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1.SM.1 Supplementary Material for Figure 1.1

Externally forced warming in Figure 1.1 is calculated for the Cowtan-
Way (2014) dataset at every location and for each season following 
the method in Figure 1.3. The season with the greatest externally 
forced warming at every location (averaged over the 2006–2015 

period) is indicated by the colour of that grid box in Figure 1.SM.1. 
Figure 1.SM.2 shows the warming to 2006–2015 in the season that 
has warmed the least.

Figure 1.SM.1 |  Season of greatest human-induced warming in 2006–2015 relative to 1850–1900 for the data shown in Figure 1.1. 

Figure 1.SM.2 |  As for Figure 1.1 but with scatter points coloured by warming in the season with least warming between the periods 1850–1900 and 2006–2015. 
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Population data is taken from Doxsey-Whitfield et al. (2015) for 
2010. The number of scatter points shown in each 1° × 1° grid box 
is directly proportional to the population count in the grid box, with 
a maximum number of scatter points in a single grid box associated 
with the maximum population count in the dataset. For grid boxes 
with (non-zero) population counts that are below the population 
threshold consistent with just a single scatter point (approximately 
650,000), the probability that a single scatter point is plotted reduces 
from unity towards zero with decreasing population in the grid box to 
give an accurate visual impression of population distribution. 

The SDG Global Index Score is a quantitative measure of progress 
towards the 17 sustainable development goals (Sachs et al., 
2017). The goals cut across the three dimensions of sustainable 
development – environmental sustainability, economic growth, and 
social inclusion. The index score has a range of 0–100, with 100 
corresponding to all SDGs being met. Versions of Figure 1.1 using the 
HadCRUT4, NOAA and GISTEMP temperature datasets are shown in 
Figure 1.SM.3, Figure 1.SM.4 and Figure 1.SM.5 respectively. 

Figure 1.SM.4 |  As for Figure 1.1 but using the NOAA temperature dataset.  

Figure 1.SM.3 |  As for Figure 1.1 but using the HadCRUT4 temperature dataset.  

Warning to the decade 2006-2015 in most strongly warning season

Warning to the decade 2006-2015 in most strongly warning season
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1.SM.2 Supplementary Material for Figure 1.2

Observational data used in Figure 1.2 are taken from the Met Office 
Hadley Centre (http://www.metoffice.gov.uk/hadobs/hadcrut4/), 
National Oceanic and Atmospheric Administration (NOAA) (https://
www.ncdc.noaa.gov/data-access/marineocean-data/noaa-global- 
surface-temperature-noaaglobaltemp), NASA’s Goddard Institute 
for Space Studies (https://data.giss.nasa.gov/gistemp/) and the 
Cowtan & Way dataset (https://www-users.york.ac.uk/~kdc3/papers/
coverage2013/series.html). The GISTEMP and NOAA observational 
products (which begin in 1880) are expressed relative to 1850–1900 
by assigning these datasets the same anomaly as HadCRUT4 for the 
mean of the 1880–2017 period. All available data are used, through 
to the end of 2017, for all datasets. The grey “Observations range” 
shading indicates the range (minimum to maximum) monthly-mean 
anomaly across these four temperature datasets for the month in 
question.

CMIP5 multimodel means, shown as light blue dashed (full-field 
surface air temperature) and solid blue (masked and blended as in 
Cowtan et al., 2015) lines are expressed relative to a 1861–1880 
base period and then expressed relative to the 1850–1900 reference 
period using the anomaly between the periods in the HadCRUT4 
product (0.02°C). Model data are taken from Richardson et al. 
(2018). Only RCP8.5 r1i1p1 ensemble members are used, with only 
one ensemble member per model used for calculating the mean lines 
in this figure. 

The pink “Holocene” shading is derived from the “Standard5×5” 
reconstruction of Marcott et al. (2013) (expressed relative to 1850–
1900 using the HadCRUT4 anomaly between this reference period 
and the 1961–90 base period of the data). The vertical extent of 

the solid shading is determined by the maximum and minimum 
temperature anomalies in the dataset in the period before 1850. 
Marcott et al. (2013) report data with a periodicity of 20 years, so the 
variability shown by the solid pink shading is not directly comparable 
to the higher-frequency variability seen in the observational products, 
which are reported every month, but this Holocene range can be 
compared to the emerging signal of human-induced warming. Above 
and below the maximum and minimum temperature anomalies from 
Marcott et al. (2013), the pink shading fades out to white after a 
magnitude of warming that is equal to the standard deviation of 
monthly temperature anomalies in the HadCRUT4 dataset over the 
pre-industrial reference period of 1850–1900, and as such this faded 
shading does not bound all monthly anomalies in the pre-industrial 
reference period. 

Near-term projections from AR5 (Kirtman et al., 2013) for the period 
2016–2035 were assessed by AR5 to be likely (>66% probability) 
between 0.3°C and 0.7°C above the 1986–2005 average, assuming 
no climatically significant future volcanic eruptions. These are 
expressed relative to pre-industrial levels using the updated 0.63°C 
warming to the 1986–2005 period (Section 1.2.1).

Human-induced temperature change (thick yellow line) and total 
(human+natural) externally forced temperature change (thick 
orange line) are estimated using the method of Haustein et al. (2017) 
applied to the four-dataset mean. Best-estimate historical radiative 
forcings, extended until the end of 2016, are taken from Myhre et 
al. (2013b), incorporating the significant revision to the methane 
forcing proposed by Etminan et al. (2016). The 2-box thermal 
impulse-response model used in Myhre et al. (2013b), with modified 
thermal response time scales to match the multimodel mean from 
Geoffroy et al. (2013), is used to derive the shape of the global mean 

Figure 1.SM.5 |  As for Figure 1.1 but using the GISTEMP temperature dataset.   

Warning to the decade 2006-2015 in most strongly warning season
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temperature response time series to total anthropogenic and natural 
(combined volcanic and solar) forcing (see also Tsutsui (2017) for 
a more comprehensive discussion). Both of these time series are 
expressed as anomalies relative to their simulated 1850–1900 
averages and then used as independent regressors in a multivariate 
linear regression to derive scaling factors on the two time series that 
minimize the residual between the combined forced response and the 
multi-dataset observational mean. The transparent shading around 
the thick yellow line indicates the likely range in attributed human-
induced warming conservatively assessed at ±20%. Note that the 
corresponding likely range of ±0.1°C uncertainty in the 0.7°C best-
estimate anthropogenic warming trend over the 1951–2010 period 
assessed in Bindoff et al. (2013) corresponds to a smaller fractional 
uncertainty (±14%): the broader range reflects greater uncertainty in 
early-century warming. 

The vertical extent of the 1986–2005 cross denotes the 5–95% 
observational uncertainty range of ±0.06°C (see Table 1.1) while that 
of the 2006–2015 cross denotes the assessed likely uncertainty range 
of ±0.12°C (Section 1.2.1).

To provide a methodologically independent check on the attribution 
of human-induced warming since the 19th century (quantitative 
attribution results quoted in AR5 being primarily focused on the 
period 1951–2010), Figure 1.SM.6 shows a recalculation of the 
results of Ribes and Terray (2013; figure 1 in the paper), applied to 
the CMIP5 multimodel mean response. Details of the calculation 
are provided in the original paper. In order to quantify the level of 
human-induced warming since the late 19th century, observations 
of global mean surface temperature (GMST) are regressed onto the 
model responses to either natural-only (NAT) or anthropogenic-only 
(ANT) forcings, consistent with many attribution studies assessed 
in AR5. Prior to this analysis, model outputs are preprocessed in 
order to ensure consistency with observations: spatial resolution is 
lowered to 5°, the spatio-temporal observational mask is applied, 
and all missing data are set to 0. Global and decadal averages of 
near-surface temperature are calculated over the 1901–2010 period 
(11 decades), and translated into anomalies by subtracting the mean 
over the entire period (1901–2010). Multimodel mean response 
patterns are calculated over a subset of 7 CMIP5 models providing at 
least 4 historical simulations and 3 historical NAT-only simulations, 
all covering the 1901–2010 period. The regression analysis indicates 
how these multimodel mean responses have to be rescaled in order 
to best fit observations, accounting for internal variability in both 
observations and model responses, but neglecting observational 
uncertainty. Almost no rescaling is needed for ANT (regression 
coefficient: 1.05 ± 0.18), while the NAT simulated response is revised 
downward (regression coefficient: 0.28 ± 0.49). The resulting estimate 
of the total externally forced response is very close to observations 
(Figure 1.SM.6). The ANT regression coefficient can then be used to 
assess the human-induced warming over a longer period. Estimated 
in this way, the human-induced linear warming trend for 1880–2012 
is found to be 0.86°C ± 0.14°C.

To quantify the potential impact of natural (externally forced or 
internally generated) variability on decadal-mean temperatures in 
2006–2015, Figure 1.SM.7 shows an estimate of the observed warm-
ing rate, corrected for the effects of natural variability according to 
the method of Foster and Rahmstorf (2011) applied to the mean of 
the four observational GMST datasets used in this report, updated to 
the end of 2017. The grey line shows the raw monthly GMST obser-
vations (with shading showing inter-dataset range), while the green 
line shows the sum of the linear trend plus estimated known sources 
of variability, such as El Niño events or volcanic eruptions, estimated 
using an empirical regression model. The orange line shows the linear 
trend, after correcting for the impact of these known sources of vari-
ability, of 0.18°C per decade, while the two black lines show the 
recent reference periods used in this report. For comparison, the AR5 
near-term predicted warming rate of 0.3°C–0.7°C over 30 years (Kirt-
man et al., 2013) is shown as the pale blue plume.

The blue line in the lower panel shows residual fluctuations that 
cannot be attributed to known sources or modes of variability, 
reflecting internally generated chaotic weather variability (the differ-
ence between grey and green lines in the top panel). The green line is 
not persistently below the yellow line, nor is the blue line persistently 
negative, over the period 2006–2015. There is a downward excursion 
in the residual “unexplained” variability around 2012–2013, and 
a strong ENSO cool phase event in 2011, but even together these 
depress the decadal average by only a couple of hundredths of a 
degree.
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Figure 1.SM.6 |  Contributions of natural (NAT) and anthropogenic (ANT) forcings 
to changes in GMST over the period 1901–2010. Decadal time series of GMST in 
HadCRUT4 observations (solid black), from multimodel mean response without any 
rescaling (dotted cyan), and as reconstructed by the linear regression (dotted black). 
The estimated contributions of NAT forcings only (solid blue) and anthropogenic 
forcing only (solid red) correspond to the CMIP5 multimodel mean response to these 
forcings, after rescaling. All temperatures are anomalies with respect to the 1901–
2010 average, after preprocessing (missing data treated as 0). Vertices are plotted at 
the midpoint of the corresponding decade.
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Figure 1.SM.7 |  Warming and warming rate for 1979–2017. The solid grey line shows the average of the four observational GMST datasets used in this assessment report, 
with the observational range shown by grey shading. The yellow line shows the linear trend through the observational data, corrected for the effects of known sources of natural 
variability (green line). The blue shading indicates that current warming rates are compatible with the AR5 near-term projections. The lower panel shows the residual unexplained 
variability (difference between grey and green lines in upper panel) after accounting for known sources, including ENSO, solar variability and volcanic activity. 

1.SM.3 Supplementary Material for Figure 1.3

Regional warming shown in Figure 1.3 is derived using a similar 
method to the calculation of externally forced warming in Figure 
1.2. At every grid box location in the native Cowtan–Way resolution, 
the time series of local temperature anomalies in the Cowtan-Way 
dataset are regressed onto the associated externally forced warming 
time series, calculated as in Figure 1.1 using all available historical 
monthly-mean anomalies. The best-fit relationship between these 
two quantities is then used to estimate the forced warming relative 
to 1850–1900 at this location. The maps in Figure 1.3 show the 
average of these estimated local forced warming time series over the 

2006–2015 period. Trends are only plotted where over 50% of the 
entire observational record at this location is available. 

Supplementary maps are included below for the NOAA, GISTEMP and 
HadCRUT4 observational data. The regression of local temperature 
anomalies onto the global mean externally forced warming allows 
warming to be expressed relative to 1850–1900 despite many local 
series in these datasets beginning after 1900, but clearly these 
inferred century-time-scale warming levels are subject to a lower 
confidence level than the corresponding global values. 
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Figure 1.SM.8 |  Externally forced warming for the average of 2006–2015 relative to 1850–1900 calculated for the NOAA observational dataset as for Figure 1.3. 

Figure 1.SM.9 |  Externally forced warming for the average of 2006–2015 relative to 1850–1900 calculated for the GISTEMP observational dataset as for Figure 1.3. 



1SM-9

Framing and Context Supplementary Material Chapter 1

1SM1SM

1.SM.4 Supplementary Material for Figure 1.4

Idealized temperature pathways are computed by specifying the level 
of human-induced warming in 2017, T2017=1°C, with temperatures 
from 1850 to 2017 approximated by an exponential rise, with the 
exponential rate constant, Y, set to give a rate of human-induced 
warming in 2017 of 0.2°C/decade. Projected temperatures for 
2018–2100 are determined by fitting a smooth 4th-order polynomial 
through specified warming values at particular times after 2017.

Radiative forcing series F that would give the temperature pathways 
described above are computed using a 2-time-constant climate 
response function (Myhre et al., 2013b), with equilibrium climate 
sensitivity (ECS) of 2.7°C, a transient climate response (TCR) of 1.6°C, 
and other parameters as given in Millar et al. (2017a). Equivalent CO2 
concentrations are given by C=278 × exp (F / 5.4) ppm.

Cumulative CO2-forcing-equivalent emissions (Jenkins et al., 2018), 
or the CO2 emission pathways that would give the CO2 concentration 
pathways compatible with each temperature scenario, are computed 
using an invertible simple carbon cycle model (Myhre et al., 2013b), 
modified to account for changing CO2 airborne fraction over the 
historical period (Millar et al., 2017a). These would be proportional 
to CO2 emissions under the assumption of a constant fractional 
contribution of non-CO2 forcers to warming. An indicative cumulative 
impact variable (e.g., sea level rise) is computed from temperature 
pathways shown using the semiempirical model of Kopp et al. (2016). 

Figure 1.SM.10 |  Externally forced warming for the average of 2006–2015 relative to 1850–1900 calculated for the HadCRUT4 observational dataset as for Figure 1.3.  
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1.SM.5 Supplementary Material for Figure 1.5

All scenarios in Figure 1.5 start with a 1000-member ensemble of 
the FaIR model (Smith et al., 2018) driven with emissions from the 
RCP historical dataset from 1765 to 2000 (Meinshausen et al., 2011), 
SSP2 from 2005 to 2020 (Fricko et al., 2017), and a linear interpolation 
between the two inventories for 2000 to 2005. Equilibrium climate 
sensitivity (ECS) and transient climate response (TCR) parameters are 
drawn from a joint lognormal distribution informed by CMIP5 models. 
Uncertainties in present-day non-CO2 effective radiative forcing 
(ERF) are drawn from the distributions in Myhre et al. (2013b) and 
uncertainties in the carbon cycle response are given a 5–95% range 
of 13% variation around the best estimate parameters in Millar et 
al., 2017a. All uncertainties except TCR and ECS are assumed to be 
uncorrelated with each other.

FaIR derives an ERF time series from emissions, from which temperature 
change is calculated. Greenhouse gas concentrations are first calculated, 
from which the radiative forcing relationships from Myhre et al. (1998) 
are used to determine ERF.  An increase of ERF of 25% for methane 
forcing is applied which approximates the updated relationship from 
Etminan et al. (2016). The Myhre et al. (1998) relationships with a scaling 
for methane rather than the newer Etminan et al. (2016) relationships 
are used because the former does not assume any band overlap 
between CO2 and N2O, and isolating CO2 forcing from N2O forcing is 
problematic for certain commitments where CO2 emissions are set to 
zero and N2O forcing is held constant.

Aerosol forcing is based on the Aerocom radiative efficiencies (Myhre 
et al., 2013a) for ERFari (ERF from aerosol-radiation interactions) and a 
logarithmic dependence on emissions of black carbon, organic carbon 
and sulphate aerosols for ERFaci (ERF from aerosol–cloud interactions) 
based on the model of Ghan et al. (2013). Tropospheric ozone 
forcing is based on Stevenson et al. (2013). Other minor categories 
of anthropogenic forcing are derived from simple relationships that 
approximate the evolution of ERF in Annex II of Working Group I of AR5 
(IPCC, 2013) as described in Smith et al. (2018). For forcing categories 
other than methane (for which a significant revision to the best 
estimate ERF has occurred since AR5), a time-varying scaling factor 
is implemented over the historical period, so that for a best-estimate 
forcing, the AR5 ERF time series is replicated. This historical scaling 
decays linearly between 2000 and 2011 so that in 2011 onwards the 
FaIR ERF estimate is used for projections. For the 2000–2011 period 
the impact of the historical scaling is small, because FaIR emissions-
forcing relationships are mostly derived from AR5 best estimates in 
2005 or 2011 (Smith et al., 2018).

Two ensembles are produced: a historical (1765–2014) ensemble 
containing all (anthropogenic plus natural) forcing, and a 
historical+future (1765–2100) ensemble containing only anthropogenic 
forcing for each commitment scenario. In the ensemble where natural 
forcing is included, solar forcing for the historical period is calculated 
by using total solar irradiance from the SOLARIS HEPPA v3.2 dataset 
(Matthes et al., 2017) for 1850–2014 and from Myhre et al. (2013b) for 
1765–1850: the 1850–1873 mean is subtracted from the time series 
which is then multiplied by 0.25 (annual illumination factor) times 0.7 

(planetary co-albedo) to generate the effective radiative forcing (ERF) 
timeseries. Volcanic forcing is taken by using stratospheric aerosol optical 
depths from the CMIP6 historical Easy Volcanic Aerosol dataset (Toohey 
et al., 2016) prepared for the HadGEM3 CMIP6 historical integrations 
for 1850–2014. The integrated stratospheric aerosol optical depth at 
550 nm (tau) is calculated and converted to ERF by the relationship 
ERF = −18×tau, based on time slice experiments in the HadGEM3 
general circulation model, which agrees well with earlier HadGEM2 and 
HadCM3 versions of the UK Met Office Hadley Centre model (Gregory 
et al., 2016). The 1850–2014 mean volcanic ERF of −0.107 is subtracted 
as an offset to define the mean historical volcanic ERF as zero. Owing to 
rapid adjustments to stratospheric aerosol forcing, which are included 
in the definition of ERF, this less negative value of −18×tau is adopted 
for volcanic ERF than the RF = −25×tau used in AR5. 

The historical all-forcing scenario is then used to constrain parameter 
sets that satisfy the historical observed temperature trend of 0.90°C ± 
0.19°C (mean and 5 to 95% range) over the 1880 to 2014 period, using 
the mean of the HadCRUT4, GISTEMP and NOAA datasets. The trend 
was derived using an inflation factor for autocorrelation of residuals, 
and is the same method used to derive linear temperature trends in 
AR5 (Hartmann et al., 2013). The uncertainty bounds used here are 
wider than, but consistent with, the 1-sigma range of ±0.12°C assessed 
for the temperature change in 2006–2015 relative to 1850–1900. The 
parameter sets that satisfy the historical temperature constraint in 
the historical ensemble (323 out of 1000) are then selected for the 
anthropogenic-only ensembles that include commitments.

Each commitment scenario is driven with the following assumptions:

1. Zero CO2 emissions, constant non-CO2 forcing (blue): FaIR spun up  
 with anthropogenic forcing to 2020. Total non-CO2 forcing in 2020  
 is used as the input to the 2021–2100 period with all CO2 fossil  
 and land-use emissions abruptly set to zero.

2. Phase out of CO2 emissions with 1.5°C commitment (blue dotted):  
 FaIR spun up with anthropogenic forcing to 2020. Total non-CO2  

 forcing in 2020 is used as the input to the 2021–2100 period.  
 Fossil and land-use CO2 emissions are ramped down to zero at a  
 linear rate over 50 years from 2021 to 2070, consistent with a  
 1.5°C temperature rise above pre-industrial levels at the point of  
 zero CO2 emissions in 2070 with these climate response  
 parameters and constant 2020 non-CO2 forcing.

3. Linear continuation of 2010–2020 temperature trend (blue  
 dashed, in bottom panel only).

4. Zero GHG emissions, constant aerosol forcing (pink): FaIR spun up  
 with anthropogenic forcing to 2020. All GHG emissions set  
 abruptly to zero in 2021, with aerosol emissions held fixed at their  
 2020 levels.

5.       Zero CO2 and aerosol emissions, constant non-CO2 GHG forcing  
 (teal): FaIR spun up with anthropogenic forcing to 2020. Total  
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 non-CO2 GHG forcing in 2020, which also includes the proportion  
 of tropospheric ozone forcing attributable to methane emissions, is  
 used as the input to the 2021–2100 period. Fossil and land-use CO2  
 and aerosol emissions abruptly set to zero in 2021.

6. Zero emissions (yellow, including uncertainty range): FaIR spun up  
 with anthropogenic forcing to 2020. All emissions set abruptly to  
 zero in 2021.

1.SM.6 Supplementary Material for 
FAQ 1.2 Figure 1 and Figure SPM 1

This section provides supporting material for FAQ 1.2, Figure 1 and 
Figure SPM 1 in the Summary for Policymakers. Figure 1.SM.11, top 
panel, shows time series of annual CO2 emissions from the Global 
Carbon Project (Le Quéré et al., 2018) (black line and grey band, with 
the width of the band indicating the likely range, or one standard 
error, uncertainty in annual emissions), extrapolated to 2020 and then 
declining in a straight line to reach net zero in either 2055 (grey line) 
or 2040 (blue line).

range of uncertainty: Figure SPM.1 shows diagnosed cumulative 
emissions throughout. 

The bottom panel in Figure 1.SM.11 shows median non-CO2 ERF 
used to drive the model over the historical period, extending forcing 
components using the RCP8.5 scenario (http://www.pik-potsdam.
de/~mmalte/rcps/) between 2011 and 2020, with scaling applied to 
each forcing component time series to match the corresponding AR5 
ERF component in 2011. The vertical bar in 2011 shows a simple 
indication of the likely range of non-CO2 forcing in 2011 obtained by 
subtracting the best-estimate CO2 forcing from the total anthropogenic 
forcing uncertainty, assuming the latter is normally distributed: AR5 
did not give a full assessment of the distribution of non-CO2 radiative 
forcing. It demonstrates there is considerable uncertainty in this 
quantity, which translates into uncertainty in climate system properties 
inferred from these data. However, this uncertainty has a much smaller 
impact on estimated human-induced warming to date, because this 
is also constrained by temperature observations. The grey line shows 
non-CO2 forcing in an indicative 1.5°C pathway consistent with those 
assessed by Chapter 2, while the purple line shows a stylized pathway 
in which non-CO2 forcing remains constant after 2030.

For all percentiles of the climate response distribution, non-CO2 
forcing time series for these stylized scenarios are scaled to fit the 
temperature response to the corresponding percentiles of the 
assessed likely range of human-induced warming in 2017, assuming 
the latter is normally distributed. All non-CO2 forcing components 
other than aerosols are scaled following their corresponding ranges 
of uncertainty of values in 2011 given in AR5, with low values of 
2011 ERF corresponding to high values of TCR and vice versa. This 
accounts for the anti-correlation between estimated values of the 
TCR and estimates of current anthropogenic forcing. Then aerosol ERF 
(the most uncertain component) is scaled to reproduce the correct 
percentile of human-induced warming in 2017. Values of TCR, ECS 
and 2011 forcing components are given in Table 1.SM.1. For each 
combination of TCR and ECS, the strength of carbon cycle feedbacks 
are varied to span the range in the CMIP5 RCP2.6 Earth System Model 
ensemble (±100%), co-varying with climate response to maximize the 
range of Transient Climate Response to Emissions (TCRE) following 
Millar et al. (2017b). Uncertainty in carbon cycle feedbacks makes 
only a minor contribution to overall response uncertainty in these low-
emissions scenarios. In each case, overall airborne fraction is scaled to 
reproduce observed annual emissions in 2017.

Figure 1.SM.12 shows time series of observed and human-induced 
warming to 2017 and responses to these stylized future emissions 

Figure 1.SM.11 |  Time series of (top) annual CO2 emissions, (middle) cumulative 
CO2 emissions, and (bottom) non-CO2 radiative forcing corresponding to observation-
based estimates over the historical period and stylized 1.5°C-consistent pathways.

The middle panel in Figure 1.SM.11 shows cumulative (time-
integrated) CO2 emissions, with black line and grey band showing 
observed emissions from the Global Carbon Project, and grey and 
blue lines corresponding to the areas highlighted as blue+grey 
or blue, respectively, in the top panel. Grey and blue lines show, 
from 2017 onwards, cumulative emissions diagnosed from a simple 
climate–carbon-cycle model (Millar et al., 2017b) with historical 
airborne fraction scaled to reproduce median estimated annual 
emissions in 2017. Note this does not precisely reproduce median 
observed cumulative emissions in 2017 but is well within the 



1SM-12

Chapter 1 Framing and Context Supplementary Material

1SM1SM

scenarios. Observed and human-induced warming estimates are 
reproduced exactly as in Figure 1.2, with the orange shaded band 
showing the assessed uncertainty range of ±20%. The dashed line 
shows a simple linear extrapolation of the current rate of warming, 
as calculated over the past five years. Responses to stylized future 
CO2 emissions and non-CO2 forcing trajectories are simulated with 
the FaIR simple climate-carbon-cycle model (Millar et al., 2017a). The 
four values of the TCR shown (giving the borders of the grey, blue and 

purple shaded plumes) correspond to the 17th, 33rd, 67th and 83rd 
percentiles of a normal distribution compatible with the likely range of 
TCR as assessed by AR5, combined with the same percentiles of a log-
normal distribution for the ECS similarly anchored to the AR5 likely 
range for this quantity. Other thermal climate response parameters 
(short and long adjustment time scales) are set to match those given 
in Myhre et al. (2013b) as used in Millar et al. (2017b). 

Figure 1.SM.12 |  Time series of observed and human-induced warming to 2017 and responses to stylized 1.5°C pathways of CO2 and non-CO2 forcing shown in Figure 
1.SM.11. Light shading in response plumes indicates likely range (17th to 83rd percentiles) while dark shading indicates central tercile (33rd to 67th percentiles).

The smooth grey shaded bands in the top panel of Figure 1.SM.12 
show the temperature response to CO2 emissions declining from 2020 
to net zero in 2055 (grey line in top panel of Figure 1.SM.11), with 
non-CO2 forcing following the indicative 1.5°C pathway shown by the 
grey line in the bottom panel of Figure 1.SM.11. The middle panel 
of Figure 1.SM.12 shows the impact on future warming of bringing 
forward the date of net zero emissions to 2040 (blue line in top panel 
of Figure 1.SM.11), with the grey dashed lines showing the original 
percentiles from the top panel. This reduces cumulative CO2 emissions 
up to the time they reach net zero and hence reduces future warming, 
with the impact emerging after 2030, such that the entire likely range 
of future warming is now (on this estimate of the climate response 
distribution) below 1.5°C in 2100.

All 1.5°C pathways that are also consistent with current emissions 
and radiative forcing trends show increasing total non-CO2 

radiative forcing over the coming decade, as emissions of cooling 
aerosol precursors are reduced, but there is greater variation 
between scenarios in non-CO2 radiative forcing after 2030. The 
bottom panel in Figure 1.SM.12 shows the impact of varying future 
non-CO2 radiative forcing (grey and purple lines in Figure 1.SM.11, 
bottom panel). Failure to reduce non-CO2 forcing after 2030 means 
that a scenario that would otherwise be likely to give temperatures 
below 1.5°C in 2100 instead would only be as likely as not to give 
temperatures below 1.5°C in 2100. If non-CO2 forcing were allowed 
to increase further (as it does in some scenarios due primarily to 
methane emissions), temperatures in 2100 would increase even 
further.

These changes demonstrate how future warming is determined by 
cumulative CO2 emissions up to the time of net zero and non-CO2 

forcing in the decades immediately prior to that time. 
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Table 1.SM.1  |  Climate system properties in the versions of the FaIR model used in Figure 1.SM.12 and Figure 1.SM.13 as well as the FAQ 1.2, Figure 1 and Figure 
 SPM 1. TCR, ECS and total anthropogenic forcing (Fant) in 2011 are set consistent with corresponding distributions in AR5, TCRE is diagnosed from the  
 model while aerosol forcing (Faer) is adjusted to reproduce the corresponding percentile of human-induced warming in 2017. 

Carbon budget calculations in Chapter 2 are based on temperatures 
relative to 2006–2015, offset by a constant 0.87°C representing the 
best-estimate observed warming from pre-industrial to that decade. This 
has little effect on median estimates of future warming, because the 
median estimated human-induced warming to the decade 2006–2015 
was close to the observed warming, but it does affect uncertainties: 
the uncertainty in 2030 warming relative to 2006–2015 is lower than 
the uncertainty in 2030 warming relative to pre-industrial because of 
the additional information provided by the current climate state and 
trajectory. This additional information is particularly important for the 
response to rapid mitigation scenarios in which peak warming occurs 
a small number of decades into the future (Millar et al., 2017b; Leach 
et al., 2018), highlighting the particular importance of a “seamless” 

approach to seasonal-to-decadal forecasting (Palmer et al., 2008; 
Boer et al., 2016) in the context of 1.5°C. The impact of this additional 
information is illustrated in Figure 1.SM.13, which is constructed 
identically to Figure 1.SM.12 but shows all time series expressed as 
anomalies relative to 2006–2015 rather than 1850–1900. The thick grey 
line at 0.63°C shows 1.5°C relative to pre-industrial expressed relative 
to this more recent decade. The central estimate is unaffected, as is the 
estimate of the time at which temperatures reach 1.5°C if the current 
rate of warming continues, but uncertainties are reduced. For example, 
the stylized pathway with CO2 emissions reaching zero in 2040 is likely 
to limit warming to less than 0.63°C above 2006–2015, even though it 
just overshoots 1.5°C relative to 1850–1900.

Percentile TCR (°C) ECS (°C) TCRE (°C TtC–1) Faer in 2011 (W m–2) Fant in 2011 (W m–2)

17% 1.0 1.5 0.9 -0.58 3.11

33% 1.4 2.0 1.3 -0.89 2.52

50% 1.75 2.6 1.5 -0.94 2.25

67% 2.1 3.3 1.71 -0.91 2.06

83% 2.5 4.5 2.05 -0.81 1.88

Figure 1.SM.13 |  As Figure 1.SM.12, but showing time series of observed and human-induced warming to 2017 and responses to stylized 1.5°C-consistent pathways 
relative to 2006–2015. The level of warming corresponding to 1.5°C relative to pre-industrial, given the central estimate of observed warming of 0.87°C from 1850–1900 to 
2006–2015, is shown by the horizontal line at 0.63°C.



1SM-14

Chapter 1 Framing and Context Supplementary Material

1SM1SM

1.SM.7 Recent Trends in Emissions 
and Radiative Forcing

Figure 1.2 shows a small increase in the estimated rate of human-
induced warming since 2000, reaching 0.2°C per decade in the past 
few years. This is attributed (Haustein et al., 2017) to recent changes 
in a range of climate forcers, reviewed in this section.

Most studies partition anthropogenic climate forcers into two groups 
by their lifetime. CO2 and other long-lived greenhouse gases such 
as nitrous oxide, sulphur hexafluoride and some halogenated gases 
contribute to forcing over decades and centuries. Other halogenated 
gases, ozone precursors and aerosols are defined as short-lived climate 
forcers (SLCF) due to their residence time of less than several years 
in the atmosphere. Although methane is either considered as either 
a long-lived climate forcer or SLCF in published studies or reports 
(Jacobson, 2010; Lamarque et al., 2011; Bowerman et al., 2013; 
Estrada et al., 2013; Kerr, 2013; Heede, 2014; WMO, 2015; Saunois et 
al., 2016b), we assign methane as a SLCF for the purpose of climate 
assessment because its lifetime is comparable to or shorter than the 
thermal adjustment time of the climate system (Smith et al., 2012).

CO2, methane and nitrous oxide are the most prominent contributors 
of anthropogenic radiative forcing, contributing 63%, 20% and 
6% of the anthropogenic radiative forcing in 2016 respectively, as 
shown in Figure 1.SM.14a. Other long-lived greenhouse gases, 
including halogenated gases, and SLCFs such as tropospheric ozone 
are responsible of about 37% of the anthropogenic radiative forcing 
(figures add up to more than 100% because of the compensating 
effect of aerosols). Emissions such as black carbon and sulphur dioxide 
form different types of aerosol particles, which interact with both 
shortwave and longwave radiation and alter clouds. The resulting net 
aerosol radiative forcing is spatially inhomogeneous and uncertain. 
Globally averaged, it is estimated to have reduced the globally 
averaged anthropogenic forcing by about 27% (figures from Myhre et 
al., 2013b, updated: uncertainties in aerosol forcing in particular are 
reviewed in AR5, and will be reassessed in AR6. This report continues 
to work from the AR5 estimates.).

As shown in Figure 1.SM.14b, the growth of CO2 emissions from 
fossil fuels and industry has slowed since 2013 because of changes 
in the energy mix moving from coal to natural gas and increased 
renewable energy generation (Boden et al., 2010). This slowdown 
in CO2 emission growth has occurred despite global GDP growth 
increasing to 3% y−1 in 2015, implying a structural shift away from 
carbon intensive activities (Jackson et al., 2015; Le Quéré et al., 2018). 
In 2016, however, anthropogenic CO2 emissions are 36.18 GtCO2 y

−1 
and have begun to grow again by 0.4% with respect to 2015 (Le 
Quéré et al., 2018). Global average concentration in 2016 has reached 
402.3 ppm, which represents an increase of about 38.4% from 1850–
1900 average (290.7 ppm). Short-term trends in CO2 emissions from 
land-use change are more difficult to quantify (Le Quéré et al., 2018).

Figure 1.SM.14c and d show that methane and nitrous oxide emissions, 
unlike CO2, have followed the most emission-intensive pathways 
assessed in AR5 (Thompson et al., 2014; Saunois et al., 2016a). 

Figure 1.SM.11 |  Time series of (a) anthropogenic radiative forcing, (b) CO2 from 
fossil fuels and industry, (c) methane (CH4) and (d) nitrous oxide emissions for the 
period 1986–2016. Anthropogenic radiative forcing data is from Myhre et al. (2013b), 
extended from 2011 until the end of 2017 with greenhouse gas data from Dlugokencky 
and Tans (2016), updated radiative forcing approximations for greenhouse gases 
(Etminan et al., 2016) and extended aerosol forcing following Myhre et al. (2017). Bar 
graph shows the sum of different forcing agents. Anthropogenic CO2 emissions from 
Fossil Fuels and Industry are from the Global Carbon Project (GCP2017; Le Quéré 
et al., 2018) and EDGAR (JRC, 2011) datasets. Anthropogenic emissions of CH4 and 
N2O (e) are estimated from EDGAR (JRC, 2011) and the US Environmental Protection 
Agency (EPA, 2012). The letters A, B, and C indicate dates of economic crises (A: 
former Soviet Union; B: Asian financial crisis; C: global financial crisis), which are 
reported following the methodology of Peters et al. (2011).
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However, current trends in methane and nitrous oxide emissions 
are not driven in the same way by human activities. About 60% of 
methane emissions are attributed to human activities (e.g. ruminants, 
rice agriculture, fossil fuel exploitation, landfills and biomass burning, 
Saikawa et al., 2014; Saunois et al., 2016a), while about 40% of 
nitrous oxide emissions are caused by various industrial processes 
and agriculture (Bodirsky et al., 2012; Thompson et al., 2014). It is thus 
more complicated to link rates of emissions to economic trends or 
energy demands than is the case with CO2 (Peters et al., 2011).

Estimates of anthropogenic emissions for methane and nitrous oxide 
are uncertain as shown by the difference between datasets in Figure 
1.4. EDGARV4.2 (JRC, 2011) estimates and US–EPA projections give 
a global amount of methane emission ranging between 392.87 and 
378.29 TgCH4y

−1 in 2016, an increase of 0.6–1% compared to 2015. 
However, livestock emissions in these databases are considered to 
be underestimated (Wolf et al., 2017). Similar uncertainties exist for 
anthropogenic N2O emissions, for which only US–EPA projections 
are available. According to US–EPA projections, anthropogenic N2O 
emissions reached 11.2 TgN2O y−1 in 2016, an increase of 1% on 
2015. Anthropogenic CH4 and N2O emissions also appear to respond 
to major economic crises. 
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