Climate Change 2022

Mitigation of Climate Change

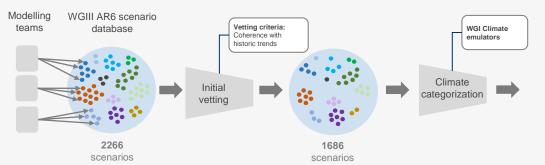
The IPCC TG-Data Webinar and Demonstration on AR6 Scenarios Database event for Latin America

Roberto Schaeffer, Chapter 3 CLA

17 April 2023

Chapter 3: Mitigation Pathways Compatible with Long-term Goals

What does this Chapter can tell us about the AR6 Scenarios Database?


Working Group III – Mitigation of Climate Change

IPCC
INTERGOVERNMENTAL PANEL ON Climate change

WGIII scenario collection, vetting and assessment

Table SPM1

p50 (p5-p95) ^(lt)	Global Mean Surface Air Temperature change			HG omissio St CO _y -og)		GHG emissions reductions from 2019 % ⁽²⁾			Emissions milestones (A.1)				Cumulative CO ₂ emissions Gt CO ₂ ⁽⁶⁾		Cumulative net- negative CO ₂ emissions Gt CO ₂	chang	Temperature change 50% probability (***) **C		
Category (*. i. i. 4) [If pathways]	Category description	WG1 SSP & IPs alignment	2030	2040	2050	2030	2040	2050	Peak CO ₂ emissions	Peak GHG emissions	net-zero CO; [% net-zero pathwaya]	net-zero GHGs ^(h) [% net-zero pathwaye]	2020 to netzero CO ₃	2020-2100	year of net-zero CO ₂ to 2100	at peak warming			
C1 1971	Berow 1.5°C with no or stricted overshoot	55, LD Next, 3373-3.9	31 (21-36)	17 (6-23)	9 (1-15)	43 (34-60)	69 (58-90)	84 (73-98)	2029-2025 [100%] (2020-2025)	2020-2025 [100%] (2020-2025)	2050-2055 [100%] (2015-2070]	2095-2300 [52%] (2050)	530 (330-710)	320 (-210-570)	-200 (-580-0)	1.6 (1.3-1.6)	1.3 i) (0.8-1.5		
C2 pun	Second LPC with high prevention	, hegy	42 (31-55)	25 (16-34)	14 (5-21)	23 (0-44)	55 (40-71)	75 (62-91)	2020-2025 [100%] (2020-2090]	2020-2025 [100%] (2020-2030)	2055-2060 [100%] (2045-2070)	2070-2075 [87%] (2055)	720 (540-930)	400 (-90-620)	-330 (-62030)	1.7 (1.4-1.8)	1.4		
СЗ гич	Districted on 2°C	1992.6	44 (32-55)	29 (20-36)	20 (13-26)	21 (1-42)	46 (34-63)	64 (53-77)	2020-2025 [100%] {2020-2030}	2020-2025 [100%] (2020-2030)	2070-2075 [9176] (2060)	[10%) (2075)	890 (640-1160)	800 (500-1340)	-40 (-280-0)	1.7 (1.4-1.8)	1.6 9 (1.1-1.1		
СЗа (204)	Immediate action		40 (20-49)	29 (21-36)	20 (13-26)	27 (13-45)	47 (35-63)	63 (52-76)	2020-2025 [100%] (2020-2025)	2020-2025 [100%] (2020-2025)	2075-2080 [88%] (2060)	(2000)	860 (640-1180)	790 (400-1150)	-10 (-280-0)	1.7 (1.4-1.0)	1.6		
C3b pm	NOCA		52 (47-55)	29 (20-16)	18 (10-25)	5 (0-14)	46 (34-63)	68 (56-82)	2020-2025 [100%] (2020-2010)	2020-2025 (100%) (2020-2030)	2063-2070 [96%] (2060-2100)	[4254] (2075)	900 (720-1150)	800 (560-1050)	-70 (-300-0)	1.8	1.6 (1.1-1.		
C4 1959	Selve 2%		50 (41-56)	38 (28-43)	28 (19-35)	10 (0-27)	31 (20-50)	49 (35-65)	2020-2025 [100%] (2020-2090)	2020-2025 [100%] (2020-2030)	2075-2080 [86%] [2065]	(2075)	1210 (970-1500)	1160 (700-1490)	-30 (-390-0)	1.9 (1.5-2.0)	1.8		
C5 (212)	below 2.5°C		52 (46-56)	45 (36-52)	39 (30-49)	6 (-1-18)	18 (4-33)	29 (11-48)	2020-2025 [100%] (2020-2025)	2020-2025 (100%) (2020-2035)	[40%] (2075}	[12%] (2090)	1790 (1400-2360)	1780 (1260-2360)	0 (-140-0)	2.2 (1.6-2.5)	2.1) (1.5-2.5		
C6 pm	Selow I'C	85F2-6.5 Mod-Act	54 (50-62)	53 (48-61)	52 (45-57)	2 (-10-11)	3 (-14-14)	5 (-2-18)	2030-2035 (96%) (2020-2085)	2030-2035 [90%] (2020-2085)	[0%]	(one)	2790 (2440-3520)	2790 (2440-3520)	(0-0)	(2.0-2.9)	2.7		
C7 (184)	Below I'C	85P3-7.9 Current	62 (53-69)	67 (36-70)	70 (58-63)	-11 (-18-1)	-19 (-31-0)	-24 (-412)	2070-2075 [36%] (2025-2095]	2070-2075 [56%] (2025-2095)	[0%]		4220 (3160-5000)	4220 (3260-5000)	0 (0-0)	3.5 (2.5-3.9)	3.5 (2.5-3.		
C8 1291	Above 4%	19545	71 (68-80)	79 (77-96)	87 (82-112)	-20 (-3417)	-35 (-66-29)	-46 (-92-36)	2080-2085 [89%]	2080-2085 [89%] (2080-2095)	(0%)	()	5600 (4910-7450)	5600 (4910-7450)	0 (0-0)	4.2	4.2		

190 Models (91+ modeling families)

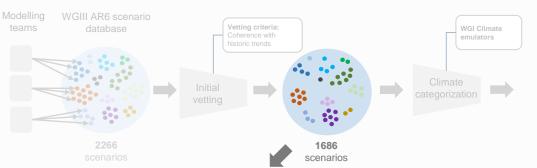
- √ 98 globally comprehensive
- √ 71 national or multi-regional
- √ 20 sectoral models

Scenarios

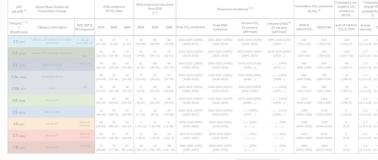
- √ 3131 submitted scenarios
- ✓ 2266 with sufficient information for climate assessment
- √ 1686 scenarios passed the vetting

Table 3.1 | Classification of emissions scenarios into warming levels using MAGICC

Category	Description	WGI SSP	WGIII IP/IMP	Scenarios
C1: Limit warming to 1.5°C (>50%) with no or limited overshoot	Reach or exceed 1.5°C during the 21st century with a likelihood of ≤67%, and limit warming to 1.5°C in 2100 with a likelihood >50%. Limited overshoot refers to exceeding 1.5°C by up to about 0.1°C and for up to several decades.	SSP1-1.9	IMP-SP, IMP-LD, IMP-Ren	97
C2: Return warming to 1.5°C (>50%) after a high overshoot	Exceed warming of 1.5°C during the 21st century with a likelihood of >67%, and limit warming to 1.5°C in 2100 with a likelihood of >50%. High overshoot refers to temporarily exceeding 1.5°C global warming by 0.1°C–0.3°C for up to several decades.		IMP-Neg ^a	133
C3: Limit warming to 2°C (>67%)	Limit peak warming to 2°C throughout the 21st century with a likelihood of >67%.	SSP1-2.6	IMP-GS	311
C4: Limit warming to 2°C (>50%)	Limit peak warming to 2°C throughout the 21st century with a likelihood of >50%.			159
C5: Limit warming to 2.5°C (>50%)	Limit peak warming to 2.5°C throughout the 21st century with a likelihood of >50%.			212
C6: Limit warming to 3°C (>50%)	Limit peak warming to 3°C throughout the 21st century with a likelihood of >50%.	SSP2-4.5	ModAct	97
C7: Limit warming to 4°C (>50%)	Limit peak warming to 4°C throughout the 21st century with a likelihood of >50%.	SSP3-7.0	CurPol	164
C8: Exceed warming of 4°C (≥50%)	Exceed warming of 4°C during the 21st century with a likelihood of ≥50%.	SSP5-8.5		29
C1, C2, C3: limit warming to 2°C (>67%) or lower	All scenarios in Categories C1, C2 and C3			541


Working Group III – Mitigation of Climate Change

IPCC
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE



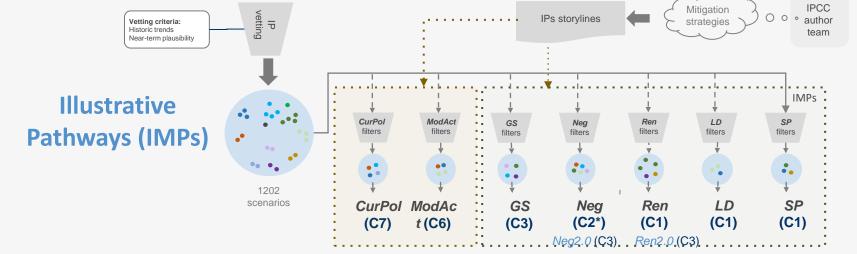


Table SPM1

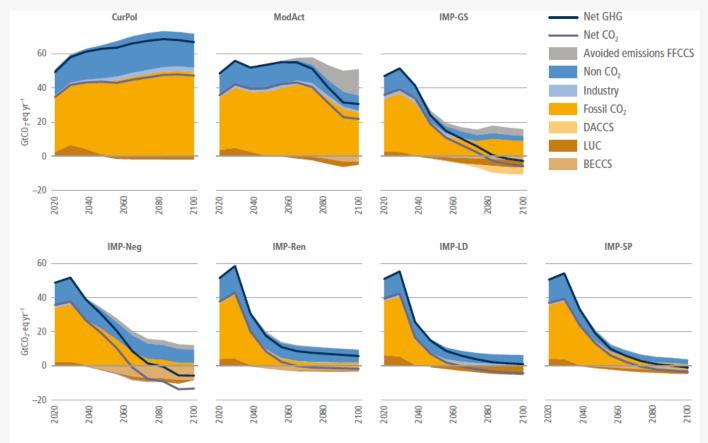


Figure 3.7 | The residual fossil fuel and industry emissions, carbon dioxide removal (CDR) {LUC, DACCS, BECCS}, and non-CO₂ emissions (using AR6 GWP-100) for each of the seven illustrative pathways (IPs). Fossil CCS is also shown, though this does not lead to emissions to the atmosphere (Section 3.2.5).

Working Group III – Mitigation of Climate Change

IPCC
INTERGOVERNMENTAL PANEL ON Climate change

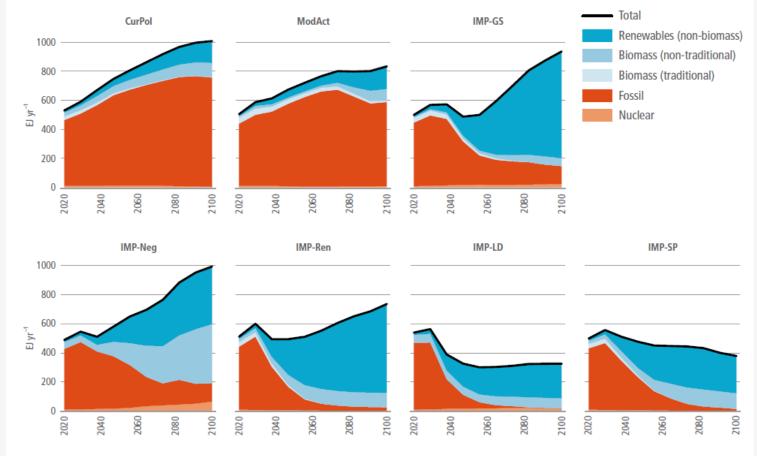


Figure 3.8 | The energy system in each of the illustrative pathways (IPs).

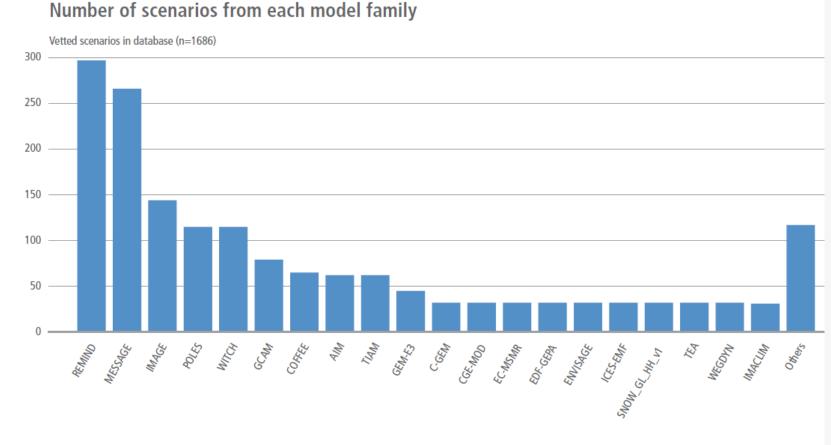
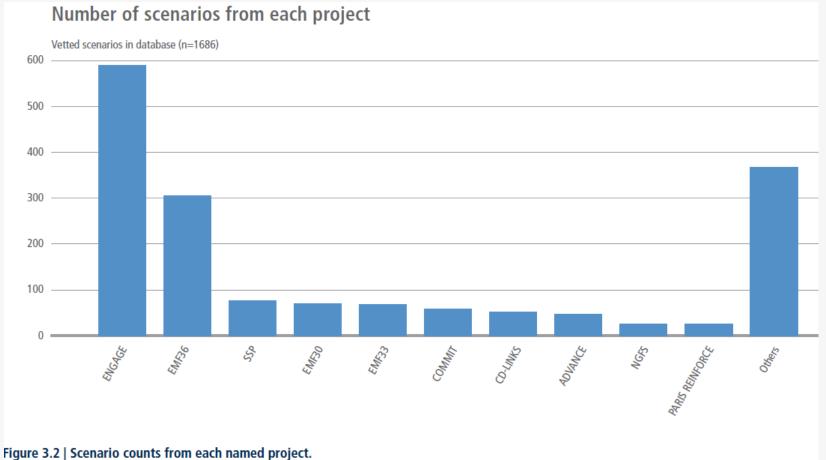



Figure 3.1 | Scenario counts from each model family defined as all versions under the same model's name.

Working Group III – Mitigation of Climate Change

Number of scenarios in each climate category

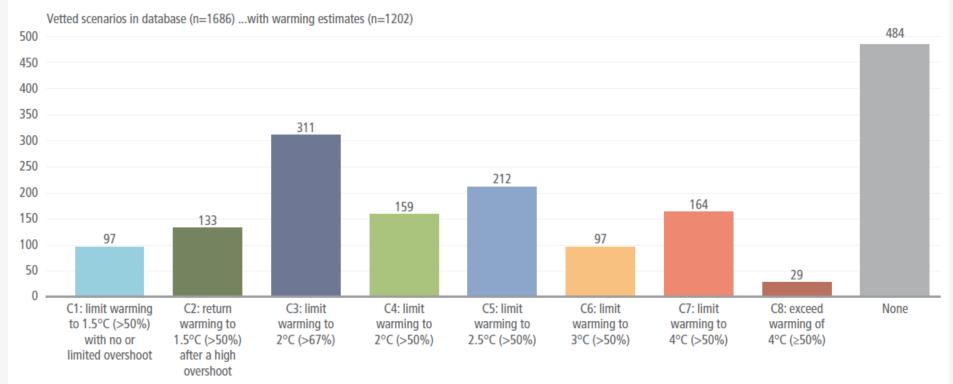


Figure 3.3 | Of the 1686 scenarios that passed vetting, 1202 had sufficient data available to be classified according to temperature, with an uneven distribution across warming levels.

Working Group III – Mitigation of Climate Change

IPCC
INTERGOVERNMENTAL PANEL ON Climate change

Scenario categories

GHG emissions

Emissions milestones

Cumulative emissions

Temperature outcomes

p50 (p5-p95) ⁽⁰⁾	199		7.5	GHG emissions Gt CO ₂ -eq/yr			from 2019 % (5)		Emissions milestones ^(6,7)				Cumulative CO ₂ emissions Gt CO ₂ ⁽⁹⁾		Cumulative net- negative CO ₂ emissions Gt CO ₂	Temperature change 50% probability (10) °C		Likelihood of staying below (%) (*1)		
Category (1, 2, 3, 4) [# pathways]	Category description	WG1 SSP & IPs alignment	2030	2040	2050	2030	2040	2050	Peak CO ₂ emissions	Peak GHG emissions	net-zero CO ₂ [% net-zero pathways]	net-zero GHGs ⁽⁸⁾ [% net-zero pathways]	2020 to netzero CO ₂	2020-2100	year of net-zero CO ₂ to 2100	at peak warming	2100	<1.5°C	<2.0°C	<3.0°C
C1 [97]	Below 1.5°C with no or limited overshoot	SP, LD Ren, SSP1-1.9	31 (21-36)	17 (6-23)	9 (1-15)	43 (34-60)	69 (58-90)	84 (73-98)	2020-2025 [100%] (2020-2025)	2020-2025 [100%] (2020-2025)	2050-2055 [100%] (2035-2070)	2095-2100 [52%] (2050)	510 (330-710)	320 (-210-570)	-200 (-560-0)	1.6 (1.3-1.6)	1.3 (0.8-1.5)	38 (33-73)	90 (86-98)	100 (99-100)
C2 [133]	Below 1.5°C with high overshoot	Neg	42 (31-55)	25 (16-34)	14 (5-21)	23 (0-44)	55 (40-71)	75 (62-91)	2020-2025 [100%] (2020-2030)	2020-2025 [100%] (2020-2030)	2055-2060 [100%] (2045-2070)	2070-2075 [87%] (2055)	720 (540-930)	400 (-90-620)	-330 (-62030)	1.7 (1.4-1.8)	1.4 (0.8-1.5)	24 (15-58)	82 (71-95)	100 (99-100)
СЗ (з11)	Likely below 2°C	SSP2-2.6	44 (32-55)	29 (20-36)	20 (13-26)	21 (1-42)	46 (34-63)	64 (53-77)	2020-2025 [100%] (2020-2030)	2020-2025 [100%] (2020-2030)	2070-2075 [91%] (2060)	[30%] (2075)	890 (640-1160)	800 (500-1140)	-40 (-280-0)	1.7 (1.4-1.8)	1.6 (1.1-1.8)	20 (13-66)	76 (68-97)	99 (98-100)
C3a [204]	Immediate action		40 (30-49)	29 (21-36)	20 (13-26)	27 (13-45)	47 (35-63)	63 (52-76)	2020-2025 [100%] (2020-2025)	2020-2025 [100%] (2020-2025)	2075-2080 [88%] (2060)	[24%] (2080)	860 (640-1180)	790 (480-1150)	-10 (-280-0)	1.7 (1.4-1.8)	1.6 (1.1-1.8)	21 (14-70)	78 (69-97)	100 (98-100)
C3b [97]	NDCs	GS	52 (47-55)	29 (20-36)	18 (10-25)	5 (0-14)	46 (34-63)	68 (56-82)	2020-2025 [100%] (2020-2030)	2020-2025 [100%] (2020-2030)	2065-2070 [96%] (2060-2100)	[42%] (2075)	910 (720-1150)	800 (560-1050)	-70 (-300-0)	1.8 (1.4-1.8)	1.6 (1.1-1.7)	17 (12-61)	73 (67-96)	99 (98-99)
C4 [159]	Below 2°C		50 (41-56)	38 (28-43)	28 (19-35)	10 (0-27)	31 (20-50)	49 (35-65)	2020-2025 [100%] (2020-2030)	2020-2025 [100%] (2020-2030)	2075-2080 [86%] (2065)	[31%] (2075)	1210 (970-1500)	1160 (700-1490)	-30 (-390-0)	1.9 (1.5-2.0)	1.8 (1.2-2.0)	11 (7-50)	59 (50-93)	98 (95-99)
C5 [212]	Below 2.5°C		52 (46-56)	45 (36-52)	39 (30-49)	6 (-1-18)	18 (4-33)	29 (11-48)	2020-2025 [100%] (2020-2035)	2020-2025 [100%] (2020-2035)	[40%] (2075)	[11%] (2090)	1780 (1400-2360)	1780 (1260-2360)	0 (-140-0)	2.2 (1.6-2.5)	2.1 (1.5-2.5)	4 (0-28)	37 (18-84)	91 (83-99)
C6 [97]	Below 3°C	SSP2-4.5 Mod-Act	54 (50-62)	53 (48-61)	52 (45-57)	2 (-10-11)	3 (-14-14)	5 (-2-18)	2030-2035 [96%] (2020-2085)	2030-2035 [96%] (2020-2085)	[0%] ()	[0%] ()	2790 (2440-3520)	2790 (2440-3520)	0 (0-0)	2.7 (2.0-2.9)	2.7 (2.0-2.9)	0 (0-2)	8 (2-45)	71 (53-96)
C7 [164]	Below 4°C	SSP3-7.0 Cur-Pol	62 (53-69)	67 (56-76)	70 (58-83)	-11 (-18-3)	-19 (-31-0)	-24 (-412)	2070-2075 [56%] (2025-2095)	2070-2075 [56%] (2025-2095)	[0%] ()	[0%] ()	4220 (3160-5000)	4220 (3160-5000)	0 (0-0)	3.5 (2.5-3.9)	3.5 (2.5-3.9)	0 (0-0)	0 (0-5)	22 (7-80)
C8 [29]	Above 4°C	SSP5-8.5	71 (68-80)	79 (77-96)	87 (82-112)	-20 (-3417)	-35 (-6629)	-46 (-9236)	2080-2085 [89%] (2060-2095)	2080-2085 [89%] (2060-2095)	[0%] ()	[0%] ()	5600 (4910-7450)	5600 (4910-7450)	0 (0-0)	4.2 (3.3-5.0)	4.2 (3.3-5.0)	0 (0-0)	0 (0-0)	4 (0-27)

Table SPM 1

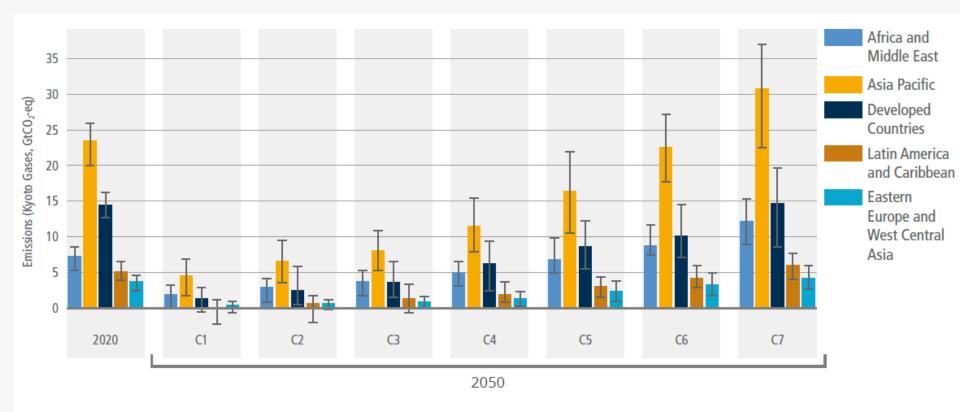
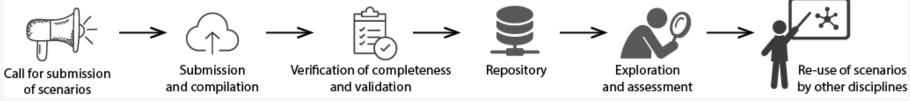



Figure 3.17¹¹ | Emissions by region (including 5–95th percentile range). Source: AR6 Scenarios Database.

3131 scenarios 1799 variables 220 million datapoints 188 models from 50+ model teams

D. Huppmann et al. (2018). doi: 10.1038/s41558-018-0317-4

Thank You

Roberto Schaeffer (COPPE/UFRJ)

roberto@ppe.ufrj.br