

IPCC Special Report on Global Warming of 1.5°C

#SR15

Global Warming of 1.5°C

An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Global Warming of 1.5°C

An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

The report in numbers

91 Authors from 40 Countries

133 Contributing authors

6000 Studies

1 113 Reviewers

42 001 Comments

Where are we now?

Since pre-industrial times, human activities have caused approximately 1°C of global warming.

- Already seeing consequences for people, nature and livelihoods
- At current rate, would reach 1.5°C between 2030 and 2052
- Past emissions alone do not commit the world to 1.5°C

Ashley Cooper / Aurora Photos

Impacts of global warming 1.5°C

At 1.5°C compared to 2°C:

- Less extreme weather where people live, including extreme heat and rainfall
- By 2100, global mean sea level rise will be around 10 cm lower but may continue to rise for centuries
- 10 million fewer people exposed to risk of rising seas

Jason Florio / Aurora Photos

Impacts of global warming 1.5°C

At 1.5°C compared to 2°C:

- Lower impact on biodiversity and species
- Smaller reductions in yields of maize, rice, wheat
- Global population exposed to increased water shortages is up to 50% less

Andre Seale / Aurora Photos

Impacts of global warming 1.5°C

At 1.5°C compared to 2°C:

• Lower risk to fisheries and the livelihoods that depend on them

• Up to several hundred million fewer people exposed to climate-related risk and susceptible to poverty by 2050

Natalie Behring / Aurora Photos

Emission Pathways and System Transitions Consistent with 1.5°C Global Warming

- To limit warming to 1.5°C, CO₂ emissions fall by about 45% by 2030 (from 2010 levels)
 └→ Compared to 25% for 2°C
- To limit warming to 1.5°C, CO₂ emissions would need to reach 'net zero' around 2050
 └→ Compared to around 2070 for 2°C
- Reducing non-CO₂ emissions would have direct and immediate health benefits

Robert van Waarden / Aurora Photos

- Limiting warming to 1.5°C would require changes on an unprecedented scale
 - → Deep emissions cuts in all sectors
 - → A range of technologies
 - → Behavioural changes
 - → Increased investment in low carbon options

- Progress in renewables would need to be mirrored in other sectors
- We would need to start taking carbon dioxide out of the atmosphere
- Implications for food security, ecosystems and biodiversity

Peter Essick / Aurora Photos

- National pledges are not enough to limit warming to 1.5°C
- Avoiding warming of more than 1.5°C would require CO₂ emissions to decline substantially before 2030

Gerhard Zwerger-Schoner / Aurora Photos

Strengthening the Global Response in the Context of Sustainable Development and Efforts to Eradicate Poverty

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

Climate change and people

- Close links to United Nations Sustainable
 Development Goals (SDGs)
- Mix of measures to adapt to climate change and reduce emissions can have benefits for SDGs
- National and sub-national authorities, civil society, the private sector, indigenous peoples and local communities can support ambitious action
- International cooperation is a critical part of limiting warming to 1.5°C

Ashley Cooper/ Aurora Photos

Global warming relative to 1850-1900 (°C)

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

b) Stylized net global CO₂ emission pathways

Billion tonnes CO_2 per year (GtCO₂/yr)

c) Cumulative net CO₂ emissions

Billion tonnes CO₂ (GtCO₂)

d) Non-CO2 radiative forcing pathways

Watts per square metre (W/m²)

Global warming relative to 1850-1900 (°C)

b) Stylized net global CO₂ emission pathways

Billion tonnes CO₂ per year (GtCO₂/yr)

c) Cumulative net CO₂ emissions

Billion tonnes CO₂ (GtCO₂)

d) Non-CO2 radiative forcing pathways

Watts per square metre (W/m²)

Global warming relative to 1850-1900 (°C)

b) Stylized net global CO₂ emission pathways

Billion tonnes CO₂ per year (GtCO₂/yr)

c) Cumulative net CO₂ emissions

Billion tonnes CO₂ (GtCO₂)

d) Non-CO2 radiative forcing pathways

Watts per square metre (W/m²)

How the level of global warming affects impacts and/or risks associated with the Reasons for Concern (RFCs) and selected natural, managed and human systems

Purple indicates very high

risks of severe impacts/risks

Five Reasons For Concern (RFCs) illustrate the impacts and risks of different levels of global warming for people, economies and ecosystems across sectors and regions.

Purple indicates very high risks of severe impacts/risks and the presence of significant irreversibility or the persistence of climate-related hazards, combined with limited ability to adapt due to the nature of the hazard or impacts/risks. **Red** indicates severe and

widespread impacts/risks. **Yellow** indicates that impacts/risks are detectable and attributable to climate change with at least medium confidence.

White indicates that no impacts are detectable and attributable to climate change.

Impacts and risks associated with the Reasons for Concern (RFCs)

Impacts and risks for selected natural, managed and human systems

Impacts and risks associated with the Reasons for Concern (RFCs)

Confidence level for transition: L=Low, M=Medium, H=High and VH=Very high

INTERGOVERNMENTAL PANEL ON CLIMOTE CHONCE

Impacts and risks for selected natural, managed and human systems

SPM2 Example : Terrestrial ecosystems

By 2.5°C, biome shifts and species range losses escalate to very high levels – adaptation options are very limited (*irreversible*).

Key transition between 1.5°C to 2.0°C due to extensive shifts of biomes and a doubling or tripling of the number of plants, animals or insects losing over half of their climatically determined geographic ranges

No detection and attribution of impacts of global warming on terrestrial ecosystems

Differences become much larger between 1.5°C and 2.0°C

SPM3 a) Global emissions pathway characteristicsb) Characteristics of four illustrative model pathways

Characteristics of four illustrative model pathways

Different mitigation strategies can achieve the net emissions reductions that would be required to follow a pathway that limits global warming to 1.5°C with no or limited overshoot. All pathways use Carbon Dioxide Removal (CDR), but the amount varies across pathways, as do the relative contributions of Bioenergy with Carbon Capture and Storage (BECCS) and removals in the Agriculture, Forestry and Other Land Use (AFOLU) sector. This has implications for emissions and several other pathway characteristics.

Breakdown of contributions to global net CO2 emissions in four illustrative model pathways Hillion toopes CO., per year (Crt II)- (v/) Hillion formes CD, nec year (CBCD-Art

specially in the gobal South. A lownshed energy system enables and decarbonization of energy supply, from think in the only LUK option unsidentaly wither least lacks with CCS or BDCTS are used.	International cooperation, as we shift towards austainable and consumption patterns, low can be having unrowation, and well manage there systems with limited acceleral acceptability for	ell as mainly ach tealbhy which ener ten produced, reductions is sboots.	mainly achieved by changing the way in which energy and postants are produced, and to a lease degine by reductions in dereand.		transportation fuels and liverlock products. Enclosing reductions are mainly achieved through technological means, making strong use of CDP through the deployment of SEECS.	
alindicators	P1	P2	P3	P4	Interquartile nange	
way classification	No or limited overshapt	No or limited overshoot	No or limited overshoot	ligher eventhoat	No or limited overshoot	
URIS of rel 85, 0615 H age and the 200	-58	-47	+1	4	(446,-400	
-k: 2050 (ik: wite 2010)	-41	-92	-91	-27	(-207,-94)	
 SWS emissions' in 2030 (% of to 2018) 	-50	40	-35	-2	(\$1,39)	
- An 2050 (16 rel to 2010)	-12	-00	-T0	-00	(40),401)	
is songy decord "" in 2020 (% miths 2010)	-15	-5	17	.39	(-12,7)	
- M 2050/26 rel to 2010	-32	2	21	44	(-11,22)	
medde strane in electricity in 2000 [34]	63	50	-16	25	(47,65)	
-h:2050(%)	71	81	63	10	(69,96)	
ary sourgy from cast in 2010 (% ref to 2010	-10	-61	-75	-09	(-23, -59)	
- Art 2050 (Arrentics 2010)	-47	-11	-13	-87	(45, -54)	
ter of in 2015 1% rel to 2018	-17	-13	-8	10	(504.3)	
- in 2050 (N rel to 2020)	-47	-50	-61	-32	(-70,-31)	

•		
	UUU	
ate	e change -	

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

as intensive

(26,21)

(44,102)

(245,436)

1941-0102

(1.5,3.2)

547-240

(21,3)

6.26.15 of an ISCE Second American Proved CMR 200

45.6

1218

1121

(-35,5)

(11,390)

(122,261)

(576,1299)

364,652

(-30,-11)

SPN3a Global emissions pathway characteristics

Global total net CO₂ emissions

Pathways with no or limited overshoot

SPM3a Global emissions pathway characteristics

Global total net CO₂ emissions

SPM3a Global emissions pathway characteristics

Global total net CO₂ emissions

SPN3a Global emissions pathway characteristics

Nitrous oxide emissions

Global total net CO₂ emissions

2020 2030 2040 2050 2060 2070 2080 2090 2100

Billion tonnes of CO₂/yr

Non-CO₂ emissions relative to 2010

Emissions of non-CO₂ forcers are also reduced or limited in pathways limiting global warming to 1.5°C with **no or limited overshoot**, but they do not reach zero globally.

SPM3a Global emissions pathway characteristics

Global total net CO₂ emissions

Breakdown of contributions to global net CO₂ emissions in four illustrative model pathways

BECCS

P2

2020

P1: A scenario in which social, business and technological innovations result in lower energy demand up to 2050 while living standards rise, especially in the global South. A downsized energy system enables rapid decarbonization of energy supply. Afforestation is the only CDR option considered; neither fossil fuels with CCS nor BECCS are used.

P2: A scenario with a broad focus on sustainability including energy intensity, human development, economic convergence and international cooperation, as well as shifts towards sustainable and healthy consumption patterns, low-carbon technology innovation, and well-managed land systems with limited societal acceptability for BECCS.

2060

P3: A middle-of-the-road scenario in which societal as well as technological development follows historical patterns. Emissions reductions are mainly achieved by changing the way in which energy and products are produced, and to a lesser degree by reductions in demand.

2060

Billion tonnes CO₂ per year (GtCO₂/yr)

P3

20

-20

2020

2100

P4: A resource- and energy-intensive scenario in which economic growth and globalization lead to widespread adoption of greenhouse-gas-intensive lifestyles, including high demand for transportation fuels and livestock products. Emissions reductions are mainly achieved through technological means, making strong use of CDR through the deployment of BECCS.

WMO

Breakdown of contributions to global net CO₂ emissions in four illustrative model pathways

P1

P1: A scenario in which social, business and technological innovations result in lower energy demand up to 2050 while living standards rise, especially in the global South. A downsized energy system enables rapid decarbonization of energy supply. Afforestation is the only CDR option considered; neither fossil fuels with CCS nor BECCS are used.

P2

P2: A scenario with a broad focus on sustainability including energy intensity, human development, economic convergence and international cooperation, as well as shifts towards sustainable and healthy consumption patterns, low-carbon technology innovation, and wellmanaged land systems with limited societal acceptability for BECCS.

ental panel on **climaτe ch**

P3

P3: A middle-of-the-road
scenario in which societal as well
as technological development
follows historical patterns.
Emissions reductions are mainly
achieved by changing the way in
which energy and products are
produced, and to a lesser degree
by reductions in demand.

P4

P4: A resource- and energy-intensive scenario in which economic growth and globalization lead to widespread adoption of greenhouse-gas-intensive lifestyles, including high demand for transportation fuels and livestock products. Emissions reductions are mainly achieved through technological means, making strong use of CDR through the deployment of BECCS.

and emissic

Energy syste

Ca	rl	b	Ο	n		d	İ	Ο	Х	İ.	d	e	
					r	e	r	n	0	1	12	al	

	Global indicators	P1	P2	P3	P4	Interquartile range
	Pathway classification	No or low overshoot	No or low overshoot	No or low overshoot	High overshoot	No or low overshoot
Temperature	CO2 emission change in 2030 (% rel to 2010)	-58	-47	-41	4	(-59,-40)
	<i>→ in 2050 (% rel to 2010)</i>	-93	-95	-91	-97	(-104,-91)
and emissions	Kyoto-GHG emissions* in 2030 (% rel to 2010)	-50	-49	-35	-2	(-55,-38)
	<i>⊣ in 2050 (% rel to 2010)</i>	-82	-89	-78	-80	(-93,-81)
	Final energy demand** in 2030 (% rel to 2010)	-15	-5	17	39	(-12, 7)
	<i>∽ in 2050 (% rel to 2010)</i>	-32	2	21	44	(-11, 22)
	Renewable share in electricity in 2030 (%)	60	58	48	25	(47, 65)
	<i>∽ in 2050 (%)</i>	77	81	63	70	(69, 87)
nergy systems	Primary energy from coal in 2030 (% rel to 2010)	-78	-61	-75	-59	(-78, -59)
	⊣ in 2050 (% rel to 2010)	-97	-77	-73	-97	(-95, -74)
	from oil in 2030 (% rel to 2010)	-37	-13	-3	86	(-34,3)
	→ in 2050 (% rel to 2010)	-87	-50	-81	-32	(-78,-31)
	from gas in 2030 (% rel to 2010)	-25	-20	33	37	(-26,21)
	→ in 2050 (% rel to 2010)	-74	-53	21	-48	(-56,6)
	from nuclear in 2030 (% rel to 2010)	59	83	98	106	(44,102)
	→ in 2050 (% rel to 2010)	150	98	501	468	(91,190)
	from biomass in 2030 (% rel to 2010)	-11	0	36	-1	(29,80)
	└- in 2050 (% rel to 2010)	-16	49	121	418	(123,261)
arban diavida	from non-biomass renewables in 2030 (% rel to 2010)	430	470	315	110	(243,438)
arbon dioxide	⊢ in 2050 (% rel to 2010)	832	1327	878	1137	(575,1300)
removal	Cumulative CCS until 2100 (GtCO ₂)	0	348	687	1218	(550, 1017)
removal	\hookrightarrow of which BECCS (GtCO ₂)	0	151	414	1191	(364, 662)
	Land area of bioenergy crops in 2050 (million hectare)	22	93	283	724	(151, 320)
	Agricultural CH4 emissions in 2030 (% rel to 2010)	-24	-48	1	14	(-30,-11)
Agriculture	in 2050 (% rel to 2010)	-33	-69	-23	2	(-46,-23)
, igneareare	Agricultural N2O emissions in 2030 (% rel to 2010)	5	-26	15	3	(-21,4)
	in 2050 (% rel to 2010)	6	-26	0	39	(-26,1)

Temperature and emissions				Higher	No or limited	
	No or limited overshoot			overshoot	overshoot	
Global indicators	P1	P2	Р3	P4	Interquartile range	
CO₂ emission change in 2030 (% rel to 2010)	-58	-47	-41	4	(-58,-40)	
└→ in 2050 (% rel to 2010)	-93	-95	-91	-97	(-107,-94)	
Kyoto-GHG emissions* in 2030 (% rel to 2010)	-50	-49	-35	-2	(-51,-39)	
→ in 2050 (% rel to 2010)	-82	-89	-78	-80	(-93,-81)	

nergy systems Global indicators		No or limite overshoot		Higher overshoot	No or limited overshoot	
		P2	Р3	P4	Interquartile range	
Final energy demand** in 2030 (% rel to 2010)	-15	-5	17	39	(-12,7)	
→ in 2050 (% rel to 2010)	-32	2	21	44	(-11,22)	
Renewable share in electricity in 2030 (%)	60	58	48	25	(47,65)	
└→ in 2050 (%)	77	81	63	70	(69,86)	
Primary energy from coal in 2030 (% rel to 2010)	-78	-61	-75	-59	(-78, -59)	
ل→ in 2050 (% rel to 2010)	-97	-77	-73	-97	(-95, -74)	
from oil in 2030 (% rel to 2010)	-37	-13	-3	86	(-34,3)	
→ in 2050 (% rel to 2010)	-87	-50	-81	-32	(-78,-31)	
from gas in 2030 (% rel to 2010)	-25	-20	33	37	(-26,21)	
→ in 2050 (% rel to 2010)	-74	-53	21	-48	(-56,6)	
from nuclear in 2030 (% rel to 2010)	59	83	98	106	(44,102)	
→ in 2050 (% rel to 2010)	150	98	501	468	(91,190)	
from biomass in 2030 (% rel to 2010)	-11	0	36	-1	(29,80)	
→ in 2050 (% rel to 2010)	-16	49	121	418	(123,261)	
from non-biomass renewables in 2030 (% rel to 2010)	430	470	315	110	(245,436)	
→ in 2050 (% rel to 2010)	833	1327	878	1137	(576,1299)	

iocc

INTERGOVERNMENTAL PANEL ON Climate change

Carbon dioxide removal	N	o or limite	d overshoot	Higher overshoot	No or limited overshoot
Global indicators	Р	1 P	2 P3	P4	Interquartile range
Cumulative CCS until 2100 (GtCO ₂)	0	34	8 687	1218	(550,1017)
\vdash of which BECCS (GtCO ₂)	0	15	414	1191	(364,662)

Agriculture	No or limited ove		ershoot	Higher overshoot	No or limited overshoot
Global indicators	P1	P2	Р3	P4	Interquartile range
Land area of bioenergy crops in 2050 (million km²)	0.2	0.9	2.8	7.2	(1.5,3.2)
Agricultural CH4 emissions in 2030 (% rel to 2010)	-24	-48	1	14	(-30,-11)
→ in 2050 (% rel to 2010)	-33	-69	-23	2	(-47,-24)
Agricultural N ₂ O emissions in 2030 (% rel to 2010)	5	-26	15	3	(-21,3)
└→ in 2050 (% rel to 2010)	6	-26	0	39	(-26,1)

Indicative linkages between mitigation options and sustainable development using SDGs (The linkages do not show costs and benefits)

Mitigation options deployed in each sector can be associated with potential positive effects (synergies) or negative effects (trade-offs) with the Sustainable Development Goals (SDGs). The degree to which this potential is realized will depend on the selected portfolio of mitigation options, mitigation policy design, and local circumstances and context. Particularly in the energy-demand sector, the potential for synergies is larger than for trade-offs. The bars group individually assessed options by level of confidence and take into account the relative strength of the assessed mitigation-SDG connections.

INTERGOVERNMENTAL PANEL ON Climate change

Length shows strength of connection

The overall size of the coloured bars (from 0 to 100%) depict the relative potential for synergies and trade-offs between the sectoral mitigation options and the SDGs.

Length shows strength of connection

The overall size of the coloured bars (from 0 to 100%) depict the relative potential for synergies and trade-offs between the sectoral mitigation options and the SDGs.

Length shows strength of connection

The overall size of the coloured bars (from 0 to 100%) depict the relative potential for synergies and trade-offs between the sectoral mitigation options and the SDGs.

Shades show level of confidence

The shades depict the level of confidence of the assessed potential for **Trade-offs/Synergies**

Very high

Low

- Mitigation may result at the same time into synergies and trade-offs
- Particularly in the energydemand sector, the potential for synergies is larger than for trade-offs.

Thank you for your attention!

Find us on:

IPCC_Climate_Change

http://www.slideshare.net/ipccmedia/presentations

- https://www.youtube.com/c/ipccgeneva
- @IPCC_CH
- in http
 - https://www.linkedin.com/company/ipcc
 - https://www.flickr.com/photos/ipccphoto/sets/

https://vimeo.com/ipcc

For more information:

Website: http://ipcc.ch IPCC Secretariat: ipcc-sec@wmo.int IPCC Press Office: ipcc-media@wmo.int

