Sustainable Development, Poverty Eradication and Reducing Inequalities

Coordinating Lead Authors:
Joyashree Roy (India), Petra Tschakert (Australia/Austria), Henri Waisman (France)

Lead Authors:
Sharina Abdul Halim (Malaysia), Philip Antwi-Agyei (Ghana), Purnamita Dasgupta (India), Bronwyn Hayward (New Zealand), Markku Kanninen (Finland), Diana Liverman (USA), Chukwuemerie Okereke (UK/Nigeria), Patricia Fernanda Pinho (Brazil), Keywan Riahi (Austria), Avelino G. Suarez Rodriguez (Cuba)

Contributing Authors:
Fernando Aragón-Durand (Mexico), Mustapha Babiker (Sudan), Mook Bangalore (USA), Paolo Bertoldi (Italy), Bishwa Bhaskar Choudhary (India), Edward Byres (Austria/Brazil), Anton Cartwright (South Africa), Riyanti Djalante (Japan/Indonesia), Kristie L. Ebi (USA), Neville Ellis (Australia), Francois Engelbrecht (South Africa), Maria Figueroa (Denmark/Venezuela), Mukesh Gupta (India), Diana Hinge Salili (Vanuatu), Daniel Huppmann (Austria), Saleemul Huq (Bangladesh/UK), Daniela Jacob (Germany), Rachel James (UK), Debora Ley (Guatemala/Mexico), Peter Marcotullio (USA), Omar Massera (Mexico), Reinhard Mechler (Germany), Haileselassie Amaha Medhin (Ethiopia), Shagun Mehrotra (USA/India), Peter Newman (Australia), Karen Paiva Henrique (Brazil), Simon Parkinson (Canada), Aromar Revi (India), Wilfried Rickels (Germany), Lisa Schipper (UK/Sweden), Jörn Schmidt (Germany), Seth Schultz (USA), Pete Smith (UK), William Solecki (USA), Shreya Some (India), Nenenteiti Teariki-Ruatu (Kiribati), Adelle Thomas (Bahamas), Penny Urquhart (South Africa), Margaretha Wewerinke-Singh (Netherlands)

Review Editors:
Svitlana Krakovska (Ukraine), Ramon Pichs Madruga (Cuba), Roberto Sanchez (Mexico)

Chapter Scientist:
Neville Ellis (Australia)

This chapter should be cited as:
Table of Contents

Executive Summary .. 447

5.1 Scope and Delineations .. 450

5.1.1 Sustainable Development, SDGs, Poverty Eradication and Reducing Inequalities 450

5.1.2 Pathways to 1.5°C ... 450

5.1.3 Types of evidence .. 451

5.2 Poverty, Equality and Equity Implications of a 1.5°C Warmer World 451

5.2.1 Impacts and Risks of a 1.5°C Warmer World: Implications for Poverty and Livelihoods 452

5.2.2 Avoided Impacts of 1.5°C Versus 2°C Warming for Poverty and Inequality 452

5.2.3 Risks from 1.5°C Versus 2°C Global Warming and the Sustainable Development Goals 453

Cross-Chapter Box 12: Residual Risks, Limits to Adaptation and Loss and Damage 454

5.3 Climate Adaptation and Sustainable Development .. 456

5.3.1 Sustainable Development in Support of Climate Adaptation .. 456

5.3.2 Synergies and Trade-Offs between Adaptation Options and Sustainable Development 457

5.3.3 Adaptation Pathways towards a 1.5°C Warmer World and Implications for Inequalities 458

Box 5.1: Ecosystem- and Community-Based Practices in Drylands 459

5.4 Mitigation and Sustainable Development .. 459

5.4.1 Synergies and Trade-Offs between Mitigation Options and Sustainable Development 459

Box 5.2: Challenges and Opportunities of Low-Carbon Pathways in Gulf Cooperative Council Countries .. 462

5.4.2 Sustainable Development Implications of 1.5°C and 2°C Mitigation Pathways 463

5.5 Sustainable Development Pathways to 1.5°C .. 466

5.5.1 Integration of Adaptation, Mitigation and Sustainable Development 467

5.5.2 Pathways for Adaptation, Mitigation and Sustainable Development 467

5.5.3 Climate-Resilient Development Pathways .. 468

Box 5.3: Republic of Vanuatu – National Planning for Development and Climate Resilience 471

Cross-Chapter Box 13: Cities and Urban Transformation .. 472

5.6 Conditions for Achieving Sustainable Development, Eradicating Poverty and Reducing Inequalities in 1.5°C Warmer Worlds ... 474

5.6.1 Finance and Technology Aligned with Local Needs ... 474

5.6.2 Integration of Institutions .. 474

5.6.3 Inclusive Processes .. 475

5.6.4 Attention to Issues of Power and Inequality ... 475

5.6.5 Reconsidering Values ... 475

5.7 Synthesis and Research Gaps .. 475

Frequently Asked Questions

FAQ 5.1 What are the Connections between Sustainable Development and Limiting Global Warming to 1.5°C above Pre-Industrial Levels? ... 477

FAQ 5.2 What are the Pathways to Achieving Poverty Reduction and Reducing Inequalities while Reaching a 1.5°C World? .. 479

References .. 510
Executive Summary

This chapter takes sustainable development as the starting point and focus for analysis. It considers the broad and multifaceted bi-directional interplay between sustainable development, including its focus on eradicating poverty and reducing inequality in their multidimensional aspects, and climate actions in a 1.5°C warmer world. These fundamental connections are embedded in the Sustainable Development Goals (SDGs). The chapter also examines synergies and trade-offs of adaptation and mitigation options with sustainable development and the SDGs and offers insights into possible pathways, especially climate-resilient development pathways towards a 1.5°C warmer world.

Sustainable Development, Poverty and Inequality in a 1.5°C Warmer World

Limiting global warming to 1.5°C rather than 2°C above pre-industrial levels would make it markedly easier to achieve many aspects of sustainable development, with greater potential to eradicate poverty and reduce inequalities (medium evidence, high agreement). Impacts avoided with the lower temperature limit could reduce the number of people exposed to climate risks and vulnerable to poverty by 62 to 457 million, and lessen the risks of poor people to experience food and water insecurity, adverse health impacts, and economic losses, particularly in regions that already face development challenges (medium evidence, medium agreement). (5.2.2, 5.2.3) Avoided impacts expected to occur between 1.5°C and 2°C warming would also make it easier to achieve certain SDGs, such as those that relate to poverty, hunger, health, water and sanitation, cities and ecosystems (SDGs 1, 2, 3, 6, 11, 14 and 15) (medium evidence, high agreement). (5.2.3, Table 5.2 available at the end of the chapter)

Compared to current conditions, 1.5°C of global warming would nonetheless pose heightened risks to eradicating poverty, reducing inequalities and ensuring human and ecosystem well-being (medium evidence, high agreement). Warming of 1.5°C is not considered ‘safe’ for most nations, communities, ecosystems and sectors and poses significant risks to natural and human systems as compared to the current warming of 1°C (high confidence). (Cross-Chapter Box 12 in Chapter 5) The impacts of 1.5°C of warming would disproportionately affect disadvantaged and vulnerable populations through food insecurity, higher food prices, income losses, lost livelihood opportunities, adverse health impacts and population displacements (medium evidence, high agreement). (5.2.1) Some of the worst impacts on sustainable development are expected to be felt among agricultural and coastal dependent livelihoods, indigenous people, children and the elderly, poor labourers, poor urban dwellers in African cities, and people and ecosystems in the Arctic and Small Island Developing States (SIDS) (medium evidence, high agreement). (5.2.1, Box 5.3, Chapter 3, Box 3.5, Cross-Chapter Box 9 in Chapter 4)

Climate Adaptation and Sustainable Development

Prioritization of sustainable development and meeting the SDGs is consistent with efforts to adapt to climate change (high confidence). Many strategies for sustainable development enable transformational adaptation for a 1.5°C warmer world, provided attention is paid to reducing poverty in all its forms and to promoting equity and participation in decision-making (medium evidence, high agreement). As such, sustainable development has the potential to significantly reduce systemic vulnerability, enhance adaptive capacity, and promote livelihood security for poor and disadvantaged populations (high confidence). (5.3.1)

Synergies between adaptation strategies and the SDGs are expected to hold true in a 1.5°C warmer world, across sectors and contexts (medium evidence, medium agreement). Synergies between adaptation and sustainable development are significant for agriculture and health, advancing SDGs 1 (extreme poverty), 2 (hunger), 3 (healthy lives and well-being) and 6 (clean water) (robust evidence, medium agreement). (5.3.2) Ecosystem- and community-based adaptation, along with the incorporation of indigenous and local knowledge, advances synergies with SDGs 5 (gender equality), 10 (reducing inequalities) and 16 (inclusive societies), as exemplified in drylands and the Arctic (high evidence, medium agreement). (5.3.2, Box 5.1, Cross-Chapter Box 10 in Chapter 4)

Adaptation strategies can result in trade-offs with and among the SDGs (medium evidence, high agreement). Strategies that advance one SDG may create negative consequences for other SDGs, for instance SDGs 3 (health) versus 7 (energy consumption) and agricultural adaptation and SDG 2 (food security) versus SDGs 3 (health), 5 (gender equality), 6 (clean water), 10 (reducing inequalities), 14 (life below water) and 15 (life on the land) (medium evidence, medium agreement). (5.3.2)

Pursuing place-specific adaptation pathways towards a 1.5°C warmer world has the potential for significant positive outcomes for well-being in countries at all levels of development (medium evidence, high agreement). Positive outcomes emerge when adaptation pathways (i) ensure a diversity of adaptation options based on people’s values and the trade-offs they consider acceptable, (ii) maximize synergies with sustainable development through inclusive, participatory and deliberative processes, and (iii) facilitate equitable transformation. Yet such pathways would be difficult to achieve without redistributive measures to overcome path dependencies, uneven power structures, and entrenched social inequalities (medium evidence, high agreement). (5.3.3)

Mitigation and Sustainable Development

The deployment of mitigation options consistent with 1.5°C pathways leads to multiple synergies across a range of sustainable development dimensions. At the same time, the rapid pace and magnitude of change that would be required to limit warming to 1.5°C, if not carefully managed, would lead to trade-offs with some sustainable development dimensions (high confidence). The number of synergies between mitigation response options and sustainable development exceeds the number of trade-offs in energy demand and supply sectors; agriculture, forestry and other land use (AFOLU); and for oceans (very high confidence). (Figure 5.2, Table 5.2 available at the end of the chapter) The 1.5°C
pathways indicate robust synergies, particularly for the SDGs 3 (health), 7 (energy), 12 (responsible consumption and production) and 14 (oceans) (very high confidence). For SDGs 1 (poverty), 2 (hunger), 6 (water) and 7 (energy), there is a risk of trade-offs or negative side effects from stringent mitigation actions compatible with 1.5°C of warming (medium evidence, high agreement). (5.4.2)

appropriately designed mitigation actions to reduce energy demand can advance multiple SDGs simultaneously. Pathways compatible with 1.5°C that feature low energy demand show the most pronounced synergies and the lowest number of trade-offs with respect to sustainable development and the SDGs (very high confidence). Accelerating energy efficiency in all sectors has synergies with SDGs 7 (energy), 9 (industry, innovation and infrastructure), 11 (sustainable cities and communities), 12 (responsible consumption and production), 16 (peace, justice and strong institutions), and 17 (partnerships for the goals) (robust evidence, high agreement). (5.4.1, Figure 5.2, Table 5.2) Low-demand pathways, which would reduce or completely avoid the reliance on bioenergy with carbon capture and storage (BECCS) in 1.5°C pathways, would result in significantly reduced pressure on food security, lower food prices and fewer people at risk of hunger (medium evidence, high agreement). (5.4.2, Figure 5.3)

the impacts of carbon dioxide removal options on SDGs depend on the type of options and the scale of deployment (high confidence). If poorly implemented, carbon dioxide removal (CDR) options such as bioenergy, BECCS and AFOLU would lead to trade-offs. Appropriate design and implementation requires considering local people’s needs, biodiversity and other sustainable development dimensions (very high confidence). (5.4.1.3, Cross-Chapter Box 7 in Chapter 3)

the design of the mitigation portfolios and policy instruments to limit warming to 1.5°C will largely determine the overall synergies and trade-offs between mitigation and sustainable development (very high confidence). Redistributive policies that shield the poor and vulnerable can resolve trade-offs for a range of SDGs (medium evidence, high agreement). Individual mitigation options are associated with both positive and negative interactions with the SDGs (very high confidence). (5.4.1) However, appropriate choices across the mitigation portfolio can help to maximize positive side effects while minimizing negative side effects (high confidence). (5.4.2, 5.5.2) Investment needs for complementary policies resolving trade-offs with a range of SDGs are only a small fraction of the overall mitigation investments in 1.5°C pathways (medium evidence, high agreement). (5.4.2, Figure 5.4) Integration of mitigation with adaptation and sustainable development compatible with 1.5°C warming requires a systems perspective (high confidence). (5.4.2, 5.5.2)

Mitigation consistent with 1.5°C of warming create high risks for sustainable development in countries with high dependency on fossil fuels for revenue and employment generation (high confidence). These risks are caused by the reduction of global demand affecting mining activity and export revenues and challenges to rapidly decrease high carbon intensity of the domestic economy (robust evidence, high agreement). (5.4.1.2, Box 5.2) Targeted policies that promote diversification of the economy and the energy sector could ease this transition (medium evidence, high agreement). (5.4.1.2, Box 5.2)

Sustainable Development Pathways to 1.5°C

Sustainable development broadly supports and often enables the fundamental societal and systems transformations that would be required for limiting warming to 1.5°C above pre-industrial levels (high confidence). Simulated pathways that feature the most sustainable worlds (e.g., Shared Socio-Economic Pathways (SSP) 1) are associated with relatively lower mitigation and adaptation challenges and limit warming to 1.5°C at comparatively lower mitigation costs. In contrast, development pathways with high fragmentation, inequality and poverty (e.g., SSP3) are associated with comparatively higher mitigation and adaptation challenges. In such pathways, it is not possible to limit warming to 1.5°C for the vast majority of the integrated assessment models (medium evidence, high agreement). (5.5.2) In all SSPs, mitigation costs substantially increase in 1.5°C pathways compared to 2°C pathways. No pathway in the literature integrates or achieves all 17 SDGs (high confidence). (5.5.2) Real-world experiences at the project level show that the actual integration between adaptation, mitigation and sustainable development is challenging as it requires reconciling trade-offs across sectors and spatial scales (very high confidence). (5.5.1)

Without societal transformation and rapid implementation of ambitious greenhouse gas reduction measures, pathways to limiting warming to 1.5°C and achieving sustainable development will be exceedingly difficult, if not impossible, to achieve (high confidence). The potential for pursuing such pathways differs between and within nations and regions, due to different development trajectories, opportunities and challenges (very high confidence). (5.5.3.2, Figure 5.1) Limiting warming to 1.5°C would require all countries and non-state actors to strengthen their contributions without delay. This could be achieved through sharing efforts based on bolder and more committed cooperation, with support for those with the least capacity to adapt, mitigate and transform (medium evidence, high agreement). (5.5.3.1, 5.5.3.2) Current efforts towards reconciling low-carbon trajectories and reducing inequalities, including those that avoid difficult trade-offs associated with transformation, are partially successful yet demonstrate notable obstacles (medium evidence, medium agreement). (5.5.3.3, Box 5.3, Cross-Chapter Box 13 in this chapter)

Social justice and equity are core aspects of climate-resilient development pathways for transformational social change. Addressing challenges and widening opportunities between and within countries and communities would be necessary to achieve sustainable development and limit warming to 1.5°C, without making the poor and disadvantaged worse off (high confidence). Identifying and navigating inclusive and socially acceptable pathways towards low-carbon, climate-resilient futures is a challenging yet important endeavour, fraught with moral, practical and political difficulties and inevitable trade-offs (very high confidence). (5.5.2, 5.5.3.3, Box 5.3) It entails deliberation and problem-solving
processes to negotiate societal values, well-being, risks and resilience and to determine what is desirable and fair, and to whom (*medium evidence, high agreement*). Pathways that encompass joint, iterative planning and transformative visions, for instance in Pacific SIDS like Vanuatu and in urban contexts, show potential for liveable and sustainable futures (*high confidence*). (5.5.3.1, 5.5.3.3, Figure 5.5, Box 5.3, Cross-Chapter Box 13 in this chapter)

The fundamental societal and systemic changes to achieve sustainable development, eradicate poverty and reduce inequalities while limiting warming to 1.5°C would require meeting a set of institutional, social, cultural, economic and technological conditions (*high confidence*). The coordination and monitoring of policy actions across sectors and spatial scales is essential to support sustainable development in 1.5°C warmer conditions (*very high confidence*). (5.6.2, Box 5.3) External funding and technology transfer better support these efforts when they consider recipients’ context-specific needs (*medium evidence, high agreement*). (5.6.1) Inclusive processes can facilitate transformations by ensuring participation, transparency, capacity building and iterative social learning (*high confidence*). (5.5.3.3, Cross-Chapter Box 13, 5.6.3) Attention to power asymmetries and unequal opportunities for development, among and within countries, is key to adopting 1.5°C-compatible development pathways that benefit all populations (*high confidence*). (5.5.3, 5.6.4, Box 5.3) Re-examining individual and collective values could help spur urgent, ambitious and cooperative change (*medium evidence, high agreement*). (5.5.3, 5.6.5)
Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

5.1 Scope and Delineations

This chapter takes sustainable development as the starting point and focus for analysis, considering the broader bi-directional interplay and multifaceted interactions between development patterns and climate actions in a 1.5°C warmer world and in the context of eradicating poverty and reducing inequality. It assesses the impacts of keeping temperatures at or below 1.5°C of global warming above pre-industrial levels on sustainable development and compares the impacts avoided at 1.5°C compared to 2°C (Section 5.2). It then examines the interactions, synergies and trade-offs of adaptation (Section 5.3) and mitigation (Section 5.4) measures with sustainable development and the Sustainable Development Goals (SDGs). The chapter offers insights into possible pathways towards a 1.5°C warmer world, especially through climate-resilient development pathways providing a comprehensive vision across different contexts (Section 5.5). The chapter also identifies the conditions that would be needed to simultaneously achieve sustainable development, poverty eradication, the reduction of inequalities, and the 1.5°C climate objective (Section 5.6).

5.1.1 Sustainable Development, SDGs, Poverty Eradication and Reducing Inequalities

Chapter 1 (see Cross-Chapter Box 4 in Chapter 1) defines sustainable development as ‘development that meets the needs of the present and future generations’ through balancing economic, social and environmental considerations, and then introduces the United Nations (UN) 2030 Agenda for Sustainable Development, which sets out 17 ambitious goals for sustainable development for all countries by 2030. These SDGs are: no poverty (SDG 1), zero hunger (SDG 2), good health and well-being (SDG 3), quality education (SDG 4), gender equality (SDG 5), clean water and sanitation (SDG 6), affordable and clean energy (SDG 7), decent work and economic growth (SDG 8), industry, innovation and infrastructure (SDG 9), reduced inequalities (SDG 10), sustainable cities and communities (SDG 11), responsible consumption and production (SDG 12), climate action (SDG 13), life below water (SDG 14), life on land (SDG 15), peace, justice and strong institutions (SDG 16) and partnerships for the goals (SDG 17).

The IPCC Fifth Assessment Report (AR5) included extensive discussion of links between climate and sustainable development, especially in Chapter 13 (Olsson et al., 2014) and Chapter 20 (Denton et al., 2014) in Working Group II and Chapter 4 (Fleurbaey et al., 2014) in Working Group III. However, the AR5 preceded the 2015 adoption of the SDGs and the literature that argues for their fundamental links to climate change (Fleurbaey et al., 2014) and the literature on CRDPs relevant to 1.5°C global warming (Section 5.5.3), resilience, and justice’ (Olsson et al., 2014). This chapter assesses literature on CRDPs relevant to 1.5°C global warming (Section 5.5.3), to understand better the possible societal and systems transformations (see Glossary) that reduce inequality and increase well-being.

While the SDGs capture many important aspects of sustainable development, including the explicit goals of poverty eradication and reducing inequality, there are direct connections from climate to other measures of sustainable development including multidimensional poverty, equity, ethics, human security, well-being and climate-resilient development (Bebbington and Larrinaga, 2014; Robertson, 2014; Redclift and Springett, 2015; Barrington-Leigh, 2016; Helliwell et al., 2018; Kirby and O’Mahony, 2018) (see Glossary). The UN proposes sustainable development as ‘eradicating poverty in all its forms and dimensions, combating inequality within and among countries, preserving the planet, creating sustained, inclusive and sustainable economic growth and fostering social inclusion’ (UN, 2015b). There is robust evidence of the links between climate change and poverty (see Chapter 1, Cross-Chapter Box 4). The AR5 concluded with high confidence that disruptive levels of climate change would preclude reducing poverty (Denton et al., 2014; Fleurbaey et al., 2014). International organizations have since stated that climate changes undermine the ability of all countries to achieve sustainable development (UN, 2015b) and can reverse or erase improvements in living conditions and decades of development (Hallegratte et al., 2016).

Climate warming has unequal impacts on different people and places as a result of differences in regional climate changes, vulnerabilities and impacts, and these differences then result in unequal impacts on sustainable development and poverty (Section 5.2). Responses to climate change also interact in complex ways with goals of poverty reduction. The benefits of adaptation and mitigation projects and funding may accrue to some and not others, responses may be costly and unaffordable to some people and countries, and projects may disadvantage some individuals, groups and development initiatives (Sections 5.3 and 5.4, Cross-Chapter Box 11 in Chapter 4).

5.1.2 Pathways to 1.5°C

Pathways to 1.5°C (see Chapter 1, Cross-Chapter Box 1 in Chapter 1, Glossary) include ambitious reductions in emissions and strategies for adaptation that are transformational, as well as complex interactions with sustainable development, poverty eradication and reducing inequalities. The AR5 WGII introduced the concept of climate-resilient development pathways (CRDPs) (see Glossary) which combine adaptation and mitigation to reduce climate change and its impacts, and emphasize the importance of addressing structural and intersecting inequalities, marginalization and multidimensional poverty to ‘transform […] the development pathways themselves towards greater social and environmental sustainability, equity, resilience, and justice’ (Olsson et al., 2014). This chapter assesses literature on CRDPs relevant to 1.5°C global warming (Section 5.5.3), to understand better the possible societal and systems transformations (see Glossary) that reduce inequality and increase well-being.
(Figure 5.1). It also summarizes the knowledge on conditions to achieve such transformations, including changes in technologies, culture, values, financing and institutions that support low-carbon and resilient pathways and sustainable development (Section 5.6).

Figure 5.1 | Climate-resilient development pathways (CRDPs) (green arrows) between a current world in which countries and communities exist at different levels of development (A) and future worlds that range from climate-resilient (bottom) to unsustainable (top) (D). CRDPs involve societal transformation rather than business-as-usual approaches, and all pathways involve adaptation and mitigation choices and trade-offs (B). Pathways that achieve the Sustainable Development Goals by 2030 and beyond, strive for net zero emissions around mid-21st century, and stay within the global 1.5°C warming target by the end of the 21st century, while ensuring equity and well-being for all, are best positioned to achieve climate-resilient futures (C). Overshooting on the path to 1.5°C will make achieving CRDPs and other sustainable trajectories more difficult; yet, the limited literature does not allow meaningful estimates.

5.1.3 Types of Evidence

A variety of sources of evidence are used to assess the interactions of sustainable development and the SDGs with the causes, impacts and responses to climate change of 1.5°C warming. This chapter builds on Chapter 3 to assess the sustainable development implications of impacts at 1.5°C and 2°C, and on Chapter 4 to examine the implications of response measures. Scientific and grey literature, with a post-AR5 focus, and data that evaluate, measure and model sustainable development–climate links from various perspectives, quantitatively and qualitatively, across scales, and through well-documented case studies are assessed.

Literature that explicitly links 1.5°C global warming to sustainable development across scales remains scarce; yet we find relevant insights in many recent publications on climate and development that assess impacts across warming levels, the effects of adaptation and mitigation response measures, and interactions with the SDGs. Relevant evidence also stems from emerging literature on possible pathways, overshoot and enabling conditions (see Glossary) for integrating sustainable development, poverty eradication and reducing inequalities in the context of 1.5°C.

5.2 Poverty, Equality and Equity Implications of a 1.5°C Warmer World

Climate change could lead to significant impacts on extreme poverty by 2030 (Hallefgate et al., 2016; Hallefgate and Rozenberg, 2017). The AR5 concluded, with very high confidence, that climate change and climate variability worsen existing poverty and exacerbate inequalities, especially for those disadvantaged by gender, age, race, class, caste, indigeneity and (dis)ability (Olsson et al., 2014). New literature on these links is substantial, showing that the poor will continue to experience climate change severely, and climate change will exacerbate poverty (very high confidence) (Fankhauser and Stern, 2016; Hallefgate et al., 2016; O’Neill et al., 2017a; Winsemius et al., 2018). The understanding of regional impacts and risks of 1.5°C global warming and interactions with patterns of societal
vulnerability and poverty remains limited. Yet identifying and addressing poverty and inequality is at the core of staying within a safe and just space for humanity (Raworth, 2017; Bathiany et al., 2018). Building on relevant findings from Chapter 3 (see Section 3.4), this section examines anticipated impacts and risks of 1.5°C and higher warming on sustainable development, poverty, inequality and equity (see Glossary).

5.2.1 Impacts and Risks of a 1.5°C Warmer World: Implications for Poverty and Livelihoods

Global warming of 1.5°C will have consequences for sustainable development, poverty and inequalities. This includes residual risks, limits to adaptation, and losses and damages (Cross-Chapter Box 12 in this chapter; see Glossary). Some regions have already experienced a 1.5°C warming, with impacts on food and water security, health and other components of sustainable development (medium evidence, medium agreement) (see Chapter 3, Section 3.4). Climate change is also already affecting poorer subsistence communities through decreases in crop production and quantity, increases in crop pests and diseases, and disruption to culture (Savo et al., 2017). It disproportionately affects children and the elderly and can increase gender inequality (Kaiser and Kronsell, 2014; Vinyeta et al., 2015; Carter et al., 2016; Hanna and Oliva, 2016; Li et al., 2016).

At 1.5°C warming, compared to current conditions, further negative consequences are expected for poor people, and inequality and vulnerability (medium evidence, high agreement). Hallegatte and Rozenberg (2017) report that by 2030 (roughly approximating a 1.5°C warming), 122 million additional people could experience extreme poverty, based on a ‘poverty scenario’ of limited socio-economic progress, comparable to the Shared Socio-Economic Pathway (SSP) 4 (inequality), mainly due to higher food prices and declining health, with substantial income losses for the poorest 20% across 92 countries. Pretis et al. (2018) estimate negative impacts on economic growth in lower-income countries at 1.5°C warming, despite uncertainties. Impacts are likely to occur simultaneously across livelihood, food, human, water and ecosystem security (limited evidence, high agreement) (Byers et al., 2018), but the literature on interacting and cascading effects remains scarce (Hallegatte et al., 2014; O’Neill et al., 2017b; Reyer et al., 2017a, b).

Chapter 3 outlines future impacts and risks for ecosystems and human systems, many of which could also undermine sustainable development and efforts to eradicate poverty and hunger, and to protect health and ecosystems. Chapter 3 findings (see Section 3.5.2.1) suggest increasing Reasons for Concern from moderate to high at a warming of 1.1°C to 1.6°C, including for indigenous people and their livelihoods, and ecosystems in the Arctic (O’Neill et al., 2017b). In 2050, based on the Hadley Centre Climate Prediction Model 3 (HadCM3) and the Special Report on Emission Scenarios A1b scenario (roughly comparable to 1.5°C warming), 450 million more flood-prone people would be exposed to doubling in flood frequency, and global flood risk would increase substantially (Arnell and Gosling, 2016). For droughts, poor people are expected to be more exposed (85% in population terms) in a warming scenario greater than 1.5°C for several countries in Asia and southern and western Africa (Winsemius et al., 2018). In urban Africa, a 1.5°C warming could expose many households to water poverty and increased flooding (Pelling et al., 2018). At 1.5°C warming, fisheries-dependent and coastal livelihoods, of often disadvantaged populations, would suffer from the loss of coral reefs (see Chapter 3, Box 3.4).

Global heat stress is projected to increase in a 1.5°C warmer world, and by 2030, compared to 1961–1990, climate change could be responsible for additional annual deaths of 38,000 people from heat stress, particularly among the elderly, and 48,000 from diarrhoea, 60,000 from malaria, and 95,000 from childhood undernutrition (WHO, 2014). Each 1°C increase could reduce work productivity by 1 to 3% for people working outdoors or without air conditioning, typically the poorer segments of the workforce (Park et al., 2015).

The regional variation in the ‘warming experience at 1.5°C’ (see Chapter 1, Section 1.3.1) is large (see Chapter 3, Section 3.3.2). Declines in crop yields are widely reported for Africa (60% of observations), with serious consequences for subsistence and rain-fed agriculture and food security (Savo et al., 2016). In Bangladesh, by 2050, damages and losses are expected for poor households dependent on freshwater fish stocks due to lack of mobility, limited access to land and strong reliance on local ecosystems (Dasgupta et al., 2017). Small Island Developing States (SIDS) are expected to experience challenging conditions at 1.5°C warming due to increased risk of internal migration and displacement and limits to adaptation (see Chapter 3, Box 3.5, Cross-Chapter Box 12 in this chapter). An anticipated decline of marine fisheries of 3 million metric tonnes per degree warming would have serious regional impacts for the Indo-Pacific region and the Arctic (Cheung et al., 2016).

5.2.2 Avoided Impacts of 1.5°C versus 2°C Warming for Poverty and Inequality

Avoided impacts between 1.5°C and 2°C warming are expected to have significant positive implications for sustainable development, and reducing poverty and inequality. Using the SSPs (see Chapter 1, Cross-Chapter Box 1 in Chapter 1, Section 5.5.2), Byers et al. (2018) model the number of people exposed to multi-sector climate risks and vulnerable to poverty (income < $10/day), comparing 2°C and 1.5°C; the respective declines are from 86 million to 24 million for SSP1 (sustainability), from 498 million to 286 million for SSP2 (middle of the road), and from 1220 million to 763 million for SSP3 (regional rivalry), which suggests overall 62–457 million fewer people exposed and vulnerable at 1.5°C warming. Across the SSPs, the largest populations exposed and vulnerable are in South Asia (Byers et al., 2018). The avoided impacts on poverty at 1.5°C relative to 2°C are projected to depend at least as much or more on development scenarios than on warming (Wiebe et al., 2015; Hallegatte and Rozenberg, 2017).

Limiting warming to 1.5°C is expected to reduce the number of people exposed to hunger, water stress and disease in Africa (Clements, 2009). It is also expected to limit the number of poor people exposed to floods and droughts at higher degrees of warming, especially in African and Asian countries (Winsemius et al., 2018). Challenges for poor populations – relating to food and water security, clean energy
access and environmental well-being – are projected to be less at 1.5°C, particularly for vulnerable people in Africa and Asia (Byers et al., 2018). The overall projected socio-economic losses compared to the present day are less at 1.5°C (8% loss of gross domestic product per capita) compared to 2°C (13%), with lower-income countries projected to experience greater losses, which may increase economic inequality between countries (Pretis et al., 2018).

5.2.3 Risks from 1.5°C versus 2°C Global Warming and the Sustainable Development Goals

The risks that can be avoided by limiting global warming to 1.5°C rather than 2°C have many complex implications for sustainable development (ICSU, 2017; Gomez-Echeverri, 2018). There is high confidence that constraining warming to 1.5°C rather than 2°C would reduce risks for unique and threatened ecosystems, safeguarding the services they provide for livelihoods and sustainable development and making adaptation much easier (O’Neill et al., 2017b), particularly in Central America, the Amazon, South Africa and Australia (Schleussner et al., 2016; O’Neill et al., 2017b; Reyer et al., 2017; Bathiany et al., 2018).

In places that already bear disproportionate economic and social challenges to their sustainable development, people will face lower risks at 1.5°C compared to 2°C. These include North Africa and the Levant (less water scarcity), West Africa (less crop loss), South America and Southeast Asia (less intense heat), and many other coastal nations and island states (lower sea level rise, less coral reef loss) (Schleussner et al., 2016; Betts et al., 2018). The risks for food, water and ecosystems, particularly in subtropical regions such as Central America and countries such as South Africa and Australia, are expected to be lower at 1.5°C than at 2°C warming (Schleussner et al., 2016). Fewer people would be exposed to droughts and heat waves and the associated health impacts in countries such as Australia and India (King et al., 2017; Mishra et al., 2017).

Limiting warming to 1.5°C would make it markedly easier to achieve the SDGs for poverty eradication, water access, safe cities, food security, healthy lives and inclusive economic growth, and would help to protect terrestrial ecosystems and biodiversity (medium evidence, high agreement) (Table 5.2 available at the end of the chapter). For example, limiting species loss and expanding climate refugia will make it easier to achieve SDG 15 (see Chapter 3, Section 3.4.3). One indication of how lower temperatures benefit the SDGs is to compare the impacts of Representative Concentration Pathway (RCP) 4.5 (lower emissions) and RCP8.5 (higher emissions) on the SDGs (Ansautegi et al., 2015). A low emissions pathway allows for greater success in achieving SDGs for reducing poverty and hunger, providing access to clean energy, reducing inequality, ensuring education for all and making cities more sustainable. Even at lower emissions, a medium risk of failure exists to meet goals for water and sanitation, and marine and terrestrial ecosystems.

Action on climate change (SDG 13), including slowing the rate of warming, would help reach the goals for water, energy, food and land (SDGs 6, 7, 2 and 15) (Obersteiner et al., 2016; ICSU, 2017) and contribute to poverty eradication (SDG 1) (Byers et al., 2018). Although the literature that connects 1.5°C to the SDGs is limited, a pathway that stabilizes warming at 1.5°C by the end of the century is expected to increase the chances of achieving the SDGs by 2030, with greater potential to eradicate poverty, reduce inequality and foster equity (limited evidence, medium agreement). There are no studies on overshoot and dimensions of sustainable development, although literature on 4°C of warming suggests the impacts would be severe (Reyer et al., 2017b).

Table 5.1 | Sustainable development implications of avoided impacts between 1.5°C and 2°C global warming.

<table>
<thead>
<tr>
<th>Impacts</th>
<th>Chapter 3 Section</th>
<th>1.5°C</th>
<th>2°C</th>
<th>Sustainable Development Goals (SDGs) More Easily Achieved when Limiting Warming to 1.5°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water scarcity</td>
<td>3.4.2.1 Table 3.4</td>
<td>4% more people exposed to water stress</td>
<td>8% more people exposed to water stress, with 184–270 million people more exposed</td>
<td>SDG 6 water availability for all</td>
</tr>
<tr>
<td>Ecosystems</td>
<td>3.4.3 Table 3.4</td>
<td>496 (range 103–1159) million people exposed and vulnerable to water stress</td>
<td>586 (range 115–1347) million people exposed and vulnerable to water stress</td>
<td>SDG 15 to protect terrestrial ecosystems and halt biodiversity loss</td>
</tr>
<tr>
<td>Coastal cities</td>
<td>3.4.5.1 Table 3.4</td>
<td>31–69 million people exposed to coastal flooding</td>
<td>32–79 million exposed to coastal flooding</td>
<td>SDG 11 to make cities and human settlements safe and resilient</td>
</tr>
<tr>
<td>Food systems</td>
<td>3.4.6, 3.4.1</td>
<td>Significant declines in crop yields avoided, some yields may increase</td>
<td>Average crop yields decline</td>
<td>SDG 2 to end hunger and achieve food security</td>
</tr>
<tr>
<td>Health</td>
<td>3.4.5.1, 3.4.2.1</td>
<td>Lower risk of temperature-related morbidity and smaller mosquito range</td>
<td>Higher risks of temperature-related morbidity and mortality and larger geographic range of mosquitoes</td>
<td>SDG 3 to ensure healthy lives for all</td>
</tr>
</tbody>
</table>

453
Cross-Chapter Box 12 | Residual Risks, Limits to Adaptation and Loss and Damage

Lead Authors:
Riyanti Djalante (Japan/Indonesia), Kristie L. Ebi (USA), Debora Ley (Guatemala/Mexico), Reinhard Mechler (Germany), Patricia Fernanda Pinho (Brazil), Aromar Revi (India), Petra Tschakert (Australia/Austria)

Contributing Authors:
Karen Paiva Henrique (Brazil), Saleemul Huq (Bangladesh/UK), Rachel James (UK), Adelle Thomas (Bahamas), Margaretha Wewerinke-Singh (Netherlands)

Introduction
Residual climate-related risks, limits to adaptation, and loss and damage (see Glossary) are increasingly assessed in the scientific literature (van der Geest and Warner, 2015; Boyd et al., 2017; Mechler et al., 2019). The AR5 (IPCC, 2013; Oppenheimer et al., 2014) documented impacts that have been detected and attributed to climate change, projected increasing climate-related risks with continued global warming, and recognized barriers and limits to adaptation. It recognized that adaptation is constrained by biophysical, institutional, financial, social and cultural factors, and that the interaction of these factors with climate change can lead to soft adaptation limits (adaptive actions currently not available) and hard adaptation limits (adaptive actions appear infeasible leading to unavoidable impacts) (Klein et al., 2014).

Loss and damage: concepts and perspectives
‘Loss and Damage’ (L&D) has been discussed in international climate negotiations for three decades (INC, 1991; Calliari, 2016; Vanhala and Hestbaek, 2016). A work programme on L&D was established as part of the Cancun Adaptation Framework in 2010 supporting developing countries particularly vulnerable to climate change impacts (UNFCCC, 2011a). In 2013, the Conference of the Parties (COP) 19 established the Warsaw International Mechanism for Loss and Damage (WIM) as a formal part of the United Nations Framework Convention on Climate Change (UNFCCC) architecture (UNFCCC, 2014). It acknowledges that L&D ‘includes, and in some cases involves more than, that which can be reduced by adaptation’ (UNFCCC, 2014). The Paris Agreement recognized ‘the importance of averting, minimizing and addressing loss and damage associated with the adverse effects of climate change’ through Article 8 (UNFCCC, 2015).

There is no one definition of L&D in climate policy, and analysis of policy documents and stakeholder views has demonstrated ambiguity (Vanhala and Hestbaek, 2016; Boyd et al., 2017). UNFCCC documents suggest that L&D is associated with adverse impacts of climate change on human and natural systems, including impacts from extreme events and slow-onset processes (UNFCCC, 2011b, 2014, 2015). Some documents focus on impacts in developing or particularly vulnerable countries (UNFCCC, 2011b, 2014). They refer to economic (loss of assets and crops) and non-economic (biodiversity, culture, health) impacts, the latter also being an action area under the WIM workplan, and irreversible and permanent loss and damage. Lack of clarity of what the term addresses (avoidance through adaptation and mitigation, unavoidable losses, climate risk management, existential risk) was expressed among stakeholders, with further disagreement ensuing about what constitutes anthropogenic climate change versus natural climate variability (Boyd et al., 2017).

Limits to adaptation and residual risks
The AR5 described adaptation limits as points beyond which actors’ objectives are compromised by intolerable risks threatening key objectives such as good health or broad levels of well-being, thus requiring transformative adaptation for overcoming soft limits (see Chapter 4, Sections 4.2.2.3, 4.5.3 and Cross-Chapter Box 9, Section 5.3.1) (Dow et al., 2013; Klein et al., 2014). The AR5 WGII risk tables, based on expert judgment, depicted the potential for, and the limits of, additional adaptation to reduce risk. Near-term (2030–2040) risks can be used as a proxy for 1.5°C warming by the end of the century and compared to longer-term (2080–2100) risks associated with an approximate 2°C warming. Building on the AR5 risk approach, Cross-Chapter Box 12, Figure 1 provides a stylised application example to poverty and inequality.
Limits to adaptation, residual risks, and losses in a 1.5°C warmer world
The literature on risks at 1.5°C (versus 2°C and more) and potentials for adaptation remains limited, particularly for specific regions, sectors, and vulnerable and disadvantaged populations. Adaptation potential at 1.5°C and 2°C is rarely assessed explicitly, making an assessment of residual risk challenging. Substantial progress has been made since the AR5 to assess which climate change impacts on natural and human systems can be attributed to anthropogenic emissions (Hansen and Stone, 2016) and to examine the influence of anthropogenic emissions on extreme weather events (NASEM, 2016), and on consequent impacts on human life (Mitchell et al., 2016), but less so on monetary losses and risks (Schaller et al., 2016). There has also been some limited research to examine local-level limits to adaptation (Warner and Geest, 2013; Filho and Nalau, 2018). What constitutes losses and damages is context-dependent and often requires place-based research into what people value and consider worth protecting (Barnett et al., 2016; Tschakert et al., 2017). Yet assessments of non-material and intangible losses are particularly challenging, such as loss of sense of place, belonging, identity, and damage to emotional and mental well-being (Serdeczny et al., 2017; Wewerinke-Singh, 2018a). Warming of 1.5°C is not considered ‘safe’ for most nations, communities, ecosystems and sectors, and poses significant risks to natural and human systems as compared to the current warming of 1°C (high confidence) (see Chapter 3, Section 3.4, Box 3.4, Box 3.5, Table 3.5, Cross-Chapter Box 6 in Chapter 3). Table 5.2, drawing on findings from Chapters 3, 4 and 5, presents examples of soft and hard limits in natural and human systems in the context of 1.5°C and 2°C of warming.

Cross-Chapter Box 12, Table 1 | Soft and hard adaptation limits in the context of 1.5°C and 2°C of global warming.

<table>
<thead>
<tr>
<th>System/Region</th>
<th>Example</th>
<th>Soft Limit</th>
<th>Hard Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral reefs</td>
<td>Loss of 70–90% of tropical coral reefs by mid-century under 1.5°C scenario (total loss under 2°C scenario) (see Chapter 3, Sections 3.4.4 and 3.5.2.1, Box 3.4)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>6% of insects, 8% of plants and 4% of vertebrates lose over 50% of the climatically determined geographic range at 1.5°C (18% of insects, 16% of plants and 8% of vertebrates at 2°C) (see Chapter 3, Section 3.4.3.3)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Poverty</td>
<td>24–357 million people exposed to multi-sector climate risks and vulnerable to poverty at 1.5°C (86–1220 million at 2°C) (see Section 5.2.2)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Human health</td>
<td>Twice as many megacities exposed to heat stress at 1.5°C compared to present, potentially exposing 350 million additional people to deadly heat wave conditions by 2050 (see Chapter 3, Section 3.4.8)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Coastal livelihoods</td>
<td>Large-scale changes in oceanic systems (temperature and acidification) inflict damage and losses to livelihoods, income, cultural identity and health for coastal-dependent communities at 1.5°C (potential higher losses at 2°C) (see Chapter 3, Sections 3.4.4, 3.4.5, 3.4.6.3, Box 3.4, Box 3.5, Cross-Chapter Box 6, Chapter 4, Section 4.3.5; Section 5.2.3)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Small Island Developing States</td>
<td>Sea level rise and increased wave run up combined with increased aridity and decreased freshwater availability at 1.5°C warming potentially leaving several atoll islands uninhabitable (see Chapter 3, Sections 3.4.3, 3.4.5, Box 3.5, Chapter 4, Cross-Chapter Box 9)</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

5.3 Climate Adaptation and Sustainable Development

Adaptation will be extremely important in a 1.5°C warmer world since substantial impacts will be felt in every region (high confidence) (Chapter 3, Section 3.3), even if adaptation needs will be lower than in a 2°C warmer world (see Chapter 4, Sections 4.3.1 to 4.3.5, 4.5.3, Cross-Chapter Box 10 in Chapter 4). Climate adaptation options comprise structural, physical, institutional and social responses, with their effectiveness depending largely on governance (see Glossary), political will, adaptive capacities and availability of finance (see Chapter 4, Sections 4.4.1 to 4.4.5) (Betzold and Weiler, 2017; Sonwa et al., 2017; Sovacool et al., 2017). Even though the literature is scarce on the expected impacts of future adaptation measures on sustainable development specific to warming experiences of 1.5°C, this section assesses available literature on how (i) prioritising sustainable development enhances or impedes climate adaptation efforts (Section 5.3.1); (ii) climate adaptation measures impact sustainable development and the SDGs in positive (synergies) or negative (trade-offs) ways (Section 5.3.2); and (iii) adaptation pathways towards a 1.5°C warmer world affect sustainable development, poverty and inequalities (Section 5.3.3). The section builds on Chapter 4 (see Section 4.3.5) regarding available adaptation options to reduce climate vulnerability and build resilience (see Glossary) in the context of 1.5°C-compatible trajectories, with emphasis on sustainable development implications.

5.3.1 Sustainable Development in Support of Climate Adaptation

Making sustainable development a priority, and meeting the SDGs, is consistent with efforts to adapt to climate change (very high confidence). Sustainable development is effective in building adaptive capacity if it addresses poverty and inequalities, social and economic exclusion, and inadequate institutional capacities (Noble et al., 2014; Abel et al., 2016; Colloff et al., 2017). Four ways in which sustainable development leads to effective adaptation are described below.

First, sustainable development enables transformational adaptation (see Chapter 4, Section 4.2.2.2) when an integrated approach is adopted, with inclusive, transparent decision-making, rather than addressing current vulnerabilities as stand-alone climate problems (Mathur et al., 2014; Arthurson and Baum, 2015; Shackleton et al., 2015; Lemos et al., 2016; Antwi-Agyei et al., 2017b). Ending poverty in its multiple dimensions (SDG 1) is often a highly effective form of climate adaptation (Fankhauser and McDermott, 2014; Leichenko and Silva, 2014; Hallegatte and Rosenzweig, 2017). However, ending poverty is not sufficient, and the positive outcome as an adaptation strategy depends on whether increased household wealth is actually directed towards risk reduction and management strategies (Nelson et al., 2016), as shown in urban municipalities (Colenbrander et al., 2017; Rasch, 2017) and agrarian communities (Hashemi et al., 2017), and whether finance for adaptation is made available (Section 5.6.1).

Second, local participation is effective when wider socio-economic barriers are addressed via multiscale planning (McCubbin et al., 2015; Nyantakyi-Frimpong and Bezner-Kerr, 2015; Toole et al., 2016). This is the case, for instance, when national education efforts (SDG 4) (Muttarak and Lutz, 2014; Striessnig and Loichinger, 2015) and indigenous knowledge (Nkomwa et al., 2014; Pandey and Kumar, 2018) enhance information sharing, which also builds resilience (Santos et al., 2016; Martinez-Baron et al., 2018) and reduces risks for maladaptation (Antwi-Agyei et al., 2018; Gajjar et al., 2018).

Third, development promotes transformational adaptation when addressing social inequalities (Section 5.5.3, 5.6.4), as in SDGs 4, 5, 15 and 17 (O’Brien, 2016; O’Brien, 2017). For example, SDG 5 supports measures that reduce women’s vulnerabilities and allow women to benefit from adaptation (Antwi-Agyei et al., 2015; Van Aelst and Holvoet, 2016; Cohen, 2017). Mobilization of climate finance, carbon taxation and environmentally motivated subsidies can reduce inequalities (SDG 10), advance climate mitigation and adaptation (Chancel and Picketty, 2015), and be conducive to strengthening and enabling environments for resilience building (Nhamo, 2016; Halonen et al., 2017).

Fourth, when sustainable development promotes livelihood security, it enhances the adaptive capacities of vulnerable communities and households. Examples include SDG 11 supporting adaptation in cities...
Sustainable development has the potential to significantly reduce systemic vulnerability, enhance adaptive capacity and promote livelihood security for poor and disadvantaged populations (high confidence). Transformational adaptation (see Chapter 4, Sections 4.2.2.2 and 4.5.3) would require development that takes into consideration multidimensional poverty and entrenched inequalities, local cultural specificities and local knowledge in decision-making, thereby making it easier to achieve the SDGs in a 1.5°C warmer world (medium evidence, high agreement).

5.3.2 Synergies and Trade-Offs between Adaptation Options and Sustainable Development

There are short-, medium-, and long-term positive impacts (synergies) and negative impacts (trade-offs) between the dual goals of keeping temperatures below 1.5°C global warming and achieving sustainable development. The extent of synergies between development and adaptation goals will vary by the development process adopted for a particular SDG and underlying vulnerability contexts (medium evidence, high agreement). Overall, the impacts of adaptation on sustainable development, poverty eradication and reducing inequalities in general, and the SDGs specifically, are expected to be largely positive, given that the inherent purpose of adaptation is to lower risks. Building on Chapter 4 (see Section 4.3.5), this section examines synergies and trade-offs between adaptation and sustainable development for some key sectors and approaches.

Agricultural adaptation: The most direct synergy is between SDG 2 (zero hunger) and adaptation in cropping, livestock and food systems, designed to maintain or increase production (Lipper et al., 2014; Rockström et al., 2017). Farmers with effective adaptation strategies tend to enjoy higher food security and experience lower levels of poverty (FAO, 2015; Douxchamps et al., 2016; Ali and Erenstein, 2017). Vermeulen et al. (2016) report strong positive returns on investment across the world from agricultural adaptation with side benefits for environment and economic well-being. Well-adapted agricultural systems contribute to safe drinking water, health, biodiversity and equity goals (DeClerck et al., 2016; Myers et al., 2017). Climate-smart agriculture has synergies with food security, though it can be biased towards technological solutions, may not be gender sensitive, and can create specific challenges for institutional and distributional aspects (Lipper et al., 2014; Arakelyan et al., 2017; Taylor, 2017).

At the same time, adaptation options increase risks for human health, oceans and access to water if fertiliser and pesticides are used without regulation or when irrigation reduces water availability for other purposes (Shackleton et al., 2015; Campbell et al., 2016). When agricultural insurance and climate services overlook the poor, inequality may rise (Dinku et al., 2014; Carr and Owusu-Daaku, 2015; Georgeson et al., 2017a; Carr and Onzere, 2018). Agricultural adaptation measures may increase workloads, especially for women, while changes in crop mix can result in loss of income or culturally inappropriate food (Carr and Thompson, 2014; Thompson-Hall et al., 2016; Bryan et al., 2017), and they may benefit farmers with more land to the detriment of land-poor farmers, as seen in the Mekong River Basin (see Chapter 3, Cross-Chapter Box 6 in Chapter 3).

Adaptation to protect human health: Adaptation options in the health sector are expected to reduce morbidity and mortality (Arbuthnott et al., 2016; Ebi and Otman del Barrio, 2017). Heat-early-warning systems help lower injuries, illnesses and deaths (Hess and Ebi, 2016), with positive impacts for SDG 3. Institutions better equipped to share information, indicators for detecting climate-sensitive diseases, improved provision of basic health care services and coordination with other sectors also improve risk management, thus reducing adverse health outcomes (Dasgupta et al., 2016; Dovie et al., 2017). Effective adaptation creates synergies via basic public health measures (K.R. Smith et al., 2014; Dasgupta, 2016) and health infrastructure protected from extreme weather events (Watts et al., 2015). Yet trade-offs can occur when adaptation in one sector leads to negative impacts in another sector. Examples include the creation of urban wetlands through flood control measures which can breed mosquitoes, and migration eroding physical and mental well-being, hence adversely affecting SDG 3 (K.R. Smith et al., 2014; Watts et al., 2015). Similarly, increased use of air conditioning enhances resilience to heat stress (Petkova et al., 2017), yet it can result in higher energy consumption, undermining SDG 13.

Coastal adaptation: Adaptation to sea level rise remains essential in coastal areas even under a climate stabilization scenario of 1.5°C (Nicholls et al., 2018). Coastal adaptation to restore ecosystems (for instance by planting mangrove forests) supports SDGs for enhancing life and livelihoods on land and oceans (see Chapter 4, Sections 4.3.2.3). Synergistic outcomes between development and relocation of coastal communities are enhanced by participatory decision-making and settlement designs that promote equity and sustainability (van der Vorn et al., 2017). Limits to coastal adaptation may rise, for instance in low-lying islands in the Pacific, Caribbean and Indian Ocean, with attendant implications for loss and damage (see Chapter 3 Box 3.5, Chapter 4, Cross-Chapter Box 9 in Chapter 4, Cross-Chapter Box 12 in Chapter 5, Box 5.3).

Migration as adaptation: Migration has been used in various contexts to protect livelihoods from challenges related to climate change (Marsh, 2015; Jha et al., 2017), including through remittances (Betzold and Weiler, 2017). Synergies between migration and the achievement of sustainable development depend on adaptive measures and conditions in both sending and receiving regions (Fatima et al., 2014; McNamara, 2015; Entzinger and Scholten, 2016; Ober and Sakdapolrak, 2017; Schwan and Yu, 2017). Adverse developmental impacts arise when vulnerable women or the elderly are left behind or if migration is culturally disruptive (Wilkinson et al., 2016; Albert et al., 2017; Islam and Shamsuddoha, 2017).

Ecosystem-based adaptation: Ecosystem-based adaptation (EBA) can offer synergies with sustainable development (Morita and Matsumoto,
Community-based adaptation: Community-based adaptation (CBA) (see Chapter 4, Sections 4.3.3.2) enhances resilience and sustainability of adaptation plans (Ford et al., 2016; Fernandes-Jesus et al., 2017; Grantham and Rudd, 2017; Gustafson et al., 2017). Yet negative impacts occur if it fails to fairly represent vulnerable populations and to foster long-term social resilience (Ensor, 2016; Taylor Aiken et al., 2017). Mainstreaming CBA into planning and decision-making enables the attainment of SDGs 5, 10 and 16 (Archer et al., 2014; Reid and Huq, 2014; Vardakoulas and Nicholles, 2014; Cutter, 2016; Kim et al., 2017). Incorporating multiple forms of indigenous and local knowledge is an important element of CBA, as shown for instance in the Arctic region (see Chapter 4, Section 4.3.5.5, Box 4.3, Cross-Chapter Box 9) (Appar et al., 2015; Armitage, 2015; Pearce et al., 2015; Chief et al., 2016; Cobbinah and Anane, 2016; Ford et al., 2016). Indigenous and local knowledge can be synergistic with achieving SDGs 2, 6 and 10 (Ayers et al., 2014; Lasage et al., 2015; Regmi and Star, 2015; Berner et al., 2016; Chief et al., 2016; Murtinho, 2016; Reid, 2016).

There are clear synergies between adaptation options and several SDGs, such as poverty eradication, elimination of hunger, clean water and health (robust evidence, high agreement), as well-integrated adaptation supports sustainable development (Eakin et al., 2014; Weisser et al., 2014; Adam, 2015; Smucker et al., 2015). Substantial synergies are observed in the agricultural and health sectors, and in ecosystem-based adaptations. However, particular adaptation strategies can lead to adverse consequences for developmental outcomes (medium evidence, high agreement). Adaptation strategies that advance one SDG can result in trade-offs with other SDGs; for instance, agricultural adaptation to enhance food security (SDG 2) causing negative impacts for health, equality and healthy ecosystems (SDGs 3, 6, 10, 14 and 15), and resilience to heat stress increasing energy consumption (SDGs 3 and 7) and high-cost adaptation in resource-constrained contexts (medium evidence, medium agreement).

5.3.3 Adaptation Pathways towards a 1.5°C Warmer World and Implications for Inequalities

In a 1.5°C warmer world, adaptation measures and options would need to be intensified, accelerated and scaled up. This entails not only the right ‘mix’ of options (asking ‘right for whom and for what?’) but also a forward-looking understanding of dynamic trajectories, that is adaptation pathways (see Chapter 1, Cross-Chapter Box 1 in Chapter 1), best understood as decision-making processes over sets of potential action sequenced over time (Câmpeneau and Fazey, 2014; Wise et al., 2014). Given the scarcity of literature on adaptation pathways that navigate place-specific warming experiences at 1.5°C, this section presents insights into current local decision-making for adaptation futures. This grounded evidence shows that choices between possible pathways, at different scales and for different groups of people, are shaped by uneven power structures and historical legacies that create their own, often unforeseen change (Fazey et al., 2016; Bosomworth et al., 2017; Lin et al., 2017; Murphy et al., 2017; Pelling et al., 2018).

Pursuing a place-specific adaptation pathway approach towards a 1.5°C warmer world harbours the potential for significant positive outcomes, with synergies for well-being possibilities to ‘leap-frog the SDGs’ (J.R.A. Butler et al., 2016), in countries at all levels of development (medium evidence, high agreement). It allows for identifying local, socially salient tipping points before they are crossed, based on what people value and trade-offs that are acceptable to them (Barnett et al., 2014, 2016; Gوردard et al., 2016; Tschakert et al., 2017). Yet evidence also reveals adverse impacts that reinforce rather than reduce existing social inequalities and hence may lead to poverty traps (medium evidence, high agreement) (Nagoda, 2015; Warner et al., 2015; Barnett et al., 2016; J.R.A. Butler et al., 2016; Godfrey-Wood and Naess, 2016; Pelling et al., 2016; Albert et al., 2017; Murphy et al., 2017).

Past development trajectories as well as transformational adaptation plans can constrain adaptation futures by reinforcing dominant political-economic structures and processes, and narrowing option spaces; this leads to maladaptive pathways that preclude alternative, locally relevant and sustainable development initiatives and increase vulnerabilities (Warner and Kuzdas, 2017; Gajjar et al., 2018). Such dominant pathways tend to validate the practices, visions and values of existing governance regimes and powerful members of a community while devaluing those of less privileged stakeholders. Examples from Romania, the Solomon Islands and Australia illustrate such pathway dynamics in which individual economic gains and prosperity matter more than community cohesion and solidarity; this discourages innovation, exacerbates inequalities and further erodes adaptive capacities of the most vulnerable (Davies et al., 2014; Fazey et al., 2016; Bosomworth et al., 2017). In the city of London, United Kingdom, the dominant adaptation and disaster risk management pathway promotes resilience that emphasizes self-reliance; yet it intensifies the burden on low-income citizens, the elderly, migrants and others unable to afford flood insurance or protect themselves against heat waves (Pelling et al., 2016). Adaptation pathways in the Bolivian Altiplano have transformed subsistence farmers into world-leading quinoa producers, but loss of social cohesion and traditional values, dispossession and loss of ecosystem services now constitute undesirable trade-offs (Chelleri et al., 2016).
A narrow view of adaptation decision-making, for example focused on technical solutions, tends to crowd out more participatory processes (Lawrence and Haasnooth, 2017; Lin et al., 2017), obscures contested values and reinforces power asymmetries (Bosomworth et al., 2017; Singh, 2018). A situated and context-specific understanding of adaptation pathways that galvanizes diverse knowledge, values and joint initiatives helps to overcome dominant path dependencies, avoid trade-offs that intensify inequities and challenge policies detached from place (Fincher et al., 2014; Wyborn et al., 2015; Murphy et al., 2017; Gajjar et al., 2018). These insights suggest that adaptation pathway approaches to prepare for 1.5°C warmer futures would be difficult to achieve without considerations for inclusiveness, place-specific trade-off deliberations, redistributive measures and procedural justice mechanisms to facilitate equitable transformation (medium evidence, high agreement).

Box 5.1 | Ecosystem- and Community-Based Practices in Drylands

Drylands face severe challenges in building climate resilience (Fuller and Lain, 2017), yet small-scale farmers can play a crucial role as agents of change through ecosystem- and community-based practices that combine adaptation, mitigation and sustainable development.

Farmer managed natural regeneration (FMNR) of trees in cropland is practised in 18 countries across sub-Saharan Africa, Southeast Asia, Timor-Leste, India and Haiti and has, for example, permitted the restoration of over five million hectares of land in the Sahel (Niang et al., 2014; Bado et al., 2016). In Ethiopia, the Managing Environmental Resources to Enable Transitions programme, which entails community-based watershed rehabilitation in rural landscapes, supported around 648,000 people, resulting in the rehabilitation of 25,400,000 hectares of land in 72 severely food-insecure districts across Ethiopia between 2012 and 2015 (Gebrehaweria et al., 2016). In India, local farmers have benefitted from watershed programmes across different agro-ecological regions (Singh et al., 2014; Datta, 2015).

These low-cost, flexible community-based practices represent low-regrets adaptation and mitigation strategies. These strategies often contribute to strengthened ecosystem resilience and biodiversity, increased agricultural productivity and food security, reduced household poverty and drudgery for women, and enhanced agency and social capital (Niang et al., 2014; Francis et al., 2015; Kassie et al., 2015; Mbow et al., 2015; Reij and Winterbottom, 2015; Weston et al., 2015; Bado et al., 2016; Dumont et al., 2017). Small check dams in dryland areas and conservation agriculture can significantly increase agricultural output (Kumar et al., 2014; Agoramourthy and Hsu, 2016; Pradhan et al., 2018). Mitigation benefits have also been quantified (Weston et al., 2015); for example, FMNR of more than five million hectares in Niger has sequestered 25–30 Mtonnes of carbon over 30 years (Stevens et al., 2014).

However, several constraints hinder scaling-up efforts: inadequate attention to the socio-technical processes of innovation (Grist et al., 2017; Scoones et al., 2017), difficulties in measuring the benefits of an innovation (Coe et al., 2017), farmers’ inability to deal with long-term climate risk (Singh et al., 2017), and difficulties for matching practices with agro-ecological conditions and complementary modern inputs (Kassie et al., 2015). Key conditions to overcome these challenges include: developing agroforestry value chains and markets (Reij and Winterbottom, 2015) and adaptive planning and management (Gray et al., 2016). Others include inclusive processes giving greater voice to women and marginalized groups (MRFCJ, 2015a; UN Women and MRFCJ, 2016; Dumont et al., 2017), strengthening community land and forest rights (Stevens et al., 2014; Vermeulen et al., 2016), and co-learning among communities of practice at different scales (Coe et al., 2014; Reij and Winterbottom, 2015; Sinclair, 2016; Binam et al., 2017; Dumont et al., 2017; Epule et al., 2017).

5.4 Mitigation and Sustainable Development

The AR5 WGIII examined the potential of various mitigation options for specific sectors (energy supply, industry, buildings, transport, and agriculture, forestry, and other land use; AFOLU); it provided a narrative of dimensions of sustainable development and equity as a framing for evaluating climate responses and policies, respectively, in Chapters 4, 7, 8, 9, 10 and 11 (IPCC, 2014a). This section builds on the analyses of Chapters 2 and 4 of this report to re-assess mitigation and sustainable development in the context of 1.5°C global warming as well as the SDGs.

5.4.1 Synergies and Trade-Offs between Mitigation Options and Sustainable Development

Adopting stringent climate mitigation options can generate multiple positive non-climate benefits that have the potential to reduce the costs of achieving sustainable development (IPCC, 2014b; Ürge-Vorsatz et al., 2014, 2016; Schaeffer et al., 2015; von Stechow et al., 2015). Understanding the positive impacts (synergies) but also the negative impacts (trade-offs) is key for selecting mitigation options and policy choices that maximize the synergies between mitigation and developmental actions (Hildingsson and Johansson, 2015; Nilsson...
robust evidence, high agreement

et al., 2016; Delponte et al., 2017; van Vuuren et al., 2017b; McCollum et al., 2018b). Aligning mitigation response options to sustainable development objectives can ensure public acceptance (IPCC, 2014a), encourage faster action (Lechtenboehmer and Knoop, 2017) and support the design of equitable mitigation (Holz et al., 2018; Winkler et al., 2018) that protect human rights (MRFCJ, 2015b) (Section 5.5.3).

This sub-section assesses available literature on the interactions of individual mitigation options (see Chapter 2, Section 2.3.1.2, Chapter 4, Sections 4.2 and 4.3) with sustainable development and the SDGs and underlying targets. Table 5.2 presents an assessment of these synergies and trade-offs and the strength of the interaction using an SDG-interaction score (see Glossary) (McCollum et al., 2018b), with evidence and agreements levels. Figure 5.2 presents the information of Table 5.2, showing gross (not net) interactions with the SDGs. This detailed assessment of synergies and trade-offs of individual mitigation options with the SDGs (Table 5.2 a–d and Figure 5.2) reveals that the number of synergies exceeds that of trade-offs. Mitigation response options in the energy demand sector, AFOLU and oceans have more positive interactions with a larger number of SDGs compared to those on the energy supply side (robust evidence, high agreement).

5.4.1.1 Energy Demand: Mitigation Options to Accelerate Reduction in Energy Use and Fuel Switch

For mitigation options in the energy demand sectors, the number of synergies with all sixteen SDGs exceeds the number of trade-offs (Figure 5.2 and Table 5.2) (robust evidence, high agreement). Most of the interactions are of a reinforcing nature, hence facilitating the achievement of the goals.

Accelerating energy efficiency in all sectors, which is a necessary condition for a 1.5°C warmer world (see Chapters 2 and 4), has synergies with a large number of SDGs (robust evidence, high agreement) (Figure 5.2 and Table 5.2). The diffusion of efficient equipment and appliances across end use sectors has synergies with international partnership (SDG 17) and participatory and transparent institutions (SDG 16) because innovations and deployment of new technologies require transnational capacity building and knowledge sharing. Resource and energy savings support sustainable production and consumption (SDG 12), energy access (SDG 7), innovation and infrastructure development (SDG 9) and sustainable city development (SDG 11). Energy efficiency supports the creation of decent jobs by new industries and sustainable cities, governments can lay the foundations for compact, connected low-carbon cities, which are an important component of 1.5°C-compatible transformations (see Chapter 4, Section 4.3.3) and show synergies with sustainable cities (SDG 11) (Colenbrander et al., 2016).

In the transport sector, deep electrification may trigger increases of electricity prices and adversely affect poor populations (SDG 1), unless pro-poor redistributive policies are in place (Klausbruckner et al., 2016). In cities, governments can lay the foundations for compact, connected low-carbon cities, which are an important component of 1.5°C-compatible transformations (see Chapter 4, Section 4.3.3) and show synergies with sustainable cities (SDG 11) (Colenbrander et al., 2016).

Behavioural responses are important determinants of the ultimate outcome of energy efficiency on emission reductions and energy access (SDG 7) and their management requires a detailed understanding of the drivers of consumption and the potential for and barriers to absolute reductions (Fuchs et al., 2016). Notably, the rebound effect tends to offset the benefits of efficiency for emissions reductions through growing demand for energy services (Sorrell, 2015; Suffolk and Poortinga, 2016). However, high rebound can help in providing faster access to affordable energy (SDG 7.1) where the goal is to reduce energy poverty and unmet energy demand (see Chapter 2, Section 2.4.3) (Chakravarty et al., 2013). Comprehensive policy design – including rebound suppressing policies, such as carbon pricing and policies that encourage awareness building and promotional material design – is needed to tap the full potential of energy savings, as applicable to a 1.5°C warming context (Chakravarty and Tavoni, 2013; IPCC, 2014b; Karner et al., 2015; Zhang et al., 2015; Althier et al., 2016; Santarius et al., 2016) and to address policy-related trade-offs and welfare-enhancing benefits (robust evidence, high agreement) (Chakravarty et al., 2013; Chakravarty and Roy, 2016; Gillingham et al., 2016).

In energy-intensive processing industries, 1.5°C-compatible trajectories require radical technology innovation through maximum electrification, shift to other low emissions energy carriers such as hydrogen or biomass, integration of carbon capture and storage (CCS) and innovations for carbon capture and utilization (CCU) (see Chapter 4, Section 4.3.4.5). These transformations have strong synergies with innovation and sustainable industrialization (SDG 9), supranational partnerships (SDGs 16 and 17) and sustainable production (SDG 12). However, possible trade-offs due to risks of CCS-based carbon leakage, increased electricity demands, and associated price impacts affecting energy access and poverty (SDGs 7 and 1) would need careful regulatory attention (Wesseling et al., 2017). In the mining industry, energy efficiency can be synergetic or face trade-offs with sustainable management (SDG 6), depending on the option retained for water management (Nguyen et al., 2014). Substitution and recycling are also an important driver of 1.5°C-compatible trajectories in industrial systems (see Chapter 4, Section 4.3.4.2). Structural changes and reorganization of economic activities in industrial park/clusters following the principles of industrial symbiosis (circular economy) improves the overall sustainability by reducing energy and waste (Fan et al., 2017; Preston and Lehne, 2017) and reinforces responsible production and consumption (SDG 12) through recycling, water use efficiency (SDG 6), energy access (SDG 7) and ecosystem protection and restoration (SDG 15) (Karner et al., 2015; Zeng et al., 2017).

In the transport sector, deep electrification may trigger increases of electricity prices and adversely affect poor populations (SDG 1), unless pro-poor redistributive policies are in place (Klausbruckner et al., 2016). In cities, governments can lay the foundations for compact, connected low-carbon cities, which are an important component of 1.5°C-compatible transformations (see Chapter 4, Section 4.3.3) and show synergies with sustainable cities (SDG 11) (Colenbrander et al., 2016).

Behavioural responses are important determinants of the ultimate outcome of energy efficiency on emission reductions and energy access (SDG 7) and their management requires a detailed understanding of the drivers of consumption and the potential for and barriers to absolute reductions (Fuchs et al., 2016). Notably, the rebound effect tends to offset the benefits of efficiency for emissions reductions through growing demand for energy services (Sorrell, 2015; Suffolk and Poortinga, 2016). However, high rebound can help in providing faster access to affordable energy (SDG 7.1) where the goal is to reduce energy poverty and unmet energy demand (see Chapter 2, Section 2.4.3) (Chakravarty et al., 2013). Comprehensive policy design – including rebound suppressing policies, such as carbon pricing and policies that encourage awareness building and promotional material design – is needed to tap the full potential of energy savings, as applicable to a 1.5°C warming context (Chakravarty and Tavoni, 2013; IPCC, 2014b; Karner et al., 2015; Zhang et al., 2015; Althier et al., 2016; Santarius et al., 2016) and to address policy-related trade-offs and welfare-enhancing benefits (robust evidence, high agreement) (Chakravarty et al., 2013; Chakravarty and Roy, 2016; Gillingham et al., 2016).
Other behavioural responses will affect the interplay between energy efficiency and sustainable development. Building occupants reluctant to change their habits may miss out on welfare-enhancing energy efficiency opportunities (Zhao et al., 2017). Preferences for new products and premature obsolescence for appliances is expected to adversely affect sustainable consumption and production (SDG 12) with ramifications for resource use efficiency (Echegaray, 2016). Changes in user behaviour towards increased physical activity, less reliance on motorized travel over short distances and the use of public transport would help to decarbonize the transport sector in a synergetic manner with SDGs 3, 11 and 12 (Shaw et al., 2014; Ajanovic, 2015; Chakrabarti and Shin, 2017), while reducing inequality in access to basic facilities (SDG 10) (Lucas and Pangbourne, 2014; Kagawa et al., 2015). However, infrastructure design and regulations would need to consider road safety and address risks of road accidents for pedestrians (Hwang et al., 2017; Kheiris et al., 2017) to ensure sustainable infrastructure growth in human settlements (SDGs 9 and 11) (Lin et al., 2015; SLoCaT, 2017).

5.4.1.2 Energy Supply: Accelerated Decarbonization

Decreasing the share of coal in energy supply (see Chapter 2, Section 2.4.2) reduces adverse impacts of upstream supply-chain activities, in particular air and water pollution and coal mining accidents, and enhances health by reducing air pollution, notably in cities, showing synergies with SDGs 3, 11 and 12 (Yang et al., 2016; UNEP, 2017).

Fast deployment of renewables such as solar, wind, hydro and modern biomass, together with the decrease of fossil fuels in energy supply (see Chapter 2, Section 2.4.2.1), is aligned with the doubling of renewables in the global energy mix (SDG 7.2). Renewables could also support progress on SDGs 1, 10, 11 and 12 and supplement new technology (robust evidence, high agreement) (Chaturvedi and Shukla, 2014; Rose et al., 2014; Smith and Sagar, 2014; Riahi et al., 2015; IEA, 2016; van Vuuren et al., 2017a; McCollum et al., 2018a). However, some trade-offs with the SDGs may emerge from offshore installations, particularly SDG 14 in local contexts (McCollum et al., 2018a). Moreover, trade-offs between renewable energy production and affordability (SDG 7) (Labordena et al., 2017) and other environmental objectives would need to be scrutinised for potential negative social outcomes. Policy interventions through regional cooperation-building (SDG 17) and institutional capacity (SDG 16) can enhance affordability (SDG 7) (Labordena et al., 2017). The deployment of small-scale renewables, or off-grid solutions for people in remote areas (Sánchez and Izzo, 2017), has strong potential for synergies with access to energy (SDG 7), but the actualization of these potentials requires measures to overcome technology and reliability risks associated with large-scale deployment of renewables (Giwa et al., 2017; Heard et al., 2017). Bundling energy-efficient appliances and lighting with off-grid renewables can lead to substantial cost reduction while increasing reliability (IEA, 2017). Low-income populations in industrialized countries are often left out of renewable energy generation schemes, either because of high start-up costs or lack of home ownership (UNRISD, 2016).

Nuclear energy, the share of which increases in most of the 1.5ºC-compatible pathways (see Chapter 2, Section 2.4.2.1), can increase the risks of proliferation (SDG 16), have negative environmental effects (e.g., for water use; SDG 6) and have mixed effects for human health when replacing fossil fuels (SDGs 7 and 3) (see Table 5.2). The use of fossil CCS, which plays an important role in deep mitigation pathways (see Chapter 2, Section 2.4.2.3), implies continued adverse impacts of upstream supply-chain activities in the coal sector, and because of lower efficiency of CCS coal power plants (SDG 12), upstream impacts and local air pollution are likely to be exacerbated (SDG 3). Furthermore, there is a non-negligible risk of carbon dioxide leakage from geological storage and the carbon dioxide transport infrastructure (SDG 3) (Table 5.2).

Economies dependent upon fossil fuel-based energy generation and/or export revenue are expected to be disproportionally affected by future restrictions on the use of fossil fuels under stringent climate goals and higher carbon prices; this includes impacts on employment, stranded assets, resources left underground, lower capacity use and early phasing out of large infrastructure already under construction (robust evidence, high agreement) (Box 5.2) (Johnson et al., 2015; McGlade and Ekins, 2015; UNEP, 2017; Spencer et al., 2018). Investment in coal continues to be attractive in many countries as it is a mature technology and provides cheap energy supplies, large-scale employment and energy security (Jakob and Steckel, 2016; Vogt-Schilb and Hallegatte, 2017; Spencer et al., 2018). Hence, accompanying policies and measures would be required to ease job losses and correct for relatively higher prices of alternative energy (Oosterhuis and Ten Brink, 2014; Oei and Mendeleevitch, 2016; Garg et al., 2017; HLCCP, 2017; Jordaan et al., 2017; OECD, 2017; UNEP, 2017; Blondeel and van de Graaf, 2018; Green, 2018). Research on historical transitions shows that managing the impacts on workers through retraining programmes is essential in order to align the phase-down of mining industries with meeting ambitious climate targets, and the objectives of a ‘just transition’ (Galgóczi, 2014; Caldecott et al., 2017; Healy and Barry, 2017). This aspect is even more important in developing countries where the mining workforce is largely semi- or unskilled (Altieri et al., 2016; Tung, 2016). Ambitious emissions reduction targets can unlock very strong decoupling potentials in industrialized fossil exporting economies (Hatfield-Dodds et al., 2015).
5.4.1.3 Land-based agriculture, forestry and ocean: mitigation response options and carbon dioxide removal

In the AFOLU sector, dietary change towards global healthy diets, that is, a shift from over-consumption of animal-related to plant-related diets, and food waste reduction (see Chapter 4, Section 4.3.2.1) are in synergy with SDGs 2 and 6, and SDG 3 through lower consumption of animal products and reduced losses and waste throughout the food system, contributing to achieving SDGs 12 and 15 (Bajželj et al., 2014; Bustamante et al., 2014; Tilman and Clark, 2014; Hiç et al., 2016).

Power dynamics play an important role in achieving behavioural change and sustainable consumption (Fuchs et al., 2016). In forest management (see Chapter 4, Section 4.3.2.2), encouraging responsible sourcing of forest products and securing indigenous land tenure has the potential to increase economic benefits by creating decent jobs (SDG 8), maintaining biodiversity (SDG 15), facilitating innovation and upgrading technology (SDG 9), and encouraging responsible and just decision-making (SDG 16) (medium evidence, high agreement) (Ding et al., 2016; WWF, 2017).

Emerging evidence indicates that future mitigation efforts that would be required to reach stringent climate targets, particularly those associated with carbon dioxide removal (CDR) (e.g., afforestation and reforestation and bioenergy with carbon capture and storage; BECCS), may also impose significant constraints upon poor and vulnerable communities (SDG 1) via increased food prices and competition for arable land, land appropriation and dispossession (Cavanagh and Benjaminsen, 2014; Hunsberger et al., 2014; Work, 2015; Muratori et al., 2016; Smith et al., 2016; Burns and Nicholson, 2017; Corbera et al., 2017) with disproportionate negative impacts upon rural poor and indigenous populations (SDG 1) (robust evidence, high agreement) (Section 5.4.2.2, Table 5.2, Figure 5.2) (Grubert et al., 2014; Grill et al., 2015; Zhang and Chen, 2015; Fricko et al., 2016; Johansson et al., 2016; Aha and Ayitey, 2017; De Stefano et al., 2017; Shi et al., 2017). Crops for bioenergy may also impose significant constraints upon poor and vulnerable communities (SDG 1) (medium evidence, high agreement) (Ding et al., 2016; WWF, 2017).

Ocean iron fertilization and enhanced weathering have two-way interactions with life under water and on land and food security (SDGs
Development of blue carbon resources through coastal (mangrove) and marine (seaweed) vegetative ecosystems encourages integrated water resource management (SDG 6) (Vierros, 2017); promotes life on land (SDG 15) (Potouroglou et al., 2017); poverty reduction (SDG 1) (Schirmer and Bull, 2014; Lamb et al., 2016); and food security (SDG 2) (Ahmed et al., 2017a, b; Duarte et al., 2017; Sondak et al., 2017; Vierros, 2017; Zhang et al., 2017).

Figure 5.2 | Synergies and trade-offs and gross Sustainable Development Goal (SDG)-interaction with individual mitigation options. The top three wheels represent synergies and the bottom three wheels show trade-offs. The colours on the border of the wheels correspond to the SDGs listed above, starting at the 9 o’clock position, with reading guidance in the top-left corner with the quarter circle (Note 1). Mitigation (climate action, SDG 13) is at the centre of the circle. The coloured segments inside the circles can be counted to arrive at the number of synergies (green) and trade-offs (red). The length of the coloured segments shows the strength of the synergies or trade-offs (Note 3) and the shading indicates confidence (Note 2). Various mitigation options within the energy demand sector, energy supply sector, and land and ocean sector, and how to read them within a segment are shown in grey (Note 4). See also Table 5.2.

5.4.2 Sustainable Development Implications of 1.5°C and 2°C Mitigation Pathways

While previous sections have focused on individual mitigation options and their interaction with sustainable development and the SDGs, this section takes a systems perspective. Emphasis is on quantitative pathways depicting path-dependent evolutions of human and natural systems over time. Specifically, the focus is on fundamental transformations and thus stringent mitigation policies consistent with 1.5°C or 2°C, and the differential synergies and trade-offs with respect to the various sustainable development dimensions.

Both 1.5°C and 2°C pathways would require deep cuts in greenhouse gas (GHG) emissions and large-scale changes of energy supply and demand, as well as in agriculture and forestry systems (see Chapter 2, Section 2.4). For the assessment of the sustainable development implications of these pathways, this chapter draws upon studies that show the aggregated impact of mitigation for multiple sustainable development dimensions (Grubler et al., 2018; McCollum et al., 2018b; Rogelj et al., 2018) and across multiple integrated assessment modelling (IAM) frameworks. Often these tools are linked to disciplinary models covering specific SDGs in more detail (Cameron et al., 2016; Rao et al., 2017; Grubler et al., 2018; McCollum et al.,...
5.4.2.1 Air pollution and health

GHGs and air pollutants are typically emitted by the same sources. Hence, mitigation strategies that reduce GHGs or the use of fossil fuels typically also reduce emissions of pollutants, such as particulate matter (e.g., PM2.5 and PM10), black carbon (BC), sulphur dioxide (SO2), nitrogen oxides (NOx) and other harmful species (Clarke et al., 2014) (Figure 5.3), causing adverse health and ecosystem effects at various scales (Kusumaningtyas and Aldrian, 2016).

Mitigation pathways typically show that there are significant synergies for air pollution, and that the synergies increase with the stringency of the mitigation policies (Amann et al., 2011; Rao et al., 2016; Klimont et al., 2017; Shindell et al., 2017; Markandya et al., 2018). Recent multimodel comparisons indicate that mitigation pathways consistent with 1.5°C would result in higher synergies with air pollution compared to pathways that are consistent with 2°C (Figures 5.4 and 5.5). Shindell et al. (2018) indicate that health benefits worldwide over the century of 1.5°C pathways could be in the range of 110 to 190 million fewer premature deaths compared to 2°C pathways. The synergies for air pollution are highest in the developing world, particularly in Asia. In addition to significant health benefits, there are also economic benefits from mitigation, reducing the investment needs in air pollution control technologies by about 35% globally (or about 100 billion USD2010 per year to 2030 in 1.5°C pathways; McCollum et al., 2018b) (Figure 5.4).

5.4.2.2 Food security and hunger

Stringent climate mitigation pathways in line with ‘well below 2°C’ or ‘1.5°C’ goals often rely on the deployment of large-scale land-related measures, like afforestation and/or bioenergy supply (Popp et al., 2014; Rose et al., 2014; Creutzig et al., 2015). These land-related measures can compete with food production and hence raise food security concerns (Section 5.4.1.3) (P. Smith et al., 2014). Mitigation studies indicate that so-called ‘single-minded’ climate policy, aiming solely at limiting warming to 1.5°C or 2°C without concurrent measures in the food sector, can have negative impacts for global food security (Hasegawa et al., 2015; McCollum et al., 2018b). Impacts of 1.5°C mitigation pathways can be significantly higher than those of 2°C pathways (Figures 5.4 and 5.5). An important driver of the food security impacts in these scenarios is the increase in food prices and the effect of mitigation on disposable income and wealth due to GHG pricing. A recent study indicates that, on aggregate, the price and income effects on food may be bigger than the effect due to competition over land between food and bioenergy (Hasegawa et al., 2015).

In order to address the issue of trade-offs with food security, mitigation policies would need to be designed in a way that shields the population at risk of hunger, including through the adoption of different complementary measures, such as food price support. The investment needs of complementary food price policies are found to be globally relatively much smaller than the associated mitigation investments of 1.5°C pathways (Figure 5.3) (McCollum et al., 2018b). Besides food support price, other measures include improving productivity and efficiency of agricultural production systems (FAO and NZAGRC, 2017a, b; Frank et al., 2017) and programmes focusing on forest land-use change (HAVILK et al., 2014). All these lead to additional benefits of mitigation, improving resilience and livelihoods.

Van Vuuren et al. (2018) and Grubler et al. (2018) show that 1.5°C pathways without reliance on BECCS can be achieved through a fundamental transformation of the service sectors which would significantly reduce energy and food demand (see Chapter 2, Sections 2.1.1, 2.3.1 and 2.4.3). Such low energy demand (LED) pathways would result in significantly reduced pressure on food security, lower food prices and fewer people at risk of hunger. Importantly, the trade-offs with food security would be reduced by the avoided impacts in the agricultural sector due to the reduced warming associated with the 1.5°C pathways (see Chapter 3, Section 3.5). However, such feedbacks are not comprehensively captured in the studies on mitigation.

5.4.2.3 Lack of energy access/energy poverty

A lack of access to clean and affordable energy (especially for cooking) is a major policy concern in many countries, especially in those in South Asia and Africa where major parts of the population still rely primarily on solid fuels for cooking (IEA and World Bank, 2017). Scenario studies which quantify the interactions between climate mitigation and energy access indicate that stringent climate policy which would affect energy prices could significantly slow down the transition to clean cooking fuels, such as liquefied petroleum gas or electricity (Cameron et al., 2016).

Estimates across six different IAMs (McCollum et al., 2018b) indicate that, in the absence of compensatory measures, the number of people without access to clean cooking fuels may increase. Redistribution measures, such as subsidies on cleaner fuels and stoves, could compensate for the negative effects of mitigation on energy access. Investment costs of the redistributinal measures in 1.5°C pathways (on average around 120 billion USD2010 per year to 2030; Figure 5.4) are much smaller than the mitigation investments of 1.5°C pathways (McCollum et al., 2018b). The recycling of revenues from climate policy might act as a means to help finance the costs of providing energy access to the poor (Cameron et al., 2016).

5.4.2.4 Water security

Transformations towards low emissions energy and agricultural systems can have major implications for freshwater demand as well as water pollution. The scaling up of renewables and energy efficiency as depicted by low emissions pathways would, in most instances, lower water demands for thermal energy supply facilities (‘water-for-energy’) compared to fossil energy technologies, and thus reinforce targets related to water access and scarcity (see Chapter 4, Section 4.2.1). However, some low-carbon options such as bioenergy, centralized solar
Sustainable development implications of mitigation actions in 1.5°C pathways. Panel (a) shows ranges for 1.5°C pathways for selected sustainable development dimensions compared to the ranges of 2°C pathways and baseline pathways. The panel (a) depicts interquartile and the full range across the scenarios for Sustainable Development Goal (SDG) 2 (hunger), SDG 3 (health), SDG 6 (water), SDG 7 (energy), SDG 12 (resources), SDG 13/14 (climate/ocean) and SDG 15 (land). Progress towards achieving the SDGs is denoted by arrow symbols (increase or decrease of indicator). Black horizontal lines show 2015 values for comparison. Note that sustainable development effects are estimated for the effect of mitigation and do not include benefits from avoided impacts (see Chapter 3, Section 3.5). Low energy demand (LED) denotes estimates from a pathway with extremely low energy demand reaching 1.5°C without bioenergy with carbon capture and storage (BECCS). Panel (b) presents the resulting full range for synergies and trade-offs of 1.5°C pathways compared to the corresponding baseline scenarios. The y-axis in panel (b) indicates the factor change in the 1.5°C pathway compared to the baseline. Note that the figure shows gross impacts of mitigation and does not include feedbacks due to avoided impacts. The realization of the side effects will critically depend on local circumstances and implementation practice. Trade-offs across many sustainable development dimensions can be reduced through complementary/re-distributional measures. The figure is not comprehensive and focuses on those sustainable development dimensions for which quantifications across models are available. Sources: 1.5°C pathways database from Chapter 2 (Grubler et al., 2018; McCollum et al., 2018b).
power, nuclear and hydropower technologies could, if not managed properly, have counteracting effects that compound existing water-related problems in a given locale (Byers et al., 2014; Fricko et al., 2016; IEA, 2016; Fujimori et al., 2017a; Wang, 2017; McCollum et al., 2018a).

Under stringent mitigation efforts, the demand for bioenergy can result in a substantial increase of water demand for irrigation, thereby potentially contributing to water scarcity in water-stressed regions (Berger et al., 2015; Bonsch et al., 2016; Jägermeier et al., 2017). However, this risk can be reduced by prioritizing rain-fed production of bioenergy (Hayashi et al., 2015, 2018; Bonsch et al., 2016), but might have adverse effects for food security (Boysen et al., 2017).

Reducing food and energy demand without compromising the needs of the poor emerges as a robust strategy for both water conservation and GHG emissions reductions (von Stechow et al., 2015; IEA, 2016; Parkinson et al., 2016; Grubler et al., 2018). The results underscore the importance of an integrated approach when developing water, energy and climate policy (IEA, 2016).

Estimates across different models for the impacts of stringent mitigation pathways on energy-related water uses seem ambiguous. Some pathways show synergies (Mouratidou et al., 2018) while others indicate trade-offs and thus increases of water use due to mitigation (Fricko et al., 2016). The synergies depend on the adopted policy implementation or mitigation strategies and technology portfolio. A number of adaptation options exist (e.g., dry cooling), which can effectively reduce electricity-related water trade-offs (Fricko et al., 2016; IEA, 2016). Similarly, irrigation water use will depend on the regions where crops are produced, the sources of bioenergy (e.g., agriculture vs. forestry) and dietary change induced by climate policy. Overall, and also considering other water-related SDGs, including access to safe drinking water and sanitation as well as waste-water treatment, investments into the water sector seem to be only modestly affected by stringent climate policy compatible with 1.5°C (Figure 5.4) (McCollum et al., 2018b).

In summary, the assessment of mitigation pathways shows that to meet the 1.5°C target, a wide range of mitigation options would need to be deployed (see Chapter 2, Sections 2.3 and 2.4). While pathways aiming at 1.5°C are associated with high synergies for some sustainable development dimensions (such as human health and air pollution, forest preservation), the rapid pace and magnitude of the required changes would also lead to increased risks for trade-offs for other sustainable development dimensions (particularly food security) (Figures 5.4 and 5.5). Synergies and trade-offs are expected to be unevenly distributed between regions and nations (Box 5.2), though little literature has formally examined such distributions under 1.5°C-consistent mitigation scenarios. Reducing these risks requires smart policy designs and mechanisms that shield the poor and redistribute the burden so that the most vulnerable are not disproportionately affected. Recent scenario analyses show that associated investments for reducing the trade-offs for, for example, food, water and energy access to be significantly lower than the required mitigation investments (McCollum et al., 2018b).

Fundamental transformation of demand, including efficiency and behavioural changes, can help to significantly reduce the reliance on risky technologies, such as BECCS, and thus reduce the risk of potential trade-offs between mitigation and other sustainable development dimensions (von Stechow et al., 2015; Grubler et al., 2018; van Vuuren et al., 2018). Reliance on demand-side measures only, however, would not be sufficient for meeting stringent targets, such as 1.5°C and 2°C (Clarke et al., 2014).

5.5 Sustainable Development Pathways to 1.5°C

This section assesses what is known in the literature on development pathways that are sustainable and climate-resilient and relevant to a 1.5°C warmer world. Pathways, transitions from today’s world to achieving a set of future goals (see Chapter 1, Section 1.2.3, Cross-Chapter Box 1), follow broadly two main traditions: first, as integrated pathways describing the required societal and systems transformations, combining quantitative modelling and qualitative narratives at multiple spatial scales (global to sub-national); and second, as country- and community-level, solution-oriented trajectories and decision-making processes about context- and place-specific opportunities, challenges and trade-offs. These two notions of pathways offer different, though complementary, insights into the nature of 1.5°C-relevant trajectories and the short-term actions that enable long-term goals. Both highlight to varying degrees the urgency, ethics and equity dimensions of possible trajectories and society- and system-wide transformations, yet at different scales, building on Chapter 2 (see Section 2.4) and Chapter 4 (see Section 4.5).
5.5.1 Integration of Adaptation, Mitigation and Sustainable Development

Insights into climate-compatible development (see Glossary) illustrate how integration between adaptation, mitigation and sustainable development works in context-specific projects, how synergies are achieved and what challenges are encountered during implementation (Stringer et al., 2014; Suckall et al., 2014; Antwi-Agyei et al., 2017a; Bickersteth et al., 2017; Kalafatis, 2017; Nunan, 2017). The operationalization of climate-compatible development, including climate-smart agriculture and carbon-forestry projects (Lipper et al., 2014; Campbell et al., 2016; Quan et al., 2017), shows multi-level and multi-sector trade-offs involving ‘winners’ and ‘losers’ across governance levels (high confidence) (Kongsager and Corbera, 2015; Naess et al., 2015; Karlsson et al., 2017; Tanner et al., 2017; Taylor, 2017; Wood, 2017; Ficklin et al., 2018). Issues of power, participation, values, equity, inequality and justice transcend case study examples of attempted integrated approaches (Nunan, 2017; Phillips et al., 2017; Stringer et al., 2017; Wood, 2017), also reflected in policy frameworks for integrated outcomes (Stringer et al., 2014; Di Gregorio et al., 2017; Few et al., 2017; Tanner et al., 2017).

Ultimately, reconciling trade-offs between development needs and emissions reductions towards a 1.5°C warmer world requires a dynamic view of the interlinkages between adaptation, mitigation and sustainable development (Nunan, 2017). This entails recognition of the ways in which development contexts shape the choice and effectiveness of interventions, limit the range of responses afforded to communities and governments, and potentially impose injustices upon vulnerable groups (UNRISD, 2016; Thornton and Comberti, 2017). A variety of approaches, both quantitative and qualitative, exist to examine possible sustainable development pathways under which climate and sustainable development goals can be achieved, and synergies and trade-offs for transformation identified (Sections 5.3 and 5.4).

5.5.2 Pathways for Adaptation, Mitigation and Sustainable Development

This section focuses on the growing body of pathways literature describing the dynamic and systemic integration of mitigation and adaptation with sustainable development in the context of a 1.5°C warmer world. These studies are critically important for the identification of ‘enabling’ conditions under which climate and the SDGs can be achieved, and thus help the design of transformation strategies that maximize synergies and avoid potential trade-offs (Sections 5.3 and 5.4). Full integration of sustainable development dimensions is, however, challenging, given their diversity and the need for high temporal, spatial and social resolution to address local effects, including heterogeneity related to poverty and equity (von Stechow et al., 2015). Research on long-term climate change mitigation and adaptation pathways has covered individual SDGs to different degrees. Interactions between climate and other SDGs have been explored for SDGs 2, 3, 4, 6, 7, 8, 12, 14 and 15 (Clarke et al., 2014; Abel et al., 2016; von Stechow et al., 2016; Rao et al., 2017), while interactions with SDGs 1, 5, 11 and 16 remain largely underexplored in integrated long-term scenarios (Zimm et al., 2018). Quantitative pathways studies now better represent ‘nexus’ approaches to assess sustainable development dimensions. In such approaches (see Chapter 4, Section 4.3.3.8), a subset of sustainable development dimensions are investigated together because of their close relationships (Welsch et al., 2014; Conway et al., 2015; Kearns et al., 2016; Parkinson et al., 2016; Rasul and Sharma, 2016; Howarth and Monasterolo, 2017). Compared to single-objective climate–SDG assessments (Section 5.4.2), nexus solutions attempt to integrate complex interdependencies across diverse sectors in a systems approach for consistent analysis. Recent pathways studies show how water, energy and climate (SDGs 6, 7 and 13) interact (Parkinson et al., 2016; McCollum et al., 2018b) and call for integrated water–energy investment decisions to manage systemic risks. For instance, the provision of bioenergy, important in many 1.5°C-consistent pathways, can help resolve ‘nexus challenges’ by alleviating energy security concerns, but can also have adverse ‘nexus impacts’ on food security, water use and biodiversity (Lotze-Campen et al., 2014; Bonsch et al., 2016). Policies that improve resource use efficiency across sectors can maximize synergies for sustainable development (Bartos and Chester, 2014; McCollum et al., 2018b; van Vuuren et al., 2018). Mitigation compatible with 1.5°C can significantly reduce impacts and adaptation needs in the nexus sectors compared to 2°C (Byers et al., 2018). In order to avoid trade-offs due to high carbon pricing of 1.5°C pathways, regulation in specific areas may complement price-based instruments. Such combined policies generally lead also to more early action maximizing synergies and avoiding some of the adverse climate effects for sustainable development (Bertram et al., 2018).

The comprehensive analysis of climate change in the context of sustainable development requires suitable reference scenarios that lend themselves to broader sustainable development analyses. The Shared Socio-Economic Pathways (SSPs) (Chapter 1, Cross-Chapter Box 1 in Chapter 1) (O’Neill et al., 2017a; Riahi et al., 2017) constitute an important first step in providing a framework for the integrated assessment of adaptation and mitigation and their climate–development linkages (Ebi et al., 2014). The five underlying SSP narratives (O’Neill et al., 2017a) map well into some of the key SDG dimensions, with one of the pathways (SSP1) explicitly depicting sustainability as the main theme (van Vuuren et al., 2017b).

To date, no pathway in the literature proves to achieve all 17 SDGs because several targets are not met or not sufficiently covered in the analysis, hence resulting in a sustainability gap (Zimm et al., 2018). The SSPs facilitate the systematic exploration of different sustainable dimensions under ambitious climate objectives. SSP1 proves to be in line with eight SDGs (3, 7, 8, 9, 10, 11, 13 and 15) and several of their targets in a 2°C warmer world (van Vuuren et al., 2017b; Zimm et al., 2018). However, important targets for SDGs 1, 2 and 4 (i.e., people living in extreme poverty, people living at the risk of hunger and gender gap in years of schooling) are not met in this scenario.

The SSPs show that sustainable socio-economic conditions will play a key role in reaching stringent climate targets (Riahi et al., 2017; Rogelj et al., 2018). Recent modelling work has examined 1.5°C-consistent, stringent mitigation scenarios for 2100 applied to the SSPs, using six different IAMs. Despite the limitations of these models, which are coarse approximations of reality, robust trends can be identified...
Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

5.5.3 Climate-Resilient Development Pathways

This section assesses the literature on pathways as solution-oriented trajectories and decision-making processes for attaining transformative visions for a 1.5°C warmer world. It builds on climate-resilient development pathways (CRDPs) introduced in the AR5 (Section 5.1.2) (Olsson et al., 2014) as well as growing literature (e.g., Eriksen et al., 2017; Johnson, 2017; Orindu et al., 2017; Kirby and O’Mahony, 2018; Solecki et al., 2018) that uses CRDPs as a conceptual and aspirational idea for steering societies towards low-carbon, prosperous and ecologically safe futures. Such a notion of pathways foregrounds decision-making processes at local to national levels to situate transformation, resilience, equity and well-being in the complex reality of specific places, nations and communities (Harris et al., 2017; Ziervogel et al., 2017; Fazey et al., 2018; Gajjar et al., 2018; Klinsky and Winkler, 2018; Patterson et al., 2018; Tåbara et al., 2018).

Pathways compatible with 1.5°C warming are not merely scenarios to envision possible futures but processes of deliberation and implementation that address societal values, local priorities and inevitable trade-offs. This includes attention to politics and power that perpetuate business-as-usual trajectories (O’Brien, 2016; Harris et al., 2017), the politics that shape sustainability and capabilities of everyday life (Agyeman et al., 2016; Schlosberg et al., 2017), and ingredients for community resilience and transformative change (Fazey et al., 2018). Chartering CRDPs encourages locally situated and problem-solving processes to negotiate and operationalize resilience ‘on the ground’ (Bellin and Wilkinson, 2015; Harris et al., 2017; Ziervogel et al., 2017). This entails contestation, inclusive governance and iterative engagement of diverse populations with varied needs, aspirations, agency and rights claims, including those most affected, to deliberate trade-offs in a multiplicity of possible pathways (high confidence) (see Figure 5.5) (Stirling, 2014; Vale, 2014; Walsh-Dilley and Wolford, 2015; Biermann et al., 2016; J.R.A. Butler et al., 2016; O’Brien, 2016, 2018; Harris et al., 2017; Jones and Tanner, 2017; Mapfumo et al., 2017; Rosenbloom, 2017; Gajjar et al., 2018; Klinsky and Winkler, 2018; Lyon, 2018; Tåbara et al., 2018).

5.5.3.1 Transformations, equity and well-being

Most literature related to CRDPs invokes the concept of transformation, underscoring the need for urgent and far-reaching changes in practices, institutions and social relations in society. Transformations towards a 1.5°C warmer world would need to address considerations for equity and well-being, including in trade-off decisions (see Figure 5.1).

To attain the anticipated transformations, all countries as well as non-state actors would need to strengthen their contributions, through bolder and more committed cooperation and equitable effort-sharing (medium evidence, high agreement) (Rao, 2014; Frumhoff et al., 2015; Ekwurzel et al., 2017; Millar et al., 2017; Shue, 2017; Holz et al., 2018; Robinson and Shine, 2018). Sustaining decarbonization rates at a 1.5°C-compatible level would be unprecedented and not possible without rapid transformations to a net-zero-emissions global economy by mid-century or the later half of the century (see Chapters 2 and 4). Such efforts would entail overcoming technical, infrastructural, institutional and behavioural barriers across all sectors and levels...
of society (Pfeiffer et al., 2016; Seto et al., 2016) and defeating path dependencies, including poverty traps (Boonstra et al., 2016; Enqvist et al., 2016; Lade et al., 2017; Haider et al., 2018). Transformation also entails ensuring that 1.5°C-compatible pathways are inclusive and desirable, build solidarity and alliances, and protect vulnerable groups, including against disruptions of transformation (Patterson et al., 2018).

There is growing emphasis on the role of equity, fairness and justice (see Glossary) regarding context-specific transformations and pathways to a 1.5°C warmer world (medium evidence, high agreement) (Shue, 2014; Thorp, 2014; Dennig et al., 2015; Moellendorf, 2015; Klinsky et al., 2017b; Roser and Seidel, 2017; Sealey-Huggins, 2017; Klinsky and Winkler, 2018; Robinson and Shine, 2018). Consideration for what is equitable and fair suggests the need for stringent decarbonization and up-scaled adaptation that do not exacerbate social injustices, locally and at national levels (Okereke and Coventry, 2016), uphold human rights (Robinson and Shine, 2018), are socially desirable and acceptable (von Stechow et al., 2016; Rosenbloom, 2017), address values and beliefs (O’Brien, 2018), and overcome vested interests (Normann, 2015; Patterson et al., 2016). Attention is often drawn to huge disparities in the cost, benefits, opportunities and challenges involved in transformation within and between countries, and the fact that the suffering of already poor, vulnerable and disadvantaged populations may be worsened, if care to protect them is not taken (Holden et al., 2017; Klinsky and Winkler, 2018; Patterson et al., 2018).

Well-being for all (Dearing et al., 2014; Raworth, 2017) is at the core of an ecologically safe and socially just space for humanity, including health and housing, peace and justice, social equity, gender equality and political voices (Raworth, 2017). It is in alignment with transformative social development (UNRISD, 2016) and the 2030 Agenda of ‘leaving no one behind’. The social conditions to enable well-being for all are to reduce entrenched inequalities within and between countries (Klinsky and Winkler, 2018); rethink prevailing values, ethics and behaviours (Holden et al., 2017); allow people to live a life in dignity while avoiding actions that undermine capabilities (Klinsky and Golub, 2016); transform economies (Popescu and Cirlau, 2016; Tâbara et al., 2018); overcome uneven consumption and production patterns (Dearing et al., 2014; Häyhä et al., 2016; Raworth, 2017) and conceptualize development as well-being rather than mere economic growth (medium evidence, high agreement) (Gupta and Pouw, 2017).

5.5.3.2 Development trajectories, sharing of efforts and cooperation

The potential for pursuing sustainable and climate-resilient development pathways towards a 1.5°C warmer world differs between and within nations, due to differential development achievements and trajectories, and opportunities and challenges (very high confidence) (Figure 5.1). There are clear differences between high-income countries where social achievements are high, albeit often with negative effects on the environment, and most developing nations where vulnerabilities to climate change are high and social support and life satisfaction are low, especially in the Least Developed Countries (LDCs) (Sachs et al., 2017; O’Neill et al., 2018). Differential starting points for CRDPs between and within countries, including path dependencies (Figure 5.5), call for sensitivity to context (Klinsky and Winkler, 2018). For the developing world, limiting warming to 1.5°C also means potentially...
Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

severely curtailed development prospects (Okereke and Coventry, 2016) and risks to human rights from both climate action and inaction to achieve this goal (Robinson and Shine, 2018) (Section 5.2). Within-country development differences remain, despite efforts to ensure inclusive societies (Gupta and Arts, 2017; Gupta and Pouw, 2017). Cole et al. (2017), for instance, show how differences between provinces in South Africa constitute barriers to sustainable development trajectories and for operationalising nation-level SDGs, across various dimensions of social deprivation and environmental stress, reflecting historic disadvantages.

Moreover, various equity and effort- or burden-sharing approaches to climate stabilization in the literature describe how to sketch national potentials for a 1.5°C warmer world (e.g., Anand, 2004; CSO Equity Review, 2015; Meinshausen et al., 2015; Okereke and Coventry, 2016; Bexell and Jönsson, 2017; Otto et al., 2017; Pan et al., 2017; Robiou du Pont et al., 2017; Holz et al., 2018; Kartha et al., 2018; Winkler et al., 2018). Many approaches build on the AR5 ‘responsibility – capacity – need’ assessment (Clarke et al., 2014), complement other proposed national-level metrics for capabilities, equity and fairness (Heyward and Roser, 2016; Klinsky et al., 2017a), or fall under the wider umbrella of fair share debates on responsibility, capability and the right to development in climate policy (Fuglestvedt and Kalbekken, 2016). Importantly, different principles and methodologies generate different calculated contributions, responsibilities and capacities (Skeie et al., 2017).

The notion of nation-level fair shares is now also discussed in the context of limiting global warming to 1.5°C and the Nationally Determined Contributions (NDCs) (see Chapter 4, Cross-Chapter Box 11 in Chapter 4) (CSO Equity Review, 2015; Mace, 2016; Pan et al., 2017; Robiou du Pont et al., 2017; Holz et al., 2018; Kartha et al., 2018; Winkler et al., 2018). A study by Pan et al. (2017) concluded that all countries would need to contribute to ambitious emissions reductions and that current pledges for 2030 by seven out of eight high-emitting countries would be insufficient to meet 1.5°C. Emerging literature on justice-centred pathways to 1.5°C points towards ambitious emissions reductions domestically and committed cooperation internationally whereby wealthier countries support poorer ones, technologically, financially and otherwise to enhance capacities (Okereke and Coventry, 2016; Holz et al., 2018; Robinson and Shine, 2018; Shue, 2018). These findings suggest that equitable and 1.5°C-compatible pathways would require fast action across all countries at all levels of development rather than late accession of developing countries (as assumed under SSP3, see Chapter 2), with external support for prompt mitigation and resilience-building efforts in the latter (medium evidence, medium agreement).

Scientific advances since the AR5 now also make it possible to determine contributions to climate change for non-state actors (see Chapter 4, Section 4.4.1) and their potential to contribute to CRDPs (medium evidence, medium agreement). These non-state actors include cities (Bulkeley et al., 2013, 2014; Byrne et al., 2016), businesses (Heede, 2014; Frumhoff et al., 2015; Shue, 2017), transnational initiatives (Castro, 2016; Andonova et al., 2017) and industries. Recent work demonstrates the contributions of 90 industrial carbon producers to global temperature and sea level rise, and their responsibilities to contribute to investments in and support for mitigation and adaptation (Heede, 2014; Ekwurzel et al., 2017; Shue, 2017) (Sections 5.6.1 and 5.6.2).

At the level of groups and individuals, equity in pursuing climate resilience for a 1.5°C warmer world means addressing disadvantage, inequities and empowerment that shape transformative processes and pathways (Fazey et al., 2018), and deliberate efforts to strengthen the capabilities, capacities and well-being of poor, marginalized and vulnerable people (Byrnes, 2014; Tokar, 2014; Harris et al., 2017; Klinsky et al., 2017a; Klinsky and Winkler, 2018). Community-driven CRDPs can flag potential negative impacts of national trajectories on disadvantaged groups, such as low-income families and communities of colour (Rao, 2014). They emphasize social equity, participatory governance, social inclusion and human rights, as well as innovation, experimentation and social learning (see Glossary) (medium evidence, high agreement) (Sections 5.5.3.3 and 5.6).

5.5.3.3 Country and community strategies and experiences

There are many possible pathways towards climate-resilient futures (O’Brien, 2018; Tábara et al., 2018). Literature depicting different sustainable development trajectories in line with CRDPs is growing, with some of it being specific to 1.5°C global warming. Most experiences to date are at local and sub-national levels (Cross-Chapter Box 13 in this chapter), while state-level efforts align largely with green economy trajectories or planning for climate resilience (Box 5.3). Due to the fact that these strategies are context-specific, the literature is scarce on comparisons, efforts to scale up and systematic monitoring.

States can play an enabling or hindering role in a transition to a 1.5°C warmer world (Patterson et al., 2018). The literature on strategies to reconcile low-carbon trajectories with sustainable development and ecological sustainability through green growth, inclusive growth, de-growth, post-growth and development as well-being shows low agreement (see Chapter 4, Section 4.5). Efforts that align best with CRDPs are described as ‘transformational’ and ‘strong’ (Ferguson, 2015). Some view ‘thick green’ perspectives as enabling equity, democracy and agency building (Lorek and Spangenberg, 2014; Stirling, 2014; Ehresman and Okereke, 2015; Buch-Hansen, 2018), others show how green economy and sustainable development pathways can align (Brown et al., 2014; Georgeson et al., 2017b), and how a green economy can help link the SDGs with NDCs, for instance in Mongolia, Kenya and Sweden (Shine, 2017). Others still critique the continuous reliance on market mechanisms (Wanner, 2014; Brockington and Ponte, 2015) and disregard for equity and distributional and procedural justice (Stirling, 2014; Bell, 2015).

Country-level pathways and achievements vary significantly (robust evidence, medium agreement). For instance, the Scandinavian countries rank at the top of the Global Green Economy Index (Dual Citizen LLC, 2016), although they also tend to show high spill-over effects (Holz et al., 2018) and transgress their biophysical boundaries (O’Neill et al., 2018). State-driven efforts in non-member countries of the Organisation for Economic Co-operation and Development include Ethiopia’s ‘Climate-resilient Green Economy Strategy’, Mozambique’s ‘Green Economy Action Plan’ and Costa Rica’s ecosystem- and conservation-driven
green transition paths. China and India have adopted technology and renewables pathways (Brown et al., 2014; Death, 2014, 2015, 2016; Khanna et al., 2014; Chen et al., 2015; Kim and Thurnon, 2015; Wang et al., 2015; Weng et al., 2015). Brazil promotes low per capita GHG emissions, clean energy sources, green jobs, renewables and sustainable transportation, while slowing rates of deforestation (see Chapter 4, Box 4.7) (Brown et al., 2014; La Rovere, 2017). Yet concerns remain regarding persistent inequalities, ecosystem monetization, lack of participation in green-style projects (Brown et al., 2014) and labour conditions and risk of displacement in the sugarcane ethanol sector (McKay et al., 2016). Experiences with low-carbon development pathways in LDCs highlight the crucial role of identifying synergies across scale, removing institutional barriers and ensuring equity and fairness in distributing benefits as part of the right to development (Rai and Fisher, 2017).

In small islands states, for many of which climate change hazards and impacts at 1.5°C pose significant risks to sustainable development (see Chapter 3 Box 3.5, Chapter 4 Box 4.3, Box 5.3), examples of CRDPs have emerged since the AR5. This includes the SAMOA Pathway; SIDS Accelerated Modalities of Action (see Chapter 4, Box 4.3) (UNGA, 2014; Government of Kiribati, 2016; Steering Committee on Partnerships for SIDS and UN DESA, 2016; Lefale et al., 2017) and the Framework for Resilient Development in the Pacific, a leading example of integrated regional climate change adaptation planning for mitigation and sustainable development, disaster risk management and low-carbon economies (SPC, 2016). Small islands of the Pacific vary significantly in their capacity and resources to support effective integrated planning (McCubbin et al., 2015; Barnett and Walters, 2016, 2017; Hemstock et al., 2017; Robinson and Dorman, 2017). Vanuatu (Box 5.3) has developed a significant coordinated national adaptation plan to advance the 2030 Agenda for Sustainable Development, respond to the Paris Agreement and reduce the risk of disasters in line with the Sendai targets (UNDP, 2016; Republic of Vanuatu, 2017).

Box 5.3 | Republic of Vanuatu – National Planning for Development and Climate Resilience

The Republic of Vanuatu is leading Pacific Small Island Developing States (SIDS) to develop a nationally coordinated plan for climate-resilient development in the context of high exposure to hazard risk (MoCC, 2016; UNU-EHS, 2016). The majority of the population depends on subsistence, rain-fed agriculture and coastal fisheries for food security (Sovacool et al., 2017). Sea level rise, increased prolonged drought, water shortages, intense storms, cyclone events and degraded coral reef environments threaten human security in a 1.5°C warmer world (see Chapter 3, Box 3.5) (SPC, 2015; Alipira et al., 2017). Given Vanuatu’s long history of climate hazards and disasters, local adaptive capacity is relatively high, despite barriers to the use of local knowledge and technology, and low rates of literacy and women’s participation (McNamara and Prasad, 2014; Alipira et al., 2017; Granderson, 2017). However, the adaptive capacity of Vanuatu and other SIDS is increasingly constrained due to more frequent severe weather events (see Chapter 3, Box 3.5, Chapter 4, Cross-Chapter Box 9 in Chapter 4) (Gero et al., 2013; Kuruppu and Willie, 2015; SPC, 2015; Sovacool et al., 2017).

Vanuatu has developed a national sustainable development plan for 2016–2030: the People’s Plan (Republic of Vanuatu, 2016). This coordinated, inclusive plan of action on economy, environment and society aims to strengthen adaptive capacity and resilience to climate change and disasters. It emphasizes rights of all Ni-Vanuatu, including women, youth, the elderly and vulnerable groups (Nalau et al., 2016). Vanuatu has also developed a Coastal Adaptation Plan (Republic of Vanuatu, 2016), an integrated Climate Change and Disaster Risk Reduction Policy (2016–2030) (SPC, 2015) and the first South Pacific National Advisory Board on Climate Change & Disaster Risk Reduction (SPC, 2015; UNDP, 2016).

Vanuatu aims to integrate planning at multiple scales, and increase climate resilience by supporting local coping capacities and iterative processes of planning for sustainable development and integrated risk assessment (Alipira et al., 2017; Eriksson et al., 2017; Granderson, 2017). Climate-resilient development is also supported by non-state partnerships, for example, the ‘Yumi stap redi long climate change’–the Vanuatu non-governmental organization Climate Change Adaptation Program (Macelllan, 2015). This programme focuses on equitable governance, with particular attention to supporting women’s voices in decision-making through allied programmes addressing domestic violence, and rights-based education to reduce social marginalization; alongside institutional reforms for greater transparency, accountability and community participation in decision-making (Davies, 2015; Macelllan, 2015; Sterrett, 2015; Ensor, 2016; UN Women, 2016).

Power imbalances embedded in the political economy of development (Nunn et al., 2014), gender discrimination (Alipira et al., 2017) and the priorities of climate finance (Cabezon et al., 2016) may marginalize the priorities of local communities and influence how local risks are understood, prioritised and managed (Kuruppu and Willie, 2015; Baldacchino, 2017; Sovacool et al., 2017). However, the experience of the low death toll after Cyclone Pam suggests effective use of local knowledge in planning and early warning may support resilience at least in the absence of storm surge flooding (Handmer and Iveson, 2017; Nalau et al., 2017). Nevertheless, the very severe infrastructure damage of Cyclone Pam 2015 highlights the limits of individual Pacific SIDS efforts and the need for global and regional responses to a 1.5°C warmer world (see Chapter 3, Box 3.5, Chapter 4, Box 4.3) (Dilling et al., 2015; Ensor, 2016; Shultz et al., 2016; Rey et al., 2017).
Communities, towns and cities also contribute to low-carbon pathways, sustainable development and fair and equitable climate resilience, often focused on processes of power, learning and contestation as entry points to more localised CRDPs (medium evidence, high agreement) (Cross-Chapter Box 13 in this chapter, Box 5.2). In the Scottish Borders Climate Resilient Communities Project (United Kingdom), local flood management is linked with national policies to foster cross-scalar and inclusive governance, with attention to systemic disadvantages, shocks and stressors, capacity building, learning for change and climate narratives to inspire hope and action, all of which are essential for community resilience in a 1.5°C warmer world (Fazey et al., 2018). Narratives and storytelling are vital for realizing place-based 1.5°C futures as they create space for agency, deliberation, co-constructing meaning, imagination and desirable and dignified pathways (Veland et al., 2018). Engagement with possible futures, identity and self-reliance is also documented for Alaska, where warming has already exceeded 1.5°C and indigenous communities invest in renewable energy, greenhouses for food security and new fishing practices to overcome loss of sea ice, flooding and erosion (Chapin et al., 2016; Fazey et al., 2018). The Asian Cities Climate Change Resilience Network facilitates shared learning dialogues, risk-to-resilience workshops, and iterative, consultative planning in flood-prone cities in India; vulnerable communities, municipal governmental agents, entrepreneurs and technical experts negotiate different visions, trade-offs and local politics to identify desirable pathways (Harris et al., 2017).

Transforming our societies and systems to limit global warming to 1.5°C and ensuring equity and well-being for human populations and ecosystems in a 1.5°C warmer world would require ambitious and well-integrated adaptation–mitigation–development pathways that deviate fundamentally from high-carbon, business-as-usual futures (Okereke and Coventry, 2016; Arts, 2017; Gupta and Arts, 2017; Seale-Huggins, 2017). Identifying and negotiating socially acceptable, inclusive and equitable pathways towards climate-resilient futures is a challenging, yet important, endeavour, fraught with complex moral, practical and political difficulties and inevitable trade-offs (very high confidence). The ultimate questions are: what futures do we want (Bai et al., 2016; Tàbara et al., 2017; Klinsky and Winkler, 2018; O’Brien, 2018; Veland et al., 2018), whose resilience matters, for what, where, when and why (Meerow and Newell, 2016), and ‘whose vision … is being pursued and along which pathways’ (Gillard et al., 2016).

Cross-Chapter Box 13 | Cities and Urban Transformation

Lead Authors:
Fernando Aragon-Durand (Mexico), Paolo Bertoldi (Italy), Anton Cartwright (South Africa), François Engelbrecht (South Africa), Bronwyn Hayward (New Zealand), Daniela Jacob (Germany), Debora Ley (Guatemala/Mexico), Shagun Mehrotra (USA/India), Peter Newman (Australia), Aromar Revi (India), Seth Schultz (USA), William Solecki (USA), Petra Tschakert (Australia/Austria)

Contributor:
Peter Marcotullio (USA)

Global Urbanization in a 1.5°C Warmer World
The concentration of economic activity, dense social networks, human resource capacity, investment in infrastructure and buildings, relatively nimble local governments, close connection to surrounding rural and natural environments, and a tradition of innovation provide urban areas with transformational potential (see Chapter 4, Section 4.3.3) (Castán Broto, 2017). In this sense, the urbanization megatrend that will take place over the next three decades, and add approximately 2 billion people to the global urban population (UN, 2014), offers opportunities for efforts to limit warming to 1.5°C.

Cities can also, however, concentrate the risks of flooding, landslides, fire and infectious and parasitic disease that are expected to heighten in a 1.5°C warmer world (Chapter 3). In African and Asian countries where urbanization rates are highest, these risks could expose and amplify pre-existing stresses related to poverty, exclusion, and governance (Gore, 2015; Dodman et al., 2017; Jiang and O’Neill, 2017; Pelling et al., 2018; Solecki et al., 2018). Through its impact on economic development and investment, urbanization often leads to increased consumption and environmental degradation and enhanced vulnerability and risk (Rosenzweig et al., 2018). In the absence of innovation, the combination of urbanization and urban economic development could contribute 226 GtCO2 in emissions by 2050 (Bai et al., 2018). At the same time, some new urban developments are demonstrating combined carbon and Sustainable Development Goals (SDG) benefits (Wiktorowicz et al., 2018), and it is in towns and cities that building renovation rates can be most easily accelerated to support the transition to 1.5°C pathways (Kuramochi et al., 2018), including through voluntary programmes (Van der Heijden, 2018).

Urban transformations and emerging climate-resilient development pathways
The 1.5°C pathways require action in all cities and urban contexts. Recent literature emphasizes the need to deliberate and negotiate how resilience and climate-resilient pathways can be fostered in the context of people’s daily lives, including the failings of everyday development such as unemployment, inadequate housing and a growing informal sector and settlements (informality), in order
to acknowledge local priorities and foster transformative learning (Vale, 2014; Shi et al., 2016; Harris et al., 2017; Ziervogel et al., 2017; Fazey et al., 2018; Macintyre et al., 2018). Enhancing deliberate transformative capacities in urban contexts also entails new and relational forms of envisioning agency, equity, resilience, social cohesion and well-being (Section 5.5.3) (Gillard et al., 2016; Ziervogel et al., 2016). Two examples of urban transformation are explored here.

The built environment, spatial planning, infrastructure, energy services, mobility and urban–rural linkages necessary in rapidly growing cities in South Asia and Africa in the next three decades present mitigation, adaptation and development opportunities that are crucial for a 1.5°C world (Newman et al., 2017; Lwasa et al., 2018; Teferi and Newman, 2018). Realizing these opportunities would require the structural challenges of poverty, weak and contested local governance, and low levels of local government investment to be addressed on an unprecedented scale (Wachsmuth et al., 2016; Chu et al., 2017; van Noorloos and Kloosterboer, 2017; Pelling et al., 2018).

Urban governance is critical to ensuring that the necessary urban transitions deliver economic growth and equity (Hughes et al., 2018). The proximity of local governments to citizens and their needs can make them powerful agents of climate action (Melica et al., 2018), but urban governance is enhanced when it involves multiple actors (Ziervogel et al., 2016; Pelling et al., 2018), supportive national governments (Tait and Euston-Brown, 2017), and sub-national climate networks (see Chapter 4, Section 4.4.1). Governance is complicated for the urban population currently living in informality. This population is expected to triple, to three billion, by 2050 (Satterthwaite et al., 2018), placing a significant portion of the world’s population beyond the direct reach of formal climate mitigation and adaptation policies (Reví et al., 2014). How to address the co-evolved and structural conditions that lead to urban informality and associated vulnerability to 1.5°C of warming is a central question for this report. Brown and McGranahan (2016) cite evidence that the informal urban ‘green economy’ that has emerged out of necessity in the absence of formal service provisions is frequently low-carbon and resource-efficient.

Realising the potential for low carbon transitions in informal urban settlements would require an express recognition of the unpaid–for contributions of women in the informal economy, and new partnerships between the state and communities (Ziervogel et al., 2017; Pelling et al., 2018; Satterthwaite et al., 2018). There is no guarantee that these partnerships will evolve or cohere into the type of service delivery and climate governance system that could steer the change on a scale required to limit to warming to 1.5°C (Jaglin, 2014). However, work by transnational networks, such as Shack/Slum Dwellers International, C40, the Global Covenant of Mayors, and the International Council for Local Environmental Initiatives, as well as efforts to combine in-country planning for Nationally Determined Contributions (NDCs) (Andonova et al., 2017; Fuhr et al., 2018) with those taking place to support the New Urban Agenda and National Urban Policies, represent one step toward realizing the potential (Tait and Euston-Brown, 2017). So too do ‘old urban agendas’, such as slum upgrading and universal water and sanitation provision (McGranahan et al., 2016; Satterthwaite, 2016; Satterthwaite et al., 2018).

Transition Towns (TTs) are a type of urban transformation that have emerged mainly in high-income countries. The grassroots TT movement (origin in the United Kingdom) combines adaptation, mitigation and just transitions, mainly at the level of communities and small towns. It now has more than 1,300 registered local initiatives in more than 40 countries (Grossmann and Creamer, 2017), many of them in the United Kingdom, the United States, and other high-income countries. TTs are described as ‘progressive localism’ (Cretney et al., 2016), aiming to foster a ‘communitarian ecological citizenship’ that goes beyond changes in consumption and lifestyle (Kenis, 2016). They aspire to promote equitable communities resilient to the impacts of climate change, peak oil and unstable global markets; re-localization of production and consumption; and transition pathways to a post-carbon future (Feola and Nunes, 2014; Evans and Phelan, 2016; Grossmann and Creamer, 2017).

TT initiatives typically pursue lifestyle-related low-carbon living and economies, food self-sufficiency, energy efficiency through renewables, construction with locally sourced material and cottage industries (Barnes, 2015; Staggenborg and Ogrodnik, 2015; Taylor Aiken, 2016). Social and iterative learning through the collective involves dialogue, deliberation, capacity building, citizen science engagements, technical re-skilling to increase self-reliance, for example canning and preserving food and permaculture, future visioning and emotional training to share difficulties and loss (Feola and Nunes, 2014; Barnes, 2015; Boke, 2015; Taylor Aiken, 2015; Kenis, 2016; Mehmood, 2016; Grossmann and Creamer, 2017).

Important conditions for successful transition groups include flexibility, participatory democracy, care ethics, inclusiveness and consensus-building, assuming bridging or brokering roles, and community alliances and partnerships (Feola and Nunes, 2014; Mehmood, 2016; Taylor Aiken, 2016; Grossmann and Creamer, 2017). Smaller scale rural initiatives allow for more experimentation
Despite high self-ratings of success, some TT initiatives are too inwardly focused and geographically isolated (Feola and Nunes, 2014), while others have difficulties in engaging marginalized, non-white, non-middle-class community members (Evans and Phelan, 2016; Nicolosi and Feola, 2016; Grossmann and Creamer, 2017). In the United Kingdom, expectations of innovations growing in scale (Taylor Aiken, 2015) and carbon accounting methods required by funding bodies (Taylor Aiken, 2016) undermine local resilience building. Tension between explicit engagements with climate change action and efforts to appeal to more people have resulted in difficult trade-offs and strained member relations (Grossmann and Creamer, 2017) though the contribution to changing an urban culture that prioritizes climate change is sometimes underestimated (Wiktorowicz et al., 2018).

Urban actions that can highlight the 1.5°C agenda include individual actions within homes (Werfel, 2017; Buntaine and Prather, 2018); demonstration zero carbon developments (Wiktorowicz et al., 2018); new partnerships between communities, government and business to build mass transit and electrify transport (Glazebrook and Newman, 2018); city plans to include climate outcomes (Millard-Ball, 2013); and support for transformative change across political, professional and sectoral divides (Bai et al., 2018).

5.6 Conditions for Achieving Sustainable Development, Eradicating Poverty and Reducing Inequalities in 1.5°C Warmer Worlds

This chapter has described the fundamental, urgent and systemic transformations that would be needed to achieve sustainable development, eradicate poverty and reduce inequalities in a 1.5°C warmer world, in various contexts and across scales. In particular, it has highlighted the societal dimensions, putting at the centre people’s needs and aspirations in their specific contexts. Here we synthesize some of the most pertinent enabling conditions (see Glossary) to support these profound transformations. These conditions are closely interlinked and connected by the overarching concept of governance, which broadly includes institutional, socio-economic, cultural and technological elements (see Chapter 1, Cross-Chapter Box 4 in Chapter 1).

5.6.1 Finance and Technology Aligned with Local Needs

Significant gaps in green investment constrain transitions to a low-carbon economy aligned with development objectives (Volz et al., 2015; Campiglio, 2016). Hence, unlocking new forms of public, private and public–private financing is essential to support environmental sustainability of the economic system (Croce et al., 2011; Blyth et al., 2015; Falcone et al., 2018) (see Chapter 4, Section 4.4.5). To avoid risks of undesirable trade-offs with the SDGs caused by national budget constraints, improved access to international climate finance is essential for supporting adaptation, mitigation and sustainable development, especially for LDCs and SIDS (medium evidence, high agreement) (Shine and Campillo, 2016; Wood, 2017). Care needs to be taken when international donors or partnership arrangements influence project financing structures (Kongsager and Corbera, 2015; Purdon, 2015; Phillips et al., 2017; Ficklin et al., 2018). Conventional climate funding schemes, especially the Clean Development Mechanism (CDM), have shown positive effects on sustainable development but also adverse consequences, for example, on adaptive capacities of rural households and uneven distribution of costs and benefits, often exacerbating inequalities (Barrett, 2013; Boyle et al., 2013; Nicolosi and Feola, 2016; Blyth et al., 2015; Michaelowa et al., 2018), careful attention to the capacities in international and donors’ priorities; puts the emphasis on the increase of transparency and predictability of support; and fosters local capacity building (medium evidence, high agreement) (Barrett, 2013; Boyle et al., 2013; Shine and Campillo, 2016; Ley, 2017; Sánchez and Izzo, 2017).

The development and transfer of technologies is another enabler for developing countries to contribute to the requirements of the 1.5°C objective while achieving climate resilience and their socio-economic development goals (see Chapter 4, Section 4.4.4). International-level governance would be needed to boost domestic innovation and the deployment of new technologies, such as negative emission technologies, towards the 1.5°C objective (see Chapter 4, Section 4.3.7), but the alignment with local needs depends on close consideration of the specificities of the domestic context in countries at all levels of development (de Coninck and Sagar, 2015; IEA, 2015; Parikh et al., 2018). Technology transfer supporting development in developing countries would require an understanding of local and national actors and institutions (de Coninck and Puig, 2015; de Coninck and Sagar, 2017; Michaelowa et al., 2018), careful attention to the capacities in the entire innovation chain (Khosla et al., 2017; Olawuyi, 2017) and transfer of not only equipment but also knowledge (medium evidence, high agreement) (Murphy et al., 2015).

5.6.2 Integration of Institutions

Multilevel governance in climate change has emerged as a key enabler for systemic transformation and effective governance (see Chapter 4,
Section 4.4.1). On the one hand, low-carbon and climate-resilient development actions are often well aligned at the lowest scale possible (Suckall et al., 2015; Sánchez and Izzo, 2017), and informal, local institutions are critical in enhancing the adaptive capacity of countries and marginalized communities (Yaro et al., 2015). On the other hand, international and national institutions can provide incentives for projects to harness synergies and avoid trade-offs (Kongsager et al., 2016).

Governance approaches that coordinate and monitor multiscale policy actions and trade-offs across sectoral, local, national, regional and international levels are therefore best suited to implement goals towards 1.5°C warmer conditions and sustainable development (Ayers et al., 2014; Stringer et al., 2014; von Stechow et al., 2016; Gwimbi, 2017; Hayward, 2017; Maor et al., 2017; Roger et al., 2017; Michaelowa et al., 2018). Vertical and horizontal policy integration and coordination is essential to take into account the interplay and trade-offs between sectors and spatial scales (Duguma et al., 2014; Naess et al., 2015; von Stechow et al., 2015; Antwi-Agyei et al., 2017a; Di Gregorio et al., 2017; Runhaar et al., 2018), enable the dialogue between local communities and institutional bodies (Colenbrander et al., 2016), and involve non-state actors such as business, local governments and civil society operating across different scales (robust evidence, high agreement) (Hajer et al., 2015; Labriet et al., 2015; Hale, 2016; Pelling et al., 2016; Kalafatis, 2017; Lyon, 2018).

5.6.3 Inclusive Processes

Inclusive governance processes are critical for preparing for a 1.5°C warmer world (Fazey et al., 2018; O’Brien, 2018; Patterson et al., 2018). These processes have been shown to serve the interests of diverse groups of people and enhance empowerment of often excluded stakeholders, notably women and youth (MRFCJ, 2015a; Dumont et al., 2017). They also enhance social- and co-learning which, in turn, facilitates accelerated and adaptive management and the scaling up of capacities for resilience building (Ensor and Harvey, 2015; Reij and Winterbottom, 2015; Tschakert et al., 2016; Binam et al., 2017; Dumont et al., 2017; Fazey et al., 2018; Lyon, 2018; O’Brien, 2018), and provides opportunities to blend indigenous, local and scientific knowledge (robust evidence, high agreement) (see Chapter 4, Section 4.3.5.5, Box 4.3, Section 5.3) (Antwi-Agyei et al., 2017a; Coe et al., 2017; Thornton and Comberti, 2017). Such co-learning has been effective in improving deliberative decision-making processes that incorporate different values and world views (Cundill et al., 2014; C. Butler et al., 2016; Ensor, 2016; Fazey et al., 2016; Gorddard et al., 2016; Aipira et al., 2017; Chung Tiam Fook, 2017; Maor et al., 2017), and create space for negotiating diverse interests and preferences (robust evidence, high agreement) (O’Brien et al., 2015; Gillard et al., 2016; DeCaro et al., 2017; Harris et al., 2017; Lahn, 2018).

5.6.4 Attention to Issues of Power and Inequality

Societal transformations to limit global warming to 1.5°C and strive for equity and well-being for all are not power neutral (Section 5.5.3). Development preferences are often shaped by powerful interests that determine the direction and pace of change, anticipated benefits and beneficiaries, and acceptable and unacceptable trade-offs (Newell et al., 2014; Fazey et al., 2016; Tschakert et al., 2016; Winkler and Dubash, 2016; Wood et al., 2016b; Karlsson et al., 2017; Quan et al., 2017; Tanner et al., 2017). Each development pathway, including legacies and path dependencies, creates its own set of opportunities and challenges and winners and losers, both within and across countries (Figure 5.5) (robust evidence, high agreement) (Mathur et al., 2014; Phillips et al., 2017; Stringer et al., 2017; Wood, 2017; Ficklin et al., 2018; Gajjar et al., 2018).

Addressing the uneven distribution of power is critical to ensure that societal transformation towards a 1.5°C warmer world does not exacerbate poverty and vulnerability or create new injustices but rather encourages equitable transformational change (Patterson et al., 2018). Equitable outcomes are enhanced when they pay attention to just outcomes for those negatively affected by change (Newell et al., 2014; Dilling et al., 2015; Naess et al., 2015; Sovacool et al., 2015; Cervigni and Morris, 2016; Keohane and Victor, 2016) and promote human rights, increase equality and reduce power asymmetries within societies (robust evidence, high agreement) (UNRISD, 2016; Robinson and Shine, 2018).

5.6.5 Reconsidering Values

The profound transformations that would be needed to integrate sustainable development and 1.5°C-compatible pathways call for examining the values, ethics, attitudes and behaviours that underpin societies (Hartzell-Nichols, 2017; O’Brien, 2018; Patterson et al., 2018). Infusing values that promote sustainable development (Holden et al., 2017), overcome individual economic interests and go beyond economic growth (Hackmann, 2016), encourage desirable and transformative visions (Tábara et al., 2018), and care for the less fortunate (Howell and Allen, 2017) is part and parcel of climate-resilient and sustainable development pathways. This entails helping societies and individuals to strive for sufficiency in resource consumption within planetary boundaries alongside sustainable and equitable well-being (O’Neill et al., 2018). Navigating 1.5°C societal transformations, characterized by action from local to global, stresses the core commitment to social justice, solidarity and cooperation, particularly regarding the distribution of responsibilities, rights and mutual obligations between nations (medium evidence, high agreement) (Patterson et al., 2018; Robinson and Shine, 2018).

5.7 Synthesis and Research Gaps

The assessment in Chapter 5 illustrates that limiting global warming to 1.5°C above pre-industrial levels is fundamentally connected with achieving sustainable development, poverty eradication and reducing inequalities. It shows that avoided impacts between 1.5°C and 2°C temperature stabilization would make it easier to achieve many aspects of sustainable development, although important risks would remain at 1.5°C (Section 5.2). Synergies between adaptation and mitigation response measures with sustainable development and the SDGs can often be enhanced when attention is paid to well-being and equity while, when unaddressed, poverty and inequalities may be exacerbated (Section 5.3 and 5.4). Climate-resilient development pathways (CRDPs)
open up routes towards socially desirable futures that are sustainable and liveable, but concrete evidence reveals complex trade-offs along a continuum of different pathways, highlighting the role of societal values, internal contestations and political dynamics (Section 5.5). The transformations towards sustainable development in a 1.5°C warmer world, in all contexts, involve fundamental societal and systemic changes over time and across scale, and a set of enabling conditions without which the dual goal is difficult if not impossible to achieve (Sections 5.5 and 5.6).

This assessment is supported by growing knowledge on the linkages between a 1.5°C warmer world and different dimensions of sustainable development. However, several gaps in the literature remain:

Limited evidence exists that explicitly examines the real-world implications of a 1.5°C warmer world (and overshoots) as well as avoided impacts between 1.5°C versus 2°C for the SDGs and sustainable development more broadly. Few projections are available for households, livelihoods and communities. And literature on differential localized impacts and their cross-sector interacting and cascading effects with multidimensional patterns of societal vulnerability, poverty and inequalities remains scarce. Hence, caution is needed when global-level conclusions about adaptation and mitigation measures in a 1.5°C warmer world are applied to sustainable development in local, national and regional settings.

Limited literature has systematically evaluated context-specific synergies and trade-offs between and across adaptation and mitigation response measures in 1.5°C-compatible pathways and the SDGs. This hampers the ability to inform decision-making and fair and robust policy packages adapted to different local, regional or national circumstances. More research is required to understand how trade-offs and synergies will intensify or decrease, differentially across geographic regions and time, in a 1.5°C warmer world and as compared to higher temperatures.

Limited availability of interdisciplinary studies also poses a challenge for connecting the socio-economic transformations and the governance aspects of low emissions, climate-resilient transformations. For example, it remains unclear how governance structures enable or hinder different groups of people and countries to negotiate pathway options, values and priorities.

The literature does not demonstrate the existence of 1.5°C-compatible pathways achieving the ‘universal and indivisible’ agenda of the 17 SDGs, and hence does not show whether and how the nature and pace of changes that would be required to meet 1.5°C climate stabilization could be fully synergetic with all the SDGs.

The literature on low emissions and CRDPs in local, regional and national contexts is growing. Yet the lack of standard indicators to monitor such pathways makes it difficult to compare evidence grounded in specific contexts with differential circumstances, and therefore to derive generic lessons on the outcome of decisions on specific indicators. This knowledge gap poses a challenge for connecting local-level visions with global-level trajectories to better understand key conditions for societal and systems transformations that reconcile urgent climate action with well-being for all.
Frequently Asked Questions

FAQ 5.1 | What are the Connections between Sustainable Development and Limiting Global Warming to 1.5°C above Pre-Industrial Levels?

Summary: Sustainable development seeks to meet the needs of people living today without compromising the needs of future generations, while balancing social, economic and environmental considerations. The 17 UN Sustainable Development Goals (SDGs) include targets for eradicating poverty; ensuring health, energy and food security; reducing inequality; protecting ecosystems; pursuing sustainable cities and economies; and a goal for climate action (SDG 13). Climate change affects the ability to achieve sustainable development goals, and limiting warming to 1.5°C will help meet some sustainable development targets. Pursuing sustainable development will influence emissions, impacts and vulnerabilities. Responses to climate change in the form of adaptation and mitigation will also interact with sustainable development with positive effects, known as synergies, or negative effects, known as trade-offs. Responses to climate change can be planned to maximize synergies and limit trade-offs with sustainable development.

For more than 25 years, the United Nations (UN) and other international organizations have embraced the concept of sustainable development to promote well-being and meet the needs of today’s population without compromising the needs of future generations. This concept spans economic, social and environmental objectives including poverty and hunger alleviation, equitable economic growth, access to resources, and the protection of water, air and ecosystems. Between 1990 and 2015, the UN monitored a set of eight Millennium Development Goals (MDGs). They reported progress in reducing poverty, easing hunger and child mortality, and improving access to clean water and sanitation. But with millions remaining in poor health, living in poverty and facing serious problems associated with climate change, pollution and land-use change, the UN decided that more needed to be done. In 2015, the UN Sustainable Development Goals (SDGs) were endorsed as part of the 2030 Agenda for Sustainable Development. The 17 SDGs (Figure FAQ 5.1) apply to all countries and have a timeline for success by 2030. The SDGs seek to eliminate extreme poverty and hunger; ensure health, education, peace, safe water and clean energy for all; promote inclusive and sustainable consumption, cities, infrastructure and economic growth; reduce inequality including gender inequality; combat climate change and protect oceans and terrestrial ecosystems.

Climate change and sustainable development are fundamentally connected. Previous IPCC reports found that climate change can undermine sustainable development, and that well-designed mitigation and adaptation responses can support poverty alleviation, food security, healthy ecosystems, equality and other dimensions of sustainable development. Limiting global warming to 1.5°C would require mitigation actions and adaptation measures to be taken at all levels. These adaptation and mitigation actions would include reducing emissions and increasing resilience through technology and infrastructure choices, as well as changing behaviour and policy.

These actions can interact with sustainable development objectives in positive ways that strengthen sustainable development, known as synergies. Or they can interact in negative ways, where sustainable development is hindered or reversed, known as trade-offs.

An example of a synergy is sustainable forest management, which can prevent emissions from deforestation and take up carbon to reduce warming at reasonable cost. It can work synergistically with other dimensions of sustainable development by providing food (SDG 2) and clean water (SDG 6) and protecting ecosystems (SDG 15). Other examples of synergies are when climate adaptation measures, such as coastal or agricultural projects, empower women and benefit local incomes, health and ecosystems.

An example of a trade-off can occur if ambitious climate change mitigation compatible with 1.5°C changes land use in ways that have negative impacts on sustainable development. An example could be turning natural forests, agricultural areas, or land under indigenous or local ownership to plantations for bioenergy production. If not managed carefully, such changes could undermine dimensions of sustainable development by threatening food and water security, creating conflict over land rights and causing biodiversity loss. Another trade-off could occur for some countries, assets, workers and infrastructure already in place if a switch is made from fossil fuels to other energy sources without adequate planning for such a transition. Trade-offs can be minimized if effectively managed, as when care is taken to improve bioenergy crop yields to reduce harmful land-use change or where workers are retrained for employment in lower carbon sectors.

(continued on next page)
Limiting temperature increase to 1.5°C can make it much easier to achieve the SDGs, but it is also possible that pursuing the SDGs could result in trade-offs with efforts to limit climate change. There are trade-offs when people escaping from poverty and hunger consume more energy or land and thus increase emissions, or if goals for economic growth and industrialization increase fossil fuel consumption and greenhouse gas emissions. Conversely, efforts to reduce poverty and gender inequalities and to enhance food, health and water security can reduce vulnerability to climate change. Other synergies can occur when coastal and ocean ecosystem protection reduces the impacts of climate change on these systems. The sustainable development goal of affordable and clean energy (SDG 7) specifically targets access to renewable energy and energy efficiency, which are important to ambitious mitigation and limiting warming to 1.5°C.

The link between sustainable development and limiting global warming to 1.5°C is recognized by the SDG for climate action (SDG 13), which seeks to combat climate change and its impacts while acknowledging that the United Nations Framework Convention on Climate Change (UNFCCC) is the primary international, intergovernmental forum for negotiating the global response to climate change.

The challenge is to put in place sustainable development policies and actions that reduce deprivation, alleviate poverty and ease ecosystem degradation while also lowering emissions, reducing climate change impacts and facilitating adaptation. It is important to strengthen synergies and minimize trade-offs when planning climate change adaptation and mitigation actions. Unfortunately, not all trade-offs can be avoided or minimized, but careful planning and implementation can build the enabling conditions for long-term sustainable development.
Summary: There are ways to limit global warming to 1.5°C above pre-industrial levels. Of the pathways that exist, some simultaneously achieve sustainable development. They entail a mix of measures that lower emissions and reduce the impacts of climate change, while contributing to poverty eradication and reducing inequalities. Flexible governance would be needed to ensure that such pathways are inclusive, fair and equitable to avoid poor and disadvantaged populations becoming worse off. Climate-resilient development pathways (CRDPs) offer possibilities to achieve both equitable and low-carbon futures.

Issues of equity and fairness have long been central to climate change and sustainable development. Equity, like equality, aims to promote justness and fairness for all. This is not necessarily the same as treating everyone equally, since not everyone comes from the same starting point. Often used interchangeably with fairness and justice, equity implies implementing different actions in different places, all with a view to creating an equal world that is fair for all and where no one is left behind.

The Paris Agreement states that it ‘will be implemented to reflect equity... in the light of different national circumstances’ and calls for ‘rapid reductions’ of greenhouse gases to be achieved ‘on the basis of equity, and in the context of sustainable development and efforts to eradicate poverty’. Similarly, the UN SDGs include targets to reduce poverty and inequalities, and to ensure equitable and affordable access to health, water and energy for all.

Equity and fairness are important for considering pathways that limit warming to 1.5°C in a way that is liveable for every person and species. They recognize the uneven development status between richer and poorer nations, the uneven distribution of climate impacts (including on future generations) and the uneven capacity of different nations and people to respond to climate risks. This is particularly true for those who are highly vulnerable to climate change, such as indigenous communities in the Arctic, people whose livelihoods depend on agriculture or coastal and marine ecosystems, and inhabitants of small island developing states. The poorest people will continue to experience climate change through the loss of income and livelihood opportunities, hunger, adverse health effects and displacement.

Well-planned adaptation and mitigation measures are essential to avoid exacerbating inequalities or creating new injustices. Pathways that are compatible with limiting warming to 1.5°C and aligned with the SDGs consider mitigation and adaptation options that reduce inequalities in terms of who benefits, who pays the costs and who is affected by possible negative consequences. Attention to equity ensures that disadvantaged people can secure their livelihoods and live in dignity, and that those who experience mitigation or adaptation costs have financial and technical support to enable fair transitions.

CRDPs describe trajectories that pursue the dual goal of limiting warming to 1.5°C while strengthening sustainable development. This includes eradicating poverty as well as reducing vulnerabilities and inequalities for regions, countries, communities, businesses and cities. These trajectories entail a mix of adaptation and mitigation measures consistent with profound societal and systems transformations. The goals are to meet the short-term SDGs, achieve longer-term sustainable development, reduce emissions towards net zero around the middle of the century, build resilience and enhance human capacities to adapt, all while paying close attention to equity and well-being for all.

The characteristics of CRDPs will differ across communities and nations, and will be based on deliberations with a diverse range of people, including those most affected by climate change and by possible routes towards transformation. For this reason, there are no standard methods for designing CRDPs or for monitoring their progress towards climate-resilient futures. However, examples from around the world demonstrate that flexible and inclusive governance structures and broad participation often help support iterative decision-making, continuous learning and experimentation. Such inclusive processes can also help to overcome weak institutional arrangements and power structures that may further exacerbate inequalities.
FAQ 5.2 (continued)

FAQ5.2: Climate-resilient development pathways

Decision-making that achieves the United Nation Sustainable Development Goals (SDGs), lowers greenhouse gas emissions, limits global warming and enables adaptation could help lead to a climate-resilient world.

Ambitious actions already underway around the world can offer insight into CRDPs for limiting warming to 1.5°C. For example, some countries have adopted clean energy and sustainable transport while creating environmentally friendly jobs and supporting social welfare programmes to reduce domestic poverty. Other examples teach us about different ways to promote development through practices inspired by community values. For instance, *Buen Vivir*, a Latin American concept based on indigenous ideas of communities living in harmony with nature, is aligned with peace; diversity; solidarity; rights to education, health, and safe food, water, and energy; and well-being and justice for all. The Transition Movement, with origins in Europe, promotes equitable and resilient communities through low-carbon living, food self-sufficiency and citizen science. Such examples indicate that pathways that reduce poverty and inequalities while limiting warming to 1.5°C are possible and that they can provide guidance on pathways towards socially desirable, equitable and low-carbon futures.
Table 5.2 | Mitigation – SDG table

Social Demand

<table>
<thead>
<tr>
<th>Industry</th>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerating Energy Efficiency Improvement</td>
<td>↑</td>
<td>[-2]</td>
<td>▲</td>
<td>⬇</td>
<td>*</td>
</tr>
<tr>
<td>% of people living below poverty line declines from 49% to 18% in South African context.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air, Water Pollution Reduction and Better Health (3.9)</td>
<td>↑</td>
<td>[+2]</td>
<td>▲</td>
<td>▲</td>
<td>⬆</td>
</tr>
<tr>
<td>People living in deprived communities feel positive and predict considerable financial savings. Efficiency changes in the industrial sector that lead to reduced energy demand can lead to reduced requirements on energy supply. As water is used to convert energy into useful forms, the reduction in industrial demand is anticipated to reduce water consumption and wastewater, resulting in more clean water for other sectors and the environment. In extractive industries there is a trade-off unless strategically managed. Behavioural changes in the industrial sector that lead to reduced energy demand can lead to reduced requirements on energy supply. As water is used to convert energy into useful forms, the reduction in industrial demand is anticipated to reduce water consumption and wastewater, resulting in more clean water for other sectors and the environment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Education, Vocational Training, Education for Sustainability (4.3/4.4/4.5/4.7)</td>
<td>↑</td>
<td>[+1]</td>
<td>▲</td>
<td>▲</td>
<td>⬆</td>
</tr>
<tr>
<td>Awareness, knowledge, technical and managerial capability are closely linked, energy audit, information for trade unions, product/appliance labeling help in sustainability education.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease and Mortality (3.3/3.13/3.3/3.4)</td>
<td>↓</td>
<td>[-1]</td>
<td>▲</td>
<td>▲</td>
<td>⬆</td>
</tr>
<tr>
<td>There is a risk of CO₂ leakage both from geological formations as well as from the transportation infrastructure from source to sequestration locations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry</th>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-carbon Fuel Switch</td>
<td>[0]</td>
<td>No direct interaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No direct interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water and Air Pollution Reduction and Better Health (3.9)</td>
<td>↑</td>
<td>[+2]</td>
<td>▲</td>
<td>▲</td>
<td>⬆</td>
</tr>
<tr>
<td>Industries are becoming suppliers of energy, waste heat, water and roof tops for solar energy generation, and hence helping to improve air and water quality.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Education, Vocational Training, Education for Sustainability (4.3/4.4/4.5/4.7)</td>
<td>↑</td>
<td>[+1]</td>
<td>▲</td>
<td>▲</td>
<td>⬆</td>
</tr>
<tr>
<td>New technology deployment creates demand for awareness and knowledge with technical and managerial capability; otherwise acts as barrier for rapid expansion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry</th>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decarbonization (CCS/CCU)</td>
<td>[0]</td>
<td>No direct interaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No direct interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease and Mortality (3.3/3.13/3.3/3.4)</td>
<td>↓</td>
<td>[-1]</td>
<td>▲</td>
<td>▲</td>
<td>⬆</td>
</tr>
<tr>
<td>There is a risk of CO₂ leakage both from geological formations as well as from the transportation infrastructure from source to sequestration locations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aiken et al., 2016

Wang and Jaffe, 2004; Hertwich et al., 2008; Apps et al., 2010; Veltman et al., 2011; Apeaning and Thollander, 2013; Fernando and Evans, 2015; Roy et al., 2018

Altieri et al., 2016; Vassolo and Döll, 2005; Xi et al., 2013; Nguyen et al., 2014; Holland et al., 2015; Zhang et al., 2015; Fricko et al., 2016

Wong and Jaffe, 2004; Hertwich et al., 2008; Apps et al., 2010; Veltman et al., 2011; Apeaning and Thollander, 2013; Fernando and Evans, 2015; Roy et al., 2018

Apeaning and Thollander, 2013; Fernando and Evans, 2015; Roy et al., 2018

Apeaning and Thollander, 2013; Fernando and Evans, 2015; Roy et al., 2018
Social-Demand (continued)

People living in deprived communities feel positive and predict considerable financial savings.

Using the improved stoves supports local food security and has significantly impacted on food security. By making fuel last longer, the improved stoves help improve food security and also provide a better buffer against fuel shortages induced by climate change-related events such as droughts, floods or hurricanes (Benmsta et al., 2017).

Efficient stoves improve health, especially for indigenous and poor rural communities. Household energy efficiency has positive health impacts on children’s respiratory health, weight and susceptibility to illness, and the mental health of adults. Household energy efficiency improves winter warmth, lowers relative humidity with benefits for cardiovascular and respiratory health. Further improved indoor air quality by thermal regulation and occupant comfort are realised. However, in one instance, negative health impacts (asthma) of increased household energy efficiency were also noted when housing upgrades took place without changes in occupant behaviours. Home occupants reported warmth as the most important aspect of comfort which was largely temperature-related and low in energy costs. Residents living in the deprived areas expect improved warmth in their properties after energy efficiency measures are employed.

Enhanced agricultural productivities can ameliorate the situation by allowing as much bioenergy to be produced on as little land as possible. Access to modern energy services can contribute to fewer injuries and diseases related to traditional solid fuel collection and burning, as well as utilization of kerosene lanterns. Access to modern energy services can facilitate improved health care provision, medicine and vaccine storage, utilization of powered medical equipment, and dissemination of health-related information and education. Such services can also enable thermal comfort in homes and contribute to food preservation and safety. (Quote from McCollum et al., 2018)

Access to modern energy forms (electricity, clean stoves, high-quality lighting) is fundamental to human development since the energy services made possible by them help alleviate chronic and persistent poverty. Strength of the impact varies in the literature. (Quote from McCollum et al., 2018)

Access to modern energy is necessary for schools to have quality lighting and also provide a better buffer against fuel shortages induced by climate change-related events such as droughts, floods or hurricanes (Benmsta et al., 2017).

Improved Warmth and Comforts

Food security

Healthy lives and well-being for all at all ages

Equal access to educational institutions

Improved access and fuel switch to modern low-carbon energy

Accelerating energy efficiency improvement

Poverty and development

Behavioral response

Poverty and development
Equal Right to Economic Resource & Access Basic Services (1.1/1.4/1.a/1.b)

Ensure Access to Safe Nutritious Food (2.1/2.2)

Road To Few Accidents (3.4.6)

Equal Safe Access to Educational Institutions (4.4/2.4/3.4.5)

Social Demand (continued)

The costs of daily mobility can have important economic stress impacts, not only impacting carless families with low-mobility, but in countries for boosting energy efficiency but also, potentially, for affordable, quality sources of nutrition have to travel outside their immediate neighbourhood to find better sources of food to feed themselves and their families. Lack of locally available healthy food often exacerbates the rates of obesity in many of these communities since it is often difficult or expensive to travel long distances on a regular basis to shop for food.

End Poverty in all its Forms Everywhere (1.1/1.4/1.a/1.b)

Reduce Illnesses from Hazardous Air, Water and Soil Pollution (3.9)

End Poverty in all its Forms Everywhere (1.1/1.4/1.a/1.b)

Ensure Access to Food Security (2.1/2.3/2.a/2.b/2.c)

Reduce Illnesses from Hazardous Air Pollution (3.9)

Improved Access and Fuel Switch to Modern Low-carbon Energy

21 projects aiming at resilient transport infrastructure development to improve access (e.g., CAD Cities Clean Bus Declaration, UITP Declaration on Climate Leadership, Cycling Delivers on the Global Goals, Global Sidewalk Challenge) do not substantially contribute to realizing the (indirect) transport targets with mostly a rural focus: agricultural productivity (SDG 2) and access to safe drinking water (SDG 6).

Projects aiming at resilient transport infrastructure development (e.g., CAD Cities Clean Bus Declaration, UITP Declaration on Climate Leadership, Cycling Delivers on the Global Goals, Global Sidewalk Challenge) are targeted at reducing air pollution; electric vehicles using electricity from renewables or low carbon sources combined with e-mobility options such as trolley buses, metros, trams and electric buses, as well as promoting walking and biking, especially for short distances, need consideration.
Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

Poverty and Development (1.1/1.2/1.3/1.4)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployment of renewable energy and improvements in energy efficiency globally will aid climate change mitigation efforts, and this, in turn, can help to reduce the exposure of the world’s poor to climate-related extreme events, negative health impacts and other environmental shocks (McCollum et al., 2018).</td>
<td>[2]</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Farm Employment and Incomes (2.3)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-scale bioenergy production could lead to the creation of agricultural jobs, as well as higher farm wages and more diversified income streams for farmers. Modern energy access can make marginal lands more cultivable, thus potentially generating on-farm jobs and incomes; on the other hand, greater farm mechanization can also displace labour. However, large-scale bioenergy production could alter the structure of global agricultural markets in a way that is potentially unfavourable to small-scale food producers.</td>
<td>[2]</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Air Pollution (3.9)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoting most types of renewables and boosting efficiency greatly aids the achievement of targets to reduce local air pollution and improve air quality; however, the order of magnitude of the effects, both in terms of avoided emissions and monetary valuation, varies significantly between different parts of the world. Benefits would especially accrue to those living in the dense urban centres of rapidly developing countries. Utilization of biomass and biofuels might not lead to any air pollution benefits, however, depending on the control measures applied. In addition, household air quality can be significantly improved through lowered particulate emissions from access to modern energy services (McCollum et al., 2018).</td>
<td>[1]</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Disease and Mortality (3.1/3.2/3.3/3.4), Air Pollution (3.9)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacing coal by biomass can reduce adverse impacts of upstream supply-chain activities, in particular local air and water pollution, and prevent coal mining accidents. Improvements to local air pollution in power generation compared to coal-fired power plants depend on the technology and fuel of biomass power plants, but could be significant when switching from outdated coal combustion technologies to state-of-the-art biogas power generation.</td>
<td>[2]</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Vocational Training, Education for Sustainability (4.6/4.7)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decentralized renewable energy systems (e.g., home- or village-scale solar power) can support education and vocational training.</td>
<td>[1]</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Social-Supply

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement of coal by biomass can reduce adverse impacts of upstream supply-chain activities, in particular local air and water pollution, and prevent coal mining accidents. Improvements to local air pollution in power generation compared to coal-fired power plants depend on the technology and fuel of biomass power plants, but could be significant when switching from outdated coal combustion technologies to state-of-the-art biogas power generation.</td>
<td>[2]</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Non-biomass Renewable - solar, wind, hydro

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-scale bioenergy production could lead to the creation of agricultural jobs, as well as higher farm wages and more diversified income streams for farmers. Modern energy access can make marginal lands more cultivable, thus potentially generating on-farm jobs and incomes; on the other hand, greater farm mechanization can also displace labour. However, large-scale bioenergy production could alter the structure of global agricultural markets in a way that is potentially unfavourable to small-scale food producers. See SDG2 (McCollum et al., 2018).</td>
<td>[2]</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Increased Use of Biomass

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldrighi and Singh, 1991; Gehin, 2008; de Moraes et al., 2010; van der Horst and Vermeulen, 2011; Carbone and Pascual, 2012; Rud, 2012; Creutzig et al., 2013; Davis et al., 2013; Sabolo and Becchi, 2013; Mays et al., 2014; Ertem et al., 2017; McCollum et al., 2018</td>
<td>[2]</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Social-Supply (continued)

Disease and Mortality (3.1/3.2/3.3/3.4)

No direct interaction

- **Advanced Coal**
 - **CCS Bioenergy**
 - **Poverty and Development (1.1/1.2/1.3/1.4)**
 - Interaction Score: [-1, 2]
 - Agreement Confidence:
 - **Farm Employment and Incomes (2.3)**
 - Interaction Score: [-1, 2]
 - Agreement Confidence:
 - **Advanced Coal**
 - **CCS Fossil**
 - Interaction Score: [-1]
 - Agreement Confidence:

- **Nuclear/Advanced Nuclear**
 - **Replacing Coal**
 - **Disease and Mortality (3.1/3.2/3.3/3.4)**
 - Interaction Score: [0]
 - Agreement Confidence:

In spite of the industry's overall safety track record, a non-negligible risk for accidents in nuclear power plants and waste treatment facilities remains. The long-term storage of nuclear waste is a politically fraught subject, with no large-scale long-term storage operational worldwide. Negative impacts from upstream uranium mining and milling are comparable to those of coal, hence replacing fossil fuel combustion by nuclear power would be neutral in that aspect. Increased occurrence of childhood leukaemia in populations living within 5 km of nuclear power plants was identified by some studies, even though a direct causal relation to ionizing radiation could not be established and other studies could not confirm any correlation (low evidence/agreement on this issue).

Abdelouas, 2006; Cardis et al., 2006; Kaatsch et al., 2008; Al-Zaqghoud and Korovski, 2009; Hensivaara et al., 2010; Schreiber et al., 2010; Brugge and Buchner, 2011; Møller and Moussaoui, 2011; Møller et al., 2011, 2012; Moorave et al., 2011; IPCC, 2014; Siirila et al., 2012; Atchley et al., 2013; Corsten et al., 2013; IPCC, 2014; von Stechow et al., 2016

See effects of increased bioenergy use. See increased use of biomass effects. In addition, the concern that more bioenergy (for BECCS) necessarily leads to unacceptably high food prices is not founded on large agreement in the literature. AR5, for example, finds a significantly lower effect of large-scale bioenergy deployment on food prices by mid-century than the effect of climate change on crop yields. Also, Muratori et al. (2016) show that BECCS reduces the upward pressure on food crop prices by lowering carbon prices and lowering the total biomass demand in climate change mitigation scenarios. On the other hand, competition for land use may increase food prices and thereby increase risk of hunger. Use of agricultural residues for bioenergy can reduce soil carbon, thereby threatening agricultural productivity.

See literature on increased biomass use: IPCC, 2014; Muratori et al., 2016; Dooley and Kartha, 2018

See positive impacts of increased biomass use. At the same time, there is a non-negligible risk of CO₂ leakage both from geological formations as well as from the transportation infrastructure from source to sequestration locations.

Wang and Jaffe, 2004; Hertwich et al., 2008; Apps et al., 2010; Veltman et al., 2010; Koornneef et al., 2011; Singh et al., 2011; Siriila et al., 2012; Atchley et al., 2013; Constan et al., 2013; IPCC, 2014

The use of fossil CCS implies continued adverse impacts of upstream supply-chain activities in the coal sector, and because of lower efficiency of CCS coal power plants, upstream impacts and local air pollution are likely to be exacerbated. Furthermore, there is a non-negligible risk of CO₂ leakage from geological storage or the CO₂ transport infrastructure from source to sequestration locations.

Wang and Jaffe, 2004; Hertwich et al., 2008; Apps et al., 2010; Veltman et al., 2010; Koornneef et al., 2011; Singh et al., 2011; Siriila et al., 2012; Atchley et al., 2013; Constan et al., 2013; IPCC, 2014
<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty and Development (1.1/2.1/3.1/4)</td>
<td>Food Security, Promoting Sustainable Agriculture (2.1/2.4/2a)</td>
<td>Tobacco Control (3.2/3.3.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ [2]</td>
<td>↑ [2]</td>
<td>[+] 0, -2</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>Many CSA interventions aim to improve rural livelihoods, thereby contributing to poverty alleviation. Agrodiversity or integrated crop-livestock-biogas systems can substitute costly, external inputs, saving on household expenditures—or even lead to the selling of some of the products, providing the farmer with extra income, leading to increased adaptive capacity (Bogdanski, 2012).</td>
<td>Safe application of biotechnology, both conventional and modern methods, can help to improve agricultural productivity, improving crop adaptability and thereby catering to food security. Reducing tillage, eliminating fallow and keeping the soil covered with residue, cover crops or perennial vegetation helps prevent soil erosion and has the potential to increase soil organic matter. Efficient land-management techniques can help in increasing crop yields, and so food security issues can be addressed. Yield projections are actually higher for developing countries than for developed countries, reflecting the fact that they have more "catchup" potential (Bosson, 1999). Action is needed throughout the food system on moderating demand, reducing waste, improving governance and producing more food (Godfray and Garnett, 2014). Improving crop management is the key to increase crop productivity without further degrading soil and water resources (Brana et al., 2011). CSA practices increase productivity and prioritize food security.</td>
<td>Consume fewer foods with low nutritional value, e.g., alcohol (Garnett, 2011). Demand-side measures aimed at reducing the proportion of livestock products in human diets, where the consumption of animal products is higher than recommended, are associated with multiple health benefits, especially in industrialized countries (Bustamante et al., 2014).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
- Brana et al., 2011; Bogdanski, 2012; Scherr et al., 2012; Vermeulen et al., 2012; Campbell et al., 2014; Upiper et al., 2014; Mbow et al., 2014; Steenwerth et al., 2014; Hammond et al., 2017
- Evanson, 1999; West and Post, 2002; Jehan et al., 2007; Brana et al., 2011; McCarthy et al., 2011; Behnasi et al., 2014; Campbell et al., 2014; Godfray and Garnett, 2014; Harvey et al., 2014; Upiper et al., 2014
- Sansoucy, 1995; Steenwerth et al., 2014; Lamb et al., 2016

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety of Genetically Engineered Foods (1.1/2.1/3.1/4)</td>
<td>Food Security, Promoting Sustainable Agriculture (2.1/2.4/2a)</td>
<td>Ensure Healthy Lives (3.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ [2]</td>
<td>↑ [2]</td>
<td>+2, -2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Safe application of biotechnology, both conventional and modern methods, can help to improve agricultural productivity, improving crop adaptability and thereby catering to food security. Reducing tillage, eliminating fallow and keeping the soil covered with residue, cover crops or perennial vegetation helps prevent soil erosion and has the potential to increase soil organic matter. Efficient land-management techniques can help in increasing crop yields, and so food security issues can be addressed. Yield projections are actually higher for developing countries than for developed countries, reflecting the fact that they have more "catchup" potential (Bosson, 1999). Action is needed throughout the food system on moderating demand, reducing waste, improving governance and producing more food (Godfray and Garnett, 2014). Improving crop management is the key to increase crop productivity without further degrading soil and water resources (Brana et al., 2011). CSA practices increase productivity and prioritize food security.</td>
<td>Safe application of biotechnology, both conventional and modern methods, can help to improve agricultural productivity, improving crop adaptability and thereby catering to food security. Reducing tillage, eliminating fallow and keeping the soil covered with residue, cover crops or perennial vegetation helps prevent soil erosion and has the potential to increase soil organic matter. Efficient land-management techniques can help in increasing crop yields, and so food security issues can be addressed. Yield projections are actually higher for developing countries than for developed countries, reflecting the fact that they have more "catchup" potential (Bosson, 1999). Action is needed throughout the food system on moderating demand, reducing waste, improving governance and producing more food (Godfray and Garnett, 2014). Improving crop management is the key to increase crop productivity without further degrading soil and water resources (Brana et al., 2011). CSA practices increase productivity and prioritize food security.</td>
<td>Consume fewer foods with low nutritional value, e.g., alcohol (Garnett, 2011). Demand-side measures aimed at reducing the proportion of livestock products in human diets, where the consumption of animal products is higher than recommended, are associated with multiple health benefits, especially in industrialized countries (Bustamante et al., 2014).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
- Brana et al., 2011; Bogdanski, 2012; Scherr et al., 2012; Vermeulen et al., 2012; Campbell et al., 2014; Upiper et al., 2014; Mbow et al., 2014; Steenwerth et al., 2014; Hammond et al., 2017
- Evanson, 1999; West and Post, 2002; Jehan et al., 2007; Brana et al., 2011; McCarthy et al., 2011; Behnasi et al., 2014; Campbell et al., 2014; Godfray and Garnett, 2014; Harvey et al., 2014; Upiper et al., 2014
- Sansoucy, 1995; Steenwerth et al., 2014; Lamb et al., 2016
Social-Other (continued)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Scale</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction</th>
<th>Scale</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction</th>
<th>Scale</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partnerships between local forest managers, community enterprises and private sector companies can support local economies and livelihoods, and boost regional and national economic growth.</td>
<td>[1]</td>
<td>No direct interaction</td>
<td></td>
</tr>
<tr>
<td>Food security may lead to the conversion of productive land under private sector companies can support local economies and livelihoods, which facilitate their participation in society. Education and capacity building provide technical skill and knowledge (Katila et al., 2017).</td>
<td>[2]</td>
<td>No direct interaction</td>
<td></td>
</tr>
<tr>
<td>Local forest users learn to understand laws, regulations and policies which facilitate their participation in society. Education and capacity building provide technical skill and knowledge (Katila et al., 2017).</td>
<td>[3]</td>
<td>No direct interaction</td>
<td></td>
</tr>
<tr>
<td>Reduced deforestation, REDD+ afforestation and reforestation are influenced in particular by Australian landholder's perceptions of its potential to provide a diversified income stream, and its impacts on flexibility of land management; land sparing would have far reaching implications for the UK countryside and would affect landowners and rural communities; and livelihoods could be threatened if subsistence agriculture is targeted.</td>
<td>[4]</td>
<td>No direct interaction</td>
<td></td>
</tr>
<tr>
<td>Clean Development Mechanism (CDM) can have different implications on local community livelihoods. For example, willingness to adopt afforestation is influenced in particular by Australian landholder’s perceptions of its potential to provide a diversified income stream, and its impacts on flexibility of land management; land sparing would have far reaching implications for the UK countryside and would affect landowners and rural communities; and livelihoods could be threatened if subsistence agriculture is targeted.</td>
<td>[5]</td>
<td>No direct interaction</td>
<td></td>
</tr>
<tr>
<td>Urban trees are increasingly seen as a way to reduce harmful air pollutants and therefore improve cardio-respiratory health.</td>
<td>[6]</td>
<td>No direct interaction</td>
<td></td>
</tr>
<tr>
<td>Avoiding loss of mangroves and maintaining the 2005 stock could save a value of ecosystem services from mangroves in South East Asia of approximately 2.16 billion USD until 2050 (2007 prices), with a 99% prediction interval of 1.58–2.74 billion USD (case study area South East Asia); seaweed aquaculture will provide employment; traditional management systems provide benefits for blue carbon and support livelihoods for local communities; greening of aquaculture can significantly enhance carbon storage; PES schemes could help capture the benefits derived from multiple ecosystem services beyond carbon sequestration.</td>
<td>[7]</td>
<td>No direct interaction</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5: Sustainable Development, Poverty Eradication and Reducing Inequalities

Knowledge and Skills Needed to Promote SD (4.7)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerating Energy Efficiency Improvement</td>
<td>[0]</td>
<td>No direct interaction</td>
<td></td>
</tr>
<tr>
<td>Low-carbon Fuels Switch</td>
<td>[0]</td>
<td>No direct interaction</td>
<td></td>
</tr>
<tr>
<td>Decarbonization/CCU</td>
<td>[0]</td>
<td>No direct interaction</td>
<td></td>
</tr>
</tbody>
</table>

Global Partnership (17.6/17.7)

- A driving force for energy efficiency is collaboration among companies, networks, experience sharing and management tools. Sharing among countries can help accelerate managerial action. Absence of information, budgetary funding, lack of access to capital, etc. are Abdul Quader et al., 2016
- Ultra-low carbon steel making and breakthrough technologies are under trial across many countries and helping in enhancing the learning. Abdul Quader et al., 2016
- EPIC plants are capital intensive and are mostly operated by multinationals with long investment cycles. In developed countries, new innovation investments are happening in brown fields. Such large innovation investments need strong collaboration among partners/competitors which can be facilitated by public funds. They happen at national and supranational scales and across sectors, needs fresh revisit at Intellectual Property Rights issues. Global production of bio-based polymers increasingly need public support and incentives to push forward. Wiedling et al., 2017; Griffin et al., 2018
Social 2-Demand (continued)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>Score</td>
<td>Evidence</td>
<td>Agreement</td>
<td>Confidence</td>
</tr>
</tbody>
</table>

Buildings

**Women’s Safety and Worth (5.15/5.4) Opportunities for Women (5.15/5.5)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Enhancing Energy Efficiency Improvement

**Gender Equality and Women’s Empowerment (5.15/5.4)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Accelerating Energy Efficiency Improvement

**Consumption perspectives strengthen environmental justice discourse (as it claims to be a more just way of calculating global and local environmental effects) while possibly also increasing the participatory environmental discourse.

Hult and Larsson, 2016

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Environmental Justice (16.7)

Environmental effects while possibly also increasing the participatory environmental discourse.

Efficient stoves lead to empowerment of rural and indigenous women.

- Implementing refrigerant transition and energy efficiency improvement policies in parallel for room ACs, roughly doubles the benefit of either policy implemented in isolation.

Acemoglu, 2009; Tabellini, 2010; Acemoglu et al., 2014; ICSU and ISSC, 2015; McCollum et al., 2018

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Enhance Policy Coherence for Sustainable Development

Institutions that are effective, accountable and transparent are needed at all levels of government (local to national to international) for providing energy access, promoting modern renewables and boosting efficiency. Strengthening the participation of developing countries in international institutions (e.g., international energy agencies, UN organizations, WTO, regional development banks and beyond) will be important for issues related to energy trade, foreign direct investment, labour migration and knowledge and technology transfer. Reducing corruption, where it exists, will help these bodies and related domestic institutions maximize their societal impacts. Limiting armed conflict and violence will aid most efforts related to sustainable development, including progress in the energy dimension.

- Shah et al., 2015

Building

**Improved access to electric lighting can improve women's safety and girls' school enrolment. Cleaner cooking fuel and lighting access can reduce health risks and drudgery, which women disproportionately face. Access to modern energy services has the potential to empower women by improving their income-earning and entrepreneurial opportunities and reducing drudgery. Participating in energy supply chains can increase women's opportunities and agency and improve business outcomes.

Chowdhry, 2010; Dinkelmann, 2011; Kayagusuz, 2011; Kihlin et al., 2011; Clancy et al., 2012; Heves, 2012; Malting, 2012; Anenberg et al., 2013; Pachauri and Ras, 2013; Burney et al., 2017, McCollum et al., 2018

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Women’s Safety and Worth (5.15/5.4) Opportunities for Women (5.15/5.5)

Green building technology in Kazakhstan was based on transfer of knowledge among various parties.

- Kim and Sun, 2017

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Building

Implementing refrigerant transition and energy efficiency improvement policies in parallel for room ACs, roughly doubles the benefit of either policy implemented in isolation.

- Shah et al., 2015

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Capacity and Accountability (16.1/16.3/16.5/16.6/16.7/16.8)

Institutions that are effective, accountable and transparent are needed at all levels of government (local to national to international) for providing energy access, promoting modern renewables and boosting efficiency. Strengthening the participation of developing countries in international institutions (e.g., international energy agencies, UN organizations, WTO, regional development banks and beyond) will be important for issues related to energy trade, foreign direct investment, labour migration and knowledge and technology transfer. Reducing corruption, where it exists, will help these bodies and related domestic institutions maximize their societal impacts. Limiting armed conflict and violence will aid most efforts related to sustainable development, including progress in the energy dimension.

- Shah et al., 2015

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Building

Improved access to electric lighting can improve women's safety and girls' school enrolment. Cleaner cooking fuel and lighting access can reduce health risks and drudgery, which women disproportionately face. Access to modern energy services has the potential to empower women by improving their income-earning and entrepreneurial opportunities and reducing drudgery. Participating in energy supply chains can increase women's opportunities and agency and improve business outcomes.

Chowdhry, 2010; Dinkelmann, 2011; Kayagusuz, 2011; Kihlin et al., 2011; Clancy et al., 2012; Heves, 2012; Malting, 2012; Anenberg et al., 2013; Pachauri and Ras, 2013; Burney et al., 2017, McCollum et al., 2018

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Women’s Safety and Worth (5.15/5.4) Opportunities for Women (5.15/5.5)

Green building technology in Kazakhstan was based on transfer of knowledge among various parties.

- Kim and Sun, 2017

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Building

Implementing refrigerant transition and energy efficiency improvement policies in parallel for room ACs, roughly doubles the benefit of either policy implemented in isolation.

- Shah et al., 2015

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Capacity and Accountability (16.1/16.3/16.5/16.6/16.7/16.8)

Institutions that are effective, accountable and transparent are needed at all levels of government (local to national to international) for providing energy access, promoting modern renewables and boosting efficiency. Strengthening the participation of developing countries in international institutions (e.g., international energy agencies, UN organizations, WTO, regional development banks and beyond) will be important for issues related to energy trade, foreign direct investment, labour migration and knowledge and technology transfer. Reducing corruption, where it exists, will help these bodies and related domestic institutions maximize their societal impacts. Limiting armed conflict and violence will aid most efforts related to sustainable development, including progress in the energy dimension.

- Shah et al., 2015

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Building

Improved access to electric lighting can improve women's safety and girls' school enrolment. Cleaner cooking fuel and lighting access can reduce health risks and drudgery, which women disproportionately face. Access to modern energy services has the potential to empower women by improving their income-earning and entrepreneurial opportunities and reducing drudgery. Participating in energy supply chains can increase women's opportunities and agency and improve business outcomes.

Chowdhry, 2010; Dinkelmann, 2011; Kayagusuz, 2011; Kihlin et al., 2011; Clancy et al., 2012; Heves, 2012; Malting, 2012; Anenberg et al., 2013; Pachauri and Ras, 2013; Burney et al., 2017, McCollum et al., 2018

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>

Women’s Safety and Worth (5.15/5.4) Opportunities for Women (5.15/5.5)

Green building technology in Kazakhstan was based on transfer of knowledge among various parties.

- Kim and Sun, 2017

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>
The equity impacts of climate change mitigation measures for transport, and indeed of transport policy intervention overall, are poorly understood by policymakers. This is in large part because standard assessment of these impacts is not a statutory requirement of current policymaking. Managing transport energy demand growth will have to be advanced alongside efforts in passenger travel towards reducing the deep inequalities in access to transport services that currently affect the poor worldwide. Free provision of roads and parking spaces converts vast amounts of public land and capital into under-priced space for cars. In extreme cases like Los Angeles, USA, roads and streets free for parking and driving are 20% of land area; as governments give drivers free land, people drive more than they would otherwise. High levels of car dependence and the costs of motoring can be burdensome, and lead to increasing debt, raising questions of affordability for households with limited resources, particularly low-income households located in suburban areas. Projects aiming at resilient transport infrastructure development and indeed of transport policy intervention overall, are poorly understood by policymakers. This is in large part because standard assessment of these impacts is not a statutory requirement of current policymaking. Managing transport energy demand growth will have to be advanced alongside efforts in passenger travel towards reducing the deep inequalities in access to transport services that currently affect the poor worldwide.

Projects aiming at resilient transport infrastructure development (e.g., C40 Cities Clean Bus Declaration, UITP Declaration on Climate Leadership, Cycling Delivers on the Global Goals, Global Sidewalk Challenge) are happening through multi-stakeholder coalitions.

In transport mitigation it is necessary to conduct needs assessments and stakeholder consultation to determine plausible challenges, prior to introducing desirable planning reforms. Further, the involved personnel should actively engage transport-based stakeholders during policy identification and its implementation to achieve the desired results. User behaviour and stakeholder integration are key for successful transport policy implementation.

Projects aiming at resilient transport infrastructure development and technology adoption (e.g., C40 Cities Clean Bus Declaration, UITP Declaration on Climate Leadership, Cycling Delivers on the Global Goals, Global Sidewalk Challenge) are happening through multi-stakeholder coalitions.

The equity impacts of climate change mitigation measures for transport, and indeed of transport policy intervention overall, are poorly understood by policymakers. This is in large part because standard assessment of these impacts is not a statutory requirement of current policymaking. Managing transport energy demand growth will have to be advanced alongside efforts in passenger travel towards reducing the deep inequalities in access to transport services that currently affect the poor worldwide.
Gender Equality and Women's Empowerment (5.1/5.4)

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[↑] [+1]</td>
<td></td>
<td></td>
<td></td>
<td>[-]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decentralized renewable energy systems (e.g., home- or village-scale solar power) can reduce the burden on girls and women of procuring traditional biomass.

Schweinfurt and Sy, 2017

Empowerment and Inclusion (10.1/10.2/10.3/10.4)

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[↑] [+1]</td>
<td></td>
<td></td>
<td></td>
<td>[-]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decentralized renewable energy systems (e.g., home- or village-scale solar power) can enable a more participatory, democratic process for managing energy-related decisions within communities.

Walker and Deine-Wright, 2008; Cass et al., 2010; Cumbers, 2012; Kunze and Becker, 2015; McCollum et al., 2018

Energy Justice

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[↑] [+2]</td>
<td></td>
<td></td>
<td></td>
<td>[-]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The energy justice framework serves as an important decision-making tool in order to understand how different principles of justice can inform energy systems and policies. Isar et al. (2017) state that off-grid and micro-scale energy development offers an alternative path to fossil-fuel use and top-down resource management as they democratize the grid and increase marginalized communities’ access to renewable energy, education and health care.

Istar et al., 2017

International Cooperation (All Goals)

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[↑] [-2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued use of nuclear power poses a constant risk of proliferation. Adamantidis and Fritsche, 2009; Régnier, 2010; Sagan, 2011; von Hippel et al., 2011, 2012; Yen and Li, 2013; IPCC, 2014

Advanced Coal

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td></td>
<td></td>
<td></td>
<td>[-1]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-biomass Renewables - solar, wind, hydro

Schwerhoff and Sy, 2017

Nuclear/Advanced Coal

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td></td>
<td></td>
<td></td>
<td>[-1]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nuclear/Advanced Coal

Kunze and Becker, 2015; McCollum et al., 2018

Reduce Illicit Arms Trade (16.4)

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[↓] [-1]</td>
<td></td>
<td></td>
<td></td>
<td>[-]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued use of nuclear power poses a constant risk of proliferation.

Adamantidis and Fritsche, 2009; Régnier, 2010; Sagan, 2011; von Hippel et al., 2011, 2012; Yen and Li, 2013; IPCC, 2014

Advanced Coal

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td></td>
<td></td>
<td></td>
<td>[-1]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CCE: Coal

No direct interaction

Advanced Coal

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td></td>
<td></td>
<td></td>
<td>[-1]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CCE: CCS

No direct interaction

Advanced Coal

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td></td>
<td></td>
<td></td>
<td>[-1]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CCE: Nuclear

No direct interaction

Advanced Coal

<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td></td>
<td></td>
<td></td>
<td>[-1]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CCE: Advanced Coal

No direct interaction
Social 2-Other

Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equal Access, Empowerment of Women (5.5)

- Many programmes for CSA have been used to empower women and to improve gender equality. Women often have an especially important role to play in adaptation, because of their gendered indigenous knowledge on matters such as agriculture (Terry, 2009). Without access to land, credit and agricultural technologies, women farmers face major constraints in their capacity to diversify into alternative livelihoods (Demetriades and Esplen, 2008).

- In many rural societies women are side-lined from decisions regarding agriculture even when male household heads are absent, and they often lack access to important inputs such as irrigation water, credit, tools and fertilizer. To be effective, agricultural mitigation strategies need to take these and other aspects of local gender relations into account (Terry, 2009). Women’s key role in maintaining biodiversity, through conserving and domesticating wild edible plant seeds, and in food crop breeding, is not sufficiently recognized in agricultural and economic policymaking; nor is the importance of biodiversity to sustainable rural livelihoods in the face of predicted climate changes (Nelson et al., 2002).

- Livestock ownership is increasing women’s decision-making and economic power within both the household and the community. Access to and control and management of small ruminants, grazing areas and feed resources empower women and lead to an overall positive impact on the welfare of the household.

- Livestock production and manure management systems.

- Responsible decision-making (16.7).

- Improve Domestic Capacity for Tax Collection (17.1).

- CSA requires more careful adjustment of agricultural practices to natural conditions, a knowledge-intensive approach, huge financial investment and policy and institutional innovation, etc. Besides private investment, quality of public investment is also important (Behnassi et al., 2014). Sources of climate finance for CSA in developing countries include bilateral donors and multilateral financial institutions, besides public sector finance. CSA is committed to new ways of engaging in participatory research and partnerships with producers (Steinwerth et al., 2014).

Sustainable Development, Poverty Eradication and Reducing Inequalities

Resource Mobilization and Strengthen Partnership

- To minimize the economic and social cost, policies should target emissions at their source—on the supply side—rather than on the demand side as supply-side policies have lower abatement costs than demand-side policies. The role of livestock system transitions in emission reductions depends on the level of the carbon price and which emissions sector is targeted by the policies.

- The role of livestock system transitions in emission reductions depends on the level of the carbon price and which emissions sector is targeted by the policies.

- Integration of agricultural, environmental and nutritional objectives through appropriate policy measures to achieve sustainable healthy diets and reduce meat consumption and to encourage more sustainable eating patterns.

- Equal Access to Economic Resources, Promote Empowerment of Women (5.5/5.a/5.b)

- Responsible Decision-making (16.7).

- Improve Domestic Capacity for Tax Collection (17.1).

- Evolution of social capital and institutions.

- Responsible Decision-making (16.7).

- Improve Domestic Capacity for Tax Collection (17.1).

- Integration of agricultural, environmental and nutritional objectives through appropriate policy measures to achieve sustainable healthy diets and reduce meat consumption and to encourage more sustainable eating patterns.

- Equal Access to Economic Resources, Promote Empowerment of Women (5.5/5.a/5.b)

- Responsible Decision-making (16.7).

- Improve Domestic Capacity for Tax Collection (17.1).

- Evolution of social capital and institutions.

- Responsible Decision-making (16.7).

- Improve Domestic Capacity for Tax Collection (17.1).

- Integration of agricultural, environmental and nutritional objectives through appropriate policy measures to achieve sustainable healthy diets and reduce meat consumption and to encourage more sustainable eating patterns.
Forest

Afforestation and Reforestation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ [+1]</td>
<td>↑ [+2]</td>
<td>↑ [1]</td>
<td>↑ [+1]</td>
<td>↑ [1]</td>
</tr>
<tr>
<td>Many women in developing countries are already prominently engaged in economic sectors related to climate adaptation and mitigation efforts such as agriculture, renewable energy and forest management and are important drivers and leaders in climate responses that are innovative and effective, benefiting not only their families but also their wider communities. Women's participation in the decision-making process of forest management, for example, has been shown to increase rates of reforestation while decreasing the illegal extraction of forest products.</td>
<td>Women's participation in the decision-making process of forest management, for example, has been shown to increase rates of reforestation while decreasing the illegal extraction of forest products.</td>
<td>Land-related mitigation, such as biofuel production, as well as conservation and reforestation action can increase competition for land and natural resources, so these measures should be accompanied by complementary policies. (Quoted from Epstein and Thayer, 2007)</td>
<td>Institutional building (National Forest Monitoring Systems, Safeguard Information Systems, etc.), with full and effective participation of all relevant countries. REDD+ actions also deliver non-carbon benefits (e.g. local socioeconomic benefits, governance improvements). Forest governance is another central aspect in recent studies, including the debate on decentralization of forest management, logging concessions in public-owned commercially valuable forests and timber certification, primarily in temperate forests.</td>
<td>Financing at the national and international level is required to grow more seedlings/planting, restore land, and improve education and awareness factsheets, provide training to local communities regarding the benefits of afforestation and reforestation. Article 12 of the Kyoto Protocol further sets a Clean Development Mechanism through which countries in Annex I can sell ‘certified emissions reductions’ through projects implemented in developing countries (Montanarella and Aku, 2015). Afforestation and reforestation in India are being carried out under various programmes, namely social forestry initiated in the early 1980s, the joint Forest Management Programme initiated in 1990, afforestation under National Afforestation and Eco-development Board programmes since 1992, and private farmer and industry initiated plantation forestry. If the current rate of afforestation and reforestation is assumed to continue, the carbon stock could increase by 11% by 2050 (Kibaria, 2015; Montanarella and Aku, 2015)</td>
</tr>
</tbody>
</table>

Responsible Decision-making

- Epstein and Thayer, 2007

Responsible Decision-making

<table>
<thead>
<tr>
<th>↑ [1]</th>
<th>↑ [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesian factories may seek advantages through non-price competition—perhaps by highlighting decent working conditions or the existence of a union—or to use trade associations or government agencies promoting the country as a responsible sourcing location (Bartley, 2010). In the absence of domestic legal instruments providing incentives to improve sustainability of sourcing, it appears that initiatives to engage the major importing enterprises in developing responsible sourcing practices and policies is a practical approach. Unless initiatives involve all the major importers, they are unlikely to be successful since the high costs associated with accreditation would increase production costs for these firms relative to their competitors (Huang et al., 2013).</td>
<td>Private certification initiatives for wood products and biomass sourcing may extend their schemes with criteria for success (e.g. visual inspection effect). Also recycling of waste wood in pellets is not yet practiced, due to similar rules in the EU Waste Directive about overseas shipping (Silkema et al., 2014). Engagement of Chinese government and private sector stakeholders in supply country sustainability initiatives may be the best way to support this gradual process of improvement. Although carrying out due diligence in timber sourcing can require considerable internal resources, it may be substantially less of a financial burden than the potential fines and reputational damage resulting from sourcing unknown or controversial timber (Huang et al., 2013).</td>
</tr>
<tr>
<td>Huang et al., 2013; Silkema et al., 2014</td>
<td>Huang et al., 2013</td>
</tr>
<tr>
<td>Interaction</td>
<td>Evidence</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>Ocean Iron Fertilization</td>
<td>No direct interaction</td>
</tr>
<tr>
<td>Blue Carbon</td>
<td>No direct interaction</td>
</tr>
<tr>
<td>Weathering</td>
<td>No direct interaction</td>
</tr>
<tr>
<td>Environment-Demand</td>
<td>Sustainable Development, Poverty Eradication and Reducing Inequalities Chapter 5</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
</tbody>
</table>

Water Efficiency and Pollution Prevention (6.3/6.4/6.6)

Accelerating Energy Efficiency Improvement

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Scale</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Industry

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Scale</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low-carbon Fuel Switch

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Scale</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sustainable and Efficient Resource (12.2/12.3/12.6/12.7/12.8)

Once started leads to chain of actions within the sector and policy space to sustain the effort. Helps in expansion of sustainable industrial production (Ghana).

- Water Efficiency and Pollution Prevention (6.3/6.4/6.6)
- Sustainable Production (12.2/12.3/12.6/12.7/12.8)

No direct interaction

- Sustainable Production (15.1/15.5/15.9/15.10)

A circular economy help in managing local biodiversity better by having less resource use footprint.

- Sustainable Product (15.1/15.5/15.9/15.10)

CCUS in the chemical industry faces challenges for transport costs and storage. In the UK cluster region have been identified for storage under sea.

No direct interaction

- Sustainable Production (15.1/15.5/15.9/15.10)

- No direct interaction

- No direct interaction

- No direct interaction

- No direct interaction

Efficiency and behavioural changes in the industrial sector that lead to reduced energy demand can lead to reduced requirements on energy supply. As water is used to convert energy into useful forms, the production (Ghana).

- Sustainable Production (12.2/12.3/12.6/12.7/12.8)

Once started leads to chain of actions within the sector and policy space to sustain the effort. Helps in expansion of sustainable industrial production (Ghana).

- No direct interaction

Improvement Low-carbon Fuel Switch Decarbonisation/CC/S/CCU

A switch to low-carbon fuels can lead to a reduction in water demand A circular economy instead of linear global economy can achieve climate goals and can help in economic growth through industrialization which saves on resources, the environment and supports small, medium and even large industries, and can lead to employment generation. So new regulations, incentives and a tax regime can help in achieving the goal, especially in newly emerging developing countries - although also applicable for large industrialized countries.

- A circular economy help in managing local biodiversity better by having less resource use footprint.

- No direct interaction

- No direct interaction

- No direct interaction

- No direct interaction

EPI plants are capital intensive and are mostly operated by multinationals with long investment cycles. In developed countries new investments are happening in brown fields, while in developing countries these are in green fields. Collaboration among partners and user demand change, policy change is essential for encouraging these large risky investments.

- No direct interaction
Environment-Demand (continued)

Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

Environment-Demand (continued)

Water Efficiency and Pollution Prevention (6.3/6.4/6.6)

- **Interactions Score**: [+]2
- **Evidence Agreement**: 4/5
- **Confidence**: 5/5

Behavioural changes in the residential sector that lead to reduced energy demand can lead to reduced requirements on energy supply. As water is used to convert energy into useful forms, the reduction in residential demand is anticipated to reduce water consumption and waste water, resulting in more clean water for other sectors and the environment.

- **References**: Bartos and Chester (2014); Fricko et al. (2016); Holland et al. (2016)

Responsible and Sustainable Consumption

- **Interactions Score**: [+]2
- **Evidence Agreement**: 4/5
- **Confidence**: 5/5

Technological improvements alone are not sufficient to increase energy savings. Zhao et al. (2017) found that building technology and occupant behaviours interact with each other and finally affect energy consumption from home. They found that occupant habits could not take advantage of more than 50% of energy efficiency potential allowed by an efficient building. In the electronic segment, product obsolescence represents a key challenge for sustainability. Echegaray (2016) discusses the dissonance between consumers' product durability experience, orientations to replace devices before terminal technical failure, and perceptions of industry responsibility and performance. The results from their urban sample survey indicate that technical failure is far surpassed by subjective obsolescence as a cause for fast product replacement. At the same time Liu et al. (2017) suggest that we need to go beyond individualist and structuralist perspectives to analyse sustainable consumption (i.e., combines both human agency paradigm and social structural perspective).

- **References**: Bartos and Chester (2014); Fricko et al. (2016); Holland et al. (2016)

Sustainable Practices and Lifestyles (12.6/12.7/12.8)

- **Interactions Score**: [+]2
- **Evidence Agreement**: 3/5
- **Confidence**: 4/5

Efficiency changes in the residential sector that lead to reduced energy demand can lead to reduced requirements on energy supply. As water is used to convert energy into useful forms, the reduction in residential demand is anticipated to reduce water consumption and waste water, resulting in more clean water for other sectors and the environment. At the same time Liu et al. (2017) suggest that we need to go beyond individualist and structuralist perspectives to analyse sustainable consumption (i.e., combines both human agency paradigm and social structural perspective).

- **References**: Bartos and Chester (2014); Fricko et al. (2016); Holland et al. (2016)

Reduced Deforestation (15.2)

- **Interactions Score**: [+]2
- **Evidence Agreement**: 3/5
- **Confidence**: 4/5

Sustainable practices adopted by public and private bodies in their operations (e.g., for goods procurement, supply chain management and accounting) create an enabling environment in which renewable energy and energy efficiency measures may gain greater traction (McCollum et al., 2018).

- **References**: Stefan and Paul, 2008; ECF, 2014; COP, 2015; Khan et al., 2015; NCE, 2015; McCollum et al., 2018

Improved stoves have helped halve deforestation in rural India.

- **References**: Bhojvaid et al., 2014

Buildings

Efficiency changes in the residential sector that lead to reduced energy demand can lead to reduced requirements on energy supply. As water is used to convert energy into useful forms, the reduction in residential demand is anticipated to reduce water consumption and waste water, resulting in more clean water for other sectors and the environment.

- **References**: Bartos and Chester (2014); Fricko et al. (2016); Holland et al. (2016)

Environmental implications for buildings and transport

- **References**: Bartos and Chester (2014); Fricko et al. (2016); Holland et al. (2016)
Environment-Demand (continued)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to Improved Water and Sanitation (6.1/6.2)</td>
<td>Sustainable Use and Management of Natural Resources (12.2)</td>
<td>Interaction Score</td>
<td>Evidence Agreement Confidence Interaction Score</td>
<td>Evidence Agreement Confidence Interaction Score</td>
<td>Evidence Agreement Confidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A switch to low-carbon fuels in the residential sector can lead to a reduction in water demand and waste water if the existing higher-carbon fuel is associated with a higher water intensity than the lower-carbon fuel. However, in some situations the switch to a low-carbon fuel such as, for example, biofuel could increase water use compared to existing conditions if the biofuel comes from a water-intensive feedstock. Improved access to energy can support clean water and sanitation technologies. If energy access is supported with water-intensive energy sources, there could be trade-offs with water efficiency targets.</td>
<td>Healthy Terrestrial Ecosystems (15.1/15.2/15.4/15.5/15.8)</td>
<td>Interaction Score</td>
<td>Evidence Agreement Confidence</td>
<td></td>
</tr>
<tr>
<td>Buildings</td>
<td></td>
</tr>
<tr>
<td>Improved Access and Fuel Switch to Modern Low-carbon Energy</td>
<td></td>
</tr>
<tr>
<td>Water Efficiency and Pollution Prevention (6.3/6.4/6.6)</td>
<td>Water Efficiency and Pollution Prevention (6.3/6.4/6.6)</td>
<td></td>
</tr>
<tr>
<td>Behavioural changes in the transport sector that lead to reduced transport demand can lead to reduced transport energy supply. As water is used to produce a number of important transport fuels, the reduction in demand is anticipated to reduce water consumption and waste water, resulting in more clean water for other sectors and the environment.</td>
<td></td>
</tr>
<tr>
<td>Behavioural Response</td>
<td></td>
</tr>
<tr>
<td>Water Efficiency and Pollution Prevention (6.3/6.4/6.6)</td>
<td></td>
</tr>
<tr>
<td>Similar to behavioural changes, efficiency measures in the transport sector that lead to reduced transport demand can lead to reduced transport energy supply. As water is used to produce a number of important transport fuels, the reduction in demand is anticipated to reduce water consumption and waste water, resulting in more clean water for other sectors and the environment.</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td></td>
</tr>
<tr>
<td>Accelerating Energy Efficiency Improvement</td>
<td></td>
</tr>
<tr>
<td>Water Efficiency and Pollution Prevention (6.3/6.4/6.6)</td>
<td>Sustainable Consumption (12.3)</td>
<td></td>
</tr>
<tr>
<td>Relational complex transport behaviour resulting in significant growth in energy-intensive car choices, as well as differences in mobility patterns (distances driven, driving styles) and actual fuel consumption between different car segments all affect non-progressive transport decarbonization. Consumption choices and individual lifestyles are situated and tied to the form of the surrounding urbanization. Major behavioural changes and emissions reductions require understanding of this relational complexity, consideration of potential interactions with other policies, and the local context and implementation of both command-and-control as well as market-based measures.</td>
<td></td>
</tr>
<tr>
<td>Accelerating Energy Efficiency Improvement</td>
<td></td>
</tr>
</tbody>
</table>

Vidic et al., 2013; Holland et al., 2015; Fricko et al., 2016; Tiedeman et al., 2016

Kagawa et al., 2015; Lin et al., 2015; Creutzig et al., 2016

Stanley et al., 2011; Gallego et al., 2013; Heinonen et al., 2013; Assmann and Peters, 2017; Azevedo and Leal, 2017; Gössling and Metzler, 2017

McCollum et al., 2018
Due to persistent reliance on fossil fuels, it is posited that transport is more difficult to decarbonize than other sectors. This study partially confirms that transport is less reactive to a given carbon tax than the non-transport sectors: in the first half of the century, transport mitigation is delayed by 10–30 years compared to non-transport mitigation. The extent to which earlier mitigation is possible strongly depends on implemented technologies and model structures.

Hejazi et al., 2015; Fricko et al., 2016; Song et al., 2016

Figueroa et al., 2014; IPCC, 2014; Pietzcker et al., 2014; Creutzig et al., 2015
Sustainable Development, Poverty Eradication and Reducing Inequalities

Chapter 5

<table>
<thead>
<tr>
<th>Environment-Supply</th>
<th>Interaction</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Efficiency and Pollution Prevention (6.3/6.4/6.6)</td>
<td>Access to Improved Water and Sanitation (6.1/6.2)</td>
<td>[+] / [-]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewable energy and energy efficiency slow the depletion of several types of natural resources, namely coal, oil, natural gas and uranium. In addition, the phasing-out of fossil fuel subsidies encourages less wasteful energy consumption; but if that is done, then the policies implemented must take care to minimize any counteracting adverse side effects on the poor (e.g., fuel price rises). (Quote from McCollum et al., 2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banerjee et al., 2012; Riahi et al., 2012; Schwartz et al., 2014; Bhattadhyaya et al., 2016; Cameron et al., 2016; McCollum et al., 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-biomass Renewables - solar, wind, hydro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewable energy and energy efficiency slow the depletion of several types of natural resources, namely coal, oil, natural gas and uranium. In addition, the phasing-out of fossil fuel subsidies encourages less wasteful energy consumption; but if that is done, then the policies implemented must take care to minimize any counteracting adverse side effects on the poor (e.g., fuel price rises). (Quote from McCollum et al., 2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banerjee et al., 2012; Riahi et al., 2012; Schwartz et al., 2014; Bhattadhyaya et al., 2016; Cameron et al., 2016; McCollum et al., 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Resource Protection (12.2/12.3/12.4/12.5)</td>
<td></td>
<td>[+] / [-]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching to renewable energy reduces the depletion of finite natural resources.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy Terrestrial Ecosystems (15.1/15.2/15.4/15.5/15.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape and wildlife impact for wind; habitat impact for hydropower.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alho, 2011; Garfin et al., 2011; Gradisky et al., 2011; Jain et al., 2011; Kumar et al., 2011; Kern et al., 2014; Grill et al., 2015; Grubert, 2016; De Stefano et al., 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table and diagram illustrate interactions, evidence, agreement, and confidence levels related to sustainable development, poverty eradication, and reducing inequalities.
Water Efficiency and Pollution Prevention (6.3/6.4/6.6)

Water Efficiency and Pollution Prevention (6.3/6.4/6.6) Healthy Terrestrial Ecosystems (15.1/15.2/15.4/15.5/15.8)

Healthy Terrestrial Ecosystems (15.1/15.2/15.4/15.5/15.8)

Natural Resource Protection (12.2/12.3/12.4/12.5)

Switching to renewable energy reduces the depletion of finite natural resources. On the other hand, the availability of underground storage is limited and therefore reduces the benefits of switching from finite resources to bioenergy.

- Meldrum et al., 2013; Byers et al., 2016; Fricko et al., 2016; Brandl et al., 2017; Dooley and Kartha, 2018
- Banerjee et al., 2012; Riazhi et al., 2012; Schwartz et al., 2014; Bhattacharya et al., 2016; Cameron et al., 2016; McCollum et al., 2018

Safety and waste concerns from uranium mining and milling.

- Bickerstaff et al., 2008; Sjoberg and Sjoberg, 2009; Ahearne, 2011; Corner et al., 2011; Visschers and Siegrist, 2012; IPCC, 2014

- Smith et al., 2010, 2014; Acheampong et al., 2017; Dooley and Kartha, 2018, McCollum et al., 2018

- Banerjee et al., 2012; Riazhi et al., 2012; Schwartz et al., 2014; Bhattacharya et al., 2016; Cameron et al., 2016; McCollum et al., 2018
Sustainable Development, Poverty Eradication and Reducing Inequalities Chapter 5

Agriculture and Livestock

Ensure Sustainable Consumption and Production Patterns, Sustainable Practices and a Lifestyle (12.3/12.4/12.6/12.7/12.8)

Water Efficiency and Pollution Prevention (6.3/6.4/6.6)

Ensure Sustainable Production Patterns (12.3)

Conservation of Biodiversity and Restoration of Land (15.7/15.5/15.9)

Agriculture and livestock

Behavioral Response: Sustainable Healthy Diets and Reduced Food Waste

Water Efficiency and Pollution Prevention (6.3/6.4/6.6)

Ensure Sustainable Consumption and Production Patterns, Sustainable Practices and a Lifestyle (12.3/12.4/12.6/12.7/12.8)

Conservation of Biodiversity and Restoration of Land (15.7/15.5/15.9)

Ensure Sustainable Consumption and Production Patterns, Sustainable Practices and a Lifestyle (12.3/12.4/12.6/12.7/12.8)

Conservation of Biodiversity and Restoration of Land (15.7/15.5/15.9)

Agriculture and livestock

Behavioral Response: Sustainable Healthy Diets and Reduced Food Waste

Water Efficiency and Pollution Prevention (6.3/6.4/6.6)

Ensure Sustainable Production Patterns (12.3)

Conservation of Biodiversity and Restoration of Land (15.7/15.5/15.9)

Behavioral Response: Sustainable Healthy Diets and Reduced Food Waste

Water Efficiency and Pollution Prevention (6.3/6.4/6.6)

Ensure Sustainable Consumption and Production Patterns, Sustainable Practices and a Lifestyle (12.3/12.4/12.6/12.7/12.8)

Conservation of Biodiversity and Restoration of Land (15.7/15.5/15.9)

Agriculture and livestock

Behavioral Response: Sustainable Healthy Diets and Reduced Food Waste

Water Efficiency and Pollution Prevention (6.3/6.4/6.6)

Ensure Sustainable Consumption and Production Patterns, Sustainable Practices and a Lifestyle (12.3/12.4/12.6/12.7/12.8)

Conservation of Biodiversity and Restoration of Land (15.7/15.5/15.9)
In the future, many developed countries will see a continuing trend in which livestock breeding focuses on other attributes in addition to production and productivity, such as product quality, increasing animal welfare, disease resistance (Thornton, 2010). Diet composition and quality are key determinants of the productivity and feed-use efficiency of farm animals (Herrero, et al., 2013). Mechanisms for effecting behavioural change in livestock systems need to be better understood by implementing combinations of incentives and taxes simultaneously in different parts of the world (Herrero and Thornton, 2013). Reducing the amount of human-edible crops that are fed to livestock represents a reversal of the current trend of steep increases in livestock production, and especially of managelastics, as would require drastic changes in production and consumption (Schader, et al., 2015).

Grasslands are valuable, but improved management is required as grass accounts for close to 50% of feed use in livestock systems. The scenario with 100% reduction of feed competing with dietary strategies resulted in a 31% decrease in arable land area, which corresponds to a decrease of 32% in arable and 7% in the total agricultural area.

No direct interaction

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Efficiency and Pollution Prevention (6.3/6.4/6.6)</td>
<td>+2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure Sustainable Production Patterns and Restructuring Taxation (12.3/12.2)</td>
<td>+1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forests</td>
<td>+1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce the human pressure on forests, including actions to address drivers of deforestation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine</td>
<td>+2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangroves would help to enhance fisheries and tourism businesses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation of Biodiversity and Restoration of Land (15.5/15.5/15.9)</td>
<td>+1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affect climate and atmospheric conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangroves reduce impacts of disasters (cyclones/storms/floods) acting as live seawalls and enhance forest resources/biodiversity. Forest goal can conserves 3.9-8.8 m ha/year average, 77.2-176.9 m ha in total and 7.7-17.7 m ha/year in 2080 of forest area by 2080 (Wolosin, 2014). Forest and biodiversity conservation, protected area formation and forest-based afforestation are practices that enhance resilience of forest ecosystems to climate change (IPCC, 2014). Strategic placement of tree belts in lands affected by dryland salinity can remediate the affected lands by modifying landscape water balances and protect livestock. It can restore biologically diverse communities on previously developed farmland. Large-scale restoration is likely to benefit ecosystems services provision, including reforestation, biodiversity conservation and flood mitigation. Reforestation of mixed native species and in carefully chosen sites could increase biodiversity, reducing runoff and erosion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environment - Other (continued)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Efficiency and Pollution Prevention (6.3/6.4/6.6)</td>
<td>[+2, -1]</td>
<td>[↑]</td>
<td>[4/5]</td>
<td>[**]</td>
</tr>
<tr>
<td>Ensure Sustainable Production Patterns (12.3)</td>
<td>[+3]</td>
<td>[↑]</td>
<td>[4/5]</td>
<td>[**]</td>
</tr>
<tr>
<td>Sustainability and Conservation (15.1/15.2/15.3)</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

Forest

Behavioural Response (Responsible Sourcing)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

At local levels, forest certification programmes and practicing sustainable forest management provide the provision of raw materials for a ‘low ecological footprint’ economy.

Oceans

Blue Carbon

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean Acidification, Nutrient Pollution (14.3/14.1)</td>
<td>[+2, 0]</td>
<td>[↑]</td>
<td>[4/5]</td>
<td>[**]</td>
</tr>
</tbody>
</table>

Development of blue carbon resources (coastal and marine vegetated ecosystems) can lead to coordinated management of water in coastal areas.

Enhanced Weathering

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean Acidification, Nutrient Pollution (14.3/14.1)</td>
<td>[+2, -1]</td>
<td>[↑]</td>
<td>[4/5]</td>
<td>[**]</td>
</tr>
</tbody>
</table>

Oxide can contain toxic metals such as nickel which could accumulate in the environment or disrupt the local ecosystem by changing the pH of the water (in case of spreading in the catchment area of rivers).

Integrated Water Resources Management (6.3/6.5)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Water Resources Management (6.3/6.5)</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

Average difference of 31 mm per year in elevation rates between areas with seagrass and unvegetated areas (case study areas: Scotland, Kenya, Tanzania and Saudi Arabia); mangroves fostering sediment accretion of about 5 mm a year.

Oceans

Ocean Iron Fertilization

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean Acidification, Nutrient Pollution (14.4/14.3)</td>
<td>[+2, 0]</td>
<td>[↑]</td>
<td>[4/5]</td>
<td>[**]</td>
</tr>
</tbody>
</table>

Enhanced weathering (either by spreading lime or quicklime, in combination with CCS, over the ocean or olivine at beaches or the coast) and ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5; additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, marine biology would also be affected, in particular if spreading olivine is used, which works like ocean (iron) fertilization.

Conservation of Biodiversity and Restoration of Land (15.1/15.2/15.3/15.4/15.9)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation of Biodiversity and Restoration of Land (15.1/15.2/15.3/15.4/15.9)</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

Average difference of 31 mm per year in elevation rates between areas with seagrass and unvegetated areas (case study areas: Scotland, Kenya, Tanzania and Saudi Arabia); mangroves fostering sediment accretion of about 5 mm a year.

Protect Inland Freshwater Systems (14.1)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect Inland Freshwater Systems (14.1)</td>
<td>[2]</td>
<td>[↓]</td>
<td>[4/5]</td>
<td>[**]</td>
</tr>
</tbody>
</table>

Oxide can contain toxic metals such as nickel which could accumulate in the environment or disrupt the local ecosystem by changing the pH of the water (in case of spreading in the catchment area of rivers).

van Oel and Hoekstra, 2012; Laursen et al., 2014; Martínez, 2016

Bartley, 2010; Hontelez, 2016

Graudenzi et al. 2016; In and Gruber, 2011; Deman, 2011; Lampitt et al., 2016; Smetacek and Naqvi, 2008; Gómez et al., 2010; Ouzilou et al., 2010; Trick et al., 2010; Williamson et al., 2012

Vierros et al., 2015

Petit et al., 2015; Sippo et al., 2016

A. Ituro, 2012; Patourellas et al., 2017

Köllner et al., 2015, 2016; Hartmann et al., 2013; Paquay and Zeebe, 2013; P. Smith et al., 2016a & Taylor et al., 2016

Hartmann et al., 2013
<table>
<thead>
<tr>
<th>Interaction Score</th>
<th>Evidence Agreement</th>
<th>Confidence Interaction Score</th>
<th>Evidence Agreement</th>
<th>Confidence Interaction Score</th>
<th>Evidence Agreement</th>
<th>Confidence Interaction Score</th>
<th>Evidence Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Savings (7.7/37.7/2.7)</td>
<td>↑ +2</td>
<td>[강력한]</td>
<td>[강력한]</td>
<td>[강력한]</td>
<td>[강력한]</td>
<td>(8.2/8.3/8.4/8.5/8.6)</td>
<td>Reduces Unemployment (8.1/8.2/8.3/8.4/8.5/8.6)</td>
<td>↑ +1</td>
</tr>
<tr>
<td>Energy efficiency leads to reduced energy demand and hence energy supply and energy security, reduces import. Positive rebound effect can raise demand but to a very less extent due to low rebound effect in industry sector in many countries and by appropriate mix of industries (China) can maintain energy savings gain. Supplying surplus energy to cities is also happening, proving maintenance culture, switching off idle equipment helps in saving energy (e.g. Ghana). Apeaning and Thollander, 2013; Chakravarty et al., 2013; IPCC, 2014; Karner et al., 2015; Zhang et al., 2015; Li et al., 2016; Fernando et al., 2017; Wesseling et al., 2017.</td>
<td>Aliferi et al., 2016; Fernando et al., 2017; Johansson and Thollander, 2018.</td>
<td>Transitioning to a more renewables-based energy system that is highly energy efficient is well-aligned with the goal of upgrading energy infrastructure and making the energy industry more sustainable. At the same time, infrastructure upgrades in other parts of the mix, such as modernized telecommunications networks, can create the conditions for a successful expansion of renewable energy and energy efficiency measures (e.g., smart metering and demand-side management). McCollum et al., 2018. Bahl et al., 2012; Apeaning and Thollander, 2013; Goldthau, 2014; Bhattacharya et al., 2016; Meltzer, 2016; McCollum et al., 2018.</td>
<td>Kamer et al., 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable and Modern (7.2/7.a)</td>
<td>↑ +2</td>
<td>[강력한]</td>
<td>[강력한]</td>
<td>[강력한]</td>
<td>[강력한]</td>
<td>(8.1/8.2/8.3/8.4)</td>
<td>Economic Growth with Decent Employment (8.1/8.2/8.3/8.4)</td>
<td>↑ +2</td>
</tr>
<tr>
<td>Industries are becoming suppliers of energy, waste heat, water and roof tops used for solar energy generation, and therefore helping to reduce primary energy demand. CHP in chemical industries can help in providing surplus power in the grid. Kamer et al., 2015; Griffin et al., 2018. Stohel, 2013; Liu et al., 2014; Leider et al., 2015; Supino et al., 2015; Zheng et al., 2016; Fan et al., 2017; Shi et al., 2017.</td>
<td>The circular economy instead of linear global economy can achieve climate goals and can help in economic growth through industrialization, which saves on resources and the environment and supports small, medium and even large industries, which can lead to employment generation. So new regulations, incentives and revised tax regime can help in achieving the goal. Kamer et al., 2015; Griffin et al., 2018.</td>
<td>A circular economy instead of linear global economy is helping new innovation, and infrastructure can achieve climate goals and can help in economic growth through industrialization which saves on resources and the environment and supports small, medium and even large industries, which can lead to employment generation. So new regulations, incentives and revised tax regime can help in achieving the goal. Kamer et al., 2015; Griffin et al., 2018.</td>
<td>Industries are becoming suppliers of energy, waste heat, water and roof tops used for solar energy generation, and supply to neighbouring human settlements, therefore reducing primary energy demand, which also makes towns and cities grow sustainably. Kamer et al., 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affordable and Sustainable Energy Sources</td>
<td>↑ +2</td>
<td>[강력한]</td>
<td>[강력한]</td>
<td>[강력한]</td>
<td>[강력한]</td>
<td>(8.3/8.2/8.4)</td>
<td>Decouple Growth from Environmental Degradation (8.3/8.2/8.4)</td>
<td>↑ +2</td>
</tr>
<tr>
<td>BFIs are important players for economic growth. Deep decarbonization of BFIs through radical innovation is consistent with well below 2°C scenarios. Griffin et al., 2017; Wesseling et al., 2017. Denis-Ryan et al., 2016; Åhman et al., 2017; Wesseling et al., 2017; Griffin et al., 2018.</td>
<td>Deep decarbonization through radical technological change in BFIs will lead to radical innovations, for example, in completely changing industries’ innovation strategies, plants and equipment, skills, production techniques, design etc. Radical CCS will need new infrastructure to transport CO2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No direct interaction
Saving Energy, Improvement in Energy Efficiency (7.3) and a Dependency

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lifestyle change measures and adoption behaviour affect residential energy use and implementation of efficient technologies as residential HVAC systems. Also, social influence can drive energy savings in users exposed to energy consumption feedback. Effect of autonomous motivation on energy savings behaviour is greater than that of other more established predictors, such as intentions, subjective norms, perceived behavioural control and past behaviour. Use of a hybrid engineering approach using social psychology and economic behaviour models are suggested for residential peak electricity demand and response. However, some take-back in energy savings can happen due to rebound effects unless managed appropriately or accounted for welfare improvement. Adjusting thermostat helps in saving energy. Uptake of energy efficient appliances by households with an introduction to appliance standards, training, promotional material dissemination and the desire to save on energy bills are helping to change acquisition behaviour.

Chakravarty et al., 2013; Gupta et al., 2013; Hoj et al., 2013; Haehner et al., 2013; Jain et al., 2013; Sweeney et al., 2013; Webb et al., 2013; Yee et al., 2013; Anda and Temmen, 2014; Allen et al., 2015; Noonan et al., 2015; de Koning et al., 2016; Karthaus and Feng, 2016; Santarius et al., 2016; Song et al., 2016; van Skuyvelde et al., 2016; Sammefeld et al., 2017; Zhao et al., 2017; Roy et al., 2018

Progressive Improving Resource Efficiency (8.4) and Employment Opportunities (8.3/8.5)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Behavioural change programmes help in sustaining energy savings through new infrastructure development.

Adoption of smart meters and smart grids following community-based social marketing help with infrastructure expansion. People are adopting solar rooftops, white roof/vertical garden/green roofs at much faster rates due to new innovations and regulations.

Anda and Temmen, 2014; Roy et al., 2018

Accelerating Energy Efficiency Improvement

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There is high agreement among researchers based on a great deal of evidence across various countries that energy efficiency improvement reduces energy consumption and therefore leads to energy savings (e.g., efficient stoves save biomass). Countries with higher hours of use due to higher ambient temperature or more carbon intensive electricity grids benefit more from available improvements in energy efficiency and use of refrigerant transition.

Mcleod et al., 2013; Noris et al., 2013; Bhajwaid et al., 2014; Hidalgo et al., 2014; Kwong et al., 2014; Yang et al., 2014; Cameron et al., 2015; Uddal and Guiney, 2015; Shah et al., 2015; Bernetta et al., 2016; Kim et al., 2017; Sukavak et al., 2017

Employment Opportunities (8.2/8.3/8.5) and Strong Financial Institutions (8.10)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adoption of smart meters and smart grids following community-based social marketing help in infrastructure expansion. Statutory norms to enhance energy and resource efficiency in buildings is encouraging green building projects.

Anda and Temmen, 2014; Roy et al., 2018

Innovation and New Infrastructure (9.2/9.4/9.5)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adoption of smart meters and smart grids following community-based social marketing help with infrastructure expansion. People are adopting solar rooftops, white roof/vertical garden/green roofs at much faster rates due to new innovations and regulations.

Anda and Temmen, 2014; Roy et al., 2018

Sustainable Cities (15.6/15.8/15.9)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adoption of smart meters and smart grids following community-based social marketing help with infrastructure expansion. People are adopting solar rooftops, white roof/vertical garden/green roofs at much faster rates due to new innovations and regulations.

Anda and Temmen, 2014; Roy et al., 2018

Urban Environmental Sustainability (11.3/11.6/11.8/11.9)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adoption of smart meters and smart grids following community-based social marketing help with infrastructure expansion. People are adopting solar rooftops, white roof/vertical garden/green roofs at much faster rates due to new innovations and regulations.

Anda and Temmen, 2014; Roy et al., 2018

Renewable Energy Technologies and Energy Efficient Urban Infrastructure Solutions (e.g., public transit) can also promote urban environmental sustainability by improving air quality and reducing noise. Efficient transportation technologies powered by renewable-based energy carriers will be a key building block of any sustainable transport system.

McCullum et al., 2018. Green buildings help in sustainable construction.

Creutzig et al., 2012; Kahl, Ribeiro et al., 2012; Riahi et al., 2012; Bongardt et al., 2013; Grubler and Fisk, 2013; Bijleveld et al., 2017; Kim et al., 2017; Salvalai et al., 2017; McCullum et al., 2018
Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

Meeting Energy Demand

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Renewable energies could potentially serve as the main source to meet energy demand in rapidly growing developing country cities. Ali et al. (2013) estimated the potential of solar, wind and biomass renewable energy options to meet part of the electricity demand in Karachi, Pakistan. Ali et al. (2013) estimated the potential of solar, wind and biomass renewable energy options to meet part of the electricity demand in Karachi, Pakistan.

Crouzet et al. (2014) assessed the potential for renewable energy in the European region. They found that a European energy transition with a high-level of renewable energy installations in the periphery could act as an economic stimulus, decrease trade deficits and possibly have positive employment effects. Provision of energy access can play a critical enabling role for new productive activities, livelihoods and employment. Reliable access to modern energy services can have an important influence on productivity and earnings (McCollum et al., 2018).

Sustainable Economic Growth and Employment

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Adoption of smart meters and smart grids following community-based social marketing help in infrastructure expansion. Statutory norms to enhance energy and resource efficiency in buildings is encouraging green building projects. Introduction of incentives and norms for solar rooftops/hybrid green roofs in cities are helping to accelerate innovation and the expansion of infrastructure.

Innovation and New Infrastructure (9.2/9.3/9.5)

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Ensuring access to basic housing services implies that households have access to modern energy forms. (Quote from McCollum et al., 2018) Solar rooftop projects in Macau make cities sustainable. Introduction of incentives and norms for solar/white/green rooftops in cities help to accelerate the expansion of the infrastructure.

Buildings

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Housing (11.1)

Transport

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Behavioural responses will reduce the volume of transport needs and, by extension, energy demand.

Low-carbon Energy

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Energy savings (7.3/7.7/7.9b)

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Promote Sustainable, Inclusive Economic Growth (8.3)

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Build Resilient Infrastructure (9.1)

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Make Cities Sustainable (11.2/11.3)

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

The two most important elements of making cities sustainable are efficient buildings and transport (e.g., Macau).

Accelerating Energy Efficiency Improvement

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Accelerating efficiency in tourism transport reduces energy demand (China).

Increased Share of Renewable (7.2)

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Biofuels increase share of the renewables but can perform poorly if too many countries increase their use of biofuels, whereas electrification performs best when many other countries implement this technology. The strategies are not mutually exclusive and simultaneous implementation of some provides synergies for national energy security. Therefore, it is important to consider the results of material and contextual factors that co-evolve. Electric vehicle using electricity from renewables or low carbon sources combined with navigation options such as trolley buses, metros, trains and electric buses, as well as promote walking and biking, especially for short distances, need consideration.

Improved Access and Fuel Switch to Modern Low-carbon Energy

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Increased share of renewables and better, but perform poorly if too many countries increase their use of biofuels, whereas electrification performs best when many other countries implement this technology. The strategies are not mutually exclusive and simultaneous implementation of some provides synergies for national energy security. Therefore, it is important to consider the results of material and contextual factors that co-evolve. Electric vehicle using electricity from renewables or low carbon sources combined with navigation options such as trolley buses, metros, trains and electric buses, as well as promote walking and biking, especially for short distances, need consideration.

<table>
<thead>
<tr>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Increased share of renewables and better, but perform poorly if too many countries increase their use of biofuels, whereas electrification performs best when many other countries implement this technology. The strategies are not mutually exclusive and simultaneous implementation of some provides synergies for national energy security. Therefore, it is important to consider the results of material and contextual factors that co-evolve. Electric vehicle using electricity from renewables or low carbon sources combined with navigation options such as trolley buses, metros, trains and electric buses, as well as promote walking and biking, especially for short distances, need consideration.
Decarbonization of the energy system through an upscaling of renewables will greatly facilitate access to clean, affordable and reliable energy. This mitigation option is in line with the targets of SDG7 and will aid climate change mitigation efforts, and this, in turn, can help to reduce the exposure of people to certain types of disasters and extreme events (McCollum et al., 2018).

Increased use of modern biomass will facilitate access to clean, affordable and reliable energy. This mitigation option is in line with the targets of SDG7. Rogalj et al., 2013; Cherian, 2015; Jingura and Kamusoko, 2016

Increased use of modern biomass will facilitate access to clean, affordable and reliable energy. Jingura and Kamusoko, 2016; Shahbaz et al., 2016

Increased use of nuclear power can provide stable baseload power supply and reduce price volatility. IPCC, 2014

Increased use of modern biomass will facilitate access to clean, affordable and reliable energy. IPCC, 2014

Increased use of modern biomass will facilitate access to clean, affordable and reliable energy. IPCC, 2014

Lock-in of human and physical capital in the fossil resources industry. IPCC, 2005, 2014; Bonsen and Cole, 2008; Fankhauser et al., 2008; Vergragt et al., 2011; Markuzon et al., 2012; Shankley and Thompson, 2012; Underhill et al., 2013, 2014; IPCC, 2014

Deployment of renewable energy and improvements in energy efficiency globally will aid climate change mitigation efforts, and this, in turn, can help to reduce the exposure of people to certain types of disasters and extreme events (McCollum et al., 2018).

Increased use of modern biomass will facilitate access to clean, affordable and reliable energy. See positive impacts of bioenergy use. IPCC, 2014

Increased use of modern biomass will facilitate access to clean, affordable and reliable energy. See positive impacts of bioenergy use and CCS/CCU in industrial demand. IPCC, 2014

Deployment of renewable energy and improvements in energy efficiency globally will aid climate change mitigation efforts, and this, in turn, can help to reduce the exposure of people to certain types of disasters and extreme events (McCollum et al., 2018).

Increased use of modern biomass will facilitate access to clean, affordable and reliable energy. See positive impacts of bioenergy use. IPCC, 2014

Increased use of modern biomass will facilitate access to clean, affordable and reliable energy. See positive impacts of bioenergy use and CCS/CCU in industrial demand. IPCC, 2014

Deployment of renewable energy and improvements in energy efficiency globally will aid climate change mitigation efforts, and this, in turn, can help to reduce the exposure of people to certain types of disasters and extreme events (McCollum et al., 2018).
Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

Energy Efficiency, Universal Access

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>
| Reducing global food supply chain losses have several important secondary benefits like conserving energy. | +1 | ✓ | ✓ | +

Kummu et al., 2012

Sustainable and Inclusive Economic Growth

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>
| 23–24% of total cropland and fertilizers are used to produce losses. So reduction in food losses will help to diversify these valuable resources into other productive activities. | +1 | ✓ | ✓ | +

By targeting infrastructure, processing and distribution losses, wastage in food systems can be minimized. 23–24% of total cropland and fertilizers are used to produce losses. So reduction in food losses will help to diversify these valuable resources into other productive activities.

Ingram, 2011; Beddington et al., 2012; Kummu et al., 2012; Hiç et al., 2016; Lamb et al., 2016

Infrastructure Building and Promotion of Inclusive

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>
| 7.1/7.2 | ✓ | ✓ | ✓ | +

Kummu et al., 2012

Sustainable and Modern Energy

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>
| Conventional agricultural biotechnology methods such as energy efficient farming can help in sequestration of soil carbon. Modern biotechnologies such as green energy and N-efficient GM crops can also help in C-sequestration. Biotech crops, allow farmers to use less – and environmentally friendly – energy and practice soil carbon sequestration. Biofuels, both from traditional and GMO crops, such as sugar cane, rice, corn, rapeseed and jatropha, can be produced. Green energy programs through plantations of perennial nonedible oilseed producing plants and production of biofuels for direct use in the energy sector or blending biofuels with fossil fuels in certain proportions can thereby minimize fossil fuel use. (quoted from Lakshmi et al., 2015) GM crops reduce demand for fossil fuel-based inputs. | ✓ | ✓ | ✓ | +

Johnson et al., 2007; Srin et al., 2007; Treyasury, 2008; Jain and Sharma, 2010; Lybert and Sumner, 2010; Mui, 2011; Lakshmi et al., 2016.

Sustainable Growth

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>
| Many developing countries including Gulf states will benefit from CSA given the central role of agriculture in their economic and social development. (Quoted from Behnassi et al., 2014) Low commodity prices have reduced the incentive to invest in yield growth and have led to declining farm labour and farm capital investment. (Quoted from Lamb et al., 2016) | ✓ | ✓ | ✓ | +

Reduced research support and delayed industrialization will have an adverse effect on food security and nourishment of children. Organic farming technologies utilizing bio-based fertilizers (composted human and animal manure) are some of the conventional biotechnological options for reducing artificial fertilizer use (Lakshmi et al., 2015). CSA requires huge financial investment and institutional innovation. CSA is committed to new ways of engaging in participatory research and partnerships with producers (Steenwerth et al., 2014). Technologies used on-farm and during food processing to increase productivity which also helps in adaptation and/or mitigation are new, so convincing potential customers is difficult. Also, low awareness of CSA, inaccessible language, high costs, lack of verified impact of technologies, hard to reach and train farmers, low consumer demand and unequal distribution of costs/benefits across supply chains are barriers to CSA technology adoption (Long et al., 2016). Low commodity prices have reduced the incentive to invest in yield growth and have led to declining investment in research and development (Lamb et al., 2016). Low commodity prices have reduced the incentive to invest in yield growth and have led to declining investment in research and development (Lamb et al., 2016).

Johnson et al., 2007; Srin et al., 2007; Treyasury, 2008; Jain and Sharma, 2010; Lybert and Sumner, 2010; Mui, 2011; Lakshmi et al., 2016.

In Structure Building, Promotion of Inclusive

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>
| 7.2 | ✓ | ✓ | ✓ | +

Kummu et al., 2012; Hiç et al., 2016

Technological Upgradation and Innovation

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>
| 9.2 | ✓ | ✓ | ✓ | +

Complete genome maps for poultry and cattle now exist, and these open up the way to possible advances in evolutionary biology, animal breeding and animal models for human diseases. Genomic selection should be able to at least double the rate of genetic gain in the dairy industry. (Quoted from Thornton, 2010) Nano-chips, biogas technology and separation technologies are disruptive technologies that enhance biogas production from anaerobic digesters to reduce odours. (Quoted from Sansoucy, 1995; Burton, 2007; Thornton, 2010.)

No direct interaction

Greenhouse Gas Reduction from Improved Livestock

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
</table>
| ✓ | ✓ | ✓ | ✓ | +

Scenarios where zero human-edible concentrate feed is used for livestock, non-renewable energy use is reduced by 30%.

Exploring the increasingly decoupled interactions between crops and livestock could be beneficial for promoting structural changes in the livestock sector and is a prerequisite for the sustained growth of the sector. (Quoted from Herrero et al., 2013)

Schader et al., 2015; Herrero and Thorntan, 2013; Herrero et al., 2013
Economic-Other (continued)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Score</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
<th>Evidence</th>
<th>Agreement</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency (7.3)</td>
<td></td>
</tr>
<tr>
<td>Efforts by the Government of Zambia to reduce emissions by REDD+ have contributed to erosion control, reforestation and pollination valued at 2.5% of the country’s GDP. Partnerships between local forest managers, community enterprises and private sector companies can support local economies and livelihoods, and boost regional and national economic growth.</td>
<td>[2, 3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barros Lima et al., 2017; Kassie et al., 2017</td>
<td></td>
</tr>
<tr>
<td>Energy Conservation (7.3/7.3a)</td>
<td></td>
</tr>
<tr>
<td>The US Forest Service estimates that an average NYC street tree (urban afforestation) produces 209 USD in annual benefits, which is primarily driven by aesthetic (90 USD per tree) and energy savings (from shade) benefits (47.63 USD per tree).</td>
<td>[1, 2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones and McDermott, 2018</td>
<td></td>
</tr>
<tr>
<td>Decent Job Creation and Sustainable Economic Growth (8.3/8.4)</td>
<td></td>
</tr>
<tr>
<td>Many tree plantations worldwide have higher gross returns which can provide higher rates of return for investors. Agroforestry initiatives that offer significant opportunities for projects to provide benefits to smallholder farmers can also help address land degradation through community-based efforts in more marginal areas. Mangroves reduce impacts of disasters (cyclones/storms/floods) and enhance water quality, fisheries, tourism businesses and livelihoods.</td>
<td>[2, 3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zomer et al., 2008; Kibria, 2015</td>
<td></td>
</tr>
<tr>
<td>Universal Access (7.3)</td>
<td></td>
</tr>
<tr>
<td>The trade of wood pellets from clean wood waste should be facilitated with less administrative import barriers by the EU, in order to have this new option seriously accounted for as a future resource for energy. (Quoted from Sikkema et al., 2014) Recommends further harmonization of legal harvesting, sustainable sourcing and cascaded use requirements for woody biomass for energy with the current requirements of voluntary SFI certification schemes.</td>
<td>[1, 2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sikkema et al., 2014</td>
<td></td>
</tr>
<tr>
<td>Behavioural Response (Responsible Sourcing)</td>
<td></td>
</tr>
<tr>
<td>Some standards seek primarily to coordinate global trade, many purport to promote ecological sustainability and social justice to institutionalize CSR, for example, labour standards developed in the wake of sweatshops and child labour scandals. Environmental standards for pollution control, etc. Indonesian factories may seek advantages through non-price competition—perhaps by highlighting decent working conditions or the existence of a union—or to see trade associations or government promoting the country as a responsible sourcing location.</td>
<td>[2, 3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartley, 2010</td>
<td></td>
</tr>
<tr>
<td>Ocean Iron Fertilization</td>
<td></td>
</tr>
<tr>
<td>No direct interaction</td>
<td></td>
</tr>
<tr>
<td>Bio Carbon</td>
<td></td>
</tr>
<tr>
<td>No direct interaction</td>
<td></td>
</tr>
<tr>
<td>Enhanced Weathering</td>
<td></td>
</tr>
<tr>
<td>No direct interaction</td>
<td></td>
</tr>
</tbody>
</table>

Sustainable Development, Poverty Eradication and Reducing Inequalities Chapter 5

Infrastructure, Promotion of Inclusive Industrialization (9.1/9.2/9.5)

Improving Air Quality, Green and Public Spaces (11.6/11.7/11.a/11.b)

Bertram, C. et al., 2018: Targeted policies can compensate most of the increased sustainability risks in 1.5°C mitigation scenarios. Environmental Research Letters, 13(6), 064038, doi:10.1088/1748-9295/aae36c.

Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

Beddington, J. et al., 2012: Achieving food security in the face of climate change: Final report from the Commission on Sustainable Agriculture and Climate Change. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark, 59 pp.

Berriot, Q. et al., 2013: Addressing Gender in Climate-Smart Smallholder Agriculture. ICRAF Policy Brief 14, World Agroforestry Centre (ICRAF), Nairobi, Kenya, 4 pp.

Garnett, T., 2011: Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy, 36, 523–532, doi:10.1016/j.foodpol.2010.10.010.

Chapter 5 Sustainable Development, Poverty Eradication and Reducing Inequalities

