of poor air 
quality (indoor and outdoor). However, it should 
be taken into account that smart controls and 
connected devices result in increased electricity 
consumption. 

As a result of reduced consumption of natural 
resources and air pollution levels.  

Reduced energy demand can lead to reduced water 
consumption for thermal cooling at energy production 
facilities. Smart meters give the opportunity to monitor 
and reduce water consumption in households. 

Reduced air pollution levels achieved by mitigation actions improves 
biodiversity. 

(Thema et al. 2017; Levy et al. 2016; Balaban and Puppim de Oliveira 2017; MacNaughton et al. 2018) (Sovacool et al. 2020; B. Yang et al. 2019; International Energy Agency 2017) (Thema et al. 2017; Mzavanadze 2018); (Inetrnational Energy 
Agency 2017) (Holland et al. 2015; McCollum et al. 2018); (Fricko et al. 2016) (Creutzig et al. 2016; Jabir et al. 2018) (Beucker et al. 2016; Miara et al. 2014) 

Renewable energy 
production [R] 

Eliminate major sources (both direct and indirect) 
of poor air quality (indoor and outdoor).  

Not Applicable 

An upscaling of renewable energy systems can reduce 
water demand for thermal cooling at energy production 
facilities. Improved access to electricity is necessary to 
treat water at homes. In some situations switching to 
bioenergy could increase water use compared to existing 
conditions.  

Reduced air pollution levels achieved by mitigation actions improves 
biodiversity. Bioenergy production may have both positive and negative 
impacts on biodiversity. 

(Thema et al. 2017; Balaban and Puppim de Oliveira 2017; Rosenthal et al. 2018; Steenland et al. 2018; Goldemberg et al. 2018) (Rao and Pachauri 2017; Hejazi et al. 2015; Song et al. 2016; Fricko et al. 2016; Holland et al. 2015; McCollum 
et al. 2018) (Wu et al. 2018; Immerzeel et al. 2014; Correa et al. 2017; Mzavanadze 2018c) (Ürge-Vorsatz et al. 2016) 

a [S] Sufficiency; [E] Efficiency; [R] Renewable Energy 
  

 Technological Dimension 
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Mitigation Optionsa Simplicity  Technological scalability Maturity and technology readiness 

Building design and 
performance [S] 

Wide range of measures with different levels of simplicity. A 
straightforward approach to reducing emissions from materials and 
energy demand in new buildings is by building smaller, especially in 
developed regions. 

Limited by buildings’ stock lock in, in which case retrofitting may be 
necessary. 

Wide range of measures with different levels of maturity. 

(Grubler et al. 2018; Berrill and Hertwich 2021; Pauliuk et al. 2021b; Roca-Puigròs et al. 2020) Danny and Soo (2021), Kunwar, Cetin, and Passe (2021), Li et al. (2019), Rice (2020), Si et al. (2019), Singaravel, Suykens, and Geyer (2018),  
Gholami, Røstvik and Steemers (2021), Getuli and Bruttini (2021), Feng et al. (2021), Du (2021), Deng et al. (2020), Ge et al. (2020), Bomberg, Furtak, and Yarbrough (2017) (Hosseini et al. 2021)(Aimar and Foti 2021; Čurpek and Čekon 2022; 
Dalla Valle 2021; Vilar et al. 2020) 

Change in 
construction 
methods and circular 
economy [S] 

Many advanced construction methods are common and widespread, 
mainly in developed countries. There is a need for a change of thinking 
during the project design, especially for complex building design and 
shapes. Prescriptive standards need to be modified so that products and 
processes achieve the final performance required for a given 
situation/need. 
Circular solutions (reduced waste, materials reuse and recycling) have 
varying technological complexity. 

Construction methods can be applied for a building component, façade 
or to a whole building. However, it tends to be more difficult to apply to 
larger scale projects. 
Circular solutions are not yet implemented at scale. Requires improved 
design for flexibility and deconstruction, improved procurement and 
prefabrication and off-site construction, improved standardization and 
dimensional coordination, with differences among solutions. 

Some technologies are well known, but their market applicability varies from country to 
county. There are few projects using highly advanced construction methods (e.g. 
Building Information Modelling, design for deconstruction/disassembly, digital 
fabrication and design for performance). 
Technological improvements in circular economy are expected (waste reduction and 
management, recycling and materials and products upgrade), together with improved 
compatibility with existing design, tools and technologies.  

Agustí-Juan et al. (2017), Agustí-Juan et al. (2017a), Ahmed and Tsavdaridis (2018), Alhumayani et al. (2020), Brambilla et al. (2019), Huang et al. (2021), Diyamandoglu and Fortuna (2015), Eckelman et al. (2018), Habert et al. (2020), 
(Kuzmenko et al. 2020), González Mahecha et al. (2020), Saade et al. (2020), Santos et al. (2020), Soust-Verdaguer et al. (2017) (André and Jorge 2013; Amal et al. 2017; Volk et al. 2019; Mohit et al. 2020) (Ajayi et al. 2015; Osmani 2012; 
Schiller et al. 2018; Lu and Yuan 2013; Cossu and Williams 2015) (Osmani 2012; Amal et al. 2017; Mohit et al. 2020; André and Jorge 2013)(Ajayi et al. 2015; Niamir et al. 2017)(Volk et al. 2019) Cavalliere et al. (2019), Chau et al. (2017), Hong 
et al. (2015),  Ghayeb, Razak, and Sulong (2020), Kakkos et al. (2020),  Li and Zheng (2020), Navarro-rubio, Pineda and García-martínez (2019), Röck et al. (2018), Schmidt, Alexander, and John (2018),  Soust-Verdaguer, Llatas, and Moya 
(2020), Yu et al. (2021) (Schiller et al. 2018) 

Envelope 
improvement [E] 

There are different envelope measures with different levels of simplicity. 
Building integrated concepts (such as insulation or phase change 
materials) are very simple. Reducing infiltration is achieved by replacing 
windows and doors, and sealing cracks, the simplicity of this varies by 
building. Other concepts such as greenery systems can be more 
complicated. 

From a facade to a building to a multifamily house. 

Insulation is very well known technology, however sustainable materials need future 
research / A step forward is the use of transparent insulation materials (TIM) for building 
energy savings and daylight comfort / Vertical greenery systems are still controversial 
depending on the climate and materials  / Phase change materials can be organic or 
inorganic, each type with their advantages and disadvantages. 

(Wang et al. 2018; Sun et al. 2018b; Riley 2017; Raji et al. 2015; Drissi et al. 2019; Aditya et al. 2017; Pérez et al. 2014; Omrany et al. 2016; Tatsidjodoung et al. 2013; Belussi et al. 2019; Laborel-Préneron et al. 2016; Irshad et al. 2019; Shafigh 
et al. 2018); (Mavrigiannaki and Ampatzi 2016; Soares et al. 2013; Noro et al. 2014; Khadiran et al. 2016; Silva et al. 2016; Reddy et al. 2018; Wang et al. 2018; Sun et al. 2018b; Riley 2017) 

Heating, ventilation 
and air conditioning 
(HVAC) [E] 

Different levels of simplicity depending on the technology. Evaporative 
cooling systems have higher simplicity than heat pumps and ground-
coupled systems. 

It is widely implemented at all scales. For example vehicles, houses, 
buildings, warehouses, etc. 

It is a widely implemented technology. Efforts continue to be allocated to research and 
development to improve energy efficiency. 

(Harby et al. 2016; Mujahid Rafique et al. 2015; Soltani et al. 2019; Peng et al. 2020; Zhang et al. 2020a; Ling et al. 2020) (Chen et al. 2021; Cvok et al. 2020; Teja S and Yemula 2020; Sha and Qi 2020; Talkar et al. 2020) (Choe 1973; Lo Basso 
et al. 2021; Pahinkar et al. 2020; Husin et al. 2020; Hadjadj et al. 2020; Chen et al. 2021) 

Efficient Appliances 
[E] 

Simple efficiency improvements are available in many regions. However, 
increasing appliance efficiency can be complex in countries with already 
high efficient standards. 

Can be easily scaled up. 
Many efficient appliances are technologically mature. Moreover, efforts continue to be 
allocated to research and development to improve energy efficiency. 

(Himeur et al. 2020; Singh et al. 2019) (Wang et al. 2021; Mariano-Hernández et al. 2021; Kaur and Bala 2019; Rajagopal et al. 2019) (Ma et al. 2016; Singh et al. 2019) (Zhang et al. 2016; Mariano-Hernández et al. 2021) (Himeur et al. 2020; 
Singh et al. 2019; Cabeza et al. 2018) (Hopkins et al. 2020; Joshi et al. 2020) 
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 Technological Dimension 

Mitigation Optionsa Simplicity  Technological scalability Maturity and technology readiness 

Change in 
construction 
materials [E] 

Bio-concretes use available materials and similar infrastructure of 
conventional concrete production. However, more research is needed. 
Biomaterials are widely used and have a variety of applications in 
residential, commercial and industrial buildings. However, attention is 
needed for fire protection and biological durability. Other materials such 
as earth, concrete with limestone and supplementary cementitious 
materials and limestone calcined clay cement use available materials with 
adequate performance and similar infrastructure of Portland cement 
production. 

Biomaterials can be applied to furniture, façade and to the whole building 
in general. Bio-concrete can be used to produce construction elements 
that do not require high mechanical performance. Emissions from cement 
can be reduced by using alternative binders, electrifying kilns, using 
substitute cementitious materials, and reducing over specification of 
building elements. 

Some bio-based materials (e.g. wood and bamboo) are well known and widespread 
used. However, their applicability in varies from country to county. Some bio-concretes 
(e.g. hempcrete) are already available in the market. However, they are still not 
widespread in the construction industry. Other bio-concretes are still at the research 
phase. The use of limestone in large quantities still needs to be further researched. Earth 
materials and some supplementary cementitious materials are already used 
commercially, such as soil-cement bricks and fly ash, respectively. However, others are 
still at the research stage. 

Peñaloza et al. (2016), Pomponi et al. (2020), Churkina et al. (2020), Soust-Verdaguer et al. (2020), Zea Escamilla and Habert (2014), Zea Escamilla et al. (2016), Escamilla et al. (2018), Chang et al. (2018), Ruggieri et al. (2017), Pittau et al. 
(2018), Rosse Caldas et al. (2020), Arrigoni et al. (2018), Ben-Alon et al. (2019), Alhumayani et al. (2020), Van Den Heede and De Belie (2012), Nakic (2018),  Cancio Díaz et al. (2017), Pillai et al. (2019), Widder (2017), Teixeira et al. (2016) 
(Pamenter and Myers 2021) Berriel et al. (2016), Gursel, Maryman, and Ostertag (2016) 

Demand Side 
Management (active 
management 
operation, 
digitalization and 
flexible comfort 
requirements) [E] 

Ranges from very simple monitoring sensors, or simple concepts to smart 
cities. 

High potential for scalability. Simple measures can be easily upscaled via 
information campaigns and a high willingness to adopt in some regions. 
Nevertheless, cultural values and local physical conditions can affect the 
scalability of measures that affect comfort and well-being directly. 
Information and communication technologies, peer effects and rewards 
could help foster scalability; keeping in mind potential barriers such as 
perception of control, concerns over information sharing and privacy and 
expectations in terms of effort and benefits. 

The simple measures require no technology development, while more complex 
measures are already widely available, still with potential for improvement. 

(Osunmuyiwa et al. 2020; Dane G Kim DJ 2020; Sadeghi et al. 2016; TL 2020; Christidou et al. 2014); (Serrano 2021; Al-Shareefi et al. 2021; Khan 2019; Wan and Bai 2021; Pigliautile et al. 2021); (Miezis et al. 2016b) (Del Río Castro et al. 2021; 
Sabarish et al. 2021; Strenger and Frerich 2021; Ardito et al. 2021) (Gavrila Gavrila and de Lucas Ancillo 2021; Dornberger and Schwaferts 2021; Del Río Castro et al. 2021) (Spandagos et al. 2020) (Jensen et al. 2015) 

Renewable energy 
production [R] 

Most technologies are simple. However, supply of technical support at 
the local scale can be a barrier / Hybridization between several 
technologies can achieve better results both for energy production and 
power generation.  

Most technologies can be scaled up to most regions. 
Most technologies are mature.  Moreover, efforts continue to be allocated to research 
and develpment to improve. 

(Usman et al. 2020; Cabeza and Chàfer 2020) (Gonçalves et al. 2021; Montoya and Perea‐moreno 2020; Singh et al. 2020; Shahid 2018; Reindl and Palm 2020) (Guo et al. 2020; Ürge-Vorsatz et al. 2020) 

a [S] Sufficiency; [E] Efficiency; [R] Renewable Energy 

 1 

 Economic Dimension 

Mitigation Optionsa Costs in 2030 and long term Employment effects and economic growth 

Building design and 
performance [S] 

There is evidence of new buildings with very high performance relying on advanced design, such as net-zero 
energy buildings (NZEB), with lower investment costs than standard practices. These buildings are not yet 
universally cost-effective and often 0-10% more expensive than buildings built according to minimum energy 
performance standards. The incremental costs of these buildings are however expected to decline further.  

Limited Evidence. 

(Zinzi and Mattoni 2019; Onyenokporo and Ochedi 2019; Nocera et al. 2019; Morck et al. 2019; Köhler et al. 2018; Erhorn-Kluttig et al. 2019; Energetics 2016; D’Agostino and Parker 2018; Canes 2018; Ürge-Vorsatz et al. 2020) 
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 Economic Dimension 

Mitigation Optionsa Costs in 2030 and long term Employment effects and economic growth 

Change in 
construction 
methods and circular 
economy [S] 

Potential cost-competitiveness (lower life cycle costs, green/quality premium) for circular economy, but still 
uncertain to large-scale investors due to perceived higher investment costs. 

Construction is a labour intensive activity, which means there are potential positive effect along the value chain (job creation, 
business value, networking), including synergies with digitalization. 

(Ferreira et al. 2015; Ghisellini et al. 2018; Hart et al. 2019b; Schenkel et al. 2015; Vatalis et al. 2013; Witjes and Lozano 2016) (Patwa et al. 2021; L.K et al. 2020b) (Zinzi and Mattoni 2019; Onyenokporo and Ochedi 2019; Köhler et al. 2018; 
Erhorn-Kluttig et al. 2019; Energetics 2016; D’Agostino and Parker 2018; Ürge-Vorsatz et al. 2020; Nocera et al. 2019; Morck et al. 2019; Canes 2018) (L.K et al. 2020a) (Azcárate-Aguerre et al. 2018; Mokhlesian and Holmén 2012) (Debacker 
and Manshoven 2016; Witjes and Lozano 2016)  

Envelope 
improvement [E] 

There are many individual examples of cost-effective deep retrofits involving envelope improvement. 
However, few studies calculate the costs of deep retrofits at a large scale. Literature tends to agree that cost-
effective deep retrofits are not universally applicable for all cases and at a large scale, being one of the most 
expensive measures. Due to high upfront costs, the key factor determining feasibility is coupling the retrofit 
with business-as-usual improvement and applying an industrialized one-stop-shop approach. Given the long 
payback time, energy price dynamics and a discount rate play an especially large role. 

Positive and negative direct and indirect effects associated with lower energy demand and possible reductions in energy prices, 
energy efficiency investments, lower energy expenditures and fostering innovation. Improvements in labour productivity. 

(Ürge-Vorsatz et al. 2016; Mirasgedis et al. 2014; Alawneh et al. 2019; Bleyl et al. 2019; European Commission 2016; Niemelä et al.  2017; Mofidi and Akbari 2017; Saheb et al. 2018; Thema et al. 2017; McCollum et al. 2018) (Zuhaib and 
Goggins 2019; Zhang et al. 2021; Subramanyam et al. 2017b,a; Streicher et al. 2020; Stancioff et al. 2021; Semprini et al. 2017; Reiter et al. 2019; Paduos and Corrado 2017; Österbring et al. 2019; Novikova et al. 2018; Streicher et al. 2017; 
Mata et al. 2019, 2015; Markewitz et al. 2015; Ismailos and Touchie 2017; Holopainen et al. 2016; Grande-acosta and Islas-samperio 2020; D’Oca et al. 2018; Cabrera Serrenho et al. 2019; BAL KOÇYİĞİT et al. 2019; Akander et al. 2017; Nocera 
et al. 2019) 

Heating, ventilation 
and air conditioning 
(HVAC) [E] 

Cost-effectiveness depends on the HVAC technology and its maturity. It could range from very cost-effective 
to not cost-effective. Incremental costs of advanced HVAC such as heat pumps and those based on integrated 
renewables are expected to decline due to learning and market development. HVAC-related measures come 
with high upfront capital costs, which act as a barrier for stakeholders even if the investment is cost-effective 
in the long term. Given the long payback time, energy price dynamics and a discount rate play an especially 
large role. 

Positive and negative direct and indirect effects associated with lower energy demand and possible reductions in energy prices, 
energy efficiency investments, lower energy expenditures and fostering innovation. Improvements in labour productivity. 

(Alawneh et al. 2019; European Commission 2016; Niemelä et al. 2017; Saheb et al. 2018; Thema et al. 2017; McCollum et al. 2018; Ürge-Vorsatz et al. 2016; Mirasgedis et al. 2014; Bleyl et al. 2019; Mofidi and Akbari 2017) (William et al. 
2020; Vijay and Hawkes 2017; Seeley and Dhakal 2021; Rafique and Williams 2021; González-Mahecha et al. 2019b; Deetjen et al. 2021; Cruz et al. 2020; Calise et al. 2021; Alajmi et al. 2020; Afshari et al. 2014; Subramanyam et al. 2017b,a; 
Köhler et al. 2018; Energetics 2016; Akander et al. 2017; Ismailos and Touchie 2017; Grande-acosta and Islas-samperio 2020) 

Efficient Appliances 
[E] 

Efficient appliances are typically among the most cost-effective technologies. This is a key mitigation option.  
The risk is however that more efficient appliances may have large size and other advanced features that to 
some extent offsets the positive economic effects. 

Positive and negative direct and indirect effects associated with lower energy demand and possible reductions in energy prices, 
energy efficiency investments, lower energy expenditures and fostering innovation. Improvements in labour productivity. 
Expanding clean cooking in developing countries would increase the productive time for women and children that can be used 
for income generation or rest. 

(Alawneh et al. 2019; European Commission 2016; Niemelä et al. 2017; Saheb et al. 2018; Thema et al. 2017; McCollum et al. 2018; Ürge-Vorsatz et al. 2016; Mirasgedis et al. 2014; Bleyl et al. 2019; Mofidi and Akbari 2017) (Pedzi Makumbe, 
Manuela Mot, Marwa Moustafa Khalil 2017; Ren et al. 2021; Department of Environmental Affairs 2014; Prada-hernández et al. 2015; Subramanyam et al. 2017a,b; D’Agostino and Parker 2018; Energetics 2016; Churkina et al. 2020; Grande-
acosta and Islas-samperio 2020; González-Mahecha et al. 2019b; Alajmi et al. 2020) (Mills 2016; Galán-Marín et al. 2015; Mehetre et al. 2017; Bonan et al. 2017) 

Change in 
construction 
materials [E] 

There are only a few fragmented studies on the cost implications of the change in construction materials. Potential positive effect along the value chain (job creation and value added).  

(Winchester and Reilly 2020); (Churkina et al. 2020; Pomponi et al. 2020; (Nambiar 2019; Zea Escamilla et al. 2016) (Cabrera Serrenho et al. 2019; Zhang et al. 2021) 
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 Economic Dimension 

Mitigation Optionsa Costs in 2030 and long term Employment effects and economic growth 

Demand Side 
Management (active 
management 
operation, 
digitalization and 
flexible comfort 
requirements) [E] 

Demand side management measures have proved to be among the most cost-effective measures. Many of 
them (e.g. various sensors, controls, energy consumption feedback measures) are already mature and are 
typically very cost-effective. Many more are appearing such as advanced smart management systems or 
thermal and electric storages linked to fluctuating renewables. These are not yet always cost-effective, but 
literature tends to expect these solutions to become cost-effective due to learning and scale. 

Implementing digitalization to enhance energy efficiency of buildings creates new jobs, which are mainly upfront by nature. At 
the same time, the increased use of data, sensors, smart devices, and HighD printing could provide new businesses job 
opportunities in advanced manufacturing. Furthermore, the implementation of digitalization interventions to consumers and 
enterprises could create long-term jobs due to innovations and new technologies and increase the competitiveness and 
productivity of local enterprises. Flexible comfort requirements enhance economic dispatching of electric systems, resulting in 
lower energy prices and contributing to economic development. All interventions, create positive and negative direct and indirect 
effects associated with lower energy demand, possible reductions in energy prices and lower energy expenditures.  

(Saheb et al. 2018; Thema et al. 2017; McCollum et al. 2018); (Sovacool et al. 2020; Inetrnational Energy Agency 2017) (Huang et al. 2019; Sharda et al. 2021; Rashid et al. 2021; Nguyen et al. 2015; Duman et al. 2021; Costa and Soares 2020; 
Uchman 2021; Köhler et al. 2018; Seeley and Dhakal 2021; Alajmi et al. 2020; Afshari et al. 2014) (Deepak and Hussain 2015; Janhunen, Leskinen, and Junnila 2020; Stancioff et al. 2021; Schäuble, Marian, and Cremonese 2020; Energetics 
2016) (Subramanyam et al. 2017a; Prada-hernández et al. 2015) (Balaban and Puppim de Oliveira 2017a; Aryandoust and Lilliestam 2017; Mata, Korpal, et al. 2020; Stötzer et al. 2015) (Jabir et al. 2018) 

Renewable energy 
production [R] 

The cost-effectiveness of buildings-integrated renewable energy technologies varies. Such measures as roof-
top PVs have become cost-effective in several regions worldwide. Still in many locations, they remain 
expensive technologies. Learning curves are expected to bring them further down by 2030 and beyond. 

Positive and negative direct and indirect effects associated with lower demand for fuels and possible reductions in energy prices, 
renewable energy systems (RES) investments, improved energy access and fostering innovation. Improvements in labour 
productivity. In addition, electrification of remote rural areas and other regions that do not have access to electricity, through 
RES and microgrids, enables people living in poor developing countries to read, socialize, and be more productive during the 
evening, and it is also associated with greater school attendance by children. 

(Alawneh et al. 2019; European Commission 2016; Niemelä et al. 2017; Saheb et al. 2018; Thema et al. 2017; McCollum et al. 2018; Bleyl et al. 2019; Mofidi and Akbari 2017) (Fina et al. 2020; Lindholm et al. 2021; Parupudi et al. 2020; 
Vimpari and Junnila 2019a; Akander et al. 2017; Köhler et al. 2018; Sharda et al. 2021; Calise et al. 2021; Pedzi Makumbe, Manuela Mot, Marwa Moustafa Khalil 2017; Grande-acosta and Islas-samperio 2020; Alajmi et al. 2020) (Ürge-Vorsatz 
et al. 2016; Barnes and Samad 2018; Rao et al. 2016; Torero 2015) 

a [S] Sufficiency; [E] Efficiency; [R] Renewable Energy 

 1 

 Socio-cultural Dimension 

Mitigation Optionsa Public acceptance  Effects on health & wellbeing Distributional effects 

Building design and 
performance [S] 

May require retrofits of existing buildings. May require change in users 
preferences. Enhanced asset values of energy efficient buildings. Split 
incentives between tenants and landlords. 

As a result of the reduced consumption of natural resources and reduced air 
pollution levels. May improve buildings’ users’ quality of life. 

Limited Evidence 

(Lorek and Spangenberg 2019; Thomas et al. 2019; Fournier et al. 2019; Cohen 2021; Ellsworth-Krebs 2020b) 

Change in 
construction 
methods and circular 
economy [S] 

Although many stakeholders see advantages in new construction 
methods, especially in terms of sustainable construction, there are social 
barriers, such as information interaction between software, insufficient 
technical training for employees, cultural resistance, etc. 

Biomass based materials, such as wood and bamboo, has aesthetic 
advantages and brings the concept of biophilia. However, the preservatives 
and glues used in the production can bring health problems related to the 
presence of volatile organic compounds. 

Biomass based materials, such as wood and bamboo, can be developed in degraded 
areas and by socially vulnerable communities. 

(Olawumi et al. 2018; Oesterreich and Teuteberg 2019; Huang et al. 2021); (Mata et al. 2020a; Patwa et al. 2021) (Harb et al. 2018; Xiong et al. 2019; Sotayo et al. 2020; Zea Escamilla and Habert 2014;  Escamilla et al. 2018; Chang et al. 
2018b); (Ferreira et al. 2015; Hart et al. 2019; Schenkel et al. 2015; Vatalis et al. 2013; Witjes and Lozano 2016; L.K et al. 2020b; Ghisellini et al. 2018) (Winchester and Reilly 2020; Pomponi et al. 2020) (L.K et al. 2020a) (Moreno et al. 2016; 
Park et al. 2010; Celik and Attaran 2011; Bueren and Broekhans 2014; Zaeri et al. 2016)  
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 Socio-cultural Dimension 

Mitigation Optionsa Public acceptance  Effects on health & wellbeing Distributional effects 

Envelope 
improvement [E] 

Perceived as increased comfort and status, with limited concerns for 
heritage or aesthetic values in regions with higher living standards. Split 
incentives between tenants and landlords. 

Health benefits through better indoor air quality, energy/fuel poverty 
alleviation, better ambient air quality and alleviation of the heat island effect. 
Envelope improvement with inadequate ventilation may lead to sick building 
syndrome symptoms.  

Result in lower energy bills, avoiding the “heat or eat” dilemma, alleviating 
energy/fuel poverty and improving energy security. Furthermore, these interventions 
have positive impacts to the energy systems, by improving the primary energy 
intensity of the economy and reducing dependence on fossil fuels, which for many 
countries are imported. 

(Abreu et al. 2019; K 2018; Bright et al. 2019; Curtis et al. 2017; Friege 2016; Kim et al. 2019; Lilley et al. 2017; Mortensen et al. 2016; Tam et al. 2016a; Tsoka et al. 2018; Zuhaib et al. 2017; Allcott and Greenstone 2012; Azizi S Nair T 2019; 
García-López and Heard 2015; Howarth and Roberts 2018; Ketchman et al. 2018; Ozarisoy and Altan 2017; Reindl and Palm 2020; Miezis et al. 2016) (Payne et al. 2015; Tonn et al. 2018; Liddell and Guiney 2015; Thomson et al. 2017; Boermans 
et al. 2015; Mastrucci et al. 2019; Alawneh et al. 2019; Saheb et al. 2018; Thema et al. 2017; Ürge-Vorsatz et al. 2016) (García-López and Heard 2015; Balaban and Puppim de Oliveira 2017; Curl et al. 2015; Karlsson et al. 2020; Lacroix and 
Chaton 2015; Levy et al. 2016; P. et al. 2018; Ortiz et al. 2019; Poortinga et al. 2018; Smith et al. 2016; Thomson and Thomas 2015; Willand et al. 2015a; Cedeño-Laurent et al. 2018; Wierzbicka et al. 2018; Ferreira et al. 2017; Markovska et 
al. 2016)(Si and Marjanovic-Halburd 2018; Tam et al. 2016b; Swan et al. 2017) 

Heating, ventilation 
and air conditioning 
(HVAC) [E] 

Perceived as increased comfort and status, with limited concerns for lack 
of space for installation in regions with higher living standards. Split 
incentives between tenants and landlords. 

Health benefits through better indoor air quality, energy/fuel poverty 
alleviation, better ambient air quality and mitigation of the heat island effect. 
Many studies have highlighted the crucial role of ventilation in creating 
healthy indoor environmental conditions, which result in (mainly respiratory) 
health benefits.  

Result in lower energy bills, avoiding the “heat or eat” dilemma, alleviating 
energy/fuel poverty and improving energy security. Electrification of thermal energy 
uses is expected to increase the demand for electricity in buildings, which in most 
cases can be reversed (at national or regional level) by promoting nearly zero energy 
new buildings and a deep renovation of the existing building stock  

(Bevan et al. 2020; Cunha et al. 2020; Tumbaz and Moğulkoç 2018a; Clancy et al. 2017; Curtis et al. 2018; Heiskanen and Matschoss 2017; Qiu et al. 2014; Mata et al. 2021; Bright et al. 2019; Christidou et al. 2014; Si and Marjanovic-Halburd 
2018; Azizi S Nair T 2019; TL 2020; Mortensen et al. 2016; Ketchman et al. 2018) (Willand et al. 2015b; Thema et al. 2017; Balaban and Puppim de Oliveira 2017; Tonn et al. 2018; Ürge-Vorsatz et al. 2016; Mzavanadze 2018; Liddell and Guiney 
2015; Mastrucci et al. 2019).(Månberger 2018; Alawneh et al. 2019; Thema et al. 2017; Tonn et al. 2018; Liddell and Guiney 2015; Ürge-Vorsatz et al. 2016; Mastrucci et al. 2019)(Spandagos et al. 2020; Trencher and van der Heijden 2019; 
Tumbaz and Moğulkoç 2018b; Silva et al. 2017; Cedeño-Laurent et al. 2018; Fisk 2018; Hamilton et al. 2015; Militello-Hourigan and Miller 2018; Underhill et al. 2018; Liddell and Guiney 2015; Mastrucci et al. 2019; Thema et al. 2017; Morris 
et al. 2018; Ürge-Vorsatz et al. 2016; Boermans et al. 2015; Markovska et al. 2016) (Couder and Verbruggen 2017) 

Efficient Appliances 
[E] 

Perceived as increased comfort and status, with limited concerns for 
technical issues and durability in regions with lower living standards. Split 
incentives between tenants and landlords. 

The promotion of efficient appliances and particularly clean cook stoves 
results in significant health benefits through better indoor air quality, 
energy/fuel poverty alleviation, better ambient air quality and mitigation of 
the heat island effect.  

Result in lower energy bills, avoiding the “heat or eat” dilemma, alleviating 
energy/fuel poverty and improving energy security. Improved cook stoves provide 
better food security and reduce the danger of fuel shortages in developing countries 
(under real world conditions these impacts may be limited).  

(Bonan et al. 2017; Figueroa 2016; Johansson et al. 2015; Rey-Moreno and Medina-Molina 2020; Hernandez-Roman et al. 2017; Wang et al. 2019; Zografakis et al. 2012; Reindl and Palm 2020; Christidou et al. 2014; Mata et al. 2021; Ketchman 
et al. 2018) (Thema et al. 2017; Balaban and Puppim de Oliveira 2017; Tonn et al. 2018; Ürge-Vorsatz et al. 2016; Mzavanadze 2018; Willand et al. 2015b; Rosenthal et al. 2018).(Berrueta et al. 2017b; Hanna et al. 2016; McCollum et al. 2018; 
Alawneh et al. 2019b; Thema et al. 2017) (Aunan et al. 2013; García-Frapolli et al. 2010; Malla et al. 2011)(Jeuland et al. 2018) (Heffner and Campbell 2011) 

Change in 
construction 
materials [E] 

Bio-based materials, such as wood, can be well accepted for being a 
natural and aesthetically pleasing material. However, in some cases 
(mainly in developing countries) it is associated with low quality 
buildings. There is limited information about other materials. 

Biomass based materials, such as wood and bamboo, has aesthetic 
advantages and brings the concept of biophilia. However, the preservatives 
and glues used in the production can bring health problems related to the 
presence of volatile organic compounds. 

Bio-based materials, such as wood and bamboo, can be developed in degraded areas 
and by socially vulnerable communities. 

(Wang et al. 2014; Zea Escamilla and Habert 2014;  Escamilla et al. 2018; Chang et al. 2018b; Obiri et al. 2020; INBAR 2019) (Harb et al. 2018; Xiong et al. 2019; Sotayo et al. 2020; Zea Escamilla and Habert 2014;  Escamilla et al. 2018; Chang 
et al. 2018b; Nfornkah et al. 2020) (Winchester and Reilly 2020; Pomponi et al. 2020; Zea Escamilla and Habert 2014;  Escamilla et al. 2018; Chang et al. 2018; Obiri et al. 2020) 
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 Socio-cultural Dimension 

Mitigation Optionsa Public acceptance  Effects on health & wellbeing Distributional effects 

Demand Side 
Management (active 
management 
operation, 
digitalization and 
flexible comfort 
requirements) [E] 

Willingness to accept due to the potential to reduce energy and water 
bills. Nevertheless, cultural values and local physical conditions can affect 
the scalability of measures that affect comfort and well-being directly. 
Perceived as environmental and technological friendly, with concerns for 
costs and lack of control in regions with higher living standards. Limited 
literature in regions with lower living standards. 

Health benefits through better indoor air quality, energy/fuel poverty 
alleviation, better ambient air quality and mitigation of the heat island effect. 
Furthermore, smart controllers and wireless communications capabilities 
that are used for controlling lighting, windows, HVAC equipment, water 
heaters and other building equipment provide many other non-energy 
benefits such as improved security, access control, fire and other emergency 
detection and management, and early identification of maintenance issues. 

Smart meters support the introduction of new and dynamic tariff schemes that allow 
price benefits for the end-users. Active management and digitalization practices can 
effectively enhance energy access and security by reducing peak demand, improving 
the primary energy intensity of the economy, mitigating the dependence on fossil 
fuels, postponing the installation of new facilities, reducing electricity prices volatility, 
etc.  

(Christidou et al. 2014; Sadeghi et al. 2016; Rey-Moreno and Medina-Molina 2020; TL 2020; Mata et al. 2021); (Balta-Ozkan et al. 2014; Batalla-Bejerano J Trujillo-Baute M 2020; Jaramillo et al. 2014; Kendel and Lazaric 2015; Moser 2017; 
Nikou 2019; Pal et al. 2019; Poortinga et al. 2012; Safdar et al. 2019; Shih 2013; K 2019; Sundt et al. 2020; Tan et al. 2017; Vassileva and Campillo 2016; Vimpari and Junnila 2019b; Zhuang and Wu 2019; Mata et al. 2020c; Park et al. 2018; 
Reindl and Palm 2020; Si and Marjanovic-Halburd 2018; Mata et al. 2021); (Allcott and Greenstone 2012; Cunha et al. 2020) (Liang et al. 2012; Mir-Artigues et al. 2018; Ruokamo et al. 2019; Xu et al. 2018; Yoo et al. 2020; Ferreira et al. 2018; 
Seidl et al. 2019; Soland et al. 2018) (Thema et al. 2017; Saheb et al. 2018; Balaban and Puppim de Oliveira 2017; Tonn et al. 2018; Ürge-Vorsatz et al. 2016; Mzavanadze 2018; MacNaughton et al. 2018; Mastrucci et al. 2019); (Tonn et al. 
2018; Ürge-Vorsatz et al. 2016; Mastrucci et al. 2019b; Alawneh et al. 2019b; European Commission 2016b); (Vallés et al. 2016; Ponce de Leon Barido et al. 2018; Sovacool et al. 2020; Yang et al. 2019; Inetrnational Energy Agency 2017) 
(Spandagos et al. 2020; Christensen et al. 2018; Hwang et al. 2017; Lee and Tanverakul 2015; Balaban and Puppim de Oliveira 2017; Creutzig et al. 2016; McCollum et al. 2018; Dixon et al. 2015; Ala-Mantila et al. 2016; Aryandoust and 
Lilliestam 2017; Jabir et al. 2018)(SARASTI 2015; Wohlfarth et al. 2020; Taniguchi et al. 2016) 

Renewable energy 
production [R] 

Perceived as environmental and technological friendly. Split incentives 
between tenants and landlords. 

Health benefits through better indoor air quality, energy/fuel poverty 
alleviation, better ambient air quality and elimination of the heat island 
effect.  

Improving energy access enhances agricultural productivity and improves food 
security. Result in energy/fuel poverty alleviation and in improving energy security. 
On the other hand, increased bioenergy production may restrict the available land 
for food production.  

(Roth et al. 2018; Radmehr et al. 2014; Overholm 2015; Lay et al. 2013; Qureshi et al. 2017; Hai et al. 2017; Kosorić et al. 2019; Jung et al. 2016; Stauch and Vuichard 2019; Jimenez et al. 2016; Sagebiel and Rommel 2014; De Groote and 
Verboven 2019; Frey and Mojtahedi 2018; Wolske et al. 2018; Dong and Sigrin 2019; Torani et al. 2016; Vimpari and Junnila 2019b; Abreu et al. 2019; Heiskanen and Matschoss 2017) (Burney et al. 2017; Van de Ven et al. 2019; SunHorizon 
2020; Grubler et al. 2018; Thema et al. 2017; Saheb et al. 2018; Levy et al. 2016; Balaban and Puppim de Oliveira 2017; Tonn et al. 2018; Mzavanadze 2018; Liddell and Guiney 2015; Willand et al. 2015b; Rosenthal et al. 2018; MacNaughton 
et al. 2018; Payne et al. 2015) (Torero De Boeck Supérieur 2015; Leibrand et al. 2019; Ahmad and Byrd 2013; Sola et al. 2016; Hasegawa et al. 2015; McCollum et al. 2018; Ürge-Vorsatz et al. 2016; Alawneh et al. 2019b) (Shukla et al. 2017; 
Peñaloza et al. 2021; Kirchhoff and Strunz 2019)  

a [S] Sufficiency; [E] Efficiency; [R] Renewable Energy 

 1 

 Institutional Dimension 

Mitigation Optionsa Political acceptance 
Institutional capacity & governance, cross-sectoral 

coordination 
Legal and administrative feasibility 

Building design and 
performance [S] 

There is not yet much evidence in literature on the political acceptance 
of policies for the support for options in building design and performance. 
If the concept is linked to wellbeing of energy poor households the 
political acceptance can increase. 

Institutional capacity can enable building design and performance to support 
sufficiency, in particular in managing building space in order to contribute to 
energy justice, reduction of energy poverty. 

Administrative and legal process have to be introduced in such a way to increase the 
feasibility of building design and performances in order to promote energy 
sufficiency. 
Renewed interest in passive strategies has led to passive design being introduced into 
the latest versions of many green building rating tools owing to its proved 
effectiveness in saving energy 

(Fournier et al. 2020; Vadovics and Živčič 2019; Pellegrini-Masini 2019; Thomas et al. 2019) (Fournier et al. 2019) (Chen et al. 2015) 
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 Institutional Dimension 

Mitigation Optionsa Political acceptance 
Institutional capacity & governance, cross-sectoral 

coordination 
Legal and administrative feasibility 

Change in 
construction 
methods and circular 
economy [S] 

Politicians support circular economy since it has a positive impact on the 
environment and the economy and may create local jobs. At the same 
time politicians are neutral on new construction methods as this could 
have a negative impact on employment, substituting low skilled workers 
with robots (e.g. High D printing) or robotized manufacturing in plants. In 
some (a few developed) countries there are public policies that 
encourage industrialization and rationalization of construction. 

There should be a change in institutional capacity to follow up technology 
development in new construction methods, as for example testing could be 
done in factories and sample buildings rather than in each building. The 
same is valid for circular economy, where controls have to be done at the 
production stage, institutional capacity can be an enabler for circular 
economy. 

The legal and administrative practices have to change to follow the new technology 
and methods for construction and circular economy, which could be a barrier. 

(González Mahecha et al. 2020; Succar and Kassem 2015; Kassem and Succar 2017; Yang and Chou 2018; Li et al. 2018; Li et al. 2020); (L.K et al. 2020b) (Hamam et al. 2021; Abreu and Ceglia 2018; Whalen and Whalen 2018) Edirisinghe 
(2015) 

Envelope 
improvement [E] 

Not perceived as a priority policy for energy efficiency in buildings by 
many policy makers in particular in warm climate and in developing 
countries. Policy makers are neutral to the technology implemented to 
improve the building energy performances. Incentives are often used to 
promote insulation in residential buildings 

Very often building performance and envelopment improvements require 
very specific technical capabilities. In some countries building codes are 
established at local level, with gaps in governance and coordination between 
different levels of government. 

Building codes are difficult to enforce, often compliance is based on design and 
verification is not carried out when in use. Actual energy used may be much higher 
than projected. Envelop improvement in particular for existing building are difficult 
to verify also in the case on public subsidies. 

(Enker and Morrison 2020; Kwag et al. 2020; Liu et al. 2020) (Yan et al. 2017; Schwarz et al. 2020) (Chandel et al. 2016; Sun et al. 2016; Pérez-Bella et al. 2017) (Khosla et al. 2017) (Khosla 2016) 

Heating, ventilation 
and air conditioning 
(HVAC) [E] 

HVAC energy system retrofits reduce buildings’ carbon footprint 
substantially but are often hindered by financial, regulatory or design 
constraints. Local market constraints and building ownership type might 
also affect the retrofit decision for HVAC systems. For e.g., newly 
constructed buildings must typically fulfil specific energy codes and 
further retrofitting can become cost-ineffective from an investment point 
of view. Technical HVAC retrofits often require modifications to existing 
buildings’ design, which can be challenging especially in old and historic 
buildings. 

In particular in developing countries there is lack of institutional capacity to 
adopt and enforce efficiency requirement for air conditioners.  

HVAC sections of non-residential building codes need strengthening, as evidenced in 
30 countries which show a variety in regulatory approaches. Regulatory agencies 
should adopt more stringent and homogenous requirements and develop new 
documentation and software specifications to improve code knowledge, compliance, 
and enforcement. Further, there is scarcity of studies quantifying energy savings from 
optimal HVAC temperature set points comprehensively, either as part of individual 
building retrofit planning or as part of energy policy regulations. 

(Kontokosta et al. 2020; Pisello and Asdrubali 2014; Kelpsaite et al. 2019) (Pérez-Lombard et al. 2011; Papadopoulos et al. 2019) 

Efficient Appliances 
[E] 

There is strong support for appliances labelling and standards by policy 
makers both in developing and developed countries. 

In particular in developing countries there is lack of institutional capacity to adopt and enforce efficiency requirement for appliances and lighting.  

(Gerke et al. 2017; McNeil et al. 2013; Singh et al. 2019) (Rahman et al. 2015; Russo et al. 2018; Mahlia and Saidur 2010) 

Change in 
construction 
materials [E] 

Bio-based materials, such as wood and bamboo, have been pointed as 
important alternatives for the construction sector in low-carbon policies 
in some countries. But a host of factors limit contemporary use of solid 
wood: such as the changes to the material based on humidity and water 
absorption; in spite of being fire-resistive, the charring properties of large 
structural timbers are recognized in most international building codes; 
the popular association of timber construction with catastrophic urban 
conflagration.   

The economic, technical, practical and cultural barriers to the uptake of 
alternatives materials include perceptions of high cost, ineffective allocation 
of responsibility, industry culture, lack of skills of technicians and companies, 
and the poor availability of product and building-level carbon data and 
benchmarks. Opportunities to overcome barriers include earlier 
engagement of professionals along the supply chain, effective use of whole-
life costing, and changes to contract and tender documents. A mounting 
business case exists for addressing embodied carbon but has yet to be 
effectively disseminated. There is a need for new regulatory drivers to 
complement changing attitudes. 

Engineered timber products lack capacities and market demand to be more than just 
a niche market. Instruments are necessary to unlock potential for net carbon storage 
and increase the market share for engineered wood products, such as the gradual 
introduction of stricter rules for carbon emissions trading or more incentives for the 
voluntary use of innovative wood construction materials. In addition to the 
availability of forest resources, transition to timber based building structures will 
require changes in building codes, training construction workforce, expansion of 
manufacturing capacities for bio-based products, and downscaling production of 
mineral-based materials. Increased demand for timber in construction would have to 
be supported by a strong legal and political commitment to sustainable forest 
management, robust forest certification schemes, empowerment of people living in 
forests, efforts to curb illegal logging and exploring bamboo and other plant fibres as 
a replacement for timber in tropical and subtropical regions. 

(Himes and Busby 2020; Kremer and Symmons 2018; Laguarda Mallo and Espinoza 2015; Nfornkah et al. 2020) (Giesekam et al. 2016; Orsini and Marrone 2019; Churkina et al. 2020; Hildebrandt et al. 2017) 
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 Institutional Dimension 

Mitigation Optionsa Political acceptance 
Institutional capacity & governance, cross-sectoral 

coordination 
Legal and administrative feasibility 

Demand Side 
Management (active 
management 
operation, 
digitalization and 
flexible comfort 
requirements) [E] 

There is still some scepticism by politicians for demand side management 
(active management operation, digitalization, and flexible comfort 
requirements). 

There is the need to change the governance of the electricity systems to 
allow demand option to participate in electricity market and get rewarded 
for their flexibility. Institutional capacity can be a strong enabler of demand 
side options. 

There are still legal and administrative barriers to demand side management (active 
management operation, digitalization and flexible comfort requirements) which 
hinder the feasibility of this option. 

(Mengolini et al. 2016; Warren 2017; Forouli et al. 2021; Izsak and Edler 2011) 

Renewable energy 
production [R] 

While in central governments there is a very high political acceptance and 
promotion of renewable energy systems as a key mitigation strategy, 
there can be opposition at the local political level, where local politicians 
defend views of citizens opposing renewable for aesthetic reasons or to 
attract tourists. 

Institutional capacity is a key enabler of renewable energies. In particular the 
permitting of new installations, clear rules for connection to the grid, costs 
and incentives are essential elements. Other important institutional factors, 
e.g., the legal system and property rights, technical and market regulations 
and freedom to trade internationally, are other important enablers. 
However, at the moment, the institutional capacity to support the 
deployment of renewable is not present in all countries, with some 
developing countries still lacking it. 

Renewable energies investment still faces several constrains from a legal and 
administrative point of view. In particular there are in some countries cumbersome 
administrative procedure to be grated the authorisation to install renewable both on 
and off-site, as well as legal issue on the system charges that renewable producers 
may face. 

(Jung et al. 2016; Cohen et al. 2016; Koecklin et al. 2021) 

a [S] Sufficiency; [E] Efficiency; [R] Renewable Energy 

 1 

 2 

 3 
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SM9.6 Supplementary information to Section 9.9 1 

Table SM9.7 presents several studies examined in the context of Section 9.9.2. 2 

 3 

Table SM9.7 Estimates of the direct and indirect rebound effects for households 4 

Rebound effects Range Mean Median References 

Direct Including 

thermal 

uses 

-9 - 

127% 

43% 36% (Galvin 2015; Galvin and Sunikka-Blank 2016; Teli et al. 

2016)(Copiello and Gabrielli 2017; Cayla and Osso 2013; 

Terés-Zubiaga et al. 2016; Madonna et al. 2017; Sandberg et 

al. 2017; Holzmann and Schmid 2018; Calì et al. 2016; 

Aydin et al. 2017)(Bardsley et al. 2019; Hens et al. 2010; 

Thomas and Azevedo 2013; Wang et al. 2014b; Lin and Liu 

2015; Chitnis et al. 2013)(Brøgger et al. 2018) 

Electric 

uses 

3-14% 7% 5% (Schleich et al. 2014; Chen et al. 2018; Chitnis et al. 2013) 

Indirect -1.8 - 

23.5% 

10% 11% (Cellura et al. 2013; Santos et al. 2018; Walzberg et al. 2020; 

Thomas and Azevedo 2013; Chitnis et al. 2013) 

Direct and 

indirect 

4.5-80% 32% 27% (Scheer et al. 2013; Qiu et al. 2019; Murray 2013; Orea et al. 

2015) 

 5 

 6 

 7 

  8 
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