Chapter 2: High Mountain Areas Supplementary Material

Coordinating Lead Authors: Regine Hock (USA), Golam Rasul (Nepal)

Lead Authors: Carolina Adler (Switzerland/Australia), Bolívar Cáceres (Ecuador), Stephan Gruber (Canada/Germany), Yukiko Hirabayashi (Japan), Miriam Jackson (Norway), Andreas Kääb (Norway), Shichang Kang (China), Stanislav Kutuzov (Russia), Alexander Milner (UK), Ulf Molau (Sweden), Samuel Morin (France), Ben Orlove (USA), Heidi Steltzer (USA)

Contributing Authors: Simon Allen (Switzerland), Lukas Arenson (Canada), Soumyadeep Baneerjee (India), Iestyn Barr (UK), Roxana Bórquez (Chile), Lee Brown (UK), Bin Cao (China), Mark Carey (USA), Graham Cogley (Canada), Andreas Fischlin (Switzerland), Alex de Sherbinin (USA), Nicolas Eckert (France), Marten Geertsema (Canada), Marca Hagenstad (USA), Martin Honsberg (Germany), Eran Hood (USA), Matthias Huss (Switzerland), Elizabeth Jimenez Zamora (Bolivia), Sven Kotlarski (Switzerland), Pierre-Marie Lefeuvre (Norway/France), Juan Ignacio López Moreno (Spain), Jessica Lundquist (USA), Graham McDowell (Canada), Scott Mills (USA), Cuicui Mou (China), Santosh Nepal (Nepal), Jeannette Noetzli (Switzerland), Elisa Palazzi (Italy), Nick Pepin (UK), Christian Rixen (Switzerland), Maria Shahgedanova (UK), S. McKenzie Skiles (USA), Christian Vincent (France), Daniel Viviroli (Switzerland), Gesa Weyhenmeyer (Sweden), Pasang Yangjee Sherpa (Nepal/USA), Nora Weyer (Germany), Bert Wouters (Netherlands), Teppei Yasunari (Japan), Qinglong You (China), Yangjiang Zhang (China)

Review Editors: Georg Kaser (Austria), Aditi Mukherji (India/Nepal)

Chapter Scientists: Pierre-Marie Lefeuvre (Norway/France), Santosh Nepal (Nepal)

Date of Draft: 14 June 2019

Notes: TSU Compiled Version

Table of Contents

SM2.1	Details of High-Mountain Regional Glacier and Permafrost Areas	2
SM2.2	Details of Studies on Temperature Observations and Projections	
SM2.3	Details of Studies on Precipitation Observations and Projections	
SM2.4	Details of Studies on Snow Cover Observations and Projections	
SM2.5	Details on Climate Models used in Figure 2.3	
SM2.6	S .	
SM2.7	Details of Studies on Peak Water	
SM2.8		
SM2.9		
Referen		
SM2.7 SM2.8 SM2.9	Synthesis of Recent Studies Reporting on Past and Projected Changes of River Runoff Details of Studies on Peak Water Details of Studies on Observed Impacts Attributed to Cryosphere Changes Details of Studies on Adaptations in Response to Cryosphere Changes	2 3 5

SM2.1 Details of High-Mountain Regional Glacier and Permafrost Areas

The regional glacier and permafrost areas shown in Figure 2.1 are listed in Table SM2.1. Glacier area is taken from the Randolph Glacier Inventory (RGI6.0, RGI Consortium (2017)) and includes all glaciers within the depicted region boundaries, whereas permafrost area includes only the permafrost in mountains. Regional permafrost area is calculated on a grid with 30 arc-second resolution (~1km), as the sum of fractional permafrost area multiplied by the area of each grid cell; permanent snow and ice are masked based on landcover data from the European Space Agency Climate Change Initiative (ESA CCI Land Cover). The areas are then masked by the regions outlined in Figure 2.1 and by a ruggedness index larger than 3.5 (Gruber, 2012) which, in this chapter, defines mountains.

Two global-scale permafrost modeling studies (Gruber, 2012; Obu et al., 2019) provide suitable data with models differing in input, model structure, and assumptions. The data by Obu et al. (2019), extended to the southern hemisphere, are used since they provide permafrost fractional area (permafrost probability) directly. Their model was forced by remotely-sensed land-surface temperature, land cover and ERA-Interim climate reanalysis data, and statistically accounted for subgrid variability of ground temperature due to snow and landcover. By contrast, (Gruber, 2012)used heuristics and mean annual air temperature to derive an approximate index of fractional permafrost area. Bounds of uncertainty were estimated by using two forcing climate data sets (reanalysis data from National Centers for Environmental Prediction (NCEP) and data from the Climatic Research Unit, CRU TS 2.0), and several sets of model parameters, resulting in five maps in total. Assuming the index to represent the fractional permafrost area, aggregated results for high-mountain permafrost areas are similar to the estimate based on Obu et al. (2019). For high-mountain areas, the five models by Gruber (2012) yield areas varying from 3.6 to 5.2 million km² and the model of Obu et al. (2019) results in 3.7 million km². The percentage of permafrost in high-mountain areas relative to the global permafrost area, computed separately for each model, is 27–29% for Gruber (2012) and 27% for Obu et al. (2019).

Table SM2.1: Glacier and permafrost area in high-mountain regions shown in Figure 2.1. Glacier area is from the Randolph Glacier Inventory (RGI6.0, RGI Consortium (2017)). Permafrost areas are based on Obu et al. (2019).

High Mountain Region	Glacier Area	Permafrost Area
	(km^2)	(km ²)
Alaska	86,725	307,767
Western Canada and USA	14,524	256,254
Iceland	11,060	4,023
Scandinavia	2,949	8,306
Central Europe	2,092	7,124
Caucasus and Middle East	1,307	10,181
North Asia	2,410	2,234,058
High Mountain Asia	97,605	866,667
Low Latitudes	2,341	673
Southern Andes	29,429	27,172
New Zealand	1,162	180
All high-mountain regions	251,614	3,722,405

SM2.2 Details of Studies on Temperature Observations and Projections

Table SM2.2: Overview of studies reporting trends in past surface air temperature including mean annual, seasonal and monthly mean values of daily mean, minimum and maximum temperature, per high mountain region (as defined in Figure 2.1) with published observations. Global syntheses are listed at the top of the table. *Obs. stations* refers to observations are in meters (m) above sea level.

Location	Temperature (temp.) indicator	Trend (°C per decade)	Time period	Dataset	Reference
Global syntheses					
>500 m, 30–70°N	Annual mean value of minimum daily temp.	+0.21	1951–1989	250 obs. stations	Diaz and Bradley (1997)
<500 m, 30–70°N	Annual mean value of minimum daily temp.	+0.04	"	993 obs. stations	
>500 m with mean annual temp.	Mean annual temp.	+0.23	1948-2002	269 obs. stations	Pepin and Lundquist (2008)
from -5 to +5°C					
>500 m with mean annual temp.	Mean annual temp.	+0.12	"	1084 obs. stations	"
<-5 or >+5°C					
> 500 m	Mean annual temp.	+0.40	1982–2010	640 obs. stations	Zeng et al. (2015)
< 500 m	Mean annual temp.	+0.32	66	2020 obs. stations	"
> 500 m	Mean annual temp.	+0.30	1961–2010	910 obs. stations	Wang et al. (2016)
< 500 m	Mean annual temp.	+0.24	66	1742 obs. stations	"
> 500 m	Winter mean temp.	+0.4	1961–2010	739 obs. stations	Qixiang et al. (2018)
< 500 m	Winter mean temp.	+0.35		1262 obs. station	"
Western Canada and USA					
Colorado and Pacific Northwest,	Annual mean value of minimum daily temp.	+0.37	1979–2006	Gridded dataset (based on	Diaz and Eischeid (2007)
< 4000 m				obs. stations without	
				homogenization)	
> 4000 m	Annual mean value of minimum daily temp.	+0.75	"	"	"
Mt. Washington, NE USA, 1905 m	Mean annual temp.	+0.35	1970–2005	1 obs. station	Ohmura (2012)
Pinkham Notch, NE USA, 613 m	Mean annual temp.	+0.31	"	1 obs. station	"
NW USA	Annual mean value of minimum daily temp.	+0.17	1981–2012	Gridded dataset (based on homogenized obs. station)	Oyler et al. (2015)
Whole N America, > 500 m	Mean annual temp.	+0.14	1948–1998	552 obs. stations	Pepin and Seidel (2005)
Central Europe					
Switzerland	Mean annual temp.	+0.35	1959–2008	Gridded dataset (based on 91	Ceppi et al. (2012)
				homogenized obs. stations)	
	Autumn mean temp.	+0.17	"	"	
	Winter mean temp.	+0.40	"	"	
	Spring mean temp.	+0.39	"	"	
	Summer mean temp.	+0.46	"	"	"

Subject to Copyedit SM2-3 Total pages: 87

FINAL DRAFT	Chapter 2 Supplementary Material	IPCC SR Ocea	n and Cryospl	nere	
Switzerland	Mean annual temp.	+0.13	1864–2016	Gridded dataset (based on 19 homogenized obs. stations)	Begert and Frei (2018)
Switzerland, 203–815 m	Mean annual temp.	+0.35	1981–2017	47 obs. stations	Rottler et al. (2019)
Switzerland, 910–1878 m	"	+0.31	"	34 obs. stations	"
Switzerland, 1968–3850 m	"	+0.25	"	12 obs. stations	66
Swiss Alps	Mean April temp.	+0.51	1961–2011	6 obs. stations	Scherrer et al. (2012)
Jungfraujoch, 3580 m	Mean annual temp.	+0.43	1970–2011	1 obs. station	Ohmura (2012)
Sonnblick, 3109 m	Mean annual temp.	+0.30	1980-2011	1 obs. station	"
Col de Porte, 1325 m	Winter mean temp. (December–April)	+0.3	1960-2017	1 obs. station	Lejeune et al. (2019)
Mont-Blanc, 4300 m	Mean temp. (from englacial obs.)	+0.14	1900-2004	1 obs. site	Gilbert and Vincent (2013)
Trentino, 203–875 m	Mean annual temp.	+0.49	1976–2010	12 obs. stations	Tudoroiu et al. (2016)
Trentino, 925–2125 m	"	+0.27	"	12 obs. stations	"
Abruzzo Region	Mean annual temp.	+0.15	1951-2012	24 obs. stations	Scorzini and Leopardi (2019)
Central Pyrenees	Annual mean value of maximum daily temp.	+0.11	1910–2013	155 obs. stations	Pérez-Zanón et al. (2017)
"	"	+0.57	1970-2013	"	"
"	Annual mean value of minimum daily temp.	+0.06	1910–2013	"	"
"	"	+0.23	1970–2013	"	"
Caucasus and Middle East					
Whole area	Mean annual temp.	+0.14	1958–2000	Reanalysis data	Diaz et al. (2003)
"	"	+0.26	1974–1998	"	"
Central Palestinian Mountains	Mean annual temp.	+0.33	1970-2011	6 obs. stations	Hammad and Salameh (2019)
Southern Andes					
18°S to 42°S	Mean annual temp.	-0.05	1950-2010	75 obs. stations	Vuille et al. (2015)
Central Andes, 10°S–25°S, free atmosphere (500 hPa)	Mean annual temp.	+0.16 to +0.41	1979–2008	Reanalyses	Russell et al. (2017)
Subtropical Andes, 30°S–37°S	Winter mean temp.	+0.4	1980–2005	Reanalysis	Zazulie et al. (2017)
"	"	+0.2	"	Gridded observation dataset	"
66	Summer mean temp.	+0.3	"	Reanalysis	"
"	"	No trend	"	Gridded observation dataset	"
Low latitudes (Andes and Africa)					
Tropical Andes, 2°N–18°S	Mean annual temp.	+0.13	1950-2010	546 obs. stations	Vuille et al. (2015)
La Paz, Bolivia	Mean annual temp.	-0.70	1985–2010	1 obs. station	Ohmura (2012)
East Africa	Mean annual temp.	+0.18	1958–2000	Reanalysis	Diaz et al. (2003)
"	"	+0.18	1974–1998	"	
South and East Africa, > 500 m	Mean annual temp.	+0.14	1948–1998	41 obs. stations	Pepin and Seidel (2005)
High Mountain Asia					· ,
Hindu Kush-Himalaya	Mean annual temp.	+0.1	1901–2014	122 obs. stations	Krishnan et al. (2019)
	"	+0.2	1951–2014	"	"
Mukteshwar, India, 2311 m	Mean annual temp.	+0.48	1980–2010	1 obs. station	Ohmura (2012)
Toutouhe, China, 4535 m	Mean annual temp.	+0.02	1970–2005	1 obs. station	"
	•				

Subject to Copyedit SM2-4 Total pages: 87

FINAL DRAFT	Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere				
Himalaya	Mean annual temp.	+0.06	1958–2000	Reanalysis	Diaz et al. (2003)	
"	"	+0.23	1974–1998	"	"	
Tibetan Plateau	Mean temp., wet season (May–Sep)	+0.40	1979–2011	83 obs. stations	Gao et al. (2015)	
"	Mean temp., dry season (Oct-Apr)	+0.54	"	"	"	
Tibetan Plateau, > 3000 m	Mean annual temp.	+0.69	1981–2006	47 obs. stations	Qin et al. (2009)	
Tibetan Plateau, 1000–3000 m	"	+0.55	"	24 obs. stations	"	
Tibetan Plateau, 4500–5000 m	Mean value of winter minimum daily temp.	+0.85	1961–2006	Obs. stations.	Liu et al. (2009)	
"	Annual mean value of minimum daily temp.	+0.53	"	Obs. stations.	"	
Tibetan Plateau, > 2000 m	Mean value of winter minimum daily temp.	+0.61	"	116 obs. stations.	"	
٠.	Annual mean value of minimum daily temp.	+0.42	"	"	"	
Tibetan Plateau, > 2000 m	Mean annual temp.	+0.16	1955–1996	97 obs. stations	Liu and Chen (2000)	
٠.	Winter mean temp.	+0.32	"	97 obs. stations	"	
China 600–800m	Mean annual temp.	+0.05	1961–1990	12 obs. stations	"	
Tibetan Plateau, 2400–2600 m	Mean annual temp.	+0.15	"	4 obs. stations	"	
Tibetan Plateau, 4200–4400 m	Mean annual temp.	+0.25	"	6obs. stations	"	
Tibetan Plateau, > 2000 m	Mean annual temp.	+0.28	1961-2007	72 obs. stations	Guo et al. (2012)	
Tibetan Plateau, > 2000 m	Winter mean temp.	+0.40	1961-2004	71 obs. stations	You et al. (2010a)	
"	Summer mean temp.	+0.20	"	"	"	
	Mean annual temp.	+0.25	"	"	"	
Tibetan Plateau	Winter mean temp.	+0.37	1961-2001	ERA40 Reanalysis	You et al. (2010b)	
	Summer mean temp.	+0.17	"	"	"	
	Mean annual temp.	+0.23	"	"	"	
Indian Himalaya	Mean annual temp.	+0.16	1901-2002	3 obs. stations	Bhutiyani et al. (2007)	
Himalaya (Nepal), 1200–2000 m	Annual mean value of maximum daily temp.	+0.57	1963-2009	3 obs. station	Nepal (2016)	
Himachal Pradesh	Winter mean temp.	+0.23	1975–2006	4 obs. stations	Dimri and Dash (2012)	
Kashmir	Winter mean temp.	+0.2	1975–2006	12 obs. stations	"	
Australia						
Australia, > 500 m	Mean annual temp.	+0.16	1948–1998	14 obs. stations	Pepin and Seidel (2005)	
Japan						
Fuji San, 3775 m	Mean annual temp.	+0.35	1985-2005	1 obs. station	Ohmura (2012)	

Subject to Copyedit SM2-5 Total pages: 87

Table SM2.3: Overview of studies reporting future trends in surface air temperature including mean annual, seasonal and monthly mean values of daily mean, minimum and maximum temperature, per high mountain region (as defined in Figure 2.1). Global syntheses are listed at the top of the table. Obs. stations refer to observation stations. Elevations are in meters (m) above sea level.

Location	Temperature (temp.) indicator	Change (°C per decade)	Time period	Scenario	Method	Reference
Global scale						
13 mountain ranges	Mean annual temp.	+0.48	1961–1990 vs 2070– 2099	SRES-A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
13 mountain ranges	Mean annual temp.	+0.25	1961–1990 vs 2070– 2099	SRES B1	66	<u></u>
Alaska						
N America, >55°N	Mean annual temp.	+0.61	1961–1990 to 2070– 2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
		+0.35	"	SRES B1	"	66
Western Canada and USA						
Colorado Rockies	Spring temp. (April)	up to +1	1995–2005 to 2045– 2055	SRES A2	Pseudo-GW runs: RCMs	Letcher and Minder (2015)
N America, <55°N	Mean annual temp.	+0.49	1961–1990 to 2070– 2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
N America, <55°N	Mean annual temp.	+0.27	"	SRES B1	66	
Iceland	•					
Full domain	Mean annual temp.	+0.21 to +0.40	2000–2100	RCP8.5	Downscaled GCMs using RCMs	Gosseling (2017)
Central Europe						
European Alps	Mean annual temp.	+0.25	1961–1990 to 2021– 2050	SRES A1B	Downscaled GCMs using RCMs	Gobiet et al. (2014)
		+0.36	1961–1990 to 2069– 2098	66		"
Switzerland	Mean annual temp.	+0.14	1981–2010 to 2070– 2099	RCP2.6	Downscaled GCMs using RCMs (EURO-CORDEX)	CH2018 (2018)
46	66	+0.26	"	RCP4.5		66
46	66	+0.49	"	RCP8.5	44	
Austria	Mean annual temp.	+0.23	1971–2000 to 2071– 2100	RCP4.5	Downscaled GCMs using RCMs (EURO-CORDEX)	Chimani et al. (2016)
	"	+0.4	"	RCP8.5	"	
Scandinavia						
Whole area, < 500 m	Winter mean temp.	+0.45	1961–1990 to 2070– 2099	SRES A1B	Downscaled GCMs using RCMs	Kotlarski et al. (2015)

Subject to Copyedit SM2-6 Total pages: 87

FINAL DRAFT	Chapter 2 Suppleme	ntary Material	IPCC SR Ocean and	Cryosphere		
Whole area, ~1500 m	Summer mean temp.	+0.27	"	66	"	"
Whole area	Mean annual temp.	+0.54	1961–1990 to 2070– 2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
"	"	+0.31	1961–1990 to 2070– 2099	SRES B1	Downscaled GCMs	
Caucasus and Middle East						
Iran mountain areas	Mean annual temp.	+0.45	1961–1990 to 2071– 2000	SRES A2	Downscaled GCM	Babaeian et al. (2015)
	"	+0.30	66	SRES B2	"	
North Asia						
Whole area	Mean annual temp.	+0.76	1961–1990 to 2070– 2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
66	"	+0.43	66	SRES B1	66	"
Southern Andes						
Whole area	Mean annual temp.	+0.34	1961–1990 to 2070– 2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
46	"	+0.18	"	SRES B1	"	"
66	Winter and summer temp.	+0.2	2006–2100	RCP4.5	CMIP5 GCMs	Zazulie et al. (2018)
· ·	"	~+0.5	"	RCP8.5	"	"
Low Latitudes (Andes)						
Tropical Andes	Mean annual temp.	+0.3	1961–2000 to 2080– 2100	RCP8.5	Downscaled GCMs	Vuille et al. (2018)
Bolivian Andes	Mean annual temp.	+0.34 to +0.4	1950–2000 to 2040– 2069	SRES A1B	Downscaled GCMs	Rangecroft et al. (2016)
"	"	+0.38 to +0.44	1950–2000 to 2070– 2099	"		"
Quelccaya ice cap, Peru, 5680	Mean annual temp.	+0.25	2006–2100	RCP4.5	Bias corrected CMIP5 GCMs	Yarleque et al. (2018)
46	"	+0.57	44	RCP8.5	"	
High-Mountain Asia						
Himalaya/ Tibetan Plateau, ~1600 m	Mean value of winter minimum daily temp.	+0.32	1971–2000 to 2071– 2100	RCP8.5	CMIP5 GCMs	Palazzi et al. (2017)
Himalaya/ Tibetan Plateau, ~4100 m	"	+0.75	66	"	"	ш
Hindu-Kush Himalaya	Winter mean temp.	+0.6	1976–2005 to 2066– 2095	RCP8.5	RCMs	Sanjay et al. (2017)
	Summer mean temp.	+0.54	"	"	"	"
Himalaya	Winter mean temp.	+0.57	1970–2005 to 2070– 2099	RCP8.5	RCMs	Dimri et al. (2018)
·	Summer mean temp.	+0.45	66	"	44	66

Subject to Copyedit SM2-7 Total pages: 87

FINAL DRAFT	Chapter 2 Supplem	nentary Material	IPCC SR Ocean and	Cryosphere		
Tibetan Plateau, ~4500 m	Mean annual temp.	+0.65	2006–2050	RCP8.5	Downscaled GCMs	Guo et al. (2016)
Tibetan Plateau, 2000–2200 m	66	+0.51	44	44	66	
Kashmir Himalaya	Annual mean value of minimum daily temp.	+0.07	1980–2010 to 2041– 2070	RCP2.6	Downscaled GCM	Shafiq et al. (2019)
• •	٠.	+0.13	"	RCP8.5	"	دد
		+0.04	1980–2010 to 2071– 2100	RCP2.6		"
• • •	66	+0.15	66	RCP8.5	"	66
	Annual mean value of maximum daily temp.	+0.11	1980–2010 to 2041– 2070	RCP2.6		"
66		+0.19	66	RCP8.5	٠.	66
"		+0.08	1980–2010 to 2071– 2100	RCP2.6		"
46	66	+0.22	66	RCP8.5	66	66
New Zealand						
New Zealand	Mean annual temp.	+0.33	1961–1990 to 2070– 2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
"		+0.17	1961–1990 to 2070– 2099	SRES B1	Downscaled GCMs	"

Subject to Copyedit SM2-8 Total pages: 87

SM2.3 Details of Studies on Precipitation Observations and Projections

Table SM2.4: Overview of recent studies providing evidence for past changes in precipitation, per high mountain region (as defined in Figure 2.1). Obs. stations refer to observation

stations. Elevations are in meters (m) above sea level.

Western Canada and USA California Win Canada Ratic Iceland Whole area Win Central Europe European Alps Tota European Alps Dail Swiss Alps Frace			period		
Western Canada and USA California Win Canada Ratio Iceland Whole area Win Central Europe European Alps Tota European Alps Dail Swiss Alps Frace					
California Win Canada Ratic Iceland Whole area Win Central Europe European Alps Tota European Alps Dail Swiss Alps Frace	nual precip.	Increase +8% to +40%, depending on the region	1949–2016	18 obs. stations	Wendler et al. (2017)
Canada Rational Ratio					
Iceland Whole area Win Central Europe European Alps Tota European Alps Dail Swiss Alps Frace	nter precip.	Insignificant	1920–2014	Gridded dataset based on 102 obs. stations	Mao et al. (2015)
Whole area Win Central Europe European Alps Tota European Alps Dail Swiss Alps Frac	io of snowfall to total precip.	Decrease, more pronounced in Western Canada	1948–2012	Gridded dataset based on obs. stations	Vincent et al. (2015)
Central Europe European Alps Tota European Alps Dail Swiss Alps Frac					
European Alps Tota European Alps Dail Swiss Alps Frac	nter precip.	Insignificant	1961–2000	Reanalysis and 40 obs. stations	Crochet (2007)
European Alps Dail Swiss Alps Frac					
Swiss Alps Frac	al precip.	Insignificant, dominated by internal variability	1901–2008	Gridded dataset based on obs. stations	Masson and Frei (2016)
	ly precip.	Insignificant change due to high variability	1980–2010	43 obs. stations	Kormann et al. (2015a)
	ction of days with snowfall r days with precip. (annual), 00 m	-20 %	1961–2008	Subset within 52 obs. stations	Serquet et al. (2011)
" ", 10	000–2000 m	-10% to -20%	"	"	"
" ",>2	2000 m	-5%	"	"	44
over	ction of days with snowfall r days with precip. (spring), 00 m	-30 to -50 %		Subset within 28 obs. stations	
" ", 10	000–2000 m	-10% to -30%	"	"	"
" ",>2	2000 m	-5% to -10%	"	"	"
Abruzzo Region Tota	al precip.	-1.8%/dec. (not significant)	1951–2012	46 obs. stations	Scorzini and Leopardi (2019)
Pyrenees Total	al precip.	Insignificant decrease (-0.6%/decade)	1950–1999	24 obs. stations	López-Moreno (2005)
Carpathian mountain regions Total	al precip.	No significant trend	1961–2010	Gridded data based on obs. stations.	Spinoni et al. (2015)
Scandinavia					

Subject to Copyedit SM2-9 Total pages: 87

|--|

FINAL DRAFT

Finland	Annual snowfall over total precip.	Decrease (-1.9% per decade)	1909–2008	3 obs. stations	Irannezhad et al. (2017)
Caucasus and Middle East					
Greater Caucasus	Total precip.	-9 mm yr ⁻¹	1936–2012	90 obs. stations	Elizbarashvili et al. (2017)
Adjara mountains	"	+6 mm yr ⁻¹	"	Subset of 90 obs. stations	"
Southern Andes					
Chile and Argentina	Annual precip.	General decrease (up to \sim -6 mm yr ⁻¹) with positive values in the southwest corner of the region	1979–2010	Gridded dataset from obs. stations, and reanalyses	Rusticucci et al. (2014)
Subtropical Andes, 30°S–37°S	Winter precip.	< -0.1 mm d ⁻¹ per dec, insignificant	1980–2005	Gridded dataset from obs. stations, and reanalyses	Zazulie et al. (2017)
44	"	-0.1 mm d ⁻¹ per dec	1980-2005	"	"
66	Summer precip.	-0.3 mm d ⁻¹ per dec, insignificant	1980–2005	"	"
44		-0.2 mm d ⁻¹ per dec, insignificant	1980–2005		"
Low Latitudes (Andes and Afric	a)				
Claro River (Colombian Andean Central mountain range)	Annual precip.	Insignificant	1981–2003	7 obs. stations	Ruiz et al. (2008)
47 mountain protected areas in five National Parks in the tropical belt (30°S–30°N, including Central America, South America, Africa, South Asia, Southeast Asia)	Annual precip.	Insignificant, except decrease in Africa	1982–2006	Gridded dataset from obs. stations, and reanalyses	Krishnaswamy et al. (2014)
Kenya	Mean precip.	Decrease (March to May, long rains) and increase (October to December, short rains).	1979–2011	50 obs. stations	Schmocker et al. (2016)
North Asia					
Northern Altai	Annual precip.	-0.14 mm yr ⁻¹	1966–2015	9 obs. stations	Zhang et al. (2018)
Southern Altai		+0.89 mm yr ⁻¹	"	8 obs. stations	"
High Mountain Asia					
Hindu-Kush Karakoram	Precip. (December to April)	Insignificant	1950–2010	Gridded dataset from obs. station, and reanalyses	Palazzi et al. (2013)
Himalaya	Precip. (June to September)	-0.021 mm d ⁻¹ yr ⁻¹ to -0.01 mm d ⁻¹ yr ⁻¹	1950–2009		
Karakoram	Winter precip.	Significant increasing trend	1961–1999	17 obs. stations	Archer and Fowler (2004)
Middle and East Tian Shan	Snowfall fraction	Decrease, from 27% to 25%	1960–2014	Gridded dataset based on obs. stations	Chen et al. (2016)

Subject to Copyedit SM2-10 Total pages: 87

Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere
----------------------------------	------------------------------

FINAL DRAFT

West Tian Shan	Winter total precip.	+23%	1960–2014	In-situ	"
Monsoon-dominated regions, easternmost Himalaya	Annual precip. trend	$-13.7 \pm 2.4 \text{ mm yr}^{-1}$	1994–2012	7 obs. stations	Salerno et al. (2015)
	Precip. during monsoon months	-9.3 mm yr ⁻¹	44		"
Northwestern Indian Himalaya	Snowfall fraction	Significant decreasing trend (3 out of 7 stations)	1991–2005	10 obs. stations	Bhutiyani et al. (2010)
	Winter precip. trend	Increasing but statistically insignificant	1866–2006	Subset of 10 obs. stations	cc
"	Monsoon and annual precip. trend	Significant decreasing	"		"
Tibetan Plateau	Annual precip.	+1.43 mm yr ⁻¹ , large spatial variations	1960–2014	71 obs. stations	Deng et al. (2017)
Hengduan Mountain region	Annual precip.	Insignificant decrease	1961–2011	90 obs. stations	Xu et al. (2018)
	Springtime precip.	Insignificant increase	"		"
Hindu Kush-Himalaya	Precip. >95th, precip. intensity	Insignificant changes	1960–2000	Gridded datasets using obs. stations, 5 specific obs. stations	Panday et al. (2015)
New Zealand and Australia					
New Zealand	Total precip. amount	Absence of marked trends, seasonally and geographically variable	1900–2010	294 obs. stations	Caloiero (2014); Caloiero (2015)
SE Australia	Total annual precip.	Reduction since 1970s	1901–2012	Obs. stations	Grose et al. (2015)
Japan					
Whole region	Intense precip.	+30 % per century	1898–2003	Obs. stations (61 at daily time resolution)	Fujibe et al. (2005)
"	Weak precip.	-20% per century	44		"

Subject to Copyedit SM2-11 Total pages: 87

Table SM2.5: Overview of recent studies providing evidence for future changes in precipitation, per high mountain region (as defined in Figure 2.1). *Obs. stations* refer to observations. Elevations are in meters (m) above sea level.

Location	Precipitation (precip.) indicator	Change	Time period	Scenario	Method	Reference
Alaska						
South and Southeast Alaska	Snow day fraction	-15% to +7%	1970–1999 to 2040– 2069	RCP4.5	Statistically downscaled GCMs	Littell et al. (2018)
"	"	-25% to +4%	66	RCP8.5	"	"
"	66	-22% to 4 %	1970–1999 to 2070– 2099	RCP4.5	"	66
66	66	-41% to -6 %	66	RCP8.5	"	"
Western Canada and	USA					
Western US, "Warm mountain sites"	Snowfall amount	-70% to -35%	1950-2005 to 2040-2069	RCP8.5	Statistically downscaled GCMs	Lute et al. (2015)
Western US, "Cold mountain sites"	"	-20 % to -5 %	u		"	"
Western US, "Warm mountain sites"	90% percentile of snowfall events	-30 %			"	
Western US, "Cold mountain sites"	90% percentile of snowfall events	+5 %	"		"	"
Southern California	Total winter snowfall; 1500–2000 m	-40%	1981–2000 to 2041– 2060	RCP2.6	Downscaled GCMs	Sun et al. (2016)
"	"; 2000–2500 m	-22%	66	"	"	"
"	";>2500 m	-8%	66	"	"	"
"	Total winter snowfall; 1500–2000 m	-52%	"	RCP8.5	"	"
"	"; 2000–2500 m	-28%	"	"	"	"
"	";>2500 m	-11%	"	"	"	"
"	Total winter snowfall; 1500-2000 m	-43%	1981–2000 to 2081– 2100	RCP2.6		"
"	"; 2000–2500 m	-26%	"	"	44	"
"	";>2500 m	-13%	"	"	"	"
"	Total winter snowfall; 1500-2000 m	-78 %	66	RCP8.5	66	"
"	"; 2000–2500 m	-48%	"	"	"	"
"	";>2500 m	-18%	"	"	"	"
Western Canada	Winter precip.	+11%	1979–1994 to 2045– 2060	RCP8.5	Downscaled GCMs	Erler et al. (2017)

Subject to Copyedit SM2-12 Total pages: 87

FINAL DRAFT	Chapter	2 Supplementary Material	IPCC SR Ocean and Cryosphere				
		+17%	1979–1994 to 2085– 2100		cc	"	
Iceland							
Whole area	Total precip.	Insignificant	1981–2000 to 2081– 2100	RCP4.5, RCP8.5	Downscaled GCMs using RCMs	Gosseling (2017)	
Central Europe							
Greater Alpine Region	Winter precip.	+12.3%	1971–2000 to 2071– 2100	RCP4.5	5 EUROCORDEX GCM/RCM pairs	Smiatek et al. (2016)	
"	Spring precip.	+5.7%	44	"	"	"	
"	Summer precip.	-1.7%	44	"	"	"	
"	Fall precip.	+2.3%	44	"	"	"	
	Number of days with precip. > 15 mm	+10.9%	"	"		44	
Alpine Region	Mean winter (December to February) precip.	+8 %	1981–2010 to 2020– 2049	RCP4.5	EUROCORDEX GCM/RCM pairs (0.11°)	Rajczak and Schä (2017)	
"	"	+6 %	"	RCP8.5	"	"	
"	"	+12 %	1981–2010 to 2070– 2100	RCP4.5	"		
"	"	+17%	"	RCP8.5	"	"	
Switzerland	Annual mean precip.	+0.6 %	1981–2010 to 2070– 2099	RCP2.6	EUROCORDEX GCM/RCM pairs	CH2018 (2018)	
"	Winter (December to February) mean precip.	+8.8%	"	"	"		
46	Annual mean precip.	+3%		RCP4.5	"	66	
	Winter (December to February) mean precip.	+12.9%	"	"			
"	Annual mean precip.	+3.3%	"	RCP8.5	"	"	
"	Winter (December to February) mean precip.	+23.7%	"	"	"	"	
Austria	Annual mean precip.	+7.1%	1971–2000 to 2071– 2100	RCP4.5	EUROCORDEX GCM/RCM pairs	Chimani et al. (2016)	
	Winter (December to February) mean precip.	+10.6%	46	"	"	"	
"	Annual mean precip.	+8.7%	"	RCP8.5	"	"	
	Winter (December to February) mean precip.	+22.7%	66	"		"	
Alps	Annual solid precip. Amount	-25 %	1981–2010 to 2070– 2099	RCP4.5	EUROCORDEX GCM/RCM pairs (0.11°)	Frei et al. (2018)	

Subject to Copyedit SM2-13 Total pages: 87

FINAL DRAFT	Chapter	2 Supplementary Material	IPCC SR Ocean and Cryospl	here		
	"	-45%	"	RCP8.5	44	"
Pyrenees, <1500 m	Frequency and intensity of heavy snowfall events	Decrease	1960–1990 to 2070– 2100	SRES A2	Dynamically downscaled GCM	López-Moreno et al. (2011)
Pyrenees, >2000 m		Insignificant except at high altitude (+30% increase)	"	66	"	66
Pyrenees, > 2000 m	"	+20-30%	"	SRES B2	"	"
Carpathian	Summer mean precip.	Decrease by up to -20 mm per	1971–2000 to 2071–	RCP8.5	Multiple	Alberton et al.
mountains		month	2100		GCM/RCM pairs	(2017)
Scandinavian Scandinavian	Annual snowfall	+20%	1961–1990 to 2071–	SRES A1B	Multiple	Räisänen and
mountains (high elevation)			2100		GCM/RCM pairs	Eklund (2012)
Caucasus and Middle						
Iran mountain areas	Mean precip.	Precip. increase	1961–1990 to 2071– 2000	SRES A2	Downscaled GCM	Babaeian et al. (2015)
"				SRES B2	"	
Alborz mountains	Annual precip., winter precip.	No significant change detected	1981–2000 to 2081– 2100	RCP4.5, RCP8.5	3 CMIP5 GCMs	Zarenistanak (2018)
Low Latitudes (Ande	es)					
Subtropical Andes, 30°S-37°S	Winter and summer precip.	No clear trend	2006–2100	RCP4.5, RCP8.5	GCMs	Zazulie et al. (2018)
Tropical Andes	Annual precip.	Geographically variable. Precip. increase up to ~2000 m. No significant changes on eastern slope >2000 m, decrease in the western slope >4000 m	1961–1990 to 2071– 2100	SRES A2, B2	Downscaled GCM	Urrutia and Vuille (2009)
Central Andes	Annual precip.	-19% to -33%	1961-2010 to 2071-2100	RCP8.5	Multiple GCMs	Neukom et al. (2015)
High-Mountain Asia						
Himalaya	Summer precip.	+0.008 to +0.014 mm d ⁻¹ yr ⁻¹	2006–2100	RCP8.5	GCM multi- member ensemble	Palazzi et al. (2013)
Eastern Himalaya	Annual precip.	+15 to +27% (most in summer)	1970–1999 to 2070– 2099	SRES B1, A1B, A2 and RCP8.5	CMIP3 and CMIP5 GCMs	Panday et al. (2015)
Western Himalaya- Karakoram	Annual precip.	+1 to +5% (due to increase in winter precip.)	"	"	"	
Hindu Kush Himalaya	Daily 99% precip. quantile	+50% on average	1981–2010 to 2071– 2100	RCP8.5	Downscaled GCMs	Wijngaard et al. (2017)
Northwest Himalaya and Karakoram	Precip., June to September	-0.1%	1976–2005 to 2036– 2065	RCP4.5	CORDEX GCM/RCM pairs	Sanjay et al. (2017)

Subject to Copyedit SM2-14 Total pages: 87

TINAL DRAFT	Chapter 2 Supplementary Material		IPCC SR Ocean and Cryosphere				
	Precip., December to April	+7%		،	"	66	
•	Precip., June to September	+3.5%	1976–2005 to 2066– 2095	66	66		
•	Precip., December to April	+14.1%	cc		66	cc	
	Precip., June to September	+3.7%	1976–2005 to 2036– 2065	RCP8.5	66	cc	
•	Precip., December to April	+12.8%			66		
•	Precip., June to September	+3.9%	1976–2005 to 2066– 2095	66	66	"	
•	Precip., December to April	12.9%	"	66	66	"	
Central Himalaya	Precip., June to September	4.4%	1976–2005 to 2036– 2065	RCP4.5	66	"	
4	Precip., December to April	-0.7%	"	"	"	"	
6	Precip., June to September	+10.5%	1976–2005 to 2066– 2095	"	"	"	
•	Precip., December to April	+1.5%		"	"	"	
•	Precip., June to September	+9.1%	1976–2005 to 2036– 2065	RCP8.5	"	"	
4	Precip., December to April	-1.3%	"	"	"	"	
4	Precip., June to September	+19.1%	1976–2005 to 2066– 2095	"	"	"	
•	Precip., December to April	-8.8%	"	"	"	"	
Southeast Himalaya and Tibetan Plateau		+6.8%	1976–2005 to 2036– 2065	RCP4.5	"	"	
6	Precip., December to April	+3.1%	"		"	"	
•	Precip., June to September	+10.4%	1976–2005 to 2066– 2095		"	"	
•	Precip., December to April	+3.7%	"		"	"	
•	Precip., June to September	10.2%	1976–2005 to 2036– 2065	RCP8.5	"	66	

Subject to Copyedit SM2-15 Total pages: 87

FINAL DRAFT	Chap	ter 2 Supplementary Material	IPCC SR Ocean and Cryos	sphere		
• • •	Precip., December to April	+0.9%	"			"
66	Precip., June to September	22.6%	1976–2005 to 2066– 2095	"	"	44
66	Precip., December to April	+0.6%	"	"	66	66
Tibetan Plateau	Total precip.	+3.2%	1961–2005 to 2006– 2035	RCP2.6, RCP8.5	CMIP5 GCMs	Su et al. (2013)
"	"	+6%	1961–2005 to 2036– 2099	RCP2.6	"	"
"	"	+12%	"	RCP8.5	"	"
Eastern Tibetan Plateau	Annual snowfall	-15%	1986–2005 to 2080– 2099	RCP4.5	RCM driven by several GCMs	Zhou et al. (2018)
Kashmir Himalaya	Annual precip.	+9%	1980–2010 to 2041– 2070	RCP2.6	Downscaled GCM	Shafiq et al. (2019)
"	"	+12%	44	RCP8.5	"	66
66		+11%	1980–2010 to 2071– 2100	RCP2.6	"	66
"	"	+14%	66	RCP8.5	"	66
Northern Tian Shan	Total precip.	+5 %	1976–2005 to 2070– 2099	RCP8.5	CMIP5 GCMs	Yang et al. (2017)
Western Tian Shan and northern Kunlun Mountains	Solid precip.	-26.5%	··	cc	cc	"
Australia						
SE Australia	Annual precip.	-5 % (high variability)	1950–2005 to 2020– 2039	RCP2.6	Downscaled GCMs	Grose et al. (2015)
44	"	-5 % (high variability)	46	RCP8.5	"	"
"	"	-5 % (high variability)	1950–2005 to 2080– 2099	RCP2.6	"	"
"	"	-10 % (high variability)	"	RCP8.5	"	"
Japan						
Tokai region	99th percentile of daily precip.	From +10% to +50% in winter (December to February)	1984–2004 to 2080– 2100	RCP8.5	Single dynamically downscaled GCM (MRI AGCM)	Murata et al. (2016)
Central Japan	Winter snowfall (November to March)	Decrease in most parts of Japan (up to -300 mm) increase in the central part of northern Japan	1950–2011 to 2080– 2099	+4°C warming in 2080–2099 with respect to 1861–1880, under RCP8.5	MRI-AGCM3.2 (dynamically downscaled)	Kawase et al. (2016)

Subject to Copyedit SM2-16 Total pages: 87

FINAL DRAFT	Chapter	2 Supplementary Material	IPCC SR Ocean a	and Cryosphere			
"	Heavy snowfall (10 years	Increase (10 mm) in the inland	"	"	"	"	
	return period)	areas of central and in northern					
		Ianan					

Subject to Copyedit SM2-17 Total pages: 87

SM2.4 Details of Studies on Snow Cover Observations and Projections

Table SM2.6: Synthesis of recent studies reporting past changes in snow cover in high mountain areas, per high mountain region (as defined in Figure 2.1). SWE is snow water

equivalent. Obs. stations refer to observation stations. Elevations are in meters (m) above sea level.

Location	Snow variable	Change	Time period	Dataset	Reference
Alaska					
Whole area	Duration	Decrease	20th century	Remote sensing	Brown et al. (2017)
•	SWE	Decrease	20th century	"	"
Mountainous Alaska	Mountainous Alaska Snow at high Increase elevation		1840-present	Indirect evidence from glacier accumulation	Winski et al. (2017)
Western Canada and USA					
Western USA	Springtime SWE	Decrease for 92% stations	1955–present	In-situ observations	Mote et al. (2018)
•	April 1 SWE	-15 to -30%	1955 –present	"	"
Western USA	Annual maximum	Decrease by 41% on average for 13% of	1982–2016	Gridded product based on in-	Zeng et al. (2018)
	SWE	pixels		situ observations	
Canada	Duration	Decrease 2 to 12 days per decade	1950–2012	In-situ observations	DeBeer et al. (2016)
celand					
Whole area	Duration	Decrease 0 to 10 days per decade	1980–2010	Remote sensing	Brown et al. (2017)
Central Europe					
European Alps and Pyrenees	Snow depth	Decrease at low elevation, step decrease in late 1980s	Mid 20 th century– present	In-situ, reanalyses	Beniston et al. (2018) Reid et al. (2016)
European Alps	SWE	Decrease at low elevation, step decrease in late 1980s	Mid 20 th century— present	54 obs. stations	Marty et al. (2017b)
European Alps	Duration	Insignificant trend, decrease at 700–900 m in the SE and SW Alps	1985–2011	Optical remote sensing	Hüsler et al. (2014)
Swiss Alps	Onset date	12 days later on average	1970–2015	11 obs. stations	Klein et al. (2016)
	Melt-out date	26 days earlier on average	44	66	"
Austrian Alps, 500–2000	Snow cover days	-13 to -18 depending on the region	1950–1979 to 1980–2009	Modelling based on in-situ observations	Marke et al. (2018)
Austrian Alps, 2000– 2500 m	"	-12 to -14 depending on the region	"	"	"
Austrian Alps, >2500 m	"	-20 (central Austria)	"	66	"
French Alps, 1800 m	Duration	-24 days	1958–2009	Local reanalysis	Durand et al. (2009)
French Alps	Melt onset	2 weeks earlier > 3000 m	1980–2015	In-situ observations	Thibert et al. (2013)
	Melt intensity	15% stronger >3000 m	"	In-situ obs. and modelling	"
Pyrenees, <1000 m	Snow cover duration	Decrease in majority of stations	1975–2002	In-situ observations	Pons et al. (2010); Beniston et al. (2018)

Subject to Copyedit SM2-18 Total pages: 87

	1	11 7	, ,		
Pyrenees, >1000 m	44	Decrease in majority of stations		"	"
Pyrenees, Andorra, 1645 m	Number of days with snow depth above 5, 30 and 50 cm	Increase until ~1980 then decrease (not statistically significant, high variability)	1935–2015	In-situ observations	Albalat et al. (2018)
Scandinavia					
Norway	Snow depth and SWE	Decrease at low elevation	20 th century	In-situ observations	Skaugen et al. (2012); Dyrrdal et al. (2013); Beniston et al. (2018)
"	"	Increase at higher elevation	20th century	"	
Northern Finland	Snow cover duration	-2.4 days per decade	1961–2014	Gridded dataset based on insitu observations	Luomaranta et al. (2019)
Southern Finland	"	-5.7 days per decade	"	"	66
Caucasus and Middle Eas	t				
Central Caucasus, 2300 m	Amount of winter snow	Declining since late 1980s	1968–2013	In-situ observations	Volodicheva et al. (2014)
North-Western Iran	Snow cover duration and mean snow depth	Decrease at most stations	1981–2011	28 in-situ observations	Arkian et al. (2014)
Southern Andes	•				
Whole area	Snow covered area	Insignificant decrease (high variability)	2000–2015	Optical remote sensing	Malmros et al. (2018)
Whole area	Snow covered area	Decrease	1979-2006	Passive microwave satellite	Le Quesne et al. (2009)
Low Latitudes (including	tropical Andes)				
the immediate vicinity of		seasonal snow cover has limited relevance in observations are too short to address long-term		and other tropical areas, except in	Saavedra et al. (2018)
High Mountain Asia					
Himalaya and Tibetan Plateau	Snow covered area	Insignificant trend (high variability compared to record length)	2000–2015	Optical remote sensing	Tahir et al. (2015); Gurung et al. (2017); Bolch et al. (2018); Li et al. (2018)
Himalaya	SWE	$-10.60 \text{ kg m}^{-2} \text{ yr}^{-1} \text{ for areas} > 500 \text{ m}$	1987–2009	Passive microwave remote sensing	Smith and Bookhagen (2018); Wang et al. (2018)
Australia					· /· • • · /
SE Australia	SWE	Reduction, especially in springtime	Mid-20 th century– present	In-situ observations	Fiddes et al. (2015); Di Luca et al. (2018)
"	Duration	Reduction, especially in springtime		"	66
		• • • • • •			

Subject to Copyedit SM2-19 Total pages: 87

Table SM2.7: Synthesis of recent studies reporting 21st century projections in snow cover in high mountain areas, per high mountain region (as defined in Figure 2.1).

Location	Snow variable	Change	Time period	Scenario	Method	Reference
Alaska						
Mountainous Alaska	SWE	-10 to -30%	1970–1999 to 2040– 2069	RCP8.5	Multiple GCM/RCM pairs	Littell et al. (2018)
"	SWE	-40 to -60%	1970–1999 to 2070– 2099	"		"
Western Canada and	IUSA					
Western USA	April 1 SWE	-50%	1965–2005 to 2010– 2040	RCP8.5	M Multiple GCM/RCM pairs	Naz et al. (2016)
66	Duration	-10 to -100 days	1976–2005 to 2071– 2100	RCP8.5		Musselman et al. (2018)
66	Peak annual SWE	-6.2 kg m ⁻² per decade	2013–2038	RCP8.5	Post-processed CMIP5 GCM	Fyfe et al. (2017)
Iceland						
Low elevation	Snow depth	-100%	1981–2000 to 2081– 2100	RCP8.5	Single RCM	Gosseling (2017)
Top of central Vatnajökull	Snow depth	+20%	1981–2000 to 2081– 2100	"		"
Central Europe						
European Alps	Winter SWE <1500 m	-40 %	1971–2000 to 2020– 2049	SRES A1B	Multiple GCM/RCM pairs	Steger et al. (2012); Gobiet et al. (2014); Beniston et al. (2018)
"	"	-70%	1971–2000 to 2070– 2099	"		
66	"	-10%	1971–2000 to 2020– 2049	66		"
"		-40%	1971–2000 to 2070– 2099	"		"
French Alps, 1500 m	Winter mean snow depth	-20%	1986–2005 to 2030– 2050	RCP2.6	Adjusted multiple GCM/RCM pairs	Verfaillie et al. (2018)
"	٠.	-30 %	"	RCP8.5		"
	"	-30 %	1986–2005 to 2080– 2100	RCP2.6		"
"	"	-80 %	"	RCP8.5	"	"
European Alps	Similar results as above and snow cover duration in springer		asymmetrical seasonal snow	decline pattern (stro	onger trend for reduced	Marty et al. (2017a); Terzago et al. (2017) Hanzer et al. (2018)

Subject to Copyedit SM2-20 Total pages: 87

Chapter 2 Supprementary Material 11 CC Sit Secan and Cryosphere	Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere
---	----------------------------------	------------------------------

FINAL DRAFT

Northern Scandinavia	Duration and SWE	Decrease at low elevation, marginal changes at high elevation	1971–2000 to 2010– 2100	AlB	GCM downscaled using RCM	Räisänen and Eklund (2012); Beniston et al. (2018)
Norway	Duration	-14% to -32%	1981–2010 to 2021– 2050	RCP4.5	Adjusted multiple GCM/RCM pairs	Scott et al. (2019)
"	"	-15% to -50%	"	RCP8.5	"	"
"	"	-34% to -64%	1981–2010 to 2071– 2100	RCP4.5	cc	"
"	"	-38% to -89%	"	RCP8.5	"	"
Caucasus and Midd	le East					
West Caucasus, 567 m	Snow cover duration	-35 to 40%	1991–2000 to 2041– 2050	B2	Downscaled GCM	Shkolnik et al. (2006); Sokratov et al. (2014)
Southern Andes						
Whole area	Mean SWE	-13%	1980–2010 to 2035– 2065	RCP4.5	Multiple RCM	López-Moreno et al. (2017)
"	66	-17%	"	RCP8.5	44	"
"	Duration	7 days	"	RCP4.5	66	"
"	66	10 days	"	RCP8.5	66	"
Limarí river basin, north-central Chile	Peak SWE (> 5000m)	-32 %	1961–1990 to 2071– 2000	B2	Single GCM/RCM pair	Vicuña et al. (2011)
"	"; 2500–3000 m	-82%	"	44	,,	"
"	"; 2000–2500 m	-100%	"	"	"	"
"	Peak SWE (> 5000m)	-41 %	"	A2	"	"
"	"; 2500–3000 m	-96 %	"	"	"	"
"	"; 2000–2500 m	-100 %	"	"	"	"
High Mountain Asia						
Hindu Kush and Karakoram	Winter snow depth (December to April)	-7 %	1986–2005 to 2031– 2050	RCP8.5	Multiple GCMs	Terzago et al. (2014)
"		-28 %	1986–2005 to 2081– 2100	"		"
Himalaya	66	-25 %	1986–2005 to 2031– 2050	"		"
"	66	-55%	1986–2005 to 2081– 2100		"	"
New Zealand and A	ustralia					
Australia	SWE	Reduction, especially below 1000 m	1980–1999 to 2030– 2049	SRES A1B	Multiple downscaled GCMs	Hendrikx et al. (2013)
Australia	SWE	-15 %	1990–2009 to 2020– 2040	SRES A2	Multiple downscaled GCMs	Di Luca et al. (2018)

Subject to Copyedit SM2-21 Total pages: 87

FINAL DRAFT	Chapte	r 2 Supplementary Ma	terial IPCC SR Ocean	and Cryosphere		
66	66	-60 %	1990–2009 to 2060– 2080	"		"
New Zealand	SWE; 1000 m	-3% to -44 %	1980–1999 to 2030– 2049	SRES A1B	Multiple downscaled GCMs	Hendrikx et al. (2012)
"	"; 2000 m	-8 % to -22 %	66	44	"	"
	"; 1000 m	-32% to -79%	1980–1999 to 2080– 2099	66	"	
"	"; 2000 m	-6% to -51 %	66	"	"	"
Japan						
Japan	Winter snow depth, low elevation	-50 %	Base: 1990s Future: time period corresponding to 2°C warming.	+2°C global warming (from SRES A1B)	Multiple downscaled GCMs (time sampling)	Katsuyama et al. (2017)
"	"; high elevation	-10 %		"	"	"
mountain catchment	SWE	-36%	1981–2000 to 2046– 2065	SRES A1B	Multiple downscaled GCMs	Bhatti et al. (2016)

Subject to Copyedit SM2-22 Total pages: 87

SM2.5 Details on Climate Models used in Figure 2.3

Table SM2.8: List of CMIP5 General Circulation Models (GCM) and where available, Regional Climate Models (RCM) used for projecting the winter and summer air temperature (T) and snow water equivalent (SWE), for RCP2.6 and RCP8.5, for the five regions represented in Figure 2.3: Rocky Mountains in North America, Subtropical Central Andes,

European Alps, Hindu Kush and Karakoram, and Himalaya. For the Rocky Mountains, Hindu Kush and Karakoram, and Himalaya only RCP8.5 data were used.

					tropical des	Centr	al	Eu	ıropean	Alps		Hindu Kush a Himalaya	and Karakoram;
GCM (default is rlilp1)	RCM (driven by corresponding GCM)]			RCP2.6 RCP8.5		CP8.5	R	RCP2.6		CP8.5	RCP8.5	
		Т	SWE	Т	SWE	Т	SWE	Т	SWE	Т	SWE	Т	SWE
ACCESS1-0						X						X	
ACCESS1-3						X						X	
Bcc-csm1-1				X		X						X	
BNU-ESM												X	
CanESM2												X	
	CCCma-CanRCM4	X	X										
	UQAM-CRCM5	X	X										
CCSM4				X	X	X	X					X	
CESM1-BGC						X						X	X
CESM1-CAM5				X	X	X	X					X	
CMCC-CM						X							X
CNRM-CM5				X	X	X	X					X	
	CLMcom-CCLM4-8-17									X	X		

Subject to Copyedit SM2-23 Total pages: 87

		Rock Mour	y ntains	Sul An	otropical des	Centr	al	European Alps				Hindu Kush and Karakoram; Himalaya	
	CNRM-ALADIN53							X		X	X		
	SMHI-RCA4									X			
CSIRO-Mk3-6-0												X	
EC-Earth (r8i1p1)													X
EC-EARTH				X		X							
FGOALS-g2												X	
GFDL-CM3												X	
GFDL-ESM2G												X	
	NCAR-WRF	X	X										
GISS-E2-R												X	
HadGEM2-CC						X						X	
HadGEM2-ES				X		X							
	NCAR-WRF	X	X										
	CLMcom-CCLM4-8-17									X	X		
	SMHI-RCA4									X			
ICHEC-EC-EARTH (r12i1p1)													
	CLMcom-CCLM4-8-17									X	X		
	SMHI-RCA4							X		X			

Subject to Copyedit SM2-24 Total pages: 87

		Rock Mour	y ntains	Sul An	otropical des	Centr	al	Eu	ropean	Alps		Hindu Kush and Karakoram; Himalaya	
ICHEC-EC-EARTH (r3i1p1)													
	DMI-HIRHAM5							X		X			
IPSL-CM5A-LR												X	
IPSL-CM5A-MR												X	
	SMHI-RCA									X			
IPSL-CM5B-LR												X	
MIROC5				X		X						X	
MIROC-ESM-CHEM												X	
MIROC-ESM												X	
MRI-CGCM3				X	X	X	X					X	
MPI-M-MPI-ESM-LR													
	NCAR-WRF	X	X										
	UQAM-CRCM5	X	X										
	CLMcom-CCLM4-8-17									X	X		
	MPI-CSC-REMO2009							X	X	X	X		
	SMHI-RCA4									X			
MPI-M-MPI-ESM-LR (r2i1p1)													
	MPI-CSC-REMO2009							X	X	X	X		

Subject to Copyedit SM2-25 Total pages: 87

		Rock Mour	y ntains	Sub And	otropical des	Centr	al	Eu	ropean	Alps		Hindu Kush a Himalaya	and Karakoram;
MPI-M-MPI-ESM-MR													
	UQAM-CRCM5	X	X										
MRI-ESM1						X	X						
NorESM1-M												X	
Ensemble members		7	7	8	4	14	5	5	2	13	7	23	3

Subject to Copyedit SM2-26 Total pages: 87

SM2.6 Synthesis of Recent Studies Reporting on Past and Projected Changes of River Runoff

Table SM2.9: Synthesis of recent studies reporting on past and projected changes in river runoff, per high mountain region (as defined in Figure 2.1). Entries per region are sorted according to increasing percentage of glacier cover for past and projected changes separately. Note that studies on annual runoff that are listed in **Table SM2.9** are not listed here.

The year of peak water given there indicates the year before which annual runoff is increasing and beyond which it is decreasing.

Location	Basin area (% glacier cover)	Variable (change)	Cause	Time period	Method	Scenario	Reference
Global-scale	,						
97 snow sensitive basins in 421 basins in northern hemisphere	(glacier melt not considered in model)	Spring-summer snowmelt runoff (decrease)	Transition of snowfall to rainfall	1955–2005 to 2006– 2080	Model, 19 GCMs	RCP8.5	Mankin et al. (2015)
Alaska							
Gulf of Alaska	420,300 km ² (17 %)	Annual runoff (+1-2 km ³ yr ⁻¹)	Increased glacier melt	1980–2014	Model	Past	Beamer et al. (2016)
Gulkana, Wolverine	24.6 km ² and 31.5 km ² (>50%)	Summer Runoff (increase)	Increased glacier melt	1966–2011	2 stream gauges	Past	O'Neel et al. (2014)
Gulf of Alaska	420,300 km ²	Annual runoff (+25–46%)	Increased glacier melt	1984–2014 to 2070– 2099	Downscaled GCMs	RCP4.5 RCP8.5	Beamer et al. (2016)
"		Dec.–Feb. runoff (+93–201%)	Transition of snowfall to rainfall		"	"	cc
"		Spring peak (1month earlier)	Earlier snowmelt	"	"		cc
Western Canada a	nd USA						
South and Central Columbia Basin	0.1–19 %	August runoff (decrease)	Decreased snow and glacier melt	1975–2012	20 stream gauges, hydro-graph separation	Past	Brahney et al. (2017)
Canadian Rocky Mountains and adjacent ranges	166–1,170 km ² (0–23.4%), no data in some basins	Summer runoff (decrease in glacierized basins)	Decreased glacier melt, decreased precipitation	1955–2010, depending on sites	6 stream gauges	Past	Fleming and Dahlke (2014)
Bridge river, British Columbia (Canada)	139 km ² (52.6% in 2014)	Winter runoff (increase)	Increased glacier melt	1979–2014	stream gauge	Past	Moyer et al. (2016)
"	"	Summer runoff (decrease)	Decreased glacier melt	"	"	"	

Subject to Copyedit SM2-27 Total pages: 87

FINAL DRAFT		Chapter 2 Supple	mentary Material	IPCC SR Ocean and Cryosphere						
Sierra Nevada, northeast of California (USA)	4,781 km ² (0 %)	Winter runoff (~+19%)	Transition of snowfall to rainfall, increased precipitation	1964–2014 to 2015– 2064	7 GCMs	RCP4.5, RCP8.5	Sultana and Choi (2018)			
"	"	Spring peak (1 month early)	Earlier snowmelt	"	"	"	"			
Athabasca (Canada)	161,000 km ² (0 %)	Summer runoff (+6-76 %)	Increased snowmelt, increased precipitation	1983–2013 to 2061– 2100	Downscaled 1 GCM	RCP4.5 RCP8.5	Shrestha et al. (2017)			
66	"	Winter runoff (+3–114%)	Transition of snowfall to rainfall	"		"				
Whole USA	(not significant)	Winter runoff (increase in snow-dominated basins)	Transition of snowfall to rainfall	1961–2005 to 2011– 2050	Downscaled 10 GCMs	RCP8.5	Naz et al. (2016)			
••	"	Spring peak (earlier in snow- dominated basins)	Earlier snowmelt				"			
Western North America	(not significant)	Winter runoff (increase)	Transition of snowfall to rainfall	1965–2005 to 2010– 2050	downscaled 10 GCMs	RCP8.5	Pagán et al. (2016)			
66	"	Summer runoff (decrease)	Decreased snowmelt	"		"				
••	u	Spring peak (611 days earlier)	Earlier snowmelt		"	ii	u			
Western USA	(not significant)	Spring peak (1.5–4 weeks early)	Earlier snowmelt	1960–2005 to 2080– 2100	downscaled 10 GCMs	RCP4.5, RCP8.5	Li et al. (2017)			
British Columbia	0-8%	Winter runoff (+45–95 %)	Increased snowmelt, increased rainfall	1961–1990 to 2041– 2070	downscaled 8 GCMs	SRES B1, A1B	Schnorbus et al. (2014)			
		Summer runoff (-58% to -9%)	Decreased snowmelt, transition of snowfall to rainfall	"		cc	"			
Nooksack (USA)	2,000 km ² (< 1 %)	Winter runoff (+39–88 %)	Transition of snowfall to rainfall	1950–1999 to 2060– 2090	downscaled 3 GCMs	SRES A2, B1	Dickerson-Lange and Mitchell (2014)			
•	"	Summer runoff (-50% to -26 %)	Decreased snowmelt	"	"	"	"			
"	"	Spring peak	Earlier snowmelt	"	"	"	66			

Subject to Copyedit SM2-28 Total pages: 87

FINAL DRAFT		Chapter 2 Supple	ementary Material	IPCC SR Ocean and Cryosphere					
44	"	(1 month early)		"	٠.	"	۲۵		
	·	Annual peak (increase, 1 month later)	Decreased snowmelt, increased extreme precipitation	i.					
Fraser, N. America	240,000 km ² (1.5 %)	Winter runoff (increase)	Transition of snowfall to rainfall	1980–2009 to 2040– 2069	downscaled 12 GCMs	RCP4.5 RCP8.5	Islam et al. (2017)		
	cc	Summer runoff (decrease)	Decreased snowmelt, transition of snowfall to rainfall		"	cc	u		
	cc	Annual peak (20-30 days earlier)	Earlier snowmelt		"	cc	c		
Central Europe		,							
Alps	(some including glaciers)	Winter runoff (increase in glacier- or snow- dominated basins)	Transition of snowfall to rainfall	1961–2005	177 stream gauges	Past	Bard et al. (2015)		
	"	Spring peak (earlier)	Earlier snowmelt and glacier melt	"	66	"			
Alps, (northern Italy)	~100–10,000 km² (some including glaciers)	Winter runoff (increase at > 1800 m a.s.l.)	Transition of snowfall to rainfall	1921–2011	23 stream gauges	Past	Bocchiola (2014)		
••	ű	Summer runoff (decrease)	Decreased snowmelt and glacier melt, increased evapotranspiration	"	cc		ι		
Western Austria	(0–71.9 %)	Annual flow (increase at high elevations, decrease at low elevations)	Increased and decreased glacier melt	1980–2010	32 steam gauges	Past	Kormann et al. (2015b)		
Middle and upper Rhine	144,231 km ² (<1%)	Winter runoff (+4-51%)	Transition of snowfall to rainfall, earlier snowmelt	1979–2008 to 2021– 2050 and 2070– 2099	10 GCM- RCMs	SRES A1B	Bosshard et al. (2014)		
		Summer runoff (-40% to -9%)	Decreased snowmelt	"		"			

Subject to Copyedit SM2-29 Total pages: 87

FINAL DRAFT		Chapter 2 Supple	mentary Material	IPCC SR Ocean and Cryosphere					
Gigerwaldsee (Switzerland)	97 km² (<1%)	Summer runoff (decrease)	Decreased glacier melt	1992–2021 to 2035– 2064 and 2069–2098	7 GCM- RCMs	SRES A1B	Etter et al. (2017)		
Swiss Alps	20–1,577 km ² (0-4%)	Summer runoff (-32 to -56%)	Transition of snowfall to rainfall, Earlier snowmelt	1980–2009 to 2070– 2099	10 GCM- RCMs	SRES A1B	Jenicek et al. (2018)		
Swiss Alps	231–1,696 km ² (0–22 %)	Winter runoff (increase at high elevations)	Transition of snowfall to rainfall	1980–2009 to 2020– 2049, 2045– 2074, 2070– 2099	10 GCM- RCMs	RCP2.6, SRES A1B, A2	Addor et al. (2014)		
European Alps	Glacierized European Alps	Annual runoff (decrease)	Decreased glacier melt	1980–2009 to 2010– 2039, 2040– 2069, 2070– 2099	4 GCMs	RCP2.6, RCP4.5, RCP8.5	Farinotti et al. (2016)		
66	66	Summer runoff (decrease)	Decreased glacier melt		66				
Alps, Po (Italy)	71,000 km2 (small)	Winter runoff (increase)	Transition of snowfall to rainfall	1960–1990 to 2020– 2050	2 RCMs	SRES A1B	Coppola et al. (2014)		
"	"	Spring peak (1 month earlier)	Earlier snowmelt	"	"	"			
Canton Graubünden	7,214 km ² (2.4%, ~20% in high elevation catchments)	Winter runoff (increase)	Transition of snowfall to rainfall	2000–2010 to 2021– 2050, 2070– 2095	10 RCMs	SRES A1B	Bavay et al. (2013)		
"	"	Summer runoff (decrease)	Decreased snowmelt, decreased precipitation	"	"				
•	"	Spring peak (earlier)	Earlier snowmelt	"	66	"	"		
Göscheneralpsee, Dammareuss subcatchment (central Switzerland)	95 km ² (20%), 10 km ² (50%)	Summer runoff (decrease)	Decreased snow melt, decreased glacier melt	1981–2010 to 2021– 2050, 2070– 2099	10 RCMs	SRES A1B	Kobierska et al. (2013)		
Findelen, Swiss Alps	21.18 km ² (70%)	Annual runoff (decrease)	Decreased glacier melt	1976–2086	1 RCM	SRES A2	Uhlmann et al. (2013)		
"	"	Spring peak (earlier)	Earlier snowmelt	66	66	46			

Subject to Copyedit SM2-30 Total pages: 87

		1 11			• 1		
Scandinavia							
Arctic coastal Norway	56-422 km ² (0–34.9%), no data in some basins	Winter runoff (increase)	Transition of snowfall to rainfall	1955–2010, depending on sites	7 stream gauges	Past	Fleming and Dahlke (2014
••		Summer runoff (decrease basins including glaciers)	Decreased glacier melt		cc		66
Whole Scandinavia	(including glaciers)	Winter runoff increase ~40%, excl. southern Sweden and Denmark)	Transition of snowfall to rainfall	1980–2009 to 2041– 2070	6 GCM- RCMs	SRES A1B	Räty et al. (2017)
	"	Summer runoff (decrease ~40%)	Decreased snowmelt, increased evapotranspiration				ε ι
Caucasus and Mid							
Eastern Anatolia (Turkey)	(0%)	Snowmelt peak (~1 week earlier)	Earlier snowmelt	1970–2010	15 stream gauges	Past	Yucel et al. (2015)
		Snowmelt peak (~4 week earlier)	Earlier snowmelt	1961–1990 to 2070– 2099	singe GCM- RCM	SRES A2	α
Euphrates-Tigris	880,000 km ² (0%)	Snowmelt peak (18–39 days earlier)	Earlier snowmelt	1961–1990 to 2041– 2070, 2071– 2099	3GCM-RCMs	SRES A1F1, A2, B1	Bozkurt and Sen (2013)
Low Latitudes (tro	opical Andes)						
La Paz (Bolivia)	18-78 km ² (5–12%)	Annual runoff (no significant change)	Decreased ice melt compensated by increased precipitation	1963–1007	4 stream gauges and model	Past	Soruco et al. (2015)
Zongo (Bolivia)	3 km ² (35 % in 1987)	Annual runoff (-4% and -24% in later period)	Decreased glacier melt	1987–2010 to 2030– 2050, 2080– 2100	11 downscaled GCMs	RCP4.5	Frans et al. (2015)
"	"	Wet season runoff (increase)	Transition of snowfall to rainfall			"	
Southern Andes							
Elqui (Chile)	222-3,572 km ² (7.02 km ² in total)	Annual runoff (no significant change)	Decreased glacier melt compensated by increased precipitation	1970–2009	4 stream gauges	Past	Balocchi et al. (2017)

Subject to Copyedit SM2-31 Total pages: 87

FINAL DRAFT		Chapter 2 Supple	ementary Material	IPCC SR Ocean and Cryosphere					
Rio del Yeso (Andes of central Chile)	62 km ² (19%)	Annual runoff (decrease)	Decreased snowmelt	2000–2015	Model	Past	Burger et al. (2019)		
Juncal (Chile)	(including glaciers)	Seasonal runoff peak (1month early)	Earlier snowmelt, transition of snowfall to rainfall	2001–2010 to 2041– 2050, 2051– 2060, 2060– 2100	12 GCMs	RCP4.5, RCP8.5	Ragettli et al. (2016)		
High Mountain As									
Astore, Gilgit, Katchura, (upper Indus)	3,750 km ² , 12,800 km ² , 115,289 km ² , (not significant)	Spring and summer runoff (increase)	Increased snowmelt, transition of snowfall to rainfall	1970–2005	stream gauge	Past	Reggiani and Rientjes (2015)		
Hunza, (upper Indus)	13,925 km ² , (including glaciers)	Spring and Summer runoff (decrease)	Decreased glacier melt	"			"		
Naryn (Tien Shan)	3,879 km ² (10% in 1970s) and 5,547 km ² (12% in 1970s)	Spring and autumn runoff (Increase)	Increased snowmelt and ice melt	1965–2007	2 stream gauges	Past	Kriegel et al. (2013)		
"		Winter-early spring runoff (increase)	Increased snowmelt, transition of snowfall to rainfall	"	66				
Tien Shan	(including glacier)	Annual runoff (increase for higher fraction of glacier area)	Increased ice melt	1960–2014	23 stream gauges	Past	Chen et al. (2016)		
Toxkan, Kunmalik, Kaidu, Huangshuigou (Tien Shan)	4,298–19,166 km² (including glaciers)	Winter-spring runoff (increased, earlier)	Earlier snow and glacier melt	1961–2008, depending on site	4 stream gauges	Past	Shen et al. (2018)		
Kakshaal and,	18,410 km ²	Summer runoff	Increased ice melt,	1957–2004	Model	Past	Duethmann et al. (2015)		
Tarim	(4.4%)	(increase)	increased precipitation						
Sari-Djaz, Tarim	12,948 km ² (20.9%)	Summer runoff (increase)	Increased ice melt		"	"	"		
Shigar (Karakoram)	7,040 km ² (30%)	June and July runoff (increase and turn to decrease from 2000 to 2010)	Decreased snowmelt	1985–2010	Stream gauges, hydrograph separation	Past	Mukhopadhyay and Khan (2014)		

Subject to Copyedit SM2-32 Total pages: 87

FINAL DRAFT		Chapter 2 Supple	mentary Material	IPCC SR Ocean and Cryosphere					
66	66	August runoff (increase)	Increased glacier melt	66	66	"			
Chhota Shigri (Western Himalaya)	~35 km ² (46.5%)	Summer runoff (+14-22%)	Increased glacier melt	1955–1969 to 1970– 1984, 1985– 1999, 2000– 2014	RCM and mass-balance model	Past	Engelhardt et al. (2017)		
Sikeshu (Tien Shan)	921 km ² (37%)	Annual runoff (increase)	Increased glacier melt	1964–2004	1 stream gauge	Past	Wang et al. (2015)		
Upper Indus	~425,000 km ² (5%)	June and July runoff in lower elevations (decrease)	Decreased snowmelt, decreased precipitation	1971–2000 to 2071– 2100	4 GCM- RCMs	RCP4.5, RCP8.5	Lutz et al. (2016a)		
"	"	Winter runoff in lower elevation (increase)	Increased precipitation, transition of snowfall to rainfall		"		66		
	"	Spring peak (earlier)	Earlier snow and glacier melt	"	"	"	cc		
Chu (Tien Shan)	9,548 km ² (2-7%)	Annual runoff (-27.7% to - 6.6%)	Decreased glacier melt	1966–1995 to 2016– 2045, 2066– 2095	5 GCMs	RCP2.6, RCP4.5, RCP8.5	Ma et al. (2015)		
"	"	Spring peak (decrease, 1 month earlier)	Decreased glacier melt, earlier snowmelt		"		cc		
Upper basin of Indus, Brahmaputra, Ganges, Salween, Mekong	(0.2–5.4%)	Spring peak (decrease, earlier)	Earlier snowmelt, transition of snowfall to rainfall	1998–2007 to 2041– 2050	4 GCMs	RCP4.5, RCP8.5	Lutz et al. (2014)		
Naryn (Tien Shan)	58,205 km ² (2%)	Annual runoff (decrease)	Decreased precipitation, decreased snowmelt	1966–1995 to 2016– 2045, 2066– 2095	5 GCMs	RCP2.6, RCP4.5, RCP8.5	Gan et al. (2015)		
"	"	Winter runoff (-2.2 to +19.8%)	Decreased precipitation, decreased snowmelt		"		66		
• •	"	Spring peak (1 month earlier)	Earlier snowmelt	"	"	"			

Subject to Copyedit SM2-33 Total pages: 87

FINAL DRAFT		Chapter 2 Supplementary Material		IPCC SR Ocean and Cryosphere				
Chon Kemin (Kyrgyz-Kazakh region)	1,037 km ² (11%)	Summer runoff (-15 to -4%, -66 to -9%)	Decreased ice melt	1955–1999 to 2000– 2049, 2050– 2099	4 GCMs	RCP2.6, RCP8.5	Sorg et al. (2014a)	
		Spring runoff (+7 to +23%, +18 to +62%)	Increased winter precipitation, increased snowmelt	"	"		"	
Beida River, upper Heihe (China)	565–6,706 km ² (total 318.2 km ²)	Annual runoff (increase)	Increased glacier melt	1957–2013	3 stream gauges	Past	Wang et al. (2017b)	
Lhasa, upper Brahmaputra	32,800 km ² (2% in 1970, 1.3– 11.5% for selected sub- basins)	Early summer runoff (decrease)	Decreased snowmelt, increased evapotranspiration	1971–2000 to 2011– 2040 and 2051–2080	single GCM- RCM	SRES A1B, A2, B2	Prasch et al. (2013)	
Koshi (Nepal)	3,712 km ² (13%)	Summer runoff (decrease)	Decreased snow melt	2000–2010 to 2040– 2050, 2086– 2096	5 GCM- RCMs	SRES A1B	Nepal (2016)	
Upper Langtang (Himalaya)	(including glaciers)	Peak runoff (increase)	Transition of snowfall to rainfall	2001–2010 to 2041– 2050, 2051– 2060, 2060– 2100	12 GCMs	RCP4.5, RCP8.5	Ragettli et al. (2016)	
Langtang (Himalaya)	360 km ² (46%)	Annual runoff (increase)	Increased glacier melt	1961–1990 to 2021– 2050, 2071– 2100	RCP4.5, RCP8.5	8 GCM	Immerzeel et al. (2013)	
Baltoro	1,415 km ² (46%)	Annual runoff (increase)	Increased glacier glacier melt		"		"	
Chhota Shigri (Western Himalaya)	~35 km ² (46.5%)	Spring-summer runoff (increase)	Earlier snow and glacier melt	1951–2099 to 2070– 2099	GCM-RCM	RCP4.5, RCP8.5	Engelhardt et al. (2017)	
"		Summer runoff (decrease)	Decreased glacier melt	"	"	••	"	
Hunza, upper Indus (Western Himalaya)	13,567 km ² (including glaciers)	Spring runoff (increase, earlier in 2 GCMs, decrease in 1 GCM)	Early snow melt	1980–2010 to 2030– 2059, 2070– 2099	3 GCMs	RCP2.6, RCP8.5	Garee et al. (2017)	

Subject to Copyedit SM2-34 Total pages: 87

FINAL DRAFT		Chapter 2 Supple	Chapter 2 Supplementary Material		IPCC SR Ocean and Cryosphere			
	cc	Summer runoff (decrease in 2 GCMs, slight increase in 1 GCM)	Decreased glacier melt	ce	ce	66		
New Zealand and	SE Australia	·						
Upper Waitaki (New Zealand)	9,490 km ² (including glaciers)	Late winter- spring runoff (increase)	Transition of snowfall to rainfall	1980–1999 to 2030– 2049, 2030– 2049, 2080– 2099	Downscaled 12 GCMs	SRES A1B	Caruso et al. (2017)	
"	cc	Summer runoff (decrease)	Decreased snowmelt, decreased precipitation	66	"	"		
Other regions (aff	ected by snow cov	er but lacking glaciers	(s)					
Eastern Scotland	749 km ² (0%)	Winter runoff (increase)	Transition of snowfall to rainfall, precipitation increase	1960–1991 to 2010– 2039, 2030– 2059, 2070– 2099	11 RCMs	SRES A1F1, A1B, B1	Capell et al. (2014)	
Shubuto, Hokkaido (Japan)	367.1 km ² (0%)	Spring peak (~14 days earlier)	Earlier snowmelt	2046–2065	5 GCMs	SRES A1B	Bhatti et al. (2016)	

Subject to Copyedit SM2-35 Total pages: 87

SM2.7 Details of Studies on Peak Water

Table SM2.10: Overview of studies providing estimates of the timing of peak water for the individual glaciers or glacier-fed river basins plotted in Figure 2.6. Peak water is the approximate year derived from observations or modelling (past) and modelling (future) when on average annual runoff reaches a maximum due to glacier shrinkage. Years are approximated from the information presented in each study, and in some cases represent an average of results from different scenarios (see remarks). *Local* refers to estimates for individual glaciers (no matter glacier area) and river basins with multiple glaciers but total glacier cover less than 150 km². All other estimates are referred to as *regional*. Glacier area refers to reported area typically referring to the beginning of the study period. Glacier cover refers to the glacier area in percent of the river basin's area.

Glacier/basin name	Domain type	Peak water (year)	Glacier area (km²)	Glacier cover (%)	Reference	Remarks; scenario (if reported)
Alaska						
Copper River basin regional		~2070	~13,000	~21	Valentin et al. (2018)	RCP4.5
Wolverine	local	~2050	17	67	Van Tiel et al. (2018)	No clear peak; RCP4.5
Wolverine	local	~2035	17	67	_	No clear peak; RCP8.5
Western Canada						•
Hood	local	~2015	~9	100	Frans et al. (2016)	Runoff from glacier area
Bridge	local	~2015	73	53	Moyer et al. (2016)	Qualitative statement: At / close to peak water
Mica basin	regional	~2000	1,080	52	Jost et al. (2012)	Already past peak water; year not reported
Bridge	local	~2000	73	53	Stahl et al. (2008)	Already past peak water; year not reported
Hoh	local	1988	18	100	Frans et al. (2018)	Runoff from glacier area; RCP4.5
Stehekin	local	1985	19	100		
Cascade	local	1984	12	100	_	
Hood	local	1995	5	100	_	
Thunder	local	2040	32	100	-	
Nisqually	local	2053	18	100	_	
Several basins in Western Canada	regional	~2000	150		Fleming and Dahlke (2014)	"Peak Water already over" (qualitative statement); runoff data analysis
Western Canada, coastal Alaska	regional	~2035	26,700	100	Clarke et al. (2015)	Runoff from glacier area; Peak water varying between ~2023 and 2055; RCP2.6
Western Canada, coastal Alaska	regional	~2042	26,700	100	-	Runoff from glacier area; Peak water varying between ~2024 and 2065; RCP8.5
Iceland						
Southern Vatnajökull, Langjökull, Hofsjökull	local/ regional	~2055	~5000	100	Björnsson and Pálsson (2008)	
Central Europe (European Al	ps)					
Gries	local	2020	5	49	Farinotti et al. (2012)	A1B

Subject to Copyedit SM2-36 Total pages: 87

FINAL DRAFT	Chapte	er 2 Supplement	tary Material	IPCC SR	Ocean and Cryosphere	
Silvretta	local	2015	5	5		
Rhone	local	2042	18	46		
Gorner	local	2035	51	63		
Aletsch	local	2050	117	59		
Trift	local	2045	17	43		
Zinal	local	2047	11	65	Huss et al. (2008)	A1B
Moming	local	2039	6	63	<u> </u>	
Weisshorn	local	2035	3	39		
Morteratsch	local	2020	16	15	Huss et al. (2010)	A1B
Forno	local	2042	7	34	<u> </u>	
Albigna	local	2020	6	30		
Plaine Morte	local	2055	8	100	Reynard et al. (2014)	A1B
Findel	local	2035	16	74	Uhlmann et al. (2013)	
Findel	local	~2050	16	74	Huss et al. (2014)	A1B (Peak water 2035–2065 depending on climate model
Swiss Alps		1997	< 0.05	100	Huss and Fischer (2016)	
Swiss Alps	local (>100	2000	0.05-0.125	100		
Swiss Alps	glaciers)	2004	0.125-0.5	100		
High Mountain Asia						
Chon Kemin basin	regional	~2045	112	11	Sorg et al. (2014a)	RCP2.6
Chon Kemin basin	regional	~2025	112	11		RCP8.5
Largest rivers of China	regional	~2070	~30,000		Su et al. (2016)	Peak water unclear from study; RCP2.6
Largest rivers of China	regional	~2070	~30,000		<u> </u>	Peak water unclear from study; RCP8.5
Hailuogou	local	~2050	45	36	Zhang et al. (2015)	No clear peak; declining glacier runoff after 2050; RCP4.5
Hailuogou	local	~2070	45	36		RCP8.5
Kakshaal basin	regional	~2018	740	4	Duethmann et al. (2016)	Runoff from glacier area; aggregate of
Sari-Djaz basin	regional	~2033	2,580	20		different emission scenarios; RCP2.6/RCP8.5
Naryn basin	regional	~2020	1,160	2	Gan et al. (2015)	RCP2.6
Naryn basin	regional	~2030	1,160	2		RCP4.5
Naryn basin	regional	~2050	1,160	2		RCP8.5
Urumqi	local	2020	2	52	Gao et al. (2018)	RCP4.5
Yangbajing basin	regional	~2025	312	11	Prasch et al. (2013)	Peak water between 2011 and 2040; A1B
Headwaters of Brahmaputra, Ganges, Indus	regional	~2050	~30,000	===	Lutz et al. (2014)	RCP4.5
All High-Mountain Asia glaciers	regional	~2030	~90,000	100	Kraaijenbrink et al. (2017)	RCP4.5

Subject to Copyedit SM2-37 Total pages: 87

FINAL DRAFT	Chap	oter 2 Supplemen	ntary Material	IPCC SR Ocean and Cryosphere			
All High-Mountain Asia glaciers	regional	~2050	~90,000	100		RCP8.5	
Chhota Shigri	local	2040	16	46	Engelhardt et al. (2017)	No clear peak; RCP4.5	
Chhota Shigri	local	2020	16	46		No clear peak; RCP8.5	
Hypothetical	local	2055	50	1	Rees and Collins (2006)	Runoff from glacier area	
Hypothetical	local	2064	50	1		•	
Langtang	local	2045	120	100	Immerzeel et al. (2013)	RCP4.5	
Baltoro	local	2048	520	100		RCP8.5	
Langtang	local	2044	120	100		RCP4.5	
Baltoro	local	2065	520	100		RCP8.5	
Langtang	local	~2055	120	34	Ragettli et al. (2016)	RCP4.5	
Langtang	local	~2070	120	34		RCP8.5	
Low Latitudes (Andes)							
Rio Santa basin	regional	~2005	200	2	Carey et al. (2014)	"Peak water already over" (qualitative statement)	
Zongo	local	2010	3	21	Frans et al. (2015)	,	
Cordillera Blanca	regional	~1995	480		Polk et al. (2017)	"Peak water already over" (qualitative statement)	
Sub-basins of Rio Santa		~1990	200	2	Baraer et al. (2012)	Analysis of observations	
Scandinavia						•	
Nigardsbreen	local	~2080	45	70	Van Tiel et al. (2018)	No clear peak; RCP4.5	
Nigardsbreen	local	~2080	45	70	` ′	No clear peak; RCP8.5	
Southern Andes						·	
Juncal	local	2030	34	14	Ragettli et al. (2016)	RCP4.5	
Juncal	local	2020	34	14		RCP8.5	

Subject to Copyedit SM2-38 Total pages: 87

SM2.8 Details of Studies on Observed Impacts Attributed to Cryosphere Changes

Table SM2.11: Overview of studies documenting observed impacts on ecosystems, other natural systems and human systems over the past several decades that can at least partly be attributed to changes in the cryosphere, per high mountain region (as defined in Figure 2.1). Other additional climatic or non-climatic drivers are not listed. Confidence levels refer to confidence in attributing the impact to cryosphere changes (*H* for high, *M* for medium). Only studies where the confidence in attribution to cryosphere change is at least medium are listed. Also listed whether or not the impact is positive (pos), neg (neg) or mixed for the impacted system. Figure 2.8 is based on the data provided in this table.

Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
Alaska						
Alaska	Landslides	Increase in frequency of large rock avalanches	Permafrost degradation	M	neg	Coe et al. (2017)
Alaska	Terrestrial ecosystems (tundra)	Population performance of a large mammal (dall sheep)	Spring snow cover	M	mixed	van de Kerk et al. (2018)
Alaska	Terrestrial ecosystems (tundra; forest)	Decline in abundance & offspring recruitment of a large mammal (mountain goat)	Harsh winter conditions (extreme weather events); delayed spring onset / end of snow season	M	neg	Rattenbury et al. (2018)
Alaska	Culture, Tourism	Route change for Iditarod dog-sled race	Insufficient snow cover, lack of river/lake ice.	Н	neg	Hagenstad et al. (2018)
Western Canada and US	SA					
British Columbia	Hydropower	Change in runoff timing	Reduction in peak winter snow accumulation, glacier decline.	H (snow) M (glacier)	mixed	Jost et al. (2012); Jost and Weber (2013)
Sacramento River basin, California	Hydropower	Change in runoff timing	Reduced snow pack due to more precipitation as rain.	Н	neg	Reclamation (2014)
San Joaquin River basin, California	Hydropower	Change in runoff timing	Reduced snow pack due to more precipitation as rain.	M	neg	Reclamation (2014)
Upper Colorado River, USA	Hydropower	Change in runoff timing	Earlier snowmelt runoff	Н	neg	Kopytkovskiy et al. (2015)
Cascades	Agriculture	Irrigation	Reduction in dry season stream flow due to glacier retreat	M	neg	Frans et al. (2016)
Rocky Mountains/Cascades	Agriculture	Irrigation	Reduction in summer stream flow because of reduced snowpack	M	neg	McNeeley (2017)
British Columbia	Landslides	Increase in landslide frequency	Glacier retreat and loss	M	neg	Cloutier et al. (2017)
Entire Western USA	Floods	Decrease in frequency of rain-on- snow flood event at lower elevation	Decrease in duration and depth of snow cover	M	pos	McCabe et al. (2007)
Entire Western USA	Floods	Increase in frequency of rain-on- snow flood event at higher elevation	Increase in frequency of rainfall at high elevation in winter.	M	neg	

Subject to Copyedit SM2-39 Total pages: 87

Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
Canada	Terrestrial ecosystems (tundra; forest)	Population dynamics of a large mammal (wolverine)	Winter snowpack decline, negatively correlated with temperature anomalies	Н	mixed	Brodie and Post (2010)
Colorado Rocky Mountains	Terrestrial ecosystems (tundra)	Changes in vegetation distribution (shrub and tundra expansion)	Spring snow cover (snow water equivalent)	M	pos	Bueno de Mesquita et al. (2018)
Mid-elevation Northern Rocky Mountains	Terrestrial ecosystems (forest)	Fire extent, fire season severity, and fire season duration increase	Earlier spring snow-melt	M	neg	Westerling (2016)
Colorado Rocky Mountains	Terrestrial ecosystems (tundra)	Changing upper and lower boundaries of alpine tundra, and within plant community shifts	Snow changes	M	mixed	Suding et al. (2015)
Cascade Mountains	Terrestrial ecosystems (tundra)	Change in abundance of a small mammal (pika) at different elevations	Record low snowpack (snow drought)	Н	mixed	Johnston et al. (2019)
Colorado Rocky Mountains	Terrestrial ecosystems (subalpine meadows)	Decrease in peak season net ecosystem production	Earlier snowmelt, longer early season drought	M	neg	Sloat et al. (2015)
Northern Rocky Mountains, Montana	Terrestrial ecosystems (forest)	Reduced survival of a small mammal (snowshoe hare) due to camouflage mismatch	Snow cover duration	M	neg	Zimova et al. (2018)
Montana	Freshwater ecosystems	Loss of endemic invertebrates	Decreased glacier runoff due to glacier decline	M	neg	Giersch et al. (2017) Muhlfeld et al. (2011)
Rocky Mountains	Freshwater ecosystems	Cutthroat trout and bull trout range reduced	Decreased glacier runoff due to glacier decline	M	neg	Young et al. (2018)
W. USA and W. Canada	Tourism	Reduced operating capabilities of ski resorts	Less snow	Н	neg	Steiger et al. (2017); Hagenstad et al. (2018)
Cascades, USA	Tourism	Reduced ice-climbing opportunities and reduced attractions for summer trekking	Glacier retreat	M	neg	Orlove et al. (2019)
Iceland						
Sandá í Þistilfirð, Iceland	Hydropower	Change in timing of input	Change in seasonality of snowmelt	M	neg	Einarsson and Jónsson (2010)

Subject to Copyedit SM2-40 Total pages: 87

Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
Austari-Jökulsá, Iceland	Hydropower	Change in timing of input	Change in seasonality of snowmelt and glacier decline	M	neg	Einarsson and Jónsson (2010)
Northern Iceland	Landslides	Large debris slide	Deep thawing of ground ice	Н	neg	Sæmundsson et al. (2018)
Iceland	Freshwater ecosystems	Change in species interactions and loss of taxa	Decreased runoff due to glacier decline	M	neg	Milner et al. (2017)
Jokulsarlon	Tourism	Glacier-based tourism	Positive effect - picturesque glacial lagoon formed by glacier retreat	Н	pos	Þórhallsdóttir and Ólafsson (2017)
Central Europe						
European Alps	Water quality	Increased heavy metal concentrations in lakes	Release of solutes from thawing permafrost	M	neg	Thies et al. (2007)
European Alps	Water quality	Increased heavy metal concentrations in lakes	Release of solutes from thawing permafrost	M	neg	Ilyashuk et al. (2018)
European Alps	Water quality	Increased heavy metal concentrations in streams	Release of solutes from thawing permafrost	M	neg	Thies et al. (2013)
Carpathians, Eastern Europe	Hydropower	Reduced water inflow in input due to change in runoff timing	Reduction of perennial snowpacks and earlier snowmelt - reduced input and change in seasonality of input	M	neg	Alberton et al. (2017)
Löntsch, Switzerland	Hydropower	Increase in runoff (short-term)	Slight glacier decline	M	pos	Hänggi et al. (2011); Hänggi and Weingartner (2011)
Löntsch, Switzerland	Hydropower	Change in runoff and timing	Snow cover - Slightly more precipitation/snow, slightly less snow cover, slight increase in snow melt	M	mixed	"
Oberhasli, Switzerland	Hydropower	change in timing of runoff	Glaciers - significant reduction, decrease of glacier melt with slightly earlier maximum	M	neg	Weingartner et al. (2013)
Göschener alp reservoir, Switzerland	Hydropower	change in timing of input	Snow cover - minor change of seasonality	M	-	
Gougra, Switzerland	Hydropower	increase in input	Glaciers - significant reduction, increase in runoff	M	pos	
Gougra, Switzerland	Hydropower	change in timing of input	Snow cover - change in timing of runoff	M	neg	"
Prättigau, Switzerland	Hydropower	slight increase in runoff	Glaciers - slight decline	M	pos	Hänggi et al. (2011); Hänggi and Weingartner (2011)

Subject to Copyedit SM2-41 Total pages: 87

Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
Prättigau, Switzerland	Hydropower	change in runoff and timing	Slightly more precipitation/snow, slightly less snow cover, slight increase in snow melt and winter discharge	Н	mixed	
Switzerland	Hydropower	Increased water inflow	Glacier retreat	Н	pos	Schaefli et al. (2019)
Italian Alps	Hydropower	Decreased water supply for run-of- river hydropower	Glacier retreat has reduced summer runoff.	M	neg	Orlove et al. (2019)
French and Italian Alps	Landslides	Increase in rock avalanche frequency	Glacier retreat and permafrost degradation	M	neg	Ravanel and Deline (2011); Fischer et al. (2012); Ravanel et al. (2017)
Swiss Alps	Landslides	Increase in frequency of large debris flows	Permafrost degradation	M	neg	Stoffel and Graf (2015)
European Alps	Landslides	Rock glacier destabilisation	Permafrost thaw	Н	neg	Roer et al. (2008)
European Alps	Landslides	Increasing debris flows and small rock fall	Permafrost thaw	Н	neg	Kummert et al. (2017)
European Alps	Landslides	Rock glacier collapse	Permafrost thaw	Н	neg	Bodin et al. (2016)
European Alps	Landslides	Increasing rockfall during heat waves	Permafrost thaw	Н	neg	Ravanel et al. (2017)
European Alps	Landslides	Slope instability beneath infrastructure	Permafrost thaw	Н	neg	Ravanel et al. (2013)
European Alps	Landslides	Increasing rockfall	Permafrost thaw	Н	neg	Ravanel et al. (2010)
European Alps	Landslides	Increasing rockfall during recent decades	Permafrost thaw	M	neg	Ravanel and Deline (2011)
Swiss Alps	Landslides	Increase in debris transport into steep slopes and destabilisation of rock glaciers	Permafrost degradation	M	neg	Kääb et al. (2007)
European Alps	Snow avalanche	More avalanches involving wet snow	Changes in snow cover characteristics	M	neg	Pielmeier et al. (2013) Naaim et al. (2016)
European Alps	Snow avalanche	Decrease in total number of avalanches at lower elevation	Changes in snow cover characteristics	M	pos	Eckert et al. (2013); Lavigne et al. (2015)
Tatras mountains	Snow avalanche	Decline in mass and intensity of large avalanches	Changes in snow cover characteristics	M	pos	Gadek et al. (2017)
European Alps	Floods	Decrease in rain-on snow flood event at lower elevation and in spring	Change in duration and depth of snow cover and change in precipitation type (rain vs. snow)	M	pos	Freudiger et al. (2014); Moran-Tejéda et al. (2016)

Subject to Copyedit SM2-42 Total pages: 87

Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
European Alps	Floods	Increase in rain-on snow flood event at higher elevation and in winter	Change in duration and depth of snow cover and change in precipitation type (rain vs. snow)	M	neg	
Poland (Białowieża Forest)	Terrestrial ecosystems	increased predation pressure in a mammal (weasel) due to phenological camouflage mismatch	decreasing number of snow-cover days	M	neg	Atmeh et al. (2018)
Pyrenees	Terrestrial ecosystems	availability duration of high quality food for a bird (ptarmigan)	Earlier snow-melt	M	pos	García-González et al. (2016)
Swiss Alps	Terrestrial ecosystems (tundra)	Alpine grassland species colonize the snowbeds	Shorter snow-cover duration	Н	mixed	Matteodo et al. (2016)
Italian Alps	Terrestrial ecosystems (tundra)	Slow soil and plant community development	Glacier retreat	Н	mixed	D'Amico et al. (2017)
French Pyrenees	Freshwater ecosystems	Change in species interactions and loss of taxa	Decreased runoff due to glacier decline	M	neg	Khamis et al. (2015)
French Pyrenees	Freshwater ecosystems	Increased local diversity; decreased regional diversity	Decreased runoff due to glacier decline	Н	pos/neg	Khamis et al. (2016)
French Pyrenees	Freshwater ecosystems	Reduction in genetic diversity	Decreased runoff due to glacier decline	M	neg	Finn et al. (2013)
Swiss Alps	Freshwater ecosystems	Upward shift of invertebrate taxa	Decreased runoff due to glacier decline	Н	neg	Finn et al. (2010)
Italian Alps	Freshwater ecosystems	Loss of endemic invertebrates	Decreased runoff due to glacier decline	Н	neg	Finn et al. (2013)
Western Balkans	Freshwater ecosystems	Loss of native trout	Decreased runoff due to glacier decline	M	neg	Papadaki et al. (2016)
Austrian Alps	Freshwater ecosystems	Increased diatom biodiversity	Decreased runoff due to glacier decline	M	pos	Fell et al. (2018)
Austrian Alps	Freshwater ecosystems	Increased microbial biodiversity	Decreased runoff due to glacier decline	M	pos	Finn et al. (2009)
Italian Alps	Freshwater ecosystems	Range reduction in trout	Decreased runoff due to glacier decline	M	neg	Vigano et al. (2016)
European Alps	Infrastructure	Structure instability	Permafrost thaw	M	neg	Phillips and Margreth (2008)
European Alps and Pyrenees	Tourism	Reduction in ski lift revenues and operating capabilities of ski resorts	Reduction of snow cover duration	Н	neg	Steiger et al. (2017)

Subject to Copyedit SM2-43 Total pages: 87

FINAL DRAFT	Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere

Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
European Alps	Tourism	Changes in the safety of mountaineering routes	Glacier decline, permafrost thaw (impact on ground instability)	Н	neg	Ritter et al. (2012); Duvillard et al. (2015); Ravanel et al. (2017); Mourey et al. (2019)
Italian Alps	Culture	Aesthetic quality; Local residents find the dark peaks in summer to be unattractive	Glacier retreat	Н	neg	Brugger et al. (2013)
Italian Alps	Culture	Local residents feel that the identity of their village is weakening as the peaks have less ice and snow	Reduced ice and snow cover	Н	neg	Jurt et al. (2015)
Scandinavia/Nordic						
Northern Norway	Hydropower	More water for hydropower	Thinning of glacier, changed routing of glacier-dammed lake	Н	pos	Engeset et al. (2005)
Northern Norway	Landslides	Increase in debris transport into steep slopes	Increase in rock glacier speed	M	neg	Eriksen et al. (2018)
Norway	Terrestrial ecosystems (tundra; forest)	abundance reduction of a small mammal (mountain hare) due to molting mismatch and predation	snow cover duration	M	neg	Pedersen et al. (2017)
Norway	Terrestrial ecosystems (tundra)	invertebrate, plant and fungal community composition change during succession	glacier retreat	Н	pos	Matthews and Vater (2015)
Finland	Tourism	Reduction in ski lift revenues	Reduced snow cover duration	M	neg	Falk and Vieru (2017)
Caucasus and Middle	East					
Central Caucasus	Snow avalanche	Increased risk of large avalanches	Glacier decline, change in snow conditions	M	neg	Aleynikov et al. (2011) Volodicheva et al. (2014)
Central Caucasus	Floods	Increased risk of outburst floods	Glacier decline, permafrost thaw (impact on ground instability)	M	neg	Petrakov et al. (2012) Chernomorets et al. (2018)
Western Caucasus	Tourism	Ski tourism	Reduction of snow cover duration	M	neg	Sokratov et al. (2014)
North Asia						
Russia (Altai mountains)	Terrestrial ecosystems (tundra)	Plant and fungal community composition change during succession	Glacier retreat	Н	mixed	Cazzolla Gatti et al. (2018)
Southern Andes						

Subject to Copyedit SM2-44 Total pages: 87

Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
Central Chile	Water resources	Reduced water supply reserves	Reduction and melt/collapse of rocky glaciers	Low/M	neg	Navarro et al. (2018)
Patagonia	Floods	Increase in size and number of glacier lakes; risk of outburst floods (e.g. at new locations)	Glacier decline	Н	neg	Navarro et al. (2018); Wilson et al. (2018) Colavitto et al. (2012)
Central Chile	Floods	Peak floods (no specific affected sectors mentioned)	Snow and glacier melt, shifts in peak flow (currently increasing), affecting water security in dry months	M	neg	Pizarro et al. (2013)
Chilean Patagonia	Freshwater ecosystem	Spawn rates for certain fish species negatively affected (some of great commercial value for the region)	Changes in water temperature and salinity due to changes ice and snow melt	Low/M	neg	Landaeta et al. (2012)
Low Latitudes						
Cordillera Blanca, Peruvian Andes	Water resources	Drinking water supply in rural areas	Reduced glacier contribution to groundwater which maintains springs	Н	neg	Baraer et al. (2012)
Peruvian Andes	Agriculture	Negative impact on crops, pastures and livestock	Reduced runoff due to glacier retreat	M	neg	Mark et al. (2010); Bury et al. (2011)
Central Andes (Bolivia, Peru)	Terrestrial ecosystems (tundra)	Constrained plant primary succession	Glacier retreat	M	neg	(Zimmer et al., 2018)
Northern Andes (Ecuador)	Terrestrial ecosystems (tundra)	upward shifts of vegetation zones and maximum elevation of species	Glacier retreat	Н	pos	Morueta-Holme et al. (2015)
Ecuador	Freshwater ecosystems	Decrease in regional biodiversity	Reduced runoff due to glacier decline	M	neg	Milner et al. (2017)
Ecuador	Freshwater ecosystems	Loss of regional diversity	Reduced runoff due to glacier decline	Н	neg	Cauvy-Fraunié et al. (2016)
Ecuador	Freshwater ecosystems	Downstream shift of macro- invertebrates	Reduced runoff due to glacier decline	M	pos	Jacobsen et al. (2014)
Tropical Andes	Tourism	Closure of a ski resort.	Glacier disappearance, reduced snow cover	Н	neg	Kaenzig et al. (2016)
Peruvian Andes	Culture	Spiritual value: concern among local residents who seek to restore relations with the local mountain deity.	Glacier retreat and lesser snowmelt on a major mountain have reduced flow in a river	Н	neg	Stensrud (2016)

Subject to Copyedit SM2-45 Total pages: 87

Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere
Chapter 2 Supplementary Material	if CC 51 Occair and Cryosphere

Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
Ecuadorian Andes	Culture	Loss of Indigenous knowledge, especially among youth and children, in a setting where such knowledge is closely linked to the physical presence of the glacier	Glacier decline and disappearance	M	neg	Rhoades et al. (2008)
Peruvian Andes	Culture	Spiritual value: the site of a major pilgrimage was altered, making it more difficult for pilgrims to access the site, and creating distress and concern for them	Glacier retreat	Н	neg	Allison (2015)
Peruvian Andes	Migration	Emigration and increased wage labour migration: Glacier runoff used to irrigate pasture, so herders increased their temporary migration for wage labour opportunities; the greater propensity of younger adults to migrate alters the demographic composition of the herding community, with a larger proportion of elderly and female than previously.	Reduced runoff due to glacier retreat and lesser snowmelt runoff	M	neg	Alata et al. (2018)
Bolivian Andes	Migration	Increased emigration and declines in the productivity of irrigated agriculture	Reduced runoff due to glacier retreat	M	neg	Brandt et al. (2016)
High Mountain Asia						
Nepal	Water resources	Drinking water supply in rural areas reduced	Glacier retreat and reduced snow cover	M	neg	McDowell et al. (2013)
Several regions	Hydropower	More/less water for hydropower depending on timing for different regions.	Increased/ decreased runoff due to glacier decline and change in snowpack	Н	mixed	Lutz et al. (2016b)
Gilgit-Baltistan, Pakistan	Agriculture	Reduced water availability for irrigation of crops on a major mountain	Reduced runoff due to glacier retreat and less snowmelt	Н	neg	Nüsser and Schmidt (2017)
Nepal	Agriculture	Reduction in quality of pasture, which reduces the capacity of the area to support livestock	Reduced snow cover duration	M	neg	Shaoliang et al. (2012)
Nepal	Agriculture	Decreased agricultural production	More erratic snowfall	M	neg	Gentle and Maraseni (2012)

Subject to Copyedit SM2-46 Total pages: 87

FINAL DRAFT

Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
Nepal	Agriculture	Less favourable potato planting conditions	Seasonally delayed snowfall	M	neg	Sujakhu et al. (2016)
Nepal	Agriculture	Reduced soil moisture, which reduces crop yield	Reduced snow cover	M	neg	Prasain (2018)
Pakistan	Agriculture	Irrigation	Reduced runoff due to glacier retreat	M	neg	Nüsser and Schmidt (2017)
Nepal	Agriculture	Reduced yields due drying of soils in winter and reduced moisture input in spring	Reduced snow cover	M	neg	Smadja et al. (2015)
Himalaya	Snow avalanche	Increase in occurrence of avalanches	Change in snow conditions (more wet- snow conditions)	M	neg	Ballesteros-Cánovas et al. (2018)
Himalaya	Floods	Increase in size and number of glacier lakes	Glacier retreat	Н	mixed	Frey et al. (2010); (Gardelle et al., 2011)
Himalaya	Floods	Risk of outburst floods (e.g. at new locations)	Glacier retreat led to increase in number and size of glacier lakes	Н	neg	Carrivick and Tweed (2016); Harrison et al. (2018); Veh et al. (2019)
Himalaya	Floods	Increased exposure of (growing) tourism/pilgrims to glacier lake outburst floods	Glacier retreat and lake formation	Н	neg	Uniyal (2013)
Himalaya	Floods	Increase in exposure of hydropower plants to glacier lake outburst floods	Glacier retreat and lake formation	M	neg	Schwanghart et al. (2016)
China (Tibetan plateau, Hailuogou glacier)	Terrestrial ecosystems (forest)	fungal community composition change during succession	Glacier retreat	Н	pos	Tian et al. (2017)
Quinghai-Tibetan Plateau	Terrestrial ecosystems (tundra)	Plant species' upslope and northward range shift; range expansion	Permafrost reduction	Н	pos	You et al. (2018)
Himalayas (Ladakh)	Terrestrial ecosystems (tundra)	Upslope range shift above the limit of continuous plant distribution; decrease in plant cover	Extreme snowfall year	Н	mixed	Dolezal et al. (2016)
Tibetan Plateau	Terrestrial ecosystems (tundra)	Reduction of plant productivity (above ground net primary productivity); plant species diversity loss	Permafrost thaw	M	neg	Yang et al. (2018)
Bhutan	Terrestrial ecosystems (tundra)	Plant establishment as snowline shifts upward; greater plant productivity	Ascent of snowline	M	mixed	Wangchuk and Wangdi (2018)

Subject to Copyedit SM2-47 Total pages: 87

Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
Northern China, Northwest China, Tibetan Plateau	Terrestrial ecosystems (forest)	Greater tree growth in regions with more snow; no effect of snow where snow accumulation is low	Snow accumulation	Н	mixed	Wu et al. (2018)
Tibetan Plateau	Terrestrial ecosystems (tundra)	greenness change for alpine meadow and alpine steppe across much of the Plateau	Permafrost presence or absence; soil moisture	Н	mixed	Wang et al. (2016)
Himalaya and Tibetan Plateau	Tourism	Changes in access routes to Baishui Glacier No. 1	Glacier retreat	M	neg	Wang et al. (2010)
Bhutan	Tourism	High elevation trekking: trails damaged and trekking routes limited	Increased runoff due to increased snowmelt and glacier melt	M	neg	Hoy et al. (2016)
Tibet	Culture	Spiritual value: a number of sacred mountains are altered, causing distress for the local population, who view this change as the product of their own spiritual and moral failings	Glacier retreat	M	neg	Salick et al. (2012)
Tibetan Plateau	Culture	Aesthetic value of glaciers reduced	Glacier surfaces have become dirtier	M	neg	Wang et al. (2017a)
Uttarakhand, India	Culture	Spiritual value - rising concern for local population who view the changes in sacred mountains as the product of their own religious and moral failings	Glacier retreat	M	neg	Drew (2012)
Nepal	Culture	Identity and aesthetic values (threatened as beauty of mountains is reduced)	Glacier retreat and reduction in snow cover	M	neg	Konchar et al. (2015)
Nepal	Culture	Causing people to experience concern about divine beings and proper rituals	Reduced snow cover	M	neg	Becken et al. (2013)
Nepal	Migration	Increased emigration due to declining irrigation water and agricultural yields	Reduced runoff due to less snow cover	M	neg	Prasain (2018)
New Zealand		· · · · · · · · · · · · · · · · · · ·				
New Zealand	Landslides	Rock avalanches from lower permafrost limit	Thaw/degradation of permafrost	M	neg	Allen et al. (2011)
New Zealand	Freshwater ecosystems	Loss of cold tolerant taxa	Reduced runoff due to glacier decline	M	neg	Cadbury et al. (2010)

Subject to Copyedit SM2-48 Total pages: 87

FINAL DRAFT		Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere			
Location	Affected Sector or System	Impact	Cryosphere Change	Attribution Confidence	Positive/Ne gative/Mix ed	Reference
Other regions						
Japan (Taisetsu Mountains, Hokkaido)	Terrestrial ecosystems (tundra)	Changes in vegetation structure (shrubs & forbs)	Accelerated snow melt and drier soil conditions	M	mixed	Amagai et al. (2018)
Japan (Taisetsu Mountains, Hokkaido)	Terrestrial ecosystems (forest)	Plant (bamboo) encroachment into alpine zones	Changes in water balance associated with snowmelt	M	pos	Winkler et al. (2016)
New England, North East USA	Tourism	Closure of ski resorts	Reduced snow fall and snow cover	Н	neg	Beaudin and Huang (2014): Hamilton et al.

(2003)

Subject to Copyedit SM2-49 Total pages: 87

SM2.9 Details of Studies on Adaptations in Response to Cryosphere Changes

Table SM2.12: Documented individual adaptation actions, per country (grouped by regions as defined in Figure 2.1), for sectors addressed in this chapter, i.e. Agriculture, Biodiversity, Water, Energy, Natural Hazards (Hazards), Tourism & recreation (Tourism), Settlements & habitability (Habitability), Intrinsic & cultural values (Cultural). 'Other' is a merged category for other sectors and 'Undefined' refers to adaptation where no clear classification to a specific sector could be allocated. The adaptations are listed across their scale of relevance and/or implementation (Local, Regional, Global), as well as classification of type of adaptation as either 'formal policy', 'autonomous' or 'undefined'. Key climatic drivers are listed that have links to (or changes in) cryosphere changes are described, which include: Temperature change 'Temperature'; Precipitation change in terms of amount and timing ('Precip. (amount, timing)'); Precipitation change in terms of changes in state (e.g. snow to rain) ('Precip. (phase)'); Glacier change where non-hydrological impacts were associated ('Glacier (non-hydro)'); Glacial hydrology change ('Glacier (hydro)'); Snow cover change where non-hydrological impacts were associated ('Snow (non-hydro)'); Snow hydrology change ('Snow (hydro)'); Extreme events where hydrological elements were associated ('Extremes (hydro)'); Extreme events that were not associated with a hydrological impacts ('Extremes (non-hydro)'); 'Permafrost thaw'; and ecosystem changes in terms of flora and/or fauna ('Ecosystem'). Entries for each regions are sorted in alphabetical order of the references.

Caucasus and Middle East	Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference	
Caucasus and Middle East Russia Hazards Instillation of GLOF early warning system Regional Formal Policy Glacier (hydro), Extremes (hydro) Central Europe Water Efforts of ACQWA projects to address vulnerability associated with hydrological changes Switzerland Water, Hazards Flooding/hazards planning - Third Rhone Correction Flooding/hazards planning - MINERVE Switzerland, Italy, Chile, Kyrgyzstan Promatory Ryder Energy, Water Flooding/hazards planning - MINERVE Agriculture, Energy, Water Flooding/hazards planning Regional Regional Formal Policy Temperature, Precip. (amount, timing), Glacier (hydro) Temperature, Precip. (amount, timing), phase state), Glacier (hydro), Extremes (hydro, non-hydro), Permafrost thaw Artificial snow production Nocturnal skiing Regional Autonomous Temperature, Precip. (amount, Campos Rodrigues et al. (2019)	Alaska							
Russia Hazards Instillation of GLOF early warning system Regional Formal Policy Glacier (hydro), Extremes (hydro) Petrakov et al. (2012) Central Europe Water Efforts of ACQWA projects to address vulnerability associated with hydrological changes Switzerland Water, Hazards Flooding/hazards planning - Third Rhone Correction Flooding/hazards planning - MINERVE Switzerland, Italy, Chile, Kyrgyzstan Formal Policy Formal Policy Temperature, Precip. (amount, timing), Glacier (hydro) Temperature, Precip. (amount, timing), Glacier (hydro) Beniston et al. (2011) Beniston and Stoffel (2014) Programment of the petrakov et al. (2012) Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, Extremes (hydro, Extremes (hydro, Permafrost thaw) Programment of the petrakov et al. (2012) Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, Permafrost thaw) Programment of the petrakov et al. (2012) Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, Permafrost thaw) Programment of the petrakov et al. (2012)	USA	Undefined	Multi-stakeholder adaptation planning exercise	Regional	Undefined	Snow (non-hydro), Ecosystem	Knapp et al. (2014)	
Central Europe Water	Caucasus an	d Middle East						
SwitzerlandEfforts of ACQWA projects to address vulnerability associated with hydrological changesRegional changesSwitzerland, Italy, Chile, KyrgyzstanAgriculture, Energy, WaterImpact assessment for adaptation planningGlobalUndefinedTemperature, Precip. (amount, timing), Glacier (hydro)Beniston et al. (2011)SpainTourismAgriculture, Energy, WaterImpact assessment for adaptation planningGlobalUndefinedTemperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, non-hydro), Permafrost thawSpainTourismAutonomousTemperature, Precip. (amount, timing, phase state), GlobalCampos Rodrigues et al.	Russia	Hazards	Instillation of GLOF early warning system	Regional	Formal Policy	* • * * * * * * * * * * * * * * * * * *	Petrakov et al. (2012)	
Switzerland, Italy, Chile, Kyrgyzstan Tourism Water vulnerability associated with hydrological changes Vulnerability associated with hydrological changes Flooding/hazards planning - Third Rhone Correction Flooding/hazards planning - MINERVE Formal Policy Temperature, Precip. (amount, timing), Glacier (hydro) Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, non-hydro), Permafrost thaw Artificial snow production Nocturnal skiing Regional Autonomous Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Permafrost thaw Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Permafrost thaw Campos Rodrigues et al.	Central Euro	ppe						
Water, Hazards Water, Hazards Water, Hazards Water, Hazards Water, Hazards Flooding/hazards planning - MINERVE Switzerland, Italy, Chile, Kyrgyzstan Impact assessment for adaptation planning Agriculture, Energy, Water Artificial snow production Spain Tourism Flooding/hazards planning - Third Rhone Local, Regional Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, non-hydro), Permafrost thaw Artificial snow production Nocturnal skiing Regional Autonomous Temperature, Precip. (amount, Campos Rodrigues et al. (2011)		Water	vulnerability associated with hydrological	Regional	•	_ Temperature Precip (ar	Temperature, Precip. (amount.	
Flooding/hazards planning - MINERVE Switzerland, Italy, Chile, Kyrgyzstan Impact assessment for adaptation planning Global Undefined Undefined Undefined Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, non-hydro), Permafrost thaw Artificial snow production Nocturnal skiing Regional Regional Autonomous Temperature, Precip. (amount, Campos Rodrigues et al. (2014))	Switzerland	Water, Hazards		_ Local, Regional			Beniston et al. (2011)	
Switzerland, Italy, Chile, Kyrgyzstan Impact assessment for adaptation planning Global Undefined Undefined			Flooding/hazards planning - MINERVE	, 8				
Spain Tourism Regional Autonomous Temperature, Precip. (amount, Campos Rodrigues et al.	Italy, Chile,	Agriculture,	Impact assessment for adaptation planning	Global	Undefined	timing, phase state), Glacier (hydro), Extremes (hydro, non-		
Spain Tourism Regional Autonomous Autonomous Campos Redirectors Regional Autonomous			Artificial snow production					
Spain Tourism Regional Autonomous	C i	Т	Nocturnal skiing	_	A4			
1 1000 to 10 miles of the organism of the orga	Spain	Tourism	Protection and conservation of snowpack	– Regionai	Autonomous			
Diversification of snow-based activities			Diversification of snow-based activities					

Subject to Copyedit SM2-50 Total pages: 87

Chapter	2 Supplementary	Material	IPCC SR Ocea	n and Cryosphere

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference	
		Expansion of skiable area	_				
		Accessing economic assistance (gov & insurance)	_				
		Turning ski resorts into multi-recreation facility	_				
France	Tourism, Hazards	Installation of ladders	Local	Autonomous	Temperature, Glacier (non- hydro, hydro), Permafrost thaw	Duvillard et al. (2015)	
Austria	Tourism	Cover ski runs with textile to reduce ablation	- Local	Autonomous	Snow (non-hydro)	Fischer et al. (2011)	
Ausura	Tourisiii	Grooming ski slopes	- Locai	Autonomous	Show (holf-hydro)	rischer et al. (2011)	
Switzerland Italy	- Tourism	Cover snow with sawdust to preserve for skiing	Regional	Autonomous	Temperature, Precip. (amount, timing), Snow (non-hydro)	Grünewald et al. (2018)	
	Tourism	Installing a hanging bridge across the deep gorge to allow mountain access	- Local	Autonomous		Haeberli et al. (2016)	
	Hazards	Installation of early warning system	- Local	Undefined	Glacier (hydro), Snow (hydro),		
Switzerland	Undefined	Project to support adaptation planning - NELAK	Regional	Formal Policy	Extremes (hydro), Permafrost		
	W	Lake level lowering	II. 1. C 1	TT 1 6 1	– thaw		
	Water	Flood retention	- Undefined	Undefined			
		Policy incentives for "resilience- based" water infrastructure projects	_	Formal Policy	Temperature, Precip. (amount,	Hill (2013)	
Switzerland	Water	Shared water utility service to spread risks among stakeholders	Regional		timing), Glacier (hydro), Snow		
		Policy for reducing water use in periods of drought	-	Undefined	(hydro)		
		Artificial snow production			Temperature, Glacier (non-		
Switzerland	Tourism	Consortium for tourism planning and diversification	Undefined	Autonomous	hydro, hydro), Snow (non- hydro), Permafrost thaw,	Hill et al. (2010)	
	Undefined	Project to support adaptation planning - CIPRA	Regional	Formal Policy	Ecosystem		
Switzerland, France	Energy, Water	Glacier-fed rivers and climate change project - GLAC-HYDROECO-NET	Undefined	Formal Policy	Glacier (hydro), Ecosystem	Khamis et al. (2014)	
	Tourism	Establishment of Chamonix Department of Trail Maintenance	Local	Formal Policy	Temperature, Glacier (non- hydro, hydro), Permafrost thaw	Mourey and Ravanel (2017)	

Subject to Copyedit SM2-51 Total pages: 87

Chapter 2 Supplementary Material IPCC SR Ocean and Cryosp

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference	
		Construction of bridge to access to refuge on Mont Blanc	_		_		
France	Tourism, Hazards	Route modifications, opening trail connecting other refuges	_	Autonomous	_		
		Installation of ladders					
Austria, Germany, Switzerland	Undefined	Assessment of adaptation knowledge and needs	Global	Formal Policy	Glacier (hydro), Snow (hydro), Extremes (hydro)	Muccione et al. (2016)	
Austria		Switching to other tourism activities					
Austria, Switzerland	Tourism	Resorts covering glaciers	- - Undefined	Undefined	Glacier (non-hydro), Snow (non-hydro)	Orlove (2009b)	
Italy		Redistributing available snow	Olideffiled			Office (20090)	
Switzerland	Hazards	Creating hazard maps and restricting construction	_	Formal Policy	Glacier (hydro), Snow (non- hydro), Extremes (hydro)		
Spain	Tourism	Modelling how ski area change and tourism impacts in support of planning process	Undefined	Formal Policy	Temperature, Snow (non-hydro)	Pons-Pons et al. (2012)	
	Tourism	Artificial snow production		Autonomous		Pons et al. (2014)	
Spain	Undefined	Project to support adaptation planning - ESPON-CLIMATE	Undefined	Formal Policy	Snow (non-hydro)		
Austria	Tourism	Evaluation of impacts of climate change on alpine trails to support planning	Regional	Formal Policy	Glacier (hydro), Permafrost thaw		
Austria	Tourism	Artificial snow production	Regional	Autonomous	Temperature, Snow (non-hydro)	Steiger and Mayer (2008)	
High Mounta	ain Asia						
	Agriculture	Development of state action plan on climate change	- Regional				
India	Agriculture	Hazard risk and vulnerability assessment to support planning	- Regional	Formal Policy	Precip. (amount, timing), Glacier (hydro), Extremes (hydro)	Azhoni and Goyal (2018)	
	Agriculture, Water	Spring water rejuvenation project	Local				
	Habitability	Building stone embankments to avoid flooding			Temperature, Precip. (amount,		
India	Other	Increase the range of crops covered under insurance	- Local	- Local	Undefined	timing), Extremes (hydro)	Bhadwal et al. (2013)
	Undefined	Improving access to better technology in agriculture	-		Temperature, Precip. (amount, timing)	-	

Subject to Copyedit SM2-52 Total pages: 87

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
	Agriculture	Capacity building for farmers for water efficient farm practice	_		Temperature, Precip. (amount,	
	11811001100110	Limiting cultivation of summer rice			timing), Extremes (hydro)	
	A:	Field bunding to control erosion	_			_
	Agriculture, Water	Afforestation			Temperature, Precip. (amount,	
		Promoting water efficient irrigation	_		timing)	
		Construction of water harvesting and storage structure	_			_
	Water	Increase public awareness of water conservation	_			
	water	Knowledge sharing exercises	_		Temperature, Precip. (amount,	
		Water conservation structure like dams, surface water bodies, field bunding	_		timing), Extremes (hydro)	
		Water harvesting structures				
Tajikistan	Agriculture, Energy, Culture, Habitability, Water, Other	Stakeholder workshop providing information for adaptation planning	Undefined	Formal Policy	Temperature, Precip. (amount, timing), Glacier (non-hydro)	Bizikova et al. (2015)
		National Adaptation Programme of Action Nepal		E		
		Local Adaptation Plan of Action	_	Formal Policy		
		Research and monitoring of glacial lakes	_		_	
		Early warning systems	_			
N T 1	TI 1 0° 1	Disaster management systems	- D : 1		Snow (non-hydro), Extremes	D (2014)
Nepal	Undefined	Weather monitoring and forecasting	- Regional	II. 1.6 1	(hydro)	Byers et al. (2014)
		Snow and ice management training	_	Undefined		
		Alternative house construction strategies				
		Public awareness building	-			
		Firefighting training and equipment	_			

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
	Other	Insurance coverage and clothing for porters	_			
	Agriculture	Nurseries and afforestation	_			
		Labour migration		Autonomous		
		Appointed villager to regularly check all glaciers	-			
	Undefined	Opening a training center for adaptation in mountain villages	_			
		Planting trees	_		Glacier (hydro), Ecosystem	
Tajikistan		Initiate a watershed development committee	_			Christmann and Aw- Hassan (2015)
		Building water reservoir	es			
		Crop and livestock diversification				
	Agriculture	Supporting education of local person in agriculture and engineering to increase adaptation capacity in community				
	Undefined	Participatory discussion of adaptation strategies for rangeland		Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro)	
Uzbekistan	Agriculture	Establish pastoral user groups				
Uzbekistan		Establish fenced seed isles for yearly natural seeding				
		Seasonal grazing management				
India	Water	Artificial glacier construction	Local	Autonomous	Temperature, Glacier (hydro)	Clouse (2014)
India	Water	Reservoirs built and snow fences installed to capture/store snow in winter for use as irrigation in summer	Local	Autonomous	Snow (hydro)	Banerji and Basu (2010)
		Moving to new location to escape perennial water scarcity				
India	Undefined	Reduce overall hectare of cropland in production	- Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Snow	Clouse (2016)
		Shrink livestock holding to fit available pasturage			(hydro)	
	Habitability	Snow barrier bands	_			

Subject to Copyedit SM2-54 Total pages: 87

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
	Habitability, Water	Building new irrigation canals and rerouting water	•	Formal Policy		
	Culture	Use of reservoirs to store water	_			
T., 41.	Water	Evaluation of artificial ice reservoirs	Regional	A	Temperature, Glacier (hydro)	Clause et al. (2017)
India	Agriculture	Installation of improved water mills		Autonomous		Clouse et al. (2017)
	Agriculture, Water	Building ice stupa to store water	Local	_	Glacier (hydro), Snow (hydro)	-
India	Agriculture	Government watershed improvement programs	Regional	Formal Policy	Glacier (hydro), Snow (hydro)	Dame and Nüsser (2011)
India	Undefined	Spread coal onto glaciers to ensure regeneration	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro)	Gagné (2016)
India, Nepal, Pakistan	Undefined	Collaborative adaptation research initiative - CARIAA	Regional	Formal Policy	Glacier (hydro), Snow (hydro)	Cochrane et al. (2017)
Nepal	Water	Multiple livelihood options to buffer against seasonal losses in one sector	Local	Autonomous	Precip. (amount, timing), Extremes (hydro, non-hydro)	Becken et al. (2013)
	Agriculture	Switching crop types	- - -			Dewan (2015)
		Early warning systems and community-based flood management		Autonomous		
		Training for flood preparedness and responses				
		Using traditional remedies to rehabilitate victims of diseases				
	Undefined	Borrowing from neighbours	_ Local			
Nepal	Ondermed	Vulnerable Group Feeding program	- Local		Precip. (amount, timing), Glacier	
тераг		Framework and strategy for disaster risk management	_		(hydro), Extremes (non-hydro)	
		National strategy for disaster risk management		Formal Policy		
		Flood risk reduction program	_			
	W7.4	Building tube wells for drinking water	_			
	Water	Raising houses on stilts	II. 1. C. 1	II. 1.6. 1	_	
	Hazards	Funds to support social resilience	- Undefined	Undefined		

Subject to Copyedit SM2-55 Total pages: 87

FINAL DRAFT	Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere
		~

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
China	Undefined	Policies to address the impact of permafrost degradation	Undefined		Permafrost thaw	Fang et al. (2011)
		Special fund for climate change adaptation	Regional			g (=)
China	Undefined	Project to support adaptation planning - RECAST	Regional	Formal Policy	Precip. (amount, timing), Glacier (hydro)	Fricke et al. (2009)
China	Habitability	Relocation of settlement	Local	Autonomous	Extremes (hydro)	Diemberger et al. (2015
		Assessment to support sustainable glacier tourism		Formal Policy		
China	Tourism	Tourism diversification	Regional		Temperature, Glacier (non- hydro)	Wang et al. (2010)
		Restricting tourism access			; · ·	
		Shifting to different seasonal pasture	_			Fu et al. (2012)
	Agriculture	Sharing pasture within community		Autonomous	Temperature, Precip. (amount, timing), Snow (non-hydro)	
China		Cultivating fodder to feed in winter				
Cnina		Build small livestock sheds				
		Selling new products				
		Pasture management activities				
	Agriculture, Water	Water saving irrigation measures	_	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro)	Gao et al. (2014)
China	Agriculture	Rotational grazing	Regional	Undefined		
	Undefined	Fencing grassland and grass planting		Ondermed	<i>S</i>), (<i>y</i>)	
Nepal	Hazards	GLOF early warning system		Formal Policy	Glacier (hydro), Extremes (hydro)	Kattelmann (2003)
		Creating community forest user groups	_	1 officer		
		Reliance on traditional institutional arrangements	_		_	Gentle and Maraseni (2012)
		Storage of grains	Local		Temperature, Precip. (amount, timing), Extremes (hydro), Ecosystem	
Nepal	Agriculture	Purchasing irrigated land		Autonomous		
		Switch to new agriculture technology/crop types				
		Institutional support from Community Forest User Groups				
G 11	G 11.	G1 50 57		T 1 0T		

Subject to Copyedit SM2-56 Total pages: 87

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference	
	Agriculture, Culture, Water	Transhumant pastoralism as adaptation strategy	_				
		Money lending	_				
		Cash saving	_				
	Undefined	Take loans in times of food scarcity	_				
		Reduce food intake					
		Migration/selling labor	_				
Kyrgyzstan	Agriculture, Energy, Water	Impact assessment for adaptation planning	Global	Undefined	Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, non-hydro), Permafrost thaw	Beniston and Stoffel (2014)	
Kyrgyzstan	Agriculture	Introduction of new crops with lower water requirements	Local	Autonomous	Temperature, Glacier (hydro), Snow (hydro)	Hill et al. (2017)	
Kyrgyzstan, Uzbekistan	Water	Establishment of centre for transboundary water governance	Regional	Formal Policy	Glacier (hydro)	Hoelzle et al. (2017)	
	Agriculture	Growing crops at higher altitudes	_ _ _ Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro), Ecosystem		
		Regulate agriculture and grazing rights to allow ecosystem recovery				Ingty (2017)	
		Storage and crop fodder					
India	Agriculture, Culture	Reliance on traditional knowledge	Local				
		Diversify to tourism	_				
	Tourism	Migration					
		State action plan on climate change	Regional	Formal Policy	_		
India	Habitability, Water	Evaluating efficacy of artificial glaciers	Local	Formal Policy	Glacier (hydro)	Nüsser et al. (2018)	
	Hazards	DRR demonstration in schools	T and	Formal Policy	- Temperature, Precip. (amount,		
India	Agriculture	Populating potato and peas	- Local	Undefined	timing), Glacier (hydro),	Kaul and Thornton (2014)	
	Agriculture, Other	Insurance schemes for crops	Undefined	Formal Policy	Extremes (hydro)	(2011)	

Subject to Copyedit SM2-57 Total pages: 87

Chapter 2 Supprementary Material 11 CC Sit Secan and Cryosphere	Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere
---	----------------------------------	------------------------------

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
	Water	Participatory project to underpin adaptation planning	_			
	Agriculture	Plant less water-intensive crops				
India	Agriculture	Irrigate fields timeshare	_ Local	Formal Policy	Precip. (amount, timing), Glacier	Kelkar et al. (2008)
maia		Sell land and livestock	_ Loca:	1 officer 1 officer	(hydro), Snow (hydro)	rental et al. (2000)
	Undefined	Find other jobs	_			
		Take loans	_			
	A	Crop diversification				
	Agriculture	Construction of greenhouses	_	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro), Extremes (hydro)	Konchar et al. (2015)
Nepal	Agriculture, Tourism	Diversify to tourism, agropastoralism, agroforestry	Local			
	Undefined	New roofing material				
Nepal	Agriculture	changing crops and agricultural practices using Indigenous and local knowledge	Local	Autonomous	Temperature, Snow (non-hydro), Snow (hydro)	Manandhar et al. (2011)
Nepal	Tourism	Assessment of ecotourism as adaptation measure for conservation area	Regional	Undefined	Precip. (amount, timing, phase state), Extremes (non-hydro)	Adler et al. (2013)
Nepal	Habitability	Local relocation of settlement after decreased water supply	Local	Autonomous	Snow (hydro)	Barnett et al. (2005)
Nepal	Agriculture	Crop diversification	– Local	Autonomous	Temperature, Precip. (amount, timing), Snow (non-hydro)	Onta and Resurreccion (2011)
Пераг	Undefined	Cross-border trade and day-labour trips	Locai	Autonomous		
Nepal	Water	Lake lowering	Regional	Formal Policy	Extremes (hydro)	Orlove (2009b)
Nepal	Undefined	Project to support adaptation planning - Climate Witness Project	– Regional	Formal Policy	Glacier (hydro), Snow (non- hydro), Extremes (hydro)	Rai and Gurung (2005)
		Establishing a Designated National Authority				
Name 1	Undefined	Lake lowering		E1 D-1:	Glacier (hydro), Extremes	Somos-Valenzuela et al.
Nepal	Ondermed	Modelling impact of GLOF to support planning	– Undefined	Formal Policy	(hydro)	(2015)
Nepal	Water	Limiting water consumption to drinking and cooking requirements	_ Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Extremes (hydro)	McDowell et al. (2013)
1		Roof water collection system				(-)

Subject to Copyedit SM2-58 Total pages: 87

Chapter 2 Supplementary	Material	IPCC SR Ocean and Cryosphere
2110 p 1 2 2 2 2 p p 1 2 111 2 11 1 1 1 1 1	1,100,011001	ii e e sit e comi una ei jespiicie

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
		Hire assistants to help with water retrieval activities	_			
	Undefined	Collecting fuelwood for heating				
Nepal, Indi	a Hazards, Water	Bilateral Committee on Flood Forecasting	Regional	Formal Policy	Glacier (hydro), Snow (hydro), Extremes (hydro)	Lebel et al. (2010)
		Crop diversification	_		Temperature, Precip. (amount,	
India	Agriculture	Change timing of agricultural activities	Local	Autonomous	timing), Glacier (hydro), Snow	Meena et al. (2019)
		Agropastoralism to diversify livelihood	_		(hydro)	
		Changing agricultural patterns				Maikhuri et al. (2017)
		Switching to other types of animal husbandry	Local	Autonomous	Precip. (amount, timing), Glacier (hydro), Extremes (hydro)	
India	Agriculture	Adopt horticulture				
	C	Establish forest councils and village forest committee				
		Migration				
	Undefined	Take loans and insurance				
	Hazards	Instillation of GLOF early warning system	— Regional	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro), Extremes (hydro)	Meenawat and Sovacool (2011)
		Lowering lake water levels				
Bhutan	Undefined	Community awareness and capacity building activities				
		GLOF Risk Reduction Projects				
Bhutan, Nepal	Undefined	Assessment of adaptation knowledge and needs	Global	Formal Policy	Glacier (hydro), Snow (hydro), Extremes (hydro)	Muccione et al. (2016)
		India National Action Plan on Climate Change	– Undefined		Temperature, Precip. (amount,	
India	Water	National Water Policy	— Undefined	Formal Policy	timing), Glacier (hydro), Extremes (hydro)	Moors et al. (2011)
		Project to support adaptation planning - Highnoor	n Regional	_		
I., 1:,	A:14	Crop diversification	T = ==1	A	Temperature, Precip. (amount,	N:1 (2017)
India	Agriculture	Crop diversification	– Local	Autonomous	timing), Glacier (hydro), Ecosystem	Negi et al. (2017)

Subject to Copyedit SM2-59 Total pages: 87

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
		Agropastoralism to diversify livelihood				
		Convert irrigated land into rainfed	_			
		Switching away from livestock rearing	_			
		Use of moisture conserving cropping techniques	_			
	Undefined	Migration	_		Extremes (hydro)	-
Pakistan	Habitability	Relocation after hazard event	Local	Autonomous	Extremes (hydro, non-hydro)	Kreutzmann (2012)
Pakistan	Water	Construction of water channels for irrigation and domestic water supply	Local	Autonomous	Glacier (hydro)	Nüsser and Schmidt (2017)
Pakistan	Undefined	Migration	Local	Autonomous	Glacier (hydro), Snow (hydro)	Parveen et al. (2015)
D - 1-1 4	Undefined	Household renovations	– Local	Autonomous	Precip. (amount, timing), Glacier	Shah et al. (2017)
Pakistan		Precautionary savings			(hydro), Extremes (hydro, non- hydro)	Shan et al. (2017)
Pakistan	Water	Irrigation scheme/program	Local		Temperature, Precip. (amount, timing), Glacier (hydro)	Spies (2016)
		Poverty alleviation and physical infrastructure development program		Autonomous		
Kyrgyzstan, Tajikistan, Uzbekistan, Kazakhstan	Undefined	Identification of steps for overcoming adaptation challenges - ACQWA project	Regional	Formal Policy	Temperature, Glacier (hydro), Snow (hydro)	Sorg et al. (2014b)
		Water user associations				
		Water allocation strategy	— — Regional			
		Water rationing		Formal Policy		
Kyrgyzstan,	Water	Water sharing	_		Temperature, Precip. (amount,	a. 1 (2012)
Tajikistan		Integrate IWRM principles into institutions	_	Undefined	timing), Glacier (hydro), Snow (hydro)	Stucker et al. (2012)
		Clean and repair canals	Local	Autonomous		
	Agriculture	Expand orchards	_			

Subject to Copyedit SM2-60 Total pages: 87

FINAL DR	AFT	Chapter 2 Supplementary Material	IPCC SR Occ	ean and Cryosphe	re
Region	Sector	Description of Adaptation	Scale of relevance /	Type of	Climat

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
		Do not plant a second crop	_			
		Crop diversification	_		_	
	Hazards	Early warning system		- Formal Policy		
	Undefined	Integrated Water Resource Management project	Undefined	Tormar I oney		
	Agriculture, Biodiversity, Energy, Hazards, Water	Development of sectoral adaptation plans				
Kazakhstan	Agriculture, Habitability, Water	Introduction of water-saving technologies	Regional 	Formal Policy		
		Decrease livestock pressure on pasture			Glacier (hydro), Snow (hydro), Extremes (hydro) — Xenarios et al. (2018)	
	Agriculture	Realization of pasture management plans				
		Establishment of the Public Seed Funds				
	Water	Development of water user associations	_ _ _ Local			
	Agriculture, Biodiversity, Water					W (2010)
	Agriculture, Hazards, Water	Capacity strengthening and livelihood diversification project				Xenarios et al. (2018)
Tajikistan	Habitability	Infrastructure improvements				
		Developing evacuation maps	_			
	Hazards	Constructing shelters for hazard protection	_	Autonomous		
		Training of volunteers for the search and rescue activities				
Varalshatan	Agriculture, Biodiversity, Water	Initiation of Ecosystem-based Adaptation (EbA)	- Regional			
Kazakhstan, Kyrgyzstan, Tajikistan	Agriculture, Hazards, Water	Knowledge sharing arrangements	- Regional	Formal Policy		
	Agriculture, Water	Documentation, dissemination, and preservation of local knowledge relevant to adaptation	Local			
Low Latitude	es (Andes)					

Subject to Copyedit SM2-61 Total pages: 87

Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere
enapter 2 Supprementary Material	ii ee sit eeedii diid ei yospiicie

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
Bolivia	Undefined	Migration	Local	Autonomous	Glacier (hydro)	Brandt et al. (2016)
Bolivia	Water	Construction of reservoirs for water storage	Regional	Formal Policy	Temperature, Precip (amount, timing), Glacier (hydro)	Buytaert et al. (2017)
Bolivia	Undefined	Migration	Local	Autonomous	Temperature, Glacier (hydro), Snow (hydro), Extremes (hydro)	Kaenzig (2015)
Bolivia	Tourism	Rebranding the loss of glaciers as an opportunity for "last chance tourism"	Regional	Autonomous	Temperature, Precip. (amount, timing), Snow (hydro)	Kaenzig et al. (2016)
		Switching to cash crops				
	Agriculture	Night irrigation	_			
		Delay planting until irrigation is available	-	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro), Extremes (hydro), Permafrost thaw, Ecosystem	McDowell and Hess (2012)
Bolivia	Undefined	Migrating to nearby towns to work	Local —			
		Sharing work between community members				
		Participatory vulnerability assessment to inform adaptation	_			
Bolivia	Undefined	Migration	Local	Autonomous	Glacier (hydro)	Yager (2015)
Bolivia	Water	Project to support adaptation planning - PPCR				
Bolivia, Colombia, Ecuador, Peru	Agriculture, Biodiversity, Water	Project to support adaptation planning - PRAA	-			
G-11:	Agriculture, Habitability, Water	Project to support adaptation planning - INAP	_ Undefined	Formal Policy	Temperature, Ecosystem	Huggel et al. (2015)
Colombia	Biodiversity, Water	Project to support adaptation planning - Macizo Colombiano	_	r ermar r emey		
Peru	Agriculture, Hazards, Water	Project to support adaptation planning - Proyecto Glaciares; PACC				
	Hazards, Water	Project to support adaptation planning - IMACC	_		Temperature, Extremes (hydro)	
Ecuador	Agriculture, Hazards, Other	Climate Change Action Plan	Undefined	Formal Policy	Temperature, Precip (amount, timing), Extremes (hydro)	Anguelovski et al. (2014)
Ecuador	Water	Construction of infrastructure to transfer water between basins	Regional	Formal Policy	Temperature, Precip (amount, timing), Glacier (hydro)	Buytaert and De Bièvre (2012)

Subject to Copyedit SM2-62 Total pages: 87

Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere
Chapter 2 Supprementary material	ii ee sit eeeun una er jospher

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
Peru, Chile	Water	Establishment of adaptation plan	Regional	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro)	Mills-Novoa et al. (2017)
Colombia, Peru	Undefined	Assessment of adaptation knowledge and needs	Global	Formal Policy	Glacier (hydro), Snow (hydro), Extremes (hydro)	Muccione et al. (2016)
Peru	Undefined	Migration	Local	Autonomous	Glacier (hydro)	Alata et al. (2018)
Peru	Water	National Water Authority	Local	Formal Policy	Temperature, Glacier (hydro)	Bury et al. (2013)
	Undefined	GLOF assessment	 Regional] 			
	Habitability, Water	GLOF prevention program through monitoring and engineering projects			Temperature, Extremes (hydro)	Carey et al. (2012)
Peru	Water	Initiation of GLOFF assessment program		Formal Policy	Glacier (hydro), Extremes (hydro)	
		Installation of floodgates to control water level				
		National System of Hydrological Resource Management				
Peru	Water	Project to support adaptation planning - CGIAR	Regional	Formal Policy	Glacier (hydro)	Condom et al. (2012)
Peru	Agriculture, Biodiversity, Culture, Tourism, Water		Local	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro)	Doughty (2016)
Peru	Agriculture	Crop diversification	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro)	Doughty (2016)
Peru	Water, Hazards	Potential for multi-purpose projects to address GLOFs and water availability	Regional	Undefined	Glacier (hydro), Extremes (hydro)	Drenkhan et al. (2019)
Peru	Undefined	Project to support adaptation planning - CONAM + IGP	Regional	Formal Policy	Glacier (hydro)	Lagos (2007)
	Undefined	Project to support adaptation planning - Adapts project				
	Agriculture, Biodiversity	Protection of upstream forests	Regional		Temperature, Precip. (amount,	Lasage et al. (2015)
Peru	Water	Surface storage dams		Formal Policy	timing), Glacier (hydro), Snow (hydro)	
	A creiquitura	Low-cost gravity drip irrigation system	- Local		(ilyulo)	
	Agriculture	Changing the frequency of irrigation	— Local			

Subject to Copyedit SM2-63 Total pages: 87

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
		Crop diversification	_			
	Water	Water harvesting using roof-water systems	_			
	Undefined	Establish an integrated regional database on natural resources, climate, and vulnerability. Align the national and regional institutional and legal frameworks to deal with the expected effects of climate change Integrated management of reforestation, soil conservation, terrace management, monitoring systems, and capacity building	_			Lee et al. (2014)
		National Climate Change Strategy			Temperature, Precip. (amount, timing), Glacier (hydro), Extremes (hydro)	
Peru	Water	Construction of small structures for water storage and distribution and improved management of irrigated areas		Undefined		
	Hazards	Integrating existing early warning systems to enhance emergency management				
	Agriculture	Conserving native crop varieties				
		Pest management practices				
		Improved pastures and fodder conservation practices	-			
Peru	Agriculture	Reducing planting activities	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro)	Lennox and Gowdy (2014)
Peru	Agriculture	Crop diversification	_Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Extremes (hydro)	Lennox (2015)
	6	Moving to livestock based economy to sell milk rather than planting crops			Precip. (phase state)	
		Livestock, land, and labour diversification	Local		Temperature, Precip. (amount,	
Peru	Agriculture	Economic diversification		Autonomous	timing), Glacier (hydro), Extremes (hydro), Permafrost thaw	Lopez-i-Gelats et al. (2015)
Peru	Agriculture, Energy	Project to support adaptation planning - PROCLIM	Regional	Formal Policy	Precip. (amount, timing), Extremes (hydro)	Orlove (2009a)

Subject to Copyedit SM2-64 Total pages: 87

Chapter 2 Supplementary	Material	IPCC SR Ocean and Cryosphere
2110 p 1 2 2 2 2 p p 1 2 111 2 11 1 1 1 1 1	1.100.01	ii e e sit e comi mina ei jespiicie

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
Peru	Agriculture	Line irrigation canals with cement and install plastic pipes	Local	Autonomous	Glacier (hydro), Snow (hydro)	Orlove et al. (2019)
Peru	Undefined	Glacier change assessment in support of adaptation planning	Undefined	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro)	Peduzzi et al. (2010)
		Changing agricultural calendar	_			
		Increasing pesticide use	_			
	A ami avaltuma	Crop diversification	_		Temperature, Precip. (amount,	
Peru	Agriculture	Cultivating in furrows	Local	Autonomous	timing), Glacier (hydro), Snow (non-hydro), Extremes (hydro),	Postigo (2014)
		Burning shrubs, grass, manure to generate heat	_ _ _		Ecosystem	
		Increasing livestock mobility				
	Water	Water boards regulating water				
_	Agriculture	Pasture rotation	— Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro), Ecosystem	Postigo et al. (2008)
Peru		Creating irrigation channel		Formal Policy		
Peru	Water	Hillside infiltration systems in grasslands	Regional	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro)	Somers et al. (2018)
	Water	Election of water allocator	Local Undefined	Autonomous	Glacier (hydro), Extremes	Stensrud (2016)
Peru		Making micro dams		Earned Dalies		
		Installing water pipes	Regional	Formal Policy		
Peru	Water	Migration to towns for work	Local	Autonomous	Glacier (hydro), Extremes (hydro)	Wrathall et al. (2014)
		Livelihood diversification			Precip. (amount, timing), Glacier Young as (hydro), Extremes (hydro) (2006)	
	Agriculture	Getting grazing rights to other areas	_			
D		Agricultural and crop diversification	— Local —			Young and Lipton
Peru	Water	Timed allocation of water-flow to individuals		Autonomous		
	Undefined	Seeking foreign funding, skills, attention for help				
	Other	Migration				

Subject to Copyedit SM2-65 Total pages: 87

FINAL DRAFT		Chapter 2 Supplementary Material	IPCC SR Ocean			
Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
	Biodiversity	Conservation corridor		Formal Policy		
New Zeala	nd					
New		Constructing cantilevered bridge to the glacier			Temperature, Precip. (amount,	Espiner and Becken
Zealand	Tourism	Using boats to ferry tourists after glacial lake appeared	Regional	Autonomous	timing), Glacier (non-hydro)	(2014)
		Artificial snow production	_			
New	Tourism	Transitioning to year-round tourism	Dagianal	A .	Charles (non hydro)	Hopkins and Maclean (2014)
Zealand	Tourism	Forming conglomerate business ventures	— Regional —	Autonomous	Snow (non-hydro)	
		Developing new ski slopes				
New Zealand	Tourism	Assessment of stakeholder perceptions for adaptation planning	Regional	Formal Policy	Glacier (non-hydro), Snow (non-hydro)	Stewart et al. (2016)
Scandinavia	a					
		Changing activities at ski area	— Regional		Temperature, Precip. (amount, timing), Snow (non-hydro)	Demiroglu et al. (2018)
		Changing time of use of ski area				
Norway	Tourism	Changing ski areas within Norway		Autonomous		
		Artificial snow production				
		Salting glacier surface				
Norway	Tourism	Diversifying locations of tourism activity	Undefined	Autonomous	Glacier (non-hydro)	Furunes and Mykletun (2012)
Norway	Energy	Water resource and energy directorate	Undefined	Formal Policy	Glacier (hydro)	Orlove (2009a)
Southern A	Andes					
Chile	Undefined	Participatory project to identify adaptive options	Regional	Formal Policy	Precip. (amount, timing), Snow (hydro)	Aldunce et al. (2016)
Chile	Habitability	Local relocation of settlements after GLOF event in 1977	Local	Formal Policy	Extremes (hydro)	Anacona et al. (2015)
Chile	Agriculture, Energy, Water	Impact assessment for adaptation planning	Global	Undefined	Temperature, Precip. (amount, timing, phase state), Glacier	Beniston and Stoffel (2014)

Subject to Copyedit SM2-66 Total pages: 87

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
			•		(hydro), Extremes (hydro, non- hydro), Permafrost thaw	
	Agriculture	Provide financing and subsidies to farmers	_			
		Declaration of drought zones				
		Water data system improvement	Regional	Formal Policy	Temperature, Precip. (amount,	
Chile	Water	Water transfer using trucks			timing), Glacier (hydro), Snow	Clarvis et al. (2014)
	water	Dam construction	_		(non-hydro), Snow (hydro)	nydro), Snow Clarvis et al. (2014) v (hydro)
		Traditional water distribution strategies	T 1	A4	-	
		Crop diversification	– Local	Autonomous		
	Water	Water allocation policy	— — Regional —		Temperature, Glacier (hydro),	nydro), Hill (2013)
		Infrastructure to support irrigation security				
		Policies for drought periods		Formal Policy		
Chile		Policy to improve irrigation efficiency			Snow (hydro)	
		Policy for better water resources management under increasing scarcity			_	
		Water allocation policy		Autonomous		
		Reinforcing doors and roofs		Autonomous		
	Undefined	Couples don't marry to receive subsidy to increase portable water	Local			
		Migration to areas with more vegetation				
~! ·!	Agriculture	Companies using more efficient irrigation systems	Undefined	Autonomous	Temperature, Precip. (amount,	
Chile		Public funds made available to improve irrigation efficiency	Regional	Formal Policy	- timing), Glacier (hydro), Snow (hydro)	Young et al. (2010)
		Companies securing water rights	Undefined	•	_	
	Water	Creating water storage ponds		Autonomous		
		Subsidies made available for single mother for water payments	Local	Formal Policy	_	

Total pages: 87

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
	_	Reducing intake of water canals		Autonomous		_
		Reduce water use and seize water rights	_		_	
		Policy to extend water access	_ _ Regional			
		Constructing water canals and pool structures	8	Formal Policy		
	Hazards	Municipal Emergency Committee provides alerts for harsh seasons	-			
Peru, Chile	Water	Adaptation plan for water management	Regional	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro)	Mills-Novoa et al. (2017)
Argentina,		Baseline assessment to support adaptation - SSHRC	 Regional		Temperature, Glacier (hydro), Snow (hydro), Extremes (hydro)	Montana et al. (2016)
Chile,	Undefined	Baseline assessment to support adaptation - IAI		Formal Policy		
Bolivia		Baseline assessment to support adaptation - CLACSO-CROP				
Argentina	Habitability, Water,	Glacier protection law Argentina	– Regional	Formal Policy	Glacier (non-hydro, hydro)	Anacona et al. (2018)
Chile	Other	Glacier protection law Chile	Regional			
Western Car	nada and USA					
Canada	Tourism	Artificial snow production	Local	Undefined	Snow (hydro)	Da Silva et al. (2019)
Canada	Hazards, Habitability	Creation of adaptation strategy	Local	Formal Policy	Temperature, Precip. (amount, timing), Extremes (hydro), Ecosystem	Picketts (2013)
Canada	Hazards, Habitability	Creation of steering committee for adaptation planning	Local	Formal Policy	Temperature, Precip. (amount, timing), Extremes (hydro)	Picketts et al. (2016)
Canada	Т	Artificial snow production	I I., J. C., . J	II J. C J	Glacier (non-hydro), Snow (non-	O-1 (2000-)
USA	– Tourism	Creation of the Sustainable Slopes program	- Undefined	Undefined	hydro) Orlove	Orlove (2009a)
USA	Undefined	Establishment of adaptation partnerships	Global	Formal Policy	Temperature, Precip. (amount, timing), Snow (hydro)	Halofsky et al. (2018)
		Artificial snow production		Undefined		
USA	Tourism	Diversification of tourism to other seasons/non-snow reliant	Local	Autonomous	Snow (hydro)	Hagenstad et al. (2018)
USA	Undefined	Infrastructure to support fish and ranchers	Regional	Formal Policy		McNeeley (2017)

Subject to Copyedit SM2-68 Total pages: 87

Chapter 2 Supplementary Material	IPCC SR Ocean and Cryosphere

Region Country	Sector	Description of Adaptation	Scale of relevance / implementation	Type of adaptation	Climatic Driver of Adaptation	Reference
		Establishment of Tribal Climate Resilience Program Establishment of Climate Science Centers and Landscape Conservation Cooperative	- Local		Temperature, Glacier (hydro), Snow (hydro)	
USA	Undefined	Assessment of adaptation knowledge and needs	Global	Formal Policy	Glacier (hydro), Snow (hydro), Extremes (hydro)	Muccione et al. (2016)
USA	Tourism	Develop alternative tourism (local heritage, wildlife viewing)	Local	Autonomous	Glacier (non-hydro), Snow (non-hydro)	Orlove et al. (2019)
USA	Habitability	Vulnerability analysis and adaptations strategy	Local	Formal Policy	Temperature, Precip. (amount, timing), Snow (hydro), Extremes (hydro)	Strauch et al. (2015)
Iceland						
Iceland	Tourism, Hazards	Participatory planning to shift to safer glacier hiking routes	Local	Autonomous	Glacier (non-hydro)	Welling et al. (2019)

Subject to Copyedit SM2-69 Total pages: 87

References

- Addor, N. et al., 2014: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. *Water Resources Research*, **50** (10), 7541-7562, doi:10.1002/2014wr015549.
- Adler, C. E., D. McEvoy, P. Chhetri and E. Kruk, 2013: The role of tourism in a changing climate for conservation and development. A problem-oriented study in the Kailash Sacred Landscape, Nepal. *Policy Sciences*, **46** (2), 161-178, doi:10.1007/s11077-012-9168-4.
 - Alata, E., J. Recharte and B. Fuentealba, 2018: El despoblamiento de la puna: efectos del cambio climático y otros factores. In: Foro International de Ciencias Sociales: Diálogos Interdisciplinarios sobre el Cambio Climático, Desastres y Gobernanza, Cusco, Foro International de Ciencias Sociales: Diálogos Interdisciplinarios sobre el Cambio Climático, Desastres y Gobernanza.
 - Albalat, A. et al., 2018: Climatic trends in snow observations in Andorra. In: *International Snow Science Workshop Proceedings* Innsbruck, Austria, 586-588.
 - Alberton, M. et al., 2017: *Outlook on climate change adaptation in the Carpathian mountains*. United Nations Environment Programme, GRID-Arendal and Eurac Research, Nairobi, Vienna, Arendal and Bolzano, 54 pp.
 - Aldunce, P. et al., 2016: Unpacking resilience for adaptation: Incorporating practitioners' experiences through a transdisciplinary approach to the case of drought in Chile. *Sustainability*, **8** (9), 905, doi:10.3390/su8090905.
 - Aleynikov, A. A., N. A. Volodicheva, A. D. Olenikov and D. A. Petrakov, 2011: Glacier and avalanche hazards in the recreational complex "Chegetskaya Polyana". *Elbrus region, Ice and Snow*, **2** (114).
 - Allen, S. K., S. C. Cox and I. F. Owens, 2011: Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts. *Landslides*, **8** (1), 33-48, doi:10.1007/s10346-010-0222-z.
 - Allison, E. A., 2015: The spiritual significance of glaciers in an age of climate change. *Wiley Interdisciplinary Reviews: Climate Change*, **6** (5), 493-508, doi:10.1002/wcc.354.
 - Amagai, Y., G. Kudo and K. Sato, 2018: Changes in alpine plant communities under climate change: Dynamics of snow-meadow vegetation in northern Japan over the last 40 years. *Applied Vegetation Science*, **21**, 561-571, doi:10.1111/avsc.12387.
- Anacona, P. I. et al., 2018: Glacier protection laws: Potential conflicts in managing glacial hazards and adapting to climate change. *Ambio*, doi:10.1007/s13280-018-1043-x.
 - Anacona, P. I., A. Mackintosh and K. Norton, 2015: Reconstruction of a glacial lake outburst flood (GLOF) in the Engaño valley, chilean patagonia: Lessons for GLOF risk management. *Science of the Total Environment*, **527-528**, 1-11, doi:10.1016/j.scitotenv.2015.04.096.
 - Anguelovski, I., E. Chu and J. Carmin, 2014: Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. *Global Environmental Change*, **27**, 156-167, doi:10.1016/j.gloenvcha.2014.05.010.
 - Archer, D. R. and H. J. Fowler, 2004: Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. *Hydrology and Earth System Sciences*, **8** (1), 47-61, doi:10.5194/hess-8-47-2004.
 - Arkian, F., M. Karimkhani and H. Taheri, 2014: Variability and Trends in the Duration and Depth of Snow Cover in Iran in Thirty Years. *Journal of Earth Science & Climatic Change*, 5 (10), 1, doi:10.4172/2157-7617.1000239.
 - Atmeh, K., A. Andruszkiewicz and K. Zub, 2018: Climate change is affecting mortality of weasels due to camouflage mismatch. *Sci Rep*, **8** (7648), doi:10.1038/s41598-018-26057-5.
 - Azhoni, A. and M. K. Goyal, 2018: Diagnosing climate change impacts and identifying adaptation strategies by involving key stakeholder organisations and farmers in Sikkim, India: Challenges and opportunities. *Science of the Total Environment*, **626**, 468-477, doi:10.1016/j.scitotenv.2018.01.112
 - Babaeian, I., R. Modirian, M. Karimian and M. Zarghami, 2015: Simulation of climate change in Iran during 2071-2100 using PRECIS regional climate modelling system. *Desert*, **20** (2), 123-134, doi:10.22059/jdesert.2015.56476.
 - Ballesteros-Cánovas, J. A. et al., 2018: Climate warming enhances snow avalanche risk in the Western Himalayas. *Proceedings of the National Academy of Sciences of the United States of America*, **115** (13), 3410-3415, doi:10.1073/pnas.1716913115.
 - Balocchi, F., R. Pizarro, T. Meixner and F. Urbina, 2017: Annual and monthly runoff analysis in the Elqui River, Chile, a semi-arid snow-glacier fed basin. *Tecnología y Ciencias del Agua*, **8** (6), 23-35, doi:10.24850/j-tyca-2017-06-02.
 - Banerji, G. and S. Basu, 2010: Adapting to climate change in Himalayan cold deserts. *International Journal of Climate Change Strategies and Management*, **2** (4), 426-448, doi:10.1108/17568691011089945.
- Baraer, M. et al., 2012: Glacier recession and water resources in Peru's Cordillera Blanca. *Journal of Glaciology*, **58** (207), 134-150, doi:10.3189/2012JoG11J186.
- Bard, A. et al., 2015: Trends in the hydrologic regime of Alpine rivers. *Journal Of Hydrology*, **529**, 1823-1837, doi:10.1016/j.jhydrol.2015.07.052.
- Barnett, T. P., J. C. Adam and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. *Nature*, **438** (7066), 303-309, doi:10.1038/nature04141.
 - Bavay, M., T. Grünewald and M. Lehning, 2013: Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. *Advances in Water Resources*, **55**, 4-16, doi:10.1016/j.advwatres.2012.12.009.

- Beamer, J. P., D. F. Hill, A. A. Arendt and G. E. Liston, 2016: High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed. *Water Resources Research*, **52** (5), 3888-3909, doi:10.1002/2015WR018457.
- Beaudin, L. and J. C. Huang, 2014: Weather conditions and outdoor recreation: A study of New England ski areas. *Ecological Economics*, **106**, 56-68, doi:10.1016/j.ecolecon.2014.07.011.
 - Becken, S., A. K. Lama and S. Espiner, 2013: The cultural context of climate change impacts: Perceptions among community members in the Annapurna Conservation Area, Nepal. *Environmental Development*, **8**, 22-37, doi:10.1016/J.ENVDEV.2013.05.007.
 - Begert, M. and C. Frei, 2018: Long-term area-mean temperature series for Switzerland-Combining homogenized station data and high resolution grid data. *International Journal of Climatology*, **38** (6), 2792-2807, doi:10.1002/joc.5460.
 - Beniston, M. et al., 2018: The European mountain cryosphere: a review of its current state, trends, and future challenges. *The Cryosphere*, **12** (2), 759-794, doi:10.5194/tc-12-759-2018.
 - Beniston, M. and M. Stoffel, 2014: Assessing the impacts of climatic change on mountain water resources. *Science of the Total Environment*, **493**, 1129-1137, doi:10.1016/j.scitotenv.2013.11.122.
 - Beniston, M., M. Stoffel and M. Hill, 2011: Impacts of climatic change on water and natural hazards in the Alps: Can current water governance cope with future challenges? Examples from the European "ACQWA" project. *Environmental Science and Policy*, **14**, 734-743, doi:10.1016/j.envsci.2010.12.009.
 - Bhadwal, S. et al., 2013: Adaptation to changing water resource availability in Northern India with respect to Himalayan Glacier retreat and changing monsoons using participatory approaches. *Science of the Total Environment*, **468**, S152-S161, doi:10.1016/j.scitotenv.2013.05.024.
 - Bhatti, A. M., T. Koike and M. Shrestha, 2016: Climate change impact assessment on mountain snow hydrology by water and energy budget-based distributed hydrological model. *Journal Of Hydrology*, **543**, 523-541, doi:10.1016/J.JHYDROL.2016.10.025.
 - Bhutiyani, M. R., V. S. Kale and N. J. Pawar, 2007: Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. *Climatic Change*, **85** (1), 159-177, doi:10.1007/s10584-006-9196-1.
 - Bhutiyani, M. R., V. S. Kale and N. J. Pawar, 2010: Climate change and the precipitation variations in the northwestern Himalaya: 1866-2006. *International Journal of Climatology*, **30** (4), 535-548, doi:10.1002/joc.1920.
 - Bizikova, L., L. Pintér and N. Tubiello, 2015: Normative scenario approach: a vehicle to connect adaptation planning and development needs in developing countries. *Regional Environmental Change*, **15** (7), 1433-1446, doi:10.1007/s10113-014-0705-x.
- Björnsson, H. and F. Pálsson, 2008: Icelandic glaciers. *Jökull*, **58**, 365-386.
 - Bocchiola, D., 2014: Long term (1921-2011) hydrological regime of Alpine catchments in Northern Italy. *Advances in Water Resources*, **70**, 51-64, doi:10.1016/j.advwatres.2014.04.017.
 - Bodin, X. et al., 2016: The 2006 Collapse of the Bérard Rock Glacier (Southern French Alps). *Permafrost and Periglacial Processes*, **28** (1), 209-223, doi:10.1002/ppp.1887.
 - Bolch, T. et al., 2018: *Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region*. The Hindu Kush Himalaya Assessment Mountains, Climate Change, Sustainability and People, Springer Nature, Switzerland.
 - Bosshard, T., S. Kotlarski, M. Zappa and C. Schär, 2014: Hydrological climate-impact projections for the Rhine River: GCM–RCM uncertainty and separate temperature and precipitation effects. *Journal of Hydrometeorology*, **15** (2), 697-713, doi:10.1175/JHM-D-12-098.1.
 - Bozkurt, D. and O. L. Sen, 2013: Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. *Journal Of Hydrology*, **480**, 149-161, doi:10.1016/j.jhydrol.2012.12.021.
 - Brahney, J. et al., 2017: Evidence for a climate-driven hydrologic regime shift in the Canadian Columbia Basin. *Canadian Water Resources Journal*, **42** (2), 179-192, doi:10.1080/07011784.2016.1268933.
 - Brandt, R., R. Kaenzig and S. Lachmuth, 2016: Migration as a Risk Management Strategy in the Context of Climate Change: Evidence from the Bolivian Andes.[Milan, A., B. Schraven, K. Warner and N. Cascone (eds.)]. Springer International Publishing Ag, Cham, 6, 43-61.
- Brodie, J. F. and E. Post, 2010: Nonlinear responses of wolverine populations to declining winter snowpack. *Population Ecology*, **52** (2), 279-287, doi:10.1007/s10144-009-0189-6.
 - Brown, R. D. et al., 2017: Chapter 3. Arctic terrestrial snow cover. In: Arctic Terrestrial Snow Cover (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 25-64.
 - Brugger, J., K. W. Dunbar, C. Jurt and B. Orlove, 2013: Climates of anxiety: Comparing experience of glacier retreat across three mountain regions. *Emotion, Space and Society*, **6**, 4-13, doi:10.1016/j.emospa.2012.05.001.
 - Bueno de Mesquita, C. P. et al., 2018: Topographic heterogeneity explains patterns of vegetation response to climate change (1972–2008) across a mountain landscape, Niwot Ridge, Colorado. *Arctic, Antarctic, and Alpine Research*, **50** (1), e1504492, doi:10.1080/15230430.2018.1504492.
- Burger, F. et al., 2019: Interannual variability in glacier contribution to runoff from a high elevation Andean catchment: understanding the role of debris cover in glacier hydrology. *Hydrological Processes*, **33** (2), 214-229, doi:10.1002/hyp.13354.

4

5

8

9

12

13

14

17 18

19

21

22

23

24

25

26

27

28

32 33

34 35

36

37

38

39

40

41

42

47

48

49

50 51

54

55

56 57

- Bury, J. et al., 2013: New Geographies of Water and Climate Change in Peru: Coupled Natural and Social 1 Transformations in the Santa River Watershed. Annals of the Association of American Geographers, 103 (2), 363-2 374, doi:10.1080/00045608.2013.754665. 3
 - Bury, J. T. et al., 2011: Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Climatic Change, 105 (1-2), 179-206, doi:10.1007/s10584-010-9870-1.
- Buytaert, W. and B. De Bièvre, 2012: Water for cities: The impact of climate change and demographic growth in the 6 tropical Andes. Water Resources Research, 48 (8), 897, doi:10.1029/2011WR011755. 7
 - Buytaert, W. et al., 2017: Glacial melt content of water use in the tropical Andes. Environmental Research Letters, 12, 1-8, doi:10.1088/1748-9326/aa926c.
- Byers, A. C., D. C. McKinney, S. Thakali and M. Somos-Valenzuela, 2014: Promoting science-based, community-10 driven approaches to climate change adaptation in glaciated mountain ranges: HiMAP. Geography, 99, 143-152. 11
 - Cadbury, S. L., A. M. Milner and D. M. Hannah, 2010: Hydroecology of a New Zealand glacier-fed river: linking longitudinal zonation of physical habitat and macroinvertebrate communities. Ecohydrology, 4 (4), 520-531, doi:10.1002/eco.185.
- Caloiero, T., 2014: Analysis of daily rainfall concentration in New Zealand. Natural Hazards, 72 (2), 389-404, 15 doi:10.1007/s11069-013-1015-1. 16
 - Caloiero, T., 2015: Analysis of rainfall trend in New Zealand. Environmental Earth Sciences, 73 (10), 6297-6310, doi:10.1007/s12665-014-3852-y.
- Campos Rodrigues, L., J. Freire-González, A. Gonzalez Puig and I. Puig-Ventosa, 2018: Climate Change Adaptation of Alpine Ski Tourism in Spain. Climate, 6 (2), 29, doi:10.3390/cli6020029. 20
 - Capell, R., D. Tetzlaff, R. Essery and C. Soulsby, 2014: Projecting climate change impacts on stream flow regimes with tracer - aided runoff models - preliminary assessment of heterogeneity at the mesoscale. Hydrological Processes, 28 (3), 545-558, doi:10.1002/hyp.9612.
 - Carey, M. et al., 2014: Toward hydro-social modeling: Merging human variables and the social sciences with climateglacier runoff models (Santa River, Peru). Journal Of Hydrology, 518, 60-70, doi:10.1016/j.jhydrol.2013.11.006.
 - Carey, M. et al., 2012: An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru. Climatic Change, 112 (3-4), 733-767, doi:10.1007/s10584-011-0249-8.
- Carrivick, J. L. and F. S. Tweed, 2016: A global assessment of the societal impacts of glacier outburst floods. Global 29 and Planetary Change, 144, 1-16, doi:10.1016/j.gloplacha.2016.07.001. 30 31
 - Caruso, B., S. Newton, R. King and C. Zammit, 2017: Modelling climate change impacts on hydropower lake inflows and braided rivers in a mountain basin. Hydrological sciences journal, 62 (6), 928-946, doi:https://doi.org/10.1080/02626667.2016.1267860.
 - Cauvy-Fraunié, S. et al., 2016: Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nature Communications, 7, 12025, doi:10.1038/ncomms12025.
 - Cazzolla Gatti, R. et al., 2018: The last 50 years of climate induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological succession. Ecology and Evolution, 8 (15), 7401–7420, doi:10.1002/ece3.4258.
 - Ceppi, P., S. C. Scherrer, A. M. Fischer and C. Appenzeller, 2012: Revisiting Swiss temperature trends 1959–2008. International Journal of Climatology, **32** (2), 203-213, doi:10.1002/joc.2260.
 - CH2018, 2018: Climate Scenarios for Switzerland, Technical Report. National Centre for Climate Services, Zurich, 271 pp. ISBN: 978-3-9525031-4-0. DOI: 10.18751/Climate/Scenarios/CH2018/1.0.
- Chen, Y. et al., 2016: Changes in Central Asia's Water Tower: Past, Present and Future. Scientific Reports, 6, 35458, 43 doi:10.1038/srep35458. 44
- Chernomorets, S. S. et al., 2018: The outburst of Bashkara glacier lake (Central Caucasus, Russia) on September 1, 45 2017. Kriosfera Zemli, 22 (2), 61-70, doi:10.21782/EC2541-9994-2018-2(61-70). 46
 - Chimani, B. et al., 2016: ÖKS15-Klimaszenarien für Österreich. Daten, Methoden und Klimaanalyse, Projektendbericht. Wien. CCCA Data Centre. PID: https://hdl.handle.net/20.500.11756/06edd0c9.
 - Christmann, S. and A. A. Aw-Hassan, 2015: A participatory method to enhance the collective ability to adapt to rapid glacier loss: the case of mountain communities in Tajikistan. Climatic Change, 133 (2), 267-282, doi:10.1007/s10584-015-1468-1.
- Clarke, G. K. C. et al., 2015: Projected deglaciation of western Canada in the twenty-first century. Nature Geoscience, 8 52 (5), 372-377, doi:10.1038/ngeo2407. 53
 - Clarvis, M. H. et al., 2014: Governing and managing water resources under changing hydro-climatic contexts: The case of the upper Rhone basin. Environmental Science and Policy, 43, 56-67, doi:10.1016/j.envsci.2013.11.005.
 - Clouse, C., 2014: Learning from artificial glaciers in the Himalaya: design for climate change through low-tech infrastructural devices. Journal of Landscape Architecture, 9 (3), 6-19.
- Clouse, C., 2016: Frozen landscapes: climate-adaptive design interventions in Ladakh and Zanskar. Landscape 58 Research, 41 (8), 821-837, doi:10.1080/01426397.2016.1172559. 59
- Clouse, C., N. Anderson and T. Shippling, 2017: Ladakh's artificial glaciers: climate-adaptive design for water scarcity. 60 Climate and Development, 9 (5), 428-438, doi:10.1080/17565529.2016.1167664. 61
- Cloutier, C. et al., 2017: Potential impacts of climate change on landslides occurrence in Canada. CRC Press, Taylor & 62 Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742, 66, 71-104. 63

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 30

31 32

33

34

35

36

37

38

39

40

41

42

55

56

57

- 1 Cochrane, L. et al., 2017: A reflection on collaborative adaptation research in Africa and Asia. *Regional Environmental Change*, **17** (5), 1553-1561.
- Coe, J. A., E. K. Bessette-Kirton and M. Geertsema, 2017: Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery. *Landslides*, **15** (3), 393-407, doi:10.1007/s10346-017-0879-7.
 - Colavitto, B., D. Orts and A. Folguera, 2012: El caso del ourburst flood histórico de la laguna Derrumbe, Cholila, Chubut. Colpaso de dique morénico en la Cordillera Norpatagónica. *Revista de la Asociación Geológica Argentina*, **69** (3), 457-465.
 - Condom, T. et al., 2012: Simulating the implications of glaciers' retreat for water management: a case study in the Rio Santa basin, Peru. *Water International*, **37** (4), 442-459, doi:10.1080/02508060.2012.706773.
 - Coppola, E. et al., 2014: Changing hydrological conditions in the Po basin under global warming. *Science of the Total Environment*, **493**, 1183-1196, doi:10.1016/j.scitotenv.2014.03.003.
 - Crochet, P., 2007: A Study of Regional Precipitation Trends in Iceland Using a High-Quality Gauge Network and ERA-40. *Journal of Climate*, **20** (18), 4659-4677, doi:10.1175/JCLI4255.1.
 - D'Amico, M. E., M. Freppaz, E. Zanini and E. Bonifacio, 2017: Primary vegetation succession and the serpentine syndrome: the proglacial area of the Verra Grande glacier, North-Western Italian Alps. *Plant Soil*, **415** (1-2), 283-298, doi:10.1007/s11104-016-3165-x.
 - Da Silva, L. et al., 2019: Analyse économique des mesures d'adaptation aux changements climatiques appliquée au secteur du ski alpin au Québec. . Ouranos, Montréal, 119.
 - Dame, J. and M. Nüsser, 2011: Food security in high mountain regions: Agricultural production and the impact of food subsidies in Ladakh, Northern India. *Food Security*, **3** (2), 179-194, doi:10.1007/s12571-011-0127-2.
 - DeBeer, C. M., H. S. Wheater, S. K. Carey and K. P. Chun, 2016: Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis. *Hydrology and Earth System Sciences*, **20** (4), 1573-1598, doi:10.5194/hess-20-1573-2016.
 - Demiroglu, O. C., H. Dannevig and C. Aall, 2018: Climate change acknowledgement and responses of summer (glacier) ski visitors in Norway. *Scandinavian Journal of Hospitality and Tourism*, **18** (4), 419-438.
 - Deng, H., N. C. Pepin and Y. Chen, 2017: Changes of snowfall under warming in the Tibetan Plateau. *Journal of Geophysical Research-Atmospheres*, **122** (14), 7323-7341, doi:10.1002/2017JD026524.
 - Dewan, T. H., 2015: Societal impacts and vulnerability to floods in Bangladesh and Nepal. *Weather and Climate Extremes*, **7**, 36-42.
 - Di Luca, A., J. P. Evans and F. Ji, 2018: Australian snowpack in the NARCliM ensemble: evaluation, bias correction and future projections. *Climate Dynamics*, **51** (1-2), 639-666, doi:10.1007/s00382-017-3946-9.
 - Diaz, H. F. and R. S. Bradley, 1997: Temperature variations during the last century at high elevation sites. *Climatic Change*, **36** (3-4), 253-279, doi:10.1023/A:1005335731187.
 - Diaz, H. F. and J. K. Eischeid, 2007: Disappearing "alpine tundra" Köppen climatic type in the western United States. *Geophysical Research Letters*, **34** (18), L18707, doi:10.1029/2007GL031253.
 - Diaz, H. F., J. K. Eischeid, C. Duncan and R. S. Bradley, 2003: Variability of Freezing Levels, Melting Season Indicators, and Snow Cover for Selected High-Elevation and Continental Regions in the Last 50 Years. *Climatic Change*, **59** (1/2), 33-52, doi:10.1023/A:1024460010140.
 - Dickerson Lange, S. E. and R. Mitchell, 2014: Modeling the effects of climate change projections on streamflow in the Nooksack River basin, Northwest Washington. *Hydrological Processes*, **28** (20), 5236-5250.
 - Diemberger, H., A. Hovden and E. T. Yeh, 2015: The honour of the snow-mountains is the snow: Tibetan livelihoods in a changing climate. Cambridge University Press 2015., 249-271.
- a changing climate. Cambridge University Press 2015., 249-271.
 Dimri, A. P. and S. K. Dash, 2012: Wintertime climatic trends in the western Himalayas. *Climatic Change*, 111 (3), 775-800, doi:10.1007/s10584-011-0201-y.
- Dimri, A. P., D. Kumar, A. Choudhary and P. Maharana, 2018: Future changes over the Himalayas: Mean temperature. Global and Planetary Change, **162**, 235-251, doi:10.1016/j.gloplacha.2018.01.014.
- Dolezal, J. et al., 2016: Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. *Scientific Reports*, **6**, 1-13, doi:10.1038/srep24881.
- Doughty, C. A., 2016: Building climate change resilience through local cooperation: a Peruvian Andes case study. *Regional Environmental Change*, **16** (8), 2187-2197.
- Drenkhan, F., C. Huggel, L. Guardamino and W. Haeberli, 2019: Managing risks and future options from new lakes in the deglaciating Andes of Peru: The example of the Vilcanota-Urubamba basin. *Science of the Total Environment*, **665**, 465-483, doi:10.1016/j.scitotenv.2019.02.070.
 - Drew, G., 2012: A Retreating Goddess? Conflicting Perceptions of Ecological Change near the Gangotri-Gaumukh Glacier. *Journal for the Study of Religion, Nature and Culture*, **6** (3), doi:10.1558/jsrnc.v6i3.344.
 - Duethmann, D. et al., 2015: Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. *Water Resources Research*, **51** (6), 4727-4750, doi:10.1002/2014wr016716.
- Duethmann, D., C. Menz, T. Jiang and S. Vorogushyn, 2016: Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large. *Environmental Research Letters*, **11** (5), 054024, doi:10.1088/1748-9326/11/5/054024.

11

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

40

41

42

49

50

51

52

53

54

55

56

- Durand, Y. et al., 2009: Reanalysis of 47 years of climate in the French Alps (1958-2005): Climatology and trends for 1 snow cover. Journal of Applied Meteorology and Climatology, 48 (12), 2487-2512, 2 doi:10.1175/2009JAMC1810.1. 3
- Duvillard, P. A., L. Ravanel and P. Deline, 2015: Risk assessment of infrastructure destabilisation due to global 4 warming in the high French Alps. Revue de Géographie Alpine, 103 (2), doi:10.4000/rga.2896. 5
- Dyrrdal, A. V., T. Saloranta, T. Skaugen and H. B. Stranden, 2013: Changes in snow depth in Norway during the period 6 1961-2010. Hydrology Research, 44 (1), 169-179, doi:10.2166/nh.2012.064. 7
- Eckert, N. et al., 2013: Temporal trends in avalanche activity in the French Alps and subregions: from occurrences and 8 runout altitudes to unsteady return periods. Journal of Glaciology, 59 (213), 93-114, doi:10.3189/2013JoG12J091. 9
 - Einarsson, B. and S. Jónsson, 2010: The effect of climate change on runoff from two watersheds in Icelandi. Icelandic Meteorological Office.
- Elizbarashvili, M. et al., 2017: Georgian climate change under global warming conditions. Annals of Agrarian Science, 12 **15** (1), 17-25, doi:10.1016/J.AASCI.2017.02.001. 13
 - Engelhardt, M. et al., 2017: Meltwater runoff in a changing climate (1951-2099) at Chhota Shigri Glacier, Western Himalaya, Northern India. Annals of Glaciology, 58 (75), 47-58, doi:10.1017/aog.2017.13.
 - Engeset, R. V., T. V. Schuler and M. Jackson, 2005: Analysis of the first jökulhlaup at Blåmannsisen, northern Norway, and implications for future events. Annals of Glaciology, 42, 35-41, doi:10.3189/172756405781812600.
 - Eriksen, H. et al., 2018: Recent Acceleration of a Rock Glacier Complex, Adjet, Norway, Documented by 62 Years of Remote Sensing Observations. Geophysical Research Letters, 45 (16), 8314-8323, doi:10.1029/2018GL077605.
 - Erler, A. R., A. R. Erler and W. R. Peltier, 2017: Projected Hydroclimatic Changes in Two Major River Basins at the Canadian West Coast Based on High-Resolution Regional Climate Simulations. Journal of Climate, 30 (20), 8081-8105, doi:10.1175/JCLI-D-16-0870.1.
 - Espiner, S. and S. Becken, 2014: Tourist towns on the edge: conceptualising vulnerability and resilience in a protected area tourism system. Journal of Sustainable Tourism, 22 (4), 646-665, doi:10.1080/09669582.2013.855222.
 - Etter, S., N. Addor, M. Huss and D. Finger, 2017: Climate change impacts on future snow, ice and rain runoff in a Swiss mountain catchment using multi-dataset calibration. Journal of Hydrology-Regional Studies, 13, 222-239, doi:10.1016/j.ejrh.2017.08.005.
 - Falk, M. and M. Vieru, 2017: Demand for downhill skiing in subarctic climates. Scandinavian Journal of Hospitality and Tourism, 17 (4), 388-405, doi:10.1080/15022250.2016.1238780.
 - Fang, Y., D. Qin and Y. Ding, 2011: Frozen soil change and adaptation of animal husbandry: a case of the source regions of Yangtze and Yellow Rivers. Environmental Science & Policy, 14 (5), 555-568.
 - Farinotti, D., A. Pistocchi and M. Huss, 2016: From dwindling ice to headwater lakes: could dams replace glaciers in the European Alps? Environmental Research Letters, 11 (5), 054022, doi:10.1088/1748-9326/11/5/054022.
 - Farinotti, D. et al., 2012: Runoff evolution in the Swiss Alps: Projections for selected high-alpine catchments based on ENSEMBLES scenarios. Hydrological Processes, 26 (13), 1909-1924, doi:10.1002/hyp.8276.
 - Fell, S. C. et al., 2018: Declining glacier cover threatens the biodiversity of alpine river diatom assemblages. Glob. Change Biol., 24 (12), 5828--5840, doi:10.1111/gcb.14454.
- Fiddes, S. L., A. B. Pezza and V. Barras, 2015: A new perspective on Australian snow. Atmospheric Science Letters, 16 38 (3), 246-252, doi:10.1002/asl2.549. 39
 - Finn, D. S., K. Khamis and A. M. Milner, 2013: Loss of small glaciers will diminish beta diversity in Pyrenean streams at two levels of biological organization. Global Ecology and Biogeography, 22 (1), 40-51, doi:10.1111/j.1466-8238.2012.00766.x.
- Finn, D. S., K. Räsänen and C. T. Robinson, 2009: Physical and biological changes to a lengthening stream gradient 43 following a decade of rapid glacial recession. Global Change Biology, 16 (12), 3314–3326, doi:10.1111/j.1365-44 2486.2009.02160.x. 45
- Finn, D. S., K. Räsänen and C. T. Robinson, 2010: Physical and biological changes to a lengthening stream gradient 46 47 following a decade of rapid glacial recession. Global Change Biology, 16 (12), 3314-3326, doi:10.1111/j.1365-2486.2009.02160.x. 48
 - Fischer, A., M. Olefs and J. Abermann, 2011: Glaciers, snow and ski tourism in Austria's changing climate. Annals of Glaciology, 52 (58), 89-96, doi:10.3189/172756411797252338.
 - Fischer, L. et al., 2012: On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. Natural Hazards and Earth System Sciences, 12 (1), 241-254, doi:10.5194/nhess-12-241-2012.
 - Fleming, S. W. and H. E. Dahlke, 2014: Modulation of linear and nonlinear hydroclimatic dynamics by mountain glaciers in Canada and Norway: Results from information-theoretic polynomial selection. Canadian Water Resources Journal, 39 (3), 324-341, doi:10.1080/07011784.2014.942164.
- Frans, C. et al., 2016: Implications of decadal to century scale glacio-hydrological change for water resources of the 57 Hood River basin, OR, USA. *Hydrological Processes*, **30** (23), 4314-4329, doi:10.1002/hyp.10872. 58
- Frans, C. et al., 2018: Glacier Recession and the Response of Summer Streamflow in the Pacific Northwest United 59 States, 1960–2099. Water Resources Research, 32 (5), 772, doi:10.1029/2017WR021764. 60
- Frans, C. et al., 2015: Predicting glacio-hydrologic change in the headwaters of the Zongo River, Cordillera Real, Bolivia. Water Resources Research, 51 (11), 9029-9052, doi:10.1002/2014WR016728. 62

11

12

13

14

15

16 17

20

21

22

23

24

25

28

29

30 31

32

33

34

35

36

37

38

39

40 41

42

43

44

45 46

48

49

50

51

52

53

- Frei, P., S. Kotlarski, M. A. Liniger and C. Schär, 2018: Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models. *The Cryosphere*, **12** (1), 1-24, doi:10.5194/tc-12-1-2018.
- Freudiger, D., I. Kohn, K. Stahl and M. Weiler, 2014: Large-scale analysis of changing frequencies of rain-on-snow events with flood-generation potential. *Hydrology and Earth System Sciences*, **18** (7), 2695-2709, doi:10.5194/hess-18-2695-2014.
- Frey, H. et al., 2010: A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials. *Natural Hazards and Earth System Sciences*, **10** (2), 339-352, doi:10.5194/nhess-10-339-2010.
- Fricke, K., T. Sterr, O. Bubenzer and B. Eitel, 2009: The Oasis as a Megacity: Urumqi's Fast Urbanisation in a Semiarid Environment. *Die Erde*, **140** (4), 449.
 - Fu, Y. et al., 2012: Climate change adaptation among tibetan pastoralists: Challenges in enhancing local adaptation through policy support. *Environmental Management*, **50** (4), 607-621, doi:10.1007/s00267-012-9918-2.
 - Fujibe, F., N. Yamazaki, M. Katsuyama and K. Kobayashi, 2005: The Increasing Trend of Intense Precipitation in Japan Based on Four-hourly Data for a Hundred Years. *SOLA*, **1**, 41-44, doi:10.2151/sola.2005-012.
 - Furunes, T. and R. J. Mykletun, 2012: Frozen Adventure at Risk? A 7-year Follow-up Study of Norwegian Glacier Tourism. *Scandinavian Journal of Hospitality and Tourism*, **12** (4), 324-348, doi:10.1080/15022250.2012.748507.
 - Fyfe, J. C. et al., 2017: Large near-term projected snowpack loss over the western United States. *Nature Communications*, **8**, 14996, doi:10.1038/ncomms14996.
- Gadek, B. et al., 2017: Snow avalanche activity in Żleb Żandarmerii in a time of climate change (Tatra Mts., Poland). *Catena*, **158**, 201-212, doi:10.1016/j.catena.2017.07.005.
 - Gagné, K., 2016: Cultivating Ice over Time: On the Idea of Timeless Knowledge and Places in the Himalayas. *Anthropologica*, **58** (2), 193-210.
 - Gan, R., Y. Luo, Q. Zuo and L. Sun, 2015: Effects of projected climate change on the glacier and runoff generation in the Naryn River Basin, Central Asia. *Journal Of Hydrology*, **523**, 240-251, doi:10.1016/j.jhydrol.2015.01.057.
 - Gao, H. et al., 2018: Modelling glacier variation and its impact on water resource in the Urumqi Glacier No. 1 in Central Asia. *Science of the Total Environment*, **644**, 1160-1170, doi:10.1016/j.scitotenv.2018.07.004.
- Gao, Q.-z. et al., 2014: Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau. *Mitigation and Adaptation Strategies for Global Change*, **19** (2), 199-209.
 - Gao, Y., J. Xu and D. Chen, 2015: Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011. *Journal of Climate*, **28** (7), 2823-2841, doi:10.1175/JCLI-D-14-00300.1.
 - García-González, R. et al., 2016: Influence of snowmelt timing on the diet quality of Pyrenean rock ptarmigan (Lagopus muta pyrenaica): implications for reproductive success. *PLOS ONE*, **11** (2), e0148632, doi:10.1371/journal.pone.0148632.
 - Gardelle, J., Y. Arnaud and E. Berthier, 2011: Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. *Global and Planetary Change*, **75** (1-2), 47-55, doi:10.1016/j.gloplacha.2010.10.003.
 - Garee, K. et al., 2017: Hydrological modeling of the upper indus basin: A case study from a high-altitude glacierized catchment Hunza. *Water*, **9** (1), 17.
 - Gentle, P. and T. N. Maraseni, 2012: Climate change, poverty and livelihoods: adaptation practices by rural mountain communities in Nepal. *Environmental Science and Policy*, **21**, 24-34, doi:10.1016/j.envsci.2012.03.007.
 - Giersch, J. J. et al., 2017: Climate-induced glacier and snow loss imperils alpine stream insects. *Global Change Biology*, **23** (7), 2577-2589, doi:10.1111/gcb.13565.
 - Gilbert, A. and C. Vincent, 2013: Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures. *Geophysical Research Letters*, **40**, 2102-2108, doi:10.1002/grl.50401.
 - Gobiet, A. et al., 2014: 21st century climate change in the European Alps-a review. *Science of the Total Environment*, **493**, 1138-1151, doi:10.1016/j.scitotenv.2013.07.050.
- 47 Gosseling, M., 2017: CORDEX climate trends for Iceland in the 21st century, Reykjavik, VÍ 2017-009.
 - Grose, M. et al., 2015: Southern Slopes Cluster Report, Climate Change in Australia Projections for Australia's Natural Resource Management Regions: Cluster Reports, eds. Ekström, M et al. CSIRO and Bureau of Meteorology, Australia, 65 pp.
 - Gruber, S., 2012: Derivation and analysis of a high-resolution estimate of global permafrost zonation. *The Cryosphere*, **6** (1), 221-233, doi:10.5194/tc-6-221-2012.
 - Grünewald, T., F. Wolfsperger and M. Lehning, 2018: Snow farming: conserving snow over the summer season. *The Cryosphere*, **12** (1), 385-400, doi:10.5194/tc-12-385-2018.
- Guo, D., H. Wang and D. Li, 2012: A projection of permafrost degradation on the Tibetan Plateau during the 21st century. *Journal of Geophysical Research-Atmospheres*, **117** (D5), D05106-n/a, doi:10.1029/2011JD016545.
- Guo, D., E. Yu and H. Wang, 2016: Will the Tibetan Plateau warming depend on elevation in the future? *Journal of Geophysical Research-Atmospheres*, **121** (8), 3969-3978, doi:10.1002/2016JD024871.
- Gurung, D. R. et al., 2017: Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya.
 International Journal of Climatology, 37 (10), 3873-3882, doi:10.1002/joc.4961.
- Haeberli, W. et al., 2016: New lakes in deglaciating high-mountain regions opportunities and risks. *Climatic Change*, 139 (2), 201-214, doi:10.1007/s10584-016-1771-5.
- Hagenstad, M., E. Burakowski and R. Hill, 2018: The economic contributions of winter sports in a changing climate

1 . Protect our winters.

2

3

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

28

29

30 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 47

48

49

50

51

52

53

54

55

- Halofsky, J. E., D. L. Peterson and H. R. Prendeville, 2018: Assessing vulnerabilities and adapting to climate change in northwestern US forests. *Climatic Change*, **146** (1-2), 89-102.
- Hamilton, L. C. et al., 2003: Warming winters and New Hampshire's lost ski areas: an integrated case study. *International Journal of Sociology and Social Policy*, **23** (10), 52-73, doi:10.1108/01443330310790309.
- Hammad, A. A. and A. M. Salameh, 2019: Temperature analysis as an indicator of climate change in the Central Palestinian Mountains. *Theoretical and Applied Climatology*, **136**, 1453-1464, doi:10.1007/s00704-018-2561-y.
 - Hänggi, P. et al., 2011: Einfluss der Klimaänderung auf die Stromproduktion der Wasserkraftwerke im Prättigau 2021–2050. Fachbericht zur Synthese des Projektes Klimaänderung und Wasserkraftnutzung, Bern.
 - Hänggi, P. and R. Weingartner, 2011: Inter-annual variability of runoff and climate within the Upper Rhine River basin, 1808–2007. *Hydrological Sciences Journal*, **56** (1), 34-50, doi:10.1080/02626667.2010.536549.
 - Hanzer, F., K. Förster, J. Nemec and U. Strasser, 2018: Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach. *Hydrology and Earth System Sciences Discussions*, **22** (2), 1593-1614, doi:10.5194/hess-22-1593-2018.
 - Harrison, S. et al., 2018: Climate change and the global pattern of moraine-dammed glacial lake outburst floods. *The Cryosphere*, **12** (4), 1195-1209, doi:10.5194/tc-12-1195-2018.
 - Hendrikx, J., E. Ö. Hreinsson, M. P. Clark and A. B. Mullan, 2012: The potential impact of climate change on seasonal snow in New Zealand: Part I-an analysis using 12 GCMs. *Theoretical and Applied Climatology*, **110** (4), 607-618, doi:10.1007/s00704-012-0711-1.
 - Hendrikx, J., C. Zammit, E. Ö. Hreinsson and S. Becken, 2013: A comparative assessment of the potential impact of climate change on the ski industry in New Zealand and Australia. *Climatic Change*, **119** (3-4), 965-978, doi:10.1007/s10584-013-0741-4.
 - Hill, A., C. Minbaeva, A. Wilson and R. Satylkanov, 2017: Hydrologic Controls and Water Vulnerabilities in the Naryn River Basin, Kyrgyzstan: A Socio-Hydro Case Study of Water Stressors in Central Asia. *Water*, **9** (5), 325, doi:10.3390/w9050325.
- Hill, M., 2013: Adaptive Capacity of Water Governance: Cases From the Alps and the Andes. *Mountain Research and Development*, **33** (3), 248-259, 12, doi:10.1659/MRD-JOURNAL-D-12-00106.1.
 - Hill, M., A. Wallner and J. Furtado, 2010: Reducing vulnerability to climate change in the Swiss Alps: a study of adaptive planning. *Climate Policy*, **10** (1), 70-86.
 - Hoelzle, M. et al., 2017: Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia. *Geoscientific Instrumentation Methods and Data Systems*, **6** (2), 397-418, doi:10.5194/gi-6-397-2017.
 - Hopkins, D. and K. Maclean, 2014: Climate change perceptions and responses in Scotland's ski industry. *Tourism Geographies*, **16**, 400-414, doi:10.1080/14616688.2013.823457.
 - Hoy, A. et al., 2016: Climatic changes and their impact on socio-economic sectors in the Bhutan Himalayas: an implementation strategy. *Regional Environmental Change*, **16** (5), 1401-1415, doi:10.1007/s10113-015-0868-0.
 - Huggel, C., M. Carey, J. J. Clague and A. Kääb, 2015: *The high-mountain cryosphere: Environmental changes and human risks*. 1-371 pp.
 - Hüsler, F. et al., 2014: A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. *The Cryosphere*, **8** (1), 73-90, doi:10.5194/tc-8-73-2014.
 - Huss, M., D. Farinotti, A. Bauder and M. Funk, 2008: Modelling runoff from highly glacierized alpine drainage basins in a changing climate. *Hydrological Processes*, **22** (19), 3888-3902, doi:10.1002/hyp.7055.
 - Huss, M. and M. Fischer, 2016: Sensitivity of very small glaciers in the swiss alps to future climate change. *Frontiers in Earth Science*, **4**, 34, doi:10.3389/feart.2016.00034.
 - Huss, M., S. Usselmann, D. Farinotti and A. Bauder, 2010: Glacier mass balance in the south-eastern swiss alps since 1900 and perspectives for the future. *Erdkunde*, **64** (2), 119-140, doi:10.3112/erdkunde.2010.02.02.
 - Huss, M., M. Zemp, P. C. Joerg and N. Salzmann, 2014: High uncertainty in 21st century runoff projections from glacierized basins. *Journal Of Hydrology*, **510**, 35-48, doi:10.1016/j.jhydrol.2013.12.017.
 - Ilyashuk, B. P. et al., 2018: Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes. *Global Change Biology*, **24** (4), 1548-1562, doi:10.1111/gcb.13985.
 - Immerzeel, W. W., F. Pellicciotti and M. F. P. Bierkens, 2013: Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. *Nature Geoscience*, **6** (9), 742-745, doi:10.1038/ngeo1896.
 - Ingty, T., 2017: High mountain communities and climate change: adaptation, traditional ecological knowledge, and institutions. *Climatic Change*, **145** (1-2), 41-55, doi:10.1007/s10584-017-2080-3.
 - Irannezhad, M. et al., 2017: Long-term variability and trends in annual snowfall/total precipitation ratio in Finland and the role of atmospheric circulation patterns. *Cold Regions Science and Technology*, **143**, 23-31, doi:10.1016/J.COLDREGIONS.2017.08.008.
- Islam, S. U., S. J. Déry and A. T. Werner, 2017: Future Climate Change Impacts on Snow and Water Resources of the Fraser River Basin, British Columbia. *Journal of Hydrometeorology*, **18** (2), 473-496, doi:10.1175/JHM-D-16-0012.1.
- Jacobsen, D. et al., 2014: Runoff and the longitudinal distribution of macroinvertebrates in a glacier-fed stream: implications for the effects of global warming. *Freshw. Biol.*, **59** (10), 2038--2050, doi:10.1111/fwb.12405.

12

13

14

15 16

19

20

21

22

23

24

25

26

2728

31

32

33

34

37

38

39

40

41

42

45

46 47

51

52

53

54

55

56

57

58

59

60

- Jenicek, M., J. Seibert and M. Staudinger, 2018: Modeling of Future Changes in Seasonal Snowpack and Impacts on Summer Low Flows in Alpine Catchments. *Water Resources Research*, **54**, 538-556, doi:10.1002/2017WR021648.
- Johnston, A. N. et al., 2019: Ecological consequences of anomalies in atmospheric moisture and snowpack. *Ecology*, **100** (4), doi:10.1002/ecy.2638.
- Jost, G., R. Moore, B. Menounos and R. Wheate, 2012: Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River Basin, Canada. *Hydrology and Earth System Sciences*, **16** (3), 849-860, doi:10.5194/hess-16-849-2012.
 - Jost, G. and F. Weber, 2013: Potential Impacts of Climate Change on BC Hydro's Water Resources.
- Jurt, C. et al., 2015: Local perceptions in climate change debates: insights from case studies in the Alps and the Andes. Climatic Change, 133 (3), 511-523, doi:10.1007/s10584-015-1529-5.
 - Kääb, A., R. Frauenfelder and I. Roer, 2007: On the response of rockglacier creep to surface temperature increase. *Global and Planetary Change*, **56** (1), 172-187, doi:10.1016/j.gloplacha.2006.07.005.
 - Kaenzig, R., 2015: Can glacial retreat lead to migration? A critical discussion of the impact of glacier shrinkage upon population mobility in the Bolivian Andes. *Population and Environment*, **36** (4), 480-496, doi:10.1007/s11111-014-0226-z.
- Kaenzig, R., M. Rebetez and G. Serquet, 2016: Climate change adaptation of the tourism sector in the Bolivian Andes. *Tourism Geographies*, **18** (2), 111-128, doi:10.1080/14616688.2016.1144642.
 - Katsuyama, Y., M. Inatsu, K. Nakamura and S. Matoba, 2017: Global warming response of snowpack at mountain range in northern Japan estimated using multiple dynamically downscaled data. *Cold Regions Science and Technology*, **136**, 62-71, doi:10.1016/j.coldregions.2017.01.006.
 - Kattelmann, R., 2003: Glacial lake outburst floods in the Nepal Himalaya: A manageable hazard? *Natural Hazards*, **28** (1), 145-154, doi:10.1023/A:1021130101283.
 - Kaul, V. and T. F. Thornton, 2014: Resilience and adaptation to extremes in a changing Himalayan environment. *Regional Environmental Change*, **14** (2), 683-698.
 - Kawase, H. et al., 2016: Enhancement of heavy daily snowfall in central Japan due to global warming as projected by large ensemble of regional climate simulations. *Climatic Change*, **139** (2), 265-278, doi:10.1007/s10584-016-1781-3.
- Kelkar, U., K. K. Narula, V. P. Sharma and U. Chandna, 2008: Vulnerability and adaptation to climate variability and water stress in Uttarakhand State, India. *Global Environmental Change*, **18** (4), 564-574.
 - Khamis, K., L. E. Brown, D. M. Hannah and A. M. Milner, 2015: Experimental evidence that predator range expansion modifies alpine stream community structure. *Freshwater Science*, **34** (1), 66-80, doi:10.1086/679484.
 - Khamis, K., L. E. Brown, D. M. Hannah and A. M. Milner, 2016: Glacier-groundwater stress gradients control alpine river biodiversity. *Ecohydrology*, **9** (7), 1263--1275, doi:10.1002/eco.1724.
- Khamis, K. et al., 2014: Alpine aquatic ecosystem conservation policy in a changing climate. *Environmental Science and Policy*, **43**, 39-55, doi:10.1016/j.envsci.2013.10.004.
 - Klein, G. et al., 2016: Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. *Climatic Change*, **139** (3-4), 637-649, doi:10.1007/s10584-016-1806-y.
 - Knapp, C. et al., 2014: Parks, people, and change: the importance of multistakeholder engagement in adaptation planning for conserved areas. *Ecology and Society*, **19** (4).
 - Kobierska, F. et al., 2013: Future runoff from a partly glacierized watershed in Central Switzerland: A two-model approach. *Advances in Water Resources*, **55**, 204-214.
- Konchar, K. M. et al., 2015: Adapting in the shadow of Annapurna: a climate tipping point. *Journal of Ethnobiology*, **35** (3), 449-471, doi:10.2993/0278-0771-35.3.449.
 - Kopytkovskiy, M., M. Geza and J. E. McCray, 2015: Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin. *Journal of Hydrology: Regional Studies*, **3**, 473 493, doi:10.1016/j.ejrh.2015.02.014.
- Kormann, C., T. Francke and A. Bronstert, 2015a: Detection of regional climate change effects on alpine hydrology by daily resolution trend analysis in Tyrol, Austria. *Journal of Water and Climate Change*, **6** (1), 124-143, doi:10.2166/wcc.2014.099.
 - Kormann, C., T. Francke, M. Renner and A. Bronstert, 2015b: Attribution of high resolution streamflow trends in Western Austria An approach based on climate and discharge station data. *Hydrology and Earth System Sciences*, **19** (3), 1225-1245, doi:10.5194/hess-19-1225-2015.
 - Kotlarski, S., D. Lüthi and C. Schär, 2015: The elevation dependency of 21st century European climate change: An RCM ensemble perspective. *International Journal of Climatology*, **35** (13), 3902-3920, doi:10.1002/joc.4254.
 - Kraaijenbrink, P. D. A., M. F. P. Bierkens, A. F. Lutz and W. W. Immerzeel, 2017: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. *Nature*, **549** (7671), 257-260, doi:10.1038/nature23878.
 - Kreutzmann, H., 2012: After the flood. Mobility as an adaptation strategy in high Mountain Oases. The case of pasu in Gojal, Hunza valley, Karakoram. *Journal of the Geographical Society of Berlin*, **143** (1-2), 49-73.
 - Kriegel, D. et al., 2013: Changes in glacierisation, climate and runoff in the second half of the 20th century in the Naryn basin, Central Asia. *Global and Planetary Change*, **110**, 51-61, doi:10.1016/j.gloplacha.2013.05.014.
- Krishnan, R. et al., 2019: Unravelling Climate Change in the Hindu Kush Himalaya: Rapid Warming in the Mountains and Increasing Extremes. In: The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25 26

27

28

29

30 31

32

33 34

35

36

37

38

39

40

41 42

43

44

45

53

54

55

58

59

60

61

- and People [Wester, P., A. Mishra, A. Mukherji and A. B. Shrestha (eds.)]. Springer International Publishing, 1 Cham, 57-97. 2
- Krishnaswamy, J., R. John and S. Joseph, 2014: Consistent response of vegetation dynamics to recent climate change in 3 tropical mountain regions. Global Change Biology, 20 (1), 203-215, doi:10.1111/gcb.12362. 4
 - Kummert, M., R. Delaloye and L. Braillard, 2017: Erosion and sediment transfer processes at the front of rapidly moving rock glaciers: Systematic observations with automatic cameras in the western Swiss Alps. Permafrost and Periglacial Processes, 29 (1), 21-33, doi:10.1002/ppp.1960.
 - Lagos, P., 2007: Peru's Approach to Climate Change in the Andean Mountain Region. Mountain Research and Development, 27 (1), 28-32, doi:10.1659/0276-4741(2007)27[28:PATCCI]2.0.CO;2.
 - Landaeta, M. F. et al., 2012: Larval fish distribution, growth and feeding in Patagonian fjords: potential effects of freshwater discharge. Environmental Biology of Fishes, 93 (1), 73-87, doi:10.1007/s10641-011-9891-2.
 - Lasage, R. et al., 2015: A Stepwise, Participatory Approach to Design and Implement Community Based Adaptation to Drought in the Peruvian Andes. Sustainability, 7 (2), 1742-1773, doi:10.3390/su7021742.
 - Lavigne, A., N. Eckert, L. Bel and E. Parent, 2015: Adding expert contributions to the spatiotemporal modelling of avalanche activity under different climatic influences. Journal of the Royal Statistical Society: Series C (Applied Statistics), 64 (4), 651-671, doi:10.1111/rssc.12095.
 - Le Quesne, C. et al., 2009: Long-term glacier variations in the Central Andes of Argentina and Chile, inferred from historical records and tree-ring reconstructed precipitation. Palaeogeography, Palaeoclimatology, Palaeoecology, 281 (3-4), 334-344, doi:10.1016/j.palaeo.2008.01.039.
 - Lebel, L., J. Xu, R. C. Bastakoti and A. Lamba, 2010: Pursuits of adaptiveness in the shared rivers of Monsoon Asia. International Environmental Agreements: Politics, Law and Economics, 10 (4), 355-375.
 - Lee, D. R. et al., 2014: Developing local adaptation strategies for climate change in agriculture: A priority-setting approach with application to Latin America. Global Environmental Change, 29, 78-91.
 - Lejeune, Y. et al., 2019: 57 years (1960-2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m of altitude). Earth System Science Data, 11, 71-88, doi:10.5194/essd-11-71-
 - Lennox, E., 2015: Double Exposure to Climate Change and Globalization in a Peruvian Highland Community. Society & Natural Resources, 28 (7), 781-796, doi:10.1080/08941920.2015.1024364.
 - Lennox, E. and J. Gowdy, 2014: Ecosystem governance in a highland village in Peru: Facing the challenges of globalization and climate change. Ecosystem Services, 10, 155-163, doi:10.1016/j.ecoser.2014.08.007
 - Letcher, T. W. and J. R. Minder, 2015: Characterization of the Simulated Regional Snow Albedo Feedback Using a Regional Climate Model over Complex Terrain. Journal of Climate, 28 (19), 7576-7595, doi:10.1175/JCLI-D-15-0166.1.
 - Li, D. et al., 2017: How much runoff originates as snow in the western United States, and how will that change in the future? Geophysical Research Letters, 44 (12), 6163-6172, doi:10.1002/2017GL073551.
 - Li, X. et al., 2018: Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing. Atmospheric Research, 200, 77-87, doi:10.1016/J.ATMOSRES.2017.10.002.
 - Littell, J. et al., 2018: Alaska Snowpack Response to Climate Change: Statewide Snowfall Equivalent and Snowpack Water Scenarios. Water, 10 (5), 668, doi:10.3390/w10050668.
 - Liu, X. and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20 (14), 1729-1742, doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-
 - Liu, X., Z. Cheng, L. Yan and Z.-Y. Yin, 2009: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global and Planetary Change, 68 (3), 164-174, doi:10.1016/j.gloplacha.2009.03.017.
- Lopez-i-Gelats, F. et al., 2015: Adaptation Strategies of Andean Pastoralist Households to Both Climate and Non-46 47 Climate Changes. *Human Ecology*, **43** (2), 267-282, doi:10.1007/s10745-015-9731-7.
- López-Moreno, J.-I., S. Goyette, S. M. Vicente-Serrano and M. Beniston, 2011: Effects of climate change on the 48 intensity and frequency of heavy snowfall events in the Pyrenees. Climatic Change, 105 (3-4), 489-508, 49 doi:10.1007/s10584-010-9889-3. 50
- López-Moreno, J. I., 2005: Recent Variations of Snowpack Depth in the Central Spanish Pyrenees. Arctic, Antarctic, 51 and Alpine Research, 37 (2), 253-260, doi:10.1657/1523-0430(2005)037[0253:RVOSDI]2.0.CO;2. 52
 - López-Moreno, J. I. et al., 2017: Hydrological and depositional processes associated with recent glacier recession in Yanamarey catchment, Cordillera Blanca (Peru). Science of the Total Environment, 579, 272-282, doi:10.1016/j.scitotenv.2016.11.107.
- Luomaranta, A., J. Aalto and K. Jylhä, 2019: Snow cover trends in Finland over 1961-2014 based on gridded snow 56 depth observations. *International Journal of Climatology*, **0** (0), doi:10.1002/joc.6007. 57
 - Lute, A. C., J. T. Abatzoglou and K. C. Hegewisch, 2015: Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resources Research, 51 (2), 960-972, doi:10.1002/2014WR016267.
 - Lutz, A. et al., 2016a: Climate change impacts on the upper Indus hydrology: Sources, shifts and extremes. PLOS ONE, 11 (11), e0165630, doi:10.1371/journal.pone.0165630.

22

23

24

25

26

27

28

29

30 31

32

33

34

38

39

40

41 42

43

44

49

- Lutz, A. et al., 2016b: *Impacts of climate change on the cryosphere, hydrological regimes and glacial lakes of the Hindu Kush Himalayas: a review of current knowledge.* ICIMOD.
- Lutz, A. F., W. W. Immerzeel, A. B. Shrestha and M. F. P. Bierkens, 2014: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. *Nature Climate Change*, **4** (7), 587-592, doi:10.1038/nclimate2237.
- Ma, C. et al., 2015: Impact of climate change on the streamflow in the glacierized Chu River Basin, Central Asia. *Journal of Arid Land*, 7 (4), 501-513, doi:10.1007/s40333-015-0041-0.
- Maikhuri, R. K. et al., 2017: Socio-ecological vulnerability: Assessment and coping strategy to environmental disaster in Kedarnath valley, Uttarakhand, Indian Himalayan Region. *International Journal of Disaster Risk Reduction*, **25**, 111-124, doi:10.1016/j.ijdrr.2017.09.002.
- Malmros, J. K. et al., 2018: Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016). *Remote Sensing of Environment*, **209**, 240-252, doi:10.1016/J.RSE.2018.02.072.
- Manandhar, S., D. S. Vogt, S. R. Perret and F. Kazama, 2011: Adapting cropping systems to climate change in Nepal:

 A cross-regional study of farmers' perception and practices. *Regional Environmental Change*, **11** (2), 335-348, doi:10.1007/s10113-010-0137-1.
 - Mankin, J. S. et al., 2015: The potential for snow to supply human water demand in the present and future. *Environmental Research Letters*, **10** (11), 114016, doi:10.1088/1748-9326/10/11/114016.
- Mao, Y., B. Nijssen and D. P. Lettenmaier, 2015: Is climate change implicated in the 2013-2014 California drought? A
 hydrologic perspective. *Geophysical Research Letters*, 42 (8), 2805-2813, doi:10.1002/2015GL063456.
 Mark, B. G. et al., 2010: Climate Change and Tropical Andean Glacier Recession: Evaluating Hydrologic Changes and
 - Mark, B. G. et al., 2010: Climate Change and Tropical Andean Glacier Recession: Evaluating Hydrologic Changes and Livelihood Vulnerability in the Cordillera Blanca, Peru. *Annals of the Association of American Geographers*, **100** (4), 794-805, doi:10.1080/00045608.2010.497369.
 - Marke, T., F. Hanzer, M. Olefs and U. Strasser, 2018: Simulation of past changes in the Austrian snow cover 1948-2009. *Journal of Hydrometeorology*, **19** (10), 1529-1545, doi:10.1175/JHM-D-17-0245.1.
 - Marty, C., S. Schlögl, M. Bavay and M. Lehning, 2017a: How much can we save? Impact of different emission scenarios on future snow cover in the Alps. *The Cryosphere*, **11** (1), 517-529, doi:10.5194/tc-11-517-2017.
 - Marty, C., A.-M. Tilg and T. Jonas, 2017b: Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps. *Journal of Hydrometeorology*, **18** (4), 1021-1031, doi:10.1175/JHM-D-16-0188.1.
 - Masson, D. and C. Frei, 2016: Long-term variations and trends of mesoscale precipitation in the Alps: Recalculation and update for 1901-2008. *International Journal of Climatology*, **36** (1), 492-500, doi:10.1002/joc.4343.
 - Matteodo, M., K. Ammann, E. P. Verrecchia and P. Vittoz, 2016: Snowbeds are more affected than other subalpine–alpine plant communities by climate change in the Swiss Alps. *Ecology and Evolution*, **6** (19), 6969-6982, doi:10.1002/ece3.2354.
- Matthews, J. A. and A. E. Vater, 2015: Pioneer zone geo-ecological change: Observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. *Catena*, **135**, 219--230, doi:10.1016/j.catena.2015.07.016.
 - McCabe, G. J. et al., 2007: Rain-on-Snow Events in the Western United States. *Bulletin of the American Meteorological Society*, **88** (3), 319-328, doi:10.1175/BAMS-88-3-319.
 - McDowell, G. et al., 2013: Climate-related hydrological change and human vulnerability in remote mountain regions: a case study from Khumbu, Nepal. *Regional Environmental Change*, **13** (2), 299-310, doi:10.1007/s10113-012-0333-2.
 - McDowell, J. Z. and J. J. Hess, 2012: Accessing adaptation: Multiple stressors on livelihoods in the Bolivian highlands under a changing climate. *Global Environmental Change*, **22** (2), 342-352, doi:10.1016/j.gloenvcha.2011.11.002.
- McNeeley, S. M., 2017: Sustainable Climate Change Adaptation in Indian Country. *Weather Climate and Society*, **9** (3), 392-403, doi:10.1175/wcas-d-16-0121.1.
- Meena, R. K. et al., 2019: Local perceptions and adaptation of indigenous communities to climate change: Evidences from High Mountain Pangi valley of Indian Himalayas. *Indian Journal of Traditional Knowledge*, **18** (1), 58-67.
 - Meenawat, H. and B. K. Sovacool, 2011: Improving adaptive capacity and resilience in Bhutan. *Mitigation and Adaptation Strategies for Global Change*, **16** (5), 515-533, doi:10.1007/s11027-010-9277-3.
- Mills-Novoa, M. et al., 2017: Bringing the hydrosocial cycle into climate change adaptation planning: lessons from two andean mountain water towers. *Annals of the American Association of Geographers*, **107** (2), 393-402, doi:10.1080/24694452.2016.1232618.
- Milner, A. M. et al., 2017: Glacier shrinkage driving global changes in downstream systems. *Proceedings of the National Academy of Sciences of the United States of America*, **114** (37), 9770-9778, doi:10.1073/pnas.1619807114.
- Montana, E., H. P. Diaz and M. Hurlbert, 2016: Development, local livelihoods, and vulnerabilities to global environmental change in the South American Dry Andes. *Regional Environmental Change*, **16** (8), 2215-2228, doi:10.1007/s10113-015-0888-9.
- Moors, E. J. et al., 2011: Adaptation to changing water resources in the Ganges basin, northern India. *Environmental Science & Policy*, **14** (7), 758-769, doi:10.1016/j.envsci.2011.03.005.
- Moran-Tejéda, E., J. I. López-Moreno, M. Stoffel and M. Beniston, 2016: Rain-on-snow events in Switzerland: recent observations and projections for the 21st century. *Climate Research*, **71** (2), 111-125, doi:10.3354/cr01435.

13

14

15

31 32

33

34

35

36

37

38

39

40

41

42

43

44

49

- Morueta-Holme, N. et al., 2015: Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. 1 Proc. Natl. Acad. Sci. U. S. A., 112 (41), 12741--12745, doi:10.1073/pnas.1509938112. 2
- Mote, P. W. et al., 2018: Dramatic declines in snowpack in the western US. npj Climate and Atmospheric Science, 1 3 (1), 2, doi:10.1038/s41612-018-0012-1. 4
- Mourey, J., M. Marcuzzi., L. Ravanel. and F. Pallandre., 2019: Effects of climate change on high Alpine environments: 5 the evolution of mountaineering routes in the Mont Blanc massif (Western Alps) over half a century, . Arctic, 6 Antarctic, and Alpine Research, doi:10.1080/15230430.2019.1612216. 7
- Mourey, J. and L. Ravanel, 2017: Evolution of Access Routes to High Mountain Refuges of the Mer de Glace Basin 8 (Mont Blanc Massif, France). Revue de Géographie Alpine, 105 (4), doi:10.4000/rga.3790. 9
- Moyer, A. N., R. D. Moore and M. N. Koppes, 2016: Streamflow response to the rapid retreat of a lake-calving glacier. 10 Hydrological Processes, 30 (20), 3650-3665, doi:10.1002/hyp.10890. 11
 - Muccione, V., N. Salzmann and C. Huggel, 2016: Scientific Knowledge and Knowledge Needs in Climate Adaptation Policy. Mountain Research and Development, 36 (3), 364-375, doi:10.1659/mrd-journal-d-15-00016.1.
 - Muhlfeld, C. C. et al., 2011: Climate change links fate of glaciers and an endemic alpine invertebrate. Climatic Change, **106** (2), 337-345, doi:10.1007/s10584-011-0057-1.
- Mukhopadhyay, B. and A. Khan, 2014: Rising river flows and glacial mass balance in central Karakoram. Journal Of 16 17 Hydrology, **513**, 192-203, doi:10.1016/j.jhydrol.2014.03.042.
- 18 Murata, A., H. Sasaki, H. Kawase and M. Nosaka, 2016: Identification of key factors in future changes in precipitation extremes over Japan using ensemble simulations. Hydrological Research Letters, 10 (4), 126-131, 19 doi:10.3178/hrl.10.126. 20
- Musselman, K. N. et al., 2018: Projected increases and shifts in rain-on-snow flood risk over western North America. 21 Nature Climate Change, 8 (9), 808-812, doi:10.1038/s41558-018-0236-4. 22
- Naaim, M. et al., 2016: Impact of climate warming on avalanche activity in French Alps and increase of proportion of 23 wet snow avalanches. Houille Blanche, 59 (6), 12-20, doi:10.1051/lhb/2016055. 24
- Navarro, F., H. Andrés, F. Acuña and F. José, 2018: Glaciares rocosos en la zona semiárida de Chile: relevancia de un 25 recurso hídrico sin protección normativa. Cuadernos de Geografía: Revista Colombiana de Geografía, 27 (2), 26 338-355, doi:10.15446/rcdg.v27n2.63370. 27
- Naz, B. S. et al., 2016: Regional hydrologic response to climate change in the conterminous United States using high-28 resolution hydroclimate simulations. Global and Planetary Change, 143, 100-117, 29 doi:10.1016/j.gloplacha.2016.06.003. 30
 - Negi, V. S. et al., 2017: Climate change impact in the Western Himalaya: people's perception and adaptive strategies. Journal of Mountain Science, 14 (2), 403-416, doi:10.1007/s11629-015-3814-1.
 - Nepal, S., 2016: Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. Journal of Hydro-Environment Research, 10, 76-89, doi:10.1016/j.jher.2015.12.001.
 - Neukom, R. et al., 2015: Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100. Environmental Research Letters, 10 (8), 084017, doi:10.1088/1748-9326/10/8/084017.
 - Nogués-Bravo, D., M. B. Araújo, M. P. Errea and J. P. Martínez-Rica, 2007: Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change, 17 (3-4), 420-428, doi:10.1016/j.gloenycha.2006.11.007.
 - Nüsser, M. et al., 2018: Socio-hydrology of "artificial glaciers" in Ladakh, India: assessing adaptive strategies in a changing cryosphere. Regional Environmental Change, 48 (2), 1-11, doi:10.1007/s10113-018-1372-0.
 - Nüsser, M. and S. Schmidt, 2017: Nanga Parbat Revisited: Evolution and Dynamics of Sociohydrological Interactions in the Northwestern Himalaya. Annals of the American Association of Geographers, 107 (2), 403-415, doi:10.1080/24694452.2016.1235495.
- O'Neel, S., E. Hood, A. A. Arendt and L. Sass, 2014: Assessing streamflow sensitivity to variations in glacier mass 45 balance. Climatic Change, 123 (2), 329-341, doi:10.1007/s10584-013-1042-7. 46
- 47 Obu, J. et al., 2019: Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale. Earth Science Reviews, 193, 299-316, doi:j.earscirev.2019.04.023. 48
 - Ohmura, A., 2012: Enhanced temperature variability in high-altitude climate change. Theoretical and Applied Climatology, 110 (4), 499-508, doi:10.1007/s00704-012-0687-x.
- Onta, N. and B. P. Resurreccion, 2011: The role of gender and caste in climate adaptation strategies in Nepal: Emerging 51 change and persistent inequalities in the far-western region. Mountain Research and Development, 31 (4), 351-52 356, doi:10.1659/MRD-JOURNAL-D-10-00085.1. 53
- Orlove, B., 2009a: The past, the present and some possible futures of adaptation. [Adger, W. N., I. Lorenzoni and K. L. 54 OBrien (eds.)]. Cambridge University Press, Cambridge, 131-163. 55
- Orlove, B., 2009b: Reviewing the limits of human adaptation to climate. *Environment*, **51** (3), 22-34, 56 doi:10.3200/ENVT.51.3.22-34. 57
- Orlove, B. et al., 2019: Framing climate change in frontline communities: anthropological insights on how mountain 58 dwellers in the USA, Peru, and Italy adapt to glacier retreat. Regional Environmental Change, 59 doi:10.1007/s10113-019-01482-v. 60
- Oyler, J. W. et al., 2015: Artificial amplification of warming trends across the mountains of the western United States. 61 Geophysical Research Letters, 42 (1), 153-161, doi:10.1002/2014GL062803. 62

8 9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31 32

33

34

35

36

37 38

39

40

41

42

43

44

45

46 47

51

- Pagán, B. R. et al., 2016: Extreme hydrological changes in the southwestern US drive reductions in water supply to Southern California by mid century. *Environmental Research Letters*, **11**, 1-11, doi:10.1088/1748-9326/11/9/094026.
- Palazzi, E., J. von Hardenberg and A. Provenzale, 2013: Precipitation in the Hindu-Kush Karakoram Himalaya:
 Observations and future scenarios. *Journal of Geophysical Research-Atmospheres*, **118** (1), 85-100,
 doi:10.1029/2012JD018697.
 - Palazzi, E. L., L. Filippi and J. v. Hardenberg, 2017: Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations. *Climate Dynamics*, **48** ((11-12)), 3991–4008, doi:10.1007/s00382-016-3316-z.
 - Panday, P. K., J. Thibeault and K. E. Frey, 2015: Changing temperature and precipitation extremes in the Hindu Kush-Himalayan region: an analysis of CMIP3 and CMIP5 simulations and projections. *International Journal of Climatology*, **35** (10), 3058-3077, doi:10.1002/joc.4192.
 - Papadaki, C. et al., 2016: Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. *Sci. Total Environ.*, **540**, 418--428, doi:10.1016/j.scitotenv.2015.06.134.
 - Parveen, S., M. Winiger, S. Schmidt and M. Nüsser, 2015: Irrigation in Upper Hunza: Evolution of socio-hydrological interactions in the Karakoram, northern Pakistan. *Erdkunde*, **69** (1), 69-85, doi:10.3112/erdkunde.2015.01.05.
 - Pedersen, S., M. Odden and H. C. Pedersen, 2017: Climate change induced molting mismatch? Mountain hare abundance reduced by duration of snow cover and predator abundance. *Ecosphere*, **8** (3), e01722, doi:10.1002/ecs2.1722.
 - Peduzzi, P., C. Herold and W. C. Silverio Torres, 2010: Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru). *Cryosphere*, **4** (3), 313-323, doi:10.5194/tc-4-313-2010.
 - Pepin, N. C. and J. D. Lundquist, 2008: Temperature trends at high elevations: Patterns across the globe. *Geophysical Research Letters*, **35** (14), L14701, doi:10.1029/2008GL034026.
 - Pepin, N. C. and D. J. Seidel, 2005: A global comparison of surface and free-air temperatures at high elevations. *Journal of Geophysical Research*, **110** (3), 1-15, doi:10.1029/2004JD005047.
 - Pérez-Zanón, N., J. Sigró and L. Ashcroft, 2017: Temperature and precipitation regional climate series over the central Pyrenees during 1910–2013. *International Journal of Climatology*, **37** (4), 1922-1937, doi:10.1002/joc.4823.
 - Petrakov, D. et al., 2012: Monitoring of Bashkara Glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst. *Natural Hazards*, **61** (3), 1293-1316, doi:10.1007/s11069-011-9983-5
 - Phillips, M. and S. Margreth, 2008: Effects of Ground Temperature and Slope Deformation on the Service Life of Snow-Supporting Structures in Mountain Permafrost: Wisse Schijen, Randa, Swiss Alps. In: *Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska*, **1990**, 1417-1422.
 - Picketts, I. M. et al., 2016: Climate change adaptation strategies for transportation infrastructure in Prince George, Canada. *Regional Environmental Change*, **16** (4), 1109-1120, doi:10.1007/s10113-015-0828-8.
 - Picketts, I. M., Curry, J., Déry, S. J., & Cohen, S. J., 2013: Learning with practitioners: climate change adaptation priorities in a Canadian community. *Climatic Change*, **118** (2), 321-337, doi:https://doi.org/10.1007/s10584-012-0653-8.
 - Pielmeier, C., F. Techel, C. Marty and T. Stucki, 2013: Wet Snow Avalanche Activity in the Swiss Alps Trend Analysis for Mid-Winter Season. In: *International Snow Science Workshop Grenoble Chamonix Mont-Blanc October 07-11, 2013*, Oct 07, 1240-1246.
 - Pizarro, R. et al., 2013: Influencia del cambio climático en el comportamiento de los caudales máximos en la zona Mediterránea de Chile. *Tecnología y Ciencias del Agua*, **4**, 05-19.
 - Polk, M. H. et al., 2017: Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru's Cordillera Blanca. *Applied Geography*, **78**, 94-103, doi:10.1016/j.apgeog.2016.11.004.
 - Pons, M. et al., 2014: Climate change influence on winter tourism in the Pyrenees. Experience from the NIVOPYR research project. *Pirineos*, **169** (6), 1-12, doi:10.3989/Pirineos.2014.169006.
- Pons, M. R., D. San-Martin, S. Herrera and J. M. Gutierrez, 2010: Snow trends in Northern Spain: analysis and simulation with statistical downscaling methods. *International Journal of Climatology*, **30** (12), 1795-1806, doi:10.1002/joc.2016.
 - Pons-Pons, M. et al., 2012: Modeling climate change effects on winter ski tourism in Andorra. *Climate Research*, **54** (3), 197-207, doi:10.3354/cr01117.
- Postigo, J. C., 2014: Perception and Resilience of Andean Populations Facing Climate Change. *Journal of Ethnobiology*, **34** (3), 383-400, doi:10.2993/0278-0771-34.3.383.
- Postigo, J. C., K. R. Young and K. A. Crews, 2008: Change and Continuity in a Pastoralist Community in the High Peruvian Andes. *Human Ecology*, **36** (4), 535-551, doi:10.1007/s10745-008-9186-1.
- Prasain, S., 2018: Climate change adaptation measure on agricultural communities of Dhye in Upper Mustang, Nepal. Climatic Change, **148** (1-2), 279-291, doi:10.1007/s10584-018-2187-1.
- Prasch, M., W. Mauser and M. Weber, 2013: Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. *The Cryosphere*, 7 (3), 889-904, doi:10.5194/tc-7-889-2013.
- Qin, J., K. Yang, S. Liang and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. *Climatic Change*, **97** (1), 321-327, doi:10.1007/s10584-009-9733-9.

7

8

9

10

11

15

16

17 18

24

25

26

33

34

35

36

37

38

39

40 41

42

43

44

45

46 47

48

49

50 51

52

- Qixiang, W., M. Wang and X. Fan, 2018: Seasonal patterns of warming amplification of high-elevation stations across the globe. *International Journal of Climatology*, **38** (8), 3466-3473, doi:10.1002/joc.5509.
- Ragettli, S., W. W. Immerzeel and F. Pellicciotti, 2016: Contrasting climate change impact on river flows from highaltitude catchments in the Himalayan and Andes Mountains. *Proceedings of the National Academy of Sciences of the United States of America*, **113** (33), 9222-9227, doi:10.1073/pnas.1606526113.
 - Rai, S. C. and A. Gurung, 2005: Raising awareness of the impacts of climate change: Initial steps in shaping policy in Nepal. *Mountain Research and Development*, **25** (4), 316-321, doi:10.1659/0276-4741(2005)025[0316:RAOTIO]2.0.CO;2.
 - Räisänen, J. and J. Eklund, 2012: 21st Century changes in snow climate in Northern Europe: A high-resolution view from ENSEMBLES regional climate models. *Climate Dynamics*, **38** (11-12), 2575-2591, doi:10.1007/s00382-011-1076-3.
- Rajczak, J. and C. Schär, 2017: Projections of future precipitation extremes over europe: a multimodel assessment of climate simulations. *Journal of Geophysical Research-Atmospheres*, **122** (20), 10-773-10-800, doi:10.1002/2017JD027176.
 - Rangecroft, S., A. J. Suggitt, K. Anderson and S. Harrison, 2016: Future climate warming and changes to mountain permafrost in the Bolivian Andes. *Climatic Change*, **137** (1-2), 231-243, doi:10.1007/s10584-016-1655-8.
 - Rattenbury, K. L. et al., 2018: Delayed spring onset drives declines in abundance and recruitment in a mountain ungulate. *Ecosphere*, **9** (11), doi:10.1002/ecs2.2513.
- Räty, O., H. Virta, T. Bosshard and C. Donnelly, 2017: Regional climate model and model output statistics method uncertainties and the effect of temperature and precipitation on future river discharges in Scandinavia. *Hydrology Research*, **48** (5), 1363-1377, doi:10.2166/nh.2017.127.
- Ravanel, L. et al., 2010: Rock falls in the Mont Blanc Massif in 2007 and 2008. *Landslides*, **7** (4), 493-501, doi:10.1007/s10346-010-0206-z.
 - Ravanel, L. and P. Deline, 2011: Climate influence on rockfalls in high-Alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the 'Little Ice Age'. *The Holocene*, **21** (2), 357-365, doi:10.1177/0959683610374887.
- Ravanel, L., P. Deline, C. Lambiel and C. Vincent, 2013: Instability of a high alpine rock ridge: the lower Arête Des Cosmiques, Mont Blanc massif, France. *Geografiska Annaler. Series A, Physical Geography*, **95** (1), 51-66, doi:10.1111/geoa.12000.
- Ravanel, L., F. Magnin and P. Deline, 2017: Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. *Science of the Total Environment*, **609**, 132-143, doi:10.1016/j.scitotenv.2017.07.055.
 - Reclamation, U. S. B. o., 2014: West-Wide Climate Risk Assessment, Sacramento and San Joaquin Basins Climate Impact Assessment [U.S. Department of the Interior, B. o. R. (ed.)]. [Available at: http://www.usbr.gov/watersmart/wcra/docs/ssjbia/ssjbia.pdf].
 - Rees, H. G. and D. N. Collins, 2006: Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. In: *Hydrological Processes*, Jun 30 **20**, 2157-2169, doi:10.1002/hyp.6209.
 - Reggiani, P. and T. H. M. Rientjes, 2015: A reflection on the long-term water balance of the Upper Indus Basin. *Hydrology Research*, **46**, 446-462, doi:10.2166/nh.2014.060.
 - Reid, P. C. et al., 2016: Global impacts of the 1980s regime shift. *Global Change Biology*, **22** (2), 682-703, doi:10.1111/gcb.13106.
 - Reynard, E. et al., 2014: Interdisciplinary assessment of complex regional water systems and their future evolution: how socioeconomic drivers can matter more than climate. *Wiley Interdisciplinary Reviews: Water*, **1** (4), 413-426, doi:10.1002/wat2.1032.
 - RGI Consortium, 2017: Randolph Glacier Inventory A Dataset of Global Glacier Outlines: Version 6.0: Technical Report [Space, G. L. I. M. f. (ed.)]. Colorado, USA. Digital Media. [Available at: http://www.glims.org/RGI/randolph60.html].
 - Rhoades, R. E., X. Zapata Rios and J. A. Ochoa, 2008: Mama Cotacachi: History, local perceptions, and social impacts of climate change and glacier retreat in the Ecuadorian Andes. In: Darkening Peaks: Glacier Retreat, Science, and Society [Orlove, B., E. Wiegant and B. H. Luckman (eds.)]. University of California Press, Berkeley, 216-228.
 - Ritter, F., M. Fiebig and A. Muhar, 2012: Impacts of global warming on mountaineering: A classification of phenomena affecting the alpine trail network. *Mountain Research and Development*, **32** (1), 4-15, doi:10.1659/MRD-JOURNAL-D-11-00036.1.
- Roer, I. et al., 2008: Observations and considerations on destabilizing active rock glaciers in the European Alps. In:

 Ninth International Conference on Permafrost, University of Alaska Fairbanks [Kane, D. L. and K. M. Hinkel (eds.)], Institute of Northern Engineering, 2, 1505-1510.
- Rottler, E., C. Kormann, T. Francke and A. Bronstert, 2019: Elevation-dependent warming in the Swiss Alps 1981–2017: Features, forcings and feedbacks. *International Journal of Climatology*, **39** (5), 2556-2568, doi:10.1002/joc.5970.
- Ruiz, D., H. A. Moreno, M. E. Gutiérrez and P. A. Zapata, 2008: Changing climate and endangered high mountain ecosystems in Colombia. *Science of the Total Environment*, **398**, 122-132, doi:10.1016/J.SCITOTENV.2008.02.038.

7

16 17

18

19

21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39 40

41

42

43

44

45

46 47

50

51

52

53

54

- Russell, A. M. et al., 2017: Are the Central Andes Mountains a Warming Hot Spot? Journal of Climate, 30 (10), 3589-1 3608, doi:10.1175/JCLI-D-16-0268.1. 2
- Rusticucci, M., N. Zazulie and G. B. Raga, 2014: Regional winter climate of the southern central Andes: Assessing the 3 performance of ERA-Interim for climate studies. Journal of Geophysical Research-Atmospheres, 119 (14), 8568-4 5 8582, doi:10.1002/2013JD021167.
 - Saavedra, F. A., S. K. Kampf, S. R. Fassnacht and J. S. Sibold, 2018: Changes in Andes snow cover from MODIS data, 2000–2016. The Cryosphere, 12 (3), 1027-1046, doi:10.5194/tc-12-1027-2018.
- Sæmundsson, Þ. et al., 2018: The triggering factors of the Móafellshyrna debris slide in northern Iceland: Intense 8 precipitation, earthquake activity and thawing of mountain permafrost. Science of the Total Environment, 621, 9 1163-1175, doi:10.1016/j.scitotenv.2017.10.111. 10
- Salerno, F. et al., 2015: Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest 11 (central Himalaya) in the last 2 decades (1994–2013). The Cryosphere, 9 (3), 1229-1247, doi:10.5194/tc-9-1229-12 13
- Salick, J., A. Byg and K. Bauer, 2012: Contemporary Tibetan Cosmology of Climate Change. Journal for the Study of 14 Religion, Nature & Culture, 6 (4), doi:10.1558/jsrnc.v6i4.447. 15
 - Sanjay, J. et al., 2017: Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Advances in Climate Change Research, 8 (3), 185-198, doi:10.1016/j.accre.2017.08.003.
- Schaefli, B. et al., 2019: The role of glacier retreat for Swiss hydropower production. Renewable Energy, 132, 615-627, doi:10.1016/j.renene.2018.07.104. 20
 - Scherrer, S. C., P. Ceppi, M. Croci-Maspoli and C. Appenzeller, 2012: Snow-albedo feedback and Swiss spring temperature trends. Theoretical and Applied Climatology, doi:10.1007/s00704-012-0712-0.
 - Schmocker, J. et al., 2016: Trends in mean and extreme precipitation in the Mount Kenya region from observations and reanalyses. International journal of climatology, 36 (3), 1500-1514, doi: https://doi.org/10.1002/joc.4438.
 - Schnorbus, M., A. Werner and K. Bennett, 2014: Impacts of climate change in three hydrologic regimes in British Columbia, Canada. *Hydrological Processes*, **28**, 1170-1189, doi:10.1002/hyp.9661.
 - Schwanghart, W. et al., 2016: Uncertainty in the Himalayan energy-water nexus: estimating regional exposure to glacial lake outburst floods. Environmental Research Letters, 11 (7), 074005, doi:10.1088/1748-9326/11/7/074005.
 - Scorzini, A. R. and M. Leopardi, 2019: Precipitation and temperature trends over central Italy (Abruzzo Region): 1951-2012. Theoretical and Applied Climatology, 135, 959-977, doi:10.1007/s00704-018-2427-3.
 - Scott, D., R. Steiger, H. Dannevig and C. Aall, 2019: Climate change and the future of the Norwegian alpine ski industry. Current Issues in Tourism, doi:10.1080/13683500.2019.1608919.
 - Serquet, G., C. Marty, J.-P. Dulex and M. Rebetez, 2011: Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophysical Research Letters, 38 (7), -n/a, doi:10.1029/2011GL046976.
 - Shafiq, M. u. et al., 2019: Assessment of present and future climate change over Kashmir Himalayas, India. Theoretical and Applied Climatology, doi:10.1007/s00704-019-02807-x.
 - Shah, A. A., J. Ye, M. Abid and R. Ullah, 2017: Determinants of flood risk mitigation strategies at household level: a case of Khyber Pakhtunkhwa (KP) province, Pakistan. Natural Hazards, 88 (1), 415-430, doi:10.1007/s11069-
 - Shaoliang, Y., M. Ismail and Y. Zhaoli, 2012: Pastoral Communities' Perspectives on Climate Change and Their Adaptation Strategies in the Hindukush-Karakoram-Himalaya. Springer Netherlands, Dordrecht, 307-322.
 - Shen, Y. J. et al., 2018: Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains. Journal Of Hydrology, 557, 173-181, doi:10.1016/j.jhydrol.2017.12.035.
 - Shkolnik, I. M., V. P. Meleshko and V. M. Kattsov, 2006: Possible climate changes in European Russia and neighboring countries by the late 21st century: Calculation with the MGO regional model. Russian Meteorology and Hydrology. NO 3. C. 1-10.
- Shrestha, N. K., X. Du and J. Wang, 2017: Assessing climate change impacts on fresh water resources of the Athabasca 48 River Basin, Canada. Science of the Total Environment, 601-602, 425-440, doi:10.1016/j.scitotenv.2017.05.013. 49
 - Skaugen, T., H. B. Stranden and T. Saloranta, 2012: Trends in snow water equivalent in Norway (1931-2009). Hydrology Research, 43 (4), 489-499, doi:10.2166/nh.2012.109.
 - Sloat, L. L., A. N. Henderson, C. Lamanna and B. J. Enquist, 2015: The effect of the foresummer drought on carbon exchange in subalpine meadows. Ecosystems, 18 (3), 533-545, doi:10.1007/s10021-015-9845-1.
 - Smadja, J. et al., 2015: Climate change and water resources in the Himalayas: Field study in four geographic units of the Koshi basin, Nepal. Revue de Géographie Alpine, 103 (2), doi:10.4000/rga.2910.
- Smiatek, G., H. Kunstmann and A. Senatore, 2016: EURO-CORDEX regional climate model analysis for the Greater 56 Alpine Region: Performance and expected future change. Journal of Geophysical Research-Atmospheres, 121 57 (13), 7710-7728, doi:10.1002/2015JD024727. 58
- Smith, T. and B. Bookhagen, 2018: Changes in seasonal snow water equivalent distribution in High Mountain Asia 59 (1987 to 2009). Science Advances, 4, e1701550, doi:10.1126/sciadv.1701550. 60
- Sokratov, S. A., Y. G. Seliverstov and A. L. Shnyparkov, 2014: Assessment of the economic risk for the ski resorts of 61 62 changes in snow cover duration. (In Russian) Ice and Snow, **54** (3), 100-106, doi:https://doi.org/10.15356/2076-6734-2014-3-100-106. 63

10

11

12

13

14

15

16

19

20

25

26

29

30

31 32

33

34

35

36

37

38

39

40

41

42

43

44

47

48

49

50

51

52

53

54

55

- Somers, L. D. et al., 2018: Does hillslope trenching enhance groundwater recharge and baseflow in the Peruvian Andes? *Hydrological Processes*, **32** (3), 318-331, doi:10.1002/hyp.11423.
- Somos-Valenzuela, M. A. et al., 2015: Assessing downstream flood impacts due to a potential GLOF from Imja Tsho in Nepal. *Hydrology and Earth System Sciences*, **19** (3), 1401-1412, doi:10.5194/hess-19-1401-2015.
- Sorg, A., M. Huss, M. Rohrer and M. Stoffel, 2014a: The days of plenty might soon be over in glacierized Central Asian catchments. *Environmental Research Letters*, **9** (10), 104018, doi:10.1088/1748-9326/9/10/104018.
- Sorg, A. et al., 2014b: Coping with changing water resources: The case of the Syr Darya river basin in Central Asia. *Environmental Science and Policy*, **43**, 68-77, doi:10.1016/j.envsci.2013.11.003.
 - Soruco, A. et al., 2015: Contribution of glacier runoff to water resources of La Paz city, Bolivia (16° S). *Annals of Glaciology*, **56** (70), 147-154, doi:10.3189/2015AoG70A001.
 - Spies, M., 2016: Glacier Thinning and Adaptation Assemblages in Nagar, Northern Pakistan. *Erdkunde*, **70** (2), 125-140, doi:10.3112/erdkunde.2016.02.02.
 - Spinoni, J. et al., 2015: Climate of the Carpathian Region in the period 1961–2010: climatologies and trends of 10 variables. *International Journal of Climatology*, **35** (7), 1322-1341, doi:10.1002/joc.4059.
 - Stahl, K. et al., 2008: Coupled modelling of glacier and streamflow response to future climate scenarios. *Water Resources Research*, **44** (2), 20,355, doi:10.1029/2007WR005956.
- Steger, C., S. Kotlarski, T. Jonas and C. Schär, 2012: Alpine snow cover in a changing climate: a regional climate model perspective. *Climate Dynamics*, **41** (3-4), 735-754, doi:10.1007/s00382-012-1545-3.
 - Steiger, R. and M. Mayer, 2008: Snowmaking and Climate Change. *Mountain Research and Development*, **28** (3), 292-298, doi:10.1659/mrd.0978.
- Steiger, R. et al., 2017: A critical review of climate change risk for ski tourism. *Current Issues in Tourism*, **22** (11), 1343-1379, doi:10.1080/13683500.2017.1410110.
- Stensrud, A. B., 2016: Climate Change, Water Practices and Relational Worlds in the Andes. *Ethnos*, 81 (1), 75-98,
 doi:10.1080/00141844.2014.929597.
 - Stewart, E. J. et al., 2016: Implications of climate change for glacier tourism. *Tourism Geographies*, **18** (4), 377-398, doi:10.1080/14616688.2016.1198416.
- Stoffel, M. and C. Graf, 2015: Debris-flow activity from high-elevation, periglacial environments. [Huggel, C., M. Carey, J. J. Clague and A. Kääb (eds.)]. Cambridge University Press, Cambridge, 295-314.
 - Strauch, R. L. et al., 2015: Adapting transportation to climate change on federal lands in Washington State, USA. . *Climatic Change*, 130(2), 185-199., 130 (2), 185-199, doi:10.1007/s10584-015-1357-7.
 - Stucker, D., J. Kazbekov, M. Yakubov and K. Wegerich, 2012: Climate Change in a Small Transboundary Tributary of the Syr Darya Calls for Effective Cooperation and Adaptation. *Mountain Research and Development*, **32** (3), 275-285, doi:10.1659/MRD-JOURNAL-D-11-00127.1.
 - Su, F. et al., 2013: Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. *Journal of Climate*, **26** (10), 3187-3208, doi:10.1175/JCLI-D-12-00321.1.
 - Su, F. et al., 2016: Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. *Global and Planetary Change*, **136**, 82-95, doi:10.1016/j.gloplacha.2015.10.012.
 - Suding, K. N. et al., 2015: Vegetation change at high elevation: scale dependence and interactive effects on Niwot Ridge. *Plant Ecology & Diversity*, **8** (5-6), 713–725, doi:10.1080/17550874.2015.1010189.
 - Sujakhu, N. M. et al., 2016: Farmers' perceptions of and adaptations to changing climate in the Melamchi Valley of Nepal. *Mountain Research and Development*, **36** (1), 15-30, doi:10.1659/MRD-JOURNAL-D-15-00032.1.
 - Sultana, R. and M. Choi, 2018: Sensitivity of Streamflow Response in the Snow-Dominated Sierra Nevada Watershed Using Projected CMIP5 Data. *Journal of Hydrologic Engineering*, **23** (8), 05018015, doi:10.1061/(ASCE)HE.1943-5584.0001640.
- Sun, F. et al., 2016: Twenty-First-Century Snowfall and Snowpack Changes over the Southern California Mountains. *Journal of Climate*, **29** (1), 91-110, doi:10.1175/JCLI-D-15-0199.1.
 - Tahir, A. A. et al., 2015: Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region). *Science of the Total Environment*, **505**, 748-761, doi:10.1016/J.SCITOTENV.2014.10.065.
 - Terzago, S., J. von Hardenberg, E. Palazzi and A. Provenzale, 2017: Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models. *The Cryosphere*, **11** (4), 1625-1645, doi:10.5194/tc-11-1625-2017.
 - Terzago, S. et al., 2014: Snowpack Changes in the Hindu Kush–Karakoram–Himalaya from CMIP5 Global Climate Models. *Journal of Hydrometeorology*, **15** (6), 2293-2313, doi:10.1175/JHM-D-13-0196.1.
 - Thibert, E., N. Eckert and C. Vincent, 2013: Climatic drivers of seasonal glacier mass balances: an analysis of 6 decades at Glacier de Sarennes (French Alps). *The Cryosphere*, 7 (1), 47-66, doi:10.5194/tc-7-47-2013.
- Thies, H. et al., 2007: Unexpected Response of High Alpine Lake Waters to Climate Warming. *Environmental Science & Technology*, **41** (21), 7424-7429, doi:10.1021/es0708060.
- Thies, H. et al., 2013: Evidence of rock glacier melt impacts on water chemistry and diatoms in high mountain streams. Cold Regions Science & Technology, **96**, 77-85, doi:10.1016/j.coldregions.2013.06.006.
- Tian, L. et al., 2017: Two glaciers collapse in western Tibet. *Journal of Glaciology*, **63** (237), 194-197, doi:10.1017/jog.2016.122.

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 47

48

49

50

51

52

53

57

58

- Tudoroiu, M. et al., 2016: Negative elevation-dependent warming trend in the Eastern Alps. *Environmental Research Letters*, doi:10.1088/1748-9326/11/4/044021.
- Uhlmann, B., F. Jordan and M. Beniston, 2013: Modelling runoff in a Swiss glacierized catchment-Part II: Daily discharge and glacier evolution in the Findelen basin in a progressively warmer climate. *International Journal of Climatology*, **33** (5), 1301-1307, doi:10.1002/joc.3516.
- 6 Uniyal, A., 2013: Lessons from Kedarnath tragedy of Uttarakhand Himalaya, India. *Current Science*, **105** (11), 1472-1474.
 - Urrutia, R. and M. Vuille, 2009: Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. *Journal of Geophysical Research*, **114** (D2), D02108, doi:10.1029/2008JD011021.
 - Valentin, M. M., T. S. Hogue and L. E. Hay, 2018: Hydrologic regime changes in a high-latitude glacierizedwatershed under future climate conditions. *Water*, **10** (2), 128, doi:10.3390/w10020128.
 - van de Kerk, M. et al., 2018: Range-wide variation in the effect of spring snow phenology on Dall sheep population dynamics. *Environ. Res. Lett.*, **13** (7), doi:10.1088/1748-9326/aace64.
 - Van Tiel, M. et al., 2018: The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments. *Hydrology and Earth System Sciences*, **22** (1), 463-485, doi:10.5194/hess-22-463-2018.
 - Veh, G. et al., 2019: Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. *Nature Climate Change*, **9** (5), 379-383, doi:10.1038/s41558-019-0437-5.
 - Verfaillie, D. et al., 2018: Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps. *The Cryosphere*, **12** (4), 1249-1271, doi:10.5194/tc-12-1249-2018.
 - Vicuña, S., R. D. Garreaud and J. McPhee, 2011: Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. *Climatic Change*, **105** (3-4), 469-488, doi:10.1007/s10584-010-9888-4.
 - Vigano, G. et al., 2016: Effects of Future Climate Change on a River Habitat in an Italian Alpine Catchment. *J. Hydrol. Eng.*, **21** (2), doi:10.1061/(ASCE)HE.1943-5584.0001293.
 - Vincent, L. A. et al., 2015: Observed Trends in Canada's Climate and Influence of Low-Frequency Variability Modes. *Journal of Climate*, **28** (11), 4545-4560, doi:10.1175/JCLI-D-14-00697.1.
 - Volodicheva, N. A., A. D. Oleynikov and N. N. Volodicheva, 2014: Catastrophic avalanches and methods of their control. (Russian Language). *Ice and Snow*, **54** (4), 63-71, doi:10.15356/2076-6734-2014-4-.
 - Vuille, M. et al., 2018: Rapid decline of snow and ice in the tropical Andes Impacts, uncertainties and challenges ahead. *Earth Science Reviews*, **176**, 195-213, doi:10.1016/j.earscirev.2017.09.019.
 - Vuille, M. et al., 2015: Impact of the global warming hiatus on Andean temperature. *Journal of Geophysical Research-Atmospheres*, **120** (9), 3745-3757, doi:10.1002/2015JD023126.
 - Wang, L. et al., 2015: Glacier changes in the Sikeshu River basin, Tienshan Mountains. *Quaternary International*, **358**, 153-159, doi:10.1016/j.quaint.2014.12.028.
 - Wang, L., Y. Zeng and L. Zhong, 2017a: Impact of Climate Change on Tourism on the Qinghai-Tibetan Plateau: Research Based on a Literature Review. *Sustainability*, **9** (9), 14, doi:10.3390/su9091539.
 - Wang, S., Y. He and X. Song, 2010: Impacts of climate warming on Alpine glacier tourism and adaptive measures: A case study of Baishui Glacier No. 1 in Yulong Snow Mountain, Southwestern China. *Journal of Earth Science*, **21** (2), 166-178, doi:10.1007/s12583-010-0015-2.
 - Wang, S., T. Yao, L. Tian and J. Pu, 2017b: Glacier mass variation and its effect on surface runoff in the Beida River catchment during 1957–2013. *Journal of Glaciology*, **63** (239), 523-534, doi:10.1017/jog.2017.13.
 - Wang, X. et al., 2018: Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. *Global Change Biology*, **24** (4), 1651-1662, doi:10.1111/gcb.13930.
 - Wang, X. et al., 2016: The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau. *Global and Planetary Change*, **147**, 40-53, doi:10.1016/J.GLOPLACHA.2016.10.014.
 - Wangchuk, K. and J. Wangdi, 2018: Signs of climate warming through the eyes of yak herders in northern Bhutan. *Mt. Res. Dev.*, **38** (1), 45--52, doi:10.1659/MRD-JOURNAL-D-17-00094.1.
 - Weingartner, R., B. Schädler and P. Hänggi, 2013: Auswirkungen der Klimaänderung auf die schweizerische Wasserkraftnutzung. *Geogr. Helv.*, **68** (4), 239-248, doi:10.5194/gh-68-239-2013.
 - Welling, J., R. Ólafsdóttir, Þ. Árnason and S. Guðmundsson, 2019: Participatory Planning Under Scenarios of Glacier Retreat and Tourism Growth in Southeast Iceland. *Mountain Research and Development*, **39** (2), doi:in press.
- Retreat and Tourism Growth in Southeast Iceland. *Mountain Research and Development*, **39** (2), doi:in press.

 Wendler, G., T. Gordon and M. Stuefer, 2017: On the Precipitation and Precipitation Change in Alaska. *Atmosphere*, **8** (12), 253, doi:10.3390/atmos8120253.
 - Westerling, A. L., 2016: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences*, **371** (1696), 20150178, doi:10.1098/rstb.2015.0178.
- Wijngaard, R. R. et al., 2017: Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. . *PLOS ONE*, **12** (12(12), e0190224.), doi:https://doi.org/10.1371/journal.pone.0190224.
- Wilson, R. et al., 2018: Glacial lakes of the Central and Patagonian Andes. *Glob. Planet. Change*, **162**, 275--291, doi:10.1016/j.gloplacha.2018.01.004.

6

7

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31 32

33

34

35

36

37

38

39

40

41

42

43

44

48

- Winkler, D. E., K. J. Chapin and L. M. Kueppers, 2016: Soil moisture mediates alpine life form and community 1 productivity responses to warming. Ecology, 97 (6), 1553–1563, doi:10.1890/15-1197.1. 2
- Winski, D. et al., 2017: Industrial-age doubling of snow accumulation in the Alaska Range linked to tropical ocean 3 warming. Scientific Reports, 7, 17869, doi:10.1038/s41598-017-18022-5. 4
 - Wrathall, D. J. et al., 2014: Migration Amidst Climate Rigidity Traps: Resource Politics and Social-Ecological Possibilism in Honduras and Peru. Annals of the Association of American Geographers, 104 (2), 292-304, doi:10.1080/00045608.2013.873326.
- Wu, X. et al., 2018: Uneven winter snow influence on tree growth across temperate China. Global Change Biology, 25 8 (1), 144–154, doi:10.1111/gcb.14464. 9
- Xenarios, S. et al., 2018: Climate change and adaptation of mountain societies in Central Asia: uncertainties, knowledge 10 gaps, and data constraints. Regional Environmental Change, 31 (3-4), 1113, doi:10.1007/s10113-018-1384-9. 11
- Xu, F. et al., 2018: Temperature and precipitation trends and their links with elevation in the Hengduan Mountain 12 region, China. Climate Research, 75 (2), 163-180, doi:10.3354/cr01516. 13
- Yager, K., 2015: Satellite Imagery and Community Perceptions of Climate Change Impacts and Landscape Change. 14 Yale University Press, 146-168. 15
 - Yang, J., G. Fang, Y. Chen and P. De-Maeyer, 2017: Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging. Journal of Arid Land, 9 (4), 622-634, doi:10.1007/s40333-017-0100-9.
 - Yang, Y. et al., 2018: Permafrost and drought regulate vulnerability of Tibetan Plateau grasslands to warming. Ecosphere, 9 (5), e02233, doi:10.1002/ecs2.2233.
 - Yarleque, C. et al., 2018: Projections of the future disappearance of the Quelccaya Ice Cap in the Central Andes. Scientific Reports, 8 (1), 15564, doi:10.1038/s41598-018-33698-z.
 - You, J. et al., 2018: Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Scientific Reports, 8, 1-12, doi:10.1038/s41598-018-24360-9.
 - You, Q. et al., 2010a: Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. Global and Planetary Change, 72, 11-24, doi:10.1016/j.gloplacha.2010.04.003.
 - You, Q. et al., 2010b: Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global and Planetary Change, doi:10.1016/j.gloplacha.2010.01.020.
 - Young, E. F. et al., 2018: Stepping stones to isolation: Impacts of a changing climate on the connectivity of fragmented fish populations. Evol. Appl., 11 (6), 978--994, doi:10.1111/eva.12613.
 - Young, G. et al., 2010: Vulnerability and adaptation in a dryland community of the Elqui Valley, Chile. Climatic Change, 98 (1-2), 245-276, doi:10.1007/s10584-009-9665-4.
 - Young, K. R. and J. K. Lipton, 2006: Adaptive Governance and Climate Change in the Tropical Highlands of Western South America. Climatic Change, 78 (1), 63-102, doi:10.1007/s10584-006-9091-9.
 - Yucel, I., A. Güventürk and O. L. Sen, 2015: Climate change impacts on snowmelt runoff for mountainous transboundary basins in eastern Turkey. International Journal of Climatology, 35 (2), 215-228, doi:10.1002/joc.3974.
 - Zarenistanak, M., 2018: Historical trend analysis and future projections of precipitation from CMIP5 models in the Alborz mountain area, Iran. Meteorology and Atmospheric Physics, doi:10.1007/s00703-018-0636-z.
 - Zazulie, N., M. Rusticucci and G. B. Raga, 2017: Regional climate of the subtropical central Andes using highresolution CMIP5 models—part I: past performance (1980–2005). Climate Dynamics, 49, 3937-3957, doi:10.1007/s00382-017-3560-x.
- Zazulie, N., M. Rusticucci and G. B. Raga, 2018: Regional climate of the Subtropical Central Andes using high-45 46 resolution CMIP5 models. Part II: future projections for the twenty-first century. Climate Dynamics, 51 (7-8), 47 2913-2925, doi:10.1007/s00382-017-4056-4.
 - Zeng, X., P. Broxton and N. Dawson, 2018: Snowpack change from 1982 to 2016 over conterminous United States. Geophysical Research Letters, 45 (23), 12,940-12,947, doi:10.1029/2018GL079621.
- Zeng, Z. et al., 2015: Regional air pollution brightening reverses the greenhouse gases induced warming elevation 50 relationship. Geophysical Research Letters, 42 (11), 4563-4572, doi:10.1002/2015GL064410. 51
- Zhang, D., Y. Yang and B. Lan, 2018: Climate variability in the northern and southern Altai Mountains during the past 52 50 years. Scientific Reports, **8**, 3238, doi:10.1038/s41598-018-21637-x. 53
- Zhang, Y., Y. Hirabayashi, Q. Liu and S. Liu, 2015: Glacier runoff and its impact in a highly glacierized catchment in 54 the southeastern Tibetan Plateau: Past and future trends. Journal of Glaciology, 61 (228), 713-730, 55 doi:10.3189/2015JoG14J188. 56
- Zhou, B. et al., 2018: Historical and future changes of snowfall events in China under a warming background. Journal 57 of Climate, 31 (15), 5873-5889, doi:doi.org/10.1175/JCLI-D-17-0428.1. 58
- Zimmer, A. et al., 2018: Time lag between glacial retreat and upward migration alters tropical alpine communities. 59 Perspect. Plant Ecol. Evol. Syst., 30, 89--102, doi:10.1016/j.ppees.2017.05.003. 60
- Zimova, M. et al., 2018: Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what 61 keeps them changing in a warming world? Biological Reviews, 93 (3), 1478-1498, doi:10.1111/brv.12405. 62

2

Þórhallsdóttir, G. and R. Ólafsson, 2017: A method to analyse seasonality in the distribution of tourists in Iceland. *Journal of Outdoor Recreation and Tourism*, **19**, 17-24, doi:10.1016/j.jort.2017.05.001.