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Supplementary Material 4.B 1 

Table 4.B Select adaptation options with mitigation synergies and trade-offs identified 2 

Option Synergies Trade-offs 

Power 

infrastructure 

resilience 

Some options can help improve system 

efficiency 
 

Renewable 

energy 

Besides reducing emissions, renewable 

energy can provide electricity and income 

and livelihood means to rural populations, 

improving their adaptive capacity (Ley, 

2017). 

 

Options such as aquavoltaics (use of solar 

photovoltaic energy over water surfaces) has 

synergies for electricity generation and 

aquaculture (Pringle et al., 2017). 

Without adequate consultation of Indigenous 

communities, large-scale mitigation projects and 

payments for ecosystem services can substantially 

disrupt social and environmental systems on a 

local level, with negative implications for 

Indigenous communities and community adaptive 

capacity (Dunlap, 2017; Ingty, 2017; Rodríguez-

de-Francisco and Boelens, 2016). 

 

Without appropriate use of safety and quality 

codes and standards, renewable energy projects 

can increase vulnerability of populations they 

serve, especially in rural areas (Ley, 2017). 

Indigenous 

knowledge 

Revitalization of traditional management of 

agriculture may simultaneously increase 

resilience, improve biodiversity, and reduce 

emissions by eliminating agrochemical 

inputs production to food production (Altieri 

and Nicholls, 2017; Niggli et al., 2009; 

Nyong et al., 2007).  

 

Recognizing and supporting Indigenous 

management of blue carbon habitats 

(Vierros, 2017) and grasslands (Dong, 2017; 

Russell-Smith et al., 2017), and utilizing 

new technologies to revitalize traditional 

forms of energy provision (Thornton and 

Comberti, 2017), can provide mitigation and 

adaptation benefits.  

 

Ecosystem 

restoration 

and avoided 

deforestation 

Can be coupled with biodiversity and 

conservation interventions to complement 

habitat provision (Felton et al., 2016) 

 

Forests (through REDD+) can support 

'economies dependent on climate-sensitive 

sectors including agriculture, fisheries, and 

energy (Few et al., 2017; Somorin et al., 

2016). 

Potential conflict with biodiversity goals in 

habitat restoration and forest production efforts 

(Felton et al., 2016) 

 

Some projects world-wide don't target REDD+ 

projects on adaptation or resilience, nor local 

contexts, in some cases leaving negative 

livelihoods impacts (Few et al., 2017; McElwee et 

al., 2016). 

 

In some cases, there is a perception of the 

inability to reconcile development and 

environmental interests (Pham et al., 2017). 

Sustainable 

Land-use 

and Urban 

planning 

Potential for synergies in urban planning at 

policy, organizational, and practical levels 

(e.g. urban regeneration or retrofitting 

policies, urban greening) (Landauer et al., 

2015).  

Spatial planning plays a central role in 

adaptation, mitigation, and sustainable 

development (Davidse et al., 2015; 

Potential conflicts including the promotion of 

urban densification to reduce emissions which 

can intensify heat island effect and increase 

surface run-off (Di Gregorio et al., 2017; Endo et 

al., 2017; Landauer et al., 2015). 



Second Order Draft Chapter 4 IPCC SR1.5 
 

Do Not Cite, Quote or Distribute 4-2 Total pages: 6 

Francesch-Huidobro et al., 2017; Hurlimann 

and March, 2012; King et al., 2016). 

Through the use of integrated approaches 

there is potential synergy in land use 

planning (e.g. maintenance of urban forests, 

urban greening). 

Sustainable 

water use 

Strong co-benefits to the implementation of 

demand-side management measures, such as 

reducing leakages and water loss (Deng and 

Zhao, 2015; Wang et al., 2011), while 

minimizing the need to address the 

environmental and energy implications of 

supply measures such as desalination 

(Miller et al., 2015) 

Increasing water quality is linked to increasing 

energy use in the water sector (Mamais et al., 

2015; Rothausen and Conway, 2011),  

 

Increased biofuel production may strain water 

resources as consumption is dependent on the 

type of biofuel used (Hammond and Li, 2016).  

 

Some renewable energy technologies, carbon 

capture and storage (CCS), and concentrating 

solar power (CSP) technologies, have substantial 

water demand associated with their operation 

(Fricko et al., 2016). 

Green 

infrastructure 

and 

ecosystem 

services 

In urban gardens and parks, cover crops can 

be used to reduce erosion and improve soil 

health and adaptive management of 

precipitation and temperature change (Kaye 

and Quemada, 2017) 

 

Urban canopy is a cooling mechanism that 

can help decrease heat and water stress 

(Hines, 2017) 

Not considering the role vegetation has within the 

heat-water-vegetation nexus can worsen heat and 

water stress (Hines, 2017) 

Sustainable 

and resilient 

transport 

systems 

Some evidence suggests cities are re-

urbanizing in ways that coordinate transport 

sector adaptation and mitigation (Gota et al., 

2017; Newman et al., 2017; Salvo et al., 

2017).  

 

Cities that reduce the use of private cars, 

and develop sustainable transport systems 

can simultaneously benefit from reduced air 

pollution, congestion and road fatalities 

while reducing overall energy intensity in 

the urban transport sector (Goodwin and 

Van Dender, 2013; Newman and 

Kenworthy, 2015; Wee, 2015).  

In middle and low income countries urban density 

of informal settlements is typically associated 

with a range of water and vector-borne health 

risks that undermine adaptive capacity and the 

benefits of energy efficiency, may provide a 

notable exception to the adaptive advantages of 

urban density (Lilford et al., 2017; Mitlin and 

Satterthwaite, 2013) unless new approaches using 

leapfrog technology are used to upgrade slums in 

situ (Teferi and Newman, 2017). 

Built 

environment 

Building codes can play a critical role to 

reduce carbon emissions and make the built 

environment more resilient to climate 

impacts 

Codes and standards that aren't applied correctly 

can increase vulnerability 

Energy use 

in industry 

Some options can help improve system 

efficiency 
 

Disaster risk 

management 

Incorporating environmental considerations 

into recovery decision-making (Amin 

Hosseini et al., 2016), implementing disaster 

risk management plans and increasing ex-

ante resilience to disasters are important 

opportunities to reduce the extent of 

rebuilding following disasters, and the 

emissions associated with recovery. 

 

Post-disaster recovery can be an opportunity 

to rebuild in a more resilient and sustainable 

The urgency of recovery and the surge in demand 

for construction materials have been observed to 

promote unsustainable behaviours, including 

deforestation (Chang et al., 2010; Nazara and 

Resosudarmo, 2007) or uncontrolled extraction of 

sand and gravel (Abrahams, 2014). 

 

‘Building back better’ requires capacity, time, and 

mechanisms for balancing competing desires and 

perspectives that are not necessarily available 

after severe disasters, and may be challenged by 
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way, or to “build back better”, particularly 

where immediate impact is substantial but 

not overwhelming (Guarnacci, 2012; 

Mochizuki and Chang, 2017). 

both local and external influences in the 

rebuilding process (Abrahams, 2014; O’Hare et 

al., 2016; Paidakaki and Moulaert, 2017) 

 

The pre-disaster phase, disaster risk management 

measures may negatively impact local 

ecosystems; for instance, hard stabilization of 

coastlines using sea walls or other barriers may 

further degrade ecosystems already vulnerable to 

change (Dugan et al., 2017; Finkbeiner et al., 

2017). 

Finance - 

insurance 

Where mitigation measures act to reduce 

health and property risks, there may be 

important synergies between adaptation and 

mitigation in insurance.  

In response to the substantial risk posed to 

the insurance industry by climate change 

(Bank of England, 2015; Glaas et al., 2017), 

insurance companies are mobilizing their 

role as investment manager to promote 

climate mitigation; for example, in 2014, 

insurance companies pledged to invest USD 

420 billion over five years in renewable 

energy, energy efficiency, and sustainable 

agriculture projects (Fabian, 2015; Webster 

and Clarke, 2017). 

Insurance companies only cover a particular 

subset of climatic risks and are ineffective at 

considering slow-onset and/or irreversible 

changes.  

 

Suggestion of some risk that is “beyond 

adaptation” (Linnerooth-Bayer and Hochrainer-

Stigler, 2015); given that these risks are not well 

incorporated into insurance schemes, an 

overreliance on pricing mechanisms to motivate 

mitigation action could result in sub-optimal 

levels of mitigation. 

Social safety 

nets 

 

Public work programmes structured to 

address climate risks, for instance, 

Ethiopia’s Productive Safety Net 

Programme has been used to employ locals 

suffering from food insecurity to work on 

water-shed management interventions, 

sequestering carbon in the soil and reducing 

greenhouse gas emissions (Jirka et al., 

2015).  

 

Increase in income supports the adaptive 

capacity of households to weather climate 

risks, and has been shown to improve food 

consumption at household-level, and for 

children (Debela et al., 2015; Mohamed, 

2017).   

Where cash transfers are unconstrained, limited 

increases in purchasing power can prompt 

families to invest in additional consumption, 

transport, or agricultural equipment as part of a 

general risk reduction strategy (Lemos et al., 

2016; Nelson et al., 2016);  

 

Aggregated, these individual investments could 

lead to increased emissions. 
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