

INTERGOVERNMENTAL PANEL ON Climate change

FIRST JOINT SESSION OF WORKING GROUPS I, II AND III Incheon, Republic of Korea, 1 - 5 October 2018

WG-I, WG-II & WG-III: 1st/Doc. 2^a, Rev. 1 (30.IX.2018) Agenda Item: 4 ENGLISH ONLY

IPCC SPECIAL REPORT ON GLOBAL WARMING OF 1.5°C

An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

Final Draft Summary for Policymakers

(Submitted by the Co-Chairs of Working Groups I, II and III)

Confidential - This document is being made available in preparation of the First Joint Session of Working Groups I, II and III only and should not be cited, quoted, or distributed

Note:

IPCC Secretariat

The Final Draft Summary for Policymakers is submitted to the First Joint Session of Working Groups I, II and III for approval. The approved Summary for Policymakers will be forwarded to the Forty-Eighth Session of the IPCC (Incheon, Republic of Korea, 1 - 5 October 2018) for acceptance.

SPM

1 2 3

Summary for Policy Makers

- 4
- 5 Date of Draft: 30 September 2018

u	
	Plenary Display Draft

SPM

1	Table of Contents	
2		

3	INTRODUCTION	3
4	A. UNDERSTANDING GLOBAL WARMING OF 1.5°C	4
5 6	B. PROJECTED CLIMATIC CHANGES, THEIR POTENTIAL IMPACTS AND ASSOCIATED RISKS	7
7 8	C. EMISSION PATHWAYS AND SYSTEM TRANSITIONS CONSISTENT WITH 1.5°C GLOBAL WARMING	12
9 10 11 12	D. STRENGTHENING THE GLOBAL RESPONSE IN THE CONTEXT OF SUSTAINAB DEVELOPMENT AND EFFORTS TO ERADICATE POVERTY	LE 18

1 Introduction 2

This report responds to the invitation for IPCC '... to provide a Special Report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways' contained in the Decision of the 21st Conference of Parties of the United Nations Framework Convention on Climate Change to adopt the Paris Agreement.¹

7

8 The IPCC accepted the invitation in April 2016, deciding to prepare this Special Report on *the impacts* 9 of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission 10 pathways, in the context of strengthening the global response to the threat of climate change, sustainable 11 development, and efforts to eradicate poverty.

This Summary for Policy Makers (SPM) presents the key findings of the Special Report, based on the assessment of the available scientific, technical and socio-economic literature² relevant to global warming of 1.5°C and for the comparison between global warming of 1.5°C and 2°C. The level of confidence associated with each key finding is reported using the IPCC calibrated language.³ The underlying scientific basis of each key finding is indicated by references provided to chapter elements.

- 18
- 19
- 20

¹ COP 21, decision 1, para. 21

² The assessment covers literature accepted for publication by 15 May 2018.

³ Each finding is grounded in an evaluation of underlying evidence and agreement. A level of confidence is expressed using five qualifiers: very low, low, medium, high and very high, and typeset in italics, for example, medium confidence. The following terms have been used to indicate the assessed likelihood of an outcome or a result: virtually certain 99–100% probability, very likely 90–100%, likely 66–100%, about as likely as not 33–66%, unlikely 0–33%, very unlikely 0–10%, exceptionally unlikely 0–1%. Additional terms (extremely likely 95–100%, more likely than not >50–100%, more unlikely than likely 0–55%, extremely unlikely 0–5%) may also be used when appropriate. Assessed likelihood is typeset in italics, for example, very likely. See for more details: Mastrandrea, M.D., C.B. Field, T.F. Stocker, O. Edenhofer, K.L. Ebi, D.J. Frame, H. Held, E. Kriegler, K.J. Mach, P.R. Matschoss, G.-K. Plattner, G.W. Yohe and F.W. Zwiers, 2010: Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties, Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 4 pp.

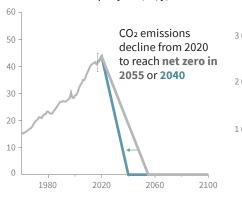
SPM

- 1 A. Understanding Global Warming of 1.5°C 2 3 A1. Human activities have caused approximately 1.0°C of global warming, with a *likely* 4 range of 0.8° to 1.2°C. Global warming is *likely* to reach 1.5°C between 2030 and 2052 if 5 it continues to increase at the current rate. (*high confidence*) {1.2, Figure SPM1} 6 7 A1.1. Observed global mean surface temperature (GMST) for the decade 2006–2015 was 8 0.87°C (likely between 0.75° and 0.99°C)⁴ higher than in 1850–1900 (very high confidence). 9 Anthropogenic global warming matches the level of observed warming to within ±20% (*likely* 10 range) and is currently increasing at 0.2° C (*likely* between 0.1° C and 0.3° C) per decade due to 11 ongoing emissions (*high confidence*). {1.2.1, Table 1.1, 1.2.4} 12 A1.2. Warming greater than the global average is being experienced in many regions and 13 14 seasons, including two to three times higher in many Arctic regions. Warming is generally 15 higher over land than over the ocean. (high confidence) {1.2.1, 1.2.2, Figure 1.1, Figure 1.3, 16 3.3.1, 3.3.217 18 A1.3. Changes in temperature extremes and heavy precipitation have been detected in observations for the 1991–2010 period compared with 1960–1979, a time span over which 19 20 global warming of approximately 0.5°C occurred, suggesting that further detectable changes 21 in extremes may be associated with every additional 0.5°C of warming (medium confidence). 22 $\{3.3.1, 3.3.2, 3.3.3\}$ 23 24 A2. Past emissions alone are unlikely to cause global warming of 1.5°C (medium 25 confidence) but will cause further long-term changes in the climate system, such as sea 26 level rise, with associated impacts (*high confidence*). {1.2, 3.3, Figure SPM 1} 27 28 A2.1. If all anthropogenic emissions (including greenhouse gases, aerosols and their 29 precursors) were reduced to zero immediately, it is *likely* that further global warming would 30 be less than 0.5°C over the next two to three decades (high confidence) and less than 0.5°C on 31 a century time scale (*medium confidence*). {1.2.4, Figure 1.5} 32 33 A2.2. Reaching and sustaining net-zero CO₂ emissions and declining non-CO₂ radiative 34 forcing would halt global warming at a level determined by net cumulative CO_2 emissions up
- 35 to the time of net-zero (*high confidence*) and the average level of non-CO₂ radiative forcing in
- 36 the decades immediately prior to that time (*medium confidence*) (Figure SPM 1). Net negative
- 37 CO₂ emissions may still be required to sustain stable temperatures thereafter (*medium*
- 38 *confidence*). {Cross-Chapter Box 2 in Chapter 1, 1.2.3, 1.2.4, 2.2.1, 2.2.2}
- 39

⁴ This range spans the four available peer-reviewed estimates of the observed GMST change and also accounts for additional uncertainty due to possible short-term natural variability. {1.2.1, Table 1.1}

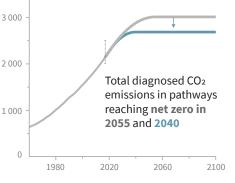
SPM

Cumulative emissions of CO₂ and future non-CO₂ radiative forcing determine the chance of limiting warming to 1.5° C

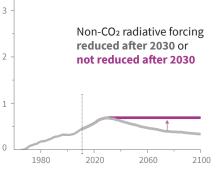

This figure uses stylized emissions and forcing pathways to show key factors affecting the prospects of temperatures remaining below 1.5°C.

a) Observed global temperature and responses to stylized emission pathways

Global warming relative to 1850-1900 (°C)



b) Stylized global CO² emission pathways Billion tonnes CO² per year (Gt/y)


Faster immediate CO_2 emission reductions reduce total cumulative CO_2 emissions at the time of peak warming.

c) Total cumulative CO2 emissions Billion tonnes CO2 (Gt)

Maximum warming is determined by cumulative CO₂ emissions at the time of peak warming and...

d) Non-CO₂ radiative forcing pathways Watts per square metre (W/m²)

...maximum warming is also affected by radiative forcing due to methane, nitrous oxide, aerosols and other emissions.

Plenary Display Draft

SPM

123456789 Figure SPM.1: Panel a: Observed monthly global mean surface temperature (GMST, grey line to the left of 2017, from the HadCRUT4, GISTEMP, Cowtan & Way, and NOAA datasets, with varying line thickness indicating the dataset range) and estimated anthropogenic global warming to date (orange line obtained by fitting expected responses to anthropogenic and natural radiative forcing to observed GMST, displaying the anthropogenic component, with orange shading indicating assessed $\pm 20\%$ likely range). Grey plume on right of panel a shows likely range of warming responses to a stylized pathway in which CO2 emissions (grey line in panels b and c) decline in a straight line from 2020 to reach net zero in 2055 while non-CO2 radiative forcing (grey line in panel d) increases to 2030 and then declines, representative of the 1.5°C no or limited overshoot pathways assessed in Chapter 2. Temperature responses are computed with a simple climate carbon cycle model 10 consistent with the assessed likely range in anthropogenic global warming in 2017. Blue plume in panel a shows 11 the response to faster CO2 emissions reductions (blue line in panel b), reaching net-zero in 2040, reducing 12 cumulative CO2 emissions (panel c). Purple plume shows response to CO2 emissions declining to zero in 2055 13 but non-CO2 forcing remaining constant after 2030. Vertical error bars on right of panel a show likely ranges 14 (thin lines) and central terciles (33rd – 66th percentiles, thick lines) of the estimated distribution of warming in 15 2100 under these three stylized pathways. Vertical dotted error bars in panels b, c and d show likely ranges of 16 uncertainty in observed annual and cumulative global CO2 emissions in 2017 and in non-CO2 radiative forcing 17 in 2011. Vertical axes in panels c and d are scaled to represent approximately equal effects on GMST. {1.2.1, 18 1.2.3, 1.2.4, 2.3, Chapter 1 Figure 1.2 & Chapter 1 Technical Annex, Cross Chapter Box 2}

19

A3. Climate-related risks for natural and human systems are higher for global warming of 1.5°C than at present, but lower than at 2°C (*high confidence*). These risks depend on the magnitude and rate of warming, geographic location, levels of development and vulnerability, and on the choices and implementation of adaptation and mitigation options (*high confidence*) (Figure SPM2). {1.3, 3.3, 3.4, 5.6}

25

A3.1. Impacts on natural and human systems from global warming have already been
observed (*high confidence*). Many land and ocean ecosystems and some of the services they
provide have already changed due to global warming (*high confidence*). {1.4, 3.4, 3.5, SPM
Figure 2}

30

A3.2. Future climate-related risks depend on the rate, peak and duration of warming. They are
 larger if global warming exceeds 1.5°C before returning to that level by 2100 than if global
 warming gradually stabilizes at 1.5°C, especially if the peak temperature is high (e.g., about
 2°C) (*high confidence*). Some risks may be long-lasting or irreversible, such as the loss of
 ecosystems (*high confidence*). {3.2, 3.4.4, 3.6.3, Cross-Chapter Box 8}

36

A3.3. Adaptation and mitigation are already occurring (*high confidence*). Future climaterelated risks would be reduced by the upscaling and acceleration of far-reaching, multi-level
and cross-sectoral climate mitigation and by both incremental and transformational adaptation
(*high confidence*) {1.2, 1.3, Table 3.5, 4.2.2, Cross-Chapter Box 9 in Chapter 4, Box 4.2, Box
4.3, Box 4.6, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 4.3.5, 4.4.1, 4.4.4, 4.4.5, 4.5.3}

42

A4. Limiting global warming to 1.5°C compared to 2°C would make it easier to achieve many aspects of sustainable development, with greater potential to eradicate poverty and reduce inequalities, especially when mitigation actions maximize synergies (high confidence). {1.1, 1.4, 2.5, 5.2, Table 5.1}

47

48 A4.1. Climate change impacts and responses are closely linked to sustainable development
 49 which balances social well-being, economic prosperity and environmental protection. The

50 United Nations Sustainable Development Goals (SDGs), adopted in 2015, provide an

51 established framework for assessing the links between global warming of 1.5°C or 2°C and

52 development goals that include poverty eradication, reducing inequalities, and climate action

- 53 (*high confidence*) {Cross-Chapter Box 4 in Chapter 1, 1.4, 5.1}
- 54

Plenary Display Draft

SPM

1	A4.2. The consideration of ethics and equity can help minimize adverse effects and maximize
2	benefits associated with pathways limiting global warming to 1.5°C, and is central to this
3	report. Additional climate risks at 2°C compared to 1.5°C warming, as well as potential
4	negative consequences of mitigation action, would fall disproportionally on poor and
5	disadvantaged populations, indicating larger challenges associated with poverty eradication
6	and reducing inequalities compared to current conditions (high confidence). {1.1.1, 1.1.2,
7	1.4.3, 2.5.3, 3.4.10, 5.1, 5.2, 5.3. 5.4, Cross-Chapter Box 4 in Chapter 1, Cross-Chapter Boxes
8	6 and 8 in Chapter 3, and Cross-Chapter Box 12 in Chapter 5}
9	
10	A5. Mitigation and adaption consistent with global warming of 1.5°C are underpinned
11	by enabling conditions, assessed in this report across the geophysical, environmental-
12	ecological, technological, economic, socio-cultural and institutional dimensions of
13	feasibility. {1.4, Cross-Chapter Box 3 in Chapter 1, 4.4, 4.5, 5.6}
14	
15	A5.1. Modelling studies identify that pathways limiting global warming to 1.5°C are enabled
16	when considering the combination of effective international cooperation, integrated and
17	stringent policy frameworks, access to finance, and sustainable consumption (high
18	<i>confidence</i>) {2.1, 2.3, 2.5}.
19	
20	A5.2. The availability of finance and technology, integration of institutions, inclusive
21	processes, attention to uneven power and inequality, and reconsideration of values are critical
22	conditions to achieve sustainable development, eradicate poverty and reduce inequalities
23	while limiting global warming to $1.5^{\circ}C$ (high confidence) {5.6}
24	A 5.2 Stars othered multi level concerns institutional conseity relievingtonington
25 26	A5.3. Strengthened multi-level governance, institutional capacity, policy instruments,
26 27	technological innovation and transfer and mobilization of finance, and changes in human behaviour and lifestyles are enabling conditions that enhance the feasibility of mitigation and
27	adaptation options for 1.5°C-consistent systems transitions (<i>high confidence</i>) {4.4.1, 4.4.2,
28 29	4.4.3, 4.4.4, 4.4.5}
30	т.т., т.т.т, т.т.) ј
31	
32	B. Projected Climatic Changes, Their Potential Impacts and Associated Risks
33	
34	B1. Climate models project robust ⁵ differences in regional climate characteristics
35	between present-day and global warming of 1.5°C, ⁶ and between 1.5°C and 2°C ⁶ . These
36	differences include increases in: mean temperature in most land and ocean regions (high
37	confidence), hot extremes in most inhabited regions (high confidence), heavy
38	precipitation in several regions (medium confidence), and the probability of drought in
39	some regions (<i>medium confidence</i>). {3.3}
40	
41	B1.1. Temperature extremes on land are projected to increase more than global warming (high
42	<i>confidence</i>): extreme hot days in mid-latitudes by up to about 3°C at global warming of 1.5°C
43	and about 4°C at 2°C, and extreme cold nights in high latitudes by up to about 4.5°C at 1.5°C
44	and about 6°C at 2°C (<i>high confidence</i>). The number of hot days is projected to increase in

- 45 most land regions, with highest increases in the tropics (*high confidence*). {3.3.1, 3.3.2, Cross-
- 46 Chapter Box 8 in Chapter 3}
- 47

⁵ Robust is here used to mean that at least two thirds of climate models show the same sign of changes at the grid point scale, and that differences in large regions are statistically significant.

⁶ Projected changes in impacts between different levels of global warming are determined with respect to changes in global surface air temperature.

Plenary Display Draft

1 **B1.2.** Limiting global warming to 1.5°C compared to 2°C would reduce the probability of 2 increases in heavy precipitation events in several northern hemisphere high-latitude and high-3 elevation regions (medium confidence). Compared to 2°C global warming, less land would be 4 affected by flood hazards (*medium confidence*) and the probability of droughts would be 5 lower in some regions, including the Mediterranean and southern Africa (*medium confidence*). 6 $\{3.3.3, 3.3.4, 3.3.5\}$ 7 8 B2. By 2100, global mean sea level rise would be around 0.1 metre lower with global 9 warming of 1.5°C compared to 2°C (medium confidence). Sea level will continue to rise 10 well beyond 2100 (high confidence), and the magnitude and rate of this rise is expected 11 to depend on future emission pathways. A slower rate of sea level rise would allow more 12 effective adaptation (including managing and restoring natural coastal ecosystem and 13 infrastructure reinforcement) in small islands, low-lying coastal areas and deltas 14 exposed to increased saltwater intrusion, flooding, and damage to infrastructure 15 (*medium confidence*). {3.3, 3.4, 3.6} 16 17 **B2.1.** Model-based projections of global mean sea level suggest an indicative range of 0.26 to 18 0.77 m by 2100 for 1.5°C global warming (relative to 1986-2005), 0.1 m (0.04-0.16 m) less 19 than for a global warming of 2°C (*medium confidence*). A reduction of 0.1 m in global sea 20 level rise implies that up to 10 million fewer people would be exposed to related risks, based 21 on population in the year 2010 and assuming no adaptation (*medium confidence*). {3.4.4, 22 3.4.5, 4.3.223 24 **B2.2.** Sea level rise will continue beyond 2100 even if global warming is limited to 1.5°C in 25 the 21st century (*high confidence*). Marine ice sheet instability in Antarctica and/or 26 irreversible loss of the Greenland ice sheet could result in multi-metre rise in sea level over 27 hundreds to thousands of years. There is medium confidence that the threshold for such 28 instabilities could lie around 1.5 to 2°C. {3.3.9, 3.4.5, 3.5.2, 3.6.3, Box 3.3, SPM Figure 3.2} 29 30 B3. On land, risks of climate-induced impacts on biodiversity and ecosystems, including species loss and extinction, are lower with 1.5°C of global warming than 2°C. Limiting 31 32 global warming to 1.5°C compared to 2°C has important benefits for terrestrial, 33 freshwater, and coastal ecosystems and for the preservation of their services to humans 34 (high confidence). (SPM Figure 2) {3.4, 3.5, Box 3.4, Box 4.2, Cross-Chapter Box 8 in 35 Chapter 3} 36 37 B3.1. Of 105,000 species studied, 18% of insects, 16% of plants and 8% of vertebrates are 38 projected to lose over half of their climatically determined geographic range for global 39 warming of 2°C, compared with 6% of insects, 8% of plants and 4% of vertebrates for global 40 warming of 1.5°C (medium confidence). Impacts associated with other biodiversity-related 41 risks such as forest fires, and the spread of invasive species, are also reduced at 1.5° C 42 compared to 2°C of global warming (*high confidence*). {3.4.3.3, 3.5.2} 43 44 **B3.2.** Approximately 13% of the global terrestrial land area is projected to undergo a 45 transformation of ecosystems from one type to another at 2°C of global warming. The area at risk would be approximately halved at 1.5°C (medium confidence). {3.4.3.1, 3.4.3.5} 46 47 48 **B3.3.** High-latitude tundra and boreal forests are particularly at risk of climate change induced 49 degradation and loss, with woody shrubs already encroaching into the tundra (high confidence). Limiting global warming to 1.5°C rather than 2°C could also prevent the thawing 50 51 over centuries of an estimated 2 million km² of the existing permafrost area (medium *confidence*) {3.3.2, 3.4.3, 3.5.5} 52

Do Not Cite, Quote or Distribute

Plenary	Display	Draft
I folial y	Dispidy	Dian

SPM

1 B4. Limiting global warming to 1.5°C compared to 2°C is expected to reduce increases in 2 ocean temperature as well as associated increases in ocean acidity and decreases in 3 ocean oxygen levels (*high confidence*). Consequently, limiting global warming to 1.5°C is 4 expected to reduce risks to marine biodiversity, fisheries, and ecosystems, and their 5 functions and services to humans, as illustrated by recent changes to Arctic sea ice and 6 warm water coral reef ecosystems (high confidence). {3.3, 3.4, 3.5, Boxes 3.4, 3.5} 7 8 **B4.1.** There is *high confidence* that the probability of a sea-ice-free Arctic Ocean during 9 summer is substantially higher at global warming of 2°C when compared to 1.5°C. With 2°C 10 global warming, at least one sea ice-free Arctic summer is projected per decade. This 11 likelihood is reduced to one per century with 1.5°C of global warming. Effects of a 12 temperature overshoot are reversible for Arctic sea ice cover on decadal time scales (high 13 *confidence*). {3.3.8, 3.4.4.7} 14 15 **B4.2.** Global warming of 1.5°C is projected to shift species ranges to higher latitudes as well 16 as increase the amount of damage to many ecosystems. It is also expected to drive the loss of 17 coastal resources, and reduce the productivity of fisheries and aquaculture (especially at low 18 latitudes). The risks of climate-induced impacts are projected to be less at 1.5°C than those at 19 global warming of 2°C (*high confidence*). Coral reefs, for example, are projected to decline 20 by a further 70–90% at 1.5°C with larger losses (> 99%) at 2°C (very high confidence). The 21 risk of irreversible loss of many marine and coastal ecosystems increases with global 22 warming, especially at 2°C or more (*high confidence*). {3.4.4, Box 3.4} 23 **B4.3.** The level of ocean acidification associated with global warming of 1.5°C is expected to 24 25 amplify the adverse effects of warming, impacting the survival, calcification, growth, 26 development, and abundance of a broad range of species (i.e. from algae to fish) (high 27 *confidence*). {3.3.10, 3.4.4} 28 29 **B4.4.** Climate change in the ocean is increasing risks to fisheries and aquaculture via impacts 30 on the physiology, survivorship, habitat, reproduction, disease incidence, and risk of invasive species (medium confidence) but are projected to be less at 1.5°C of global warming than at 31 2°C. Global fishery models, for example, project a decrease in global annual catch for marine 32 fisheries of more than 3 million tonnes for 2°C of global warming versus a loss of 1.5 million 33 34 tonnes for 1.5°C of global warming (*medium confidence*). {3.4.4, Box 3.4} 35 36 B5. Climate-related risks to health, livelihoods, food and water supply, human security, 37 and economic growth are projected to increase with global warming of 1.5°C and increase further with 2°C. (SPM Figure 2) {3.4, 3.5, 5.2, Box 3.2, Box 3.3, Box 3.5, Box 38 39 3.6, Cross-Chapter Box 6 in Chapter 3, Cross-Chapter Box 9 in Chapter 4, Cross-40 Chapter Box 12 in Chapter 5, 5.2} 41 42 **B5.1.** Populations at disproportionately higher risk of adverse consequences of global 43 warming of 1.5°C and beyond include disadvantaged populations, indigenous peoples, and 44 populations dependent on agriculture or coastal livelihoods. Regions at disproportionately 45 higher risk include Arctic ecosystems, dryland regions, and small-island developing states 46 (high confidence). Poverty and disadvantage are expected to increase in some populations as 47 global warming increases; limiting global warming to 1.5°C, compared with 2°C, could 48 reduce the number of people exposed to climate-related risks and susceptible to poverty by up 49 to several hundred million (medium confidence). {3.4.10, 3.4.11, Box 3.5, Cross-Chapter Box 6 in Chapter 3, Cross-Chapter Box 9 in Chapter 4, Cross-Chapter Box 12 in Chapter 5, 5.2.1, 50 51 5.2.2, 5.2.3, 5.6.3, Cross-chapter Box 9} 52

Do Not Cite, Quote or Distribute

Plenary Display Draft

SPM

B5.2. Any increase in global warming is expected to affect human health, with primarily

negative consequences (*high confidence*). Lower risks are projected at 1.5°C than at 2°C for
 heat-related morbidity and mortality (*very high confidence*) and for ozone-related mortality if

4 emissions needed for ozone formation remain high (*high confidence*). Urban heat island

5 effects generally amplify the impacts of heatwaves in cities (*high confidence*). Risks from

- 6 some vector-borne diseases, such as malaria and dengue fever, are projected to increase with
- 7 the level of future warming, including potential shifts in their geographic range (*high*
- 8 *confidence*). {3.4.7, 3.4.8, 3.5.5.8}
- 9

10 **B5.3.** Limiting warming to 1.5°C, compared with 2°C, is projected to result in smaller net

11 reductions in yields of maize, rice, wheat, and potentially other cereal crops, particularly in

12 sub-Saharan Africa, Southeast Asia, and Central and South America; and in the CO_2

13 dependent, nutritional quality of rice and wheat (*high confidence*). Reductions in projected

14 food availability are larger at 2°C than at 1.5° C of global warming in the Sahel, southern 15 Africa the Maditerraneon control Europe, and the America (17)

15 Africa, the Mediterranean, central Europe, and the Amazon (*medium confidence*). Livestock 16 are projected to be adversely affected with rising temperatures, depending on the extent of

17 changes in feed quality, spread of diseases, and water resource availability (*high confidence*)

17 changes in reed quanty, spread of diseases, and water resource availability (*mgh confidence* 18 {3.4.6, 3.5.4, 3.5.5, Box 3.1, Cross-Chapter Box 6 in Chapter 3, Cross-Chapter Box 9 in

- 19 Chapter 4}
- 20

21 **B5.4.** Depending on future socioeconomic conditions, limiting global warming to 1.5°C,

compared to 2° C, may reduce the proportion of the world population exposed to a climate-

change induced increase in water scarcity by up to 50%, although there is considerable
 variability between regions (*medium confidence*). Many small island developing states would

25 experience substantially less freshwater stress as a result of projected changes in aridity when

25 experience substantiarly less freshwater stress as a result of projected changes in andity whe 26 global warming is limited to 1.5° C, as compared to 2° C (*medium confidence*). {3.3.5, 3.4.2,

27 3.4.8, 3.5.5, Box 3.2, Box 3.5, Cross-Chapter Box 9 in Chapter 4}

28

B5.5. Risks to global economic growth posed by climate change-related impacts are projected

30 to be lower at 1.5°C than at 2°C of global warming (*medium confidence*). Countries in the 31 tropics and Southern Hemisphere subtropics are most at risk because present-day

31 tropics and Southern Hernisphere subtropics are most at risk because present-day 32 temperatures in these regions are above the threshold estimated to be optimal for economic

- 33 production (*medium confidence*). {3.5.2, 3.5.3}
- 34

B5.6. Exposure to multiple and compound climate-related risks increases between 1.5°C and
2°C of global warming, with greater proportions of people exposed and susceptible to poverty
in Africa and Asia (*high confidence*). Risks across energy, food, and water sectors could
overlap spatially and temporally, creating new (and exacerbating current) hazards, exposures,
and vulnerabilities that could affect increasing numbers of people and regions with additional
global warming (*medium confidence*) {Box 3.5, 3.3.1, 3.4.5.3, 3.4.5.6, 3.4.11, 3.5.4.9}

41

42 **B5.7.** There are multiple lines of evidence that since the AR5 the assessed levels of risk
43 increased for four of the five Reasons for Concern (RFCs) for global warming to 2°C (*high*44 *confidence*). The risk transitions by degrees of global warming are now: from high to very

45 high between 1.5°C and 2°C for RFC1 (Unique and threatened systems) (*high confidence*);

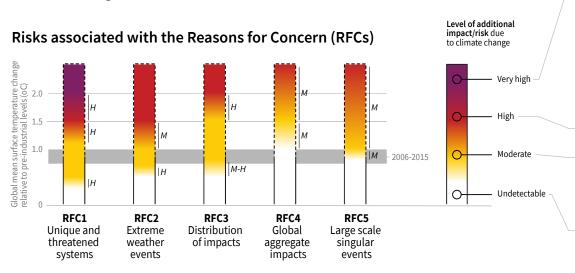
46 from moderate to high risk between 1.0°C and 1.5°C for RFC2 (Extreme weather events)

47 (*high confidence*); from moderate to high risk between 1.5°C and 2°C for RFC3 (Distribution

48 of impacts) (*high confidence*); from moderate to high risk between 1.5°C and 2.5°C for RFC4

49 (Global aggregate impacts) (*medium confidence*); and from moderate to high risk between

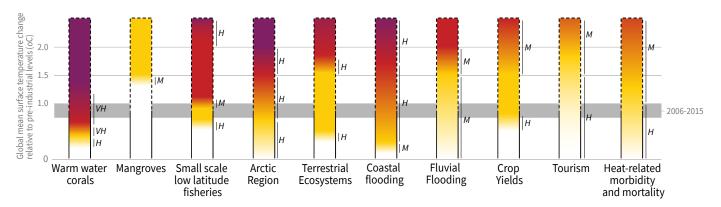
50 1°C and 2.5°C for RFC5 (Large-scale singular events) (*high confidence*). (SPM Figure 2)


51 {3.4.13; 3.5, 3.5.2}

SPM

How the level of global warming affects risks associated with the Reasons for Concern (RFCs) and selected natural, managed and human systems

Five Reasons For Concern (RFCs) illustrate the implications of different levels of global warming for people, economies and ecosystems across sectors and regions.



Purple indicates very high risks of severe impacts/risks and the presence of significant irreversibility or the persistence of climate-related hazards, combined with limited ability to adapt due to the nature of the hazard or impacts/risks. **Red** indicates severe and widespread impacts/risks. **Yellow** indicates that

Yellow indicates that impacts/risks are detectable and attributable to climate change with at least medium confidence.

White indicates that no impacts are detectable and attributable to climate change.

Risks for selected natural, managed and human systems

Confidence level for transition: L=Low, M=Medium, H=High and VH=Very high

Plenary Display Draft

SPM

Figure SPM.2: Five integrative reasons for concern (RFCs) provide a framework for summarizing key risks across sectors and regions, and were introduced in the IPCC Third Assessment Report. RFCs illustrate the implications of climate change and adaptation limits for people, economies, and ecosystems. Risks for each RFC are based on assessment of the new literature that has appeared. As in the AR5, this literature has been used to make expert judgments to assess the levels of global warming at which levels of risk are undetectable, moderate, high or very high. The selection of risks to natural, managed and human systems in the lower panel is illustrative and is not intended to be fully comprehensive. {3.4, 3.5, 3.5.2.1, 3.5.2.2, 3.5.2.3, 3.5.2.4, 3.5.2.5, 5.4.1 5.5.3, 5.6.1, Box 3.4}

B6. Most adaptation needs will be lower for global warming of 1.5°C compared to 2°C
 (*high confidence*). There are a wide range of adaptation options that can reduce the risks

12 of climate change (*high confidence*). Limits to adaptation exist with global warming of 15° C. The number and englishibits of educativity set in the set of the set of

1.5°C. The number and availability of adaptation options vary by sector and decline for
 higher levels of global warming. (*medium confidence*) {Table 3.5, 4.3, 4.5, Cross-Chapter

- 15 Box 12 in Chapter 5}
- 16

B6.1. A wide range of adaptation options are available to reduce the risks to natural and
managed ecosystems (e.g., ecosystem restoration, avoided deforestation, biodiversity
protection, agricultural irrigation efficiency, sustainable aquaculture), the risks of sea level

rise (e.g., coastal infrastructure), and the risks to health, livelihoods, food, water, and

20 Fise (e.g., coastar infrastructure), and the fisks to health, fivefinoods, food, water, and 21 economic growth especially in rural landscapes (e.g., social safety nets, disaster risk

21 reduction, insurance, water management and reuse) and urban areas (e.g., green infrastructure,

planning) (*medium confidence*). Effective options include community-based adaptation,

24 drawing on local knowledge and indigenous knowledge, and ecosystems-based adaptation

25 (*high confidence*). [(Table SPM.1)] {4.3.1, 4.3.2, 4.3.3, 4.3.5, 4.5.3, 4.5.4, Box 4.2, Box 4.3, Box 4.6, Cross Charter Ber 0 in Classical and the second secon

Box 4.6, Cross-Chapter Box 9 in Chapter 4}.

B6.2. Adaptation is expected to be more challenging for ecosystems, food and health systems at 2°C of global warming than for 1.5°C (*medium confidence*). Some vulnerable regions,

30 including small islands and Least Developed Countries, are projected to experience high

multiple interrelated climate risks even at global warming of 1.5°C (*high confidence*). {3.3.1,
3.4.5, Box 3.5, Table 3.5, Cross-Chapter Box 9 in Chapter 4, 5.6, Cross-Chapter Box 12 in

5.4.3, BOX 5.3, Table 5.3, Cross-Chapter Box 9 in Chapter 4, 5.6, Cross-Chapter
 Chapter 5, Box 5.3}

34

B6.3. Limits to adaptation and associated losses exist at 1.5 of global warming, become more
pronounced at higher levels of warming and vary by sector, with site-specific implications for
vulnerable regions, ecosystems, and human health (*medium confidence*) {Cross-Chapter Box
12 in Chapter 5, Box 3.5}

39 40

41 C. Emission Pathways and System Transitions Consistent with 1.5°C Global Warming
 42

C1. In pathways with no or limited overshoot of 1.5°C, global CO₂ emissions decline by
at least 35% from 2010 levels by 2030, reaching net zero around 2050. For comparison,
limiting global warming below 2°C⁷ implies CO₂ emissions decline at least 20% by 2030
in most pathways and reach net zero around 2075. Pathways that limit global warming
to 1.5°C and those that limit warming to 2°C involve similarly ambitious reductions in
non-CO₂ emissions. (*high confidence*) {2.1, 2.3, Figure SPM3a}

49

50 **C1.1.** CO_2 emissions reductions that limit global warming to 1.5°C with no or limited

51 overshoot can involve different portfolios of mitigation measures, striking different balances

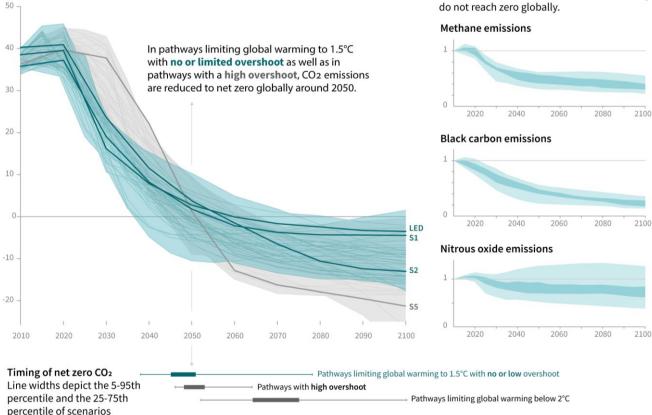
- 1 between lowering energy and resource intensity, rate of decarbonization, and the reliance on
- 2 carbon dioxide removal. Different portfolios face different implementation challenges, and
- 3 potential synergies and trade-offs with sustainable development. (*high confidence*). {2.3.2,
 - 4 2.3.4, 2.4, 2.5.3, Figure SPM3b}

- 5
- 6 C1.2. Pathways that limit global warming to 1.5°C with no or limited overshoot involve deep
 7 reductions in emissions of methane and black carbon as well as in most cooling aerosols (35%
 8 or more by 2050 relative to 2010). CO₂ mitigation measures can also reduce non-CO₂
 9 emissions, particularly in the energy and transport sectors. Other measures can reduce
- 9 emissions, particularly in the energy and transport sectors. Other measures can reduce
 10 agricultural nitrous oxide and methane, some sources of black carbon, or hydrofluorocarbons.
- 11 High bioenergy demand increases emissions of nitrous oxide in some pathways. Improved air
- quality resulting from reductions in many non-CO2 emissions can provide large, direct, and
- 13 immediate population health benefits. (*high confidence*). {Figure SPM3a, 2.2.1, 2.3.3, 2.4.4,
- $14 \quad 2.5.3, 4.3.6, 5.4.2\}$
- 15C1.3. Revising estimates from AR5, the remaining carbon budget from the beginning of 2018
- 17 for a 50% probability of limiting global warming to 1.5°C defined in terms of the increase in
- 18 global surface air temperature relative to pre-industrial is 580 GtCO_2 , and 420 GtCO_2 for a
- 19 66% probability, subject to large uncertainties. If global warming is defined in terms of
- 20 GMST, which warms slower than global surface air temperature, these remaining carbon $here = \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$
- budgets would be 770 and 570 GtCO₂ respectively⁸ (*medium confidence*). {2.2.2, 2.6.1, Table
- 22 2.2, Chapter 2 Supplementary Material }23
- C1.4. From 1876 until the end of 2017 approximately 2200 ± 320 GtCO₂ were emitted by
 human activities. If current anthropogenic CO₂ emissions of 42 ± 3 GtCO₂ per year start an
 immediate and steady decline, staying within the 420-770 GtCO₂ remaining carbon budgets
 quoted above would imply reaching net zero CO₂ emissions in about 20 to 40 years from
 2018. (*medium confidence*). {2.2.2, Table 2.2, Figure SPM1, Supplementary Material Chapter
 2}
- 31 **C1.5.** The relative importance for remaining carbon budgets of both uncertainties and choices 32 regarding non-CO₂ mitigation increases as global warming thresholds are approached.
- 32 Uncertainties comprise the possible variation in climate response (±400 GtCO₂), the level of
- 34 historic warming (±250 GtCO₂), and the role of future permafrost thawing and potential
- 35 methane release from wetlands (reducing budgets by up to 100 GtCO₂ over the course of this
- 36 century and more thereafter). Choices regarding non-CO₂ mitigation could alter the remaining
- 37 carbon budget by 250 GtCO₂ in either direction. (*medium confidence*). $\{2.2.2, 2.6.1, Table$
- 38 2.2, Supplementary Material Chapter 2}
- 39
- 40 **C1.6.** Solar radiation modification (SRM) measures are not included in any of the available
- assessed pathways. Although some SRM measures may be theoretically effective in reducing
 an overshoot, they face large uncertainties and knowledge gaps as well as substantial risks,
- 43 institutional and social constraints to deployment related to governance, ethics, and impacts
- 44 on sustainable development. They also do not mitigate ocean acidification. (*medium*
- 45 *confidence*). {4.3.8, Cross-Chapter Box 10 in Chapter 4}

⁸ Irrespective of the definition of global warming used, improved understanding has led to an increase in the estimated remaining carbon budget of about 300 GtCO2 compared to AR5. Roughly two thirds of this increase is due to using an improved estimate of historical warming within the carbon budget assessment, and about one third arises from using non-CO₂ emission pathways consistent with mitigation efforts aiming to limit warming to well below 2°C.

Global emissions pathway characteristics

General characteristics of the evolution of anthropogenic net emissions of CO₂, and total emissions of methane, black carbon, and nitrous oxide in pathways that limit global warming to 1.5°C with no or limited overshoot. Net emissions are defined as anthropogenic emissions reduced by anthropogenic removals. Reductions in net emissions can be achieved through different portfolios of mitigation measures illustrated in Figure SPM3B.


Global total net CO₂ emissions

Billion tonnes of CO₂/yr

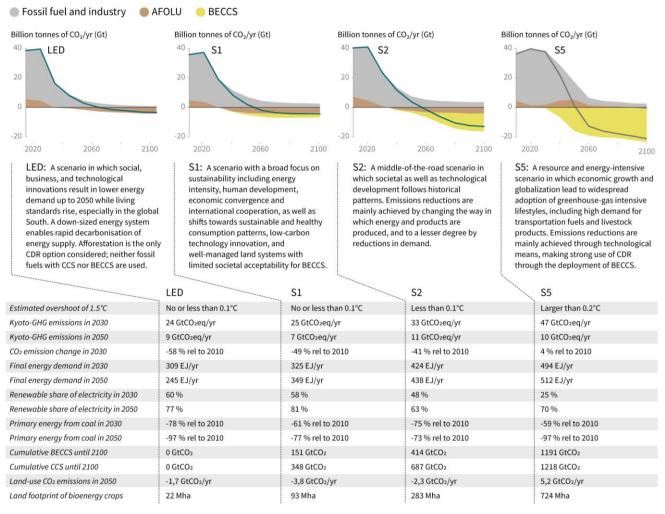
(four illustrative pathways are highlighted)

Non-CO₂ emissions relative to 2010

Emissions of non-CO₂ forcers are also reduced or limited in pathways limiting global warming to 1.5°C with no or limited overshoot, but they do not reach zero globally.

2

3 4 Figure SPM.3a: Global emissions characteristics of pathways. Four illustrative pathways are highlighted and labelled with LED, S1, S2, and S5 in the main panel. Descriptions and characteristics of these pathways are


- 5 6 available in Figure SPM3b. Global net anthropogenic CO2 emissions in pathways limiting global warming to 1.5°C with no or limited overshoot and pathways with higher overshoot. Non-CO2 emissions ranges in the inset
- show the 5–95% (light shading) and interquartile (dark shading) ranges of pathways limiting global warming to
- 7 8 1.5°C with no or limited overshoot. Box and whiskers in the bottom panel show the timing of pathways reaching
- 9 global net zero CO_2 emission levels, and a comparison with pathways limiting global warming to 2°C with at
- 10 least 66% probability. {2.1, 2.2, 2.3, Figure 2.5, Figure 2.10, Figure 2.11}
- 11

Characteristics of four illustrative pathways

Different mitigation strategies can achieve the net emissions reductions that would be required to follow a pathway that limit global warming to 1.5°C with no or limited overshoot. For example, the amount of Carbon Dioxide Removal (CDR) varies across pathways, as do the relative contributions of Bioenergy with Carbon Capture and Storage (BECCS) and removals in the Agriculture, Forestry and Other Land Use (AFOLU) sector. This has implications for the emissions and several other pathway characteristics.

Breakdown of contributions to global net CO2 emissions in four illustrative pathways

Figure SPM.3b: Characteristics of four illustrative pathways in relation to global warming of 1.5° C introduced in Figure SPM3a. A breakdown of the global net anthropogenic CO₂ emissions into the contributions in terms of CO₂ emissions from fossil fuel and industry, agriculture, forestry and other land use (AFOLU), and bioenergy with carbon capture and storage (BECCS) for four illustrative pathways that show a range of potential mitigation approaches. Further characteristics for each of these pathways are listed below each pathway. {2.2, 2.3, 2.4, 2.5.3 Figure 2.5.5 Figure 2.10 Figure 2.11 Figure SPM2a }

- 7 2.5.3, Figure 2.5, Figure 2.10, Figure 2.11, Figure SPM3a}
- 8

Plenary Display Draft

1 **C2.** Pathways limiting global warming to 1.5°C would require rapid and far-reaching 2 transitions in energy, land, urban and infrastructure, and industrial systems. These

transitions in energy, land, urban and infrastructure, and industrial systems. These
systems transitions are unprecedented in terms of scale, but not necessarily in terms of

4 speed, and imply deep emissions reductions in all sectors and a wide portfolio of

5 mitigation options (*high confidence*). {2.3, 2.4, 2.5, 4.2, 4.3, 4.5}

6

C2.1. Pathways that limit global warming to 1.5°C with no or limited overshoot are
qualitatively similar to those for 2°C, but their system changes are more rapid and pronounced
over the next two decades (*high confidence*). These rates of change have been observed in the
past within specific sectors, technologies and spatial contexts, but there is no documented

11 historic precedent for their scale (*medium confidence*). {2.3.3, 2.3.4, 2.4, 2.5, 4.2.1, 4.2.2,

- 12 Cross-Chapter Box 11 in Chapter 4}
- 13

C2.2. In energy systems, pathways limiting global warming to 1.5°C with no or limited
 overshoot generally have lower energy demand, faster electrification of energy end use, a

16 higher share of low-carbon energy sources (including renewables, nuclear and fossil fuel with

17 carbon dioxide capture and storage (CCS)) compared to 2°C pathways, particularly before

18 2050 (*high confidence*). In 1.5°C pathways, renewables are projected to supply 50–65%

19 (interquartile range) of primary energy and 70–85% of electricity (*high confidence*). The

20 political, economic, social and technical feasibility of solar energy, wind energy and

21 electricity storage technologies increased over the past few years (*high confidence*), [(Table

22 SPM.2)] {2.4.1, 2.4.2, figure 2.1, table 2.6, table 2.7, Cross-Chapter Box 6 in Chapter 3,

23 4.2.1, 4.3.1, 4.3.3, 4.5.2}

24

25 **C2.3.** CO_2 emissions from industry in pathways limiting global warming to 1.5°C with no or 26 limited overshoot are projected to be about 75-90% lower in 2050 relative to 2010, as 27 compared to 50-80% for global warming of 2°C. Such reductions can be achieved through 28 combinations of new and existing technologies and practices, including electrification, 29 hydrogen, sustainable bio-based feedstocks, product substitution, and carbon capture, 30 utilization and storage (CCUS). These options are technically proven but their large scale 31 deployment limited by economic and institutional constraints. Emissions reductions by energy 32 and process efficiency by themseleves are insufficient for 1.5°C pathways (*high confidence*).

33 [(Table SPM.2)] {2.4.3, 4.2.1, 4.3.4, Table 4.1, Table 4.3, 4.3.4, 4.5.2}

34

35 **C2.4.** The urban and infrastructure system transition consistent with limiting global warming

36 to 1.5° C with no or limited overshoot would imply changes in land and urban planning

37 practices and deeper emissions reductions in transport and buildings compared to pathways

that hold global warming below 2° C. Technical measures and options enabling deep

39 emissions reductions include electrification and energy-efficiency. In pathways limiting

- 40 global warming to 1.5°C with no or limited overshoot, the electricity share of demand in 41 buildings would be about 55-75% in 2050 compared to 50-70% in 2050 for 2°C global
- buildings would be about 55-75% in 2050 compared to 50-70% in 2050 for 2°C global
 warming. In the transport sector, the share of low-carbon final energy would rise from less

42 warming. In the transport sector, the share of low-carbon final energy would rise from less 43 than 5% in 2020 to about 35–65% in 2050 compared to 25–45% for 2°C global warming

45 than 5% in 2020 to about 55–65% in 2050 compared to 25–45% for 2 °C global warming 44 (*medium confidence*). Socio-cultural, institutional and economic barriers may inhibit these

45 options (*high confidence*). [(Table SPM.2)] {2.3.4, 2.4.3, 4.2.1, Table 4.1, 4.3.3, 4.5.2}.

46

47 C2.5. Transitions in global and regional land use are found in all pathways limiting global

48 warming to 1.5°C with no or limited overshoot, but their scale depends on the pursued

49 mitigation portfolio. 50–800 million hectares of pasture and up to 500 million hectares of

50 agricultural land for food and feed crops are converted into 100–700 million hectares of area

- 51 for energy crops and forests. The change in forest area by 2050 relative to 2010 ranges from
- 52100 million hectares reduction to 1,000 million hectares increase (medium confidence). Such
Do Not Cite, Quote or DistributeSPM-16Total pages: 28

Plenary Display Draft

SPM

1 transitions would need to be supported by sustainable management of the various demands on

2 land for human settlements and ecosystem services. Options include sustainable

3 intensification of land use practices, ecosystem restoration and changes towards less resource-

intensive diets. Such options are often limited by institutional, environmental and socio cultural barriers, though careful design and implementation could enhance their acceptability

cultural barriers, though careful design and implementation could enhance their acceptability
(*medium confidence*). [(Table SPM.2)] {2.4.4, 4.3.2, 4.5.2, Cross-Chapter Box 7 in Chapter
3}

8

9 C3. All pathways that limit global warming to 1.5°C with limited or no overshoot use 10 carbon dioxide removal (CDR) on the order of 100–1,000 GtCO₂ over the 21st century to 11 compensate for residual emissions and, in most cases, achieve net negative emissions to 12 return global warming to 1.5°C following a peak (high confidence). CDR deployment of 13 several hundreds of GtCO₂ is subject to multiple feasibility and sustainability 14 constraints (high confidence). Near-term emissions reductions and measures to lower energy and land demand can limit CDR deployment to a few hundred GtCO₂ without 15 16 reliance on bioenergy with carbon capture and storage (BECCS) (high confidence). {2.3, 17 2.4, 3.6.2, 4.3, 5.4

18

C3.1. Existing and potential CDR measures include afforestation and reforestation, land
restoration and soil carbon sequestration, BECCS, direct air carbon capture and storage
(DACCS), enhanced weathering and ocean alkalinization. These differ widely in terms of
maturity, potentials, costs, risks, co-benefits and trade-offs (*high confidence*). To date, only a
few published pathways include CDR measures other than afforestation and BECCS. {2.3.4,
3.6.2, 4.3.2, 4.3.7}

24 25

C3.2. In pathways limiting global warming to 1.5°C with limited or no overshoot, BECCS
 deployment ranges from 0-1, 0–8, and 0-16 GtCO₂ yr⁻¹ in 2030, 2050, and 2100, respectively,

while agriculture, forestry and land-use (AFOLU) related CDR measures remove 0-5, 1-11,

and 1-5 GtCO₂ yr⁻¹ in these years (*medium confidence*). The upper end of these deployment

ranges by mid-century exceeds the BECCS potential of up to 5 $GtCO_2$ yr⁻¹ and afforestation potential of up to 3.6 $GtCO_2$ yr⁻¹ assessed based on recent literature, indicating that such

potential of up to 3.0 G(CO₂ y) assessed based on recent merature, indicating that such
 pathways may be impractical to achieve (*medium confidence*). Some pathways avoid BECCS

32 deployment completely through demand-side measures and greater reliance on AFOLU-

related CDR measures (*high confidence*). The use of bioenergy can be as high or even higher

35 when BECCS is excluded compared to when it is included due to its potential for replacing

36 fossil fuels across sectors (*high confidence*) (Figure SPM3) {2.3.3, 2.3.4, 2.4.2, 3.6.2, 4.3.1,

37 4.2.3, 4.3.2, 4.3.7, 4.4.3, Table 2.4}

38

39 **C3.3.** Pathways that overshoot 1.5°C of global warming rely on CDR exceeding residual

40 CO₂ emissions later in the century to return to below 1.5° C by 2100, with larger overshoots

41 requiring greater amounts of CDR (Figure SPM.3) (*high confidence*). Limitations on the

42 speed, scale, and societal acceptability of CDR deployment hence govern the extent to which

43 global warming can be returned to below 1.5°C following an overshoot. Carbon cycle and

44 climate system understanding is still limited about the effectiveness of CDR to reduce

45 temperatures after they peak (*high confidence*). [(Table SPM.2)] {2.2, 2.3.4, 2.3.5, 2.6, 4.3.7,
46 4.5.2, Table 4.11}

46 47

48 **C3.4.** Most current and potential CDR measures could have significant impacts on either land,

49 energy, water, or nutrients if deployed at scale. Afforestation and bioenergy can compete with

50 other land uses and could have significant impacts on agricultural and food systems, 51 biodiversity and other accession services (*high confidence*). Effective accession

51 biodiversity and other ecosystem services (*high confidence*). Effective governance is needed 52 to limit such trade-offs and ensure permanence of carbon removal in terrestrial, geological

52to limit such trade-offs and ensure permanence of carbon removal in terrestrial, geological
Do Not Cite, Quote or DistributeSPM-17Total pages: 28

Plenary Display Draft

SPM

1 and ocean reservoirs (high confidence). Feasibility and sustainability of CDR use could be 2 enhanced by a portfolio of options deployed at substantial, but lesser scales, rather than a 3 single option at very large scale (high confidence). (Figure SPM3, [Table SPM.2]) {2.3.4, 4 2.4.4, 2.5.3, 2.6, 3.6.2, 4.3.2, 4.3.7, 4.5.2, 5.4.1, 5.4.2; Cross-Chapter Boxes 7 and 8 in 5 Chapter 3, Table 4.11, Table 5.3, Figure 5.3} 6 7 **C3.5**. Some AFOLU-related CDR measures such as restoration of natural ecosystems and soil 8 carbon sequestration could provide co-benefits such as improved biodiversity, soil quality, 9 and local food security. If deployed at large scale, they would require effective governance to 10 conserve and protect land carbon stocks and other ecosystems services (medium confidence). 11 (Figure SPM 4, [Table SPM.2]) {2.3.3, 2.3.4, 2.4.2, 2.4.4, 3.6.2, 5.4.1, Cross-Chapter Boxes 3 12 in Chapter 1 and 7 in Chapter 3, 4.3.2, 4.3.7, 4.4.1, 4.5.2, Table 2.4 13 14 15 D. Strengthening the Global Response in the Context of Sustainable Development and 16 **Efforts to Eradicate Poverty** 17 18 D1. The current Nationally Determined Contributions (NDCs) submitted under the Paris Agreement would lead to global greenhouse gas emissions⁹ in 2030 of 52–58 19 20 GtCO₂eq yr⁻¹ (*medium confidence*). This trajectory would not limit global warming to 1.5°C. even if supplemented by very challenging increases in the scale and ambition of 21 emissions reductions after 2030 (high confidence). Avoiding overshoot and reliance on 22 23 future large-scale deployment of carbon dioxide removal (CDR) can only be achieved if 24 global CO₂ emissions start to decline well before 2030 (high confidence). {1.2, 2.3, 3.3, 25 **3.4, 4.2, 4.4, Cross-Chapter Box 11 in Chapter 4** 26 27 **D1.1.** Pathways that limit global warming to 1.5°C with no or limited overshoot show clear 28 emission reductions by 2030 (high confidence). All but one show a decline in global 29 greenhouse gas emissions to below 35 GtCO₂eq yr⁻¹ in 2030, and half of available pathways fall within the 25-30 GtCO₂eq yr⁻¹ range (interquartile range), a 40-50% reduction from 2010 30 levels. (high confidence). The current NDCs are broadly consistent with cost-effective 31 32 pathways that result in a global warming of about 3°C by 2100, with warming continuing 33 afterwards. (medium confidence). {2.3.3, 2.3.5, Cross-Chapter Box 11 in Chapter 4, 5.5.3.2} 34 35 D1.2. Overshoot trajectories result in higher impacts and associated challenges compared to 36 pathways that limit global warming to 1.5°C with no or limited overshoot (*high confidence*). Reversing warming after an overshoot of 0.2°C or larger during this century would require 37 38 upscaling and deployment of CDR at rates and volumes that might not be achievable given 39 considerable implementation challenges (medium confidence) {1.3.3, 2.3.4, 2.3.5, 2.5.1, 3.3, 40 4.3.7, Cross-Chapter Box 8 in Chapter 3, Cross-Chapter Box 11 in Chapter 4} 41 42 **D1.3.** The lower the emissions in 2030, the lower the challenge in limiting global warming to 43 1.5°C after 2030 with no or limited overshoot (high confidence). The challenges from delayed 44 actions to reduce greenhouse gas emissions include the risk of cost escalation, lock-in in 45 carbon-emitting infrastructure, stranded assets, and reduced flexibility in future response 46 options in the medium to long-term (*high confidence*). These may increase uneven

47 distributional impacts between countries at different stages of development (medium

48 *confidence*). {2.3.5, 4.4.5, 5.4.2}

⁹ GHG emissions have been aggregated with 100-year GWP values as introduced in the IPCC Second Assessment Report

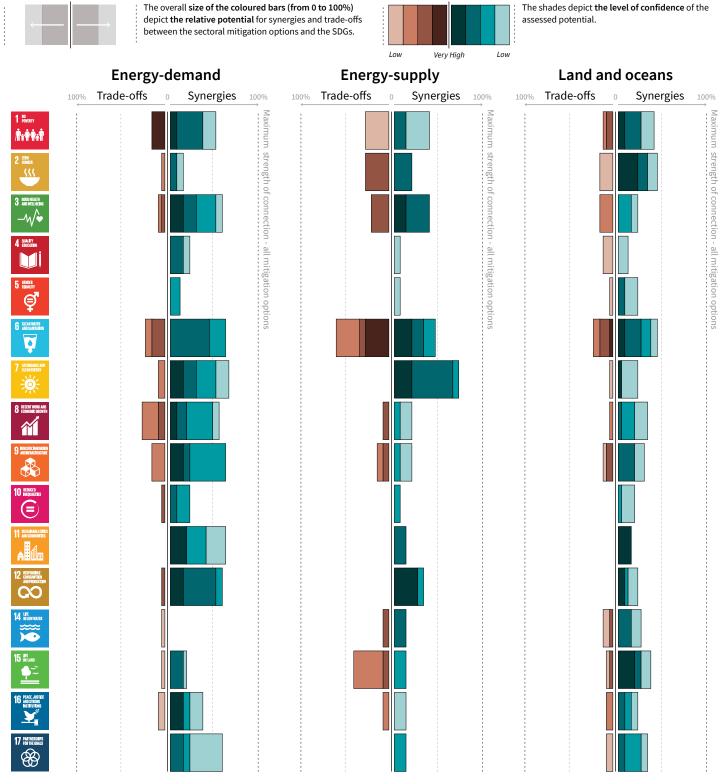
D2. Adaptation options specific to national contexts, if carefully selected together with 1 2 enabling conditions, will have benefits for sustainable development and poverty 3 reduction with global warming of 1.5°C (high confidence). {1.4, 4.3, 4.5, 5.3} 4 5 **D2.1.** Adaptation options that reduce the vulnerability of agriculture, urban and ecological 6 systems have many synergies with sustainable development, such as ensuring food and water 7 security, reducing disaster risks, improving health, maintaining ecosystem services and 8 reducing poverty and inequality (high confidence). Increasing investment in physical and 9 social infrastructure is a key enabling condition to enhance the resilience and the adaptive 10 capacities of societies. These benefits can occur in most regions with adaptation to 1.5°C of global warming (high confidence). {1.4.3, 4.2.2, 4.3.1, 4.3.2, 4.3.3, 4.3.5, 4.4.1, 4.4.3, 4.5.3, 11 12 5.3.1, 5.3.213 14 **D2.2.** Adaptation to 1.5°C global warming can also result in trade–offs with adverse impacts 15 for sustainable development if poorly designed and implemented. For example, adaptation 16 projects that intensify agriculture or expand urban infrastructure can increase greenhouse gas 17 emissions and water use, increase gender and social inequality, undermine health, and 18 encroach on natural ecosystems (high confidence). These trade-offs can be minimized by 19 adaptation planning that includes attention to poverty and sustainable development 20 implications. (high confidence) {4.3.2, 4.3.3, 4.5.4, 5.3.2; Cross-Chapter Boxes 6 and 7 in 21 Chapter 3} 22 23 **D2.3.** A mix of adaptation and mitigation options to limit global warming to 1.5°C, 24 implemented in a participatory and integrated manner, can enable rapid, systemic transitions 25 in urban and rural areas (high confidence). These are most effective when aligned with 26 economic and sustainable development, and when local and regional governments are 27 supported by national governments (*medium confidence*) {4.3.2, 4.3.3, 4.4.1, 4.4.2} 28 29 **D2.4.** Adaptation options that also mitigate emissions can provide synergies and cost savings 30 in most sectors and system transitions, such as when land management reduces emissions and 31 disaster risk, or when low carbon buildings are also designed for efficient cooling. Trade-offs between mitigation and adaptation, when limiting global warming to 1.5°C, such as when 32 bioenergy crops or reforestation encroach on land needed for agricultural adaptation, can 33 34 undermine food security, livelihoods, ecosystem function and other aspects of sustainable 35 development. (*high confidence*) {3.4.3, 4.3.2, 4.3.4, 4.4.1, 4.5.2, 4.5.3, 4.5.4} 36 37 D3. Mitigation options consistent with 1.5°C pathways are associated with multiple synergies and trade-offs across the Sustainable Development Goals (SDGs). While the 38 39 total number of possible synergies exceeds the number of trade-offs, their net effect will 40 depend on the pace and magnitude of changes, the composition of the mitigation 41 portfolio and the management of the transition. (high confidence) (SPM Figure 4) {2.5, 42 4.5, 5.4} 43 44 **D3.1.** 1.5°C pathways have robust synergies particularly for the SDGs 3 (health), 7 (clean 45 energy), 11 (cities and communities), 12 (responsible consumption and production), and 14 46 (oceans) (very high confidence). Some 1.5°C pathways show potential trade-offs with mitigation for SDGs 1 (poverty), 2 (hunger), 6 (water), and 7 (energy access), if not carefully 47

mitigation for SDGs 1 (poverty), 2 (hunger), 6 (water), and 7 (energy access), if not carefully
managed (*high confidence*) (Figure SPM4). {5.4.2; Figure 5.4, Cross-Chapter Boxes 7 and 8
in Chapter 3}

Plenary Display Draft

SPM

- **D3.2.** 1.5°C pathways that include low energy demand (for example the illustrative LED
- pathway in Figure SPM3a and b), low material consumption, and low GHG-intensive food
 consumption have the most pronounced synergies and the lowest number of trade-offs with
- consumption have the most pronounced synergies and the lowest number of trade-offs with
 respect to sustainable development and the SDGs (*high confidence*). Such pathways would
- respect to sustainable development and the SDGs (*nigh confidence*). Such pathways would
 reduce dependence on carbon dioxide removal (CDR) (*high confidence*). (Figure SPM4,
- 6 Figure SPM3) {2.4.3, 2.5.1, 2.5.3, Figure 2.4, Figure 2.28, 5.4.1, 5.4.2, Figure 5.4}
- 7
- 8 **D3.3.** The impacts of land-based CDR and other land-intensive mitigation options on SDGs
- 9 depend on the type of options and the scale of deployment (*high confidence*). If poorly
- 10 implemented, options such as BECCS, bioenergy and AFOLU would lead to trade-offs.
- 11 Context-relevant design and implementation requires considering people's needs,
- 12 biodiversity, and other sustainable development dimensions (very high confidence). {4.3.7,
- 13 5.4.1.3, Cross-Chapter Box 7 in Chapter 3}
- 14
- 15 **D3.4.** Mitigation consistent with 1.5°C pathways creates risks for sustainable development in
- regions with high dependency on fossil fuels for revenue and employment generation (*high*
- 17 *confidence*). Policies that promote diversification of the economy and the energy sector can
- 18 address the associated challenges (*high confidence*). {5.4.1.2, Box 5.2}
- 19
- 20 **D3.5.** Redistributive policies across sectors and populations that shield the poor and
- 21 vulnerable can resolve trade-offs for a range of SDGs, particularly hunger, poverty and energy
- access. Investment needs for such complementary policies are only a small fraction of the
- 23 overall mitigation investments in 1.5°C pathways. (*high confidence*) {2.4.3, 5.4.2, Figure
- 24 5.5}


SPM

Possible synergies and trade-offs of climate change mitigation with the SDGs

Mitigation options deployed in each sector can be associated with potential synergies or trade-offs with the Sustainable Development Goals (SDGs). The degree to which this potential is realized will depend on the selected portfolio of mitigation options, mitigation policy design, and local circumstances and context. Particularly in the energy-demand sector, the potential for synergies is larger than for trade-offs. The bars group individually assessed options by level of confidence and take into account the relative strength of the assessed mitigation-SDG connections.

Shades show level of confidence

Length shows strength of connection

¹SDG1: No Poverty, SDG2: Zero Hunger, SDG3: Good Health and Well-being, SDG4: Quality Education, SDG5: Gender Equality, SDG6: Clean Water and Sanitation, SDG7: Affordable and Clean Energy, SDG8: Decent Work and Economic Growth, SDG9: Industry, Innovation and Infrastructure, SDG10: Reduced Inequality, SDG11: Sustainable Cities and Communities, SDG12: Responsible Consumption and Production, SDG13: Climate action is not included because we are considering how mitigation is interacting with SDGs and not vice versa SDG14: Life Below Water, SDG15: Life on Land, SDG16: Peace and Justice Strong Institutions, SDG17: Partnerships to achieve the Goal

Data source: Special Report on Global Warming of 1.5°C **Do Not Cite, Quote or Distribute**

Plenary Display Draft

SPM

123456789 Figure SPM.4: Potential synergies and trade-offs between the sectoral portfolio of climate change mitigation options and the Sustainable Development Goals (SDGs). The strength of the sectoral interactions is based on the assessment of individual mitigation options listed in Table 5.2, which assesses for each option the strength and direction of the interaction (synergy or trade-off) as well as the confidence of the underlying literature (shades of green and red). The effect of the individual options is aggregated to represent the total sectoral potential. A potential of 100% depicts a hypothetical case where the interaction of mitigation options in a sector and a specific SDG show maximum strength for all options assessed. The areas above the bars, which indicate no interactions, have low confidence due to the uncertainty and limited number of studies exploring indirect effects. The strength of the connection considers only the effect of mitigation and does not include benefits of avoided 10 impacts. SDG 13 (climate action) is not listed because mitigation is being considered in terms of interactions 11 with SDGs and not vice versa. Other approaches assessed in the ocean sector that remove CO₂ from the 12 atmosphere include alkalinization and iron fertilization. {5.4, Table 5.2, Figure 5.2}

13

D4. Limiting the risks from global warming of 1.5°C in the context of sustainable development and poverty eradication implies system transitions that can be enabled by an increase of adaptation and mitigation investments, policy instruments, the acceleration of technological innovation and behaviour changes (*high confidence*). {2.3, 2.4, 2.5, 3.2, 4.2, 4.4, 4.5, 5.2, 5.5, 5.6}

19

20 **D4.1.** The redirection of world savings towards investment in infrastructure for mitigation and

adaptation could provide additional resources. Redirected finance could involve the

22 mobilization of private funds by institutional investors, asset managers and development or

investment banks, as well as the application of public funds. Government policies that de-risk
 low-emission and adaptation investments can facilitate the mobilization of private funds and

low-emission and adaptation investments can facilitate the mobilization of private fun
 enhance the effectiveness of other public policies. (*high confidence*) {2.5.2, 4.4.5}

26

D4.2. Adaptation finance consistent with global warming of 1.5°C is difficult to quantify and
compare with 2°C. Knowledge gaps include insufficient data to calculate specific climate
resilience-enhancing investments, from the provision of currently underinvested basic
infrastructure. Estimates of the costs of adaptation might be lower at global warming of 1.5°C

31 than for 2°C, but would be higher than the USD 22.5 billion (2014) estimates of bilateral and

32 multilateral funding for climate change adaptation (*medium confidence*). Currently, 18–25%

33 of climate finance flows to adaptation in developing countries (*high confidence*) {4.4.5, 4.6}

34

D4.3. Pathways limiting global warming to 1.5°C with no or limited overshoot involve the redistribution of global investments in infrastructure. Average annual investment in low-

37 carbon energy technologies and energy efficiency roughly doubles while investments in fossil

38 fuel extraction and conversion decrease by about a quarter over the next two decades (*medium*

39 *confidence*). Additional investment in infrastructure (energy, transportation, buildings, water

40 and sanitation) would be required. Between 2015 and 2035, this investment is estimated to be

41 on average 2.5% of annual economy-wide investment (0.6% of global GDP) (*medium*

42 *confidence*). {2.5.2, 4.4.5, Box 4.8}

43

44 **D4.4.** Policy packages can help mobilise incremental resources and redirect global world
 45 savings through flexible mechanisms that integrate explicit carbon pricing, technology

46 policies, performance standards, reduction of fossil fuel subsidies, de-risking of investments

47 through innovative financial instruments, performance standards, other pricing policies (land,

48 real estates) and compensating transfers to secure the equity of the transition. 1.5°C pathways

49 show an average discounted global cost for the last ton of emissions reductions that is 3-4

50 times higher than in 2°C pathways across models. (*high confidence*) {1.3.3, 2.3.4, 2.3.5, 2.5.1,

- 51 Cross-Chapter Box 8 in Chapter 3 and 11 in Chapter 4, 2.5.1, 2.5.2, 4.4.5, 5.5.2}
- 52
- 53 **D4.5.** The systems transitions consistent with adapting to and limiting global warming to
- 541.5°C include the widespread adoption of new and possibly disruptive technologies and
Do Not Cite, Quote or DistributeSPM-22Total pages: 28

Plenary Display Draft

SPM

practices and enhanced climate-driven innovation. These imply enhanced technological 1 2 innovation capabilities, including in industry and finance. Both national innovation policies 3 and international cooperation can contribute to the development, commercialization and 4 widespread adoption of mitigation and adaptation technologies. Innovation policies can be 5 more effective when they combine support for research and development with incentives for 6 market uptake in policy mixes. (*high confidence*) {4.4.4, 4.4.5}. 7 8 **D4.6**. Education, information, and community approaches, including those that are informed 9 by Indigenous knowledge and local knowledge, can accelerate the wide scale behaviour 10 changes consistent with adapting to and limiting global warming to 1.5°C. These approaches 11 are more effective when combined with other policies and tailored to the motivations, 12 capabilities, and resources of specific actors and contexts (high confidence). Public acceptability can enable or inhibit the implementation of policies and measures to limit global 13 14 warming to 1.5°C and to adapt to the consequences. Public acceptability depends on the 15 individual's evaluation of expected policy consequences, the perceived fairness of the 16 distribution of these consequences, and perceived fairness of decision procedures (high 17 *confidence*). {1.1, 1.5, 4.3.5, 4.4.1, 4.4.3, Box 4.3, 5.5.3, 5.6.5} 18 19 D5. Sustainable development supports, and often enables, the fundamental societal and 20 systems transitions and transformations that help limit global warming to 1.5°C. Such changes facilitate the pursuit of climate-resilient development pathways that achieve 21 22 ambitious mitigation and adaptation in conjunction with poverty eradication and efforts 23 to reduce inequalities (*high confidence*). {Box 1.1, 1.4.3, Figure 5.1, 5.5.3, Box 5.3} 24 25 **D5.1.** Social justice and equity are core aspects of climate-resilient development pathways 26 that aim to limit global warming to 1.5°C as they address challenges and inevitable trade-offs, 27 widen opportunities, and ensure that options, visions, and values are deliberated, between and 28 within countries and communities, without making the poor and disadvantaged worse off 29 (high confidence). {5.5.2, 5.5.3, Box 5.3, Figure 5.1, Figure 5.6, Cross-chapter Boxes 12 and 30 13 in Chapter 5} 31 32 **D5.2.** The potential for climate-resilient development pathways differs between and within 33 regions and nations, due to different development contexts and starting points (very high 34 confidence). Efforts along such pathways to date have been limited (medium confidence) and 35 would require strengthened contributions from all countries and non-state actors without delay 36 (*high confidence*). {5.5.1, 5.5.3, Figure 5.1} 37 38 **D5.3.** Pathways that are consistent with sustainable development show less mitigation and 39 adaptation challenges and are associated with lower mitigation costs. The large majority of 40 modelling studies could not construct pathways characterized by lack of cooperation, 41 inequality and poverty that were able to limit global warming to 1.5°C. (high confidence) 42 $\{2.3.1, 2.5.3, 5.5.2\}$ 43 44 D6. Strengthening the capacities for climate action of national and sub-national 45 authorities, civil society, the private sector, indigenous peoples and local communities 46 can support the implementation of ambitious actions implied by limiting global warming to 1.5°C (high confidence). International cooperation can provide an enabling 47 48 environment for this to be achieved in all countries and for all people, in the context of 49 sustainable development (high confidence) {1.4, 2.3, 2.5, 4.2, 4.4, 4.5, 5.3, 5.4, 5.5, 5.6, 5, Box 4.1, Box 4.2, Box 4.7, Box 5.3, Cross-Chapter Box 9 in Chapter 4, Cross-Chapter 50 Box 13 in Chapter 5} 51 52

Do Not Cite, Quote or Distribute

- 1 **D6.1.** Partnerships involving non-state public and private actors, institutional investors, the
- 2 banking system, civil society and scientific institutions would facilitate actions and responses consistent with limiting global warming to 1.5°C (very high confidence). {1.4, 4.4.1, 4.2.2,
- 3 4 4.4.3, 4.4.5, 4.5.3, 5.4.1, 5.6.2, Box 5.3}.
- 5
- 6 D6.2. Cooperation on strengthened multilevel governance, coordinated sectoral and cross-
 - 7 sectoral policies, gender responsive policies, innovative financing and cooperation on
 - 8 technology development and transfer can ensure participation, transparency, capacity
 - 9 building, and learning among different players (high confidence). {2.5.2, 4.2.2, 4.4.1, 4.4.2,
 - 10 4.4.3, 4.4.4, 4.5.3, Cross-Chapter Box 9 in Chapter 4, 5.3.1, 4.4.5, 5.5.3, Cross-Chapter Box 11 13 in Chapter 5, 5.6.1, 5.6.3
 - 12
 - 13 **D6.3.** International cooperation can support the implementation of 1.5°C-consistent climate
 - 14 responses in developing countries and vulnerable regions, by enabling access to finance and
 - 15 technology and enhancing capacities that can complement domestic resources (high
 - 16 *confidence*). {2.3.1, 4.4.1, 4.4.2, 4.4.4, 4.4.5, 5.4.1 5.5.3, 5.6.1, Box 4.1, Box 4.2, Box 4.7}.
 - 17
- 18 **D6.4.** Collective efforts in the pursuit of limiting global warming to 1.5°C can facilitate
- 19 strengthening the global response to climate change, achieving sustainable development and
- 20 eradicating poverty (high confidence). {1.4.2, 2.3.1, 2.5.2, 4.2.2, 4.4.1, 4.4.2, 4.4.3, 4.4.4,
- 21 4.4.5, 4.5.3, 5.3.1, 5.4.1, 5.5.3, 5.6.1, 5.6.2, 5.6.3
- 22

Box SPM 1: Core Concepts Central to this Special Report

Global mean surface temperature (GMST): Estimated global average of near-surface air temperatures over land and sea-ice, and sea surface temperatures over ice-free ocean regions, normally expressed as departures from a specified reference period. Projected future changes in GMST are approximated by changes in global surface air temperature.¹⁰{1.2.1.1}

7
8 Pre-industrial: The multi-century period prior to the onset of large-scale industrial activity
9 around 1750. The reference period 1850–1900 is used to approximate pre-industrial GMST.
10 {1.2.1.2}

11

1

12 Global warming: The estimated increase in GMST averaged over a 30-year period, or the 30-13 year period centered on a particular year or decade, expressed relative to pre-industrial levels 14 unless otherwise specified. For 30-year periods that span past and future years, the current 15 warming trend is assumed to continue. {1.2.1}

16

17 Net zero CO₂ emissions: Conditions in which anthropogenic carbon dioxide (CO₂) emissions
 18 are approximately balanced globally by anthropogenic CO₂ removals.
 19

20 **Carbon dioxide removal (CDR):** Anthropogenic activities removing CO_2 from the 21 atmosphere and transferring it to geological, terrestrial, product or ocean storage. It includes 22 anthropogenic enhancement of biological or geochemical sinks and direct chemical air capture 23 and storage, but excludes natural CO_2 sinks.

24

Remaining carbon budget: Cumulative net global anthropogenic CO₂ emissions from the start of 2018 to the time that anthropogenic CO₂ emissions reach net zero that would result, at some probability, in limiting global warming to a given level, accounting for the impact of other anthropogenic emissions. The total carbon budget is the sum of historical CO₂ emissions and the remaining carbon budget. {2.2.2}

- 30
 31 Temperature overshoot: The temporary exceedance of a specified level of global warming,
 32 returning to that level before 2100 through CDR and/or reductions in emissions of other
 33 greenhouse gases. {1.2.3, 1.2.3.2}
- 34

Pathway: The trajectory of natural and/or human systems towards a future state. Emission pathways are classified by their temperature trajectory over the 21st century: pathways giving at least 50% probability based on current knowledge of limiting global warming to below 1.5°C are classified as 'no overshoot'; those limiting warming to below 1.6°C and returning to 1.5°C by 2100 are classified as '1.5°C limited-overshoot'; while those exceeding 1.6°C but still returning to 1.5°C by 2100 are classified as 'higher-overshoot'.

41

42 Impacts: Effects of climate change, such as warming, sea level rise or changes in the frequency 43 and intensity of heat waves or precipitation events, on human and natural systems. Impacts can 44 have beneficial or adverse outcomes for livelihoods, health and well-being, ecosystems and 45 species, services, infrastructure, and economic, social and cultural assets.

46

Risk: The potential for adverse consequences from a climate-related hazard for human and
natural systems, resulting from the interactions between the hazard and the vulnerability and
exposure of the affected system. Risk integrates the likelihood of exposure to a hazard and the

 ¹⁰ Past IPCC reports, reflecting the literature, have used a variety of global mean surface temperature metrics for observed warming, temperature projections, impacts and carbon budgets calculations both within and across Working Group reports.
 Do Not Cite, Quote or Distribute SPM-25 Total pages: 28

magnitude of its impact. Risk also can describe the potential for adverse consequences of
 adaptation or mitigation responses to climate change.

Climate-resilient development pathways (CRDPs): Trajectories that strengthen sustainable development and efforts to eradicate poverty through equitable societal transformations across all scales and economies, while reducing the threat of climate change through ambitious

7 mitigation, adaptation, and climate resilience {1.4.3, Cross-Chapter Box 1 in Chapter 1, 5.1,

8 Figure 5.1, 5.5.3}

Plenary Display Draft

SPM

[Table SPM.1: Adaptation feasibility table. Feasibility assessment of examples of adaptation options relevant

to 1.5°C of global warming with dark shading signifying the absence of barriers in the feasibility dimension,

1 2 3 4 5 moderate shading that the dimension does not have a positive or negative effect on the feasibility of the option,

and light shading the presence of potentially blocking barriers. No shading means that not sufficient literature

could be found to make the assessment. {Table 4.12}]

6 7

7									
	Adaptation option	Confidence	Economic	Technological	Institutional	Socio-cultural	Environmental- ecological	Geophysical	Context
	Conservation agriculture	Medium							Depends on irrigated/rain-fed system, ecosystem characteristics, crop type, other farming practices
sitions	Efficient irrigation	Medium							Depends on agricultural system, technology used, regional institutional and biophysical context
em Tran	Efficient livestock systems	Medium							Dependent on livestock breeds, feed practices, and biophysical context (e.g. carrying capacity)
Ecosyst	Community- based adaptation	Medium							Focus on rural areas and combined with ecosystems-based adaptation, does not include urban settings
Land and Ecosystem Transitions	Ecosystem restoration & avoided deforestation	High							Mostly focused on existing and evaluated Reducing Emissions from Deforestation and Forest Degradation (REDD+) projects
	Coastal defence & hardening	High							Depends on locations that require it as a first adaptation option
tructure	Sustainable land-use & urban planning	Medium							Depends on nature of planning systems and enforcement mechanisms
an and Infrastruct System Transitions	Sustainable water management	High							Balancing sustainable water supply and rising demand especially
Urban and Infrastructure System Transitions	Green infrastructure & ecosystem services	High							Depends on reconciliation of urban development with green infrastructure

8 9

10

Plenary Display Draft

[Table SPM.2: Feasibility assessment of examples of mitigation options relevant to 1.5°C global warming and illustrative pathways in Figure SPM3a and b. Dark shading signifies the absence of barriers in the feasibility dimension, moderate shading that on average, the dimension does not have a positive or negative effect on the feasibility of the option, and faint shading the presence of potentially blocking barriers. No shading means that not sufficient literature could be found to make the assessment. Evidence and agreement assessment is undertaken at the option level. The context column on the far right indicates how the assessment might change as a consequence of contextual factors. {Table 4.11}]

SPM

8 9

	1	r			r		r		1
	Mitigati on Option	Confidence	Economic	Technological	Institutional	Socio-cultural	Environmental-	Geophysical	Context
Energy System Transitions	Solar PV	High							Cost-effectiveness affected by solar irradiation and incentive regime. Also enhanced by legal framework for independent power producers, which affects uptake.
Energy Tran	Power sector CCS	High							Varies with local CO ₂ storage capacity, presence of legal framework, level of development and quality of public engagement
Land and Ecosystem Transitions	Ecosystems restoration	High							Depends on location and institutional factors
d are itions	Electric cars and buses	Mediu m							Varies with degree of government intervention; requires capacity to retrofit 'fuelling' stations
Urban and Infrastructure System Transitions	Non- motorized transport	High							Viability rests on linkages with public transport, cultural factors, climate and geography
U Inf Syste	Low/zero- energy buildings	High							Depends on size of existing building stock and growth of building stock
lustrial System Transitions	Energy efficiency	High							Potential and adoption depend on existing efficiency, energy prices and interest rates, as well as government incentives.
Industrial System Transitions	Industrial CCUS	High							High concentration of CO ₂ in exhaust gas improve economic and technical feasibility of CCUS in industry. CO ₂ storage or reuse possibilities.
Dioxide	BECCS	Mediu m							Depends on biomass availability, CO ₂ storage capacity, legal framework, economic status and social acceptance
Carbon Dioxide Removal	Afforestatio n & reforestatio n	High							Depends on location, mode of implementation, and economic and institutional factors

10 11