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Preface 
 
 
Climate model results provide the basis for projections of future climate change and increasing numbers of models are 
likely to contribute to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). The 
heterogeneity in the new generation of climate models and an increasing emphasis on estimates of uncertainty in the 
projections raise questions about how best to evaluate and combine model results in order to improve the reliability of 
projections. Therefore, an Expert Meeting on Assessing and Combining Multi Model Climate Projections was organized 
by IPCC’s Working Group I with contributions from Working Group II (WGI & WGII). The meeting was held in Boulder, 
Colorado, USA, from 25 to 27 January 2010. It is important for the success of the IPCC AR5 that this discussion took 
place early in the AR5 assessment cycle. The Expert Meeting provided a platform to explore the possibility of 
establishing a common framework that is applicable across the two IPCC Working Groups.  
 
The scientific core of this meeting report summarises the discussions and conclusions of the Expert Meeting. It contains 
a stand-alone Good Practice Guidance Paper for IPCC Lead Authors of AR5, as well as for scientists working in model 
intercomparison projects. The Guidance Paper briefly summarizes methods used in assessing the quality and reliability of 
climate model simulations and in combining results from multiple models, and provides recommendations for good 
practice in using multi-model ensembles. Applications include detection and attribution, model evaluation and global 
climate projections as well as regional projections relevant for impact and adaptation studies. This meeting report 
further includes the extended abstracts of the presentations and posters from the Expert Meeting as well as a non-
comprehensive bibliography of relevant literature. 
 
We extend our sincere thanks to the National Center for Atmospheric Research and the University Corporation for 
Atmospheric Research for hosting the meeting and for the excellent local arrangements. We are also very appreciative of 
the advice of the members of the Scientific Steering Committee who shaped the meeting programme as well as for their 
help in carrying it out. We would like to thank all participants who contributed to a very constructive and fruitful 
meeting where the exchange of views and knowledge resulted in more clarity on the issues involved and the current 
status of scientific understanding. The members of the core writing team put in many hours of effort following the 
meeting in order to produce the Good Practice Guidance Paper in a timely fashion, for which we are very grateful. The 
excellent work by the Technical Support Unit of WGI at all stages of the meeting organisation and report production is 
appreciated. 
 
We are sure that the product of this Expert Meeting will provide useful service to the scientific community, in particular 
to the many AR5 Lead Authors in WGI and WGII who will assess the information that is derived from the wide range of 
climate model simulations. 
 
 

    
  
 Prof. Thomas Stocker    Prof. Qin Dahe 
 Co-Chair, WGI     Co-Chair, WGI 

 
 

    
Prof. Christopher Field    Prof. Vicente Barros 
Co-Chair, WGII     Co-Chair, WGII 
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Executive Summary  

Climate model simulations provide a cornerstone for climate change assessments. This paper summarizes the 
discussions and conclusions of the Intergovernmental Panel on Climate Change (IPCC) Expert Meeting on 
Assessing and Combining Multi Model Climate Projections, which was held in Boulder, USA on 25-27 January 
2010. It seeks to briefly summarize methods used in assessing the quality and reliability of climate model 
simulations and in combining results from multiple models. It is intended as a guide for future IPCC Lead 
Authors as well as scientists using results from model intercomparison projects. This paper provides 
recommendations for good practice in using multi-model ensembles for detection and attribution, model 
evaluation and global climate projections as well as regional projections relevant for impact and adaptation 
studies. It illustrates the potential for, and limitations of, combining multiple models for selected applications. 
Criteria for decision making concerning model quality and performance metrics, model weighting and averaging 
are recommended. This paper does not, however, provide specific recommendations regarding which 
performance metrics to use, since this will need to be decided for each application separately. 
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1. Key Terminology 
 
Many of the definitions below reflect the broad usage of 
these terms in climate science. While some terms are 
occasionally used interchangeably, the definitions pre-
sented here attempt to provide clear distinctions be-
tween them, while still encompassing the wide range of 
meanings encountered by meeting participants.  
 
Model evaluation: The process of comparing model 
output with observations (or another model) either quali-
tatively using diagnostics or quantitatively using perform-
ance metrics. During model development, it is also 
common to compare new models with previous versions 
to assess relative improvements. 
 
Diagnostic: A quantity derived from model output, of-
ten used for comparison with observations, or intercom-
parison of the output from different models. Examples 
include spatial maps, time-series and frequency distribu-
tions. More specific examples would be the trend in 
global mean temperature over a certain time period, or 
the climate sensitivity of a model. 
 
Performance metric: A quantitative measure of 
agreement between a simulated and observed quantity 
which can be used to assess the performance of individ-
ual models. A performance metric may target a specific 
process to quantify how well that process is represented 
in a model. The term metric is used in different ways in 
climate science, for example for metrics such as radiative 
forcing or global warming potential. In IPCC (2007) it is 
defined as a consistent measurement of a characteristic 
of an object or activity that is otherwise difficult to quan-
tify. More generally, it is a synonym for ‘measure’ or 
‘standard of measurement’. It often also refers more 
specifically to a measure of the difference (or distance) 
between two models or a model and observations. A 
performance metric is a statistical measure of agree-
ment between a simulated and observed quantity (or co-
variability between quantities) which can be used to as-
sign a quantitative measure of performance (‘grade’) to 
individual models. Generally a performance metric is a 
quantity derived from a diagnostic. A performance metric 
can target specific processes, i.e., measure agreement 
between a model simulation and observations (or possi-
bly output from a process model such as a Large Eddy 
Simulation) to quantify how well a specific process is rep-
resented in a model. Constructing quantitative perform-
ance metrics for a range of observationally-based diag-
nostics allows visualization of several aspects of a 
model’s performance. Synthesis of a model’s perform-

ance in this way can facilitate identification of missing or 
inadequately modelled processes in individual models, is 
useful for the assessment of a generation of community-
wide collections of models (in the case of systematic bi-
ases), or can be used for a quantitative assessment of 
model improvements (e.g., by comparing results from 
Phases 3 and 5 of the Coupled Model Intercomparison 
Project CMIP3 and CMIP5). 
 
Model quality metric, model quality index: A 
measure designed to infer the skill or appropriateness of 
a model for a specific purpose, obtained by combining 
performance metrics that are considered to be important 
for a particular application. It defines a measure of the 
quality or ‘goodness’ of a model, given the purposes for 
which the model is to be used, and is based on relevant 
performance metrics including one or more variables. In 
combination with a formal statistical framework, such a 
metric can be used to define model weights in a multi-
model (or perturbed-physics) context. A model quality in-
dex may take into account model construction, spatio-
temporal resolution, or inclusion of certain components 
(e.g., carbon cycle) in an ad-hoc and possibly subjective 
way, e.g., to identify subsets of models. 
 
Ensemble: A group of comparable model simulations. 
The ensemble can be used to gain a more accurate es-
timate of a model property through the provision of a 
larger sample size, e.g., of a climatological mean of the 
frequency of some rare event. Variation of the results 
across the ensemble members gives an estimate of un-
certainty. Ensembles made with the same model but dif-
ferent initial conditions only characterise the uncertainty 
associated with internal climate variability, whereas 
multi-model ensembles including simulations by several 
models also include the impact of model differences. 
Nevertheless, the multi-model ensemble is not designed 
to sample uncertainties in a systematic way and can be 
considered an ensemble of opportunity. Perturbed-
physics parameter ensembles are ensembles in which 
model parameters are varied in a systematic manner, 
aiming to produce a more systematic estimate of single-
model uncertainty than is possible with traditional multi-
model ensembles. 
 
Multi-model mean (un-weighted): An average of 
simulations in a multi-model ensemble, treating all mod-
els equally. Depending on the application, if more than 
one realization from a given model is available (differing 
only in initial conditions), all realizations for a given 
model might be averaged together before averaging 
with other models.  
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Multi-model mean (weighted): An average across 
all simulations in a multi-model dataset that does not 
treat all models equally. Model ‘weights’ are generally 
derived from some measure of a model’s ability to simu-
late the observed climate (i.e., a model quality met-
ric/index), based on how processes are implemented or 
based on expert judgment. Weights may also incorpo-
rate information about model independence. In climate 
model projections, as in any other application, the de-
termination of weights should be a reflection of an ex-
plicitly defined statistical model or framework. 
 
2. Background and Methods 
 
Climate model results provide the basis for projections of 
future climate change. Previous assessment reports in-
cluded model evaluation but avoided weighting or rank-
ing models. Projections and uncertainties were based 
mostly on a 'one model, one vote' approach, despite the 
fact that models differed in terms of resolution, proc-
esses included, forcings and agreement with observa-
tions. Projections in the IPCC’s Fifth Assessment Report 
(AR5) will be based largely on CMIP5 of the World Cli-
mate Research Programme (WCRP), a collaborative 
process in which the research and modelling community 
has agreed on the type of simulations to be performed. 
While many different types of climate models exist, the 
following discussion focuses on the global dynamical 
models included in the CMIP project. 
 
Uncertainties in climate modelling arise from uncertain-
ties in initial conditions, boundary conditions (e.g., a ra-
diative forcing scenario), observational uncertainties, un-
certainties in model parameters and structural uncertain-
ties resulting from the fact that some processes in the 
climate system are not fully understood or are impossible 
to resolve due to computational constraints. The wide-
spread participation in CMIP provides some perspective 
on model uncertainty. Nevertheless, intercomparisons 
that facilitate systematic multi-model evaluation are not 
designed to yield formal error estimates, and are in es-
sence ‘ensembles of opportunity’. The spread of a mul-
tiple model ensemble is therefore rarely a direct meas-
ure of uncertainty, particularly given that models are un-
likely to be independent, but the spread can help to 
characterize uncertainty. This involves understanding how 
the variation across an ensemble was generated, mak-
ing assumptions about the appropriate statistical frame-
work, and choosing appropriate model quality metrics. 
Such topics are only beginning to be addressed by the 
research community (e.g., Randall et al., 2007; Tebaldi 
and Knutti, 2007; Gleckler et al., 2008; Knutti, 2008; 

Reichler and Kim, 2008; Waugh and Eyring, 2008; Pierce 
et al., 2009; Santer et al., 2009; Annan and Hargreaves, 
2010; Knutti, 2010; Knutti et al., 2010). 
 
Compared to CMIP3, the number of models and model 
versions may increase in CMIP5. Some groups may sub-
mit multiple models or versions of the same model with 
different parameter settings and with different model 
components included. For example, some but not all of 
the new models will include interactive representations 
of biogeochemical cycles (carbon and nitrogen), gas-
phase chemistry, aerosols, ice sheets, land use, dynamic 
vegetation, or a full representation of the stratosphere. 
The new generation of models is therefore likely to be 
more heterogeneous than in earlier model intercompari-
sons, which makes a simple model average increasingly 
difficult to defend and to interpret. In addition, some 
studies may wish to make use of model output from 
earlier CMIP phases or other non-CMIP sources.  
 
The reliability of projections might be improved if models 
are weighted according to some measure of skill and if 
their interdependencies are taken into account, or if only 
subsets of models are considered. Indeed such methods 
using forecast verification have been shown to be supe-
rior to simple averages in the area of weather and sea-
sonal forecasting (Stephenson et al., 2005). Since there 
is little opportunity to verify climate forecasts on times-
cales of decades to centuries (except for a realization of 
the 20th century), the skill or performance of the models 
needs to be defined, for example, by comparing simu-
lated patterns of present-day climate to observations. 
Such performance metrics are useful but not unique, and 
often it is unclear how they relate to the projection of in-
terest. Defining a set of criteria for a model to be 'credi-
ble' or agreeing on a quality metric is therefore difficult. 
However, it should be noted that there have been de 
facto model selections for a long time, in that simula-
tions from earlier model versions are largely discarded 
when new versions are developed. For example, results 
produced for the Third Assessment Report of the IPCC 
were not directly included in the projections chapters of 
the Fourth Assessment Report unless an older model 
was used again in CMIP3. If we indeed do not clearly 
know how to evaluate and select models for improving 
the reliability of projections, then discarding older results 
out of hand is a questionable practice. This may again 
become relevant when deciding on the use of results 
from the AR4 CMIP3 dataset along with CMIP5 in AR5. 
 
Understanding results based on model ensembles re-
quires an understanding of the method of generation of 
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the ensemble and the statistical framework used to in-
terpret it. Methods of generation may include sampling 
of uncertain initial model states, parameter values or 
structural differences. Statistical frameworks in published 
methods using ensembles to quantify uncertainty may 
assume (perhaps implicitly):  
 
a. that each ensemble member is sampled from a dis-

tribution centered around the truth (‘truth plus error’ 
view) (e.g., Tebaldi et al., 2005; Greene et al., 
2006; Furrer et al., 2007; Smith et al., 2009). In this 
case, perfect independent models in an ensemble 
would be random draws from a distribution centered 
on observations. 

 
Alternatively, a method may assume:  
 
b. that each of the members is considered to be ‘ex-

changeable’ with the other members and with the 
real system  (e.g., Murphy et al., 2007; Perkins et 
al., 2007; Jackson et al., 2008; Annan and Har-
greaves, 2010). In this case, observations are 
viewed as a single random draw from an imagined 
distribution of the space of all possible but equally 
credible climate models and all possible outcomes of 
Earth’s chaotic processes. A ‘perfect’ independent 
model in this case is also a random draw from the 
same distribution, and so is ‘indistinguishable’ from 
the observations in the statistical model. 

 
With the assumption of statistical model (a), uncertain-
ties in predictions should tend to zero as more models 
are included, whereas with (b), we anticipate uncertain-
ties to converge to a value related to the size of the dis-
tribution of all outcomes (Lopez et al., 2006; Knutti et 
al., 2010). While both approaches are common in pub-
lished literature, the relationship between the method of 
ensemble generation and statistical model is rarely ex-
plicitly stated.  
 
The second main distinction in published methods is 
whether all models are treated equally or whether they 
are weighted based on their performance (see Knutti, 
2010 for an overview). Recent studies have begun to ex-
plore the value of weighting the model projections based 
on their performance measured by process evaluation, 
agreement with present-day observations, past climate 
or observed trends, with the goal of improving the multi-
model mean projection and more accurately quantifying 
uncertainties (Schmittner et al., 2005; Connolley and 
Bracegirdle, 2007; Murphy et al., 2007; Waugh and Ey-
ring, 2008). Model quality information has also been 

used in recent multi-model detection and attribution 
studies (Pierce et al., 2009; Santer et al., 2009). Several 
studies have pointed out difficulties in weighting models 
and in interpreting model spread in general. Formal sta-
tistical methods can be powerful tools to synthesize 
model results, but there is also a danger of overconfi-
dence if the models are lacking important processes and 
if model error, uncertainties in observations, and the ro-
bustness of statistical assumptions are not properly as-
sessed (Tebaldi and Knutti, 2007; Knutti et al., 2010). A 
robust approach to assigning weights to individual model 
projections of climate change has yet to be identified. 
Extensive research is needed to develop justifiable meth-
ods for constructing indices that can be used for weight-
ing model projections for a particular purpose. Studies 
should employ formal statistical frameworks rather than 
using ad hoc techniques. It is expected that progress in 
this area will likely depend on the variable, spatial and 
temporal scale of interest. Finally, it should be noted that 
few studies have addressed the issue of structural model 
inadequacies, i.e., errors which are common to all gen-
eral circulation models (GCMs). 
 
User needs frequently also include assessments of re-
gional climate information. However, there is a danger 
of over-interpretation or inappropriate application of cli-
mate information, such as using a single GCM grid cell 
to represent a point locality. There is therefore a general 
need for guidance of a wide community of users for 
multi-model GCM climate projection information plus re-
gional climate models, downscaling procedures and 
other means to provide climate information for assess-
ments. Difficulties arise because results of regional mod-
els are affected both by the driving global model as well 
as the regional model. There have been efforts in com-
bining global and regional model results from past re-
search programs (e.g., PRUDENCE) and continue in the 
present with ongoing GCM and Regional Climate Models 
(RCM) simulations programs (Mearns et al., 2009). The 
relationship between the driving GCM and the resulting 
simulation with RCMs provides interesting opportunities 
for new approaches to quantify uncertainties. Empirical-
statistical downscaling (ESD) is computationally cheaper 
than RCMs, and hence more practical for downscaling 
large ensembles and long time intervals (Benestad, 
2005) although ESD suffers from possible out-of-sample 
issues.  
 
3. Recommendations 
 
In the following, a series of recommendations towards 
‘best practices’ in ‘Assessing and Combining Multi-model 
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Climate Projections’ agreed on by the meeting partici-
pants are provided. Most of the recommendations are 
based on literature and experience with GCMs but apply 
similarly to emerging ensembles of regional models 
(e.g., ENSEMBLES, NARCCAP). Some recommendations 
even apply to ensembles of other types of numerical 
models.  
 
The participants of the IPCC Expert Meeting on Assess-
ing and Combining Multi Model Climate Projections are 
not in a position to provide a ‘recipe’ to assess the litera-
ture and results from the CMIP3/5 simulations. Here, an 
attempt is made to give good practice guidelines for 
both scientific studies and authors of IPCC chapters. 
While the points are generic, their applicability will de-
pend on the question of interest, the spatial and tempo-
ral scale of the analysis and the availability of other 
sources of information. 
 
3.1 Recommendations for Ensembles  
When analyzing results from multi-model ensembles, the 
following points should be taken into account: 
 
• Forming and interpreting ensembles for a particular 

purpose requires an understanding of the variations 
between model simulations and model set-up (e.g., 
internal variability, parameter perturbations, struc-
tural differences, see Section 2), and clarity about 
the assumptions, e.g., about model independence, 

exchangeability, and the statistical model that is be-
ing used or assumed (Box 3.1). 

 
• The distinction between ‘best effort’ simulations 

(i.e., the results from the default version of a model 
submitted to a multi-model database) and perturbed 
physics ensembles is important and must be recog-
nized. Perturbed physics ensembles can provide use-
ful information about the spread of possible future 
climate change and can address model diversity in 
ways that best effort runs are unable to do. How-
ever, combining perturbed physics and best effort 
results from different models is not straightforward. 
An additional complexity arises from the fact that 
different model configurations may be used for dif-
ferent experiments (e.g., a modelling group may not 
use the same model version for decadal prediction 
experiments as it does for century scale simula-
tions).  
 

• In many cases it may be appropriate to consider 
simulations from CMIP3 and combine CMIP3 and 
CMIP5 recognizing differences in specifications (e.g., 
differences in forcing scenarios). IPCC assessments 
should consider the large amount of scientific work 
on CMIP3, in particular in cases where lack of time 
prevents an in depth analysis of CMIP5. It is also 
useful to track model improvement through different 
generations of models. 

Box 3.1: Examples of Projections Derived Using Complex Multivariate Statistical Techniques 
which Express Projections as Probability Density Functions 

 
Because of the relative paucity of simple observational constraints (Box 3.2) and because of the requirement to 
produce projections for multiple variables that are physically consistent within the model context, complex statistical 
techniques have been employed. The majority of these are based on a Bayesian approach in which prior distribu-
tions of model simulations are weighted by their ability to reproduce present day climatological variables and trends 
to produce posterior predictive distributions of climate variables (see Box 3.1, Figure 1). Numerous examples of 
such Bayesian approaches employing output from the multi-model archives are found in the literature  (e.g., Giorgi 
and Mearns 2003; Tebaldi et al., 2005; Greene et al., 2006; Lopez et al., 2006; Furrer et al., 2007). Differences in 
the projected PDFs for the same climate variables produced by the different techniques indicate sensitivity to the 
specification and implementation of the Bayesian statistical framework which has still to be resolved (Tebaldi and 
Knutti, 2007). 
 
Recent approaches have also employed perturbed physics ensembles in which perturbations are made to the pa-
rameters in a single modelling structure (e.g., Murphy et al., 2007; Murphy et al., 2009). In this case it is possible 
to illustrate a statistical framework to produce PDFs of future change (e.g., Rougier, 2007). Assume that we can 
express a climate model output, y, as a function, f, of its input parameters, x; y = f(x) + ε where y = (yh , yf ) is 
composed of historical and future simulation variables, and ε is the error term that accounts for uncertainty in ob-
servations, from the use of emulators (see below), and from structural uncertainty as inferred from other models, 
then it is possible to sample the input space x  by varying parameters in the model and constrain that input space 
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• Consideration needs to be given to cases where the 
number of ensemble members or simulations differs 
between contributing models. The single model’s 
ensemble size should not inappropriately determine 
the weight given to any individual model in the 
multi-model ensemble. In some cases ensemble 
members may need to be averaged first before 
combining different models, while in other cases 
only one member may be used for each model. 

 
• Ensemble members may not represent estimates of 

the climate system behaviour (trajectory) entirely 
independent of one another. This is likely true of 
members that simply represent different versions of 

the same model or use the same initial conditions. 
But even different models may share components 
and choices of parameterizations of processes and 
may have been calibrated using the same data sets. 
There is currently no ‘best practice’ approach to the 
characterization and combination of inter-dependent 
ensemble members, in fact there is no straight-
forward or unique way to characterize model 
dependence. 

 
3.2 Recommendations for Model Evaluation 

and Performance Metrics 
A few studies have identified a relationship between skill 
in simulating certain aspects of the observed climate and 

according to the likelihood of each model version computed by comparing the simulation of historical climate with 
that observed. Multiple observational variables may be used in the likelihood weighting and joint projections are 
possible as the physics of the relationships between variables (temperature and precipitation for example) are 
preserved through the link to the model parameter space. The implementation of such techniques is however a 
challenge involving techniques such as emulators which approximate the behaviour of the full climate model given 
a set of input parameters, as is the estimation of structural uncertainty not accounted for by parameter 
perturbations (Murphy et al., 2007; Murphy et al., 2009). 
 
 

 
 
Box 3.1, Figure 1. Equilibrium probability density functions for winter surface temperature change for Northern 
Europe following a doubling of the atmospheric CO2 concentration. The green histogram (labelled QUMP) is 
calculated from the temperature difference between 2 x CO2 and 1 x CO2 equilibrium simulations with 280 versions 
of HadSM3. The red curve (labelled prior) is obtained from a much larger sample of responses of the HadSM3 
model constructed using a statistical emulator and is the prior distribution for this climate variable. The blue curve 
(labelled weighted prior) shows the effect of applying observational constraints to the prior distribution. The 
asterisks show the positions of the best emulated values of the CMIP3 multi-model members and the arrows 
quantify the discrepancy between these best emulations and the actual multi-model responses. These 
discrepancies are used to shift the HadSM3 weighted prior distribution, and also broaden the final posterior 
distribution (black curve). Tick marks on the x-axis indicate the response of the CMIP3 slab models used in the 
discrepancy calculation. From Harris et al. (2010).  
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the spread of projections (see Box 3.2). If significant ad-
vancements are made in identifying such useful relation-
ships, they may provide a pathway for attempting to 
quantify the uncertainty in individual processes and pro-
jections.  
 
No general all-purpose metric (either single or multi-
parameter) has been found that unambiguously identi-
fies a ‘best’ model; multiple studies have shown that dif-
ferent metrics produce different rankings of models 
(e.g., Gleckler et al., 2008). A realistic representation of 
processes, especially those related to feedbacks in the 
climate system, is linked to the credibility of model pro-
jections and thus could form the basis for performance 
metrics designed to gauge projection reliability. The par-
ticipants of the Expert Meeting recommend consideration 
of the following points for both scientific papers and 
IPCC assessments: 
 
• Process-based performance metrics might be de-

rived from the analysis of multi-model simulations 
and/or from process studies performed in projects 
that complement CMIP (e.g., from detailed evalua-
tion and analysis of physical processes and feed-
backs carried out in a single column modelling 
framework by the Cloud Feedback Model Intercom-
parison Project (CFMIP) or the Global Energy and 
Water Cycle Experiment Cloud Systems Studies 
(GEWEX GCSS)). 

• Researchers are encouraged to consider the differ-
ent standardized model performance metrics cur-
rently being developed (e.g., WCRP’s Working 
Group on Numerical Experimentation (WGNE) / 
Working Group on Coupled Modelling (WGCM) 
metrics panel, El Niño Southern Oscillation (ENSO) 
metrics activity, Climate Variability and Predictability 
(CLIVAR) decadal variability metrics activity, the 
European Commission’s ENSEMBLES project, Chem-
istry-Climate Model Validation activity (CCMVal)). 
These metrics should be considered for assembly in 
a central repository. 

 
• A performance metric is most powerful if it is rela-

tively simple but statistically robust, if the results are 
not strongly dependent on the detailed specifications 
of the metric and other choices external to the 
model (e.g., the forcing) and if the results can be 
understood in terms of known processes (e.g., 
Frame et al., 2006). There are however few in-
stances of diagnostics and performance metrics in 
the literature where the large intermodel variations 
in the past are well correlated with comparably large 
intermodel variations in the model projections (Hall 
and Qu, 2006; Eyring et al., 2007; Boe et al., 2009) 
and to date a set of diagnostics and performance 
metrics that can strongly reduce uncertainties in 
global climate sensitivity has yet to be identified (see 
Box 3.2).  

Box 3.2: Examples of Model Evaluation Through Relationships Between Present-Day Observables 
and Projected Future Changes 

 
Correlations between model simulated historical trends, variability or the current mean climate state (being used 
frequently for model evaluation) on the one hand, and future projections for observable climate variables on the 
other hand, are often predominantly weak. For example, the climate response in the 21st century does not seem 
to depend in an obvious way on the simulated pattern of current temperature (Knutti et al., 2010). This may be 
partly because temperature observations are already used in the process of model calibration, but also because 
models simulate similar temperature patterns and changes for different reasons. While relationships across multi-
ple models between the mean climate state and predicted changes are often weak, there is evidence in models 
and strong physical grounds for believing that the amplitudes of the large-scale temperature response to green-
house gas and aerosol forcing within one model in the past represent a robust guide to their likely amplitudes in 
the future. Such relations are used to produce probabilistic temperature projections by relating past greenhouse 
gas attributable warming to warming over the next decades (Allen et al., 2000; Forest et al., 2002; Frame et al., 
2006; Stott et al., 2006). The comparison of multi-model ensembles with forecast ranges from such fingerprint 
scaling methods, observationally-constrained forecasts based on intermediate-complexity models or comprehen-
sively perturbed physics experiments is an important step in assessing the reliability of the ensemble spread as a 
measure of forecast uncertainty.  
 
An alternative assessment of model performance is the examination of the representation of key climate feedback 
processes on various spatial and temporal scales (e.g., monthly, annual, decadal, centennial). There are, however, 
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only few instances in the literature where the large intermodel variations in the past are well correlated with com-
parably large intermodel variations in the model projections. 
 
Hall and Qu (2006) used the current seasonal cycle to constrain snow albedo feedback in future climate change. 
They found that the large intermodel variations in the seasonal cycle of the albedo feedback are strongly correlated 
with comparably large intermodel variations in albedo feedback strength on climate change timescales (Box 3.2, 
Figure 1). Models mostly fall outside the range of the estimate derived from the observed seasonal cycle, 
suggesting that many models have an unrealistic snow albedo feedback. Because of the tight correlation between 
simulated feedback strength in the seasonal cycle and climate change, eliminating the model errors in the 
seasonal cycle should lead to a reduction in the spread of albedo feedback strength in climate change. A 
performance metric based on this diagnostic could potentially be of value to narrow the range of climate 
projections in a weighted multi-model mean. 
 
Other examples include a relation between the seasonal cycle in temperature and climate sensitivity (Knutti et al., 
2006) or the relation between past and future Arctic sea ice decline (Boe et al., 2009). Such relations across 
models are problematic if they occur by chance because the number of models is small, or if the correlation just 
reflects the simplicity of a parameterization common to many models rather than an intrinsic underlying process. 
More research of this kind is needed to fully explore the value of weighting model projections based on 
performance metrics showing strong relationships between present-day observables and projected future changes, 
or to use such relationships as transfer functions to produce projections from observations. It should be recognised 
however that attempts to constrain some key indicators of future change such as the climate sensitivity, have had 
to employ rather more complex algorithms in order to achieve strong correlations (Piani et al., 2005). 
 
 

 
 
Box 3.2, Figure 1. Scatter plot of simulated ratios between changes in surface albedo, Δαs , and changes in 
surface air temperature, ΔTs , during springtime, i.e., Δαs/ΔTs. These ratios are evaluated from transient climate 
change experiments with 17 AOGCMs (y-axis), and their seasonal cycle during the 20th century (x-axis). 
Specifically, the climate change Δαs/ΔTs values are the reduction in springtime surface albedo averaged over 
Northern Hemisphere continents between the 20th and 22nd centuries divided by the increase in surface air 
temperature in the region over the same time period. Seasonal cycle Δαs/ΔTs values are the difference between 
20th-century mean April and May αs averaged over Northern Hemisphere continents divided by the difference 
between April and May Ts averaged over the same area and time period. A least-squares fit regression line for the 
simulations (solid line) and the observed seasonal cycle Δαs/ΔTs value based on ISCCP and ERA40 reanalysis 
(dashed vertical line) are also shown. From Hall and Qu (2006). 
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• Observational uncertainty and the effects of internal 
variability should be taken into account in model as-
sessments. Uncertainties in the observations used 
for a metric should be sufficiently small to discrimi-
nate between models. Accounting for observational 
uncertainty can be done by including error estimates 
provided with the observational data set, or by using 
more than one data set to represent observations. 
We recognize however that many observational data 
sets do not supply formal error estimates and that 
modelers may not be best qualified for assessing 
observational errors. 

 
• Scientists are encouraged to use all available meth-

ods cutting across the database of model results, 
i.e., they should consider evaluating models on dif-
ferent base states, different spatial and temporal 
scales and different types of simulations. Specifi-
cally, paleoclimate simulations can provide inde-
pendent information for evaluating models, if the 
paleoclimate data has not been used in the model 
development process. Decadal prediction or evalua-
tion on even shorter timescales can provide insight, 
but differences in model setups, scenarios and sig-
nal to noise ratios must be taken into account. 

 
• A strong focus on specific performance metrics, in 

particular if they are based on single datasets, may 
lead to overconfidence and unjustified convergence, 
allow compensating errors in models to match cer-
tain benchmarks, and may prohibit sufficient diver-
sity of models and methods crucial to characterize 
model spread and understand differences across 
models.  

 
3.3 Recommendations for Model Selection, 

Averaging and Weighting 
Using a variety of performance metrics, a number of 
studies have shown that a multi-model average often 
out-performs any individual model compared to observa-
tions. This has been demonstrated for mean climate 
(Gleckler et al., 2008; Reichler and Kim, 2008), but 
there are also examples for detection and attribution 
(Zhang et al., 2007) and statistics of variability (Pierce et 
al., 2009). Some systematic biases (i.e., evident in most 
or all models) can be readily identified in multi-model 
averages (Knutti et al., 2010).  
 
There have been a number of attempts to identify more 
skillful vs. less skillful models with the goal to rank or 
weight models for climate change projections and for de-
tection and attribution (see Section 2). The participants 

of the Expert Meeting have identified the following 
points to be critical: 
 
• For a given class of models and experiments appro-

priate to a particular study, it is important to docu-
ment, as a first step, results from all models in the 
multi-model dataset, without ranking or weighting 
models. 

 
• It is problematic to regard the behavior of a 

weighted model ensemble as a probability density 
function (PDF). The range spanned by the models, 
the sampling within that range and the statistical in-
terpretation of the ensemble need to be considered 
(see Box 3.1). 

 
• Weighting models in an ensemble is not an appro-

priate strategy for some studies. The mean of mul-
tiple models may not even be a plausible concept 
and may not share the characteristics that all under-
lying models contain. A weighted or averaged en-
semble prediction may, for example, show de-
creased variability in the averaged variables relative 
to any of the contributing models if the variability 
minima and maxima are not collocated in time or 
space (Knutti et al., 2010). 

 
• If a ranking or weighting is applied, both the quality 

metric and the statistical framework used to con-
struct the ranking or weighting should be explicitly 
recognized. Examples of performance metrics that 
can be used for weighting are those that are likely 
to be important in determining future climate 
change (e.g., snow/ice albedo feedback, water va-
por feedback, cloud feedback, carbon cycle feed-
back, ENSO, greenhouse gas attributable warming; 
see Box 3.2). 

 
• Rankings or weightings could be used to select sub-

sets of models, and to produce alternative multi-
model statistics which can be compared to the origi-
nal multi-model ensemble in order to assess robust-
ness of the results with respect to assumptions in 
weighting. It is useful to test the statistical signifi-
cance of the difference between models based on a 
given metric, so to avoid ranking models that are in 
fact statistically indistinguishable due to uncertainty 
in the evaluation, uncertainty whose source could be 
both in the model and in the observed data. 

 
• There should be no minimum performance criteria 

for entry into the CMIP multi-model database. 
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Researchers may select a subset of models for a 
particular analysis but should document the reasons 
why. 

 
• Testing methods in perfect model settings (i.e., one 

model is treated as observations with complete cov-
erage and no observational uncertainty) is encour-
aged, e.g., withholding one member from a multi-
model or perturbed physics ensemble, and using a 
given weighting strategy and the remaining ensem-
ble members to predict the future climate simulated 
by the withheld model. If a weighting strategy does 
not perform better than an unweighted multi-model 
mean in a perfect-model setting, it should not be 
applied to the real world. 

 
• Model agreement is not necessarily an indication of 

likelihood. Confidence in a result may increase if 
multiple models agree, in particular if the models 
incorporate relevant processes in different ways, or 
if the processes that determine the result are well 
understood. But some features shared by many 
models are a result of the models making similar 
assumptions and simplifications (e.g., sea surface 
temperature biases in coastal upwelling zones, CO2 
fertilization of the terrestrial biosphere). That is, 
models may not constitute wholly independent 
estimates. In such cases, agreement might also in 
part reflect a level of shared process representation 
or calibration on particular datasets and does not 
necessarily imply higher confidence. 

 
3.4 Recommendations for Reproducibility 
To ensure the reproducibility of results, the following 
points should be considered: 
 
• All relevant climate model data provided by model-

ling groups should be made publicly available, e.g., 
at PCMDI or through the Earth System Grid (ESG, 
pointers from PCMDI website); observed datasets 
should also be made readily available, e.g., linked 
through the PCMDI website. Multi-model derived 
quantities (e.g., synthetic Microwave Sounding Unit 
(MSU) temperatures, post-processed ocean data, 
diagnostics of modes of variability) could be provided 
in a central repository.  

 
• Algorithms need to be documented in sufficient 

detail to ensure reproducibility and to be available 
on request. Providing code is encouraged, but there 
was no consensus among all participants about 
whether to recommend providing all code to a public 

repository. Arguments for providing code are full 
transparency of the analysis and that discrepancies 
and errors may be easier to identify. Arguments 
against making it mandatory to provide code are the 
fact that an independent verification of a method 
should redo the full analysis in order to avoid 
propagation of errors, and the lack of resources and 
infrastructure required to support such central 
repositories.  

 
3.5 Recommendations for Regional Assessments 
Most of the points discussed in previous sections apply 
also to regional and impacts studies. The participants of 
the meeting highlight the following recommendations for 
regional assessments, noting that many points apply to 
global projections as well. Although there is some repeti-
tion, this reflects that independent breakout groups at 
the Expert Meeting came up with similar recommenda-
tions: 
 
• The following four factors should be considered in 

assessing the likely future climate change in a 
region (Christensen et al., 2007): historical change, 
process change (e.g. changes in the driving 
circulation), global climate change projected by 
GCMs and downscaled projected change. Particular 
climate projections should be assessed against the 
broader context of multiple sources (e.g., regional 
climate models, statistical downscaling) of regional 
information on climate change (including multi-
model global simulations), recognizing that real and 
apparent contradictions may exist between 
information sources which need physical under-
standing. Consistency and comprehensiveness of the 
physical and dynamical basis of the projected 
climate response across models and methods should 
be evaluated. 

 
• It should be recognized that additional forcings and 

feedbacks, which may not be fully represented in 
global models, may be important for regional 
climate change (e.g., land use change and the 
influence of atmospheric pollutants). 

 
• When quantitative information is limited or missing, 

assessments may provide narratives of climate 
projections (storylines, quantitative or qualitative 
descriptions of illustrative possible realizations of 
climate change) in addition or as an alternative to 
maps, averages, ranges, scatter plots or formal 
statistical frameworks for the representation of 
uncertainty.  
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• Limits to the information content of climate model 
output for regional projections need to be communi-
cated more clearly. The relative importance of un-
certainties typically increase for small scales and im-
pact relevant quantities due to limitations in model 
resolution, local feedbacks and forcings, low signal 
to noise ratio of observed trends, and possibly other 
confounding factors relevant for local impacts. Scien-
tific papers and IPCC assessments should clearly 
identify these limitations.  

 
• Impact assessments are made for multiple reasons, 

using different methodological approaches. Depend-
ing on purpose, some impact studies sample the 
uncertainty space more thoroughly than others. 
Some process or sensitivity studies may legitimately 
reach a specific conclusion using a single global cli-
mate model or downscaled product. For policy-
relevant impact studies it is desirable to sample the 
uncertainty space by evaluating global and regional 
climate model ensembles and downscaling tech-
niques. Multiple lines of evidence should always be 
considered. 

 
• In particular for regional applications, some climate 

models may not be considered due to their poor 
performance for some regional metric or relevant 
process (e.g., for an Arctic climate impact assess-
ment models need to appropriately simulate re-
gional sea-ice extent). However, there are no simple 
rules or criteria to define this distinction, however. 
Whether or not a particular set of models should be 
considered is a different research-specific question in 
every special case. Selection criteria for model as-
sessment should be based, among other factors, on 
availability of specific parameters, spatial and tem-
poral resolution within the model and so need to be 
made transparent. 

 
• The usefulness and applicability of downscaling 

methods strongly depends on the purpose of the 
assessment (e.g., for the analysis of extreme events 
or assessments in complex terrain). If only a 
subsample of the available global climate model 

uncertainty space is sampled for the downscaling, 
this should be stated explicitly. 

 
• When comparing different impact assessments, 

IPCC authors need to carefully consider the different 
assumptions, climate and socio-economic baselines, 
time horizons and emission scenarios used. Many 
impact studies are affected by the relative similarity 
between different emission scenarios in the near 
term. Consideration of impact assessments based 
on the earlier emission scenarios (IPCC Special Re-
port on Emission Scenarios, SRES) in the light of the 
new scenario structure (Representative Concentra-
tion Pathways, RCP) represents a considerable chal-
lenge. The length of time period considered in the 
assessment studies can significantly affect results.  

 
3.6 Considerations for the WGI Atlas of Global 

and Regional Climate Projections 
The WGI Atlas of Global and Regional Climate Projec-
tions in IPCC AR5 is intended to provide comprehensive 
information on a selected range of climate variables 
(e.g., temperature and precipitation) for a few selected 
time horizons for all regions and, to the extent possible, 
for the four basic RCP emission scenarios. All the infor-
mation used in the Atlas will be based on material as-
sessed in WGI Chapters 11, 12 or 14 (see http://www. 
ipcc-wg1.unibe.ch/AR5/chapteroutline.html). 
 
There may, however, be disagreement between the 
downscaling literature and the content of the Atlas 
based on GCMs and this should be explained and re-
solved as far as possible. The limitations to the interpre-
tation of the Atlas material should be explicit and promi-
nently presented ahead of the projections themselves. 
 
Options for information from multi-model simulations 
could include medians, percentile ranges of model out-
puts, scatter plots of temperature, precipitation and 
other variables, regions of high/low confidence, changes 
in variability and extremes, stability of teleconnections, 
decadal time-slices, and weighted and unweighted rep-
resentations of any of the above. The information could 
include CMIP5 as well as CMIP3 simulations. 
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Proposal for an IPCC Expert Meeting on 

Assessing and Combining Multi Model Climate Projections 
 

Submitted by the Co-Chairs of IPCC Working Group I and Working Group II 
 

Background 
Climate model results provide the basis for IPCC projections of future climate change. Previous assessment 
reports included model evaluations but avoided weighting or ranking models. Projections and uncertainties 
were based on a 'one model, one vote' approach, despite the fact that they differed in terms of resolution, 
processes included, forcings and agreement with observations. Projections in the IPCC’s Fifth Assessment 
Report (AR5) will be based largely on the Coupled Model Intercomparison Phase 5 (WCRP CMIP5), a 
collaborative process in which the community has agreed on the type of simulations to be performed. The 
widespread participation in CMIP5 provides some perspective on model uncertainty. Nevertheless, these 
intercomparisons are not designed to yield formal error estimates and remain ‘ensembles of opportunity.’  
 
Since participation in the IPCC process is important for modelling centres, the number of models and model 
versions is likely to increase in CMIP5. Some groups may submit multiple versions of the same model with 
different parameter settings. The new generation of models is likely to be more heterogeneous than ever, as 
some but not all of the new models will include interactive representations of biogeochemical cycles, 
chemistry, ice sheets, land use or interactive vegetation. This makes a simple model average increasingly 
difficult to defend and to interpret. Many models are not independent and some are clearly more robust than 
others when compared with selected observations.  
 
The reliability of projections could be improved if the models were weighted according to some measure of 
skill and if their interdependencies were taken into account. Indeed such methods using forecast verification 
were shown to be superior to simple averages in the area of weather forecasting. Since there is no 
verification for a climate forecast on timescales of decades to centuries, the skill or performance of the 
models needs to be defined, for example, by comparing simulated patterns of present day climate to 
observations. Such metrics are useful but not unique and often it is unclear how they relate to the forecast of 
interest. Defining a set of minimum criteria for a model to be 'credible' or agreeing on a metric of 
performance is therefore difficult and the criteria are likely to depend on the variable and timescale of 
interest. Combined with an estimated data volume exceeding 1000 Terabytes, the AR5 faces immense 
obstacles in trying to make sense of the deluge of model runs and data that it will produce. 
 
Recent studies have started to address these issues by proposing ways to weight or rank models, based on 
process evaluation, agreement with present day observations, past climate or observed trends. While there is 
agreement that 'the end of model democracy' may be near, there is no consensus on how such a model 
selection or weighting process could be agreed upon. An IPCC expert meeting addressing these important 
questions will help to bring the community into a position to make better use of the new model results and 
will provide more robust and reliable projections of future climate, along with improved estimates of 
uncertainty. At the same time, the dialogue between WGI and WGII should be strengthened in order to 
determine what kind of model results from WGI can be provided to WGII and how that exchange can be 
organized efficiently, given the tight schedule of the AR5. 
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Objectives 
The main objective of the expert meeting is to see if it is possible to establish some type of framework for 
using and assessing the AR5 model set. Components of this effort are 

• To stimulate discussion on metrics to evaluate climate models; 
• To learn from other communities where model skill based on forecast verification is used; 
• To assess the potential of different model weighting, ranking and selection schemes for not equally 

credible models for their use in IPCC AR5; 
• To determine whether minimum model performance requirements for inclusion in AR5 should and 

can be defined. 
 

Expected outcome 
The expert meeting will provide tentative best practices in selecting and combining results from multiple 
models for IPCC AR5; in short the beginning of a quantitative framework for analysis and assessment of the 
models. Specific aims of the meeting will be to maximize the robustness and policy relevance of the 
projections provided in the presence of model error, projection uncertainty, observational uncertainties and a 
heterogeneous set of models. Interactions between WGI and WGII will be ensured by the participation of a 
number of representatives from WGII with broad expertise on impacts and user needs. 
 
Initial organising committee (a broader scientific steering committee will be formed) 
Prof. Reto Knutti (ETH Zurich, Switzerland) 
Dr. Benjamin Santer (Lawrence Livermore National Lab, USA) 
Dr. Penny Whetton (CSIRO, Australia) 
Dr. Mat Collins (Met Office Hadley Centre, UK) 
Dr. Daithi Stone (University of Cape Town, South Africa) 
Dr. Claudia Tebaldi (Climate Central/NCAR, USA) 
Dr. Karl Taylor (Program for Climate Model Diagnosis and Intercomparison, LLNL, USA) 
 
Timing: late 2009/early 2010, after the AR5 Scoping Meeting (dependent on date decided for IPCC 31st 

Plenary) 

Duration: 2.5 to 3 days 

Location: possible host organizations have been identified and are being explored with the relevant IPCC 
national focal point 

Participants: About 40 participants in total, with broad international representation. It is proposed that 16 
journeys for experts from developing countries and economies in transition including WGI and WGII 
Vice-Chairs are allocated as part of the line item “expert meetings related to the AR5” in the already 
agreed IPCC Trust Fund budget for 2009. 

Expertise: Climate model development, model evaluation, statistical methods, uncertainty quantification.  
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IPCC Expert Meeting on Assessing and Combining 
Multi Model Climate Projections 
National Center for Atmospheric Research, Mesa Laboratory, Boulder, Colorado, USA 

25-27 January 2010 
 
 

PROGRAMME 
 
 

Monday, 25 January 2010 

 Shuttles depart hotels for venue (see schedule for details) 

08:30 Registration (Seminar Room Foyer) 

09:00 Welcome Address: Alice Madden, Climate Change Coordinator, Colorado Governor’s Office 

09:10 Welcome Address: Eric Barron, Director, National Center for Atmospheric Research 

09:20 Welcome and Opening (Qin/Stocker/Field) 

PLENARY SESSION I (Chair: Qin Dahe) 

09:30 Introduction, Background and Challenges (Thomas Stocker) 

09:50 Keynote Presentation: Challenges in Combining Projections from Multiple Climate Models (Reto 
Knutti) [20 min presentation + 5 min discussion] 

10:15 Keynote Presentation: An Overview of Approaches to Future Projections Based on Multi-Model 
Ensembles (Claudia Tebaldi) [20 min presentation + 5 min discussion] 

10:40 Break (Seminar Room Foyer) 

11:10 Keynote Presentation: Thoughts on the Use of Multi-Model Ensembles (Isaac Held) [20 min presentation + 
5 min discussion] 

11:35 Keynote Presentation: The Difficulties Involved in Identifying the "Best" Model from a Large, Multi-
Model Archive (Ben Santer) [20 min presentation + 5 min discussion] 

12:00 General Discussion 

12:30 Lunch (NCAR Cafeteria) 

13:30 
Introduction of Break-Out Groups and Good Practice Guidance Paper (Stocker and Field) (Seminar 
Room) 
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BREAK-OUT GROUPS - PART A: Topical Discussions 

14:00 

BOG1: Extracting Information from Global Model Projections [Chair: Dáithí Stone & Rapporteur: Mat 
Collins] (Damon Room) 

BOG2: Extracting Model Information for Regional Projections and Impacts [Chair: Penny Whetton & 
Rapporteur: Wolfgang Cramer] (Directors Room) 

BOG3: Feasibility and Implications of Model Ranking [Chair: Jerry Meehl & Rapporteur: Peter Stott] 
(Seminar Room) 

16:00 Break (Seminar Room Foyer) 

16:30 Reports from Break-Out Groups (BOG Chairs) (Seminar Room) 

POSTER SESSION I  

17:00 Poster Session (Seminar Room Foyer) 

18:30 Adjourn 

18:30 Welcome Reception (NCAR Cafeteria) 

19:45 Shuttles depart venue for hotels 
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Tuesday, 26 January 2010 

 Shuttles depart hotels for venue (see schedule for details) 

08:30 Summary Day 1; Introduction Day 2 (Plattner) (Seminar Room) 

PLENARY SESSION II (Chair: Chris Field) 

08:35 Keynote Presentation: Linking Detection and Attribution with Probabilistic Climate Forecasting 
(Myles Allen) [20 min presentation + 5 min discussion] 

09:00 Keynote Presentation: Probabilistic Projections of Climate Change at Global and Regional Scales 
(David Sexton) [20 min presentation + 5 min discussion] 

09:25 Keynote Presentation: Extracting Information from Regional Multi-Model Climate Change 
Projections (Bruce Hewitson) [20 min presentation + 5 min discussion] 

09:50 Break (Seminar Room Foyer) 

10:20 
Keynote Presentation: Representing Multi-Model Climate Projection Uncertainties in Modelling 
Impact Risks and Adaptation Options: Recent Advances in Europe (Tim Carter) [20 min presentation + 5 
min discussion] 

10:45 
Keynote Presentation: Bringing it All Together: Are We Going in the Right Direction for Providing 
Users with Better Information About Future Climate to Support Decision-Making? (Linda Mearns) [20 
min presentation + 5 min discussion] 

11:10 General Discussion 

11:30 Discussion on Good Practice Guidance Paper: Purpose and Structure (Thomas Stocker) 

12:30 Lunch (NCAR Cafeteria) 

POSTER SESSION II 

13:30 Poster Session (Seminar Room Foyer) 

15:00 Break (Seminar Room Foyer) 

BREAK-OUT GROUPS - PART B: Structure of Good Practice Guidance Paper 

15:30 

BOG1: Methods [Chair: Dáithí Stone & Rapporteur: Mat Collins] (Damon Room) 

BOG2: Spatial and Temporal Applications and Specific User Needs [Chair: Penny Whetton & 
Rapporteur: Wolfgang Cramer] (Directors Room) 

BOG3: Feasibility and Implications [Chair: Jerry Meehl & Rapporteur: Peter Stott] (Seminar Room) 

17:30 Reports from Break-Out Groups (BOG Chairs) (Seminar Room) 

18:00 Adjourn 

18:15 Shuttles depart venue for hotels 
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Wednesday, 27 January 2010 

 Shuttles depart hotels for venue (see schedule for details) 

08:30 Summary Day 2; Introduction Day 3 (Plattner) (Seminar Room) 

BREAK-OUT GROUPS - PART B Continued: Drafting of Bullets/Outline for Good Practice Guidance Paper 

08:35 

BOG1: Methods [Chair: Dáithí Stone & Rapporteur: Mat Collins] (Damon Room) 

BOG2: Spatial and Temporal Applications and Specific User Needs [Chair: Penny Whetton & 
Rapporteur: Wolfgang Cramer] (Directors Room) 

BOG3: Feasibility and Implications [Chair: Jerry Meehl & Rapporteur: Peter Stott] (Seminar Room) 

10:00 Reports from Break-Out Groups (BOG Chairs) (Seminar Room) 

10:30 Break (Seminar Room Foyer) 

PLENARY SESSION III: Good Practice Guidance Paper (Chair: Thomas Stocker) 

11:00 Plenary Approval of Executive Summary of Guidance Paper 

12:45 Closing Remarks and Next Steps (Qin/Stocker/Field) 

13:00 End of Meeting 

13:15 Shuttles depart venue for hotels 
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Model Independence Weights for Multi-Model Ensembles 
 
Gab Abramowitz1 and Craig Bishop2 
 
1Climate Change Research Centre, University of New South Wales, Australia 
2Navel Research Laboratory, USA 
 
This talk will present a weighting strategy that accounts 
for model independence. In this case, independence is 
defined as correlation between model errors. The 24 
CMIP3 models in the PCMDI database are used together 
with 30 years of 5° x 5° monthly surface air temperature 
from the HadCRUT3 observed dataset. Seven different 
weighting strategies are compared: 
 

 
Figure 1. 1) Multi-model mean; 2) Globally bias-corrected 
multi-model mean; 3) Per-cell bias-corrected multi-model 
mean; 4) Global bias-corrected performance weights 
(minimising error variance); 5) Per-cell bias-corrected 
performance weights; 6) Global bias-corrected performance 
and independence weights; and 7) Per-cell bias-corrected 
performance and independence weights 
 
 

Of the 30 available years, 29 are used to derive model 
weights (and bias corrections) and the remaining year 
used to test them. The experiment is repeated for all 30 
possible testing years to produce the out-of-sample 
results in the box and whisker plots shown here. These 
results suggest that gains from independence weighting 
are at least as large as those from performance 
weighting, and tend to have an additive effect. We will 
discuss the benefits and potential downfalls of bias-
correcting and weighting on a per-gridcell basis, give a 
brief overview of the derivation of the weights and detail 
a potential IPCC strategy for considering the effective 
independent contribution from individual models for any 
given variable. 
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Linking Detection and Attribution with Probabilistic Climate 
Forecasting 
 
Myles Allen 
 
Department of Physics, University of Oxford, United Kingdom 
 
Some of the earliest studies attempting to quantify 
uncertainty in climate forecasts emerged directly from 
the detection and attribution literature of the 1990s, 
notably the optimal fingerprinting approach of 
Hasselmann (1993,1997), Santer et al. (1995) and 
Hegerl et al. (1996). Leroy (1998) and Allen and Tett 
(1999) observed that optimal fingerprinting could be cast 
as a linear regression problem in which it is assumed 
that climate models simulate the patterns of the climate 
response to various external drivers correctly, and 
observations are used to estimate the magnitude of that 
response. A subsequent generalisation by Huntingford et 
al. (2006) allows for some uncertainty in the patterns of 
response, but is still based on the principle that models 
provide much more reliable information regarding 
response patterns than response magnitudes. 
 
The physical justification for this principle is strong: the 
spatial pattern of response to, for example, greenhouse 
forcing is driven by the differences in heat capacity 
between land and ocean and the location of the 
continents, which are not model-dependent. Likewise, 
the temporal pattern of response depends primarily on 
the time-history of greenhouse forcing and only 
secondarily on the time-scales of the response. In 
contrast, the magnitude of the response depends on the 
transient climate response, or TCR. This in turn depends 
on the atmospheric feedbacks that control the 
equilibrium climate sensitivity and on the efficiency of 
ocean heat uptake, both of which are uncertain.  
 
Hence, in the context of multi-model ensembles, optimal 
fingerprinting is equivalent to generating a large 
“pseudo-ensemble” simply by taking the mean pattern 
of response to a given external forcing as simulated by a 
small ensemble and scaling it up and down by an 
arbitrary parameter representing uncertainty in response 
magnitude. It is important that responses to short-term 
(e.g., volcanic) and long-term (e.g., most anthropogenic) 
forcings are estimated separately using a multiple 

regression, since uncertainty in the time-constants of the 
climate system (primarily linked to ocean heat uptake) 
mean that errors in response magnitude may be very 
different on different timescales. Ideally, the response to 
anthropogenic aerosol forcing should also be estimated 
separately from the response to greenhouse forcing: 
although both operate on similar timescales, some 
potential sources of uncertainty in the aerosol response 
do not affect the greenhouse response, and vice versa. 
Hence a pre-requisite for this approach are separate 
simulations of the responses to individual forcings, either 
separately or in combinations. 
 
The goodness-of-fit between individual members of this 
pseudo-ensemble are then evaluated with a standard 
weighted sum of squares, with the expected model-data 
differences due to internal climate variability, observation 
error and (in some studies) model pattern uncertainty 
providing the matrix of weights or metric. The range of, 
for example, the warming attributable to anthropogenic 
greenhouse gas increases over the past 50 years across 
the members of this pseudo-ensemble that fit the data 
better than would be expected by chance in, say, 90% 
of cases provides a confidence interval on this quantity. 
This approach is the primary information source for 
attribution statements in the IPCC Third and Fourth 
Assessments.  
 
Applying the same scaling factors to model-simulated 
responses to future forcing provides a natural method of 
deriving confidence intervals on future climate change. 
This approach was used by Allen et al. (2000), Stott and 
Kettleborough (2002) and, for regional changes, by Stott 
et al. (2006), and has been referred to as the ASK 
approach. The crucial assumption (which is also implicit 
in attribution studies) is that fractional errors in model-
simulated responses persist over time, so a model that 
underestimates the past response to a given forcing by, 
for example, 30% may be expected to continue to do so 
in the future. This assumption is supported by comparing 
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model results for scenarios under which forcing is 
sustained into the future, such as A1B (Stott et al., 
2006), but Allen et al. (2000) note that it would be less 
reliable for stabilisation scenarios.  
 
The ASK approach can provide ranges of uncertainty in 
forecast climate that may, for variables that are poorly 
constrained by observations, be much wider than the 
range of available model simulations. This was clearly an 
advantage when very few models were available, and 
will continue to be necessary as long as the spread of 
model simulations is thought to underestimate the full 
range of uncertainty. ASK therefore provides a 
complementary approach to more recent methods of 
probabilistic forecasting such as weighted or un-weighted 
perturbed-physics or multi-model ensembles. There are, 
however, some important points of principle in which 
ASK as traditionally implemented differs from most 
ensemble-based approaches, which need to be 
addressed if results are to be compared cleanly. 
 
Consistent with the attribution literature, ASK provides 
classical (“frequentist”) confidence intervals – that is, 
ranges over which models match observations better 
than a given threshold for goodness-of-fit. In contrast, 
most ensemble-based approaches provide Bayesian 
posterior probability intervals – ranges within which a 
given percentage of the weighted ensemble is found to 
lie. These are only comparable if ensemble members are 
distributed uniformly across the observable quantities 
that are used to constrain them and uncertainties in 

these quantities are approximately Gaussian (the so-
called Jeffreys’ prior condition). If the constraints 
provided by the observations are weak and models tend 
to cluster near the best-fitting model (as would be 
expected if all modelling groups are aiming to simulate 
observations as well as possible), these conditions are 
not satisfied, so ranges provided by ASK are not directly 
comparable to ranges provided by other approaches. 
Worse, ranges on forecast anthropogenic warming will 
then not be consistent with ranges on past 
anthropogenic warming, leading to the absurd conclusion 
that we are less uncertain about the future than we are 
about the recent past (Frame et al., 2007).  
 
A fundamental issue here is that the standard 
uncertainty qualifiers used by Working Group 1 (“likely”, 
“very likely” etc.) are used to refer both to classical 
confidence intervals and Bayesian posteriors. The 
nominal definition of these qualifiers is unambiguously 
Bayesian, but in many, perhaps most, instances they are 
used to refer to classical confidence intervals or the 
results of hypothesis tests. This ambiguity of usage 
within IPCC has already attracted criticism among 
statisticians (Spiegelhalter, 2008). A simple solution 
would be to restrict the use of “likely” etc. to cases in 
which a confidence interval can be derived or hypothesis 
test performed (which refer, appropriately, to likelihoods 
of goodness-of-fit) and to use the more explicitly 
Bayesian language recommended by Moss and 
Schneider (2000) for Bayesian posterior probabilities.  
 

 



 

IPCC Expert Meeting on Multi Model Evaluation - 29 

 
IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections 
Boulder, Colorado, USA, 25-27 January 2010  
Conference Volume 
 

Using Multi-Model Ensembles to Estimate Distributions of Local 2m 
Temperature Scenarios 
 
Rasmus E. Benestad 
 
Norwegian Meteorological Institute, Norway 
 
An advantage of empirical-statistical downscaling (ESD) 
over dynamical downscaling with regional climate models 
(RCMs) is that ESD requires much less computer 
resources, and hence is more easily applied to both large 
sets of global climate model (GCM) simulations as well 
as long time series. Furthermore, ESD can incorporate 
ways to evaluate the GCMs in terms of their ability of 
reproducing typical observed coherent spatial patterns of 
variability around the location of interest. Here, ESD 
work has involved the use of so-called 'common EOFs' 
to ensure that the same spatial structures associated 
with local 2m temperature variations are also extracted 
from the GCM results and used to make projections for 
the future and the past. In other words, ESD can both 

give an indication of the GCM's ability to simulate the 
regional climate variability, as well as providing estimates 
for how the local climate variable is projected to change. 
An arbitrary set of local skill scores has been used to 
weight the local T(2m) projections in weighted means, 
but more recent analysis has also used unweighted 
ensembles to make probabilistic projections for 
simulated temperature. The ESD analysis has been 
applied to around 1000 locations over the entire world 
(and incorporated into GoogleEarth). One benefit of this 
exercise is that it provides a consistent set-up for all 
continents, using the same methodology for all locations. 
Hence, it provides a valuable set of benchmark values 
against which RCM simulations can be compared. 
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Representing Multi-Model Climate Projection Uncertainties in 
Modelling Impact Risks and Adaptation Options: Recent Advances in 
Europe 
 
Timothy R. Carter 
 
Finnish Environment Institute (SYKE), Finland 
 
The basic approach for assessing impacts of future 
anthropogenic climate change has changed little since 
the results of equilibrium general circulation model 
(GCM) simulations were first adopted by impact analysts 
in the early 1980s. This has typically involved constructing 
one or more scenarios of future climate to represent 
uncertainties in climate projections from the set of 
available model-based simulations. Since climate 
represents only one of many possible sources of 
uncertainty in estimates of future impacts, constraints of 
computer power, time or availability of climate 
projections have limited the number of climate scenarios 
that can be adopted in a study, particularly if impact 
models are complex and require detailed inputs. Hence, 
results of impact studies can be strongly influenced by 
the scenario "ensemble of opportunity" selected, 
especially if there are large differences in climate 
projections. This can pose problems when interpreting 
the results of scenario-based impact studies. Moreover, 
inconsistencies in the climate scenarios adopted in 
different impact studies has bedevilled efforts at 
comparative assessment across studies, regions and 
sectors by IPCC Working Group II and other bodies. 
 
In recent years improved computer power combined with 
a more diverse set of climate models has facilitated the 
production of ever-larger numbers of multi-model climate 
projections, representing a wide range of sources of 
uncertainty in future climate. Using these multi-model 
ensembles, along with systematic model parameter 
uncertainty analysis and statistical and dynamical 
techniques for regionalising GCM projections, climate 
researchers are increasingly moving towards the 
representation of changes in future regional climate in 
terms of probabilities. Indeed, a situation can be 
envisaged in the next few years where probabilistic 
projections of regional climate changes for a given 
scenario of future emissions could become routine, using 
a consistent methodology to represent uncertainties on 

the basis of available model-based and observational 
information. For example, there is no reason why a 
methodology similar to that employed in developing 
climate projections for the United Kingdom (UKCP09) 
(Murphy et al., 2009) could not be applied to regions 
worldwide. 
 
Multi-model climate projections and enhanced computer 
power also provide an opportunity to undertake multiple 
simulations with impact models and to examine a wider 
range of uncertainties in the outcomes. New techniques 
are being developed to combine uncertainties in climate 
projections with uncertainties in impacts, and some 
forms of adaptation can also be analysed using a 
modelling framework. Moreover, rather than conducting 
"what if" scenario-based impact studies, there could be 
added value in expressing future impacts in terms of the 
risks of exceeding pre-defined thresholds of impact 
(Jones, 2000). Probabilistic projections of climate offer 
the prospect of developing more systematic approaches 
to the determination of impact risks. 
 
We report here some exploratory analysis of impact risks 
that has been conducted in the European Union funded 
ENSEMBLES project, using new multi-model climate 
projections for Europe (van der Linden and Mitchell, 
2009). Impacts have been estimated using both 
conventional scenario-based analysis with a focus on 
analysis of extreme events (Figure 1, right hand 
pathways) as well as probabilistic climate projections in 
combination with impact response surfaces (Figure 1, left 
hand pathway). 
 
Examples are presented to show how probabilistic 
projections of climate can be depicted for different 
regions of Europe, and how these have been 
superimposed on impact response surfaces to provide 
estimates of the risks of runoff exceedance, crop yield 
shortfall, nitrate leaching and permafrost loss (Morse et 
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al., 2009). Multi-model projections have also been used 
to characterise the likelihood of future property damage 
from strong winds. Some examples include consideration 
of potential future adaptation as well as impact risks 
avoided through mitigation, using the ENSEMBLES E1 
"peak and decline" emissions scenario. 
 
 

 
 
Figure 1. Two methods of impact assessment using outputs 
from the Ensemble Prediction System: either using model-
based scenarios applied to impact models for estimating 
impacts of extreme events or using probabilistic projections 
combined with impact response surfaces for evaluating impact 
risks (Morse et al., 2009). 
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Introduction 

An important new development within the European FP6 
project ENSEMBLES has been to explore performance-
based weighting of regional climate models. Until now 
an assumption of equal weight has been implicitly 
applied. At the same time, it is evident that different 
RCMs give results of a varying degree of realism, e.g. 
related to extremes. It is not straightforward to 
construct, assign and combine metrics of model 
performance. Rather, there is a considerable degree of 
subjectivity both to the definition of the metrics and to 
the way these are combined into weights. This does not 
mean that weighting, however exploratory, would not be 
meaningful. Rather, it stresses that the assumptions and 
choices behind the weights need to be recognized and 
taken into account. Here we discuss the applicability of 
combining a set of six specifically designed RCM weights 
to produce one model index producing combined climate 
change information from the range of RCMs used within 
ENSEMBLES. 
 
An important principle for the regional climate modelling 
efforts within ENSEMBLES was to design and calibrate 
procedures for use in constructing probabilistic regional 
climate scenarios. In the prior PRUDENCE project it was 
realised that the formulation of the RCM pays an almost 
equal role compared to that of the GCM, at least for 
summer conditions, when the interior of the model is 
largely decoupled from the large scale boundary 
conditions originating from the driving GCM, which are 
imposed on the RCM throughout the integration (Déqué 
et al. 2007).  
 
In order to address the uncertainty due to RCM 
formulation, it then becomes central to choose metrics, 
which are independent of the driving GCM, yet tracing 
those climate characteristics, which are important also 
for the estimation of climate change. The choices made 

in ENSEMBLES are neither optimal nor fully 
comprehensive. On the other hand, we think that we 
have captured some essential climate variables, which 
both build on the fact that the RCMs being used operate 
at a higher resolution than the driving GCMs, and at the 
same time highlight performance believed to benefit 
from increased resolution.  
 
Six metrics for RCM validation 

A set of metrics to generate weights based on model 
performance when compared to observations, was 
agreed upon in ENSEMBLES. These metrics produce 
weights of individual RCMs, and are based on the 
following set of metrics for reanalysis-driven RCM 
simulations. In ENSEMBLES the ECMWF ERA-40 
reanalysis was used. 

ƒ1: Large scale circulation based on a weather regime 
classification 

ƒ2: Meso-scale signal based on seasonal temperature 
and precipitation analysis; 

ƒ3: Probability density distribution match of daily and 
monthly temperature and precipitation analysis; 

ƒ4: Extremes in terms of re-occurrence periods for 
temperature and precipitation; 

ƒ5: Trend analysis for temperature 

ƒ6: Representation of the annual cycle in temperature 
and precipitation  

-see ENSEMBLES deliverable D3.2.2 for definitions. 
Several forthcoming papers in a special issue of Climate 
Research will deal with these weights. 
 
The suggested metrics cover a range of the so-called 
added-value measures for dynamical downscaling (meso-
scale information, fine scale processes to better capture 
the PDF as well as extreme events) along with some of 
the minimal requirements for a model to be assessed as 
credible (annual cycle of precipitation and temperature, 
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large scale agreement with driving model to capture flow 
regimes and long time temperature trends).  
 
When appropriate, these metrics are defined for 
different seasons and both for sub-regions and for the 
European continent as a whole. The combination of the 
performance of a particular RCM, over the sub-regions 
and seasons can be combined into a single weight for 
each RCM. This is done by a multiplication of the 
weights f1, f2,…,f6 raised to different powers ni, where 
all the individual weights have a value between 0 and 1. 
ni can be chosen as any positive number to weigh the 
various metrics differently (a value of 0 implies equal 
weighting). The intention behind this approach is that a 
high total weight requires high scores in all metrics 
considered. 
 
 

 
Figure 1. Total weight of ENSEMBLES RCMs calculated from 6 
individual weights as a) a product, b) product of factors with a 
normalised spread, and c) from a product of ranks. 
 
 
Resulting weighting 

Once the individual weights relative to the different 
metrics are calculated, an overall weight can be 
calculated for the ENSEMBLES models accessible at 
http://ensemblesrt3.dmi.dk. Fig. 1 shows total model 
weights for Europe associated with different ways of 
calculating the total. There is a significant spread in 
model weights. The overall largest weight is associated 
with the model of the KNMI, mostly due to high f2 and 
f4, (not shown) which has the largest variability across 
models. Similarly, the model METOHC Q3 shows the 
lowest weight, mostly due to the contributions from the 
same functions. 
 
In order to produce probabilistic regional climate 
scenarios, also the quality of the GCMs used as driving 
models for the regional climate change runs ought to be 
considered. The relevant institutes involved in GCM 
modelling within ENSEMBLES have reached the 
conclusion that objective weights cannot be constructed 

and we presently recommend equal weights despite 
obvious shortcomings. However, we would like to 
emphasize that downscaling of a poorly performing GCM 
over Europe will not increase the credibility of the 
particular GCM results in concern. 
 
Discussion and summary 

We have developed a methodology for producing model 
weights based on the aggregated information of 
different metrics of model performance. We produced 
our overall weight from the product of individual 
performance metrics. This implies a very stringent test, 
as a well-performing model needs to have relatively high 
weights in all metrics. Some weights exhibit a much 
higher inter-model spread than others. For example, the 
KNMI model has the largest weight mostly because of 
one particular metric. This effect can be ameliorated by 
normalizing the weights by the total inter-model spread, 
or by comparing ranks instead of score values. 
 
It is important to emphasize that our weights are 
relative; they do not measure the absolute performance 
of a model, but the relative performance compared to 
other ensemble models. This subjectivity of the approach 
calls for an evaluation of the sensitivity of these weights 
to the criteria used to derive them. This could be 
accomplished for example by testing the sensitivity to the 
inclusion of different metrics, the weighting of the 
different metrics and the way the individual metrics are 
combined. Such a sensitivity analysis should be 
performed in order to assess the uncertainty related to 
the use of a given weighting procedure.  
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Perturbed Physics Ensembles and Key Metrics of Climate Change for 
AR5 
 
Mat Collins, Ben Booth, Glen Harris, James Murphy, and David Sexton 
 
Met Office Hadley Centre, United Kingdom 
 
In a companion abstract we describe a method for 
producing probabilistic projections of climate change 
conditioned on emissions scenarios (Sexton et al.). The 
method is based on the Bayesian technique outlined in 
Rougier (2007) and combines information from HadCM3 
perturbed physics ensembles, the CMIP3 multi-model 
archive, observations and our understanding of climate 
change to produce projections at global-model scales. In 
this poster, further aspects of the projections are 
discussed: 
 
1. A comparison between perturbed physics ensembles 

(PPEs) and CMIP3 multi-model ensembles (MMEs) in 
terms of global measures of errors in 2-dimensional 
time-averaged fields. This component including an 
investigation of the reasons for the MME ensemble 
mean always being closer to observations than any 
individual ensemble member. 

 
2. A comparison of global climate feedbacks and 

global radiative forcings between PPEs and MMEs. 
 
3. Examples of relationships between errors in models 

and the magnitude of global feedbacks and the 
need for multivariate observational constraints. 

 
4. Examples of PDFs for key new and old metrics of 

climate change; climate sensitivity, transient climate 
response, Giorgi-region temperature and precip 

changes, probabilities of crossing policy-relevant 
temperature and CO2 targets, etc. 
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Generally, climate change impact assessments are 
based on climate change projections from coupled 
Atmosphere Ocean General Circulation Models 
(AOGCMs). Therefore, uncertainties of climate change 
projections propagate to impact assessments, and affect 
subsequent policy decisions. In this study, we applied a 
statistical method, Maximum Covariance Analysis 
(Singular Value Decomposition analysis), to analyze the 
uncertainty propagation. Most of the impact assessment 
studies investigate the uncertainty propagation from local 
climate changes to local impact assessments. However, 
large scale patterns of climate change can significantly 
influence local impact assessments. Performances of 
AOGCM simulations of local present climate are often 
evaluated to constrain uncertainties of climate change 
projections and impact assessments. However, 
uncertainties of large scale patterns of climate change 
projections cannot be constrained by local climate 
metrics. Therefore, we examined a covariance matrix 
between inter-model uncertainties of local impact 
assessments and those of large scale climate change 
projections. 
 
In this study, we examined a water resource impact 
assessment in South America. This impact assessment 
was performed by Shiogama et al. (2009). Input data of 
the water resource model were changes in temperature 
( ) and precipitation ( ) of 14 AOGCMs under the 
SRES A2 emission scenario. Outputs were 14 simulations 
of changes in the annual mean runoff ( ). We 
decomposed the inter-model covariance matrix between 

 in South America and the combination of  and 
 in the world. Before the decomposition, ,  

and  were normalized by the global mean 
temperature change of each AOGCM. The top panels of 
Figure 1 show the 1st modes of ,  and . 

The 1st  mode was found to have a north-south 
pattern. This  mode correlates with an El Niño like 
warming pattern, suggesting that models with stronger 
El Niño like warming tend to have this north-south  
pattern. The bottom panels of Figure 1 show the 2nd 
modes. The 2nd  mode was found to have an east-
west pattern. This pattern of  is associated with the 
patterns of more warming in the Northern Hemisphere 
and less warming in the Southern Hemisphere, and a 
northward movement of the Intertropical Convergence 
Zone. 
 
This statistical analysis technique enables us to 
determine what kind of uncertainties of large scale 
climate change projections lead to uncertainties of local 
impact assessments. Furthermore, we can apply this 
technique to examine whether the uncertainties of 
impact assessment significantly correlate with biases of 
the present climate simulations. We computed 
regression patterns between the expansion coefficient of 
the  modes and the present climate simulations. It 
was found that the 1st and 2nd  modes were 
associated with intensities of the Walker circulation and 
the Hadley circulation in the present climate simulations, 
respectively. We also showed that the ensemble mean 
assessment of  had significant biases in the present 
climate simulations. It is suggested that a standard 
deviation of +1 of the expansion coefficients of the 1st 
and 2nd  modes gives minimum biases. In the 
Amazon region, decreases of runoff were more reliable 
assessments than increases of runoff, although the 
ensemble mean impact assessment indicated wetting. 
This finding has great implications for the carbon cycle 
feedback, although we did not evaluate uncertainties of 
carbon cycle models or water resource models. 
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Figure 1. Top panels show the 1st modes of (a)  [mm/yr/K], (b)  [K/K] and (c)  [%/K]. Contours indicate statistical 
significant heterogeneous correlations at ±10% levels of t-test. Bottom panels are the same as the top panels, but for the 2nd 
modes.  
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1. Introduction 

To determine a safe level of greenhouse gas emissions, 
physical and biogeochemical feedback processes on 
various time scales have to be understood and projected 
with quantified uncertainties. A prerequisite to 
understanding and improving the representation of 
climate and biogeochemical feedbacks in state-of-the-art 
Earth system models (ESMs) is the systematic evaluation 
of the modeled processes through comparisons with 
observations. Extensive knowledge and experience has 
been acquired in a variety of international Model 
Intercomparison Projects (MIPs) that focus on the 
evaluation and quantification of processes for most if not 
all components of an ESM. However, an integrated 
evaluation to assess the performance of ESMs as a 
whole has so far been lacking. Only an integrated 
approach, applying a common strategy across the 
different Earth system components, will yield a realistic 
quantitative assessment of our ability to represent the 
various physical and biogeochemical climate feedbacks 
involved and will allow to explore the value of weighting 
multi-model climate projections. 
 
2. Framework for ESM Evaluation 

The ESM evaluation strategy proposed here is a 
response to this need. We follow the concept of WCRP’s 
SPARC Chemistry-Climate Model Validation (CCMVal) 
activity (Eyring et al., 2005). We identify a set of core 
climate and biogeochemical feedbacks and processes, 
associated with one or more model diagnostics and with 
relevant datasets that can be used for the ESM 
evaluation. This process-based evalution is proposed in 
addition to the model evalution that focuses on long-
term trends and variability in well-observed Essential 
Climate Variables (ECVs) (GCOS, 2008). Driven by the 
availability of observations and pre-existing knowledge in 
modeling of ESM components, diagnostics are developed 
in three key areas for climate projections: physical 
climate feedbacks, global carbon cycle feedbacks, and 
atmospheric composition feedbacks.  

Model performance metrics (a statistical measure of 
agreement between models and observations) can be 
further developed to allow a quantitative assessment of 
the performance for all ESM components in an 
integrated way. This approach will also enable the 
documentation of model improvements, for different 
versions of individual models and for different 
generations of community-wide models used in 
international assessments. At the same time, the 
diagnostics themselves should develop as experience is 
gained and as new measurements become available.  
 
3. Examples: CCMVal and ILAMB 

The approach described above for ESMs has been 
succesfully applied to 13 chemistry-climate models 
(CCMs) participating in CCMVal in support of the 2006 
WMO/UNEP Scientific Assessment of Ozone Depletion 
(WMO, 2007). The starting point was the study by Eyring 
et al. (2006), who evaluated a subset of key processes 
important for stratospheric ozone in the CCMs. Waugh 
and Eyring (2008) applied quantitative performance 
metrics to the same diagnositcs and models and 
assigned a quantitative measure of performance 
(“grade”) to each model-observations comparison. 
Theses grades were then used to assign relative weights 
to the CCM projections of 21st century total ozone 
previously presented without any weights. For the limited 
set of processes, diagnostics and according performance 
metrics that was used in this study there were generally 
only small differences between weighted and 
unweighted multi-model mean and variances of total 
ozone projections, suggesting that the multi-model mean 
was a robust quantity in CCMVal-1 simulations. This 
study raises several issues with the grading and 
weighting that need further examination. However, it 
provides a framework and benchmarks that enables 
quantification of model improvements and assignment of 
relative weights to the model projections. 
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A more recent example comes from the International 
Land Model Benchmarking (ILAMB) under the AIMES 
programme of IGBP. ILAMB builds on previous 
independent evaluations of water, energy and carbon 
fluxes (e.g., Randerson et al., 2009) to evaluate the 
Dynamic Global Vegetation Models (DGVMs) that are 
now used in ESMs. Combination of satellite, 
atmospheric, and surface datasets, spanning from the 
recent decades to the full 20th century allow to evaluate 
the models on seasonal, interannual and centenial time 
scale. Of particular interest in the context of future 
climate-carbon cycle feedback is the development of 
metrics based on, among others, the interannual growth 
rate of atmospheric CO2, a direct measure of the land 
tropical ecosystems to climate variability (Cadule et al., 
2009).  
 
4. Summary and way ahead 

A framework for a process-oriented evaluation of Earth 
System Models (ESMs) with a focus on the models’ 
ability to project Earth System feedbacks and change 
throughout the 21st century and beyond is currently been 
developed. Each feedback is associated with the key 
processes that detemine it along with diagnostics and 
observational datasets that can be used for the 
evaluation. The challenging approach of applying the 
framework to state-of-the-art ESMs (e.g., those 
participating in CMIP5) is beyond the scope of national or 
local activities and relies on broad support from the 
modeling and observational community. Global data sets 
relating to key properties of the atmosphere, ocean, 
land and cryosphere will need to be assembled so that 
outputs from individual component models, and from 
coupled ESMs, can be confronted with these data in a 
consistent and quantitative way. A synoptic view on 
different ESMs will allow the community to identify 
common gaps in modeling quality and to highlight 
particularly well or poorly modeled processes. This will 

allow attributing specific model behaviour to specific 
process parameterisations and paving the way for a 
systematic model improvement in the future or for new 
observation strategies needed to better constrain ESMs. 
The integrated results of this approach are expected to 
lead to long-term improvements of ESMs and thereby to 
enhanced confidence in climate projections.  
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Marine Biogeochemical Model Comparison Efforts: Tools for Assessing 
Model Skill 
 
Marjorie A.M. Friedrichs 
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Although application of marine biogeochemical models 
to the study of carbon cycling and global climate is 
becoming increasingly common, objective quantification 
of the relative performance of these models is rare. 
Recently, a community-wide model intercomparison 
exercise (Friedrichs et al., 2006; 2007) was conducted in 
order to assess the relative skill of twelve lower trophic 
level marine ecosystem models of varying complexity. In 
order to isolate the effects of the different 
biogeochemical parameterizations, each of the twelve 
models was run within an identical physical framework. 
The key component of this exercise was the use of a 
consistent variational adjoint implementation in which 
chlorophyll, nitrate, export, and primary productivity data 
were assimilated. This insured that the different model 
structures were being objectively compared, rather than 
the degree of tuning. Finally, identical metrics were used 
to assess model skill. In particular, model skill was 
assessed by comparison to the skill of the mean of the 
observations. Experiments were performed in which no 
data were assimilated (Expt. 1), data were assimilated 
from individual sites (Expt. 2) and from two sites 
simultaneously (Expt. 3). A cross-validation experiment 
(Expt. 4) was also conducted whereby data were 
assimilated from one site, and the resulting optimal 
parameters were used to generate a simulation for the 
second site.  
 
Results from this marine biogeochemical comparison 
exercise revealed that when a single pelagic regime was 
considered, the simplest models could be tuned to fit the 
data as well as those with multiple phytoplankton 
functional groups. However, models with multiple 
phytoplankton functional groups produced lower misfits 
when the models were required to simulate both 
regimes using identical parameter values. The cross-
validation experiments revealed that as long as only a 
few key biogeochemical parameters were optimized, the 
models with greater phytoplankton complexity were 
more portable. In contrast, models with multiple 

zooplankton compartments did not generally outperform 
models with single zooplankton compartments, even 
when zooplankton biomass data were assimilated. The 
results of this model comparison effort highlight the 
importance of using formal parameter optimization 
techniques, as well as using identical physical circulation 
fields and consistent metrics for model skill assessment. 
 
A second ongoing biogeochemical model inter-
comparison effort has concentrated on the ability of 
models to estimate depth-integrated primary productivity 
(PP). Estimates of PP are routinely generated from 
satellite ocean color based models and are also now 
available from biogeochemical ocean general circulation 
models. Calibration and validation of these PP models are 
not straightforward, however, and comparative studies 
show large differences between model estimates. 
Friedrichs et al. (2009) compare PP estimates obtained 
from 30 different models to a tropical Pacific PP database 
consisting of ~1000 14C measurements spanning more 
than a decade (1983-1996). Model skill was compared 
using both Taylor Diagrams (Taylor, 2001) and the 
recently introduced Target Diagrams (Jolliff et al., 2009), 
which more clearly emphasize model bias (Figure 1.) 
Target diagrams are particularly useful when large 
numbers of models are being compared, and bias is a 
large component of total model error. In addition, the 
inclusion of two reference isolines on the Target Diagram 
(the observational uncertainty and the root-mean-
squared difference (RMSD) of the mean of the 
observations) makes these plots a particularly useful tool 
for model skill assessment. 
 
Primary findings of this PP model intercomparison effort 
(Figure 1) include: (1) skill varied significantly between 
models, but performance was not a function of model 
complexity or type (i.e. satellite-based model vs. 
circulation/biogeochemical model), (2) nearly all models 
underestimated the observed variance of PP, specifically 
yielding too few low PP values, and (3) roughly half of 
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Figure 1. (a) Target diagram for log(PP) displaying Bias normalized by the standard deviation of the PP data (B*) and normalized 
centered-pattern RMSD (RMSDCP*) for the 30 participating models relative to the tropical Pacific database. Concentric circles 
represent isolines of normalized total RMSD (RMSD*): the inner dashed circle represents the normalized observational PP 
uncertainty, and the outer solid circle represents the RMSD* of the productivity data. (b) Taylor diagram of log(PP). The distance 
from the origin is the standard deviation of the modeled productivities. The azimuth angle represents the correlation between the 
observations and the modeled productivities, and the distance between each model symbol and the data (black diamond) is the 
RMSDCP. Dashed lines are isolines of RMSDCP = 0.25 and RMSDCP = 0.15. Dotted line represents the standard deviation of the data. 
Adapted from Friedrichs et al., 2009. 
 
 
the models performed better than the mean of the 
pbservations. Additional analyses revealed that more 
than half of the total RMSD associated with the satellite-
based PP models might be accounted for by uncertainties 
in the input variables and/or the PP data. Finally, average 
RMSD between in situ PP data and PP estimates from the 
satellite-based productivity models were 58% lower than 
analogous values computed in a previous PP model 
comparison seven years ago. The success of these types 
of comparison exercises is illustrated by the continual 
modification and improvement of the participating 
models and the resulting increase in model skill. 
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Upgrades to the REA Method for Producing Probabilistic Climate 
Change Projections 
 
Ying Xu1, Xuejie Gao1, 2, Filippo Giorgi2 

 
1National Climate Center, China Meteorological Administration, China 
2International Centre for Theoretical Physics, Italy 
 
We present an augmented version of the Reliability 
Ensemble Averaging (REA) method designed to generate 
probabilistic climate change information from ensembles 
of climate model simulations. Compared to the original 
version, the augmented one includes consideration of 
multiple variables and statistics in the calculation of the 
performance-based weights. In addition, the model 
convergence criterion previously employed is removed. 
The method is applied to the calculation of changes in 
mean and variability for temperature and precipitation 
over different sub-regions of East Asia based on the 
recently completed CMIP3 multi-model ensemble. 
Comparison of the new and old REA methods, along 

with the simple averaging procedure, and the use of 
different combinations of performance metrics shows 
that at fine sub-regional scales the choice of weighting is 
relevant. This is mostly because the models show a 
substantial spread in performance for the simulation of 
precipitation statistics, a result that supports the use of 
model weighting as a useful option to account for wide 
ranges of quality of models. The REA method, and in 
particular the upgraded one, provides a simple and 
flexible framework for assessing the uncertainty related 
to the aggregation of results from ensembles of models 
in order to produce climate change information at the 
regional scale. 
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The Limited Contribution of Model Uncertainty to the Uncertainty in 
Observationally-Constrained Estimates of Anthropogenic Warming 
 
Nathan Gillett1 and Peter Stott2 

 
1Canadian Centre for Climate Modelling and Analysis, Environment Canada,Canada  
2Met Office Hadley Centre, United Kingdom 
 
Output from multiple climate models is often used in 
studies which attempt to constrain past and future 
anthropogenic warming using observational constraints. 
Recent studies have used output from multiple models 
first to obtain a less noisy estimate of the anthropogenic 
response, since it is anticipated that different models will 
exhibit different errors in their response patterns. 
Second, these studies have used inter-model differences 
to account for model uncertainty in estimates of the 
uncertainty in anthropogenic warming, using the Error in 
Variables approach. Here we show that explicitly 

accounting for model uncertainty in this way only 
marginally inflates the uncertainty in estimates of 
anthropogenic warming. We suggest that this is because 
inter-model differences in the magnitude of the 
anthropogenic response are disregarded in the analysis, 
since the magnitude is constrained by observations; and 
overall uncertainty in observationally-constrained 
anthropogenic warming is dominated by internal 
variability in the observations, with model uncertainty in 
the pattern of the response making only a small 
contribution. 
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A World Climate Research Programme (WCRP) Panel Tasked to Identify 
and Promote Performance Metrics for Climate Models 
 
Peter Gleckler1, Beth Ebert2, Veronika Eyring3, Robert Pincus4, Karl Taylor1, and Richard Wood5 
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5Met Office, United Kingdom 
 
The Working Group on Numerical Experimentation 
(WGNE), jointly established by the WCRP Joint Scientific 
Committee and the WMO Commission for Atmospheric 
Sciences, has the responsibility of fostering the 
development of atmospheric circulation models for use in 
weather, climate, water and environmental prediction on 
all time scales and diagnosing and resolving 
shortcomings. The WGNE has established a panel to 
identify a well-defined set of performance metrics for 
climate models to objectively gauge the strengths and 
weaknesses of different models and to track 
improvement as models are further developed. The 
panel members have been selected according to their 
relevant scientific contributions and membership or active 
liaison efforts in key WCRP activities (P. Gleckler, 
WGNE; B. Ebert, Joint Working Group on Forecast 
Verification Research, JWGFVR; V. Eyring, the Working 
Group for Coupled Models, WGCM, and Stratospheric 
Processes and their Role in Climate project, SPARC; R. 
Pincus, Global Energy and Water Cycle Experiment, 
GEWEX; K. Taylor, WGCM; and R. Wood, Working 
Group on Ocean Model Development, WGOMD). 
 
The WGNE metrics panel is working to coordinate the 
development of a hierarchy of climate model 
performance metrics. At the most basic level will be a 
limited set of traditional “broad-brush” statistical 
measures that gauge model quality against well 
observed quantities. This will be further developed into a 
more extended set of metrics targeted towards 
quantifying skill in simulating key processes. Identifying 
this more extensive set of metrics will require the WGNE 
metrics panel to engage with other WCRP activities that 
are currently developing more specialized metrics, e.g., 
for key modes of variability and important climate 
processes associated with the atmosphere, land, ocean 
and sea-ice. The panel will define its suite of 

performance metrics for well-established WCRP 
benchmark experiments such as the Coupled Model 
Intercomparison Project (CMIP) historically forced “20th 
Century” experiment, prescribed SST (AMIP) simulations, 
and the WGNE transpose-AMIP. An expansion to include 
biogeochemical processes for CMIP ESM experiments is 
envisaged but will likely require additional panel member 
to consider carbon cycle and atmospheric composition 
climate feedbacks.  
 
Over the course of the next year, the WGNE metrics 
panel will identify its standard set of performance 
metrics that are: based on comparison with carefully 
selected observations; easy to calculate, reproduce and 
interpret; established in the peer-reviewed literature; 
covering a diverse suite of climate characteristics; 
emphasizing large- to global-scale measures of mean 
climate (and limited variability) for the atmosphere, 
oceans, land surface, and sea-ice. The panel will oversee 
the development of software and collection of 
observational datasets to calculate these metrics and 
make them publicly available. The resulting capability will 
be applied to the next phase of CMIP (i.e., CMIP5) and 
results will be compared with earlier model versions. 
These results will be made publicly available as CMIP5 
simulations are submitted to the archive, i.e., as the 
research phase of CMIP5 is just beginning. One goal of 
this activity is to ensure that any new climate model 
simulations introduced in the scientific literature or made 
available to the research community will be tested 
against an expected set of routine benchmarks. 
 
The quest for a defensible approach to weight 
projections from individual models in a multi-model 
ensemble remains elusive, and is beyond the purview of 
the WGNE metrics panel. However, the panel may 
choose to identify a set of minimum performance 
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standards, or make broad recommendations regarding 
the weighting of model projections. Furthermore, 
depending on the success of research related to multi-
model projections in the coming years (e.g., exploring 
the relationship between well-observed features of 
climate to key physical feedbacks), it may be appropriate 

at a later date to incorporate climate-change related 
performance metrics into the WGNE metrics hierarchy. 
Possible actions related to the model weighting 
challenge, such as these, remain an active area of panel 
discussions. 
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Assessment of TCR and Ocean Heat Uptake Efficiency 
 
Jonathan Gregory 
 
University of Reading, United Kingdom 
 
Assessment of reliability of AOGCMs for use in 
projections is mainly based on the realism of their 
simulation of present-day mean climate. However, the 
huge improvement in present-day climate simulation 
resulting from climate model development over the last 
twenty years has not been accompanied by a 
commensurate reduction of model systematic uncertainty 
in climate projections, suggesting that response to forcing 
is determined by processes which are not strongly 
constrained by observations of mean climate. If so, 
assessment of models ought to be based on their 
simulation of time-dependent past climate change (which 
means of course that realistic simulation of the past 
would no longer be an independent check on the 
reliability of models). Gregory and Forster (2008) 
demonstrated a linear relationship between radiative 
forcing and global-mean surface air temperature change 

during recent decades in observations and the HadCM3 
AOGCM. The slope of this relationship (the climate 
resistance, in W m-2 K-1) results from climate feedback 
and ocean heat uptake efficiency, and it determines the 
transient climate response to CO2 increase, which might 
thus be constrained from observations. We explore the 
robustness of the constant climate resistance (or TCR) as 
a way of making climate projections from radiative 
forcing. We look at whether the ocean heat uptake 
efficiency is scenario-independent and how well it can be 
constrained from observations. Heat uptake is particularly 
important for projections of sea-level rise due to thermal 
expansion, which depends also on the expansion 
efficiency of heat (a measure of how much thermal 
expansion results from a given addition to heat content), 
another quantity which might also be assessed from 
observations. 
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ENSO and Tropical Pacific Metrics for Coupled GCMs 
 
Eric Guilyardi1, Andrew Wittenberg2, and the ENSO metrics work group of the CLIVAR Pacific Panel 
 
1LOCEAN/IPSL, France and NCAS-Climate, University of Reading, United Kingdom 
2NOAA/GFDL, USA 
 
The wide diversity of El Niño simulations in coupled 
GCMs contributes to large uncertainties in projections of 
future tropical climate variability and its global impacts 
(Meehl et al., 2007; Vecchi and Wittenberg, 2009; 
Collins et al., 2009). This shortcoming – a major issue in 
the IPCC AR4 – has helped motivate a new chapter in 
the upcoming AR5 report, dedicated to ENSO and other 
modes of climate variability. 
 
Uncertainty in the future of ENSO arises not only from 
diverse model biases, but also from the diverse and 
inconsistent metrics used to evaluate ENSO from study 
to study. To better coordinate future studies, the CLIVAR 
Pacific Panel asked a group of ENSO experts to propose 
a set of standard ENSO metrics, to aid in diagnosing and 
understanding inter-model differences and assessing 
simulation quality.  
 
Here we present these proposed metrics, which span 
aspects of the tropical Pacific mean state, annual cycle, 
and ENSO (Guilyardi et al., 2009). Examples are given of 
“user profiles,” in which some metrics are emphasized 
depending on the judgement or interests of a particular 
investigator. Applying the metrics and user profiles to 
“weight” the various AR4 models' ENSO amplitude 
responses to elevated CO2, we find that the future 
ENSO amplitude projections depend strongly on the 
chosen user profile. We suggest that given our current 
state of understanding of ENSO, an important first 
application for community ENSO metrics may be to 
identify models that don’t pass key performance 
thresholds. 
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A Strategy to Improve Projections of Arctic Climate Change 
 
Alex Hall 
 
Department of Atmospheric Sciences, University of California Los Angeles, USA 
 
Here we describe our recent efforts to constrain the 
simulated response of the Arctic to anthropogenic forcing 
with observations. In the AR4 models, we show that the 
spread in simulated Arctic climate response is 
determined by the longwave component of an Arctic-
specific climate feedback parameter. This negative 
longwave feedback is in turn controlled by the strength 
of the wintertime temperature inversion in the current 
climate, with strong (weak) inversions giving large 
(small) negative feedback. A comparison with reanalysis 
and satellite data reveals that the atmospheric 
temperature inversion is unrealistically strong in most 

models, indicating that these models simulate excessive 
negative longwave feedback in the Arctic. Further 
analysis of the observed and simulated relationships 
between sea ice concentration and inversion strength 
shows that many models mishandle the effects of 
atmosphere-to-ocean heat fluxes through the ice pack 
on the atmospheric boundary layer, generating 
systematic errors in inversion strength. The conclusion of 
this research is that model development efforts to 
improve the models’ Arctic response to anthropogenic 
forcing should focus on the polar atmospheric boundary 
layer. 
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Use of Multimodel Results for Detection and Attribution 
 
Gabriele Hegerl 
 
University of Edinburgh, United Kingdom 
 
Data from large climate model ensembles have proven 
very useful for detection and attribution. Several 
examples of using multimodel information are given: 
 
• The causes of European climate variability over the 

last 5 centuries have been investigated using three 
individual simulations with coupled climate models 
that differ somewhat in their forcing. The effect of 
external forcing on winter and spring temperature 
can be detected, and the best estimate indicates 
that a lot of the winter warming since the Little Ice 
Age was due to anthropogenic forcing. Solar forcing 
may have influenced summer temperatures, and 
both summer and winter show significant short term 
response to volcanic eruptions. The level of 
agreement and disagreement between the models 
helps to understand the role of forcings on seasonal 
temperatures. Forcing uncertainty plays a role in 
results for summer, where a model with aerosol 
forcing seems to indicate much less overall warming 
than one without, and the effect of external forcing 
is marginally detectable on summer temperatures 
only before 1900. 

 
• The multimodel archive can be used for a simple 

approach to attribute changes in the number of 
warm nights in recent decades to external forcing. 
The results indicate that changes in the number of 
warm nights are detectable over many regions 
worldwide both individually for regions and on 
average. The variability between individual ensemble 
members is used as a conservative estimate of 
internal climate variability.  

 
• Detection of zonal precipitation trends could only be 

achieved using the multimodel archive, with a large 

numbers of simulations helping to cancel the large 
variability generated within the climate system. 
However, the size of the signal was substantially 
larger in observations than simulations. It is unclear 
what the contribution to this discrepancy is from 
observational uncertainty, from forcing uncertainty 
(for example, the role of aerosols in subtropical 
drying) and from inter-model differences. Addressing 
intermodel differences may require more creative 
approaches than simple model averaging for a best 
estimate of the forced change. 

 
 In conclusion, the use of ensembles which differ in 
model characteristics have proven very helpful for 
detection and attribution despite difficulties in 
interpretation posed by their inhomogeneity. Ensembles 
of models that also use a different realization of forcing 
can help to span the uncertainty in forced climate 
change more fully than model simulations with identical 
forcing and have clearly proven useful, but care has to 
be applied when using them. Attribution methods can 
help to investigate the role of individual forcings and 
address the possibility of spurious agreement between 
models simulations and observations 
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Thoughts on the Use of Multi-Model Ensembles 
 
Isaac Held 
 
NOAA Geophysical Fluid Dynamics Laboratory, USA 
 
It is suggested that the focus of IPCC should not be on 
designing methods for the use of multi-model 
information, but that it should ideally have standard tests 
for assessing whether methods suggested in the 
literature are superior to simple averages. The 

importance of "predicting the future of models" is 
emphasized as the key ingredient for this purpose, and 
more generally for designing metrics for climate models. 
The value of overall performance metrics versus metrics 
tailored for specific applications is also discussed. 
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Extracting Information from Regional Multi-Model Climate Change 
Projections 
 
Bruce Hewitson1 and Jens H. Christensen2 
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2Danish Climate Centre, Danish Meteorological Institute, Denmark 
 
At the root of responding to climate change is the fact 
that impacts occur on regional and local scales, requiring 
robust messages of regional climate change. It is well 
recognized that the resolution of global climate models 
(GCMs) has not been adequate to meet the regional 
scale information needs. Consequently both the IPCC 
TAR and AR4 included chapters on developing regional 
messages of change, but with only partial success, and 
which still drew heavily on GCM results augmented by 
limited regional downscaling results. An important 
element for this was the need for a homogenised 
assessment procedure across WG-I, thus the relatively 
late availability of the WCRP CMIP3 multi-model 
database prevented updated large scale downscaling 
efforts to be ready in time for the inclusion in AR4. For 
the same reason, results such as recently achieved 
within the ENSEMBLES project focusing on SRES 
scenario A1B will appear out of date by the time AR5 is 
completed. 
 
Four information sources were identified in the AR4 
Ch11 for deriving regional messages of change; 
"AOGCM simulations; downscaling of AOGCM-
simulated data using techniques to enhance regional 
detail; physical understanding of the processes governing 
regional responses; and recent historical climate 
change." Of these, the use of downscaling techniques 
has recently made notable advances (although all four 
information sources remain poorly integrated). The 
developments of multi-model regional experiments such 
as initiated within ENSEMBLES, and in particular 
expanded by planned activities that broadly fall within 
the WCRP CORDEX initiative, offer a valuable new 
opportunity to draw on regional resolution data for all 
terrestrial regions in a way that was not broadly possible 
at the time of previous IPCC assessment reports.  
 
Deriving information from such multi-method regional 
downscaling experiments in part mimics the challenges 

of assessing the data from GCMs, such as is found in 
the WCRP CMIP3 multi-model database, but in part has 
its own unique challenges. Recognizing that data is not 
information, three primary issues need to be addressed 
in relation to translating output data from a given model: 
what is the relative regional skill of each contributing 
model, what are the relative signals of natural and 
forced variability represented in the models, and 
understanding the limits of spatial detail that can 
possibly be represented. Current approaches are partially 
successful in addressing these, albeit more strongly 
focused on specific grid-cell biases. Note that the 
definition of skill is not always well defined at the 
regional to local level. Following this are the 
methodological challenges to reaching a first order 
message of regional change, and of representing the 
envelope of possible climate response. Approaches 
range from simple averages and ranges, through to 
more sophisticated methods to assess probability 
envelopes (for example, Bayesian techniques). Still 
poorly resolved is the question of how well the models 
span the true probability space.  
 
More unique to the regional downscaling methods are 
questions of assessing the real-world local scale variance 
from the grid cell average information of models in order 
to support the climate Vulnerability, Impact and 
Adaptation (VIA) communities which typically are used to 
point-wise station observation information. . Central to 
this is the lack of detailed long term observations in 
many parts of the world. Similar is the challenge of 
integrating statistical downscaling results with that of 
dynamical climate model output. As one increases in 
spatial resolution, the nuances and subtleties of the task 
increase, especially when taken with a view to informing 
the activities of the VIA communities. While progress is 
being made on the above issues, perhaps the biggest 
potential for enhancing information from the multi-model 
output is through new approaches to identify signal 
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versus noise (natural variability), and integrating this with 
an understanding of the changes in the large scale and 
regional-scale processes that drive the local climate.  

This talk uses examples from past and current work to 
illustrate the complexity of the challenge, as well as the 
potential for developing stronger regional-scale 
messages of climate change relevant to end-users. 
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Enhancing Regional Climate Change Messages Through Assessing 
Multi-Model Regional Circulation Changes 
 
Bruce Hewitson 
 
Department of Environmental & Geographical Sciences, University of Cape Town, South Africa 
 
The development of regional climate change messages 
has traditionally focused on grid cell data from climate 
models, and especially through downscaling global 
models with either dynamical or statistical methods. The 
changes in the regional atmospheric processes, 
especially on the daily time scale of weather events, 
remains weakly explored, yet offers a valuable additional 
source of information to assess the robustness and value 
of local downscaled projections. Changes in the driving 
processes can occur through changes in seasonal timing, 
frequency, and intensity, as well as in the occurrence of 
atmospheric states new to the region. Consistency 
between these changes and the local surface variables 
that are more traditionally evaluated can potentially give 

new insight into the projections. Self Organizing Maps 
(SOMs) are used to characterize the continuum of 
weather events based on reanalysis data of atmospheric 
circulation variables. Multi-model climate change 
projections of these variables, using data from the 
CMIP3 archive, are mapped to the SOM to allow for the 
assessment of changes in occurrence frequency and 
changes in the mean state of the characteristic weather 
events in response to future global climate change. The 
consistency between these changes and the local 
downscaled surface variable changes are assessed for 
physical consistency to evaluate the robustness of 
projected local climate change. 
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Metrics and Likelihood 
 
Charles Jackson 
 
University of Texas at Austin, USA 
 
A discussion is presented of the rationale for making use 
of metrics to weight multi-model projections of climate. 
The multi-model “ensemble of opportunity” that has 
been helpful in documenting spread among plausible 
simulations of the climate system, assumes ensemble 
members are independent and broadly representative of 
climate model development uncertainty. Each member 
of this ensemble is viewed as being equally plausible. 
The AR5 ensemble will include many more samples from 
individual models and the independence among 
modeling efforts is becoming less clear. The question 
that will be discussed below is whether it is appropriate 
to apply metrics within likelihood weights of AR5 
ensemble runs as a way of improving the objectivity in 
multi-model evaluations of change.  
 
Metrics quantify a measure of skill a model has to 
reproduce what is observed. They are used to aid 
climate model development, with a well-recognized 
caveat that it is often difficult to improve one metric 
without degrading other metrics. Uncertainties arising 
from climate model biases and natural variability make it 
impossible to select a single preferred model 
configuration. With a common set of observations as 
targets for model development, we should expect, 
statistically speaking, the largest proportion of new 
models (as selected by independent climate experts) 
would be configurations that contain many smaller 
compensating errors and smaller proportion of model 
configurations with a few large compensating errors. 
Assuming modeling errors are Gaussian, the probability 
density of these acceptable models is an exponentially 
decreasing function of the metrics that are used to 
evaluate the models as normalized by judgments of 
acceptability. If the model development process were 
truly independent and a great many models were 
available to select from, there would be no need to 
apply weighting as the likelihood of any given model 
configuration would be apparent and appropriately 
accounted for within the distribution of model results. 
Each climate model would, in effect, be pre-weighted by 

the use of model metrics within the climate model 
development process.  
 
Samples from the AR5 ensemble will not be 
independent nor are they likely to span the space of 
possibilities. The AR5 ensemble will contain biases. It is 
possible to partially bias-correct this distribution by 
weighting the contribution of individual ensemble 
members by an exponential of a set of normalized 
metrics. This requires consideration of the choice of mix 
of metrics and scientifically grounded judgments of 
model acceptability. The best practices for making these 
decisions are not yet clear.  
 
Some additional discussion is warranted with regards to 
the interpretation and usefulness of metric-based 
likelihood probability measures of projected climate. 
Without an improvement in our understanding of how 
metrics can be useful measures of skill in projecting 
future climate, it is difficult to claim that the maximum 
likelihood is also the most probable climate trajectory. 
What we can say is that the maximum likelihood 
solution represents models that are consistent, in most 
respects, with what has been observed. Model 
configurations that reside within the lower probability 
tails of model acceptability should still be viewed as 
being equally valid to other individual models.  
 
Consider the distribution of errors that exist for the 
NCAR Community Atmosphere Model that arise from 
differences in reasonable choices of values assigned to 
six parameters important to clouds and convection 
(Jackson et al., 2008; Jackson, 2009). For this task, a 
likelihood function was defined that quantifies the level 
of agreement between the model and observations 
within AMIP-style experiments spanning years 1990 to 
2001. The likelihood function that quantifies the relative 
acceptability of proposed parameter sets was based on a 
normalized multivariate measure of model error that was 
inflated to accommodate estimates of model bias. This 
sampling procedure mimics how independent model 
development efforts might objectively select different 
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model configurations given the same set of observations 
and model evaluation criteria. The sampling procedure is 
carried out as a global optimization such that overall 
modeling errors are reduced over many experiments. 
 
 

 
 
Figure 1. Fractional change in modeling errors that occur 
arise from selecting different combinations of values for six 
parameters important to clouds and convection within the 
NCAR Community Atmosphere Model. Reproduced from 
Jackson (2009). 

Apparent within Figure 1 are fluctuations in modeling 
errors (i.e., the “cost”) that demonstrate the ambiguity 
in identifying a single optimal model. Models selected 
after experiment generation 40 contained very similar 
overall modeling errors, although one can clearly see 
that the particular choices varied widely in their skill in 
reproducing individual fields.  
 
It is also hopeful to see within Figure 1 that that many of 
the fields improved together, implying that the model is 
successful at representing some of the relationships that 
govern how different physical quantities relate. One can 
see this point by noting that fields that dominate 
changes in modeling errors (in panels a and b) are 
reduced concomitantly with fields that changed little over 
the course of sampling (panel c). This skill appears to 
have its limits with the model depiction of clouds. In 
particular the improvements that occurred with surface 
variables, came at the expense of top of the atmosphere 
shortwave radiative fluxes and clouds.  
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Application-Based Model Discrimination (Arctic Case) 
 
Vladimir Kattsov 
 
Voeikov Main Geophysical Observatory, Russia 
 
Analysis of different aspects (means and variability) of 
the Arctic surface climate and the Arctic Ocean TH 
structure shows significant biases and inter-model 
scatters. Using projection ensembles is essential, but 
simple across-model averages are not the best use of 
the model data. On the other hand, the problem of 
model discrimination is not trivial: new metrics and 
diverse approaches are needed to select models for 
ensemble projections. “Objective” or “universal” 
discrimination of models is hardly possible: the selection 
is application (i.e., region, variable, task, etc.) 
dependent. Model discrimination is likely to be a serious 
challenge for the IPCC AR5. For a number of reasons 
(poor observations, poor understanding of processes, 
etc.), the Arctic is a particular challenge in this context. 
Details can be found in a number of papers (with the 
author’s participation) devoted to evaluation of the 
CMIP3 models: 
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Challenges in Combining Projections from Multiple Climate Models 
 
Reto Knutti 
 
Institute for Atmospheric and Climate Science, ETH, Switzerland 
 
Recent coordinated efforts, in which numerous general 
circulation climate models have been run for a common 
set of experiments, have produced large datasets of 
projections of future climate for various scenarios. Those 
multi-model ensembles sample initial condition, 
parameter as well as structural uncertainties in the 
model design, and they have prompted a variety of 
approaches to quantifying uncertainty in future regional 
climate change. International climate change 
assessments like IPCC rely heavily on these models and 
often provide model ranges as uncertainties and equal-
weighted averages as best-guess results, the latter 
assuming that individual model biases will at least partly 
cancel and that a model average prediction is more likely 
to be correct than a prediction from a single model. This 
is based on the result that a multi-model average of 
present-day climate generally out-performs any individual 
model. However, there are several challenges in 
averaging models and interpreting spread from such 
ensembles of opportunity. 
 
Among these challenges are that the number of models 
in these ensembles is usually small, their distribution in 
the model or parameter space is unclear and the fact 
that extreme behavior is often not sampled when each 
institution is only developing one or two model versions. 
The multi model ensemble should probably be 
interpreted as a set of ‘best guess’ models from 
different institutions, all carefully tuned to the same 
datasets, rather than a set of models representing the 
uncertainties that are known to exist or trying to push 
the extremes of plausible model response. 
 
Model skill in simulating present day climate conditions is 
often weakly related to the magnitude of predicted 
change (Knutti et al., 2009). It is thus unclear how the 
skill of these models should be evaluated, i.e. what 
metric should be used to define whether a model is 
‘good’ or ‘bad’, and by how much our confidence in 
future projections should increase based on 
improvements in simulating present day conditions, a 
reduction of intermodel spread or a larger number of 

models. Metrics of skill are also likely to depend on the 
question and quantity of interest. 
 
In many probabilistic methods, the models are assumed 
to be independent and distributed around the truth, 
which implies that the uncertainty of the central 
tendency of the ensemble decreases as the number of 
models increases. Because all models are based on 
similar assumptions and share common limitations, this 
behavior is unlikely to be meaningful at least for a large 
number of models. Indeed the averaging of models and 
the correlation structure suggest that the effective 
number of independent models is much smaller than the 
number of models in the ensemble, and that model 
biases are often correlated (Jun et al., 2008a; Jun et al., 
2008b; Knutti et al., 2009). 
 
The fundamental problem in estimating uncertainty for 
climate projections is that the projections relate to a 
state of the system never observed and far into the 
future. Skill cannot be quantified in a frequentist sense 
like for example in a weather forecast, where thousands 
of hindcasts can be evaluated against observed weather. 
Credibility for climate projections therefore needs to be 
established indirectly by evaluating the models on their 
representation of present day climate, its variability, 
anthropogenic trends or in paleoclimate applications 
(Knutti, 2008a; Knutti, 2008b). A rarely discussed 
problem is that by doing so, the same data is often used 
to develop parameterizations in models, to calibrate 
models, to evaluate them, and in some cases to weight 
them when combining multiple models. 
 
The bottom line is that despite of a massive increase 
computational capacity and despite of (or maybe 
because of) an increase in model complexity, the model 
spread in future projections is often not decreasing. Even 
on the largest scale, e.g. for climate sensitivity, the 
range covered by models has remained virtually 
unchanged for three decades. Probabilistic projections 
based on Bayesian methods that determine weights for 
each model strongly depend on the assumptions made 
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for the likelihood, i.e., the metric chosen to define 
model performance (Tebaldi and Knutti, 2007). Future 
model intercomparisons and methods to quantify 
uncertainties will face additional challenges when 
combining perturbed physics ensembles (a single model 
run with multiple parameters sets) and structurally 
different models, and when trying to incorporate 
structural error, i.e. the fact that many models tend to 
have common biases. Whether and how to weight 
models in multi model projections seems unclear at this 
stage (Knutti, 2010). Some recent studies have proposed 
ways to do so while others have shown that the pitfalls 
may be larger than the potential benefits. 
 
Finally, the sheer amount of data that will result from 
the next CMIP5 coordinated experiments presents almost 
insurmountable problems to distribute, analyze, visualize 
and communicate the results effectively in the very short 
time that will be available before the IPCC chapters need 
to be written. 
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Probabilistic Regional Climate Change Projections Using Bayesian 
Model Averaging 
 
Won-Tae Kwon, Hee-Jeong Baek, and E-Hyung Park 
 
National Institute of Meteorological Research, KMA, Korea 
 
Recently Bayesian approaches have been applied to 
model evaluation and multi-model ensemble averaging 
for weather and climate predictions. We employed 
similar method used by Min et al. (2007) for regional-
scale climate change projections using IPCC AR4 data 
set. The objective of this study is to calculate a 
probabilistic projection over East Asia using Bayesian 
Averaging Model (BAM) and to estimate uncertainties of 
regional climate projections.  
 
The BMA technique is applied to the twenty-first century 
temperature changes simulated by the 18 AOGCMs of 
IPCC AR4 to produce probabilistic predictions of regional 
temperature over East Asia. Monthly surface 
temperature data over land are derived from the Climate 
Research Unit for the period of 1950-1999, interpolated 
into 2.5 x 2.5° grid. Model training is based on long-term 
temporal components (Legendre degrees from LP1 to 
LP3) to eliminate the noise on shorter time-scales. The 
BMA based upon the Bayes Factor (BF) approach takes 
the likelihood ratio which is an exponential function of a 
generalized Mahalanobis distance between observation 
and model simulation for the period of 1950-1999. 
Hence, it filters out low-skilled models more effectively 
than a mean-square error based approach. This 
approach provides a way of observationally constrained 
prediction of PDFs by using weighting factors which are 
obtained through evaluating models for the last 50 years 
of the twentieth century.  
 
The results show that both PDFs from weighted and 
unweighted methods indicate broadening of modal 
structure during the second half of 21st century and that 

mean, 5th and 95th-percentile values of BF method are 
larger than the values from the unweighted method, as 
presented in the figure. This suggests that 
observationally constrained probabilistic climate change 
predictions using BMA are feasible and can provide more 
information than the unweighted ensemble. 
Comprehensive measure of model skills based either on 
space–time vectors of temperature or on multiple 
variables (e.g., temperature and sea level pressure) 
might be useful to produce more robust weighting 
factors and hence more reliable probabilistic predictions 
of regional climate changes. 
 
 

 
 
Figure 1. Multi-model average (thick) and its 5-95% 
percentile (thin lines) of mean annual 2 m air temperature 
predictions over East Asia for 2001-2099 with BF (solid) and 
AEM (dashed) under SRES A1B scenarios. Colored solid lines 
represent predictions of 18 participating models. 
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Effect of Chemistry-Aerosol-Climate Coupling on Predictions of Future 
Climate and Future Levels of Tropospheric Ozone and Aerosols 
 
Hong Liao1, Ying Zhang1, Wei-Ting Chen2, Frank Raes4, and John H. Seinfeld2,3 
 
1LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, China 
2Department of Environmental Science and Engineering, California Institute of Technology, USA 
3Department of Chemical Engineering, California Institute of Technology, USA 
4European Commission, Joint Research Center, Italy 
 
We explore the extent to which chemistry-aerosol-
climate coupling influences predictions of future ozone 
and aerosols as well as future climate using the Goddard 
Institute for Space Studies (GISS) general circulation 
model II' with on-line simulation of tropospheric ozone-
NOx-hydrocarbon chemistry and sulfate, nitrate, 
ammonium, black carbon, primary organic carbon, and 
secondary organic carbon aerosols. Based on IPCC 
scenario A2, year 2100 ozone, aerosols, and climate 
simulated with full chemistry-aerosol-climate coupling are 
compared with those simulated from a stepwise 
approach. In the stepwise method year 2100 ozone and 
aerosols are first simulated using present-day climate 
and year 2100 emissions (denoted as simulation 
CHEM2100sw) and year 2100 climate is then predicted 
using offline monthly fields of O3 and aerosols from 
CHEM2100sw (denoted as simulation CLIM2100sw). The 
fully coupled chemistry-aerosol-climate simulation 
predicts a 15% lower global burden of O3 for year 2100 
than the simulation CHEM2100sw which does not 
account for future changes in climate. Relative to 

CHEM2100sw, year 2100 column burdens of all aerosols 
in the fully coupled simulation exhibit reductions of 10-20 
mg m-2 in DJF and up to 10 mg m-2 in JJA in mid to high 
latitudes in the Northern Hemisphere, reductions of up 
to 20 mg m-2 over the eastern United States, 
northeastern China, and Europe in DJF, and increases of 
30-50 mg m-2 over populated and biomass burning areas 
in JJA. As a result, relative to year 2100 climate 
simulated from CLIM2100sw, full chemistry-aerosol-
climate coupling leads to a stronger net global warming 
by greenhouse gases, tropospheric ozone and aerosols in 
year 2100, with a global and annual mean surface air 
temperature higher by 0.42 K. For simulation of year 
2100 aerosols, we conclude that it is important to 
consider the positive feedback between future aerosol 
direct radiative forcing and future aerosol concentrations; 
increased aerosol concentrations lead to reductions in 
convection and precipitation (or wet deposition of 
aerosols), further increasing lower tropospheric aerosol 
concentrations. 
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Downscaling IPCC-AR4 Climate Change Scenarios for Adaptation 
Strategies in Mexico 
 
Victor Magaña and David Zermeño 
 
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de Mexico, Mexico 
 
The need to develop regional scale climate change 
projections has led to explore dynamical and statistical 
techniques to have an ensemble of scenarios. 
Unfortunately, the availability of dynamically downscaled 
scenarios for Mexico is limited to two or three models. 
Such scenarios have been used to examine processes 
that result in a particular signal in temperature or 
precipitation change. The use of a statistical model to 
downscale the IPCC-AR4 scenarios is an adequate option 
to construct an ensemble of climate change projections 
of relatively high spatial resolution (50 km x 50 km). We 
have used the Climate Predictability Tool (CPT) to 
downscale most IPCC-AR4 models (around 25) and their 
various realizations. Results show that the CPT is 
capable of reducing systematic errors in the models to 
produce adequate climate change projections, under the 
assumption that the relationships between large scale 
and mesoscale patterns remain valid under a warmer 
climate. 
 
The downscaled projections have been used in 
conjunction with vulnerability projections to estimate risk 
under climate change for various sectors such as water 
management, agriculture, and others. One of the main 

challenges is the projection of extreme meteorological 
events. By means of a weather generator (LARS) 
modulated by the downscaled climate change 
projections, we have mapped regions where probabilities 
of more intense extreme events (e.g., heat waves) are 
large. These scenarios of extreme events have been 
combined with projections of land use change to 
estimate the risk for health. Results suggest that a 
redefinition of urban growth and land use management 
is necessary in some parts of Mexico if risk for the 
populations under heat waves is to be reduced.  
 
The availability of climate change scenarios of higher 
spatial resolution allows decision makers to estimate 
probabilities of change that surpass critical threshold 
values risk, such as those that make agriculture 
unviable. Even more, scenarios of risk for certain 
regions, sectors and groups of the population are leading 
to propose better strategies of land use management to 
compensate the effects of regional changes of climate 
change plus heat island effects. New experiments, with 
regional climate models, of climate change that include 
projections of land use change for the coming decades 
are being prepared for adaptation purposes. 
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Changes in Rainfall Extremes in South America as Derived from the ETZ 
CPTEC Regional Climate by the Downscaling of the HadCM3 Global 
Model 
 
Jose A. Marengo 
 
CCST/INPE, Brazil 
 
Using the Eta-CPTEC model 4° km, this study analyzes 
the distribution of extremes of precipitation in South 
America for the period 2010-2100, under the SRES A1B 
scenario. The lateral boundary conditions used to drive 
the Eta-CPTEC regional model are supplied by versions 
of the Met Office Hadley Centre coupled climate model 
HadCM3.  
 
The HadCM3 ensemble, from which the lateral boundary 
conditions are taken, was designed to quantify 
uncertainty in projections of climate change derived from 
uncertainty in parameter settings within the model, as 
per the second method described above. Through expert 
elicitation, key uncertain parameters were identified, 
primarily in the atmosphere but also in the land surface, 
and their plausible ranges defined. These parameters 
were modified within their plausible ranges to form a 
large (300+ member) ensemble, run with a compu-

tationally-efficient slab ocean. From this ensemble, a 
subset of 16 model variants, each with a different 
combination of parameter settings, was selected 
according to performance in the realistic simulation of 
the current climate, while still sampling parameter space 
widely. Together with the standard HadCM3 model, the 
16 model variants were run in fully coupled transient 
mode, forced with SRES A1B emissions scenario-
generated CO2 concentrations (IPCC, 2000) to the end of 
the 21st century. As a first step, an analysis of the 
present day climate simulation for mean climate and 
extremes (mean and variability) is performed using 
previous studies on present time model runs with the 
same Eta/CPTEC-HadCM3. This allows for a more 
comprehensive identification and possible interpretation 
of systematic model biases. The results to be presented 
correspond to 1 model variant. 
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Putting it All Together: Are We Going in the Right Direction for 
Providing Users with Better Information About Future Climate to 
Support Decision-Making? 
 
Linda O. Mearns 
 
National Center for Atmospheric Research, USA 
 
‘You can’t always get what you want  ….. but if you try 
sometimes …. you just might find … you can get what 
you need.’ – The Rolling Stones  
 
The Intergovernmental Panel on Climate Change has 
made numerous statements in its reports over the years 
about the goal of providing policy relevant (but not policy 
prescriptive) information regarding climate change. 
However, it is only recently that this statement has 
received serious, concrete consideration, grasping the 
urgency for policy decisions. Noteworthy is the fact that 
in the Third Assessment Report, there was a chapter in 
Working Group I on Climate Scenario Development (for 
use in impacts/adaptation studies, Mearns et al., 2001). 
A statement commonly made after the Fourth 
Assessment Report was released was that the question 
at the center of the climate change issue had shifted 
from ‘is climate change occurring?’ to ‘what are we 
going to do about it?’ Certainly the steadily increasing 
strength of the statements about the detection and 
attribution of climate change that appeared in the four 
assessment reports contributed significantly to this shift. 
Yet it was also recognized that the role of physical 
climate science should not be marginalized but perhaps 
reshaped to better address the needs of decision 
makers. By now many climate scientists have had some 
interactions with various so-called stakeholders. One of 
the common perceptions of what is wanted by decision 
makers, particularly those concerned with adaptation 
planning, is ‘accurate predictions’ of future climate on 
very high spatial resolutions (e.g., for a small river 
catchment in Colorado for 2050). It is assumed this is 
desired because a particular approach to decision 
making is assumed, the so-called predict-then-act mode, 
wherein there is some consensus on ‘true’ probabilities 
about future climate change, and these probabilities are 
used at the front end of a process cascade that leads to 
management decisions based on those probabilities. This 
is assuming that climate change is a problem that falls 

neatly into a classical risk management framework 
wherein classical decision analysis techniques can be 
used to optimize decision making (Lempert et al., 2004). 
Another approach more readily embraces the reality that 
climate change is an issue imbued with deep (or 
extreme) uncertainty, that we may never be able to 
come up with truly robust probabilistic information about 
climate change on fine spatial scales twenty years in 
advance. This strategy, often termed robust decision 
making, focuses on starting with the types of decisions 
resource managers face and developing strategies that 
work well across a wide range of future climate 
conditions. As a part of this approach one also would 
want to identify adaptive strategies that can be modified 
to achieve better performance as one learns more about 
future climate change (Morgan et al., 2009). These 
strategies work much better under conditions of deep 
uncertainty than traditional decision analysis approaches. 
But what does all this mean for our work at this 
meeting? What is the effect of moving to robust decision 
making and adaptive decision making on the motivations 
and goals of climate scientists to provide useful 
information about future climate change? For one thing, 
it is important that climate scientists grasp that 
irrevocable decisions regarding adaptation, for example, 
are not going to be made tomorrow based on, say, the 
regional projections from the CMIP3 dataset, regardless 
of how that information is summarized (e.g., as 
scenarios or probabilities). We are all still in a learning 
mode. So one of the main purposes of producing 
information about future climate is so that we can all 
learn from it, not necessarily immediately make resource 
management decisions. Hulme and Dessai (2008) 
consider three different criteria for evaluating the success 
of national climate scenario efforts: predictive success, 
decision success, and learning success. They underscore 
that establishing predictive success is virtually impossible 
for long term climate change, whereas the other criteria 
are more verifiable and likely more important. Another 
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important concept that emerges over is that of reducing 
uncertainty about future (regional ) climate change. If 
one sees the main purpose of developing information 
about future climate as predicting future climate, then 
the goal of reducing uncertainty follows naturally. 
However, over the next decade, it may continue to be 
extremely difficult to reduce this uncertainty, or, perhaps 
more accurately, we don’t yet know if we can. In a 
sense, the regional statements made about climate 
change (discussed by Hewitson) in the chapter on 
regional projections in the AR4 report did indicate some 
reduction in uncertainty, since such detailed statements 
had never been made before (e.g., decreased 
precipitation in the southwest US), but we also know 
that these statements are not immutable. While the 
overarching goal of science may be to reduce uncertainty 
in the sense that it is to increase our knowledge (reduce 
our ignorance) of how the world works, this is not the 
same thing as reducing uncertainty about future regional 
climate. We know that this specific metric (e.g., range 
of change in precipitation) could as easily expand as 
contract in the next decade. For these reasons, we 
should be more interested in reducing vulnerability of 
resource systems to climate change than in reducing 
uncertainty about the future climate itself. We are still 
learning about the relationship between these concepts. 
Finally I mention the danger of false certainty – do we 
know which is more dangerous for our future – deep 
uncertainty about climate change or false certainty about 

it? As Mark Twain stated, ‘‘It ain’t what you don’t know 
that gets you in trouble. It’s what you know for sure that 
just ain’t so.’’ 
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CMIP3 Multi-Model Ensemble 
 
Gerald A. Meehl, Aixue Hu and Julie Arblaster 
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The Interdecadal Pacific Oscillation (IPO) is the Pacific 
basin-wide manifestation of the Pacific Decadal 
Oscillation (PDO), which is defined for the north Pacific. 
Both are similar in pattern and involve decadal to multi-
decadal fluctuations of sea surface temperatures (SSTs). 
In the positive phase, tropical Pacific SSTs have positive 
anomalies along with areas along the west coasts of 
North and South America, while there are negative SST 
anomalies in the northwest and southwest Pacific. The 
opposite pattern occurs in the negative phase. The IPO 
has been identified as being associated with decadal 

variability involving precipitation over southwestern North 
America and South Asia. The mid-1970s climate shift 
has been postulated to have been caused in part by a 
change in phase of the IPO, and a mechanism to 
produce the IPO has been identified in model 
simulations. Here, the CMIP3 multi-model ensemble is 
analyzed to identify characteristics involved with the IPO 
in terms of pattern, amplitude, and period across the 
models. Presumably, a credible simulation of the IPO in 
model simulations would be a necessary condition for 
skillful decadal predictions in the Pacific region. 
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Multi Model Ensembles, Metrics & Probabilities 
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A number of methodological questions must be 
addressed when carrying out multi model ensemble 
studies: On what basis should a model be included in or 
excluded from the study? Should projections from some 
models be given more weight than others? If so, how 
should they be weighted? Should ensemble results be 
transformed into probability distributions?  
 
A minimum requirement for including a model in an 
ensemble study is the following: it is plausible that the 
model can provide at least some of the information that 
we seek in the study. Typically, this will be information 
about particular quantities under one or more emission 
scenarios. We may judge it plausible that a model can 
provide desired information about quantity of interest A 
(e.g., global mean surface temperature) but not about 
quantity of interest B (e.g., changes in regional 
precipitation). If so, then while the model may be 
included in an ensemble study that seeks information 
about both A and B, the model’s results for B should be 
excluded from the analysis.  
 
Judgments of plausibility should consider a number of 
factors, including: the construction of the model (e.g., 
whether/how it represents processes that significantly 
influence the quantities of interest), its spatiotemporal 
resolution, and its performance in simulating those 
aspects of past climate that seem particularly relevant 
(given the predictive goals at hand) in light of process-
based thinking or for other reasons. These factors can 
be considered informally or more formally with the help 
of metrics.  
 
A metric of model performance defines a measure 
of the difference between model output and one or 
more observational datasets (see Gleckler et al., 2008 
for some examples). A metric of model quality 
defines a measure of the quality or “goodness” of a 
model, given the purposes for which the model is to be 
used, and may take into account all of the factors 
mentioned above: model construction, spatiotemporal 
resolution, and scores on relevant metrics of 

performance. A metric of model quality that is 
appropriate when evaluating whether a model is 
plausibly adequate for one purpose may not be 
particularly appropriate for evaluating whether a model is 
plausibly adequate for another.  
 
Metrics may also be used to set more stringent 
standards for the inclusion of a model in an ensemble 
study. For instance, it might be required that a model 
not only meets some minimum plausibility standard but 
also scores within some specified distance of the best 
score achieved on a chosen metric of performance or 
quality. Populating an ensemble with only these “best” 
models, and not including other available models that 
are plausibly adequate for the purpose of interest, can 
have implications for the interpretation of ensemble 
results. In particular, it may give us reason to believe 
that the set of projections produced will fail to include 
some outcomes that remain plausible, given the 
limitations of current understanding. This in turn means 
that, if the results produced in the study are to be 
transformed into probability distributions (PDFs), not all 
of the probability mass should be distributed over the 
range of results produced.  
 
Of course, even if all available models that meet a 
minimum plausibility requirement are included in a multi 
model study, it cannot be assumed that the range of 
results produced is likely to include the outcome that 
would be observed under the chosen emission scenario. 
Such a conclusion requires that we be able to assert that 
it is likely that at least one of the models included in the 
ensemble is adequate for projecting the quantities of 
interest with some specified level of accuracy, even if we 
cannot say which model (see Parker, under revision). For 
many predictive tasks of interest (e.g., predicting 
regional changes in climate later in the century), it 
seems we are currently unable to defend such an 
assertion about the models used in today’s multi model 
studies. Again, this implies that, if multi model results 
are to be transformed into PDFs, then not all of the 
probability mass – and perhaps not even most of the 
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probability mass – should be distributed over the range 
of results produced. This in turn implies that PDFs should 
not be produced by simply weighting results from 
different models according to the models’ relative scores 
on some chosen metric of performance or quality.  
 
Is important to keep in mind that the PDFs of interest 
are representations of epistemic uncertainty about what 
would occur under various emission scenarios; they are 
meant to convey our confidence (or degree of belief) 
that different outcomes would occur, taking into account 
all of the available evidence. This evidence includes 
much more than just the set of results produced in our 
latest multi model study. It includes (at least) results 
from other ensemble studies and background knowledge 
about the climate system. To take this evidence into 
account, we must engage in a complicated process of 
analysis and synthesis, involving judgments about the 
quality and degree of relevance of different pieces of 
evidence. This too speaks against the idea of producing 
PDFs by weighting results from a single ensemble study 
using a metric of performance or quality, since producing 
PDFs in this way will take into account only some of the 
available evidence (Parker in press). Metrics might still 
be used to identify some results as more plausible than 
others, but this relative plausibility cannot be 
transformed in a simple way into a probability.  
 
Should PDFs be produced at all? If so, how? I would 
argue that a PDF should be offered only if both the 
approximate width and approximate shape of the PDF 
can be justified and only if the PDF can be considered 
robust in each of two senses, viz., it is not highly 
sensitive to contentious assumptions, and it is not 
expected to change substantially in the very near term, 
e.g., as models undergo incremental development. It 
would not be good, either for policy or for the credibility 

of climate science, to offer policymakers a PDF now with 
the knowledge that a very different PDF – implying very 
different probabilities for outcomes of interest – will 
probably be offered a couple of years later. If these 
criteria cannot be met, then uncertainty about a 
predictive outcome should be communicated in some 
other way, e.g. by offer a range in which one expects 
the outcome to fall or by indicating the expected sign of 
a change without assigning a magnitude (see Kandlikar 
et al., 2005).  
 
If it is appropriate to offer PDFs for some predictive 
variables, then those PDFs should be arrived at after 
surveying all of the available evidence and after much 
critical discussion, taking care to avoid well-known 
pitfalls, such as double counting of evidence, as far as 
possible. Results from our latest multi model study will 
be an important piece of evidence, but only one piece. 
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The Influence of Model Skill on Regional Projections of Extreme 
Temperatures over Australia 
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Model evaluation by means of comparing 20th Century 
simulations to observations is readily undertaken to gain 
some level of confidence of model reliability. Many 
studies including Watterson (1996), Taylor (2001), 
Delworth et al. (2006), Knutti et al. (2006), and Shukla 
et al. (2006) have devised evaluation metrics however all 
have based their analysis on monthly, seasonal or annual 
data. Given that climate on time scales of days has a 
direct impact on human health (Trigo et al., 2005, 
Woodruff et al., 2006) and human activities (e.g., 
agriculture; Luo et al., 2005), an assessment of the 
capacity of models to simulate climate on time scales of 
days is clearly valuable.  
 
Perkins et al. (2007) introduced a metric which evaluated 
the CMIP3 GCMs on their ability to reproduce the 
observed probability density function (PDF) for daily 
minimum temperature (TMIN), maximum temperature 
(TMAX) and precipitation. The metric (Sscore) measures the 
amount of overlap between the observed and modelled 
PDFs by summing the minimum values across the 
common bins. Evaluation was performed for twelve 
regions across Australia, each representing one or more 
different climatic types (Perkins et al., 2007). Perkins et 
al. (2007) demonstrated that the ensemble PDF closely 
resembled the observed PDF as models with lower Sscore 

values were omitted. Overall, was concluded that while 
limited to one continent, some of the CMIP3 models 
show considerable skill at sub-continental scales, when 
assessed using daily data. 
 
In order to investigate whether CMIP3 models with lower 
skill biased future projections of temperature extremes, 
Perkins et al. (2009) employed three measures of model 
evaluation calculated for daily TMIN and TMAX. The 
measures of skill included the difference between the 
observed and modelled mean, the Sscore proposed by 
Perkins et al. (2007) and a new metric (Tailskill) which 
focuses on the weighted difference between the top 
(bottom) 5% for TMAX (TMIN). The generalized extreme 

value (GEV) distribution was implemented (Kharin et al, 
2007) to estimate and assess changes in the 20-year 
return value. Evaluation was performed for 1981-2000 
and projections were considered for the SRES A2 
scenario for 2081-2100. Models were chosen due to 
data availability for the 20c3m and A2 scenarios at the 
time data was obtained (6 models for TMAX and 9 models 
for TMIN). Models with multiple realizations were 
concatenated to form a single sample to avoid selective 
sampling of any one realization. Once evaluation was 
performed, models were divided into “weaker” and 
“stronger” ensembles by ranking their score for each 
evaluation metric. Projections were based on either an 
average (continental) or a range (regional) of the 
ensembles, and were compared to the all-model 
ensemble. Regional analysis was performed for regions 
2, 3 and 10 outlined in Perkins et al. (2007). These 
regions include temperate, subtropical and tropical 
climates respectively. 
 
Figure 1 shows the range in the projected TMAX 20-year 
return values and the 90% bootstrapped confidence 
intervals calculated from 1000 samples for the all-model 
ensemble and the “weaker” and “stronger” ensembles 
for each measure of skill. The all-model ensemble for 
each region (first bar) shows a large range of projected 
temperatures. In each region, and irrespective of skill-
score used, the projected TMAX is always lower in the 
stronger models than the weaker models, and the 90% 
confidence levels for the two ensembles do not overlap 
in Regions 2 and 3. This suggests that the projected 20-
year interval temperatures from the weak models are 
statistically significantly higher than those projected by 
the strong models, irrespective of whether ‘‘strong’’ is 
defined using the mean, PDF or tail skill measure. 
Results for TMIN (not shown) inferred that the samples 
are not consistently significantly different at a 90% 
confidence level, but there is a systematic difference in 
that the weaker models always simulate larger amounts 
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of increase in TMIN than the stronger models. Continental 
results are presented in Perkins et al. (2009). 
 
Figure 1 highlights a clear bias in that weaker models 
systematically and statistically significantly simulate a 
larger increase in TMAX than the stronger models. The 
use of an all-model ensemble therefore tends to over-
predict the amount of increase in both TMAX and TMIN in 
the 20-year return levels over Australia, at least for the 
climates presented here. It is likely that such results can 
be extrapolated to other regions across the continent. 
Results highlight the need to begin to exclude a given 
model from regional projections where it shows weaker 
skill, and that projections are less affected by the chosen 
measure of skill, compared to not evaluating and simply 
averaging across all models. 
 
 
 
 

 
 
 
 
 
 
 
Figure 1. The 20-year return values of TMAX and 90% 
confidence for the A2 emission scenario (2081-2100) for the 
all model ensemble, strongest and weakest three models in the 
Sscore (SS), the strongest and weakest three models in the Tailskill 
(TS) ensemble and finally the strongest and weakest three 
models in the differenced mean skill based ensemble for 
Regions 2, 3 and 10 outlined in Perkins et al. (2007).  
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Introduction 

Global climate models are increasingly being downscaled 
to address regional climate issues. But which of the 24 
models in the IPCC AR4 report should be used for a 
particular regional study? And how should different 
models be combined to give the most reliable results? 
We address this question using as a demonstration case 
a recent detection and attribution (D&A) study of 
changes in the hydrological cycle of the western U.S. 
(Barnett et al., 2008 [B08 hereafter]).  
 
A common approach is simply to average over all models 
with available data. This is justified by global scale 
results, but this procedure weights models that do a 
poor job simulating the region of interest equally with 
those that do a good job. Is there a better strategy? 
 
An increasingly popular approach is to generate metrics 
of model skill, then pre-qualify models based on their 
ability to simulate climate in the region or variable of 
interest (e.g., Coquard et al., 2004; Gleckler et al., 
2008; Brekke et al., 2008). Do models selected this way 
provide a better match to observed changes? 
 
Models and Data 

We use global model JFM minimum near-surface 
temperature (“tasmin”) over the western U.S. as a 
surrogate for the multi-variate analysis of B08. We also 
reuse the internal climate variability (noise) estimates 
from B08, obtained from 1600 years of simulation with 
two different models (cf. Santer et al., 2009). 
 
Data from 21 global models forced by 20th century 
changes in anthropogenic and natural factors were 
obtained from the LLNL CMIP3 archive. The period 
analyzed is 1960-1999. To facilitate comparison, all 
model fields and the observations (below) were 
interpolated to a common 1°×1° grid over the western 
U.S.  
 

We compare model temperatures and precipitation to a 
daily observed data set gridded at 1/8° longitude by 
latitude resolution across the western U.S. (Hamlet and 
Lettenmaier, 2005). 
 
Metrics  

We use 42 metrics to characterize each model. We use 
4 seasonal (DJF, MAM, JJA, and SON) averages of 2 
variables (surface air temperature [tas] and precipitation 
[pr]) in 4 aspects: the seasonal mean and the temporal 
standard deviation of the seasonal data averaged into 1, 
5, and 10-yr blocks. This gives 32 metrics.  
 
For ENSO and the PDO, we construct one metric 
describing the climate mode’s sea surface temperature 
pattern in the region where it is defined, and additional 
metrics describing the teleconnected effects of the 
climate mode in western tas and pr. This yields another 
6 metrics. Finally we include the phase and amplitude of 
the tas and pr annual cycle, for a total of 42 metrics.  
 
Modeled temperature trends 

In evaluating the model temperature trends, we use 
most of the formal, fingerprint-based D&A methodology 
employed in B08. However, no downscaling is done due 
to the resources required for 21 models.  
 
The models produce temperature trends in the western 
U.S. ranging from -0.05 to +0.21 °C/decade. 
Observations show +0.10 °C/decade. All 5 models with 
a negative trend have only 1 realization, while none of 
the 13 models with more than 1 realization has a 
negative ensemble-averaged trend. Natural variability 
means a single realization does not provide a reliable 
estimate of the warming signal. 
 
The relationship between N (the number of realizations 
from a single model included in the ensemble average) 
and the significance of the ensemble averaged trend is
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illustrated for a typical model in Figure 1a. Significance is 
assessed by comparing to trends found in the control 
runs, which lack anthropogenic forcing. All but one 
model show an upward trend in significance as the 
number of realizations increases, due to the averaging 
away of natural internal variability.  
 
We calculate what the D&A results of B08 might have 
been if the 14 realizations used there had been chosen 
randomly from all the models available (63 realizations 
total). Using 10,000 random selections, we found 96% 
of the random trials resulted in a trend significant at the 
90% level, and 90% of the trials gave a trend significant 
at the 95% level. Therefore, the finding that the JFM 
tasmin trend over the western U.S. is both detectable 
and attributable to combined anthropogenic and natural 
effects is robust to the range of trends found in the 
CMIP3 models. 
 
The Role of Model Quality 

We order the models in terms of quality by considering 
each model’s skill scores to be a point in nmetrics (=42) 
dimensional space. In the results shown here, the 
ordering is given by ΔSS, the Euclidian distance from the 
model’s point to perfect skill at point (1,1,1,…,1). Lower 
values of ΔSS indicate better simulations.  
 
Fig. 1b shows how the magnitude of the JFM tasmin 
trend relates to ΔSS. This has been calculated using only 
the 13 models that have more than 1 realization with 
tasmin, to reduce the effects of natural variability. There 
is no significant relationship between this measure of 
model quality and the regional tasmin trend.  
 
These results are with individual models, but perhaps 
averaging across models is required for any relationships 
to be discerned. Accordingly, we separated the models 
into groups of the top 10 and bottom 11 based on ΔSS, 

and computed the mean JFM tasmin trend for each 
group. The difference in trend between the groups was 
compared to Monte Carlo estimates of the difference 
using models partitioned randomly. We found no 
statistically significant difference in the distribution of 
trends obtained when partitioning by model quality 
compared to random partitioning. 
 
The multi-model ensemble 

The multi-model ensemble average, MM, is the best 
model in the overall skill score. Given the important role 
ensemble size plays, is MM better simply because it 
includes information from far more realizations than any 
individual model? Fig. 1c illustrates how ΔSS changes as 
progressively more realizations from the same model 
(blue) or randomly selected different models (red) are 
added to the average. For most models, skill increases 
(ΔSS decreases) more quickly when different models are 
added to the mix than when more realizations of the 
same model are included. This is true even for the same 
number of ensemble members.  
 
MM’s superiority can be understood by decomposing the 
model errors into the mean error, an error in the ratio of 
the model’s variance to observed, and the pattern 
correlation between the model and observed. Mean 
errors are distributed around zero, and the variance ratio 
tends is distributed about 1. Averaging across models 
reduces the error in both these aspects, both in the 
mean climate and variability. For the pattern correlation, 
averaging across models tends to give better correlation 
with observations than any individual model, consistent 
with the argument that effectively random spatial errors 
are being reduced by averaging.  
 
Summary 

Our results show that the best way we currently have to 
use information from multiple global model runs in a 
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regional D&A study is simply to form the multi-model 
ensemble average. Neither selecting the models based 
on the quality of their climate simulations in the region 
of interest nor forming an optimized ensemble average 
based on maximizing skill resulted in a superior result 
over the historical period.  
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Using Paleo-Climate Data to Enhance Future Projections 
 
Gavin Schmidt 
 
NASA Goddard Institute for Space Studies, USA 
 
CMIP5 will contain (for the first time) coordinated 
simulations for 3 periods of the past with substantial 
natural climate variability (the mid-Holocene, the Last 
Glacial Maximum and the last millennium). Model/data 
comparisons for these past climate changes will be a 
new tool in evaluating the projections of those same 
models in future scenarios. I outline a framework in 
which data synthesis combined with suitable modelling 
targets should be able to reduce uncertainty in both. The 
Intergovernmental Panel on Climate Change Fourth 
Assessment Report (IPCC AR4) highlighted a number of 
areas of uncertainty in future projections, due both to 
poor understanding of specific processes and to the wide 
range of sensitivities produced by current models. For 
many of these areas, there are relevant paleoclimate 

data that can be used to evaluate or weight model 
simulations of the future scenarions - provided that is 
some conformability between the models used for the 
past and future climate simulations. Specific targets 
include: the long-term behaviour of El Nino events and 
the potential response to volcanic and solar forcing; the 
variability of sub-tropical rainfall and the extent of the 
Hadley Circulation and their response to orbital and high-
latitude forcing; ice sheet responses on sub-millennial 
timescales; multi-decadal changes in the North Atlantic 
ocean circulation and, certainly, overall climate 
sensitivity. In each case, I highlight data synthesis steps 
and modelling approaches necessary for reducing the 
uncertainty. 
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Probabilistic Projections of Climate Change at Global and Regional 
Scales 
 
David M.H. Sexton, Ben Booth, Mat Collins, Glen Harris, and James Murphy 
 
Met Office Hadley Centre, United Kingdom 
 
In June 2009, the Met Office published the latest set of 
UK Climate Projections (http://ukcp09.defra.gov.uk/). 
The projections, which were probabilistic in nature, were 
provided at 25km resolution for three different SRES 
emission scenarios. They were produced in three stages. 
The first stage used a Bayesian framework (Goldstein 
and Rougier, 2004; Rougier, 2007) to produce 
probabilistic projections for the equilibrium response to 
doubled CO2 levels. This stage allowed us to incorporate 
different sources of uncertainty: observational 
uncertainty, parametric uncertainty from an ensemble of 
perturbed physics runs (Murphy et al., 2004), and 
structural uncertainty from the CMIP3 multimodel 
ensemble. The second stage used data from coupled 
ocean-atmosphere runs to make the projections time-
dependent for the 21st century. Several perturbed 
physics ensembles explored uncertainty in four different 
components of the Earth System (land/atmosphere, 
ocean, sulphur cycle, and terrestrial carbon cycle) and so 
forcing uncertainty was also included at this stage. In the 
final stage, data from regional climate model runs were 
used to downscale the projections to 25km resolution.  
 
In this talk, we will concentrate on the first stage of 
production as this is most relevant to the problem of 
assessing and combining model projections.  
 
The following issues will be discussed:  
 
1. Motivation for using perturbed physics ensembles 

instead of just taking information from the 
multimodel archive.  

 
2. Implementation of the Bayesian approach outlined 

in Rougier (2007) including multivariate weighting 

and the importance of taking into account the 
amount of structural error in the climate model, in 
particular its effect on one’s ability to discern a 
relatively good climate model from a relatively poor 
climate model.  

 
3. Estimation of the structural uncertainty explored by 

the multimodel ensemble that is additional to the 
parametric uncertainty explored by the perturbed 
physics ensemble.  

 
4. Testing the sensitivity of probabilistic pro jections to 

key assumptions in the method and comparison 
with alternative techniques.  

 
Finally we discuss lessons learnt from the Bayesian 
framework and what implications these lessons have for 
assessing and combining multimodel projections.  
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Quantifying Uncertainty in Future Warming Using Observational 
Constraints Derived from Past Temperature Changes 
 
Peter Stott 
 
Met Office Hadley Centre, United Kingdom 
 
Increased understanding of the past provides greater 
confidence in predictions of likely changes in future. 
Optimal detection analyses (Allen and Tett, 1999) have 
been used to quantify the contributions of greenhouse 
gases, other anthropogenic forcings and natural factors 
to past temperature changes on global and continental 
scales (Tett et al., 1999; Stott, 2003). It has been shown 
that there is a close relationship between past and 
future greenhouse warming (Allen et al, 2000; Frame et 
al, 2006) and that uncertainties in future warming can 
be derived based on estimates of past warming 
attributable to anthropogenic and natural factors (Allen 
et al., 2000; Stott et al., 2006a; Frame et al., 2006). 
These observationally constrained analyses indicate that 
it is very likely that aerosol cooling is suppressing a major 
portion of current greenhouse warming (Stott et al., 
2008) and as a result additional warming is implied if 
aerosol pollution is removed from the atmosphere in 
future. 
 
The technique described above, which has been denoted 
“ASK”, obtains observationally constrained uncertainties 
in future warming conditional on particular emissions 
scenarios by deriving factors by which climate models 
can be scaled to be consistent with observed responses 
to greenhouse gas forcing and other forcings and 
applying these scaling factors and their uncertainties to 
climate model simulations of future changes. While 
global temperature changes appear to be relatively well 
constrained using this approach there is greater 
uncertainty in regional patterns of temperature change. 
Probabilistic predictions of continental scale temperatures 
were produced using two versions of the attribution 
scaling technique by Stott et al. (2006b). The first version 
projected future continental changes according to past 
changes in the same region (thus obtaining relatively 
conservative estimates of uncertainty by neglecting 
possible constraints from aspects of past change remote 
to the region of interest); the second version scaled 
future continental changes according to errors in past 

spatial and temporal patterns of change over the whole 
globe (thus obtaining narrower estimates of uncertainty, 
although this does not take account of possible errors in 
the regional pattern of response, since it scales the 
model’s pattern of response over the whole globe by the 
same factor, with uncertainties, for each region).  
 
Recent work has developed such techniques further to 
produce probabilistic predictions on sub-continental 
scales by taking fuller account of model uncertainty. The 
model set we analyse here consists of two ensembles of 
simulations; an ensemble of 17 simulations of HadCM3 
with the same specification of anthropogenic and natural 
forcings but different perturbed parameter combinations 
(Harris et al., 2006) and a parallel ensemble of 17 
simulations in which the same parameter combinations 
are used but greenhouse gas forcing is omitted from the 
forcings. Global scaling factors on the modeled response 
to greenhouse gas forcing and to other forcings are 
produced for each of the 17 models and these 
predictions are then combined in a weighted average to 
produce probabilistic predictions on sub-continental scale 
“Giorgi” regions. The results are shown in Figure 1 
where the ASK predictions for the northern Europe 
region are compared with predictions based on the 
methodology used for producing probabilistic predictions 
for the UK in the UKCP09 project (ukclimateprojections. 
defra.gov.uk). The UKCP09 methodology weights model 
predictions based on measures of a model’s ability to 
simulate mean climate as well as past climate, whereas 
the ASK methodology uses only past climate changes to 
weight predictions. The degree of agreement between 
the two approaches appears to indicate that on sub-
continental scales future temperatures are 
observationally constrained largely by past changes over 
the globe rather than by mean climate. The observed 
temporal evolution of the land-ocean temperature 
contrast, of hemispheric temperature differences and of 
the ratio of high latitude to low latitude warming appear 
to provide important constraints on future warming and 
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its regional patterns (Stott et al., 2006a). Further work 
will seek to improve our understanding of the processes 
that control the climate’s response to past greenhouse 
gas forcing and other forcings in order to refine 
probabilistic estimates of future regional climate 
changes.  
 
 

 
 
Figure 1. Comparison of probabilistic climate projections for 
changes in 10-year annual mean 1.5 m temperature (ºC) in 
response to SRES A1B emissions. Changes shown are for 
Northern Europe, relative to 1906-2005, from two methods: 
UKCP09 (red) and using ASK (blue). The probability levels are 
2.5%, 10%, 50% (thick), 90%, and 97.5% as used in Stott et 
al. (2006a). The observations are also shown as the black line. 
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Evaluations of CMIP3 Model Performances for Various Phenomena in 
the Atmosphere and Oceans, in the Present-Day Climate and in Future 
Projections 
 
Yukari N. Takayabu 
 
Center for the Climate System Research, University of Tokyo, Japan 
 
Considering the global warming impacts on our society, 
changes in associated shorter-term or regional 
phenomena in the atmosphere and oceans, such as 
tropical cyclones, storm tracks, monsoon, ENSO, etc., 
can influence our lives in near future more directly than 
the gradual trends of temperature and/or precipitation. 
For the IPCC’s Fourth Assessment Report (AR4), climate 
model experiments for the present day climate 
simulations and for the future projections are performed 
in various organizations worldwide, and collected for the 
Coupled Model Intercomparison Phase 3 (WCRP CMIP3). 
In order to extract more reliable information on future 
climate variability, skills of climate models are evaluated 
utilizing CMIP3 data. 
 
We have carried out a study ‘Evaluations of CMIP3 
Model Performances for Various Phenomena in the 
Atmosphere and Oceans, in the Present-Day Climate 
and in Future Projections’ under a project entitled 
‘Integrated Research on Climate Change Scenarios to 
Increase Public Awareness and Contribute to the Policy 
Process (FY2007-FY2011)’ funded by the Ministry of 
Environment, Japan. In this study, multi climate model 
simulation data of CMIP3 are analyzed in eight 
subgroups allocated to 16 phenomena which are 
influential for our lives in Japan. Sixteen selected 
phenomena are listed as follows: 1) tropical cyclones, 2) 
intertropical convergence zones (ITCZ), 3) Pacific-Japan 
teleconnections, 4) storm tracks, 5) surface temperature 
variations, 6) rainfall distribution in relation to the El Nino 
and Southern Oscillation (ENSO), 7) rainfall 
characteristics in Baiu, 8) the ocean heat content and 
ENSO, 9) the Arctic Oscillation, 10) Pacific decadal 
oscillation, 11) Asian summer monsoon, 12) equatorial 
westerly bursts and ENSO, 13) the Madden-Julian 
oscillation, 14) cloud radiative forcing, 15) Baiu and 
Meiyu front and the subtropical high, 16) cloud amount 
and the large-scale circulation fields. 
 

In the first year, metrics for reproducibilities of individual 
phenomena are suggested and the CMIP3 climate 
models are evaluated for 20th Century Climate in 
Coupled Model (20C3M) runs in comparison with the 
observations. In the second year, reproducibility metrics 
of various phenomena for 25 climate models are 
gathered from each subgruoup and synthesized. Based 
on these reproducibilities in the current climate, we 
evaluated future projections of some phenomena with 
reduced uncertainties compared to a single model or a 
simple multi-model projection. 
 
Lastly, interrelationships among the reproducibilities of 
individual phenomena are examined. Tight relationships 
of their performances with the reproducibility of large-
scale environmental fields are suggested for several 
phenomena. Following this result, we are now working 
on to produce the “Asian Metrics” to represent the 
performance of large-scale environments, which are 
essential for determining characteristics of short-term 
atmospheric and oceanic phenomena in the Asian 
region.  
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A Partial Explanation of the Apparent Superior Performance of the 
Multi-Model Mean Simulations 
 
Karl E. Taylor 
 
Lawrence Livermore National Laboratory, USA 
 
Statistical measures that gauge differences between 
model-simulated and observed climatology often indicate 
that the mean fields computed from a multi-model 
ensemble are apparently in better accord with 
observations than any of the individual model fields 
comprising those means. We examine whether this 
result can be explained simply in terms of the smoother 
character of the mean field. We define a skill score that 
penalizes models that have unrealistically smooth fields, 
but even so the mean model appears to excel. We then 

show that the formation of a mean result tends to filter 
the shorter spatial scales preferentially. Although this 
filtering has little effect on the overall variance (and thus 
is penalized little by the skill score), it can reduce the 
RMS error in the field and improve its correlation with 
observations. If we apply a comparable effective filter to 
individual model results, we see their apparent skill 
improve. The degree to which the preferential smoothing 
of smaller spatial scales improves the apparent model 
skill depends on the field considered. 
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An Overview of Approaches to Future Projections Based on Multi-
Model Ensembles 
 
Claudia Tebaldi 
 
Department of Statistics, University of British Columbia, Canada 
 
In this talk, I will try to describe the assumptions and 
methods (and when possible the results) that have been 
proposed over the last ten years for the characterization 
of future projections and their uncertainty based on 
Multi-Model Ensembles (MMEs). 
 
Starting from the work by Raisanen and Palmer (2001) 
that utilized runs from CMIP2 and coming to the latest 
papers on the subject (e.g., Annan and Hargreaves, 
2010), how the data from MMEs has been interpreted in 
relation to the true climate change signal that we seek 
to characterize has varied: some methods have implicitly 
or explicitly considered each model’s simulation as a 
possible future trajectory, and have built empirical 
histograms or reweighted versions of them as an 
approximation to the range and likely distribution of 
possible futures; other methods have focused on the 
idea of a common signal underlying all models’ 
simulations, and have characterized this unobserved 
consensus’ estimate and its uncertainty as if each of the 
members of the MME was a “truth+error” version of it.  
 
There have also been approaches that have combined 
MMEs and other sources of information (observations, 
simplified model results, pattern scaling, perturbed 
physics experiments) in order to consider as 
comprehensive a representation of model results -- and 
their performance -- as our computational resources 
allow.  
 
Among these latter approaches, many have attempted 
to utilize observational constraints to reweight individual 
MME members into a synthesis that reflects model 
performance. These attempts have been challenged by 
the complexity of model performance evaluation and the 
non-obvious relation between performance over past and 
current climate and reliability of future simulations. We 
will survey several proposals that have been put forward 
in order to quantify and /or rank MME members and 
utilize the result to construct future projections.  

As I go along and describe these approaches I would like 
to focus on the underlying assumptions (some of which I 
just sketched) as the most relevant input to this 
workshop, as opposed to specific results. I will present 
however some comparison of actual results in order to 
exemplify how the shape and range of the final 
projections that ensue from each of these methods 
(embodying our best guesses of the future and their 
uncertainties) may be sensitive to some of these 
assumptions – or not.  
 
Following is a list of papers relevant to my discussion. If I 
missed some relevant work at this point it is only 
because of oversight, and I hope to have a more 
complete list by the time of the workshop.  
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Assessing Future Projections from Models with Differing Climate 
Sensitivities 
 
Michael Wehner 
 
Lawrence Berkeley National Laboratory, USA 
 
Upcoming climate change assessment reports will be 
expected to discriminate among models in their 
estimates of future climate change based on their 
abilities to reproduce observed climate statistics. 
Different climate models exhibit different sensitivities to 
external forcing for a multitude of reasons. This presents 
difficulties in making unbiased ensemble projections if 
the climate sensitivities of the acceptable models are not 
representative of the accepted range of climate 
sensitivity. Using the ability of the CMIP3 models to 
reproduce the Palmer Drought Sensitivity Index (PDSI) as 
an example, we illustrate a method to more properly 
frame a limited set of future projections. 
 
In a forthcoming paper, we analyzed the ability of 
nineteen climate models to simulate PDSI over the North 
America. We found that models more skillful in their 

ability to reproduce observed drought statistics of the 
second half of the twentieth century tend to exhibit less 
severe projections of future drought under the SRES A1B 
emissions scenario. The reason for this is an apparent 
correlation between drought skill and climate sensitivity, 
with the models projecting the least amount of warming 
being the best at reproducing recent drought statistics. 
Because there is little reason to believe that this is a 
fundamental result, projections of future drought in a 
specified time period are biased low if one accepts the 
full range of climate sensitivity estimates. A more 
unbiased way of approaching the problem is to express 
the change in PDSI at a specific warming amount rather 
than at a specific time. This entails identifying when 
each model projects such a specific warming amount 
and combining the drought estimates among models 
from these presumably different time intervals. 
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Risks of Model Weighting in Multi-Model Climate Projections 
 
Andreas P. Weigel 
 
Federal Office of Meteorology and Climatology, MeteoSwiss, Switzerland 
 
In seasonal forecasting, performance-based weighting 
schemes have been successfully implemented and have 
been demonstrated to improve the average prediction 
skill significantly (e.g., Weigel et al., 2008). Such 
weighting schemes are typically based on 20 to 40 years 
of independent hindcast data, which mimic real 
forecasting situations and can thus serve as a data basis 
to derive optimum weights. However, if only an 
insufficient number of hindcast data are available (e.g., 
10 years or less), the weight estimates get less robust 
and skill may drop below the level obtained with 
unweighted multi-models (Weigel et al., 2010). In other 
words, model weighting in seasonal forecasting is only 
successful, if the weights are robust enough to represent 
the true underlying model skill. 
 
What does this imply for the combination of climate 
change projections? What would be the consequences in 
terms of projection accuracy, if “wrong” weights are 
applied, i.e., weights which do not represent the true 
model performance? This is an important question to be 
discussed, given that at present there is no consensus on 
how model weights should be obtained in a climate 
change context (e.g., Knutti et al., 2010), nor is it clear 
that appropriate weights can be obtained at all with the 
data and methods at hand.  
 
To address these questions, we have recently introduced 
a simple conceptual model of climate change projections 
(Weigel et al., 2010). This “toy model” allows us to 
analyze the effects of equal, optimum and inappropriate 
weighting in generic terms by controlled combination 
experiments. The model is designed such that the 
impacts of (i) model error magnitude, (ii) error 
correlation, and (iii) internal variability can be considerd. 
The key results, many of which are consistent with 
experience in seasonal forecasting, can be summarized 
as follows: 
 
• Equally weighted multi-models yield, on average, 

more accurate projections than do the participating 

single models alone. The projection errors can be 
further reduced by model weighting, assuming the 
optimum weights are known.  

 
• The optimum weights are not only a function of the 

single model error uncertainties, but also depend on 
the degree of model error correlation and the 
amount of internal variability. Neglecting internal 
variability and model error correlation can lead to 
severely biased estimates of optimum weights. 

 
• If model weights are applied which do not reflect the 

true model uncertainties, then the weighted multi-
model may have much lower skill than the 
unweighted one. In many cases more information 
may actually be lost by inappropriate weighting than 
can potentially be gained by optimum weighting 
(Figure 1).  

 
• This asymmetry between potential loss due to 

inappropriate weights and potential gain due to 
optimum weights grows under the presence of 
internal variability. In fact, if the internal variability is 
of comparable or even larger magnitude than the 
model errors, then equal weighting essentially 
becomes the optimum way to construct a multi-
model.  

 
These results do not imply that the derivation of 
performance based weights is impossible by principle. 
However, our results do imply that a decision to weight 
climate models should be taken with great care. Unless 
there is a clear relation between what we observe and 
what we predict, the risk of reducing the projection 
accuracy by inappropriate weights appears to be higher 
than the prospect of improving it by optimum weights. 
Given the current difficulties in determining reliable 
weights, equal weighing may for many applications well 
be the safer and more transparent way to. 
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Figure 1. Increase/decrease of the expected mean squared error (MSE) of weighted averages of two single models (solid black: 
optimum weights; dot-dashed: worst possible weights; dashed: random weights) with respect to the benchmark of equal 
weighting. The results are plotted as a function of the MSE ratio of the two single models to be combined. The combination 
experiments are based on the conceptual model of Weigel et al. (2010). 
 
 

 

References 

Knutti R., R. Furrer, C. Tebaldi, and J. Cermak, 2010: 
Challenges in combining projections from 
multiple climate models. J. Clim, submitted 

Weigel A.P., R. Knutti, M.A. Liniger, and C. Appenzeller, 
2010: On the risk of applying unrobust model 
weights in multimodel climate change 
projections. J. Clim., submitted 

 

 
Weigel A.P., M.A. Liniger,. and C. Appenzeller, 2008: 

Can multi-model combination really enhance the 
prediction skill of probabilistic ensemble 
forecasts? Quart. J. Roy. Met. Soc., 134, 241-
260. 

 
 

 



 

IPCC Expert Meeting on Multi Model Evaluation - 105 

IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections 
Boulder, Colorado, USA, 25-27 January 2010  
Conference Volume 
 

Regional Projections and Model Evaluation: Potential Benefits of 
‘Representative Future Regional Climates’ 
 
Penny Whetton, Kevin Hennessy, Bryson Bates, David Kent 
 
CAWCR and CSIRO Marine and Atmospheric Research, Australia 
 
A key challenge for the science of climate projection and 
impact assessment is to serve the rapidly growing 
climate information needs of adaptation planning in an 
environment where the following apply: 
 
• A perception that impact assessments based on 

older GCMs and emission scenarios become ‘out-of-
date’ and need to be re-done as new modelling 
results become available; 

 
• The view that substantial differences between 

GCMs in simulated future regional climate is a 
major challenge for adaptation planning (see 
analysis by Dessai et al., 2009)  

 
• A common desire amongst many users to use a few 

as possible future climate scenarios in impact 
assessments (e.g., AGO, 2006), often a ‘best 
guess’ assessment, just when there is rapid growth 
in the number of potentially relevant GCM and 
downscaled results available for application (e.g., 
CMIP5); 

 
• Standard methods for producing probabilistic 

projections (which can synthesis results from 
multiple GCMs into a PDF) and applying them in 
impact studies are yet to be established. 

 
If effective methods of filtering out unreliable models 
were to be found, this could reduce uncertainty, new 
model runs could be routinely assessed as they come 
along, and a small set of simulations could be used in 
impact applications, simplifying this work. This view has 
stimulated much recent interest in model evaluation in 
the Australian context (e.g., see Smith and Chandler 
2009), as equivalent pressures have done so 
internationally (e.g., this workshop). There are two 
problems with this response: first, there is no consensus 
that we have yet found, or are about to find, a robust 
process for filtering available models down to a few 

‘best’ models (e.g. see Knutti et al., in press). Second, 
even if we could identify the best models, this need not 
serve the requirements of adaptation planning, such as 
the ‘robust decision making’ perspective (see Dessai et 
al., 2009) in which the full range of plausible future 
climates, and not just the more likely future climates, 
need to be considered in the impact assessment. In 
other words, low probability scenarios with high impact 
should not be ignored in risk assessment. A further 
complexity is that model evaluation has also been taken 
up by researchers primarily with application interests 
(e.g., Chiew et al.,, 2009). Although the impact 
perspective is a vital consideration in the development of 
relevant regional projection products, user involvement in 
model evaluation increases the likelihood that models 
will be selected on local current climate realism criteria, 
which may or may not relate to reliability of the 
anthropogenically forced change.  
 
Our assessment is that model evaluation by itself is 
unlikely to adequately address the issues described 
above. If the simplicity that is craved in this area is going 
to be achieved, it will have to be reached some other 
way. 
 
‘Representative concentration pathways’ have recently 
been adopted as a basis for running GCM simulations 
for the IPCC AR5 (Moss et al., 2008). This approach 
recognizes that the climate system responds to the 
evolving greenhouse gas and aerosol concentrations of 
the atmosphere, and does not need to ‘know’ about the 
varying socio-economic scenarios that may underlie any 
particular concentration pathway. This means that as 
long as a suitably wide set of pathways is developed, 
climate modelers can apply these in new simulations for 
the AR5, while in parallel, the integrated assessment 
modelers can assess potential socio-economic scenarios 
and estimate which of the concentration pathways any 
scenario is most likely to follow. This movement from a 
linear approach to a parallel approach shortens the 



Annex 3: Extended Abstracts - Whetton 

IPCC Expert Meeting on Multi Model Evaluation - 106 

 
2030 A1B 
 Little change 

up to 0.5 °C warmer 
Warmer 
0.5 to 1.5 °C warmer 

Hotter 
1.5–3.0 °C warmer  

Much hotter 
more than 3.0 °C warmer 

Much wetter 
(more than +15%) 

No evidence No evidence No evidence No evidence 

Wetter 
(0 to 15% wetter) 

No evidence Unlikely 
5 models 

No evidence No evidence 

Drier 
(0 to 15% drier) 

Very unlikely  
GISS AOM, PCM 

Likely 
16 models 

No evidence No evidence 

Much drier 
(More than 15% drier) 

No evidence No evidence No evidence No evidence 

2070 A1FI 
Much wetter 
(more than +15%) 

No evidence No evidence No evidence No evidence 

Wetter 
(0 to 15% wetter) 

No evidence No evidence Unlikely 
4 models 

Very unlikely 
 (CGM3.1 T47) 

Drier 
(0 to 15% drier) 

No evidence Very unlikely 
 (GISS AOM) 

As likely as not 
10 models 

Unlikely 
3 models 

Much drier 
(More than 15% drier) 

No evidence No evidence Very unlikely 
CNRM-CM3,CSIROmk3 

Very unlikely 
CSIRO Mk3.5, IPSL 

 
Figure 1. Example of RFRCs based on annual temperature and precipitation change for Victoria, Australia. Calculated from 23 
CMIP3 simulations for two time slices and selected emission scenarios (using pattern scaling, see Mitchell, 2003), and with ranges 
of change arbitrarily chosen. The total model count is shown, or, for counts of two models or less, the models named. Likelihood 
terminology is consistent with the IPCC, based on the percentage of models in a given square (Risbey and Kandlikar, 2007) (e.g., 
‘likely’ is >66%). Where no square is ‘likely’ the heavy red border links squares that together would reach the ‘likely’ threshold. 
 
 
development time for the production of relevant 
assessment work for the IPCC and also provides an 
ongoing framework for relating socio-economic scenarios 
to available GCM runs. 
 
Here we extend the above concept to consider the idea 
of sets of ‘representative future regional climates 
(RFRCs)’ for any region of concern. If these could be 
developed, they would greatly help address the 
challenge and associated issues identified in the first two 
paragraphs above. This perspective would not sideline 
model evaluation, although it would redirect this work 
into the dual goals of 1) identifying plausible (broadly 
defined) regional climates and their likelihood (which will 
depend on assessing model processes driving particular 
simulated regional responses), and 2) assessing the 
applicability of particular models for specific applications 
(which is likely to depend on local realism). 
 
To construct RFRCs, we would need to consider changes 
to a range of variables commonly needed in impact 
assessments, such as changes to annual and seasonal 
mean temperature, rainfall, potential evaporation, solar 
radiation and windspeed, and daily extremes such as 
heavy rainfall, hot days and strong winds. A set of such 
climates could be perhaps be found using cluster 

analysis, or related data reduction techniques, but for 
illustrative purposes here we simply classify simulated 
future regional climates by the changes to annual rainfall 
and temperature. This choice is guided by fact that these 
variables are the two most commonly required in impact 
assessment as well as being the two most commonly 
reported in the literature. We also expect that 
temperature and rainfall changes effectively classify 
changes in a range of other variables (e.g., extreme 
rainfall). Figure 1 gives an example of such a 
classification for a selected region based on results from 
the CMIP3 archive. A set of plausible future climates is 
indicated, and we see how the hotter and drier climates 
are more likely to occur at a later date and under the 
higher emission scenario. Relative likelihoods, based 
density of model results, are also indicated (see caption). 
 
The RFRCs would be defined by their high level 
descriptions (in this case, ‘warmer and much drier’, etc.) 
but under these there can be a richer level of detail 
based on wider results of the models that fall in a 
classification, such as the seasonal distribution of the 
changes or changes to other variables (which are also 
likely to further discriminate the climates from each 
other, although this needs investigation). The expansion 
of an RFRC may include reference to various future 
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climate data sets (such as downscaled data) that fall 
under that classification and possibly impact results that 
have employed those data sets. Likelihood assessment 
could be modified to account for assessed model 
reliability (through weighting or model exclusion), or a 
range of other potentially relevant considerations such as 
physical arguments (e.g., expansion of Hadley Cell) or 
recent observed climate trends (extrapolation of 
observed trends could be entered as a plausible 
scenario). Application scientists engaging with a set of 
RFRCs may choose to use a subset, such as the ‘likely’ 
RFRC plus, say, two RFRCs that might lead to ‘extreme 
risk’ for the impact system under consideration, or a 
‘least change’ RFRC. Future climate data sets suitable 
for use in the application need only be developed 
(through selecting GCMs, downscaling etc.) to populate 
those cases. One or two more cases may need to be 
added to cover the needs of a number of impact sectors 
if a general purpose set of RFRCs is to be prepared.  
 
Systematic application of this approach would require 
various challenges to be addressed, such as robustly 
classifying future regional climates into a small high level 
set, estimating likelihoods, and deciding on suitable 
regionalisations. However, if this approach could be 
established, the needs of the robust decision making 
perspective could be efficiently addressed, while still 
benefiting from assessment of the likelihood of various 
future climates. Furthermore, RFRCs, and not GCMs, 
could be the ‘boundary objects’ (Hulme and Dessai, 
2008) which anchor discussion between climate science 
and impact communities. Since the high level RFRC 
descriptions need not change as new GCM results 
emerge (although the RFRC likelihoods, and the 
datasets the RFRCs are populated with, will evolve), they 
can provide a framework for assimilating impact 
assessments undertaken at different times with different 
sets of GCMs.  
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Reconstruction, Projection and Detection 
 
Francis Zwiers 
 
Environment Canada, Canada 
 
There are important parallels between the millennial 
climate reconstruction problem on the one hand, and the 
climate projection problem on the other.  
 
In the millennial reconstruction problem one has 
available (a) a network of instrumental observations that 
extend over the past 100-150 years, (b) a network of 
annually or seasonally resolved climate proxies extending 
back in time over one to two millennia from recent 
decades, and (c) perhaps also the output of one or more 
climate models that have been run over the millennial 
period using reconstructed forcings. The reconstruction 
problem is one where information from one source 
(proxies) is related to information from another source 
(instruments) over the instrumental period, and that 
relationship is then applied to the pre-instrumental 
period values of the proxies to estimate what the 
instruments would have said in the past had they been 
present. The quality of the reconstruction and the ability 
to assess uncertainties depends at least, in part, on the 
statistical method that is used to relate proxies to 
instruments. The reconstruction may benefit from 
additional constraints from climate models if output from 
one or more climate models is also built into the 
reconstruction process (e.g., via a Kalman Filter, as was 
recently demonstrated by Lee et al., 2008). When 
undertaken in this way, the reconstruction process may 
simultaneously allow detection and attribution, and may 
provide the possibility of making projections forward in 
time that are constrained by historical relationships and 
perhaps by pre-instrumental proxy behaviour. 
 
In the climate projection problem one has available (a) a 
network of instrumental observations that extend over 
the past 100-150 years, (b) ensembles of historical 
climate simulations of the instrumental period with 
estimated historical forcing, and (c) additional ensembles 
of climate simulations of the next one-to-two centuries 
that have been driven with a forcing scenario. Detection 
and attribution studies, which analyze the relationship 
between the instrumental observations and the historical 

climate simulations, attempt to separate the observed 
climate fields into components that can be attributed as 
responses to forcing and components that are consistent 
with internal climate variability. The statistical 
relationship that is established in this way between the 
estimated responses to forcing and observed climate 
changes can subsequently be exploited to constrain 
projections of future change (e.g., Allan and Ingram, 
2002), in much the same way that the link between 
proxies and instruments is used to interpret the pre-
instrumental variations of the proxies.  
 
Similarities and differences between these two 
“projection” problems are contrasted and discussed. 
While the signal of interest is different in the two cases, 
there are generally considerable similarities. Detection 
and attribution is involved, either implicitly or explicitly, in 
both cases. Also, in both cases, the statistical models 
that are developed can be used to contribute to the 
elaboration of uncertainties in the “projected” 
temperatures. Further, the effectiveness of the constraint 
that is imposed on the “projected” temperatures by the 
statistical model outside the instrumental period 
presumably depends upon whether the instrumental 
period provides enough variation to effectively train the 
statistical models used for projection. Finally, in both 
cases, methods are often used that seek to optimize 
signal-to-noise ratio, and in doing so, avoid drawing 
upon aspects of the response to forcing, or aspects of 
the proxies, where information is limited.  
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