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This translation of Summary for Policymakers of the IPCC Special Report on climate change,
desertification, land degradation, sustainable land management, food security, and greenhouse
gas fluxes in terrestrial ecosystems is not an official translation by the IPCC. It has been
provided by the Korea Meteorological Administration (IPCC Focal Point of Republic of Korea)
with the aim of reflecting in the most accurate way the language used in the original text.
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Summary for Policymakers

Introduction

This Special Report on Climate Change and Land' responds to the Panel decision in 2016 to prepare three Special Reports? during the
Sixth Assessment cycle, taking account of proposals from governments and observer organisations.? This report addresses greenhouse
gas (GHG) fluxes in land-based ecosystems, land use and sustainable land management* in relation to climate change adaptation and
mitigation, desertification,’ land degradation® and food security.” This report follows the publication of other recent reports, including the
IPCC Special Report on Global Warming of 1.5°C (SR15), the thematic assessment of the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES) on Land Degradation and Restoration, the IPBES Global Assessment Report on Biodiversity
and Ecosystem Services, and the Global Land Outlook of the UN Convention to Combat Desertification (UNCCD). This report provides
an updated assessment of the current state of knowledge® while striving for coherence and complementarity with other recent reports.

This Summary for Policymakers (SPM) is structured in four parts: A) People, land and climate in a warming world; B) Adaptation and
mitigation response options; C) Enabling response options; and, D) Action in the near-term.

Confidence in key findings is indicated using the IPCC calibrated language; the underlying scientific basis of each key finding is indicated
by references to the main report.®

The terrestrial portion of the biosphere that comprises the natural resources (soil, near-surface air, vegetation and other biota, and water), the ecological processes, topography, and human
settlements and infrastructure that operate within that system.

The three Special reports are: Global Warming of 1.5°C: an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas
emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; Climate Change and
Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems;, The
Ocean and Cryosphere in a Changing Climate.

Related proposals were: climate change and desertification; desertification with regional aspects; land degradation — an assessment of the interlinkages and integrated strategies for
mitigation and adaptation; agriculture, forestry and other land use; food and agriculture; and food security and climate change.

Sustainable land management is defined in this report as ‘the stewardship and use of land resources, including soils, water, animals and plants, to meet changing human needs, while
simultaneously ensuring the long-term productive potential of these resources and the maintenance of their environmental functions’.

Desertification is defined in this report as ‘land degradation in arid, semi-arid, and dry sub-humid areas resulting from many factors, including climatic variations and human activities'.
Land degradation is defined in this report as ‘a negative trend in land condition, caused by direct or indirect human induced processes, including anthropogenic climate change, expressed
as long-term reduction and as loss of at least one of the following: biological productivity; ecological integrity; or value to humans'.

Food security is defined in this report as 'a situation that exists when all people, at all times, have physical, social, and economic access to sufficient, safe and nutritious food that meets
their dietary needs and food preferences for an active and healthy life’.

The assessment covers literature accepted for publication by 7th April 2019.

Each finding is grounded in an evaluation of underlying evidence and agreement. A level of confidence is expressed using five qualifiers: very low, low, medium, high and very high, and
typeset in italics, for example, medium confidence. The following terms have been used to indicate the assessed likelihood of an outcome or a result: virtually certain 99—100% probability,
very likely 90-100%, likely 66—100%, about as likely as not 33-66%, unlikely 0-33%, very unlikely 0-10%, exceptionally unlikely 0—1%. Additional terms (extremely likely 95-100%,

more likely than not >50-100%, more unlikely than likely 0—<50%, extremely unlikely 0-5%) may also be used when appropriate. Assessed likelihood is typeset in italics, for example,
very likely. This is consistent with IPCC AR5.
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Summary for Policymakers

People, land and climate in a warming world

Land provides the principal basis for human livelihoods and well-being including the supply of food,
freshwater and multiple other ecosystem services, as well as biodiversity. Human use directly affects
more than 70% (likely 69-76%) of the global, ice-free land surface (high confidence). Land also plays
an important role in the climate system. (Figure SPM.1) {1.1, 1.2, 2.3, 2.4}

People currently use one quarter to one third of land’s potential net primary production' for food, feed, fibre, timber
and energy. Land provides the basis for many other ecosystem functions and services," including cultural and regulating
services, that are essential for humanity (high confidence). In one economic approach, the world's terrestrial ecosystem
services have been valued on an annual basis to be approximately equivalent to the annual global Gross Domestic
Product'? (medium confidence). (Figure SPM.1) {1.1,1.2, 3.2, 4.1, 5.1, 5.5}

Land is both a source and a sink of GHGs and plays a key role in the exchange of energy, water and aerosols between the
land surface and atmosphere. Land ecosystems and biodiversity are vulnerable to ongoing climate change, and weather and
climate extremes, to different extents. Sustainable land management can contribute to reducing the negative impacts of
multiple stressors, including climate change, on ecosystems and societies (high confidence). (Figure SPM.1) {1.1,1.2, 3.2, 4.1,
5.1,5.5}

Data available since 1961" show that global population growth and changes in per capita consumption of food, feed, fibre,
timber and energy have caused unprecedented rates of land and freshwater use (very high confidence) with agriculture
currently accounting for ca. 70% of global fresh-water use (medium confidence). Expansion of areas under agriculture and
forestry, including commercial production, and enhanced agriculture and forestry productivity have supported consumption
and food availability for a growing population (high confidence). With large regional variation, these changes have contributed
to increasing net GHG emissions (very high confidence), loss of natural ecosystems (e.g., forests, savannahs, natural grasslands
and wetlands) and declining biodiversity (high confidence). (Figure SPM.1) {1.1, 1.3, 5.1, 5.5}

Data available since 1961 shows the per capita supply of vegetable oils and meat has more than doubled and the supply
of food calories per capita has increased by about one third (high confidence). Currently, 25-30% of total food produced is
lost or wasted (medium confidence). These factors are associated with additional GHG emissions (high confidence). Changes
in consumption patterns have contributed to about two billion adults now being overweight or obese (high confidence). An
estimated 821 million people are still undernourished (high confidence). (Figure SPM.1) {1.1, 1.3, 5.1, 5.5}

About a quarter of the Earth’s ice-free land area is subject to human-induced degradation (medium confidence). Soil erosion
from agricultural fields is estimated to be currently 10 to 20 times (no tillage) to more than 100 times (conventional tillage)
higher than the soil formation rate (medium confidence). Climate change exacerbates land degradation, particularly in low-
lying coastal areas, river deltas, drylands and in permafrost areas (high confidence). Over the period 1961-2013, the annual
area of drylands in drought has increased, on average by slightly more than 1% per year, with large inter-annual variability. In
2015, about 500 (380—620) million people lived within areas which experienced desertification between the 1980s and 2000s.
The highest numbers of people affected are in South and East Asia, the circum Sahara region including North Africa, and the
Middle East including the Arabian Peninsula (low confidence). Other dryland regions have also experienced desertification.
People living in already degraded or desertified areas are increasingly negatively affected by climate change (high confidence).
(Figure SPM.1) {1.1,1.2,3.1,3.2,4.1,4.2, 4.3}

Land’s potential net primary production (NPP) is defined in this report as ‘the amount of carbon accumulated through photosynthesis minus the amount lost by plant respiration over

a specified time period that would prevail in the absence of land use’.

In its conceptual framework, IPBES uses ‘nature’s contribution to people" in which it includes ecosystem goods and services.

12 |, estimated at $75 trillion for 2011, based on US dollars for 2007.

3 This statement is based on the most comprehensive data from national statistics available within FAOSTAT, which starts in 1961. This does not imply that the changes started in 1961.
Land use changes have been taking place from well before the pre-industrial period to the present.
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Land use and observed climate change

A. Observed temperature change relative to 1850-1900

Since the pre-industrial period (1850-1900) the observed mean land surface air
temperature has risen considerably more than the global mean surface (land and ocean)
temperature (GMST).

CHANGE in TEMPERATURE rel. to 1850-1900 (°C)
2

Changein
surface air
temperature
over land (°C)

Change in global
(land-ocean)
mean surface
temperature
(GMST) (°C)

1850 1880 1900 1920 1940 1960 1980 2000 2018

Global ice-free land surface 100% (130 Mkm2)

1% (1- 1%) 12% (12 - 14%) 37% (30 - 47%)

22% (16 - 23%)

Summary for Policymakers

B. GHG emissions

An estimated 23% of total anthropogenic
greenhouse gas emissions (2007-2016)
derive from Agriculture, Forestry and
Other Land Use (AFOLU).

CHANGE in EMISSIONS since 1961

1 Net CO2 emissions from FOLU (GtCO2 yr)

2 CHaemissions from Agriculture (GtCOz2eq yr?)
3 N20 emissions from Agriculture (GtCO2eq yr)

GtCO2eq yr!

1
6

I\U\/ \ a2
4 W 2
2 3
0 . . .
1961 1980 2000 2016

28% (24 - 31%)

Irrigated cropland 2% Intensive pasture 2% Plantation forests 2% Unforested ecosystems with ’
C. Global land use minimal human use 7%
in circa 2015
The barchart depicts
shares of different uses
of the global, ice-free 10
land area. Bars are Non-irrigated cropland 10%
ordered along a gradient
of decreasing land-use Forests (intact or primary)
intensity from left to right. Used] SEvErTEINS Sine with minimal human use 9%
shrublands 16%
Forests managed for timber 20
D. Agricultural production and other uses 20%
Land use change and rapid land use
intensification have supported the
increasing production of food, feed and
fibre. Since 1961, the total production of Otherland (barren, rock) 12%
food (cereal crops) has increased by 240% L0

(until 2017) because of land area
expansion and increasing yields. Fibre
production (cotton) increased by 162%
(until 2013).

CHANGE in % rel. to 1961

Extensive pasture 19%

1 Inorganic N fertiliser use
2 Cerealyields
3 Irrigation water volume
4 Total number of ruminant livestock
% .
800 n 1 Population
/\/ 2 Prevalence of overweight + obese
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E. Food demand
Increases in production are linked to
consumption changes.

CHANGE in % rel. to 1961 and 1975
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F. Desertification and

land degradation

Land-use change, land-use intensification
and climate change have contributed to
desertification and land degradation.

CHANGE in % rel. to 1961 and 1970

1 Population in areas experiencing desertification
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3 Inland wetland extent
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Summary for Policymakers

Figure SPM.1 | Land use and observed climate change. A representation of the land use and observed climate change covered in this assessment report. Panels
A-F show the status and trends in selected land use and climate variables that represent many of the core topics covered in this report. The annual time series in B and
D—F are based on the most comprehensive, available data from national statistics, in most cases from FAOSTAT which starts in 1961. Y-axes in panels D—F are expressed
relative to the starting year of the time series (rebased to zero). Data sources and notes: A: The warming curves are averages of four datasets {2.1, Figure 2.2, Table 2.1}
B: N,0 and CH, from agriculture are from FAOSTAT; Net CO, emissions from FOLU using the mean of two bookkeeping models (including emissions from peatland fires
since 1997). All values expressed in units of CO,-eq are based on AR5 100-year Global Warming Potential values without climate-carbon feedbacks (N,0=265; CH,=28).
(Table SPM.1) {1.1, 2.3} C: Depicts shares of different uses of the global, ice-free land area for approximately the year 2015, ordered along a gradient of decreasing
land-use intensity from left to right. Each bar represents a broad land cover category; the numbers on top are the total percentage of the ice-free area covered, with
uncertainty ranges in brackets. Intensive pasture is defined as having a livestock density greater than 100 animals/km2. The area of ‘forest managed for timber and
other uses’ was calculated as total forest area minus ‘primary/intact’ forest area. {1.2, Table 1.1, Figure 1.3} D: Note that fertiliser use is shown on a split axis. The large
percentage change in fertiliser use reflects the low level of use in 1961 and relates to both increasing fertiliser input per area as well as the expansion of fertilised
cropland and grassland to increase food production. {1.1, Figure 1.3} E: Overweight population is defined as having a body mass index (BMI) > 25 kg m=; underweight is
defined as BMI < 18.5 kg m=.{5.1, 5.2} F: Dryland areas were estimated using TerraClimate precipitation and potential evapotranspiration (1980-2015) to identify areas
where the Aridity Index is below 0.65. Population data are from the HYDE3.2 database. Areas in drought are based on the 12-month accumulation Global Precipitation
Climatology Centre Drought Index. The inland wetland extent (including peatlands) is based on aggregated data from more than 2000 time series that report changes
in local wetland area over time. {3.1, 4.2, 4.6}

A.2 Since the pre-industrial period, the land surface air temperature has risen nearly twice as much as
the global average temperature (high confidence). Climate change, including increases in frequency
and intensity of extremes, has adversely impacted food security and terrestrial ecosystems as well as
contributed to desertification and land degradation in many regions (high confidence). {2.2, 3.2, 4.2,
4.3, 4.4, 5.1, 5.2, Executive Summary Chapter 7, 7.2}

A2.1 Since the pre-industrial period (1850—1900) the observed mean land surface air temperature has risen considerably more than
the global mean surface (land and ocean) temperature (GMST) (high confidence). From 1850—1900 to 2006—2015 mean land
surface air temperature has increased by 1.53°C (very likely range from 1.38°C to 1.68°C) while GMST increased by 0.87°C
(likely range from 0.75°C to 0.99°C). (Figure SPM.1) {2.2.1}

A2.2  Warming has resulted in an increased frequency, intensity and duration of heat-related events, including heatwaves' in
most land regions (high confidence). Frequency and intensity of droughts has increased in some regions (including the
Mediterranean, west Asia, many parts of South America, much of Africa, and north-eastern Asia) (medium confidence) and
there has been an increase in the intensity of heavy precipitation events at a global scale (medium confidence). {2.2.5,
4.2.3,5.2}

A2.3  Satellite observations' have shown vegetation greening'® over the last three decades in parts of Asia, Europe, South America,
central North America, and southeast Australia. Causes of greening include combinations of an extended growing season,
nitrogen deposition, Carbon Dioxide (CO,) fertilisation,"” and land management (high confidence). Vegetation browning'® has
been observed in some regions including northern Eurasia, parts of North America, Central Asia and the Congo Basin, largely
as a result of water stress (medium confidence). Globally, vegetation greening has occurred over a larger area than vegetation
browning (high confidence). {2.2.3, Box 2.3,2.2.4,3.2.1,3.2.2, 43.1,4.3.2,4.6.2,5.2.2}

A2.4  The frequency and intensity of dust storms have increased over the last few decades due to land use and land cover changes
and climate-related factors in many dryland areas resulting in increasing negative impacts on human health, in regions such
as the Arabian Peninsula and broader Middle East, Central Asia (high confidence).”® {2.4.1, 3.4.2}

A.2.5  Insome dryland areas, increased land surface air temperature and evapotranspiration and decreased precipitation amount, in
interaction with climate variability and human activities, have contributed to desertification. These areas include Sub-Saharan
Africa, parts of East and Central Asia, and Australia. (medium confidence) {2.2, 3.2.2, 4.4.1}

4 Aheatwave is defined in this report as ‘a period of abnormally hot weather'. Heatwaves and warm spells have various and, in some cases, overlapping definitions.

1> The interpretation of satellite observations can be affected by insufficient ground validation and sensor calibration. In addition their spatial resolution can make it
difficult to resolve small-scale changes.

16 Vegetation greening is defined in this report as ‘an increase in photosynthetically active plant biomass which is inferred from satellite observations'.

7 (O, fertilisation is defined in this report as ‘the enhancement of plant growth as a result of increased atmospheric carbon dioxide (CO,) concentration’. The
magnitude of CO, fertilisation depends on nutrients and water availability.

18 Vegetation browning is defined in this report as ‘a decrease in photosynthetically active plant biomass which is inferred from satellite observations'.
19 Evidence relative to such trends in dust storms and health impacts in other regions is limited in the literature assessed in this report.
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Summary for Policymakers

Global warming has led to shifts of climate zones in many world regions, including expansion of arid climate zones and
contraction of polar climate zones (high confidence). As a consequence, many plant and animal species have experienced
changes in their ranges, abundances, and shifts in their seasonal activities (high confidence). {2.2,3.2.2, 4.4.1}

Climate change can exacerbate land degradation processes (high confidence) including through increases in rainfall intensity,
flooding, drought frequency and severity, heat stress, dry spells, wind, sea-level rise and wave action, and permafrost thaw
with outcomes being modulated by land management. Ongoing coastal erosion is intensifying and impinging on more regions
with sea-level rise adding to land use pressure in some regions (medium confidence). {4.2.1,4.2.2,4.2.3,4.4.1,4.4.2, 4.9.6,
Table 4.1,7.2.1,7.2.2}

Climate change has already affected food security due to warming, changing precipitation patterns, and greater frequency
of some extreme events (high confidence). Studies that separate out climate change from other factors affecting crop yields
have shown that yields of some crops (e.g., maize and wheat) in many lower-latitude regions have been affected negatively
by observed climate changes, while in many higher-latitude regions, yields of some crops (e.g., maize, wheat, and sugar beets)
have been affected positively over recent decades (high confidence). Climate change has resulted in lower animal growth
rates and productivity in pastoral systems in Africa (high confidence). There is robust evidence that agricultural pests and
diseases have already responded to climate change resulting in both increases and decreases of infestations (high confidence).
Based on indigenous and local knowledge, climate change is affecting food security in drylands, particularly those in Africa,
and high mountain regions of Asia and South America.?° {5.2.1,5.2.2, 7.2.2}

Agriculture, Forestry and Other Land Use (AFOLU) activities accounted for around 13% of CO,,
44% of methane (CH,), and 81% of nitrous oxide (N,0) emissions from human activities globally
during 2007-2016, representing 23% (12.0 = 2.9 GtCO,eq yr') of total net anthropogenic emissions
of GHGs (medium confidence).?' The natural response of land to human-induced environmental
change caused a net sink of around 11.2 GtCO, yr' during 2007-2016 (equivalent to 29% of total
CO, emissions) (medium confidence); the persistence of the sink is uncertain due to climate change
(high confidence). If emissions associated with pre- and post-production activities in the global food
system? are included, the emissions are estimated to be 21-37% of total net anthropogenic GHG
emissions (medium confidence). {2.3, Table 2.2, 5.4}

Land is simultaneously a source and a sink of CO, due to both anthropogenic and natural drivers, making it hard to separate
anthropogenic from natural fluxes (very high confidence). Global models estimate net CO, emissions of 5.2 + 2.6 GtCO, yr
(likely range) from land use and land-use change during 2007-2016. These net emissions are mostly due to deforestation,
partly offset by afforestation/reforestation, and emissions and removals by other land use activities (very high confidence).??
There is no clear trend in annual emissions since 1990 (medium confidence). (Figure SPM.1, Table SPM.1) {1.1, 2.3, Table 2.2,
Table 2.3}

The natural response of land to human-induced environmental changes such as increasing atmospheric CO, concentration,
nitrogen deposition, and climate change, resulted in global net removals of 11.2 + 2.6 GtCO, yr' (/ikely range) during 2007—
2016. The sum of the net removals due to this response and the AFOLU net emissions gives a total net land-atmosphere flux
that removed 6.0 + 3.7 GtCO, yr' during 2007-2016 (/ikely range). Future net increases in CO, emissions from vegetation
and soils due to climate change are projected to counteract increased removals due to CO, fertilisation and longer growing
seasons (high confidence). The balance between these processes is a key source of uncertainty for determining the future of
the land carbon sink. Projected thawing of permafrost is expected to increase the loss of soil carbon (high confidence). During
the 21st century, vegetation growth in those areas may compensate in part for this loss (low confidence). (Table SPM.1)
{Box 2.3, 2.3.1, 2.5.3, 2.7, Table 2.3}

2 The assessment covered literature whose methodologies included interviews and surveys with indigenous peoples and local communities.

21 This assessment only includes CO,, CH, and N,0.

2 Global food system in this report is defined as ‘all the elements (environment, people, inputs, processes, infrastructures, institutions, etc.) and activities that relate
to the production, processing, distribution, preparation and consumption of food, and the output of these activities, including socioeconomic and environmental
outcomes at the global level'. These emissions data are not directly comparable to the national inventories prepared according to the 2006 IPCC Guidelines for
National Greenhouse Gas Inventories.

% The netanthropogenic flux of CO, from 'bookkeeping’ or ‘carbon accounting” models is composed of two opposing gross fluxes: gross emissions (about 20 GtCO, yr)
are from deforestation, cultivation of soils, and oxidation of wood products; gross removals (about 14 GtCO, yr") are largely from forest growth following wood
harvest and agricultural abandonment (medium confidence).
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Summary for Policymakers

Global models and national GHG inventories use different methods to estimate anthropogenic CO, emissions and removals for
the land sector. Both produce estimates that are in close agreement for land-use change involving forest (e.g., deforestation,
afforestation), and differ for managed forest. Global models consider as managed forest those lands that were subject to
harvest whereas, consistent with IPCC guidelines, national GHG inventories define managed forest more broadly. On this larger
area, inventories can also consider the natural response of land to human-induced environmental changes as anthropogenic,
while the global model approach (Table SPM.1) treats this response as part of the non-anthropogenic sink. For illustration,
from 2005 to 2014, the sum of the national GHG inventories net emission estimates is 0.1 + 1.0 GtCO, yr', while the mean
of two global bookkeeping models is 5.2 + 2.6 GtCO, yr~' (likely range). Consideration of differences in methods can enhance
understanding of land sector net emission estimates and their applications. {2.4.1, 2.7.3, Fig 2.5, Box 2.2}
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Summary for Policymakers

Table SPM.1| Data sources and notes:

! Estimates are only given until 2016 as this is the latest date when data are available for all gases.

2 Net anthropogenic flux of CO, due to land cover change such as deforestation and afforestation, and land management including wood harvest and regrowth, as well
as peatland burning, based on two bookkeeping models as used in the Global Carbon Budget and for ARS. Agricultural soil carbon stock change under the same land
use is not considered in these models. {2.3.1.2.1, Table 2.2, Box 2.2}

3 Estimates show the mean and assessed uncertainty of two databases, FAOSTAT and USEPA. 2012 {2.3, Table 2.2}

4 Based on FAOSTAT. Categories included in this value are 'net forest conversion’ (net deforestation), drainage of organic soils (cropland and grassland), biomass burning
(humid tropical forests, other forests, organic soils). It excludes ‘forest land’ (forest management plus net forest expansion), which is primarily a sink due to afforestation.
Note: Total FOLU emissions from FAOSTAT are 2.8 (+1.4) GtCO, yr~' for the period 2007-2016. {Table 2.2, Table 5.4}

> C0, emissions induced by activities not included in the AFOLU sector, mainly from energy (e.g., grain drying), transport (e.g., international trade), and industry (e.g.,
synthesis of inorganic fertilisers) part of food systems, including agricultural production activities (e.g., heating in greenhouses), pre-production (e.g., manufacturing of
farm inputs) and post-production (e.g., agri-food processing) activities. This estimate is land based and hence excludes emissions from fisheries. It includes emissions
from fibre and other non-food agricultural products since these are not separated from food use in databases. The CO, emissions related to food system in other sectors
than AFOLU are 6-13% of total anthropogenic CO, emissions. These emissions are typically low in smallholder subsistence farming. When added to AFOLU emissions,
the estimated share of food systems in global anthropogenic emissions is 21-37%. {5.4.5, Table 5.4}

¢ Total non-AFOLU emissions were calculated as the sum of total CO,eq emissions values for energy, industrial sources, waste and other emissions with data from the
Global Carbon Project for CO,, including international aviation and shipping and from the PRIMAP database for CH, and N,O averaged over 2007-2014 only as that
was the period for which data were available. {2.3, Table 2.2}

’The natural response of land to human-induced environmental changes is the response of vegetation and soils to environmental changes such as increasing atmospheric
CO, concentration, nitrogen deposition, and climate change. The estimate shown represents the average from Dynamic Global Vegetation Models {2.3.1.2, Box 2.2,
Table 2.3}

¢ All values expressed in units of CO,eq are based on AR5 100-year Global Warming Potential (GWP) values without climate-carbon feedbacks (N,0 = 265; CH, = 28).
Note that the GWP has been used across fossil fuel and biogenic sources of methane. If a higher GWP for fossil fuel CH, (30 per AR5) were used, then total anthropogenic
CH, emissions expressed in CO,eq would be 2% greater.

° This estimate is land based and hence excludes emissions from fisheries and emissions from aquaculture (except emissions from feed produced on land and used
in aquaculture), and also includes non-food use (e.g. fibre and bioenergy) since these are not separated from food use in databases. It excludes non-CO, emissions
associated with land use change (FOLU category) since these are from fires in forests and peatlands.

10 Emissions associated with food loss and waste are included implicitly, since emissions from the food system are related to food produced, including food consumed
for nutrition and to food loss and waste. The latter is estimated at 8—10% of total anthropogenic emissions in CO,eq. {5.5.2.5}

" No global data are available for agricultural CO, emissions.

A3.4  Global AFOLU emissions of methane in the period 2007-2016 were 161 + 43 MtCH, yr' (4.5 + 1.2 GtCO,eq yr') (medium
confidence). The globally averaged atmospheric concentration of CH, shows a steady increase between the mid-1980s and
early 1990s, slower growth thereafter until 1999, a period of no growth between 1999-2006, followed by a resumption
of growth in 2007 (high confidence). Biogenic sources make up a larger proportion of emissions than they did before 2000
(high confidence). Ruminants and the expansion of rice cultivation are important contributors to the rising concentration (high
confidence). (Figure SPM.1) {Table 2.2, 2.3.2,5.4.2, 5.4.3}

A3.5  Anthropogenic AFOLU N,O emissions are rising, and were 8.7 + 2.5 MtN,0 yr' (2.3 = 0.7 GtCO,eq yr™") during the period
2007-2016. Anthropogenic N,O emissions {Figure SPM.1, Table SPM.1} from soils are primarily due to nitrogen application
including inefficiencies (over-application or poorly synchronised with crop demand timings) (high confidence). Cropland soils
emitted around 3 MtN,0 yr' (around 795 MtCO, eq yr') during the period 2007-2016 (medium confidence). There has been
a major growth in emissions from managed pastures due to increased manure deposition (medium confidence). Livestock on
managed pastures and rangelands accounted for more than one half of total anthropogenic N,O emissions from agriculture
in 2014 (medium confidence). {Table 2.1, 2.3.3, 5.4.2, 5.4.3}

A3.6  Total net GHG emissions from AFOLU emissions represent 12.0 + 2.9 GtCO,eq yr' during 2007-2016. This represents 23%
of total net anthropogenic emissions {Table SPM.1}.2 Other approaches, such as global food system, include agricultural
emissions and land use change (i.e., deforestation and peatland degradation), as well as outside farm gate emissions from
energy, transport and industry sectors for food production. Emissions within farm gate and from agricultural land expansion
contributing to the global food system represent 16-27% of total anthropogenic emissions (medium confidence). Emissions
outside the farm gate represent 5-10% of total anthropogenic emissions (medium confidence). Given the diversity of food
systems, there are large regional differences in the contributions from different components of the food system (very high
confidence). Emissions from agricultural production are projected to increase (high confidence), driven by population and
income growth and changes in consumption patterns (medium confidence). {5.5, Table 5.4}

2 This assessment only includes CO,, CH, and N,0.
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Summary for Policymakers

Changes in land conditions,? either from land-use or climate change, affect global and regional
climate (high confidence). At the regional scale, changing land conditions can reduce or accentuate
warming and affect the intensity, frequency and duration of extreme events. The magnitude and
direction of these changes vary with location and season (high confidence). {Executive Summary
Chapter 2, 2.3, 2.4, 2.5, 3.3}

Since the pre-industrial period, changes in land cover due to human activities have led to both a net release of CO, contributing
to global warming (high confidence), and an increase in global land albedo? causing surface cooling (medium confidence).
Over the historical period, the resulting net effect on globally averaged surface temperature is estimated to be small (medium
confidence).{2.4,2.6.1, 2.6.2}

The likelihood, intensity and duration of many extreme events can be significantly modified by changes in land conditions,
including heat related events such as heatwaves (high confidence) and heavy precipitation events (medium confidence).
Changes in land conditions can affect temperature and rainfall in regions as far as hundreds of kilometres away (high
confidence). {2.5.1,2.5.2, 2.5.4, 3.3, Cross-Chapter Box 4 in Chapter 2}

Climate change is projected to alter land conditions with feedbacks on regional climate. In those boreal regions where the
treeline migrates northward and/or the growing season lengthens, winter warming will be enhanced due to decreased snow
cover and albedo while warming will be reduced during the growing season because of increased evapotranspiration (high
confidence). In those tropical areas where increased rainfall is projected, increased vegetation growth will reduce regional
warming (medium confidence). Drier soil conditions resulting from climate change can increase the severity of heat waves,
while wetter soil conditions have the opposite effect (high confidence). {2.5.2, 2.5.3}

Desertification amplifies global warming through the release of CO, linked with the decrease in vegetation cover (high
confidence). This decrease in vegetation cover tends to increase local albedo, leading to surface cooling (high confidence). {3.3}

Changes in forest cover, for example from afforestation, reforestation and deforestation, directly affect regional surface
temperature through exchanges of water and energy (high confidence).” Where forest cover increases in tropical regions
cooling results from enhanced evapotranspiration (high confidence). Increased evapotranspiration can result in cooler days
during the growing season (high confidence) and can reduce the amplitude of heat related events (medium confidence).
In regions with seasonal snow cover, such as boreal and some temperate regions, increased tree and shrub cover also has
a wintertime warming influence due to reduced surface albedo (high confidence).?® {2.3,2.4.3,2.5.1, 2.5.2, 2.5.4}

% Land conditions encompass changes in land cover (e.g., deforestation, afforestation, urbanisation), in land use (e.g., irrigation), and in land state (e.g., degree
of wetness, degree of greening, amount of snow, amount of permafrost).

% Land with high albedo reflects more incoming solar radiation than land with low albedo.

27 The literature indicates that forest cover changes can also affect climate through changes in emissions of reactive gases and aerosols. {2.4, 2.5}

% Emerging literature shows that boreal forest-related aerosols may counteract at least partly the warming effect of surface albedo. {2.4.3}
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Summary for Policymakers

Box SPM. 1| Shared Socio-economic Pathways (SSPs)

In this report the implications of future socio-economic development on climate change mitigation, adaptation and land-use
are explored using shared socio-economic pathways (SSPs). The SSPs span a range of challenges to climate change mitigation
and adaptation.

SSP1 includes a peak and decline in population (~7 billion in 2100), high income and reduced inequalities, effective
land-use regulation, less resource intensive consumption, including food produced in low-GHG emission systems and lower
food waste, free trade and environmentally-friendly technologies and lifestyles. Relative to other pathways, SSP1 has low
challenges to mitigation and low challenges to adaptation (i.e., high adaptive capacity).

SSP2 includes medium population growth (~9 billion in 2100), medium income, technological progress, production
and consumption patterns are a continuation of past trends, and only a gradual reduction in inequality occurs. Relative
to other pathways, SSP2 has medium challenges to mitigation and medium challenges to adaptation (i.e., medium adaptive

capacity).

SSP3 includes high population growth (~13 billion in 2100), low income and continued inequalities, material-intensive
consumption and production, barriers to trade, and slow rates of technological change. Relative to other pathways, SSP3 has
high challenges to mitigation and high challenges to adaptation (i.e., low adaptive capacity).

SSP4 includes medium population growth (~9 billion in 2100), medium income, but significant inequality within and across
regions. Relative to other pathways, SSP4 has low challenges to mitigation, but high challenges to adaptation (i.e., low
adaptive capacity).

SSP5 includes a peak and decline in population (~7 billion in 2100), high income, reduced inequalities, and free trade.
This pathway includes resource-intensive production, consumption and lifestyles. Relative to other pathways, SSP5 has high
challenges to mitigation, but low challenges to adaptation (i.e., high adaptive capacity).

The SSPs can be combined with Representative Concentration Pathways (RCPs) which imply different levels of mitigation, with
implications for adaptation. Therefore, SSPs can be consistent with different levels of global mean surface temperature rise
as projected by different SSP-RCP combinations. However, some SSP-RCP combinations are not possible; for instance RCP2.6
and lower levels of future global mean surface temperature rise (e.g., 1.5°C) are not possible in SSP3 in modelled pathways.
{1.2.2, 6.1.4, Cross-Chapter Box 1 in Chapter 1, Cross-Chapter Box 9 in Chapter 6}
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A. Risks to humans and ecosystems from changes in land-based processes as a result

of climate change

Increases in global mean surface temperature (GMST), relative to pre-industrial levels, affect processes involved in desertification
(water scarcity), land degradation (soil erosion, vegetation loss, wildfire, permafrost thaw) and food security (crop yield and food
supply instabilities). Changes in these processes drive risks to food systems, livelihoods, infrastructure, the value of land, and human
and ecosystem health. Changes in one process (e.g. wildfire or water scarcity) may result in compound risks. Risks are location-specific

and differ by region.
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Summary for Policymakers

Figure SPM.2 | Risks to land-related human systems and ecosystems from global climate change, socio-economic development and mitigation
choices in terrestrial ecosystems. As in previous IPCC reports the literature was used to make expert judgements to assess the levels of global warming at which
levels of risk are undetectable, moderate, high or very high, as described further in Chapter 7 and other parts of the underlying report. The Figure indicates assessed risks
at approximate warming levels which may be influenced by a variety of factors, including adaptation responses. The assessment considers adaptive capacity consistent
with the SSP pathways as described below. Panel A: Risks to selected elements of the land system as a function of global mean surface temperature {2.1, Box 2.1, 3.5,
3.7.1.1,44.1.1,4.4.1.2,4.4.1.3,5.2.2,5.2.3,5.2.4,5.2.5,7.2, 7.3, Table SM7.1}. Links to broader systems are illustrative and not intended to be comprehensive. Risk
levels are estimated assuming medium exposure and vulnerability driven by moderate trends in socioeconomic conditions broadly consistent with an SSP2 pathway.
{Table SM7.4} Panel B: Risks associated with desertification, land degradation and food security due to climate change and patterns of socio-economic development.
Increasing risks associated with desertification include population exposed and vulnerable to water scarcity in drylands. Risks related to land degradation include
increased habitat degradation, population exposed to wildfire and floods and costs of floods. Risks to food security include availability and access to food, including
population at risk of hunger, food price increases and increases in disability adjusted life years attributable due to childhood underweight. Risks are assessed for two
contrasted socio-economic pathways (SSP1 and SSP3 {Box SPM.1}) excluding the effects of targeted mitigation policies. {3.5, 4.2.1.2, 5.2.2,5.2.3,5.2.4,5.2.5, 6.1.4,
7.2, Table SM7.5} Risks are not indicated beyond 3°C because SSP1 does not exceed this level of temperature change. All panels: As part of the assessment, literature
was compiled and data extracted into a summary table. A formal expert elicitation protocol (based on modified-Delphi technique and the Sheffield Elicitation Framework),
was followed to identify risk transition thresholds. This included a multi-round elicitation process with two rounds of independent anonymous threshold judgement, and
a final consensus discussion. Further information on methods and underlying literature can be found in Chapter 7 Supplementary Material.

A.5 Climate change creates additional stresses on land, exacerbating existing risks to livelihoods,
biodiversity, human and ecosystem health, infrastructure, and food systems (high confidence).
Increasing impacts on land are projected under all future GHG emission scenarios (high confidence).
Some regions will face higher risks, while some regions will face risks previously not anticipated (high
confidence). Cascading risks with impacts on multiple systems and sectors also vary across regions
(high confidence). (Figure SPM.2) {2.2, 3.5, 4.2, 4.4, 4.7, 5.1, 5.2, 5.8, 6.1, 7.2, 7.3, Cross-Chapter Box 9
in Chapter 6}

A5.1  With increasing warming, the frequency, intensity and duration of heat related events including heatwaves are projected to
continue to increase through the 21st century (high confidence). The frequency and intensity of droughts are projected to
increase particularly in the Mediterranean region and southern Africa (medium confidence). The frequency and intensity of
extreme rainfall events are projected to increase in many regions (high confidence).{2.2.5,3.5.1,4.2.3,5.2}

A5.2  With increasing warming, climate zones are projected to further shift poleward in the middle and high latitudes (high
confidence). In high-latitude regions, warming is projected to increase disturbance in boreal forests, including drought,
wildfire, and pest outbreaks (high confidence). In tropical regions, under medium and high GHG emissions scenarios, warming
is projected to result in the emergence of unprecedented” climatic conditions by the mid to late 21st century (medium
confidence).{2.2.4,2.2.5,2.5.3,4.3.2}

A53  Current levels of global warming are associated with moderate risks from increased dryland water scarcity, soil erosion,
vegetation loss, wildfire damage, permafrost thawing, coastal degradation and tropical crop yield decline (high confidence).
Risks, including cascading risks, are projected to become increasingly severe with increasing temperatures. At around 1.5°C of
global warming the risks from dryland water scarcity, wildfire damage, permafrost degradation and food supply instabilities
are projected to be high (medium confidence). At around 2°C of global warming the risk from permafrost degradation and
food supply instabilities are projected to be very high (medium confidence). Additionally, at around 3°C of global warming
risk from vegetation loss, wildfire damage, and dryland water scarcity are also projected to be very high (medium confidence).
Risks from droughts, water stress, heat related events such as heatwaves and habitat degradation simultaneously increase
between 1.5°C and 3°C warming (Jow confidence). (Figure SPM.2) {7.2.2, Cross-Chapter Box 9 in Chapter 6, Chapter 7
Supplementary Material}

A5.4  The stability of food supply® is projected to decrease as the magnitude and frequency of extreme weather events that disrupt
food chains increases (high confidence). Increased atmospheric CO, levels can also lower the nutritional quality of crops
(high confidence). In SSP2, global crop and economic models project a median increase of 7.6% (range of 1-23%) in cereal
prices in 2050 due to climate change (RCP6.0), leading to higher food prices and increased risk of food insecurity and hunger
(medium confidence). The most vulnerable people will be more severely affected (high confidence). {5.2.3,5.2.4,5.2.5, 5.8.1,
7.2.2.2,7.3.1}

2 Unprecedented climatic conditions are defined in this report as ‘not having occurred anywhere during the 20th century’. They are characterised by high temperature
with strong seasonality and shifts in precipitation. In the literature assessed, the effect of climatic variables other than temperature and precipitation were
not considered.

30 The supply of food is defined in this report as ‘encompassing availability and access (including price)'. Food supply instability refers to variability that influences food
security through reducing access.
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Summary for Policymakers

In drylands, climate change and desertification are projected to cause reductions in crop and livestock productivity (high
confidence), modify the plant species mix and reduce biodiversity (medium confidence). Under SSP2, the dryland population
vulnerable to water stress, drought intensity and habitat degradation is projected to reach 178 million people by 2050 at 1.5°C
warming, increasing to 220 million people at 2°C warming, and 277 million people at 3°C warming (fow confidence). {3.5.1,
3.5.2,3.7.3}

Asia and Africa®' are projected to have the highest number of people vulnerable to increased desertification. North America,
South America, Mediterranean, southern Africa and central Asia may be increasingly affected by wildfire. The tropics and
subtropics are projected to be most vulnerable to crop yield decline. Land degradation resulting from the combination of
sea-level rise and more intense cyclones is projected to jeopardise lives and livelihoods in cyclone prone areas (very high
confidence). Within populations, women, the young, elderly and poor are most at risk (high confidence). {3.5.1, 3.5.2, 4.4,
Table 4.1,5.2.2, 7.2.2, Cross-Chapter Box 3 in Chapter 2}

Changes in climate can amplify environmentally induced migration both within countries and across borders (medium
confidence), reflecting multiple drivers of mobility and available adaptation measures (high confidence). Extreme weather
and climate or slow-onset events may lead to increased displacement, disrupted food chains, threatened livelihoods (high
confidence), and contribute to exacerbated stresses for conflict (medium confidence). {3.4.2, 4.7.3,5.2.3, 5.2.4,5.2.5, 5.8.2,
7.2.2,7.3.1}

Unsustainable land management has led to negative economic impacts (high confidence). Climate change is projected to
exacerbate these negative economic impacts (high confidence). {4.3.1, 4.4.1, 4.7, 4.8.5, 4.8.6, 4.9.6, 4.9.7,4.9.8, 5.2, 5.8.1,
7.3.4,7.6.1, Cross-Chapter Box 10 in Chapter 7}

The level of risk posed by climate change depends both on the level of warming and on how
population, consumption, production, technological development, and land management patterns
evolve (high confidence). Pathways with higher demand for food, feed, and water, more resource-
intensive consumption and production, and more limited technological improvements in agriculture
yields result in higher risks from water scarcity in drylands, land degradation, and food insecurity
(high confidence). (Figure SPM.2b) {5.1.4, 5.2.3, 6.1.4, 7.2, Cross-Chapter Box 9 in Chapter 6}

Projected increases in population and income, combined with changes in consumption patterns, result in increased demand for
food, feed, and water in 2050 in all SSPs (high confidence). These changes, combined with land management practices, have
implications for land-use change, food insecurity, water scarcity, terrestrial GHG emissions, carbon sequestration potential,
and biodiversity (high confidence). Development pathways in which incomes increase and the demand for land conversion
is reduced, either through reduced agricultural demand or improved productivity, can lead to reductions in food insecurity
(high confidence). All assessed future socio-economic pathways result in increases in water demand and water scarcity (high
confidence). SSPs with greater cropland expansion result in larger declines in biodiversity (high confidence). {6.1.4}

Risks related to water scarcity in drylands are lower in pathways with low population growth, less increase in water demand,
and high adaptive capacity, as in SSP1 {Box SPM.1}. In these scenarios the risk from water scarcity in drylands is moderate
even at global warming of 3°C (low confidence). By contrast, risks related to water scarcity in drylands are greater for
pathways with high population growth, high vulnerability, higher water demand, and low adaptive capacity, such as SSP3. In
SSP3 the transition from moderate to high risk occurs between 1.2°C and 1.5°C (medium confidence). (Figure SPM.2b, Box
SPM.1) {7.2}

Risks related to climate change driven land degradation are higher in pathways with a higher population, increased land-use
change, low adaptive capacity and other barriers to adaptation (e.g., SSP3). These scenarios result in more people exposed to
ecosystem degradation, fire, and coastal flooding (medium confidence). For land degradation, the projected transition from
moderate to high risk occurs for global warming between 1.8°C and 2.8°C in SSP1 (Jow confidence) and between 1.4°C and
2°C in SSP3 (medium confidence). The projected transition from high to very high risk occurs between 2.2°C and 2.8°C for
SSP3 (medium confidence). (Figure SPM.2b) {4.4, 7.2}

Risks related to food security are greater in pathways with lower income, increased food demand, increased food prices
resulting from competition for land, more limited trade, and other challenges to adaptation (e.g., SSP3) (high confidence). For

3" West Africa has a high number of people vulnerable to increased desertification and yield decline. North Africa is vulnerable to water scarcity.
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Summary for Policymakers

food security, the transition from moderate to high risk occurs for global warming between 2.5°C and 3.5°C in SSP1 (medium
confidence) and between 1.3°C and 1.7°C in SSP3 (medium confidence). The transition from high to very high risk occurs
between 2°C and 2.7°C for SSP3 (medium confidence). (Figure SPM.2b) {7.2}

A.6.5  Urban expansion is projected to lead to conversion of cropland leading to losses in food production (high confidence). This

can result in additional risks to the food system. Strategies for reducing these impacts can include urban and peri-urban food
production and management of urban expansion, as well as urban green infrastructure that can reduce climate risks in cities®
(high confidence). (Figure SPM.3) {4.9.1, 5.5, 5.6, 6.3, 6.4, 7.5.6}

The land systems considered in this report do not include urban ecosystem dynamics in detail. Urban areas, urban expansion, and other urban processes and their
relation to land-related processes are extensive, dynamic, and complex. Several issues addressed in this report such as population, growth, incomes, food production
and consumption, food security, and diets have close relationships with these urban processes. Urban areas are also the setting of many processes related to
land-use change dynamics, including loss of ecosystem functions and services, that can lead to increased disaster risk. Some specific urban issues are assessed in
this report.
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Summary for Policymakers

Adaptation and mitigation response options

Many land-related responses that contribute to climate change adaptation and mitigation can also
combat desertification and land degradation and enhance food security. The potential for land-
related responses and the relative emphasis on adaptation and mitigation is context specific, including
the adaptive capacities of communities and regions. While land-related response options can make
important contributions to adaptation and mitigation, there are some barriers to adaptation and
limits to their contribution to global mitigation (very high confidence). (Figure SPM.3) {2.6, 4.8, 5.6,
6.1, 6.3, 6.4}

Some land-related actions are already being taken that contribute to climate change adaptation, mitigation and sustainable
development. The response options were assessed across adaptation, mitigation, combating desertification and land
degradation, food security and sustainable development, and a select set of options deliver across all of these challenges.
These options include, but are not limited to, sustainable food production, improved and sustainable forest management,
soil organic carbon management, ecosystem conservation and land restoration, reduced deforestation and degradation, and
reduced food loss and waste (high confidence). These response options require integration of biophysical, socioeconomic and
other enabling factors. {6.3, 6.4.5, 7.5.6, Cross-Chapter Box 10 in Chapter 7}

While some response options have immediate impacts, others take decades to deliver measurable results. Examples of
response options with immediate impacts include the conservation of high-carbon ecosystems such as peatlands, wetlands,
rangelands, mangroves and forests. Examples that provide multiple ecosystem services and functions, but take more time to
deliver, include afforestation and reforestation as well as the restoration of high-carbon ecosystems, agroforestry, and the
reclamation of degraded soils (high confidence). {6.4.5, 7.5.6, Cross-Chapter Box 10 in Chapter 7}

The successful implementation of response options depends on consideration of local environmental and socio-economic
conditions. Some options such as soil carbon management are potentially applicable across a broad range of land use types,
whereas the efficacy of land management practices relating to organic soils, peatlands and wetlands, and those linked to
freshwater resources, depends on specific agro-ecological conditions (high confidence). Given the site-specific nature of climate
change impacts on food system components and wide variations in agroecosystems, adaptation and mitigation options and
their barriers are linked to environmental and cultural context at regional and local levels (high confidence). Achieving land
degradation neutrality depends on the integration of multiple responses across local, regional and national scales and across
multiple sectors including agriculture, pasture, forest and water (high confidence). {4.8, 6.2, 6.3, 6.4.4, 7.5.6}

Land-based options that deliver carbon sequestration in soil or vegetation, such as afforestation, reforestation, agroforestry,
soil carbon management on mineral soils, or carbon storage in harvested wood products, do not continue to sequester carbon
indefinitely (high confidence). Peatlands, however, can continue to sequester carbon for centuries (high confidence). When
vegetation matures or when vegetation and soil carbon reservoirs reach saturation, the annual removal of CO, from the
atmosphere declines towards zero, while carbon stocks can be maintained (high confidence). However, accumulated carbon in
vegetation and soils is at risk from future loss (or sink reversal) triggered by disturbances such as flood, drought, fire, or pest
outbreaks, or future poor management (high confidence). {6.4.1}

Most of the response options assessed contribute positively to sustainable development and other
societal goals (high confidence). Many response options can be applied without competing for land
and have the potential to provide multiple co-benefits (high confidence). A further set of response
options has the potential to reduce demand for land, thereby enhancing the potential for other
response options to deliver across each of climate change adaptation and mitigation, combating
desertification and land degradation, and enhancing food security (high confidence). (Figure SPM.3)
{4.8, 6.2, 6.3.6, 6.4.3}

A number of land management options, such as improved management of cropland and grazing lands, improved and
sustainable forest management, and increased soil organic carbon content, do not require land use change and do not
create demand for more land conversion (high confidence). Further, a number of response options such as increased food
productivity, dietary choices and food losses, and waste reduction, can reduce demand for land conversion, thereby potentially
freeing land and creating opportunities for enhanced implementation of other response options (high confidence). Response
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Summary for Policymakers

options that reduce competition for land are possible and are applicable at different scales, from farm to regional (high
confidence). (Figure SPM.3) {4.8, 6.3.6, 6.4}

A wide range of adaptation and mitigation responses, e.g., preserving and restoring natural ecosystems such as peatland,
coastal lands and forests, biodiversity conservation, reducing competition for land, fire management, soil management, and
most risk management options (e.g., use of local seeds, disaster risk management, risk sharing instruments) have the potential
to make positive contributions to sustainable development, enhancement of ecosystem functions and services and other
societal goals (medium confidence). Ecosystem-based adaptation can, in some contexts, promote nature conservation while
alleviating poverty and can even provide co-benefits by removing GHGs and protecting livelihoods (e.g., mangroves) (medium
confidence). {6.4.3, 7.4.6.2}

Most of the land management-based response options that do not increase competition for land, and almost all options based
on value chain management (e.g., dietary choices, reduced post-harvest losses, reduced food waste) and risk management,
can contribute to eradicating poverty and eliminating hunger while promoting good health and wellbeing, clean water and
sanitation, climate action, and life on land (medium confidence). {6.4.3}

Although most response options can be applied without competing for available land, some can
increase demand for land conversion (high confidence). At the deployment scale of several GtCO,
yr', this increased demand for land conversion could lead to adverse side effects for adaptation,
desertification, land degradation and food security (high confidence). If applied on a limited share
of total land and integrated into sustainably managed landscapes, there will be fewer adverse side-
effects and some positive co-benefits can be realised (high confidence). (Figure SPM.3) {4.5, 6.2, 6.4,
Cross-Chapter Box 7 in Chapter 6}

If applied at scales necessary to remove CO, from the atmosphere at the level of several GtCO, yr™, afforestation, reforestation
and the use of land to provide feedstock for bioenergy with or without carbon capture and storage, or for biochar, could greatly
increase demand for land conversion (high confidence). Integration into sustainably managed landscapes at appropriate scale
can ameliorate adverse impacts (medium confidence). Reduced grassland conversion to croplands, restoration and reduced
conversion of peatlands, and restoration and reduced conversion of coastal wetlands affect smaller land areas globally, and
the impacts on land use change of these options are smaller or more variable (high confidence). (Figure SPM.3) {Cross-Chapter
Box 7 in Chapter 6, 6.4}

While land can make a valuable contribution to climate change mitigation, there are limits to the deployment of land-based
mitigation measures such as bioenergy crops or afforestation. Widespread use at the scale of several millions of km? globally
could increase risks for desertification, land degradation, food security and sustainable development (medium confidence).
Applied on a limited share of total land, land-based mitigation measures that displace other land uses have fewer adverse side-
effects and can have positive co-benefits for adaptation, desertification, land degradation or food security (high confidence).
(Figure SPM.3) {4.2, 4.5, 6.4; Cross-Chapter Box 7 in Chapter 6}

The production and use of biomass for bioenergy can have co-benefits, adverse side-effects, and risks for land degradation,
food insecurity, GHG emissions and other environmental and sustainable development goals (high confidence). These impacts
are context specific and depend on the scale of deployment, initial land use, land type, bioenergy feedstock, initial carbon
stocks, climatic region and management regime, and other land-demanding response options can have a similar range of
consequences (high confidence). The use of residues and organic waste as bioenergy feedstock can mitigate land use change
pressures associated with bioenergy deployment, but residues are limited and the removal of residues that would otherwise
be left on the soil could lead to soil degradation (high confidence). (Figure SPM.3) {2.6.1.5, Cross-Chapter Box 7 in Chapter 6}

For projected socioeconomic pathways with low population, effective land-use regulation, food produced in low-GHG
emission systems and lower food loss and waste (SSP1), the transition from low to moderate risk to food security, land
degradation and water scarcity in dry lands occur between 1 and 4 million km? of bioenergy or bioenergy with carbon
capture and storage (BECCS) (medium confidence). By contrast, in pathways with high population, low income and slow
rates of technological change (SSP3), the transition from low to moderate risk occurs between 0.1 and 1 million km? (medium
confidence). (Box SPM.1) {6.4, Table SM7.6, Cross-Chapter Box 7 in Chapter 6}

Many activities for combating desertification can contribute to climate change adaptation with
mitigation co-benefits, as well as to halting biodiversity loss with sustainable development co-benefits
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Summary for Policymakers

to society (high confidence). Avoiding, reducing and reversing desertification would enhance soil
fertility, increase carbon storage in soils and biomass, while benefitting agricultural productivity
and food security (high confidence). Preventing desertification is preferable to attempting to restore
degraded land due to the potential for residual risks and maladaptive outcomes (high confidence).
{3.6.1, 3.6.2, 3.6.3, 3.6.4, 3.7.1, 3.7.2}

Solutions that help adapt to and mitigate climate change while contributing to combating desertification are site and
regionally specific and include inter alia: water harvesting and micro-irrigation, restoring degraded lands using drought-
resilient ecologically appropriate plants, agroforestry, and other agroecological and ecosystem-based adaptation practices
(high confidence). {3.3,3.6.1,3.7.2,3.7.5, 5.2, 5.6}

Reducing dust and sand storms and sand dune movement can lessen the negative effects of wind erosion and improve air
quality and health (high confidence). Depending on water availability and soil conditions, afforestation, tree planting and
ecosystem restoration programs, which aim for the creation of windbreaks in the form of ‘green walls’ and ‘green dams’
using native and other climate resilient tree species with low water needs, can reduce sand storms, avert wind erosion, and
contribute to carbon sinks, while improving micro-climates, soil nutrients and water retention (high confidence). {3.3, 3.6.1,
3.7.2,3.7.5

Measures to combat desertification can promote soil carbon sequestration (high confidence). Natural vegetation restoration
and tree planting on degraded land enriches, in the long term, carbon in the topsoil and subsoil (medium confidence).
Modelled rates of carbon sequestration following the adoption of conservation agriculture practices in drylands depend on
local conditions (medium confidence). If soil carbon is lost, it may take a prolonged period of time for carbon stocks to recover.
{3.1.4,3.3,3.6.1,3.6.3,3.7.1,3.7.2}

Eradicating poverty and ensuring food security can benefit from applying measures promoting land degradation neutrality
(including avoiding, reducing and reversing land degradation) in rangelands, croplands and forests, which contribute to
combating desertification, while mitigating and adapting to climate change within the framework of sustainable development.
Such measures include avoiding deforestation and locally suitable practices including management of rangeland and forest
fires (high confidence). {3.4.2,3.6.1,3.6.2, 3.6.3, 4.8.5}

Currently there is a lack of knowledge of adaptation limits and potential maladaptation to combined effects of climate change
and desertification. In the absence of new or enhanced adaptation options, the potential for residual risks and maladaptive
outcomes is high (high confidence). Even when solutions are available, social, economic and institutional constraints could
pose barriers to their implementation (medium confidence). Some adaptation options can become maladaptive due to their
environmental impacts, such as irrigation causing soil salinisation or over extraction leading to ground-water depletion
(medium confidence). Extreme forms of desertification can lead to the complete loss of land productivity, limiting adaptation
options or reaching the limits to adaptation (high confidence). {Executive Summary Chapter 3, 3.6.4, 3.7.5, 7.4.9}

Developing, enabling and promoting access to cleaner energy sources and technologies can contribute to adaptation and
mitigating climate change and combating desertification and forest degradation through decreasing the use of traditional
biomass for energy while increasing the diversity of energy supply (medium confidence). This can have socioeconomic and
health benefits, especially for women and children (high confidence). The efficiency of wind and solar energy infrastructures
is recognised; the efficiency can be affected in some regions by dust and sand storms (high confidence). {3.5.3, 3.5.4, 4.4.4,
7.5.2, Cross-Chapter Box 12 in Chapter 7}

20




B5 X[&7kst MEEE|RE ZBSH=X|E7IsT EXEE= EX| EHRIE WX + AL, EX|Q|
MibdE RXI1g = Ao, ofd A0l EX| el DiXl= 7|EHsle| REE S
HHAZE £ UCHHYR =2 £/E/5). Ol =T 231t MSOIE 7|0 = ACH=2 AE[L). 7H
SEUM HH |FHof| o|2= {=o| EX| ZHzt Zalt HHE HIE 28X, FZ4E, F7|H
0|2dS X[GAlRl0f ST = UM, H(HYR £2 Lot eWF2 A2/ D0l Tl 3&
0|eS 5tz of2] X|E7FsLUHESHSDG)R FES XY = UACL X[H7kss EX|E|
ojginto 2= Qo] AQ M2 A7} XAIE 5= UCKFZF A2/ {1.32,415,48,756, E 42}

B5.1 WENSHY, AlR|EHA ST SHE F1 7|28 B30 et S5 0|22 MS3HHAM X|&7stt
EXHEE S 58 A"l EX| S OEFE + UCh EY AN SS=E &40 st
XOFMS ZEAA|F|E TP SM

To= [ — — Hi——

st A, 22 Foi29 |X|, A2
UA/RHL, 2|0 We Be| e 5

|
AR R2 &2 LE/5). {48}

Xleh tEd == S 8=

B52 L3229l Sk 2f=lof Ciet &5 0[S 7HEICY.
Iz rES 90 d2AZE = UhES AE/5)

AAEE2 EX] Bt A Al LOojL= &ADE HY
o= 220 ™ MAM Az HA-d2S T Al

AOICHEL2 Alg/k). E7 HIO|R =2 AESIH BAE Z2AZ = (&2 AEE), BE EX|
Y 7|20 EY ZUHS WHAZE = JCHSZF AE/E). {4811, 481.3, 492, 495, 551, 554;
N|5&+2| Cross-Chapter 2fA6}

B53 LRIt M2 S| ZaE GHG HiES RF=t(F2 42/5), 712 f=te| HY =8X|=
04~5.8 GICOyr'O|Ct. X[ HAF2|0f E7| MOl A +EHs NS 2M, XE7tsth A 2= AHEe
HIME 8= Hato| MRS d2AIZ = ACKOl: BHX| E= FR) (22 4/2[5). =M, g, M,
HI= XM, Z|EF HERA 7|81t MH|A HEE SHE St= X[&E7ksth MEiE|= GHG HIES

Y £ AN M 0| 7|0E 5= UCHEL A12/5).{26.12,4.15,432,453,481.3,483,4.84)

B54 X|&7hsSh AfEEE| AL, EAE FHELE et
9l Zd &= k=2 AEE). SH
EtATL =2t ZHIECE Tetr|= 4R, 0 HE2 F7/HCE BHAE MY = U1 Him HAHA
MEE CHA[SIY 7|EF 22| HIES AAAZ = UCKES AE/5). 7tF st YHMOE O HX|&
MHZES AFESHe 42, BtaE OS 259 7| S2& CHA| HISEICH=2 A2/%). (A8 SPMI)
{26.1,27,4.15,4.84,64.1, M6Z2| Cross-Chapter 2527}

B55 EX| YHES WX|, 24 Ei HMEoh| 3t ZAIS oMol 7|SHet2 olof EX| TS} L
4 QU2 Al2/E), 17 80| S SHO|n YADIC L2, 4BSe(sE wjer Al2| X
RS A7i0t0] NSEES Sof AYEKES A2/5), UL AFOIN S S} ATtz £Mo|
SoRIILL LR OIF (K2 AZlE), SR(KAS MElD), WREH NElD) S AN S e
sl KefE 4 QU S SIS At £X| gHlo| 7|oIst 7|StHsto] oS S8, £/t
NEIRE B S4B 4502 ofptel sfot 44 SEERE
YTSE OfY(S7 AZE), W5 UG QUots YT EY HMF MEH2 S 4 ULk

{47,4.85,486,4.96,497,498)

L
T O
>
Rir
Mo
r
5
N
s
>
nx
K
0z
X
2

B6 H

il
olo
H

RIS TIMA|Z|7] Sl AT 4Tt H7| S ‘HMOA AH|TEX] AZEA|AR XHEto| S
LEMHOR 81 AR = ACHES 42D FEN 715 &5 U =AU 7|2l
=X 2o} ZxiMde 2050E77HX| 2.3~9.6 GiCO.q yr'2 FHEICKSZF A2/5). AME Hlof
% 71X 245} TIYE2 2050 7K 0.7~8 GtCOeqyr' 2 FHEICH F2F A2/5).{5.3,5.5,5.6}

g

ORt jo
E
mjo

10
N

= 2 5 TAO| KiS7kse EXIzR|0] ChsBols £X|, 8, SAS S EX| KIS T2lokn 0/8510] BEfSHs Q1zio] BRE BIEAJ7 | S0, 0] xf2lo
A7 % A SIS SEokn BT 7152 RRAIZIS ZOICk MOl )2 of2f X7} T, 15 53] sYesiEs e Z3h, BE 5,
2 7%, WA 84K 22|, BY SYAAHS 5 49U,

o = =1 xpo = o iR Al =
HEap e B oy, MES Aant M =8 77| 58 SN oS 2l 2 2E YE = 5 U

— L9
% =2 E0Mo| X&7kset AE 22|0f Ciel Fol= MEt 2XIE SYet Yt B2 225t 0|8oty 0| YTy, diky, Ty A, 4=,
HAEE FAIG2ZN viriet O2of Oler HAE e, FMM, AlelY 7IsE XY, 7L T XY +F0M &5t 7|EH HEfAO TS
OF7[5A| Bk A4S ettt

A
T

21




B.5

B.5.1

B.5.2

B.5.3

B.5.4

B.5.5

B.6

Summary for Policymakers

Sustainable land management,* including sustainable forest management,* can prevent and reduce
land degradation, maintain land productivity, and sometimes reverse the adverse impacts of climate
change on land degradation (very high confidence). It can also contribute to mitigation and adaptation
(high confidence). Reducing and reversing land degradation, at scales from individual farms to
entire watersheds, can provide cost effective, immediate, and long-term benefits to communities
and support several Sustainable Development Goals (SDGs) with co-benefits for adaptation (very
high confidence) and mitigation (high confidence). Even with implementation of sustainable land
management, limits to adaptation can be exceeded in some situations (medium confidence). {1.3.2,
4.1.5, 4.8, 7.5.6, Table 4.2}

Land degradation in agriculture systems can be addressed through sustainable land management, with an ecological and
socioeconomic focus, with co-benefits for climate change adaptation. Management options that reduce vulnerability to soil
erosion and nutrient loss include growing green manure crops and cover crops, crop residue retention, reduced/zero tillage,
and maintenance of ground cover through improved grazing management (very high confidence). {4.8}

The following options also have mitigation co-benefits. Farming systems such as agroforestry, perennial pasture phases and
use of perennial grains, can substantially reduce erosion and nutrient leaching while building soil carbon (high confidence).
The global sequestration potential of cover crops would be about 0.44 + 0.11 GtCO, yr' if applied to 25% of global cropland
(high confidence). The application of certain biochars can sequester carbon (high confidence),and improve soil conditions in
some soil types/climates (medium confidence). {4.8.1.1, 4.8.1.3, 4.9.2, 4.9.5, 5.5.1, 5.5.4, Cross-Chapter Box 6 in Chapter 5}

Reducing deforestation and forest degradation lowers GHG emissions (high confidence), with an estimated technical mitigation
potential of 0.4-5.8 GtCO, yr'. By providing long-term livelihoods for communities, sustainable forest management can
reduce the extent of forest conversion to non-forest uses (e.g., cropland or settlements) (high confidence). Sustainable forest
management aimed at providing timber, fibre, biomass, non-timber resources and other ecosystem functions and services, can
lower GHG emissions and can contribute to adaptation (high confidence). {2.6.1.2, 4.1.5,4.3.2,4.5.3,4.8.1.3, 4.8.3, 4.8.4}

Sustainable forest management can maintain or enhance forest carbon stocks, and can maintain forest carbon sinks, including
by transferring carbon to wood products, thus addressing the issue of sink saturation (high confidence). Where wood carbon is
transferred to harvested wood products, these can store carbon over the long-term and can substitute for emissions-intensive
materials reducing emissions in other sectors (high confidence). Where biomass is used for energy, e.g., as a mitigation
strategy, the carbon is released back into the atmosphere more quickly (high confidence). (Figure SPM.3) {2.6.1, 2.7, 4.1.5,
4.8.4,6.4.1, Cross-Chapter Box 7 in Chapter 6}

Climate change can lead to land degradation, even with the implementation of measures intended to avoid, reduce or reverse
land degradation (high confidence). Such limits to adaptation are dynamic, site-specific and are determined through the
interaction of biophysical changes with social and institutional conditions (very high confidence). In some situations, exceeding
the limits of adaptation can trigger escalating losses or result in undesirable transformational changes (medium confidence)
such as forced migration (fow confidence), conflicts (low confidence) or poverty (medium confidence). Examples of climate
change induced land degradation that may exceed limits to adaptation include coastal erosion exacerbated by sea level rise
where land disappears (high confidence), thawing of permafrost affecting infrastructure and livelihoods (medium confidence),
and extreme soil erosion causing loss of productive capacity (medium confidence). {4.7, 4.8.5, 4.8.6, 4.9.6, 4.9.7, 4.9.8}

Response options throughout the food system, from production to consumption, including food loss
and waste, can be deployed and scaled up to advance adaptation and mitigation (high confidence). The
total technical mitigation potential from crop and livestock activities, and agroforestry is estimated as
2.3-9.6 GtCO,eq yr' by 2050 (medium confidence). The total technical mitigation potential of dietary
changes is estimated as 0.7 - 8 GtCO,eq yr' by 2050 (medium confidence). {5.3, 5.5, 5.6}

3 Sustainable land management is defined in this report as ‘the stewardship and use of land resources, including soils, water, animals and plants, to meet changing
human needs, while simultaneously ensuring the long-term productive potential of these resources and the maintenance of their environmental functions’. Examples
of options include, inter alia, agroecology (including agroforestry), conservation agriculture and forestry practices, crop and forest species diversity, appropriate crop
and forest rotations, organic farming, integrated pest management, the conservation of pollinators, rain water harvesting, range and pasture management, and
precision agriculture systems.

34 Sustainable forest management is defined in this report as ‘the stewardship and use of forests and forest lands in a way, and at a rate, that maintains their
biodiversity, productivity, regeneration capacity, vitality, and their potential to fulfil now and in the future, relevant ecological, economic and social functions at local,
national and global levels and that does not cause damage to other ecosystems'.
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B.7.3

Summary for Policymakers

Practices that contribute to climate change adaptation and mitigation in cropland include increasing soil organic matter,
erosion control, improved fertiliser management, improved crop management, for example paddy rice management, and
use of varieties and genetic improvements for heat and drought tolerance. For livestock, options include better grazing land
management, improved manure management, higher-quality feed, and use of breeds and genetic improvement. Different
farming and pastoral systems can achieve reductions in the emissions intensity of livestock products. Depending on the
farming and pastoral systems and level of development, reductions in the emissions intensity of livestock products may lead
to absolute reductions in GHG emissions (medium confidence). Many livestock related options can enhance the adaptive
capacity of rural communities, in particular, of smallholders and pastoralists. Significant synergies exist between adaptation
and mitigation, for example through sustainable land management approaches (high confidence). {4.8, 5.3.3,5.5.1, 5.6}

Diversification in the food system (e.g., implementation of integrated production systems, broad-based genetic resources,
and diets) can reduce risks from climate change (medium confidence). Balanced diets, featuring plant-based foods, such as
those based on coarse grains, legumes, fruits and vegetables, nuts and seeds, and animal-sourced food produced in resilient,
sustainable and low-GHG emission systems, present major opportunities for adaptation and mitigation while generating
significant co-benefits in terms of human health (high confidence). By 2050, dietary changes could free several million km?
(medium confidence) of land and provide a technical mitigation potential of 0.7 to 8.0 GtCO,eq yr, relative to business
as usual projections (high confidence). Transitions towards low-GHG emission diets may be influenced by local production
practices, technical and financial barriers and associated livelihoods and cultural habits (high confidence). {5.3,5.5.2, 5.5, 5.6}

Reduction of food loss and waste can lower GHG emissions and contribute to adaptation through reduction in the land area
needed for food production (medium confidence). During 2010-2016, global food loss and waste contributed 8 —10% of total
anthropogenic GHG emissions (medium confidence). Currently, 25-30% of total food produced is lost or wasted (medium
confidence). Technical options such as improved harvesting techniques, on-farm storage, infrastructure, transport, packaging,
retail and education can reduce food loss and waste across the supply chain. Causes of food loss and waste differ substantially
between developed and developing countries, as well as between regions (medium confidence). By 2050, reduced food loss
and waste can free several million km? of land (low confidence). {5.5.2, 6.3.6}

Future land use depends, in part, on the desired climate outcome and the portfolio of response
options deployed (high confidence). All assessed modelled pathways that limit warming to 1.5°C or
well below 2°C require land-based mitigation and land-use change, with most including different
combinations of reforestation, afforestation, reduced deforestation, and bioenergy (high confidence).
A small number of modelled pathways achieve 1.5°C with reduced land conversion (high confidence)
and thus reduced consequences for desertification, land degradation, and food security (medium
confidence). (Figure SPM.4) {2.6, 6.4, 7.4, 7.6, Cross-Chapter Box 9 in Chapter 6}

Modelled pathways limiting global warming to 1.5°C* include more land-based mitigation than higher warming level
pathways (high confidence), but the impacts of climate change on land systems in these pathways are less severe (medium
confidence). (Figure SPM.2, Figure SPM.4) {2.6, 6.4, 7.4, Cross-Chapter Box 9 in Chapter 6}

Modelled pathways limiting global warming to 1.5°C and 2°C project a 2 million km? reduction to a 12 million km?increase in
forest area in 2050 relative to 2010 (medium confidence). 3°C pathways project lower forest areas, ranging from a 4 million km?
reduction to a 6 million km? increase (medium confidence). (Figure SPM.3, Figure SPM.4) {2.5, 6.3, 7.3, 7.5, Cross-Chapter
Box 9 in Chapter 6}

The land area needed for bioenergy in modelled pathways varies significantly depending on the socio-economic pathway, the
warming level, and the feedstock and production system used (high confidence). Modelled pathways limiting global warming
to 1.5°C use up to 7 million km? for bioenergy in 2050; bioenergy land area is smaller in 2°C (0.4 to 5 million km?) and 3°C
pathways (0.1 to 3 million km?) (medium confidence). Pathways with large levels of land conversion may imply adverse side-
effects impacting water scarcity, biodiversity, land degradation, desertification, and food security, if not adequately and carefully
managed, whereas best practice implementation at appropriate scales can have co-benefits, such as management of dryland
salinity, enhanced biocontrol and biodiversity and enhancing soil carbon sequestration (high confidence). (Figure SPM.3) {2.6,
6.1, 6.4, 7.2, Cross-Chapter Box 7 in Chapter 6}

3 In this report references to pathways limiting global warming to a particular level are based on a 66% probability of staying below that temperature level in 2100
using the MAGICC model.

22




BUZEXIS 9% 2A4Z2(SPM)

B74 ol 25 BRE UOI2UIL Tl 48 BEX 088 Zyuct 3 T 29 Y=L

B.75

23

2H3IE 15°C E Hststn Hio|20f| X2t BECCSOI| CHet o|FEE ZtA(2050H EX| HEO| 1440t
kmzmﬂr) 91 7|E} OJMSIEMAK|H(CDR) B8NS 4EIBICE2 AlZ/E) 023t HRE J|Et 15C
AZ0t H|mS I O K|, EX|, TA| A|AEID} 7|HIA|A SHE QI ASHOEAl HS}O| Al&stn ZHEHQISE

oo o=0 L ooTld

Tghof FW O 2fETICL{262,55.1,64, MEE2| Cross-Chapter 227}

O2{3t 2 A=2= EX|0f Chot 7|2 Heto| FEO|Lt O|AketEtA HIS%o| Fokg 1a{sHA| gb=Ct.
CESH O[2f8t ZE2& 0 2AMO|M HIHE S SM9| o 22 TR Zaholth#2 Alg/z), 7+
s S8 ZHO| ZAI7|H EX|0f Ciet =25 S7IA|7|= HIO|0{HX| E+= CDRO Cet 27
Mg ZAAZ 4= UCE 844, M6E2| Cross-Chapter EFA0)




B.7.4

B.7.5

Summary for Policymakers

Most mitigation pathways include substantial deployment of bioenergy technologies. A small number of modelled pathways
limit warming to 1.5°C with reduced dependence on bioenergy and BECCS (land area below <1 million km? in 2050) and other
carbon dioxide removal (CDR) options (high confidence). These pathways have even more reliance on rapid and far-reaching
transitions in energy, land, urban systems and infrastructure, and on behavioural and lifestyle changes compared to other
1.5°C pathways. {2.6.2, 5.5.1, 6.4, Cross-Chapter Box 7 in Chapter 6}

These modelled pathways do not consider the effects of climate change on land or CO, fertilisation. In addition, these
pathways include only a subset of the response options assessed in this report (high confidence); the inclusion of additional
response options in models could reduce the projected need for bioenergy or CDR that increases the demand for land. {6.4.4,
Cross-Chapter Box 9 in Chapter 6}
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Summary for Policymakers

Potential global contribution of response options to mitigation, adaptation,
combating desertification and land degradation, and enhancing food security

Panel A shows response options that can be implemented without or with limited competition for land, including some that have the
potential to reduce the demand for land. Co-benefits and adverse side effects are shown quantitatively based on the high end of the
range of potentials assessed. Magnitudes of contributions are categorised using thresholds for positive or negative impacts. Letters
within the cells indicate confidence in the magnitude of the impact relative to the thresholds used (see legend). Confidence in the
direction of change is generally higher.

Response options based on land management

Increased food productivity
Agro-forestry

Improved cropland management

Mitigation Adaptation Desertification  Land Degradation  Food Security Cost
—
(@ |
I IS DY T e e

2
B moroved vestock maragement 1 1 1 .} ‘o0
§ teicutualduersfcation TS T T G o
Improved grazing land management 1 [ I
Integrated water management _ _ t L l hdd I
Reduced grassland conversion to cropland _ L _ |—’
§  Forest management _____E
:’_ Reduced deforestation and forest degradation _—_— E
Increased sol rganic carbon content (N (Y ] T Y oo |
2 Reduced soi erosion . ! [  «] O
B reduced sl saization [ —— | N S A e |
Reduced soil compaction E L I _ E
,  Firemanagement (T () I T A
g’; Reduced landslides and natural hazards L L _ E
é Reduced pollution including acidification _ _— _— E
E Restoration & reduced conversion of coastal wetlands _— M [ ot ‘ [ — ‘
-]
o

Restoration & reduced conversion of peatlands

| \__D

e [ na

Response options based on value chain management

Reduced post-harvest losses

(] T D e

]

£ Dietary change — | 0 [ I
8 Reduced food waste (consumer or retailer) I _ E
. Sustainable sourcing . —— N -
g Improved food processing and retailing _[ ” } S
a

Improved energy use in food systems

1 ] I ==

Response options based on risk management

Risk

Livelihood diversification
Management of urban sprawl

Risk sharing instruments

:\_E
[ — .
[ — /.

o I
a I
| (oo |

—

Options shown are those for which data are available to assess global potential for three or more land challenges.
The magnitudes are assessed independently for each option and are not additive.

Key for criteria used to define magnitude of impact of each integrated response option

Confidence level
Indicates confidence in the

Mitigation Adaptation Desertification  Land Degradation ~ Food Security " r od
Gt COz-eqyr Million people Million km? Million km? Million people estimate of magnitude category.
Positive for Positive for Positive for Positive for H  High confidence
% Large M iiEn S more than 25 more than 3 more than 3 more than 100 M Medium confidence
';g Moderate 0.3to3 1to25 0.5t03 0.5t03 1to 100 I leweaiidanes
Small Less than 0.3 Less than 1 Less than 0.5 Less than 0.5 Less than 1
Negligible No effect No effect No effect No effect No effect Cost range
s Small Less than -0.3 Less than 1 Less than 0.5 Less than 0.5 Less than 1 Seaidinlte] epilaireas:
5 mal ess than -0.. ess than ess than 0. ess than 0. ess than ranges in USS tCOze~ or USS ha'.
o0
g Moderate -0.3to-3 1to25 0.5t03 0.5t03 1to 100 W High cost
o Negative for Negative for Negative for Negative for i
Large Mol (diEn=3 more than 25 more than 3 more than 3 more than 100 se dlmies:
E Low cost
Variable: Can be positive or negative E no data not applicable [ — | nodata
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Summary for Policymakers

Potential global contribution of response options to mitigation, adaptation,
combating desertification and land degradation, and enhancing food security

Panel B shows response options that rely on additional land-use change and could have implications across three or more land
challenges under different implementation contexts. For each option, the first row (high level implementation) shows a quantitative
assessment (as in Panel A) of implications for global implementation at scales delivering CO2 removals of more than 3 GtCO2 yrusing
the magnitude thresholds shown in Panel A. The red hatched cells indicate an increasing pressure but unquantified impact. For each
option, the second row (best practice implementation) shows qualitative estimates of impact ifimplemented using best practices in
appropriately managed landscape systems that allow for efficient and sustainable resource use and supported by appropriate
governance mechanisms. In these qualitative assessments, green indicates a positive impact, grey indicates a neutral interaction.

Bioenergy and BECCS
Mitigation Adaptation Desertification Land degradation Food security Cost

4 A /I - e

High level: Impacts on adaptation, desertification, land degradation and food security are maximum potential impacts, assuming carbon dioxide removal by BECCS at
ascale of 11.3 GtCO2 yr in 2050, and noting that bioenergy without CCS can also achieve emissions reductions of up to several GtCO2 yr~* when it is a low carbon
energy source {2.6.1; 6.3.1}. Studies linking bioenergy to food security estimate an increase in the population at risk of hunger to up to 150 million people at this level
of implementation {6.3.5}. The red hatched cells for desertification and land degradation indicate that while up to 15 million km? of additional land is required in 2100
in 2°C scenarios which will increase pressure for desertification and land degradation, the actual area affected by this additional pressure is not easily quantified
{6.3.3;6.3.4}.

Mitigation Adaptation Desertification Land degradation Food security

Best practice: The sign and magnitude of the effects of bioenergy and BECCS depends on the scale of deployment, the type of bioenergy feedstock, which other
response options are included, and where bioenergy is grown (including prior land use and indirect land use change emissions). For example, limiting bioenergy
production to marginal lands or abandoned cropland would have negligible effects on biodiversity, food security, and potentially co-benefits for land degradation;
however, the benefits for mitigation could also be smaller. {Table 6.58}

Reforestation and forest restoration
Mitigation Adaptation Desertification Land degradation Food security Cost

o0
High level: Impacts on adaptation, desertification, land degradation and food security are maximum potential impacts assuming implementation of reforestation and
forest restoration (partly overlapping with afforestation) at a scale of 10.1 GtCO2 yr™ removal {6.3.1}. Large-scale afforestation could cause increases in food prices of
80% by 2050, and more general mitigation measures in the AFOLU sector can translate into a rise in undernourishment of 80-300 million people; the impact of
reforestation is lower {6.3.5}.

Mitigation Adaptation Desertification Land degradation Food security

Best practice: There are co-benefits of reforestation and forest restoration in previously forested areas, assuming small scale deployment using native species and
involving local stakeholders to provide a safety net for food security. Examples of sustainable implementation include, but are not limited to, reducing illegal logging
and halting illegal forest loss in protected areas, reforesting and restoring forests in degraded and desertified lands {Box 6.1C; Table 6.6}.

Afforestation
Mitigation Adaptation Desertification Land degradation Food security Cost

e |
High level: Impacts on adaptation, desertification, land degradation and food security are maximum potential impacts assuming implementation of afforestation

(partly overlapping with reforestation and forest restoration) at a scale of 8.9 GtCO2 yr~* removal {6.3.1}. Large-scale afforestation could cause increases in food prices of
80% by 2050, and more general mitigation measures in the AFOLU sector can translate into a rise in undernourishment of 80-300 million people {6.3.5}.

Mitigation Adaptation Desertification Land degradation Food security

Best practice: Afforestation is used to prevent desertification and to tackle land degradation. Forested land also offers benefits in terms of food supply, especially when
forest is established on degraded land, mangroves, and other land that cannot be used for agriculture. For example, food from forests represents a safety-net during
times of food and income insecurity {6.3.5}.

Biochar addition to soil
Mitigation Adaptation Desertification Land degradation Food security Cost

I

High level: Impacts on adaptation, desertification, land degradation and food security are maximum potential impacts assuming implementation of biochar at a scale
of 6.6 GtCO2 yr~ removal {6.3.1}. Dedicated biomass crops required for feedstock production could occupy 0.4-2.6 Mkm? of land, equivalent to around 20% of the global
cropland area, which could potentially have a large effect on food security for up to 100 million people {6.3.5}.

Mitigation Adaptation Desertification Land degradation Food security

Best practice: When applied to land, biochar could provide moderate benefits for food security by improving yields by 25% in the tropics, but with more limited
impacts in temperate regions, or through improved water holding capacity and nutrient use efficiency. Abandoned cropland could be used to supply biomass for
biochar, thus avoiding competition with food production; 5-9 Mkm? of land is estimated to be available for biomass production without compromising food security
and biodiversity, considering marginal and degraded land and land released by pasture intensification {6.3.5}.
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Summary for Policymakers

Figure SPM.3 | Potential global contribution of response options to mitigation, adaptation, combating desertification and land degradation, and
enhancing food security. This Figure is based on an aggregation of information from studies with a wide variety of assumptions about how response options are
implemented and the contexts in which they occur. Response options implemented differently at local to global scales could lead to different outcomes. Magnitude
of potential: For panel A, magnitudes are for the technical potential of response options globally. For each land challenge, magnitudes are set relative to a marker
level as follows. For mitigation, potentials are set relative to the approximate potentials for the response options with the largest individual impacts (~3 GtCO,-eq yr).
The threshold for the ‘large’ magnitude category is set at this level. For adaptation, magnitudes are set relative to the 100 million lives estimated to be affected by
climate change and a carbon-based economy between 2010 and 2030. The threshold for the ‘large” magnitude category represents 25% of this total. For desertification
and land degradation, magnitudes are set relative to the lower end of current estimates of degraded land, 10-60 million km?. The threshold for the ‘large” magnitude
category represents 30% of the lower estimate. For food security, magnitudes are set relative to the approximately 800 million people who are currently undernourished.
The threshold for the ‘large” magnitude category represents 12.5% of this total. For panel B, for the first row (high level implementation) for each response option, the
magnitude and thresholds are as defined for panel A. In the second row (best practice implementation) for each response option, the qualitative assessments that are
green denote potential positive impacts, and those shown in grey indicate neutral interactions. Increased food production is assumed to be achieved through sustainable
intensification rather than through injudicious application of additional external inputs such as agrochemicals. Levels of confidence: Confidence in the magnitude
category (high, medium or low) into which each option falls for mitigation, adaptation, combating desertification and land degradation, and enhancing food security.
High confidence means that there is a high level of agreement and evidence in the literature to support the categorisation as high, medium or low magnitude. Low
confidence denotes that the categorisation of magnitude is based on few studies. Medium confidence reflects medium evidence and agreement in the magnitude
of response. Cost ranges: Cost estimates are based on aggregation of often regional studies and vary in the components of costs that are included. In panel B,
cost estimates are not provided for best practice implementation. One coin indicates low cost (<USD10 tC0O,-eq™" or <USD20 ha™'), two cains indicate medium cost
(USD10-USD100 tCO,-eq™" or USD20-USD200 ha™'), and three coins indicate high cost (~USD100 tCO,-eq™" or USD200 ha™"). Thresholds in USD ha™ are chosen to be
comparable, but precise conversions will depend on the response option. Supporting evidence: Supporting evidence for the magnitude of the quantitative potential
for land management-based response options can be found as follows: for mitigation Table's 6.13 to 6.20, with further evidence in Section 2.7.1; for adaptation Table's
6.21 10 6.28; for combating desertification Table's 6.29 to 6.36, with further evidence in Chapter 3; for combating degradation tables 6.37 to 6.44, with further evidence
in Chapter 4; for enhancing food security Table's 6.45 to 6.52, with further evidence in Chapter 5. Other synergies and trade-offs not shown here are discussed in
Chapter 6. Additional supporting evidence for the qualitative assessments in the second row for each option in panel B can be found in the Table’s 6.6, 6.55, 6.56 and
6.58, Section 6.3.5.1.3, and Box 6.1c.
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C.2.1

Summary for Policymakers

Enabling response options

Appropriate design of policies, institutions and governance systems at all scales can contribute to
land-related adaptation and mitigation while facilitating the pursuit of climate-adaptive development
pathways (high confidence). Mutually supportive climate and land policies have the potential to
save resources, amplify social resilience, support ecological restoration, and foster engagement and
collaboration between multiple stakeholders (high confidence). (Figure SPM.1, Figure SPM.2, Figure
SPM.3) {3.6.2, 3.6.3, 4.8, 4.9.4, 5.7, 6.3, 6.4, 7.2.2, 7.3, 7.4, 7.4.7, 7.48, 7.5, 7.5.5, 7.5.6, 7.6.6, Cross-
Chapter Box 10 in Chapter 7}

Land-use zoning, spatial planning, integrated landscape planning, regulations, incentives (such as payment for ecosystem
services), and voluntary or persuasive instruments (such as environmental farm planning, standards and certification for
sustainable production, use of scientific, local and indigenous knowledge and collective action), can achieve positive
adaptation and mitigation outcomes (medium confidence). They can also contribute revenue and provide incentive to
rehabilitate degraded lands and adapt to and mitigate climate change in certain contexts (medium confidence). Policies
promoting the target of land degradation neutrality can also support food security, human wellbeing and climate change
adaptation and mitigation (high confidence). (Figure SPM.2) {3.4.2,4.1.6, 4.7, 4.8.5,5.1.2,5.7.3,7.3,7.4.6,7.4.7, 7.5}

Insecure land tenure affects the ability of people, communities and organisations to make changes to land that can advance
adaptation and mitigation (medium confidence). Limited recognition of customary access to land and ownership of land can
result in increased vulnerability and decreased adaptive capacity (medium confidence). Land policies (including recognition
of customary tenure, community mapping, redistribution, decentralisation, co-management, regulation of rental markets) can
provide both security and flexibility response to climate change (medium confidence). {3.6.1, 3.6.2, 5.3, 7.2.4, 7.6.4, Cross-
Chapter Box 6 in Chapter 5}

Achieving land degradation neutrality will involve a balance of measures that avoid and reduce land degradation, through
adoption of sustainable land management, and measures to reverse degradation through rehabilitation and restoration of
degraded land. Many interventions to achieve land degradation neutrality commonly also deliver climate change adaptation
and mitigation benefits. The pursuit of land degradation neutrality provides impetus to address land degradation and climate
change simultaneously (high confidence). {4.5.3, 4.8.5, 4.8.7, 7.4.5}

Due to the complexity of challenges and the diversity of actors involved in addressing land challenges, a mix of policies,
rather than single policy approaches, can deliver improved results in addressing the complex challenges of sustainable land
management and climate change (high confidence). Policy mixes can strongly reduce the vulnerability and exposure of human
and natural systems to climate change (high confidence). Elements of such policy mixes may include weather and health
insurance, social protection and adaptive safety nets, contingent finance and reserve funds, universal access to early warning
systems combined with effective contingency plans (high confidence). (Figure SPM.4} {1.2, 4.8, 4.9.2,5.3.2,5.6, 5.6.6, 5.7.2,
73.2,74,742,746,74.7,7.4.8,75.5,7.5.6,7.6.4}

Policies that operate across the food system, including those that reduce food loss and waste and
influence dietary choices, enable more sustainable land-use management, enhanced food security and
low emissions trajectories (high confidence). Such policies can contribute to climate change adaptation
and mitigation, reduce land degradation, desertification and poverty as well as improve public health
(high confidence). The adoption of sustainable land management and poverty eradication can be
enabled by improving access to markets, securing land tenure, factoring environmental costs into
food, making payments for ecosystem services, and enhancing local and community collective action
(high confidence). {1.1.2, 1.2.1, 3.6.3,4.7.1,4.7.2, 4.8, 5.5, 6.4, 7.4.6, 7.6.5}

Policies that enable and incentivise sustainable land management for climate change adaptation and mitigation include
improved access to markets for inputs, outputs and financial services, empowering women and indigenous peoples, enhancing
local and community collective action, reforming subsidies and promoting an enabling trade system (high confidence). Land
restoration and rehabilitation efforts can be more effective when policies support local management of natural resources,
while strengthening cooperation between actors and institutions, including at the international level. {3.6.3,4.1.6, 4.5.4, 4.8.2,
4.8.4,57,7.2,13}
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Summary for Policymakers

Reflecting the environmental costs of land-degrading agricultural practices can incentivise more sustainable land management
(high confidence). Barriers to the reflection of environmental costs arise from technical difficulties in estimating these costs
and those embodied in foods. {3.6.3, 5.5.1, 5.5.2, 5.6.6, 5.7, 7.4.4, Cross-Chapter Box 10 in Chapter 7}

Adaptation and enhanced resilience to extreme events impacting food systems can be facilitated by comprehensive risk
management, including risk sharing and transfer mechanisms (high confidence). Agricultural diversification, expansion of
market access, and preparation for increasing supply chain disruption can support the scaling up of adaptation in food systems
(high confidence). {5.3.2, 5.3.3, 5.3.5}

Public health policies to improve nutrition, such as increasing the diversity of food sources in public procurement, health
insurance, financial incentives, and awareness-raising campaigns, can potentially influence food demand, reduce healthcare
costs, contribute to lower GHG emissions and enhance adaptive capacity (high confidence). Influencing demand for food,
through promoting diets based on public health guidelines, can enable more sustainable land management and contribute to
achieving multiple SDGs (high confidence). {3.4.2,4.7.2,5.1,5.7,6.3, 6.4}

Acknowledging co-benefits and trade-offs when designing land and food policies can overcome
barriers to implementation (medium confidence). Strengthened multi-level, hybrid and cross-sectoral
governance, as well as policies developed and adopted in an iterative, coherent, adaptive and flexible
manner can maximise co-benefits and minimise trade-offs, given that land management decisions
are made from farm level to national scales, and both climate and land policies often range across
multiple sectors, departments and agencies (high confidence). (Figure SPM.3) {4.8.5, 4.9, 5.6, 6.4, 7.3,
7.4.6,7.4.8,7.4.9,7.5.6, 7.6.2}

Addressing desertification, land degradation, and food security in an integrated, coordinated and coherent manner can assist
climate resilient development and provides numerous potential co-benefits (high confidence). {3.7.5, 4.8, 5.6, 5.7, 6.4, 7.2.2,
73.1,73.4,74.7,7.4.8,7.5.6,7.5.5}

Technological, biophysical, socio-economic, financial and cultural barriers can limit the adoption of many land-based response
options, as can uncertainty about benefits (high confidence). Many sustainable land management practices are not widely
adopted due to insecure land tenure, lack of access to resources and agricultural advisory services, insufficient and unequal
private and public incentives, and lack of knowledge and practical experience (high confidence). Public discourse, carefully
designed policy interventions, incorporating social learning and market changes can together help reduce barriers to
implementation (medium confidence). {3.6.1,3.6.2,5.3.5,5.5.2,5.6,6.2,6.4,7.4,7.5, 7.6}

The land and food sectors face particular challenges of institutional fragmentation and often suffer from a lack of engagement
between stakeholders at different scales and narrowly focused policy objectives (medium confidence). Coordination with
other sectors, such as public health, transportation, environment, water, energy and infrastructure, can increase co-benefits,
such as risk reduction and improved health (medium confidence). {5.6.3,5.7,6.2,6.4.4,7.1,7.3,7.4.8,7.6.2, 7.6.3}

Some response options and policies may result in trade-offs, including social impacts, ecosystem functions and services damage,
water depletion, or high costs, that cannot be well-managed, even with institutional best practices (medium confidence).
Addressing such trade-offs helps avoid maladaptation (medium confidence). Anticipation and evaluation of potential trade-
offs and knowledge gaps supports evidence-based policymaking to weigh the costs and benefits of specific responses for
different stakeholders (medium confidence). Successful management of trade-offs often includes maximising stakeholder
input with structured feedback processes, particularly in community-based models, use of innovative fora like facilitated
dialogues or spatially explicit mapping, and iterative adaptive management that allows for continuous readjustments in policy
as new evidence comes to light (medium confidence). {5.3.5, 6.4.2, 6.4.4, 6.4.5, 7.5.6, Cross-Chapter Box 9 in Chapter 7}

The effectiveness of decision-making and governance is enhanced by the involvement of local
stakeholders (particularly those most vulnerable to climate change including indigenous peoples
and local communities, women, and the poor and marginalised) in the selection, evaluation,
implementation and monitoring of policy instruments for land-based climate change adaptation and
mitigation (high confidence). Integration across sectors and scales increases the chance of maximising
co-benefits and minimising trade-offs (medium confidence). {1.4, 3.1, 3.6, 3.7, 4.8, 4.9, 5.1.3, Box 5.1,
7.4, 7.6}
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Summary for Policymakers

Successful implementation of sustainable land management practices requires accounting for local environmental and socio-
economic conditions (very high confidence). Sustainable land management in the context of climate change is typically
advanced by involving all relevant stakeholders in identifying land-use pressures and impacts (such as biodiversity decline,
soil loss, over-extraction of groundwater, habitat loss, land-use change in agriculture, food production and forestry) as well as
preventing, reducing and restoring degraded land (medium confidence). {1.4.1,4.1.6, 4.8.7,5.2.5,7.2.4,7.6.2, 7.6.4}

Inclusiveness in the measurement, reporting and verification of the performance of policy instruments can support sustainable
land management (medium confidence). Involving stakeholders in the selection of indicators, collection of climate data,
land modelling and land-use planning, mediates and facilitates integrated landscape planning and choice of policy (medium
confidence). {3.7.5,5.7.4,7.4.1,7.4.4,75.3,7.5.4,7.5.5,7.6.4, 1.6.6}

Agricultural practices that include indigenous and local knowledge can contribute to overcoming the combined challenges of
climate change, food security, biodiversity conservation, and combating desertification and land degradation (high confidence).
Coordinated action across a range of actors including businesses, producers, consumers, land managers and policymakers in
partnership with indigenous peoples and local communities enable conditions for the adoption of response options (high
confidence) {3.1.3,3.6.1,3.6.2,4.8.2,5.5.1,5.6.4,5.7.1,5.7.4,6.2,7.3, 7.4.6, 7.6.4}

Empowering women can bring synergies and co-benefits to household food security and sustainable land management (high
confidence). Due to women's disproportionate vulnerability to climate change impacts, their inclusion in land management
and tenure is constrained. Policies that can address land rights and barriers to women's participation in sustainable land
management include financial transfers to women under the auspices of anti-poverty programmes, spending on health,
education, training and capacity building for women, subsidised credit and program dissemination through existing women'’s
community-based organisations (medium confidence). {1.4.1, 4.8.2, 5.1.3, Cross-Chapter Box 11 in Chapter 7}
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Summary for Policymakers

A. Pathways linking socioeconomic development, mitigation responses and land

Socioeconomic development and land management influence the evolution of the land system including the relative amount of land
allocated to CROPLAND, PASTURE, BIOENERGY CROPLAND, FOREST, and NATURAL LAND. The lines show the median across Integrated
Assessment Models (IAMs) for three alternative shared socioeconomic pathways (SSP1, SSP2 and SSP5 at RCP1.9); shaded areas show
the range across models. Note that pathways illustrate the effects of climate change mitigation but not those of climate change impacts

or adaptation.

A. Sustainability-focused (SSP1)
Sustainability in land management,
agricultural intensification, production
and consumption patterns result in
reduced need for agricultural land,
despite increases in per capita food
consumption. This land can instead

be used for reforestation, afforestation,
and bioenergy.

SSP1 Sustainability-focused
Change in Land from 2010 (Mkm?2)

B. Middle of the road (SSP2)
Societal as well as technological

development follows historical patterns.

Increased demand for land mitigation
options such as bioenergy, reduced
deforestation or afforestation decreases
availability of agricultural land for food,
feed and fibre.

SSP2 Middle of the road
Change in Land from 2010 (Mkm?2)
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C. Resource intensive (SSP5)
Resource-intensive production and
consumption patterns, results in high
baseline emissions. Mitigation focuses
on technological solutions including
substantial bioenergy and BECCS .
Intensification and competing land uses

contribute to declines in agricultural land.

SSP5 Resource intensive
Change in Land from 2010 (Mkm?)
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sspg @aty  mgtEl 20104 0/Z 20104 0/Z 20104 0/Z 20104 0/Z 20104 0|2
i#ZE 2 Apo] Hzf b0/ 2 0] X] X H3f ME HE ZXX] H2}
ot km? ZAx] 2 YOt km? HOF km? SOt km?
HOF km?
20504 RCP1.9 5/5 0.5(-49,1) 2.1(09,5) -1.2(-4.6,-0.3) 3.4(-0.1,94) -4.1(-5.6,-2.5)
L2100 0(-7.3,7.1) 43(15,7.2) -5.2(-7.6,-1.8) 7.5(0.4,158) 6.5(-12.2,-4.8)
20504 RCP2.6 5/5 -0.9(-2.2,1.5) 1.3(0.4,1.9) 1(-47,1) 2.6(-0.1,84) 3(-4,-2.4)
2100 0.2(-35,1.1) 51(1.6,6.3) -3.2(-7.7,-1.8) 6.6(-0.1,10.5) 5.5(-9.9,-4.2)
sSSP 20504 RCP4.5 5/5 0.5(-1,1.7) 0.8(0.5,1.3) 0.1(-3.2,15) 0.6(-0.7,4.2) -24(-33,-09)
w2100 1.8(-1.7,6) 1.9(1.4,37) -2.3(-64,-1.6) 39(0.2,88) -4.6(-7.3,-2.7)
2050 4 #jo|~afe! 5/5 0.3(-1.1,1.8) 0.5(0.2,1.4) 0.2(-1.6,1.9) -0.1(-0.8,1.1) -1.5(-2.9,-0.2)
2100 3.3(-0.3,5.9) 1.8(1.4,24) -1.5(-5.7,-0.9) 0.9(0.3,3) 21(-7,0)
20504 RCP1.9 45 2.2(-7,0.6) 45(21,7) -1.2(-2,03) 34(-09,7) -4.8(-6.2,-0.4)
- 2100 -2.3(-9.6,2.7) 6.6(3.6,11) -2.9(-4,0.1) 6.4(-0.8,9.5) 7.6 (-11.7,-1.3)
20504 RCP2.6 5/5 -3.2(-4.2,0.1) 22(1.7,4.7) 0.6(-1.9,1.9) 1.6(-0.9,4.2) -1.4(-3.7,0.4)
ssp2 2100 -52(-7.2,05) 6.9(2.3,10.8) -1.4(-4,08) 56(-0.9,59) 7.2(-8,05)
2050 RCP4.5 5/5 2.2(-22,0.7) 1.5(0.1,21) 1.2(-0.9,2.7) -0.9(-2.5,29) -0.1(-2.5,1.6)
2100 -34(-47,15) 4.1(04,6.3) 0.7(-2.6,3.1) -0.5(-31,59) 2.8(-53,19)
2050 & Hjoj2af2! 5/5 -1.5(-2.6,-0.2) 0.7(0,15) 1.3(1,2.7) -1.3(-2.5,-0.4) -0.1(-1.2,1.6)
2100 2.1(-59,0.3) 1.2(0.1,24) 1.9(0.8,28) 1.3(-2.7,-0.2) -0.2(-1.9,2.1)
20504 RCP1.9 EItE ZE£ Do HHETIS = = = =
2100 - - - -
20504 RCP2.6 E7/E ZE 20N HHETIS = = = =
SSP3 2100 _ _ _ _
20504 RCP4.5 3/3 3.4(-4.4,-2) 1.3(1.3,2) 23(1.2,3) 2.4(-4,-1) 2.1(-0.1,38)
w2100 6.2(-68,-54) 46(1.5,7.1) 34(1.9,45) -3.1(-55,-0.3) 2(-25,4.4)
20504 #joj~2p2! 4 -3(-4.6,-1.7) 1(0.2,1.5) 25(1.5,3) 2.5(-4,-1.5) 24(06,38)
- 2100 5(-7.1,-4.2) 1.1(0.9,25) 51(3.8,6.1) -5.3(-6,-2.6) 3.4(0.9,64)
2050 RCP1.9 Z7lEl BE ZHoj NHEIHE - - - i
- 2100 - - - -
2050 RCP2.6 33 4.5(-6,-2.1) 3.3(1.5,4.5) 0.5(-0.1,0.9) 0.7(-0.3,22) -0.6(-0.7,0.1)
sspa - 2100 -5.8(-10.2,-4.7) 25(2.3,152) -0.8(-0.8,1.8) 1.4(-1.7,4.1) -1.2(-25,-0.2)
2050 RCP4.5 3/3 2.7(-4.4,-04) 1.7(1,19) 1.1(-0.1,1.7) -1.8(-2.3,2.1) 0.8(-0.5,1.5)
- 2100 -2.8(-7.8,-2) 2.7(2.3,4.7) 1.1(0.2,1.2) 0.7(-26,1) 1.4(-1,1.8)
2050 1 HjojA2p2! 33 -2.8(-2.9,-0.2) 1.1(0.7,2) 1.1(0.7,1.8) -1.8(-2.3,-1) 1.5(-0.5,2.1)
= 2100 24(-5,-1) 1.7(1.4,26) 1.2(1.2,19) 24(-25,-2) 1.3(-1,4.4)
20504 RCP1.9 2/4 -1.5(-3.9,09) 6.7(6.2,7.2) -1.9(-35,-0.4) 3.1(-01,63) 6.4(-7.7,-5.1)
©2100 0.5(-4.2,32) 76(7.2,8) 34(-62,-05) 47(0.1,9.4) -85(-10.7,-6.2)
20504 RCP2.6 44 -34(-69,0.3) 4.8(38,5.1) 21(4,1) 3.9(-01,67) 4.4(-5,0.2)
SsPs ©2100 4.3(-84,05) 91(77,92) -3.3(-6.5,-0.5) 39(-0.1,93) 6.3(-9.1,-1.4)
20504 RCP4.5 44 -25(-37,0.2) 1.7(0.6,29) 0.6(-33,1.9) -0.1(-1.7,6) -1.2(-26,23)
©2100 -4.1(-4.6,0.7) 48(2,8) 1(-55,1) -0.2(-14,9.1) 3(-52,2.1)
2050 4 Hjojrafol Y4 -0.6(-3.8,0.4) 0.8(0,21) 1.5(-0.7,3.3) -1.9(-34,0.5) -0.1(-1.5,2.9)
2100 0.2(-2.4,18) 1(0.2,23) 1(-2,25) 2.1(-34,1.1) 0.4(-24,28)
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B. Land use and land cover change in the SSPs

SSP1

SSP2

SSP3

SSP4

SSP5

Quantitative indicators

for the SSPs

RCP1.9in 2050
L 2100
RCP2.6in 2050
L. 2100

RCP4.5 in 2050
L 2100
Baseline in 2050
L 2100

RCP1.9 in 2050
= 2100

RCP2.6 in 2050
L 2100
RCP4.5in 2050
L 2100
Baseline in 2050
= 2100

RCP1.9 in 2050
= 2100

RCP2.6 in 2050
L. 2100

RCP4.5 in 2050
L 2100
Baseline in 2050
= 2100

RCP1.9in 2050
= 2100

RCP2.6 in 2050
L. 2100

RCP4.5 in 2050
L 2100
Baseline in 2050
= 2100

RCP1.9 in 2050
- 2100

RCP2.6 in 2050
L. 2100

RCP4.5 in 2050
- 2100
Baseline in 2050
- 2100

Count of
models
included™
5/5
5/5

5/5

5/5

4/5

5/5

5/5

5/5

3/3

444

3/3

3/3

3/3

2/4

44

4/4

444

Change in Natural

Change in Bioenergy

Land from 2010 Cropland from 2010
Mkm? Mkm?
0.5(-49,1) 2.1(0.9, 5)

0(-7.3,71) 43 (1.5, 72)
0.9 (-2.2, 1.5) 1.3 (04, 19)

0.2 (3.5, 1.1) 51(1.6,63)

0.5 (-1, 1.7) 0.8 (0.5, 1.3)

1.8 (-1.7, 6) 1.9 (1.4, 3.7)

0.3 (-1.1, 1.8) 0.5 (02, 1.4)
33 (-0.3, 59) 1.8 (1.4, 2.4)

22 (-7,06) 45(21,7)
2.3 (-9.6, 2.7) 6.6 (3.6, 11)
32 (-42,01) 22 (17, 4.7)
52 (-7.2, 0.5) 6.9 (2.3, 10.8)
22 (-2.2,07) 15(0.1,21)
3.4 (4.7, 15) 41(04,63)
-1.5 (-2.6, -0.2) 0.7 (0, 1.5)
2.1 (-5.9, 0.3) 12 (01, 24)

Infeasible in all assessed models -
Infeasible in all assessed models -

-34 (44, -2) 13 (13, 2)
6.2 (-6.8, -5.4) 46 (1.5,71)

3 (-46, -1.7) 1(0.2,1.5)

-5 (-71,-4.2) 1.1(0.9, 2.5)

Infeasible in all assessed models™* -

-4.5 (-6, -2.1) 33 (1.5, 45)
-5.8 (-10.2, -4.7) 25(23, 152)
-2.7 (4.4, -0.4) 1.7 (1, 1.9)

28 (-7.8, -2) 27(23,4.7)
-2.8 (-2.9, -0.2) 11(0.7,2)

2.4 (-5, -1) 1.7 (1.4, 2.6)
-1.5 (-39, 0.9) 6.7(62,72)
-0.5(-4.2,32) 76 (7.2, 8)
3.4 (-6.9, 0.3) 4.8 (3.8, 51)
4.3 (-84, 05) 9.1(7.7,92)
-2.5(-37,02) 1.7 (0.6, 2.9)
4.1 (4.6, 0.7) 48(2,8)
0.6 (3.8, 0.4) 0.8 (0, 2.1)
0.2 (-2.4, 1.8) 1(02,23)

Change in Cropland
from 2010
Mkm?

-1.2 (46, -0.3)
52 (-7.6, -1.8)
-1(-47,1)
3.2 (-7.7, -1.8)
0.1(-32,15)
-2.3(-6.4, -1.6)
0.2 (-1.6, 1.9)
-1.5 (-5.7, -0.9)

1.2 (-2, 03)
2.9 (-4, 0.1)
0.6 (-1.9, 1.9)
1.4 (-4, 0.8)
12 (09, 2.7)
0.7 (-2.6, 3.1)
13(1,27)
19 (0.8, 2.8)

23(12,3)
34 (19, 45)
25(15,3)
5.1 (3.8, 61)

05(-0.1,09)
0.8 (-0.8, 1.8)
11(-01,17)
11(02,1.2)
11(0.7, 1.8)
12 (12, 1.9)

-1.9 (-3.5, -0.4)
3.4 (-6.2, -0.5)
21 (-4, 1)
3.3 (-65, -0.5)
0.6 (3.3, 1.9)
1(-55,1)
15 (-0.7, 3.3)
1(-2,25)

Summary for Policymakers

Change in Forest

Change in Pasture

from 2010 from 2010
Mkm? Mkm?2

34 (-01,94) 4.1 (-56, -2.5)
7.5 (0.4, 15.8) 6.5 (-12.2, -4.8)
26 (-0.1, 84) -3(-4,-24)
6.6 (-0.1, 10.5) -5.5(-9.9, -4.2)
0.6 (-0.7, 4.2) -2.4 (-33, -0.9)
39(0.2, 88) 4.6 (-7.3, -2.7)
-0.1(-0.8, 1.1) -1.5 (-2.9, -0.2)
0.9 (0.3, 3) 21(-7,0)
3.4(-09,7) 4.8 (-6.2, -0.4)
6.4 (-0.8, 9.5) 7.6 (-11.7, -1.3)
1.6 (-0.9, 4.2) -1.4 (-3.7, 0.4)
56 (-0.9, 59) 7.2 (-8, 0.5)
0.9 (-2.5, 2.9) -0.1(-2.5, 1.6)
-0.5(-3.1, 59) -2.8(-5.3, 1.9)
-1.3 (-2.5, -0.4) -0.1(-1.2, 1.6)
-1.3(-27,-02) -0.2 (-1.9, 2.1)
2.4 (-4,-1) 21 (-0.1, 3.8)
-3.1(-5.5, -0.3) 2(-25,4.4)
2.5 (-4, -1.5) 24 (06, 38)
53 (-6, -2.6) 34 (09, 64)
0.7 (-0.3, 2.2) 0.6 (-0.7, 0.1)
1.4 (-1.7, 4.1) 1.2 (2.5, -0.2)
-1.8(-2.3,21) 0.8 (-0.5, 1.5)
0.7 (-2.6, 1) 14(-1,18)
-1.8(-2.3,-1) 15(-05, 2.1)
2.4 (-25,-2) 1.3 (-1, 4.4)
31(-01,63) 6.4 (-7.7, -5.1)
47 (0.1, 9.4) -85 (-10.7, -6.2)
39(-01,6.7) 4.4 (-5,02)
39(-01,93) 63 (91, -1.4)
0.1 (-1.7, 6) -1.2 (2.6, 2.3)
0.2 (-1.4,9.1) -3(-52,2.1)
-1.9 (-3.4, 0.5) -0.1(-1.5,29)
21 (-34,1.1) -0.4 (-2.4, 2.8)

* Count of models included / Count of models attempted. One model did not provide land data and is excluded from all entries.

** One model could reach RCP1.9 with SSP4, but did not provide land data.
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Summary for Policymakers

Figure SPM.4 | Pathways linking socioeconomic development, mitigation responses and land. Future scenarios provide a framework for understanding the
implications of mitigation and socioeconomics on land. The Shared Socioeconomic Pathways (SSPs) span a range of different socioeconomic assumptions (Box SPM.1).
They are combined with Representative Concentration Pathways (RCPs)*® which imply different levels of mitigation. The changes in cropland, pasture, bioenergy cropland,
forest, and natural land from 2010 are shown. For this Figure, Cropland includes all land in food, feed, and fodder crops, as well as other arable land (cultivated area).
This category includes first generation non-forest bioenergy crops (e.g., corn for ethanol, sugar cane for ethanol, soybeans for biodiesel), but excludes second generation
bioenergy crops. Pasture includes categories of pasture land, not only high-quality rangeland, and is based on FAO definition of ‘permanent meadows and pastures'.
Bioenergy cropland includes land dedicated to second generation energy crops (e.g., switchgrass, miscanthus, fast-growing wood species). Forest includes managed and
unmanaged forest. Natural land includes other grassland, savannah, and shrubland. Panel A: This panel shows integrated assessment model (IAM)*” results for SSP1,
SSP2 and SSP5 at RCP1.9.38 For each pathway, the shaded areas show the range across all IAMs; the line indicates the median across models. For RCP1.9, SSP1, SSP2
and SSP5 results are from five, four and two IAMs respectively. Panel B: Land use and land cover change are indicated for various SSP-RCP combinations, showing
multi-model median and range (min, max). (Box SPM.1) {1.3.2, 2.7.2,6.1,6.4.4,7.4.2,7.4.4,7.4.5,7.4.6,7.4.7,7.4.8,7.5.3,7.5.6, Cross-Chapter Box 1 in Chapter 1,
Cross-Chapter Box 9 in Chapter 6}

3 Representative Concentration Pathways (RCPs) are scenarios that include timeseries of emissions and concentrations of the full suite of greenhouse gases (GHGs)
and aerosols and chemically active gases, as well as land use/land cover.

77 Integrated Assessment Models (IAMs) integrate knowledge from two or more domains into a single framework. In this figure, IAMs are used to assess linkages
between economic, social and technological development and the evolution of the climate system.

38 The RCP1.9 pathways assessed in this report have a 66% chance of limiting warming to 1.5°C in 2100, but some of these pathways overshoot 1.5°C of warming
during the 21st century by >0.1°C.
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Summary for Policymakers

Action in the near-term

Actions can be taken in the near-term, based on existing knowledge, to address desertification, land
degradation and food security while supporting longer-term responses that enable adaptation and
mitigation to climate change. These include actions to build individual and institutional capacity,
accelerate knowledge transfer, enhance technology transfer and deployment, enable financial
mechanisms, implement early warning systems, undertake risk management and address gaps in
implementation and upscaling (high confidence). {3.6.1, 3.6.2, 3.7.2, 4.8, 5.3.3, 5.5, 5.6.4, 5.7, 6.2, 6.4,
7.3, 7.4, 7.6, Cross-Chapter Box 10 in Chapter 7}

Near-term capacity-building, technology transfer and deployment, and enabling financial mechanisms can strengthen
adaptation and mitigation in the land sector. Knowledge and technology transfer can help enhance the sustainable use of
natural resources for food security under a changing climate (medium confidence). Raising awareness, capacity building
and education about sustainable land management practices, agricultural extension and advisory services, and expansion
of access to agricultural services to producers and land users can effectively address land degradation (medium confidence).
{3.1,5.7.4,7.2,7.3.4,7.5.4}

Measuring and monitoring land use change including land degradation and desertification is supported by the expanded use of
new information and communication technologies (cell phone based applications, cloud-based services, ground sensors, drone
imagery), use of climate services, and remotely sensed land and climate information on land resources (medium confidence).
Early warning systems for extreme weather and climate events are critical for protecting lives and property and enhancing
disaster risk reduction and management (high confidence). Seasonal forecasts and early warning systems are critical for
food security (famine) and biodiversity monitoring including pests and diseases and adaptive climate risk management (high
confidence). There are high returns on investments in human and institutional capacities. These investments include access
to observation and early warning systems, and other services derived from in-situ hydro-meteorological and remote sensing-
based monitoring systems and data, field observation, inventory and survey, and expanded use of digital technologies (high
confidence).{1.2,3.6.2,4.2.2,4.2.4,5.3.1,5.3.6,6.4,7.3.4,7.4.3,7.5.4,7.5.5, 7.6.4, Cross-Chapter Box 5 in Chapter 3}

Framing land management in terms of risk management, specific to land, can play an important role in adaptation through
landscape approaches, biological control of outbreaks of pests and diseases, and improving risk sharing and transfer
mechanisms (high confidence). Providing information on climate-related risk can improve the capacity of land managers and
enable timely decision making (high confidence). {5.3.2, 5.3.5, 5.6.2, 5.6.3 5.6.5, 5.7.1, 5.7.2, 7.2.4, Cross-Chapter Box 6 in
Chapter 5}

Sustainable land management can be improved by increasing the availability and accessibility of data and information
relating to the effectiveness, co-benefits and risks of emerging response options and increasing the efficiency of land use
(high confidence). Some response options (e.g., improved soil carbon management) have been implemented only at small-
scale demonstration facilities and knowledge, financial, and institutional gaps and challenges exist with upscaling and the
widespread deployment of these options (medium confidence). {4.8,5.5.1,5.5.2,5.6.1, 5.6.5, 5.7.5, 6.2, 6.4}

Near-term action to address climate change adaptation and mitigation, desertification, land
degradation and food security can bring social, ecological, economic and development co-benefits
(high confidence). Co-benefits can contribute to poverty eradication and more resilient livelihoods
for those who are vulnerable (high confidence). {3.4.2, 5.7, 7.5}

Near-term actions to promote sustainable land management will help reduce land and food-related vulnerabilities, and can
create more resilient livelihoods, reduce land degradation and desertification, and loss of biodiversity (high confidence). There
are synergies between sustainable land management, poverty eradication efforts, access to market, non-market mechanisms
and the elimination of low-productivity practices. Maximising these synergies can lead to adaptation, mitigation, and
development co-benefits through preserving ecosystem functions and services (medium confidence). {3.4.2, 3.6.3, Table 4.2,
4.7,4.9,4.10,5.6,5.7,7.3,7.4,7.5, 7.6, Cross-Chapter Box 12 in Chapter 7}

Investments in land restoration can result in global benefits and in drylands can have benefit-cost ratios of between three

and six in terms of the estimated economic value of restored ecosystem services (medium confidence). Many sustainable
land management technologies and practices are profitable within three to ten years (medium confidence). While they can
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Summary for Policymakers

require upfront investment, actions to ensure sustainable land management can improve crop yields and the economic value
of pasture. Land restoration and rehabilitation measures improve livelihood systems and provide both short-term positive
economic returns and longer-term benefits in terms of climate change adaptation and mitigation, biodiversity and enhanced
ecosystem functions and services (high confidence). {3.6.1, 3.6.3, 4.8.1, 7.2.4, 7.2.3, 7.3.1, 7.4.6, Cross-Chapter Box 10 in
Chapter 7}

Upfront investments in sustainable land management practices and technologies can range from about USD20 ha™ to
USD5000 ha™', with a median estimated to be around USD500 ha~'. Government support and improved access to credit can
help overcome barriers to adoption, especially those faced by poor smallholder farmers (high confidence). Near-term change
to balanced diets (SPM B6.2.) can reduce the pressure on land and provide significant health co-benefits through improving
nutrition (medium confidence). {3.6.3,4.8,5.3,5.5, 5.6, 5.7, 6.4, 7.4.7, 7.5.5, Cross-Chapter Box 9 in Chapter 6}

Rapid reductions in anthropogenic GHG emissions across all sectors following ambitious mitigation
pathways reduce negative impacts of climate change on land ecosystems and food systems (medium
confidence). Delaying climate mitigation and adaptation responses across sectors would lead to
increasingly negative impacts on land and reduce the prospect of sustainable development (medium
confidence). (Box SPM.1, Figure SPM.2) {2.5, 2.7,5.2,6.2,6.4,7.2,7.3.1,7.4.7, 7.4.8, 7.5.6, Cross-Chapter
Box 9 in Chapter 6, Cross-Chapter Box 10 in Chapter 7}

Delayed action across sectors leads to an increasing need for widespread deployment of land-based adaptation and mitigation
options and can result in a decreasing potential for the array of these options in most regions of the world and limit their
current and future effectiveness (high confidence). Acting now may avert or reduce risks and losses, and generate benefits to
society (medium confidence). Prompt action on climate mitigation and adaptation aligned with sustainable land management
and sustainable development depending on the region could reduce the risk to millions of people from climate extremes,
desertification, land degradation and food and livelihood insecurity (high confidence). {1.3.5, 3.4.2,3.5.2, 4.1.6, 4.7.1,4.7.2,
5.2.3,5.3.1,6.3,6.5,7.3.1}

In future scenarios, deferral of GHG emissions reductions implies trade-offs leading to significantly higher costs and risks
associated with rising temperatures (medium confidence). The potential for some response options, such as increasing soil
organic carbon, decreases as climate change intensifies, as soils have reduced capacity to act as sinks for carbon sequestration
at higher temperatures (high confidence). Delays in avoiding or reducing land degradation and promoting positive ecosystem
restoration risk long-term impacts including rapid declines in productivity of agriculture and rangelands, permafrost
degradation and difficulties in peatland rewetting (medium confidence).{1.3.1,3.6.2, 4.8,4.9,4.9.1,5.5.2,6.3,6.4,7.2,7.3;
Cross-Chapter Box 10 in Chapter 7}

Deferral of GHG emissions reductions from all sectors implies trade-offs including irreversible loss in land ecosystem functions
and services required for food, health, habitable settlements and production, leading to increasingly significant economic
impacts on many countries in many regions of the world (high confidence). Delaying action as is assumed in high emissions
scenarios could result in some irreversible impacts on some ecosystems, which in the longer-term has the potential to lead to
substantial additional GHG emissions from ecosystems that would accelerate global warming (medium confidence). {1.3.1,
2.5.3,2.7,3.6.2,4.9,4.10.1,5.4.2.4,6.3,6.4, 7.2, 1.3, Cross-Chapter Box 9 in Chapter 6, Cross-Chapter Box 10 in Chapter 7}
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