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SM2.1 Details of High-Mountain Regional Glacier and Permafrost Areas 
 
The regional glacier and permafrost areas shown in Figure 2.1 are listed in Table SM2.1. Glacier area is 
taken from the Randolph Glacier Inventory (RGI6.0, RGI Consortium (2017)) and includes all glaciers 
within the depicted region boundaries, whereas permafrost area includes only the permafrost in mountains. 
Regional permafrost area is calculated on a grid with 30 arc-second resolution (~1km), as the sum of 
fractional permafrost area multiplied by the area of each grid cell; permanent snow and ice are masked based 
on landcover data from the European Space Agency Climate Change Initiative (ESA CCI Land Cover). The 
areas are then masked by the regions outlined in Figure 2.1 and by a ruggedness index larger than 3.5 
(Gruber, 2012) which, in this chapter, defines mountains. 
 
Two global-scale permafrost modeling studies (Gruber, 2012; Obu et al., 2019) provide suitable data with 
models differing in input, model structure, and assumptions. The data by Obu et al. (2019), extended to the 
southern hemisphere, are used since they provide permafrost fractional area (permafrost probability) directly. 
Their model was forced by remotely-sensed land-surface temperature, land cover and ERA-Interim climate 
reanalysis data, and statistically accounted for subgrid variability of ground temperature due to snow and 
landcover. By contrast, (Gruber, 2012)used heuristics and mean annual air temperature to derive an 
approximate index of fractional permafrost area. Bounds of uncertainty were estimated by using two forcing 
climate data sets (reanalysis data from National Centers for Environmental Prediction (NCEP) and data from 
the Climatic Research Unit, CRU TS 2.0), and several sets of model parameters, resulting in five maps in 
total. Assuming the index to represent the fractional permafrost area, aggregated results for high-mountain 
permafrost areas are similar to the estimate based on Obu et al. (2019). For high-mountain areas, the five 
models by Gruber (2012) yield areas varying from 3.6 to 5.2 million km2 and the model of Obu et al. (2019) 
results in 3.7 million km2. The percentage of permafrost in high-mountain areas relative to the global 
permafrost area, computed separately for each model, is 27–29% for Gruber (2012) and 27% for Obu et al. 
(2019). 
 
 
Table SM2.1: Glacier and permafrost area in high-mountain regions shown in Figure 2.1. Glacier area is from the 
Randolph Glacier Inventory (RGI6.0, RGI Consortium (2017)). Permafrost areas are based on Obu et al. (2019). 

High Mountain Region Glacier Area 
(km2) 

Permafrost Area 
(km2) 

Alaska 86,725 307,767 
Western Canada and USA 14,524 256,254 
Iceland 11,060 4,023 
Scandinavia 2,949 8,306 
Central Europe 2,092 7,124 
Caucasus and Middle East 1,307 10,181 
North Asia 2,410 2,234,058 
High Mountain Asia 97,605 866,667 
Low Latitudes 2,341 673 
Southern Andes 29,429 27,172 
New Zealand 1,162 180 
All high-mountain regions 251,614 3,722,405 
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SM2.2 Details of Studies on Temperature Observations and Projections 
 
 
Table SM2.2: Overview of studies reporting trends in past surface air temperature including mean annual, seasonal and monthly mean values of daily mean, minimum and 
maximum temperature, per high mountain region (as defined in Figure 2.1) with published observations. Global syntheses are listed at the top of the table. Obs. stations refers to 
observation stations. Elevations are in meters (m) above sea level. 

Location Temperature (temp.) indicator Trend 
(°C per 
decade) 

Time 
period 

Dataset Reference 

Global syntheses 
>500 m, 30–70˚N Annual mean value of minimum daily temp. +0.21 1951–1989 250 obs. stations Diaz and Bradley (1997)  
<500 m, 30–70˚N Annual mean value of minimum daily temp. +0.04 “ 993 obs. stations “ 
>500 m with mean annual temp. 
from -5 to +5˚C  

Mean annual temp. +0.23  1948–2002 269 obs. stations Pepin and Lundquist (2008) 

>500 m with mean annual temp.  
<-5 or >+5°C 

Mean annual temp. +0.12  “ 1084 obs. stations “ 

> 500 m Mean annual temp. +0.40 1982–2010 640 obs. stations Zeng et al. (2015) 
< 500 m Mean annual temp. +0.32 “ 2020 obs. stations “ 
> 500 m Mean annual temp. +0.30 1961–2010 910 obs. stations Wang et al. (2016)  
< 500 m Mean annual temp. +0.24 “ 1742 obs. stations “ 
> 500 m  Winter mean temp. +0.4 1961–2010 739 obs. stations Qixiang et al. (2018)   
< 500 m Winter mean temp. +0.35 “ 1262 obs. station “ 
Western Canada and USA 
Colorado and Pacific Northwest,  
< 4000 m 

Annual mean value of minimum daily temp. +0.37  1979–2006 Gridded dataset (based on 
obs. stations without 
homogenization) 

Diaz and Eischeid (2007) 

> 4000 m Annual mean value of minimum daily temp. +0.75 “ “ “ 
Mt. Washington, NE USA, 1905 m Mean annual temp. +0.35 1970–2005 1 obs. station Ohmura (2012) 
Pinkham Notch, NE USA, 613 m Mean annual temp. +0.31 “ 1 obs. station “ 
NW USA  Annual mean value of minimum daily temp. +0.17  1981–2012 Gridded dataset (based on 

homogenized obs. station) 
Oyler et al. (2015) 

Whole N America, > 500 m Mean annual temp. +0.14  1948–1998 552 obs. stations Pepin and Seidel (2005) 
Central Europe 
Switzerland Mean annual temp. +0.35 1959–2008 Gridded dataset (based on 91 

homogenized obs. stations) 
Ceppi et al. (2012) 

“ Autumn mean temp. +0.17 “ “ “ 
“ Winter mean temp. +0.40 “ “ “ 
“ Spring mean temp. +0.39 “ “ “ 
“ Summer mean temp. +0.46 “ “ “ 
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Switzerland Mean annual temp. +0.13 1864–2016 Gridded dataset (based on 19 
homogenized obs. stations) 

Begert and Frei (2018) 

Switzerland, 203–815 m Mean annual temp. +0.35  1981–2017 47 obs. stations Rottler et al. (2019) 
Switzerland, 910–1878 m “ +0.31 “ 34 obs. stations “ 
Switzerland, 1968–3850 m “ +0.25 “ 12 obs. stations “ 
Swiss Alps Mean April temp. +0.51  1961–2011 6 obs. stations Scherrer et al. (2012) 
Jungfraujoch, 3580 m Mean annual temp. +0.43 1970–2011  1 obs. station Ohmura (2012) 
Sonnblick, 3109 m Mean annual temp. +0.30 1980–2011 1 obs. station “ 
Col de Porte, 1325 m Winter mean temp. (December–April) +0.3 1960–2017 1 obs. station Lejeune et al. (2019) 
Mont-Blanc, 4300 m Mean temp. (from englacial obs.) +0.14 1900–2004 1 obs. site Gilbert and Vincent (2013) 
Trentino, 203–875 m  Mean annual temp. +0.49 1976–2010 12 obs. stations Tudoroiu et al. (2016)   
Trentino, 925–2125 m “ +0.27 “ 12 obs. stations “  
Abruzzo Region Mean annual temp. +0.15  1951–2012 24 obs. stations Scorzini and Leopardi (2019)   
Central Pyrenees Annual mean value of maximum daily temp. +0.11 1910–2013 155 obs. stations Pérez-Zanón et al. (2017) 
“ “ +0.57 1970–2013 “ “ 
“ Annual mean value of minimum daily temp. +0.06 1910–2013 “ “ 
“ “ +0.23 1970–2013 “ “ 
Caucasus and Middle East 
Whole area Mean annual temp. +0.14 1958–2000 Reanalysis data Diaz et al. (2003) 
“ “ +0.26 1974–1998 “ “ 
Central Palestinian Mountains Mean annual temp. +0.33 1970–2011 6 obs. stations Hammad and Salameh (2019)   
Southern Andes 
18°S to 42°S Mean annual temp. -0.05 1950–2010 75 obs. stations Vuille et al. (2015)  
Central Andes, 10°S–25°S, free 
atmosphere (500 hPa) 

Mean annual temp. +0.16 to 
+0.41 

1979–2008 Reanalyses Russell et al. (2017) 

Subtropical Andes, 30°S–37°S Winter mean temp. +0.4 1980–2005 Reanalysis  Zazulie et al. (2017) 
“ “ +0.2  “ Gridded observation dataset “ 
“ Summer mean temp. +0.3 “ Reanalysis “ 
“ “ No trend “ Gridded observation dataset “ 
Low latitudes (Andes and Africa) 
Tropical Andes, 2°N–18°S Mean annual temp. +0.13 1950–2010 546 obs. stations Vuille et al. (2015)  
La Paz, Bolivia Mean annual temp. -0.70 1985–2010 1 obs. station Ohmura (2012) 
East Africa Mean annual temp. +0.18 1958–2000 Reanalysis Diaz et al. (2003) 
“ “ +0.18 1974–1998 “  
South and East Africa, > 500 m Mean annual temp. +0.14  1948–1998 41 obs. stations Pepin and Seidel (2005) 
High Mountain Asia 
Hindu Kush-Himalaya Mean annual temp. +0.1 1901–2014 122 obs. stations Krishnan et al. (2019) 
“ “ +0.2 1951–2014 “ “ 
Mukteshwar, India, 2311 m  Mean annual temp. +0.48 1980–2010 1 obs. station Ohmura (2012) 
Toutouhe, China, 4535 m  Mean annual temp. +0.02 1970–2005 1 obs. station “ 
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Himalaya Mean annual temp. +0.06 1958–2000  Reanalysis Diaz et al. (2003) 
“ “ +0.23 1974–1998 “ “ 
Tibetan Plateau Mean temp., wet season (May–Sep) +0.40 1979–2011 83 obs. stations Gao et al. (2015) 
“ Mean temp., dry season (Oct–Apr) +0.54 “ “ “ 
Tibetan Plateau, > 3000 m Mean annual temp. +0.69  1981–2006 47 obs. stations Qin et al. (2009) 
Tibetan Plateau, 1000–3000 m “ +0.55  “ 24 obs. stations “ 
Tibetan Plateau, 4500–5000 m Mean value of winter minimum daily temp. +0.85   1961–2006 Obs. stations. Liu et al. (2009) 
“ Annual mean value of minimum daily temp. +0.53 “ Obs. stations. “ 
Tibetan Plateau, > 2000 m Mean value of winter minimum daily temp. +0.61 “  116 obs. stations. “ 
“ Annual mean value of minimum daily temp. +0.42 “ “ “ 
Tibetan Plateau, > 2000 m Mean annual temp. +0.16   1955–1996 97 obs. stations Liu and Chen (2000) 
“ Winter mean temp. +0.32 “ 97 obs. stations “ 
China 600–800m Mean annual temp. +0.05 1961–1990 12 obs. stations “  
Tibetan Plateau, 2400–2600 m Mean annual temp. +0.15 “ 4 obs. stations “  
Tibetan Plateau, 4200–4400 m Mean annual temp. +0.25 “ 6obs. stations “  
Tibetan Plateau, > 2000 m Mean annual temp. +0.28 1961–2007 72 obs. stations Guo et al. (2012) 
Tibetan Plateau, > 2000 m Winter mean temp. +0.40 1961–2004 71 obs. stations You et al. (2010a)  
“ Summer mean temp. +0.20 “  “ “ 
“ Mean annual temp. +0.25 “ “ “ 
Tibetan Plateau Winter mean temp. +0.37 1961–2001 ERA40 Reanalysis You et al. (2010b) 
“ Summer mean temp. +0.17  “ “ “ 
 Mean annual temp. +0.23 “ “ “ 
Indian Himalaya Mean annual temp. +0.16 1901–2002 3 obs. stations Bhutiyani et al. (2007) 
Himalaya (Nepal), 1200–2000 m Annual mean value of maximum daily temp. +0.57 1963–2009 3 obs. station Nepal (2016) 
Himachal Pradesh Winter mean temp. +0.23 1975–2006 4 obs. stations Dimri and Dash (2012) 
Kashmir Winter mean temp. +0.2 1975–2006 12 obs. stations “ 
Australia 
Australia, > 500 m Mean annual temp. +0.16 1948–1998 14 obs. stations Pepin and Seidel (2005) 
Japan 
Fuji San, 3775 m Mean annual temp. +0.35 1985–2005 1 obs. station Ohmura (2012) 
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Table SM2.3: Overview of studies reporting future trends in surface air temperature including mean annual, seasonal and monthly mean values of daily mean, minimum and 
maximum temperature, per high mountain region (as defined in Figure 2.1). Global syntheses are listed at the top of the table. Obs. stations refer to observation stations. Elevations 
are in meters (m) above sea level. 

Location Temperature (temp.) 
indicator 

Change  
(˚C per decade) 

Time period Scenario Method Reference 

Global scale 
13 mountain ranges  Mean annual temp. +0.48 1961–1990 vs 2070–

2099 
SRES-A1F1 Downscaled GCMs Nogués-Bravo et al. (2007)   

13 mountain ranges  Mean annual temp. +0.25 1961–1990 vs 2070–
2099 

SRES B1 “ “ 

Alaska 
N America, >55°N  Mean annual temp. +0.61 1961–1990 to 2070–

2099 
SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007)   

“ “ +0.35 “ SRES B1 “ “ 
Western Canada and USA 
Colorado Rockies Spring temp. (April) up to +1 1995–2005 to 2045–

2055 
SRES A2 Pseudo-GW runs: 

RCMs 
Letcher and Minder (2015) 

N America, <55°N Mean annual temp. +0.49 1961–1990 to 2070–
2099 

SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007) 

N America, <55°N Mean annual temp. +0.27 “ SRES B1 “ “ 
Iceland 
Full domain Mean annual temp. +0.21 to +0.40  2000–2100 RCP8.5 Downscaled GCMs 

using RCMs 
Gosseling (2017) 

Central Europe 
European Alps Mean annual temp. +0.25 1961–1990 to 2021–

2050 
SRES A1B Downscaled GCMs 

using RCMs 
Gobiet et al. (2014) 

“ “ +0.36 1961–1990 to 2069–
2098 

“ “ “ 

Switzerland Mean annual temp. +0.14 1981–2010 to 2070–
2099 

RCP2.6 Downscaled GCMs 
using RCMs 
(EURO-CORDEX) 

CH2018 (2018) 

“ “ +0.26 “ RCP4.5 “ “ 
“ “ +0.49 “ RCP8.5 “ “ 
Austria Mean annual temp. +0.23 1971–2000 to 2071–

2100 
RCP4.5 Downscaled GCMs 

using RCMs 
(EURO-CORDEX) 

Chimani et al. (2016) 

“ “ +0.4 “ RCP8.5 “ “ 
Scandinavia 
Whole area, < 500 m Winter mean temp. +0.45  1961–1990 to 2070–

2099 
SRES A1B Downscaled GCMs 

using RCMs 
Kotlarski et al. (2015) 
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Whole area, ~1500 m Summer mean temp. +0.27 “ “ “ “ 
Whole area Mean annual temp. +0.54 1961–1990 to 2070–

2099 
SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007) 

“ “  +0.31 1961–1990 to 2070–
2099 

SRES B1 Downscaled GCMs “  

Caucasus and Middle East 
Iran mountain areas Mean annual temp. +0.45 1961–1990 to 2071–

2000 
SRES A2 Downscaled GCM Babaeian et al. (2015)  

“ “ +0.30 “ SRES B2 “  
North Asia 
Whole area Mean annual temp. +0.76 1961–1990 to 2070–

2099 
SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007) 

“ “  +0.43 “ SRES B1 “ “  
Southern Andes 
Whole area Mean annual temp. +0.34 1961–1990 to 2070–

2099 
SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007) 

“ “  +0.18 “ SRES B1 “ “  
“ Winter and summer temp. +0.2 2006–2100 RCP4.5 CMIP5 GCMs Zazulie et al. (2018)  
“ “ ~+0.5  “ RCP8.5 “ “ 
Low Latitudes (Andes) 
Tropical Andes Mean annual temp. +0.3 1961–2000 to 2080–

2100  
RCP8.5 Downscaled GCMs Vuille et al. (2018) 

Bolivian Andes Mean annual temp. +0.34 to +0.4 1950–2000 to 2040–
2069 

SRES A1B Downscaled GCMs Rangecroft et al. (2016) 

“ “ +0.38 to +0.44 1950–2000 to 2070–
2099 

“ “ “ 

Quelccaya ice cap, Peru, 5680 
m 

Mean annual temp. +0.25 2006–2100 RCP4.5 Bias corrected 
CMIP5 GCMs 

Yarleque et al. (2018) 

“ “ +0.57 “ RCP8.5 “  
High-Mountain Asia 
Himalaya/ Tibetan Plateau, 
~1600 m 

Mean value of winter 
minimum daily temp. 

+0.32  1971–2000 to 2071–
2100 

RCP8.5 CMIP5 GCMs Palazzi et al. (2017) 

Himalaya/ Tibetan Plateau, 
~4100 m 

“ +0.75 “ “ “ “ 

Hindu-Kush Himalaya Winter mean temp. +0.6  1976–2005 to 2066–
2095 

RCP8.5 RCMs Sanjay et al. (2017) 

 Summer mean temp. +0.54 “ “ “ “ 
Himalaya Winter mean temp. +0.57  1970–2005 to 2070–

2099 
RCP8.5 RCMs Dimri et al. (2018) 

 Summer mean temp. +0.45 “ “ “ “ 
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Tibetan Plateau, ~4500 m Mean annual temp. +0.65  2006–2050 RCP8.5 Downscaled GCMs Guo et al. (2016) 
Tibetan Plateau, 2000–2200 m “ +0.51  “ “ “ “  
Kashmir Himalaya Annual mean value of 

minimum daily temp.  
+0.07 1980–2010 to 2041–

2070 
RCP2.6 Downscaled GCM Shafiq et al. (2019)  

“ “ +0.13 “ RCP8.5 “ “ 
“ “ +0.04 1980–2010 to 2071–

2100 
RCP2.6 “ “ 

“ “ +0.15 “ RCP8.5 “ “ 
“ Annual mean value of 

maximum daily temp. 
+0.11 1980–2010 to 2041–

2070 
RCP2.6 “ “ 

“ “ +0.19 “ RCP8.5 “ “ 
“ “ +0.08 1980–2010 to 2071–

2100 
RCP2.6 “ “ 

“ “ +0.22 “ RCP8.5 “ “ 
New Zealand 
New Zealand  Mean annual temp. +0.33 1961–1990 to 2070–

2099 
SRES A1F1 Downscaled GCMs Nogués-Bravo et al. (2007) 

“ “ +0.17 1961–1990 to 2070–
2099 

SRES B1 Downscaled GCMs “ 
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SM2.3 Details of Studies on Precipitation Observations and Projections 
 
 
Table SM2.4: Overview of recent studies providing evidence for past changes in precipitation, per high mountain region (as defined in Figure 2.1). Obs. stations refer to observation 
stations. Elevations are in meters (m) above sea level. 

Location Precipitation (precip.) indicator Change Time 
period 

Dataset Reference 

Alaska 
Alaska Annual precip. Increase +8% to +40%, depending on 

the region 
1949–2016 18 obs. stations Wendler et al. (2017) 

Western Canada and USA 
California Winter precip. Insignificant 1920–2014 Gridded dataset based on 

102 obs. stations 
Mao et al. (2015) 

Canada Ratio of snowfall to total precip. Decrease, more pronounced in 
Western Canada 

1948–2012 Gridded dataset based on 
obs. stations 

Vincent et al. (2015) 

Iceland 
Whole area Winter precip. Insignificant 1961–2000 Reanalysis and 40 obs. 

stations 
Crochet (2007) 

Central Europe 
European Alps Total precip. Insignificant, dominated by internal 

variability 
1901–2008 Gridded dataset based on 

obs. stations 
Masson and Frei 
(2016) 

European Alps Daily precip. Insignificant change due to high 
variability 

1980–2010 43 obs. stations Kormann et al. 
(2015a) 

Swiss Alps Fraction of days with snowfall 
over days with precip. (annual), 
<1000 m 

-20 %  1961–2008 Subset within 52 obs. 
stations 

Serquet et al. (2011) 

“ “, 1000–2000 m -10% to -20% “ “ “ 
“ “, >2000 m -5% “ “ “ 
“ Fraction of days with snowfall 

over days with precip. (spring), 
<1000 m 

-30 to -50 %  “ Subset within 28 obs. 
stations 

“ 

“ “, 1000–2000 m -10% to -30% “ “ “ 
“ “, >2000 m -5% to -10% “ “ “ 
Abruzzo Region Total precip. -1.8%/dec. (not significant) 1951–2012 46 obs. stations Scorzini and 

Leopardi (2019) 
Pyrenees Total precip. Insignificant decrease (-0.6%/decade) 1950–1999 24 obs. stations López-Moreno 

(2005) 
Carpathian mountain regions Total precip. No significant trend 1961–2010 Gridded data based on obs. 

stations. 
Spinoni et al. (2015) 

Scandinavia 
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Finland Annual snowfall over total precip. 
ratio 

Decrease (-1.9% per decade) 1909–2008 3 obs. stations Irannezhad et al. 
(2017) 

Caucasus and Middle East 
Greater Caucasus Total precip. -9 mm yr-1 1936–2012 90 obs. stations Elizbarashvili et al. 

(2017)  
Adjara mountains “ +6 mm yr-1 “ Subset of 90 obs. stations “ 
Southern Andes 
Chile and Argentina Annual precip. General decrease (up to ~ -6 mm yr-1) 

with positive values in the southwest 
corner of the region 

1979–2010 Gridded dataset from obs. 
stations, and reanalyses 

Rusticucci et al. 
(2014) 

Subtropical Andes, 30°S–37°S Winter precip. < -0.1 mm d-1 per dec, insignificant  1980–2005 Gridded dataset from obs. 
stations, and reanalyses 

Zazulie et al. (2017) 

“ “ -0.1 mm d-1 per dec 1980–2005 “ “ 
“ Summer precip. -0.3 mm d-1 per dec, insignificant 1980–2005 “ “ 
“ “ -0.2 mm d-1 per dec, insignificant 1980–2005 “ “ 
Low Latitudes (Andes and Africa) 
Claro River (Colombian 
Andean Central mountain 
range) 

Annual precip. Insignificant 1981–2003 7 obs. stations Ruiz et al. (2008) 

47 mountain protected areas in 
five National Parks in the 
tropical belt (30°S–30°N, 
including Central America, 
South America, Africa, South 
Asia, Southeast Asia) 

Annual precip. Insignificant, except decrease in 
Africa 

1982–2006 Gridded dataset from obs. 
stations, and reanalyses 

Krishnaswamy et al. 
(2014) 

Kenya Mean precip. Decrease (March to May, long rains) 
and increase (October to December, 
short rains). 

1979–2011 50 obs. stations Schmocker et al. 
(2016) 

North Asia 
Northern Altai Annual precip. -0.14 mm yr-1 1966–2015 9 obs. stations Zhang et al. (2018) 
Southern Altai “ +0.89 mm yr-1 “ 8 obs. stations “ 
High Mountain Asia 
Hindu-Kush Karakoram Precip. (December to April) Insignificant 1950–2010 Gridded dataset from obs. 

station, and reanalyses 
Palazzi et al. (2013) 

Himalaya Precip. (June to September) -0.021 mm d-1 yr-1 to -0.01 mm d-1 yr-

1 
1950–2009 “ “ 

Karakoram Winter precip. Significant increasing trend 1961–1999 17 obs. stations Archer and Fowler 
(2004) 

Middle and East Tian Shan Snowfall fraction Decrease, from 27% to 25%  1960–2014 Gridded dataset based on 
obs. stations 

Chen et al. (2016) 
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West Tian Shan Winter total precip. +23% 1960–2014 In-situ “ 
Monsoon-dominated regions, 
easternmost Himalaya 

Annual precip. trend -13.7 ± 2.4 mm yr-1   1994–2012 7 obs. stations Salerno et al. (2015) 

“ Precip. during monsoon months -9.3 mm yr-1 “ “ “ 
Northwestern Indian Himalaya Snowfall fraction Significant decreasing trend (3 out of 

7 stations) 
1991–2005 10 obs. stations Bhutiyani et al. 

(2010) 
“ Winter precip. trend Increasing but statistically 

insignificant  
1866–2006 Subset of 10 obs. stations “ 

“ Monsoon and annual precip. trend Significant decreasing  “ “ “ 
Tibetan Plateau Annual precip. +1.43 mm yr-1, large spatial 

variations 
1960–2014 71 obs. stations  Deng et al. (2017) 

Hengduan Mountain region Annual precip. Insignificant decrease 1961–2011 90 obs. stations Xu et al. (2018) 
 Springtime precip. Insignificant increase  “ “ “ 
Hindu Kush-Himalaya Precip. >95th, precip. intensity Insignificant changes 1960–2000 Gridded datasets using 

obs. stations, 5 specific 
obs. stations 

Panday et al. (2015) 

New Zealand and Australia 
New Zealand Total precip. amount  Absence of marked trends, seasonally 

and geographically variable  
1900–2010 294 obs. stations Caloiero (2014); 

Caloiero (2015) 
SE Australia Total annual precip. Reduction since 1970s 1901–2012 Obs. stations Grose et al. (2015) 
Japan 
Whole region Intense precip. +30 % per century 1898–2003 Obs. stations (61 at daily 

time resolution) 
Fujibe et al. (2005) 

“ Weak precip. -20% per century “ “ “ 
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Table SM2.5: Overview of recent studies providing evidence for future changes in precipitation, per high mountain region (as defined in Figure 2.1). Obs. stations refer to 
observation stations. Elevations are in meters (m) above sea level. 

Location Precipitation (precip.) 
indicator 

Change Time period Scenario Method Reference 

Alaska 
South and 
Southeast Alaska 

Snow day fraction -15% to +7% 1970–1999 to 2040–
2069 

RCP4.5 Statistically 
downscaled GCMs 

Littell et al. (2018) 

“ “ -25% to +4% “ RCP8.5 “ “ 
“ “ -22% to 4 % 1970–1999 to 2070–

2099 
RCP4.5 “ “ 

“ “ -41% to -6 % “ RCP8.5 “ “ 
Western Canada and USA 
Western US, 
“Warm mountain 
sites” 

Snowfall amount -70% to -35% 1950-2005 to 2040-2069 RCP8.5 Statistically 
downscaled GCMs 

Lute et al. (2015) 

Western US, “Cold 
mountain sites” 

“ -20 % to -5 % “ “ “ “ 

Western US, 
“Warm mountain 
sites” 

90% percentile of 
snowfall events 

-30 % “ “ “ “ 

Western US, “Cold 
mountain sites” 

90% percentile of 
snowfall events 

+5 % “ “ “ “ 

Southern California Total winter snowfall; 
1500–2000 m 

-40% 1981–2000 to 2041–
2060 

RCP2.6 Downscaled GCMs Sun et al. (2016) 

“ “ ; 2000–2500 m -22% “ “ “ “ 
“ “ ; >2500 m -8% “ “ “ “ 
“ Total winter snowfall; 

1500–2000 m 
-52% “ RCP8.5 “ “ 

“ “ ; 2000–2500 m -28% “ “ “ “ 
“ “ ; >2500 m -11% “ “ “ “ 
“ Total winter snowfall; 

1500-2000 m 
-43% 1981–2000 to 2081–

2100 
RCP2.6 “ “ 

“ “ ; 2000–2500 m -26% “ “ “ “ 
“ “ ; >2500 m -13% “ “ “ “ 
“ Total winter snowfall; 

1500-2000 m 
-78 % “ RCP8.5 “ “ 

“ “ ; 2000–2500 m -48% “ “ “ “ 
“ “ ; >2500 m -18% “ “ “ “ 
Western Canada Winter precip. +11% 1979–1994 to 2045–

2060 
RCP8.5 Downscaled GCMs Erler et al. (2017) 
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“ “ +17% 1979–1994 to 2085–
2100 

“ “  “ 

Iceland 
Whole area Total precip. Insignificant 1981–2000 to 2081–

2100 
RCP4.5, 
RCP8.5 

Downscaled GCMs 
using RCMs 

Gosseling (2017) 

Central Europe 
Greater Alpine 
Region 

Winter precip.  +12.3% 1971–2000 to 2071–
2100 

RCP4.5 5 EUROCORDEX 
GCM/RCM pairs 

Smiatek et al. 
(2016) 

“ Spring precip. +5.7% “ “ “ “ 
“ Summer precip. -1.7% “ “ “ “ 
“ Fall precip. +2.3% “ “ “ “ 
“ Number of days with 

precip. > 15 mm 
+10.9%  “ “ “ “ 

Alpine Region Mean winter (December 
to February) precip. 

+8 % 1981–2010 to 2020–
2049 

RCP4.5 EUROCORDEX 
GCM/RCM pairs 
(0.11°) 

Rajczak and Schär 
(2017) 

“ “ +6 % “ RCP8.5 “ “ 
“ “ +12 % 1981–2010 to 2070–

2100 
RCP4.5 “ “ 

“ “ +17% “ RCP8.5 “ “ 
Switzerland Annual mean precip.  +0.6 % 1981–2010 to 2070–

2099 
RCP2.6 EUROCORDEX 

GCM/RCM pairs 
CH2018 (2018) 

“ Winter (December to 
February) mean precip. 

+8.8% “ “ “ “ 

“ Annual mean precip.  +3% “ RCP4.5 “ “ 
“ Winter (December to 

February) mean precip. 
+12.9% “ “ “ “ 

“ Annual mean precip.  +3.3% “ RCP8.5 “ “ 
“ Winter (December to 

February) mean precip. 
+23.7% “ “ “ “ 

Austria Annual mean precip.  +7.1%  1971–2000 to 2071–
2100 

RCP4.5 EUROCORDEX 
GCM/RCM pairs 

Chimani et al. 
(2016) 

“ Winter (December to 
February) mean precip. 

+10.6% “ “ “ “ 

“ Annual mean precip.   +8.7% “ RCP8.5 “ “ 
“ Winter (December to 

February) mean precip. 
+22.7% “ “ “ “ 

Alps Annual solid precip. 
Amount 

-25 % 1981–2010 to 2070–
2099 

RCP4.5 EUROCORDEX 
GCM/RCM pairs 
(0.11°) 

Frei et al. (2018) 
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“ “ -45% “ RCP8.5 “ “ 
Pyrenees, <1500 m Frequency and intensity 

of heavy snowfall events 
Decrease  1960–1990 to 2070–

2100 
SRES A2 Dynamically 

downscaled GCM 
López-Moreno et 
al. (2011)  

Pyrenees, >2000 m “ Insignificant except at high 
altitude (+30% increase) 

“ “ “ “ 

Pyrenees, > 2000 m “ +20-30% “ SRES B2 “ “ 
Carpathian 
mountains 

Summer mean precip. Decrease by up to -20 mm per 
month  

1971–2000 to 2071–
2100 

RCP8.5 Multiple 
GCM/RCM pairs 

Alberton et al. 
(2017) 

Scandinavia 
Scandinavian 
mountains (high 
elevation) 

Annual snowfall +20%  1961–1990 to 2071–
2100 

SRES A1B Multiple 
GCM/RCM pairs 

Räisänen and 
Eklund (2012) 

Caucasus and Middle East 
Iran mountain areas Mean precip. Precip. increase 1961–1990 to 2071–

2000 
SRES A2 Downscaled GCM Babaeian et al. 

(2015)   
“ “ “ “ SRES B2 “  
Alborz mountains Annual precip., winter 

precip. 
No significant change detected 1981–2000 to 2081–

2100 
RCP4.5, 
RCP8.5 

3 CMIP5 GCMs Zarenistanak 
(2018)  

Low Latitudes (Andes) 
Subtropical Andes, 
30°S-37°S 

Winter and summer 
precip. 

No clear trend  2006–2100 RCP4.5, 
RCP8.5 

GCMs  Zazulie et al. 
(2018) 

Tropical Andes Annual precip. Geographically variable. Precip. 
increase up to ~2000 m. No 
significant changes on eastern 
slope >2000 m, decrease in the 
western slope >4000 m 

1961–1990 to 2071–
2100 

SRES A2, B2 Downscaled GCM Urrutia and Vuille 
(2009) 

Central Andes Annual precip. -19% to -33% 1961-2010 to 2071-2100 RCP8.5 Multiple GCMs Neukom et al. 
(2015) 

High-Mountain Asia 
Himalaya Summer precip. +0.008 to +0.014 mm d-1 yr-1 2006–2100 RCP8.5 GCM multi-

member ensemble 
Palazzi et al. 
(2013) 

Eastern Himalaya Annual precip.  +15 to +27% (most in summer)  1970–1999 to 2070–
2099 

SRES B1, A1B, 
A2 and RCP8.5  

CMIP3 and CMIP5 
GCMs 

Panday et al. 
(2015) 

Western Himalaya-
Karakoram 

Annual precip. +1 to +5% (due to increase in 
winter precip.) 

“ “ “ “ 

Hindu Kush 
Himalaya 

Daily 99% precip. 
quantile 

+50% on average 1981–2010 to 2071–
2100 

RCP8.5 Downscaled GCMs Wijngaard et al. 
(2017) 

Northwest 
Himalaya and 
Karakoram 

Precip., June to 
September 

-0.1% 1976–2005 to 2036–
2065 

RCP4.5 CORDEX 
GCM/RCM pairs 

Sanjay et al. (2017) 
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“ Precip., December to 
April 

+7% “ “ “ “ 

“  Precip., June to 
September 

+3.5%  1976–2005 to 2066–
2095 

“ “ “ 

“ Precip., December to 
April 

+14.1% “ “ “ “ 

“ Precip., June to 
September 

+3.7% 1976–2005 to 2036–
2065 

RCP8.5 “ “ 

“ Precip., December to 
April 

+12.8% “ “ “ “ 

“ Precip., June to 
September 

+3.9% 1976–2005 to 2066–
2095 

“ “ “ 

“ Precip., December to 
April 

12.9% “ “ “ “ 

Central Himalaya Precip., June to 
September 

4.4% 1976–2005 to 2036–
2065 

RCP4.5 “ “ 

“ Precip., December to 
April 

-0.7% “ “ “ “ 

“ Precip., June to 
September 

+10.5% 1976–2005 to 2066–
2095 

“ “ “ 

“  Precip., December to 
April 

+1.5% “  “ “ “ 

“ Precip., June to 
September 

+9.1% 1976–2005 to 2036–
2065 

RCP8.5 “ “ 

“ Precip., December to 
April 

-1.3% “ “ “ “ 

“ Precip., June to 
September 

+19.1% 1976–2005 to 2066–
2095 

“ “ “ 

“ Precip., December to 
April 

-8.8%  “ “ “ “ 

Southeast Himalaya 
and Tibetan Plateau 

Precip., June to 
September 

+6.8% 1976–2005 to 2036–
2065 

RCP4.5 “ “ 

“ Precip., December to 
April 

+3.1% “ “ “ “ 

“  Precip., June to 
September 

+10.4% 1976–2005 to 2066–
2095 

“ “ “ 

“ Precip., December to 
April 

+3.7% “ “ “ “ 

“ Precip., June to 
September 

10.2% 1976–2005 to 2036–
2065 

RCP8.5 “ “ 
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“ Precip., December to 
April 

+0.9% “ “ “ “ 

“ Precip., June to 
September 

22.6% 1976–2005 to 2066–
2095 

“ “ “ 

“ Precip., December to 
April 

+0.6% “ “ “ “ 

Tibetan Plateau Total precip. +3.2%  1961–2005 to 2006–
2035 

RCP2.6, 
RCP8.5 

CMIP5 GCMs Su et al. (2013) 

“ “  +6%  1961–2005 to 2036–
2099 

RCP2.6 “ “ 

“ “ +12% “ RCP8.5 “  “ 
Eastern Tibetan 
Plateau 

Annual snowfall -15% 1986–2005 to 2080–
2099 

RCP4.5 RCM driven by 
several GCMs 

Zhou et al. (2018)  

Kashmir Himalaya Annual precip.  +9% 1980–2010 to 2041–
2070 

RCP2.6 Downscaled GCM Shafiq et al. (2019) 

“ “ +12% “ RCP8.5 “ “ 
“ “ +11% 1980–2010 to 2071–

2100 
RCP2.6 “ “ 

“ “ +14% “ RCP8.5 “ “ 
Northern Tian Shan Total precip. +5 % 1976–2005 to 2070–

2099 
RCP8.5 CMIP5 GCMs Yang et al. (2017) 

Western Tian Shan 
and northern 
Kunlun Mountains  

Solid precip. -26.5% “ “ “ “ 

Australia 
SE Australia Annual precip.  -5 % (high variability) 1950–2005 to 2020–

2039 
RCP2.6 Downscaled GCMs Grose et al. (2015) 

“ “ -5 % (high variability) “  RCP8.5 “ “ 
“ “ -5 % (high variability) 1950–2005 to 2080–

2099 
RCP2.6 “ “ 

“ “ -10 % (high variability) “ RCP8.5 “ “ 
Japan 
Tokai region 99th percentile of daily 

precip. 
From +10% to +50% in winter 
(December to February) 

1984–2004 to 2080–
2100 

RCP8.5 Single dynamically 
downscaled GCM 
(MRI AGCM) 

Murata et al. 
(2016) 

Central Japan Winter snowfall 
(November to March)  

Decrease in most parts of Japan 
(up to -300 mm) increase in the 
central part of northern Japan 

1950–2011 to 2080–
2099 

+4°C warming 
in 2080–2099 
with respect to 
1861–1880, 
under RCP8.5 

MRI-AGCM3.2 
(dynamically 
downscaled)  

Kawase et al. 
(2016) 
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“ Heavy snowfall (10 years 
return period) 

Increase (10 mm) in the inland 
areas of central and in northern 
Japan 

“  “ “ “ 
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SM2.4 Details of Studies on Snow Cover Observations and Projections 
 
 
Table SM2.6: Synthesis of recent studies reporting past changes in snow cover in high mountain areas, per high mountain region (as defined in Figure 2.1). SWE is snow water 
equivalent. Obs. stations refer to observation stations. Elevations are in meters (m) above sea level. 

Location Snow variable Change Time period Dataset Reference 
Alaska 
Whole area Duration Decrease 20th century Remote sensing Brown et al. (2017) 
“ SWE  Decrease 20th century “  “ 
Mountainous Alaska Snow at high 

elevation 
Increase 1840–present Indirect evidence from glacier 

accumulation 
Winski et al. (2017) 

Western Canada and USA 
Western USA Springtime SWE Decrease for 92% stations 1955–present In-situ observations Mote et al. (2018) 
“ April 1 SWE -15 to -30% 1955 –present “ “ 
Western USA Annual maximum 

SWE  
Decrease by 41% on average for 13% of 
pixels  

1982– 2016 Gridded product based on in-
situ observations 

Zeng et al. (2018) 

Canada Duration Decrease 2 to 12 days per decade 1950– 2012 In-situ observations DeBeer et al. (2016) 
Iceland 
Whole area Duration Decrease 0 to 10 days per decade 1980–2010 Remote sensing Brown et al. (2017) 
Central Europe 
European Alps and 
Pyrenees 

Snow depth Decrease at low elevation, step decrease in 
late 1980s 

Mid 20th 
century– 
present 

In-situ, reanalyses Beniston et al. (2018) 
Reid et al. (2016)  

European Alps  SWE Decrease at low elevation, step decrease in 
late 1980s 

Mid 20th 
century– 
present 

54 obs. stations  Marty et al. (2017b) 

European Alps  Duration Insignificant trend, decrease at 700–900 m 
in the SE and SW Alps 

1985–2011 Optical remote sensing Hüsler et al. (2014) 

Swiss Alps Onset date 12 days later on average 1970–2015 11 obs. stations Klein et al. (2016) 
“ Melt-out date 26 days earlier on average “ “ “ 
Austrian Alps, 500–2000 
m 

Snow cover days -13 to -18 depending on the region 1950–1979 to 
1980–2009 

Modelling based on in-situ 
observations 

Marke et al. (2018) 

Austrian Alps, 2000– 
2500 m 

“ -12 to -14 depending on the region “ “ “ 

Austrian Alps, >2500 m “ -20 (central Austria) “ “ “ 
French Alps, 1800 m  Duration -24 days 1958–2009 Local reanalysis Durand et al. (2009) 
French Alps Melt onset 2 weeks earlier > 3000 m 1980–2015 In-situ observations Thibert et al. (2013) 
“ Melt intensity 15% stronger >3000 m “ In-situ obs. and modelling “ 
Pyrenees, <1000 m Snow cover duration Decrease in majority of stations 1975–2002 In-situ observations Pons et al. (2010); 

Beniston et al. (2018) 
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Pyrenees, >1000 m “ Decrease in majority of stations  “ “ 
Pyrenees, Andorra, 1645 
m 

Number of days with 
snow depth above 5, 
30 and 50 cm 

Increase until ~1980 then decrease (not 
statistically significant, high variability) 

1935–2015 In-situ observations Albalat et al. (2018) 

Scandinavia 
Norway Snow depth and SWE Decrease at low elevation 20th century In-situ observations Skaugen et al. (2012); 

Dyrrdal et al. (2013); 
Beniston et al. (2018) 

“ “ Increase at higher elevation 20th century “ “ 
Northern Finland Snow cover duration -2.4 days per decade 1961–2014 Gridded dataset based on in-

situ observations 
Luomaranta et al. (2019) 

Southern Finland “ -5.7 days per decade “ “ “ 
Caucasus and Middle East 
Central Caucasus, 2300 
m 

Amount of winter 
snow 

Declining since late 1980s 1968–2013 In-situ observations Volodicheva et al. (2014) 

North-Western Iran Snow cover duration 
and mean snow depth 

Decrease at most stations 1981–2011 28 in-situ observations Arkian et al. (2014) 

Southern Andes 
Whole area Snow covered area Insignificant decrease (high variability) 2000–2015 Optical remote sensing Malmros et al. (2018) 
Whole area Snow covered area Decrease 1979�2006 Passive microwave satellite Le Quesne et al. (2009) 
Low Latitudes (including tropical Andes) 
Compared to mid and high latitude mountain areas seasonal snow cover has limited relevance in the tropical Andes and other tropical areas, except in 
the immediate vicinity of glaciers. Satellite-based observations are too short to address long-term trends. 

Saavedra et al. (2018) 

High Mountain Asia 
Himalaya and Tibetan 
Plateau 

Snow covered area Insignificant trend (high variability 
compared to record length) 

2000– 2015 Optical remote sensing Tahir et al. (2015); 
Gurung et al. (2017); 
Bolch et al. (2018); Li et 
al. (2018) 

Himalaya  SWE -10.60 kg m-2 yr-1 for areas > 500 m  1987– 2009 Passive microwave remote 
sensing 

Smith and Bookhagen 
(2018); Wang et al. (2018) 

Australia 
SE Australia SWE Reduction, especially in springtime Mid-20th 

century– 
present 

In-situ observations Fiddes et al. (2015); Di 
Luca et al. (2018) 

“  Duration Reduction, especially in springtime “ “ “ 
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Table SM2.7: Synthesis of recent studies reporting 21st century projections in snow cover in high mountain areas, per high mountain region (as defined in Figure 2.1). 
Location Snow variable Change Time period Scenario Method Reference 
Alaska       
Mountainous 
Alaska 

SWE -10 to -30% 1970–1999 to 2040–
2069 

RCP8.5  Multiple 
GCM/RCM pairs 

Littell et al. (2018) 

“ SWE -40 to -60% 1970–1999 to 2070–
2099 

“ “ “ 

Western Canada and USA 
Western USA April 1 SWE -50% 1965–2005 to 2010–

2040 
RCP8.5  M Multiple 

GCM/RCM pairs 
Naz et al. (2016) 

“ Duration -10 to -100 days 1976–2005 to 2071–
2100 

RCP8.5 “ Musselman et al. (2018) 

“ Peak annual SWE -6.2 kg m-2 per 
decade 

2013–2038 RCP8.5 Post-processed 
CMIP5 GCM 

Fyfe et al. (2017) 

Iceland 
Low elevation Snow depth -100% 1981–2000 to 2081–

2100 
RCP8.5 Single RCM Gosseling (2017) 

Top of central 
Vatnajökull 

Snow depth +20% 1981–2000 to 2081–
2100 

“ “ “  

Central Europe 
European Alps  Winter SWE <1500 m -40 %  1971–2000 to 2020–

2049 
SRES A1B Multiple 

GCM/RCM pairs 
Steger et al. (2012); Gobiet et 
al. (2014); Beniston et al. 
(2018) 

“ “ -70%  1971–2000 to 2070–
2099 

“ “ “ 

“ “  -10%  1971–2000 to 2020–
2049 

“ “ “ 

“  -40%  1971–2000 to 2070–
2099 

“ “ “ 

French Alps, 1500 
m 

Winter mean snow depth -20% 1986–2005 to 2030–
2050 

RCP2.6 Adjusted multiple 
GCM/RCM pairs 

Verfaillie et al. (2018) 

“ “ -30 % “ RCP8.5 “ “ 
“ “ -30 % 1986–2005 to 2080–

2100 
RCP2.6 “ “ 

“ “  -80 % “ RCP8.5 “ “ 
European Alps Similar results as above and strengthening of the asymmetrical seasonal snow decline pattern (stronger trend for reduced 

snow cover duration in spring than in fall). 
Marty et al. (2017a); Terzago et 
al. (2017) 
Hanzer et al. (2018) 

Scandinavia 
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Northern 
Scandinavia 

Duration and SWE Decrease at low 
elevation, marginal 
changes at high 
elevation 

1971–2000 to 2010–
2100 

A1B GCM downscaled 
using RCM 

Räisänen and Eklund (2012); 
Beniston et al. (2018) 

Norway Duration -14% to -32% 1981–2010 to 2021–
2050 

RCP4.5 Adjusted multiple 
GCM/RCM pairs 

Scott et al. (2019) 

“ “ -15% to -50% “ RCP8.5 “ “ 
“ “ -34% to -64% 1981–2010 to 2071–

2100 
RCP4.5 “ “ 

“ “ -38% to -89% “ RCP8.5 “ “ 
Caucasus and Middle East 
West Caucasus, 
567 m 

Snow cover duration -35 to 40% 1991–2000 to 2041–
2050 

B2 Downscaled GCM Shkolnik et al. (2006); Sokratov 
et al. (2014) 

Southern Andes 
Whole area Mean SWE -13% 1980–2010 to 2035–

2065 
RCP4.5 Multiple RCM López-Moreno et al. (2017) 

“ “ -17% “ RCP8.5 “ “ 
“ Duration 7 days “ RCP4.5 “ “ 
“ “ 10 days “ RCP8.5 “ “ 
Limarí river basin, 
north-central Chile 

Peak SWE (> 5000m) -32 % 1961–1990 to 2071–
2000 

B2 Single GCM/RCM 
pair 

Vicuña et al. (2011) 

“ “ ; 2500–3000 m -82% “ “ “ “ 
“ “ ; 2000–2500 m -100% “ “ “ “ 
“ Peak SWE (> 5000m) -41 %  “ A2 “ “ 
“ “ ; 2500–3000 m -96 % “ “ “ “ 
“ “ ; 2000–2500 m -100 % “ “ “ “ 
High Mountain Asia 
Hindu Kush and 
Karakoram 

Winter snow depth 
(December to April) 

-7 % 1986–2005 to 2031–
2050  

RCP8.5 Multiple GCMs Terzago et al. (2014) 

“ “ -28 % 1986–2005 to 2081–
2100 

“ “ “ 

Himalaya “ -25 % 1986–2005 to 2031–
2050 

“ “ “ 

“ “ -55% 1986–2005 to 2081–
2100 

“ “ “ 

New Zealand and Australia 
Australia SWE Reduction, especially 

below 1000 m 
1980–1999 to 2030–
2049  

SRES A1B Multiple 
downscaled GCMs 

Hendrikx et al. (2013) 

Australia SWE -15 % 1990–2009 to 2020–
2040 

SRES A2 Multiple 
downscaled GCMs 

Di Luca et al. (2018) 
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“ “ -60 % 1990–2009 to 2060–
2080 

“  “ “ 

New Zealand SWE; 1000 m -3% to -44 %  1980–1999 to 2030–
2049  

SRES A1B Multiple 
downscaled GCMs 

Hendrikx et al. (2012) 

“ “; 2000 m -8 % to -22 %  “ “ “ “ 
“ “; 1000 m -32% to -79%  1980–1999 to 2080–

2099 
“ “ “ 

“ “; 2000 m -6% to -51 %  “ “ “ “ 
Japan 
Japan Winter snow depth, low 

elevation 
-50 %  Base: 1990s Future: time 

period corresponding to 
2°C warming. 

+2°C global 
warming (from 
SRES A1B) 

Multiple 
downscaled GCMs 
(time sampling) 

Katsuyama et al. (2017) 

“ “; high elevation -10 %  “ “ “ “ 
mountain 
catchment 

SWE -36% 1981–2000 to 2046–
2065 

SRES A1B Multiple 
downscaled GCMs 

Bhatti et al. (2016) 
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SM2.5 Details on Climate Models used in Figure 2.3 
 
 
Table SM2.8: List of CMIP5 General Circulation Models (GCM) and where available, Regional Climate Models (RCM) used for projecting the winter and summer air temperature 
(T) and snow water equivalent (SWE), for RCP2.6 and RCP8.5, for the five regions represented in Figure 2.3: Rocky Mountains in North America, Subtropical Central Andes, 
European Alps, Hindu Kush and Karakoram, and Himalaya. For the Rocky Mountains, Hindu Kush and Karakoram, and Himalaya only RCP8.5 data were used. 

  
Rocky 
Mountains 

Subtropical Central 
Andes 

European Alps Hindu Kush and Karakoram; 
Himalaya 

GCM (default is r1i1p1) RCM  
(driven by corresponding 
GCM) 

RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP8.5 

  
T SWE T SWE T SWE T SWE T SWE T SWE 

ACCESS1-0 
     

X 
     

X 
 

ACCESS1-3 
     

X 
     

X 
 

Bcc-csm1-1 
   

X 
 

X 
     

X 
 

BNU-ESM 
           

X 
 

CanESM2 
           

X 
 

 
CCCma-CanRCM4 X X 

          

 
UQAM-CRCM5 X X 

          

CCSM4 
   

X X X X 
    

X 
 

CESM1-BGC 
     

X 
     

X X 

CESM1-CAM5 
   

X X X X 
    

X 
 

CMCC-CM 
     

X 
      

X 

CNRM-CM5 
   

X X X X 
    

X 
 

 
CLMcom-CCLM4-8-17 

        
X X 
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Rocky 
Mountains 

Subtropical Central 
Andes 

European Alps Hindu Kush and Karakoram; 
Himalaya 

 
CNRM-ALADIN53 

      
X 

 
X X 

  

 
SMHI-RCA4  

        
X 

   

CSIRO-Mk3-6-0 
           

X 
 

EC-Earth (r8i1p1) 
            

X 

EC-EARTH 
   

X 
 

X 
       

FGOALS-g2 
           

X 
 

GFDL-CM3 
           

X 
 

GFDL-ESM2G 
           

X 
 

 
NCAR-WRF X X 

          

GISS-E2-R 
           

X 
 

HadGEM2-CC 
     

X 
     

X 
 

HadGEM2-ES 
   

X 
 

X 
       

 
NCAR-WRF X X 

          

 
CLMcom-CCLM4-8-17 

        
X X 

  

 
SMHI-RCA4 

        
X 

   

ICHEC-EC-EARTH 
(r12i1p1) 

             

 
CLMcom-CCLM4-8-17 

        
X X 

  

 
SMHI-RCA4  

      
X 

 
X 
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Rocky 
Mountains 

Subtropical Central 
Andes 

European Alps Hindu Kush and Karakoram; 
Himalaya 

ICHEC-EC-EARTH 
(r3i1p1) 

             

 
DMI-HIRHAM5 

      
X 

 
X 

   

IPSL-CM5A-LR 
           

X 
 

IPSL-CM5A-MR 
           

X 
 

 
SMHI-RCA  

        
X 

   

IPSL-CM5B-LR 
           

X 
 

MIROC5 
   

X 
 

X 
     

X 
 

MIROC-ESM-CHEM 
           

X 
 

MIROC-ESM 
           

X 
 

MRI-CGCM3 
   

X X X X 
    

X 
 

MPI-M-MPI-ESM-LR 
             

 
NCAR-WRF X X 

          

 
UQAM-CRCM5 X X 

          

 
CLMcom-CCLM4-8-17 

        
X X 

  

 
MPI-CSC-REMO2009 

      
X X X X 

  

 
SMHI-RCA4  

        
X 

   

MPI-M-MPI-ESM-LR 
(r2i1p1) 

             

 
MPI-CSC-REMO2009 

      
X X X X 
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Rocky 
Mountains 

Subtropical Central 
Andes 

European Alps Hindu Kush and Karakoram; 
Himalaya 

MPI-M-MPI-ESM-MR 
             

 
UQAM-CRCM5 X X 

          

MRI-ESM1 
     

X X 
      

NorESM1-M 
           

X 
 

Ensemble members  7 7 8 4 14 5 5 2 13 7 23 3 
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SM2.6 Synthesis of Recent Studies Reporting on Past and Projected Changes of River Runoff 
 
 
Table SM2.9: Synthesis of recent studies reporting on past and projected changes in river runoff, per high mountain region (as defined in Figure 2.1). Entries per region are sorted 
according to increasing percentage of glacier cover for past and projected changes separately. Note that studies on annual runoff that are listed in Table SM2.9 are not listed here. 
The year of peak water given there indicates the year before which annual runoff is increasing and beyond which it is decreasing.  

Location Basin area (% 
glacier cover) 

Variable 
(change) 

Cause Time period Method Scenario Reference 

Global-scale 
97 snow 
sensitive basins 
in 421 basins in 
northern 
hemisphere 

(glacier melt not 
considered in 
model) 

Spring-summer 
snowmelt runoff 
(decrease) 

Transition of snowfall 
to rainfall 

1955–2005 
to 2006–
2080 

Model, 19 
GCMs 

RCP8.5 Mankin et al. (2015)   

Alaska 
Gulf of Alaska 420,300 km2 

(17 %) 
Annual runoff 
(+1-2 km3 yr-1) 

Increased glacier melt 1980–2014 Model Past Beamer et al. (2016)  

Gulkana, 
Wolverine 

24.6 km2 and 
31.5 km2 (>50%) 

Summer Runoff 
(increase) 

Increased glacier melt 1966–2011 2 stream 
gauges  

Past O’Neel et al. (2014) 

Gulf of Alaska 420,300 km2 Annual runoff 
(+25–46%) 

Increased glacier melt 1984–2014 
to 2070–
2099 

Downscaled 
GCMs 

RCP4.5 RCP8.5 Beamer et al. (2016) 

“ “ Dec.–Feb. runoff 
(+93–201%) 

Transition of snowfall 
to rainfall 

“ “ “ “ 

“ “ Spring peak 
(1month earlier) 

Earlier snowmelt “ “ “ “ 

Western Canada and USA 
South and 
Central 
Columbia Basin 

0.1–19 % August runoff 
(decrease) 

Decreased snow and 
glacier melt 

1975–2012 20 stream 
gauges, 
hydro-graph 
separation 

Past Brahney et al. (2017) 

Canadian Rocky 
Mountains and 
adjacent ranges 

166–1,170 km2 
(0–23.4%), no 
data in some 
basins  

Summer runoff 
(decrease in 
glacierized 
basins) 

Decreased glacier 
melt, decreased 
precipitation 

1955–2010, 
depending on 
sites 

6 stream 
gauges 

Past Fleming and Dahlke (2014)  
 

Bridge river, 
British Columbia 
(Canada) 

139 km2  
(52.6% in 2014) 

Winter runoff 
(increase) 

Increased glacier melt 1979–2014 stream gauge Past Moyer et al. (2016) 

“ “ Summer runoff 
(decrease) 

Decreased glacier melt “ “ “ “ 
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Sierra Nevada, 
northeast of 
California (USA) 

4,781 km2  
(0 %) 

Winter runoff 
(~+19%) 

Transition of snowfall 
to rainfall, increased 
precipitation 

1964–2014 
to 2015–
2064 

7 GCMs RCP4.5, RCP8.5 Sultana and Choi (2018) 

“ “ Spring peak  
(1 month early) 

Earlier snowmelt “ “ “ “ 

Athabasca 
(Canada) 

161,000 km2 
(0 %) 

Summer runoff 
(+6-76 %) 

Increased snowmelt, 
increased precipitation 

1983–2013 
to 2061–
2100 

Downscaled 1 
GCM 

RCP4.5 RCP8.5 Shrestha et al. (2017) 

“ “ Winter runoff 
(+3–114%) 

Transition of snowfall 
to rainfall 

“ “ “ “ 

Whole USA (not significant) Winter runoff 
(increase in 
snow-dominated 
basins) 

Transition of snowfall 
to rainfall 

1961–2005 
to 2011–
2050 

Downscaled 
10 GCMs 

RCP8.5 Naz et al. (2016) 

“ “ Spring peak 
(earlier in snow-
dominated 
basins) 

Earlier snowmelt “ “ “ “ 

Western North 
America 

(not significant) Winter runoff 
(increase) 

Transition of snowfall 
to rainfall 

1965–2005 
to 2010–
2050 

downscaled 
10 GCMs 

RCP8.5 Pagán et al. (2016) 

“ “ Summer runoff 
(decrease) 

Decreased snowmelt “ “ “ “ 

“ “ Spring peak  
(611 days 
earlier) 

Earlier snowmelt “ “ “ “ 

Western USA (not significant) Spring peak 
(1.5–4 weeks 
early) 

Earlier snowmelt 1960–2005 
to 2080–
2100 

downscaled 
10 GCMs 

RCP4.5, RCP8.5 Li et al. (2017) 

British Columbia 0-8% Winter runoff 
(+45–95 %) 

Increased snowmelt, 
increased rainfall 

1961–1990 
to 2041–
2070 

downscaled 8 
GCMs 

SRES B1, A1B Schnorbus et al. (2014) 

“ “ Summer runoff  
(-58% to -9%) 

Decreased snowmelt, 
transition of snowfall 
to rainfall 

“ “ “ “ 

Nooksack (USA) 2,000 km2 
(< 1 %) 

Winter runoff 
(+39–88 %) 

Transition of snowfall 
to rainfall 

1950–1999 
to 2060–
2090 

downscaled 3 
GCMs 

SRES A2, B1 Dickerson-Lange and 
Mitchell (2014) 

“ “ Summer runoff 
(-50% to -26 %) 

Decreased snowmelt “ “ “ “ 

“ “ Spring peak  Earlier snowmelt “ “ “ “ 
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(1 month early) 
“ “ Annual peak 

(increase, 1 
month later) 

Decreased snowmelt, 
increased extreme 
precipitation 

“ “ “ “ 

Fraser, N. 
America 

240,000 km2 
(1.5 %) 

Winter runoff 
(increase) 

Transition of snowfall 
to rainfall 

1980–2009 
to 2040–
2069 

downscaled 
12 GCMs 

RCP4.5 RCP8.5 Islam et al. (2017) 

“ “ Summer runoff 
(decrease) 

Decreased snowmelt, 
transition of snowfall 
to rainfall 

“ “ “ “ 

“ “ Annual peak 
(20-30 days 
earlier) 

Earlier snowmelt “ “ “ “ 

Central Europe 
Alps (some including 

glaciers ) 
Winter runoff 
(increase in 
glacier- or snow-
dominated 
basins) 

Transition of snowfall 
to rainfall 

1961–2005 177 stream 
gauges 

Past Bard et al. (2015) 

“ “ Spring peak 
(earlier) 

Earlier snowmelt and 
glacier melt 

“ “ “ “ 

Alps, (northern 
Italy) 

~100–10,000 
km2 (some 
including 
glaciers ) 

Winter runoff 
(increase at > 
1800 m a.s.l.) 

Transition of snowfall 
to rainfall 

1921–2011 23 stream 
gauges 

Past Bocchiola (2014) 

“ “ Summer runoff 
(decrease) 

Decreased snowmelt 
and glacier melt, 
increased 
evapotranspiration 

“ “ “ “ 

Western Austria (0–71.9 %) Annual flow 
(increase at high 
elevations, 
decrease at low 
elevations) 

Increased and 
decreased glacier melt 

1980–2010 32 steam 
gauges  

Past Kormann et al. (2015b) 

Middle and 
upper Rhine 

144,231 km2 
(<1%) 

Winter runoff 
(+4-51%) 

Transition of snowfall 
to rainfall, earlier 
snowmelt 

1979–2008 
to 2021–
2050 and 
2070– 2099 

10 GCM-
RCMs 

SRES A1B Bosshard et al. (2014) 

“ “ Summer runoff 
(-40% to -9%) 

Decreased snowmelt “ “ “ “ 
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Gigerwaldsee 
(Switzerland) 

97 km2 (<1%) Summer runoff 
(decrease) 

Decreased glacier melt 1992–2021 
to 2035–
2064 and 
2069–2098 

7 GCM-
RCMs 

SRES A1B Etter et al. (2017) 

Swiss Alps  20–1,577 km2  
(0-4%) 

Summer runoff  
(-32 to -56%) 

Transition of snowfall 
to rainfall, Earlier 
snowmelt 

1980–2009 
to  2070–
2099 

10 GCM-
RCMs 

SRES A1B Jenicek et al. (2018) 

Swiss Alps  231–1,696 km2 
(0–22 %) 

Winter runoff 
(increase at high 
elevations) 

Transition of snowfall 
to rainfall 

1980–2009 
to 2020–
2049, 2045–
2074, 2070–
2099 

10 GCM-
RCMs 

RCP2.6, SRES A1B, 
A2 

Addor et al. (2014) 

European Alps Glacierized 
European Alps 

Annual runoff 
(decrease) 

Decreased glacier melt 1980–2009 
to 2010–
2039, 2040–
2069, 2070–
2099 

4 GCMs RCP2.6, RCP4.5, 
RCP8.5 

Farinotti et al. (2016) 

“ “ Summer runoff 
(decrease) 

Decreased glacier melt “ “ “ “ 

Alps, Po (Italy) 71,000 km2 
(small) 

Winter runoff 
(increase) 

Transition of snowfall 
to rainfall 

1960–1990 
to 2020–
2050 

2 RCMs SRES A1B Coppola et al. (2014) 

“ “ Spring peak  
(1 month earlier) 

Earlier snowmelt “ “ “ “ 

Canton 
Graubünden 

7,214 km2 (2.4%, 
~20% in high 
elevation 
catchments) 

Winter runoff 
(increase) 

Transition of snowfall 
to rainfall 

2000–2010 
to 2021–
2050, 2070–
2095 

10 RCMs SRES A1B Bavay et al. (2013) 
 

“ “ Summer runoff 
(decrease) 

Decreased snowmelt, 
decreased precipitation 

“ “ “ “ 

“ “ Spring peak 
(earlier) 

Earlier snowmelt “ “ “ “ 

Göscheneralpsee, 
Dammareuss 
subcatchment 
(central 
Switzerland) 

95 km2 (20%),  
10 km2 (50%) 

Summer runoff 
(decrease) 

Decreased snow melt, 
decreased glacier melt 

1981–2010 
to 2021–
2050, 2070–
2099 

10 RCMs SRES A1B Kobierska et al. (2013) 

Findelen, Swiss 
Alps 

21.18 km2  
(70%) 

Annual runoff 
(decrease) 

Decreased glacier melt 1976–2086 1 RCM SRES A2 Uhlmann et al. (2013) 

“ “ Spring peak 
(earlier) 

Earlier snowmelt “ “ “ “ 
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Scandinavia 
Arctic coastal 
Norway 

56-422 km2 (0–
34.9%), no data 
in some basins  

Winter runoff 
(increase) 

Transition of snowfall 
to rainfall 

1955–2010, 
depending on 
sites 

7 stream 
gauges 

Past Fleming and Dahlke (2014) 

“ “ Summer runoff 
(decrease basins 
including 
glaciers) 

Decreased glacier melt “ “ “ “ 

Whole 
Scandinavia 

(including 
glaciers) 

Winter runoff 
increase ~40%, 
excl. southern 
Sweden and 
Denmark) 

Transition of snowfall 
to rainfall 

1980–2009 
to 2041–
2070 

6 GCM-
RCMs 

SRES A1B Räty et al. (2017) 

“ “ Summer runoff 
(decrease ~40%) 

Decreased snowmelt, 
increased 
evapotranspiration 

“ “ “ “ 

Caucasus and Middle East 
Eastern Anatolia 
(Turkey) 

(0%) Snowmelt peak 
(~1 week earlier) 

Earlier snowmelt 1970–2010 15 stream 
gauges 

Past Yucel et al. (2015) 

“ “ Snowmelt peak 
(~4 week earlier) 

Earlier snowmelt 1961–1990 
to 2070–
2099 

singe GCM-
RCM 

SRES A2 “ 

Euphrates-Tigris 880,000 km2 
(0%) 

Snowmelt peak 
(18–39 days 
earlier) 

Earlier snowmelt 1961–1990 
to 2041–
2070, 2071–
2099 

3GCM-RCMs SRES A1F1, A2, B1 Bozkurt and Sen (2013) 

Low Latitudes (tropical Andes) 
La Paz (Bolivia) 18-78 km2  

(5–12%) 
Annual runoff 
(no significant 
change) 

Decreased ice melt 
compensated by 
increased precipitation 

1963–1007 4 stream 
gauges and 
model 

Past Soruco et al. (2015) 

Zongo (Bolivia) 3 km2  
(35 % in 1987) 

Annual runoff  
(-4% and -24% 
in later period) 

Decreased glacier melt 1987–2010 
to 2030–
2050, 2080–
2100 

11 
downscaled 
GCMs 

RCP4.5 Frans et al. (2015) 

“ “ Wet season 
runoff (increase) 

Transition of snowfall 
to rainfall 

“ “ “ “ 

Southern Andes 
Elqui (Chile) 222-3,572 km2 

(7.02 km2 in 
total) 

Annual runoff 
(no significant 
change) 

Decreased glacier melt 
compensated by 
increased precipitation 

1970–2009 4 stream 
gauges 

Past Balocchi et al. (2017) 
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Rio del Yeso 
(Andes of central 
Chile) 

62 km2  
(19%) 

Annual runoff 
(decrease) 

Decreased snowmelt 2000–2015 Model Past Burger et al. (2019) 

Juncal (Chile) (including 
glaciers ) 

Seasonal runoff 
peak (1month 
early) 

Earlier snowmelt, 
transition of snowfall 
to rainfall 

2001–2010 
to 2041–
2050, 2051–
2060, 2060–
2100 

12 GCMs RCP4.5, RCP8.5 Ragettli et al. (2016) 

High Mountain Asia 
Astore, Gilgit, 
Katchura, (upper 
Indus) 

3,750 km2, 
12,800 km2, 
115,289 km2, 
(not significant) 

Spring and 
summer runoff 
(increase) 

Increased snowmelt, 
transition of snowfall 
to rainfall 

1970–2005 stream gauge Past Reggiani and Rientjes 
(2015) 

Hunza, (upper 
Indus) 

13,925 km2, 
(including 
glaciers) 

Spring and 
Summer runoff 
(decrease) 

Decreased glacier melt “ “ “ “ 

Naryn (Tien 
Shan) 

3,879 km2 (10% 
in 1970s) and 
5,547 km2 (12% 
in 1970s) 

Spring and 
autumn runoff 
(Increase) 

Increased snowmelt 
and ice melt 

1965–2007 2 stream 
gauges 

Past Kriegel et al. (2013) 

“ “ Winter-early 
spring runoff 
(increase) 

Increased snowmelt, 
transition of snowfall 
to rainfall 

“ “ “ “ 

Tien Shan (including 
glacier ) 

Annual runoff 
(increase for 
higher fraction 
of glacier area) 

Increased ice melt 1960–2014 23 stream 
gauges 

Past Chen et al. (2016) 

Toxkan, 
Kunmalik, 
Kaidu, 
Huangshuigou 
(Tien Shan) 

4,298–19,166 
km2 (including 
glaciers ) 

Winter-spring 
runoff 
(increased, 
earlier) 

Earlier snow and 
glacier melt 

1961–2008, 
depending on 
site 

4 stream 
gauges 

Past Shen et al. (2018) 

Kakshaal and, 
Tarim 

18,410 km2 
(4.4%) 

Summer runoff 
(increase) 

Increased ice melt, 
increased precipitation 

1957–2004 Model Past Duethmann et al. (2015) 

Sari-Djaz, Tarim 12,948 km2 
(20.9%) 

Summer runoff 
(increase) 

Increased ice melt “ “ “ “ 

Shigar 
(Karakoram) 

7,040 km2  
(30%) 

June and July 
runoff (increase 
and turn to 
decrease from 
2000 to 2010) 

Decreased snowmelt 1985–2010 Stream 
gauges, 
hydrograph 
separation 

Past Mukhopadhyay and Khan 
(2014) 



FINAL DRAFT Chapter 2 Supplementary Material IPCC SR Ocean and Cryosphere 

Subject to Copyedit SM2-33 Total pages: 87 

“ “ August runoff 
(increase) 

Increased glacier melt “ “ “ “ 

Chhota Shigri 
(Western 
Himalaya) 

~35 km2  
(46.5%) 

Summer runoff 
 (+14-22%) 

Increased glacier melt 1955–1969 
to 1970–
1984, 1985–
1999, 2000–
2014 

RCM and 
mass-balance 
model 

Past Engelhardt et al. (2017) 

Sikeshu (Tien 
Shan) 

921 km2  
(37%) 

Annual runoff 
(increase)  

Increased glacier melt 1964–2004 1 stream 
gauge 

Past Wang et al. (2015) 

Upper Indus ~425,000 km2 
(5%) 

June and July 
runoff in lower 
elevations 
(decrease) 

Decreased snowmelt, 
decreased precipitation 

1971–2000 
to 2071–
2100 

4 GCM-
RCMs 

RCP4.5, RCP8.5 Lutz et al. (2016a) 

“ “ Winter runoff in 
lower elevation 
(increase) 

Increased 
precipitation, transition 
of snowfall to rainfall 

“ “ “ “ 

“ “ Spring peak 
(earlier) 

Earlier snow and 
glacier melt 

“ “ “ “ 

Chu (Tien Shan) 9,548 km2  
(2-7%) 

Annual runoff  
(-27.7% to -
6.6%) 

Decreased glacier melt 1966–1995 
to 2016–
2045, 2066–
2095 

5 GCMs RCP2.6, RCP4.5, 
RCP8.5 

Ma et al. (2015) 

“ “ Spring peak 
(decrease, 1 
month earlier) 

Decreased glacier 
melt, earlier snowmelt 

“ “ “ “ 

Upper basin of 
Indus, 
Brahmaputra, 
Ganges, 
Salween, 
Mekong 

(0.2–5.4%) Spring peak 
(decrease, 
earlier) 

Earlier snowmelt, 
transition of snowfall 
to rainfall 

1998–2007 
to 2041–
2050 

4 GCMs RCP4.5, RCP8.5 Lutz et al. (2014) 

Naryn (Tien 
Shan) 

58,205 km2  
(2%) 

Annual runoff 
(decrease) 

Decreased 
precipitation, 
decreased snowmelt 

1966–1995 
to 2016–
2045, 2066–
2095  

5 GCMs RCP2.6, RCP4.5, 
RCP8.5 

Gan et al. (2015) 

“ “ Winter runoff  
(-2.2 to +19.8%) 

Decreased 
precipitation, 
decreased snowmelt 

“ “ “ “ 

“ “ Spring peak  
(1 month earlier) 

Earlier snowmelt “ “ “ “ 
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Chon Kemin 
(Kyrgyz-Kazakh 
region) 

1,037 km2  
(11%) 

Summer runoff  
(-15 to -4%, -66 
to -9%) 

Decreased ice melt 1955–1999 
to 2000–
2049, 2050–
2099 

4 GCMs RCP2.6, RCP8.5 Sorg et al. (2014a) 

“ “ Spring runoff  
(+7 to +23%, 
+18 to +62%) 

Increased winter 
precipitation, increased 
snowmelt 

“ “ “ “ 

Beida River, 
upper Heihe 
(China) 

565–6,706 km2 
(total 318.2 km2) 

Annual runoff 
(increase) 

Increased glacier melt 1957–2013 3 stream 
gauges 

Past Wang et al. (2017b) 

Lhasa, upper 
Brahmaputra 

32,800 km2 (2% 
in 1970, 1.3–
11.5% for 
selected sub-
basins) 

Early summer 
runoff  
(decrease) 

Decreased snowmelt, 
increased 
evapotranspiration 

1971–2000 
to 2011–
2040 and 
2051–2080 

single GCM-
RCM 

SRES A1B, A2, B2 Prasch et al. (2013) 

Koshi (Nepal) 3,712 km2 (13%) Summer runoff 
(decrease) 

Decreased snow melt 2000–2010 
to 2040–
2050, 2086–
2096 

5 GCM-
RCMs 

SRES A1B Nepal (2016) 

Upper Langtang 
(Himalaya) 

(including 
glaciers) 

Peak runoff 
(increase) 

Transition of snowfall 
to rainfall 

2001–2010 
to 2041–
2050, 2051–
2060, 2060–
2100 

12 GCMs RCP4.5, RCP8.5 Ragettli et al. (2016) 

Langtang 
(Himalaya) 

360 km2  
(46%) 

Annual runoff 
(increase) 

Increased glacier melt 1961–1990 
to 2021–
2050, 2071–
2100 

RCP4.5, 
RCP8.5 

8 GCM Immerzeel et al. (2013) 

Baltoro 1,415 km2  
(46%) 

Annual runoff 
(increase) 

Increased glacier 
glacier melt 

 “ “ “ 

Chhota Shigri 
(Western 
Himalaya) 

~35 km2  
(46.5%) 

Spring-summer 
runoff  
(increase) 

Earlier snow and 
glacier melt 

1951–2099 
to 2070–
2099 

GCM-RCM RCP4.5, RCP8.5 Engelhardt et al. (2017) 

“ “ Summer runoff 
(decrease) 

Decreased glacier melt “ “ “ “ 

Hunza, upper 
Indus (Western 
Himalaya) 

13,567 km2 
(including 
glaciers) 

Spring runoff 
(increase, earlier 
in 2 GCMs, 
decrease in 1 
GCM) 

Early snow melt 1980–2010 
to 2030–
2059, 2070–
2099 

3 GCMs RCP2.6, RCP8.5 Garee et al. (2017) 
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“ “ Summer runoff 
(decrease in 2 
GCMs, slight 
increase in 1 
GCM) 

Decreased glacier melt “ “ “ “ 

New Zealand and SE Australia 
Upper Waitaki 
(New Zealand) 

9,490 km2 
(including 
glaciers) 

Late winter-
spring runoff 
(increase) 

Transition of snowfall 
to rainfall 

1980–1999 
to 2030–
2049, 2030–
2049, 2080–
2099 

Downscaled 
12 GCMs 

SRES A1B Caruso et al. (2017) 

“ “ Summer runoff 
(decrease) 

Decreased snowmelt, 
decreased precipitation 

“ “ “ “ 

Other regions (affected by snow cover but lacking glaciers) 
Eastern Scotland 749 km2  

(0%) 
Winter runoff 
(increase) 

Transition of snowfall 
to rainfall, 
precipitation increase 

1960–1991 
to 2010–
2039, 2030–
2059, 2070–
2099 

11 RCMs SRES A1F1, A1B, 
B1 

Capell et al. (2014) 

Shubuto, 
Hokkaido 
(Japan) 

367.1 km2  
(0%) 

Spring peak  
(~14 days 
earlier) 

Earlier snowmelt 2046–2065 5 GCMs SRES A1B Bhatti et al. (2016) 
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SM2.7 Details of Studies on Peak Water 
 
 
Table SM2.10: Overview of studies providing estimates of the timing of peak water for the individual glaciers or glacier-fed river basins plotted in Figure 2.6. Peak water is the 
approximate year derived from observations or modelling (past) and modelling (future) when on average annual runoff reaches a maximum due to glacier shrinkage. Years are 
approximated from the information presented in each study, and in some cases represent an average of results from different scenarios (see remarks). Local refers to estimates for 
individual glaciers (no matter glacier area) and river basins with multiple glaciers but total glacier cover less than 150 km2. All other estimates are referred to as regional. Glacier 
area refers to reported area typically referring to the beginning of the study period. Glacier cover refers to the glacier area in percent of the river basin’s area.   

Glacier/basin name Domain type Peak water 
(year) 

Glacier area 
(km2) 

Glacier cover  
(%) 

Reference Remarks; scenario (if reported) 

Alaska 
Copper River basin regional ~2070 ~13,000 ~21 Valentin et al. (2018) RCP4.5 
Wolverine local ~2050 17 67 Van Tiel et al. (2018) No clear peak; RCP4.5 
Wolverine local ~2035 17 67 No clear peak; RCP8.5 
Western Canada 
Hood local ~2015 ~9 100 Frans et al. (2016) Runoff from glacier area 

Bridge local ~2015 73 53 Moyer et al. (2016) Qualitative statement: At / close to peak 
water 

Mica basin regional ~2000 1,080 52 Jost et al. (2012) Already past peak water; year not reported 
Bridge local ~2000 73 53 Stahl et al. (2008) Already past peak water; year not reported 
Hoh local 1988 18 100 Frans et al. (2018) Runoff from glacier area; RCP4.5 
Stehekin local 1985 19 100 
Cascade local 1984 12 100 
Hood local 1995 5 100 
Thunder local 2040 32 100 
Nisqually local 2053 18 100 
Several basins in Western 
Canada regional ~2000 150  Fleming and Dahlke (2014) “Peak Water already over” (qualitative 

statement); runoff data analysis 

Western Canada, coastal 
Alaska regional ~2035 26,700 100 

Clarke et al. (2015) Runoff from glacier area; Peak water varying 
between ~2023 and 2055; RCP2.6 

Western Canada, coastal 
Alaska regional ~2042 26,700 100 

Runoff from glacier area; Peak water varying 
between ~2024 and 2065; RCP8.5 

Iceland 

Southern Vatnajökull, 
Langjökull, Hofsjökull local/ regional ~2055 ~5000 100 

Björnsson and Pálsson (2008)  

Central Europe (European Alps) 
Gries local 2020 5 49 Farinotti et al. (2012) A1B 
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Silvretta local 2015 5 5 
Rhone local 2042 18 46 
Gorner local 2035 51 63 
Aletsch local 2050 117 59 
Trift local 2045 17 43 
Zinal local 2047 11 65 Huss et al. (2008) A1B 
Moming local 2039 6 63 
Weisshorn local 2035 3 39 
Morteratsch local 2020 16 15 Huss et al. (2010) A1B 
Forno local 2042 7 34 
Albigna local 2020 6 30 
Plaine Morte local 2055 8 100 Reynard et al. (2014) A1B 
Findel local 2035 16 74 Uhlmann et al. (2013)  

Findel local ~2050 16 74 Huss et al. (2014) A1B (Peak water 2035–2065 depending on 
climate model 

Swiss Alps 
local (>100 
glaciers) 

1997 <0.05 100 Huss and Fischer (2016)  
Swiss Alps 2000 0.05–0.125 100 
Swiss Alps 2004 0.125–0.5 100 
High Mountain Asia 
Chon Kemin basin regional ~2045 112 11 Sorg et al. (2014a) RCP2.6 
Chon Kemin basin regional ~2025 112 11 RCP8.5 
Largest rivers of China regional ~2070 ~30,000  Su et al. (2016) Peak water unclear from study; RCP2.6 
Largest rivers of China regional ~2070 ~30,000  Peak water unclear from study; RCP8.5 

Hailuogou local ~2050 45 36 Zhang et al. (2015) No clear peak; declining glacier runoff after 
2050; RCP4.5 

Hailuogou local ~2070 45 36 RCP8.5 
Kakshaal basin regional ~2018 740 4 Duethmann et al. (2016) Runoff from glacier area; aggregate of 

different emission scenarios; 
RCP2.6/RCP8.5 Sari-Djaz basin regional ~2033 2,580 20 

Naryn basin regional ~2020 1,160 2 Gan et al. (2015) RCP2.6 
Naryn basin regional ~2030 1,160 2 RCP4.5 
Naryn basin regional ~2050 1,160 2 RCP8.5 
Urumqi local 2020 2 52 Gao et al. (2018) RCP4.5 
Yangbajing basin regional ~2025 312 11 Prasch et al. (2013) Peak water between 2011 and 2040; A1B 
Headwaters of Brahmaputra, 
Ganges, Indus regional ~2050 ~30,000  Lutz et al. (2014) RCP4.5 

All High-Mountain Asia 
glaciers  regional ~2030 ~90,000 100 Kraaijenbrink et al. (2017) 

 
RCP4.5 
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All High-Mountain Asia 
glaciers  regional ~2050 ~90,000 100 RCP8.5 

Chhota Shigri local 2040 16 46 Engelhardt et al. (2017) No clear peak; RCP4.5 
Chhota Shigri local 2020 16 46 No clear peak; RCP8.5 
Hypothetical local 2055 50 1 Rees and Collins (2006) Runoff from glacier area 
Hypothetical local 2064 50 1 
Langtang local 2045 120 100 Immerzeel et al. (2013) RCP4.5 
Baltoro local 2048 520 100 RCP8.5 
Langtang local 2044 120 100 RCP4.5 
Baltoro local 2065 520 100 RCP8.5 
Langtang local ~2055 120 34 Ragettli et al. (2016) RCP4.5 
Langtang local ~2070 120 34 RCP8.5 
Low Latitudes (Andes) 

Rio Santa basin regional ~2005 200 2 Carey et al. (2014) “Peak water already over” (qualitative 
statement) 

Zongo local 2010 3 21 Frans et al. (2015)  

Cordillera Blanca regional ~1995 480  Polk et al. (2017) “Peak water already over” (qualitative 
statement) 

Sub-basins of Rio Santa  ~1990 200 2 Baraer et al. (2012) Analysis of observations 
Scandinavia 
Nigardsbreen local ~2080 45 70 Van Tiel et al. (2018) No clear peak; RCP4.5 
Nigardsbreen local ~2080 45 70 No clear peak; RCP8.5 
Southern Andes 
Juncal local 2030 34 14 Ragettli et al. (2016) RCP4.5 
Juncal local 2020 34 14 RCP8.5 
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SM2.8 Details of Studies on Observed Impacts Attributed to Cryosphere Changes 
 
 
Table SM2.11: Overview of studies documenting observed impacts on ecosystems, other natural systems and human systems over the past several decades that can at least partly be 
attributed to changes in the cryosphere, per high mountain region (as defined in Figure 2.1). Other additional climatic or non-climatic drivers are not listed. Confidence levels refer to 
confidence in attributing the impact to cryosphere changes (H for high, M for medium). Only studies where the confidence in attribution to cryosphere change is at least medium are 
listed. Also listed whether or not the impact is positive (pos), neg (neg) or mixed for the impacted system. Figure 2.8 is based on the data provided in this table. 

Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Alaska 

Alaska Landslides Increase in frequency of large rock 
avalanches  Permafrost degradation M neg Coe et al. (2017) 

Alaska 
Terrestrial 
ecosystems 
(tundra) 

Population performance of a large 
mammal (dall sheep) Spring snow cover M mixed van de Kerk et al. 

(2018) 

Alaska 

Terrestrial 
ecosystems 
(tundra; 
forest) 

Decline in abundance & offspring 
recruitment of a large mammal 
(mountain goat) 

Harsh winter conditions (extreme 
weather events); delayed spring onset / 
end of snow season 

M neg Rattenbury et al. 
(2018) 

Alaska Culture, 
Tourism 

Route change for Iditarod dog-sled 
race 

Insufficient snow cover, lack of 
river/lake ice. H neg Hagenstad et al. (2018) 

Western Canada and USA 

British Columbia  Hydropower Change in runoff timing Reduction in peak winter snow 
accumulation, glacier decline. 

H (snow)  
M (glacier) mixed Jost et al. (2012); Jost 

and Weber (2013) 
Sacramento River 
basin, California Hydropower Change in runoff timing Reduced snow pack due to more 

precipitation as rain. H neg Reclamation (2014) 

San Joaquin River 
basin, California Hydropower Change in runoff timing Reduced snow pack due to more 

precipitation as rain. M neg Reclamation (2014) 

Upper Colorado River, 
USA Hydropower Change in runoff timing Earlier snowmelt runoff H neg Kopytkovskiy et al. 

(2015) 

Cascades  Agriculture Irrigation Reduction in dry season stream flow due 
to glacier retreat M neg Frans et al. (2016) 

Rocky 
Mountains/Cascades  Agriculture Irrigation Reduction in summer stream flow 

because of reduced snowpack M neg McNeeley (2017) 

British Columbia Landslides Increase in landslide frequency Glacier retreat and loss M neg Cloutier et al. (2017) 

Entire Western USA Floods Decrease in frequency of rain-on-
snow flood event at lower elevation 

Decrease in duration and depth of snow 
cover M pos McCabe et al. (2007) 

Entire Western USA Floods Increase in frequency of rain-on-
snow flood event at higher elevation 

Increase in frequency of rainfall at high 
elevation in winter. M neg “ 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Canada 

Terrestrial 
ecosystems 
(tundra; 
forest) 

Population dynamics of a large 
mammal (wolverine) 

Winter snowpack decline, negatively 
correlated with temperature anomalies H mixed Brodie and Post (2010) 

Colorado Rocky 
Mountains 

Terrestrial 
ecosystems 
(tundra) 

Changes in vegetation distribution 
(shrub and tundra expansion) 

Spring snow cover (snow water 
equivalent) M pos Bueno de Mesquita et 

al. (2018) 

Mid-elevation 
Northern Rocky 
Mountains 

Terrestrial 
ecosystems 
(forest) 

Fire extent, fire season severity, and 
fire season duration increase Earlier spring snow-melt  M neg Westerling (2016) 

Colorado Rocky 
Mountains 

Terrestrial 
ecosystems 
(tundra) 

Changing upper and lower 
boundaries of alpine tundra, and 
within plant community shifts 
 

Snow changes M mixed Suding et al. (2015) 

Cascade Mountains 
Terrestrial 
ecosystems 
(tundra) 

Change in abundance of a small 
mammal (pika) at different 
elevations 

Record low snowpack (snow drought) H mixed Johnston et al. (2019) 

Colorado Rocky 
Mountains 

Terrestrial 
ecosystems 
(subalpine 
meadows) 

Decrease in peak season net 
ecosystem production 

Earlier snowmelt, longer early season 
drought M neg Sloat et al. (2015) 

Northern Rocky 
Mountains, Montana 

Terrestrial 
ecosystems 
(forest) 

Reduced survival of a small 
mammal (snowshoe hare) due to 
camouflage mismatch 

Snow cover duration M neg Zimova et al. (2018) 

Montana Freshwater 
ecosystems Loss of endemic invertebrates Decreased glacier runoff due to glacier 

decline M neg Giersch et al. (2017) 
Muhlfeld et al. (2011) 

Rocky Mountains Freshwater 
ecosystems 

Cutthroat trout and bull trout range 
reduced 

Decreased glacier runoff due to glacier 
decline M neg Young et al. (2018) 

W. USA and W. 
Canada Tourism Reduced operating capabilities of 

ski resorts Less snow H neg Steiger et al. (2017); 
Hagenstad et al. (2018) 

Cascades, USA Tourism 
Reduced ice-climbing opportunities 
and reduced attractions for summer 
trekking 

Glacier retreat  M neg Orlove et al. (2019) 

Iceland 
Sandá í Þistilfirð, 
Iceland Hydropower Change in timing of input  Change in seasonality of snowmelt M neg Einarsson and Jónsson 

(2010) 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Austari-Jökulsá, 
Iceland Hydropower Change in timing of input Change in seasonality of snowmelt and 

glacier decline M neg Einarsson and Jónsson 
(2010) 

Northern Iceland Landslides Large debris slide Deep thawing of ground ice  H neg Sæmundsson et al. 
(2018) 

Iceland Freshwater 
ecosystems 

Change in species interactions and 
loss of taxa Decreased runoff due to glacier decline M neg Milner et al. (2017) 

Jokulsarlon Tourism Glacier-based tourism Positive effect - picturesque glacial 
lagoon formed by glacier retreat H pos Þórhallsdóttir and 

Ólafsson (2017) 
Central Europe 

European Alps Water quality Increased heavy metal 
concentrations in lakes 

Release of solutes from thawing 
permafrost M neg Thies et al. (2007) 

European Alps Water quality Increased heavy metal 
concentrations in lakes 

Release of solutes from thawing 
permafrost M neg Ilyashuk et al. (2018) 

European Alps Water quality Increased heavy metal 
concentrations in streams 

Release of solutes from thawing 
permafrost M neg Thies et al. (2013) 

Carpathians, Eastern 
Europe Hydropower Reduced water inflow in input due 

to change in runoff timing 

Reduction of perennial snowpacks and 
earlier snowmelt - reduced input and 
change in seasonality of input 

M neg Alberton et al. (2017) 

Löntsch, Switzerland Hydropower Increase in runoff (short-term) Slight glacier decline M pos 
Hänggi et al. (2011); 
Hänggi and 
Weingartner (2011) 

Löntsch, Switzerland Hydropower Change in runoff and timing 
Snow cover - Slightly more 
precipitation/snow, slightly less snow 
cover, slight increase in snow melt 

M mixed “ 

Oberhasli, Switzerland Hydropower change in timing of runoff 
Glaciers - significant reduction, decrease 
of glacier melt with slightly earlier 
maximum 

M neg Weingartner et al. 
(2013) 

Göschener alp 
reservoir, Switzerland Hydropower change in timing of input Snow cover - minor change of 

seasonality  M - “ 

Gougra, Switzerland Hydropower increase in input Glaciers - significant reduction, increase 
in runoff M pos “ 

Gougra, Switzerland Hydropower change in timing of input Snow cover - change in timing of runoff M neg “ 

Prättigau, Switzerland Hydropower slight increase in runoff Glaciers - slight decline M pos 
Hänggi et al. (2011); 
Hänggi and 
Weingartner (2011) 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Prättigau, Switzerland Hydropower change in runoff and timing 
Slightly more precipitation/snow, 
slightly less snow cover, slight increase 
in snow melt and winter discharge 

H mixed “ 

Switzerland Hydropower Increased water inflow  Glacier retreat  H pos Schaefli et al. (2019) 

Italian Alps Hydropower Decreased water supply for run-of-
river hydropower 

Glacier retreat has reduced summer 
runoff. M neg Orlove et al. (2019) 

French and Italian 
Alps Landslides Increase in rock avalanche 

frequency 
Glacier retreat and permafrost 
degradation M neg 

Ravanel and Deline 
(2011); Fischer et al. 
(2012); Ravanel et al. 
(2017) 

Swiss Alps Landslides Increase in frequency of large 
debris flows Permafrost degradation M neg Stoffel and Graf 

(2015) 
European Alps Landslides Rock glacier destabilisation Permafrost thaw H neg Roer et al. (2008) 

European Alps Landslides Increasing debris flows and small 
rock fall Permafrost thaw H neg Kummert et al. (2017) 

European Alps Landslides Rock glacier collapse Permafrost thaw H neg Bodin et al. (2016) 

European Alps Landslides Increasing rockfall during heat 
waves Permafrost thaw H neg Ravanel et al. (2017) 

European Alps Landslides Slope instability beneath 
infrastructure Permafrost thaw H neg Ravanel et al. (2013) 

European Alps Landslides Increasing rockfall Permafrost thaw H neg Ravanel et al. (2010) 

European Alps Landslides Increasing rockfall during recent 
decades Permafrost thaw M neg Ravanel and Deline 

(2011) 

Swiss Alps Landslides 
Increase in debris transport into 
steep slopes and destabilisation of 
rock glaciers 

Permafrost degradation M neg Kääb et al. (2007) 

European Alps Snow 
avalanche 

More avalanches involving wet 
snow Changes in snow cover characteristics M neg Pielmeier et al. (2013) 

Naaim et al. (2016) 

European Alps Snow 
avalanche 

Decrease in total number of 
avalanches at lower elevation Changes in snow cover characteristics M pos Eckert et al. (2013); 

Lavigne et al. (2015) 

Tatras mountains Snow 
avalanche 

Decline in mass and intensity of 
large avalanches Changes in snow cover characteristics M pos Gadek et al. (2017) 

European Alps Floods 
Decrease in rain-on snow flood 
event at lower elevation and in 
spring 

Change in duration and depth of snow 
cover and change in precipitation type 
(rain vs. snow) 

M pos 
Freudiger et al. (2014); 
Moran-Tejéda et al. 
(2016) 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

European Alps Floods 
Increase in rain-on snow flood 
event at higher elevation and in 
winter 

Change in duration and depth of snow 
cover and change in precipitation type 
(rain vs. snow) 

M neg “ 

Poland (Białowieża 
Forest) 

Terrestrial 
ecosystems 

increased predation pressure in a 
mammal (weasel) due to 
phenological camouflage mismatch 

decreasing number of snow-cover days M neg Atmeh et al. (2018) 

Pyrenees Terrestrial 
ecosystems 

availability duration of high quality 
food for a bird (ptarmigan) Earlier snow-melt M pos García-González et al. 

(2016) 

Swiss Alps 
Terrestrial 
ecosystems 
(tundra) 

Alpine grassland species colonize 
the snowbeds 
 

Shorter snow-cover duration H mixed Matteodo et al. (2016) 

Italian Alps 
Terrestrial 
ecosystems 
(tundra) 

Slow soil and plant community 
development  Glacier retreat H mixed D'Amico et al. (2017) 

French Pyrenees Freshwater 
ecosystems 

Change in species interactions and 
loss of taxa Decreased runoff due to glacier decline M neg Khamis et al. (2015) 

French Pyrenees Freshwater 
ecosystems 

Increased local diversity; decreased 
regional diversity Decreased runoff due to glacier decline H pos/neg Khamis et al. (2016) 

French Pyrenees Freshwater 
ecosystems Reduction in genetic diversity Decreased runoff due to glacier decline M neg Finn et al. (2013) 

Swiss Alps Freshwater 
ecosystems Upward shift of invertebrate taxa Decreased runoff due to glacier decline H neg Finn et al. (2010) 

Italian Alps Freshwater 
ecosystems Loss of endemic invertebrates Decreased runoff due to glacier decline H neg Finn et al. (2013) 

Western Balkans Freshwater 
ecosystems Loss of native trout Decreased runoff due to glacier decline M neg Papadaki et al. (2016) 

Austrian Alps Freshwater 
ecosystems Increased diatom biodiversity Decreased runoff due to glacier decline M pos Fell et al. (2018) 

Austrian Alps Freshwater 
ecosystems Increased microbial biodiversity Decreased runoff due to glacier decline M pos Finn et al. (2009) 

Italian Alps Freshwater 
ecosystems Range reduction in trout Decreased runoff due to glacier decline M neg Vigano et al. (2016) 

European Alps Infrastructure Structure instability Permafrost thaw M neg Phillips and Margreth 
(2008) 

European Alps and 
Pyrenees Tourism Reduction in ski lift revenues and 

operating capabilities of ski resorts Reduction of snow cover duration H neg Steiger et al. (2017) 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

European Alps Tourism Changes in the safety of 
mountaineering routes 

Glacier decline, permafrost thaw 
(impact on ground instability) H neg 

Ritter et al. (2012); 
Duvillard et al. (2015); 
Ravanel et al. (2017); 
Mourey et al. (2019) 

Italian Alps Culture 
Aesthetic quality; Local residents 
find the dark peaks in summer to be 
unattractive 

Glacier retreat H neg Brugger et al. (2013) 

Italian Alps Culture 
Local residents feel that the identity 
of their village is weakening as the 
peaks have less ice and snow 

Reduced ice and snow cover H neg Jurt et al. (2015) 

Scandinavia/Nordic 

Northern Norway Hydropower More water for hydropower Thinning of glacier, changed routing of 
glacier-dammed lake H pos Engeset et al. (2005) 

Northern Norway Landslides Increase in debris transport into 
steep slopes Increase in rock glacier speed M neg Eriksen et al. (2018) 

Norway 

Terrestrial 
ecosystems 
(tundra; 
forest) 

abundance reduction of a small 
mammal (mountain hare) due to 
molting mismatch and predation 

snow cover duration M neg Pedersen et al. (2017) 

Norway 
Terrestrial 
ecosystems 
(tundra) 

invertebrate, plant and fungal 
community composition change 
during succession 

glacier retreat H pos Matthews and Vater 
(2015) 

Finland Tourism Reduction in ski lift revenues Reduced snow cover duration M neg Falk and Vieru (2017) 
Caucasus and Middle East 

Central Caucasus Snow 
avalanche Increased risk of large avalanches Glacier decline, change in snow 

conditions M neg 
Aleynikov et al. (2011) 
Volodicheva et al. 
(2014) 

Central Caucasus Floods Increased risk of outburst floods Glacier decline, permafrost thaw 
(impact on ground instability) M neg 

Petrakov et al. (2012) 
Chernomorets et al. 
(2018) 

Western Caucasus Tourism Ski tourism Reduction of snow cover duration M neg Sokratov et al. (2014) 
North Asia 

Russia (Altai 
mountains) 

Terrestrial 
ecosystems 
(tundra) 

Plant and fungal community 
composition change during 
succession 

Glacier retreat H mixed Cazzolla Gatti et al. 
(2018) 

Southern Andes 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Central Chile Water 
resources Reduced water supply reserves Reduction and melt/collapse of rocky 

glaciers Low/M neg Navarro et al. (2018) 

Patagonia Floods 
Increase in size and number of 
glacier lakes; risk of outburst floods 
(e.g. at new locations) 

Glacier decline H neg 
Navarro et al. (2018); 
Wilson et al. (2018) 
Colavitto et al. (2012) 

Central Chile Floods Peak floods (no specific affected 
sectors mentioned) 

Snow and glacier melt, shifts in peak 
flow (currently increasing), affecting 
water security in dry months 

M neg Pizarro et al. (2013) 

Chilean Patagonia Freshwater 
ecosystem 

Spawn rates for certain fish species 
negatively affected (some of great 
commercial value for the region) 

Changes in water temperature and 
salinity due to changes ice and snow 
melt  

Low/M neg Landaeta et al. (2012) 

Low Latitudes 
Cordillera Blanca, 
Peruvian Andes 

Water 
resources Drinking water supply in rural areas Reduced glacier contribution to 

groundwater which maintains springs H neg Baraer et al. (2012)  

Peruvian Andes Agriculture Negative impact on crops, pastures 
and livestock Reduced runoff due to glacier retreat M neg Mark et al. (2010); 

Bury et al. (2011) 

Central Andes 
(Bolivia, Peru) 

Terrestrial 
ecosystems 
(tundra) 

Constrained plant primary 
succession Glacier retreat M neg (Zimmer et al., 2018) 

Northern Andes 
(Ecuador) 

Terrestrial 
ecosystems 
(tundra) 

upward shifts of vegetation zones 
and maximum elevation of species Glacier retreat H pos Morueta-Holme et al. 

(2015) 

Ecuador Freshwater 
ecosystems Decrease in regional biodiversity Reduced runoff due to glacier decline  M neg Milner et al. (2017) 

Ecuador Freshwater 
ecosystems Loss of regional diversity Reduced runoff due to glacier decline H neg Cauvy-Fraunié et al. 

(2016) 

Ecuador Freshwater 
ecosystems 

Downstream shift of macro-
invertebrates Reduced runoff due to glacier decline M pos Jacobsen et al. (2014) 

Tropical Andes Tourism Closure of a ski resort. Glacier disappearance, reduced snow 
cover H neg Kaenzig et al. (2016) 

Peruvian Andes Culture 

Spiritual value: concern among 
local residents who seek to restore 
relations with the local mountain 
deity. 

Glacier retreat and lesser snowmelt on a 
major mountain have reduced flow in a 
river 

H neg Stensrud (2016) 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Ecuadorian Andes Culture 

Loss of Indigenous knowledge, 
especially among youth and 
children, in a setting where such 
knowledge is closely linked to the 
physical presence of the glacier 

Glacier decline and disappearance M  neg Rhoades et al. (2008) 

Peruvian Andes Culture 

Spiritual value: the site of a major 
pilgrimage was altered, making it 
more difficult for pilgrims to access 
the site, and creating distress and 
concern for them 

Glacier retreat H neg Allison (2015) 

Peruvian Andes Migration 

Emigration and increased wage 
labour migration: Glacier runoff 
used to irrigate pasture, so herders 
increased their temporary migration 
for wage labour opportunities; the 
greater propensity of younger adults 
to migrate alters the demographic 
composition of the herding 
community, with a larger proportion 
of elderly and female than 
previously. 

Reduced runoff due to glacier retreat 
and lesser snowmelt runoff   M neg Alata et al. (2018) 

Bolivian Andes Migration 
Increased emigration and declines 
in the productivity of irrigated 
agriculture 

Reduced runoff due to glacier retreat M neg Brandt et al. (2016) 

High Mountain Asia 

Nepal   Water 
resources 

Drinking water supply in rural areas 
reduced Glacier retreat and reduced snow cover M neg McDowell et al. 

(2013) 

Several regions Hydropower 
More/less water for hydropower 
depending on timing for different 
regions. 

Increased/ decreased runoff due to 
glacier decline and change in snowpack H mixed Lutz et al. (2016b) 

Gilgit-Baltistan, 
Pakistan Agriculture 

Reduced water availability for 
irrigation of crops on a major 
mountain 

Reduced runoff due to glacier retreat 
and less snowmelt  H neg Nüsser and Schmidt 

(2017) 

Nepal Agriculture 
Reduction in quality of pasture, 
which reduces the capacity of the 
area to support livestock 

Reduced snow cover duration M neg Shaoliang et al. (2012) 

Nepal Agriculture Decreased agricultural production More erratic snowfall  M neg Gentle and Maraseni 
(2012) 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Nepal Agriculture Less favourable potato planting 
conditions Seasonally delayed snowfall M neg Sujakhu et al. (2016) 

Nepal Agriculture Reduced soil moisture, which 
reduces crop yield Reduced snow cover M neg Prasain (2018) 

Pakistan Agriculture Irrigation Reduced runoff due to glacier retreat M neg Nüsser and Schmidt 
(2017) 

Nepal Agriculture 
Reduced yields due drying of soils 
in winter and reduced moisture 
input in spring 

Reduced snow cover  M neg  Smadja et al. (2015) 

Himalaya Snow 
avalanche 

Increase in occurrence of 
avalanches 

Change in snow conditions (more wet-
snow conditions) M neg Ballesteros-Cánovas et 

al. (2018) 

Himalaya Floods Increase in size and number of 
glacier lakes Glacier retreat H mixed Frey et al. (2010); 

(Gardelle et al., 2011) 

Himalaya Floods Risk of outburst floods (e.g. at new 
locations) 

Glacier retreat led to increase in number 
and size of glacier lakes H neg 

Carrivick and Tweed 
(2016); Harrison et al. 
(2018); Veh et al. 
(2019) 

Himalaya Floods 
Increased exposure of (growing) 
tourism/pilgrims to glacier lake 
outburst floods 

Glacier retreat and lake formation H neg Uniyal (2013) 

Himalaya Floods Increase in exposure of hydropower 
plants to glacier lake outburst floods Glacier retreat and lake formation M neg Schwanghart et al. 

(2016) 
China (Tibetan 
plateau, Hailuogou 
glacier) 

Terrestrial 
ecosystems 
(forest) 

fungal community composition 
change during succession Glacier retreat H pos Tian et al. (2017) 

Quinghai-Tibetan 
Plateau 

Terrestrial 
ecosystems 
(tundra) 

Plant species’ upslope and 
northward range shift; range 
expansion 

Permafrost reduction H pos You et al. (2018) 

Himalayas (Ladakh) 
Terrestrial 
ecosystems 
(tundra) 

Upslope range shift above the limit 
of continuous plant distribution; 
decrease in plant cover 

Extreme snowfall year H mixed Dolezal et al. (2016) 

Tibetan Plateau 
Terrestrial 
ecosystems 
(tundra) 

Reduction of plant productivity 
(above ground net primary 
productivity); plant species 
diversity loss 

Permafrost thaw 
 M neg Yang et al. (2018) 

Bhutan 
Terrestrial 
ecosystems 
(tundra) 

Plant establishment as snowline 
shifts upward; greater plant 
productivity 

Ascent of snowline M mixed Wangchuk and 
Wangdi (2018) 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Northern China, 
Northwest China, 
Tibetan Plateau 

Terrestrial 
ecosystems 
(forest) 

Greater tree growth in regions with 
more snow; no effect of snow 
where snow accumulation is low 

Snow accumulation H mixed Wu et al. (2018) 

Tibetan Plateau 
Terrestrial 
ecosystems 
(tundra) 

greenness change for alpine 
meadow and alpine steppe across 
much of the Plateau 

Permafrost presence or absence; soil 
moisture H mixed Wang et al. (2016) 

Himalaya and Tibetan 
Plateau Tourism Changes in access routes to Baishui 

Glacier No. 1 Glacier retreat M neg Wang et al. (2010) 

Bhutan Tourism 
High elevation trekking: trails 
damaged and trekking routes 
limited 

Increased runoff due to increased 
snowmelt and glacier melt M neg Hoy et al. (2016) 

Tibet Culture 

Spiritual value: a number of sacred 
mountains are altered, causing 
distress for the local population, 
who view this change as the product 
of their own spiritual and moral 
failings 

Glacier retreat M neg Salick et al. (2012) 

Tibetan Plateau Culture Aesthetic value of glaciers reduced Glacier surfaces have become dirtier M neg Wang et al. (2017a) 

Uttarakhand, India Culture 

Spiritual value - rising concern for 
local population who view the 
changes in sacred mountains as the 
product of their own religious and 
moral failings 

Glacier retreat M neg Drew (2012) 

Nepal Culture 
Identity and aesthetic values 
(threatened as beauty of mountains 
is reduced) 

Glacier retreat and reduction in snow 
cover  M neg Konchar et al. (2015) 

Nepal Culture 
Causing people to experience 
concern about divine beings and 
proper rituals 

Reduced snow cover  M neg Becken et al. (2013) 

Nepal Migration 
Increased emigration due to 
declining irrigation water and 
agricultural yields 

Reduced runoff due to less snow cover M neg Prasain (2018) 

New Zealand 

New Zealand Landslides Rock avalanches from lower 
permafrost limit Thaw/degradation of permafrost M neg Allen et al. (2011) 

New Zealand Freshwater 
ecosystems Loss of cold tolerant taxa Reduced runoff due to glacier decline M neg Cadbury et al. (2010) 
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Location Affected 
Sector or 
System 

Impact Cryosphere Change Attribution 
Confidence 

Positive/Ne
gative/Mix
ed 

Reference 

Other regions 

Japan (Taisetsu 
Mountains, Hokkaido) 

Terrestrial 
ecosystems 
(tundra) 

Changes in vegetation structure 
(shrubs & forbs) 

Accelerated snow melt and drier soil 
conditions M mixed Amagai et al. (2018) 

Japan (Taisetsu 
Mountains, Hokkaido) 

Terrestrial 
ecosystems 
(forest) 

Plant (bamboo) encroachment into 
alpine zones 

Changes in water balance associated 
with snowmelt M pos Winkler et al. (2016) 

New England, North 
East USA Tourism Closure of ski resorts Reduced snow fall and snow cover H neg 

Beaudin and Huang 
(2014); Hamilton et al. 
(2003) 
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SM2.9 Details of Studies on Adaptations in Response to Cryosphere Changes 
 
 
Table SM2.12: Documented individual adaptation actions, per country (grouped by regions as defined in Figure 2.1), for sectors addressed in this chapter, i.e. Agriculture, 
Biodiversity, Water, Energy, Natural Hazards (Hazards), Tourism & recreation (Tourism), Settlements & habitability (Habitability), Intrinsic & cultural values (Cultural). ‘Other’ is 
a merged category for other sectors and ‘Undefined’ refers to adaptation where no clear classification to a specific sector could be allocated. The adaptations are listed across their 
scale of relevance and/or implementation (Local, Regional, Global), as well as classification of type of adaptation as either ‘formal policy’, ‘autonomous’ or ‘undefined’. Key 
climatic drivers are listed that have links to (or changes in) cryosphere changes are described, which include: Temperature change ‘Temperature’; Precipitation change in terms of 
amount and timing (‘Precip. (amount, timing)’); Precipitation change in terms of changes in state (e.g. snow to rain) (‘Precip. (phase)’); Glacier change where non-hydrological 
impacts were associated (‘Glacier (non-hydro)’); Glacial hydrology change (‘Glacier (hydro)’); Snow cover change where non-hydrological impacts were associated (‘Snow (non-
hydro)’); Snow hydrology change (‘Snow (hydro)’); Extreme events where hydrological elements were associated (‘Extremes (hydro)’); Extreme events that were not associated 
with a hydrological impacts (‘Extremes (non-hydro)’); ‘Permafrost thaw’; and ecosystem changes in terms of flora and/or fauna (‘Ecosystem’). Entries for each regions are sorted in 
alphabetical order of the references. 

Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Alaska       

USA Undefined Multi-stakeholder adaptation planning exercise Regional Undefined Snow (non-hydro), Ecosystem Knapp et al. (2014) 
Caucasus and Middle East 

Russia Hazards Instillation of GLOF early warning system Regional Formal Policy Glacier (hydro), Extremes 
(hydro) Petrakov et al. (2012) 

Central Europe 

Switzerland 

Water 
Efforts of ACQWA projects to address 
vulnerability associated with hydrological 
changes 

Regional 

Formal Policy Temperature, Precip. (amount, 
timing), Glacier (hydro) Beniston et al. (2011) 

Water, Hazards 
Flooding/hazards planning - Third Rhone 
Correction Local, Regional 
Flooding/hazards planning - MINERVE 

Switzerland, 
Italy, Chile, 
Kyrgyzstan 

Agriculture, 
Energy, Water Impact assessment for adaptation planning Global Undefined 

Temperature, Precip. (amount, 
timing, phase state), Glacier 
(hydro), Extremes (hydro, non-
hydro), Permafrost thaw 

Beniston and Stoffel 
(2014) 

Spain Tourism 

Artificial snow production 

Regional Autonomous Temperature, Precip. (amount, 
timing), Snow (non-hydro) 

Campos Rodrigues et al. 
(2018) 

Nocturnal skiing 

Protection and conservation of snowpack 

Diversification of snow-based activities 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Expansion of skiable area 

Accessing economic assistance (gov & insurance) 

Turning ski resorts into multi-recreation facility 

France Tourism, Hazards Installation of ladders Local Autonomous Temperature, Glacier (non-
hydro, hydro), Permafrost thaw Duvillard et al. (2015) 

Austria Tourism 
Cover ski runs with textile to reduce ablation 

Local Autonomous Snow (non-hydro) Fischer et al. (2011) 
Grooming ski slopes 

Switzerland 
Tourism Cover snow with sawdust to preserve for skiing Regional Autonomous Temperature, Precip. (amount, 

timing), Snow (non-hydro) Grünewald et al. (2018) 
Italy 

Switzerland 

Tourism Installing a hanging bridge across the deep gorge 
to allow mountain access Local 

Autonomous 

Glacier (hydro), Snow (hydro), 
Extremes (hydro), Permafrost 
thaw 

Haeberli et al. (2016) 
Hazards Installation of early warning system Undefined 

Undefined Project to support adaptation planning - NELAK Regional Formal Policy 

Water 
Lake level lowering 

Undefined Undefined 
Flood retention 

Switzerland Water 

Policy incentives for ‘‘resilience- based’’ water 
infrastructure projects 

Regional 

Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Hill (2013) Shared water utility service to spread risks among 
stakeholders Undefined Policy for reducing water use in periods of 
drought 

Switzerland 
Tourism 

Artificial snow production 
Undefined Autonomous 

Temperature, Glacier (non-
hydro, hydro), Snow (non-
hydro), Permafrost thaw, 
Ecosystem 

Hill et al. (2010) Consortium for tourism planning and 
diversification 

Undefined Project to support adaptation planning - CIPRA Regional Formal Policy 
Switzerland, 
France Energy, Water Glacier-fed rivers and climate change project - 

GLAC-HYDROECO-NET Undefined Formal Policy Glacier (hydro), Ecosystem Khamis et al. (2014) 

 Tourism Establishment of Chamonix Department of Trail 
Maintenance Local Formal Policy Temperature, Glacier (non-

hydro, hydro), Permafrost thaw 
Mourey and Ravanel 
(2017) 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

France Tourism, Hazards 

Construction of bridge to access to refuge on 
Mont Blanc 
Route modifications, opening trail connecting 
other refuges Autonomous 
Installation of ladders 

Austria, 
Germany, 
Switzerland 

Undefined Assessment of adaptation knowledge and needs Global Formal Policy Glacier (hydro), Snow (hydro), 
Extremes (hydro) Muccione et al. (2016) 

Austria 

Tourism 

Switching to other tourism activities 

Undefined 
Undefined Glacier (non-hydro), Snow (non-

hydro) Orlove (2009b) 

Austria, 
Switzerland Resorts covering glaciers 

Italy Redistributing available snow 

Switzerland Hazards Creating hazard maps and restricting construction Formal Policy Glacier (hydro), Snow (non-
hydro), Extremes (hydro) 

Spain Tourism Modelling how ski area change and tourism 
impacts in support of planning process Undefined Formal Policy Temperature, Snow (non-hydro) Pons-Pons et al. (2012) 

Spain 
Tourism Artificial snow production 

Undefined 
Autonomous 

Snow (non-hydro) Pons et al. (2014) 
Undefined Project to support adaptation planning - ESPON-

CLIMATE Formal Policy 

Austria Tourism Evaluation of impacts of climate change on alpine 
trails to support planning Regional Formal Policy Glacier (hydro), Permafrost thaw Ritter et al. (2012) 

Austria Tourism Artificial snow production Regional Autonomous Temperature, Snow (non-hydro) Steiger and Mayer 
(2008) 

High Mountain Asia 

India 
Agriculture 

Development of state action plan on climate 
change Regional 

Formal Policy Precip. (amount, timing), Glacier 
(hydro), Extremes (hydro) 

Azhoni and Goyal 
(2018) 

Hazard risk and vulnerability assessment to 
support planning 

Agriculture, Water Spring water rejuvenation project Local 

India 

Habitability Building stone embankments to avoid flooding 

Local Undefined 

Temperature, Precip. (amount, 
timing), Extremes (hydro) Bhadwal et al. (2013) Other Increase the range of crops covered under 

insurance 

Undefined Improving access to better technology in 
agriculture 

Temperature, Precip. (amount, 
timing) 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Agriculture 
Capacity building for farmers for water efficient 
farm practice Temperature, Precip. (amount, 

timing), Extremes (hydro) Limiting cultivation of summer rice 

Agriculture, Water 
Field bunding to control erosion 

Temperature, Precip. (amount, 
timing) 

Afforestation 

Water 

Promoting water efficient irrigation 
Construction of water harvesting and storage 
structure 
Increase public awareness of water conservation 

Temperature, Precip. (amount, 
timing), Extremes (hydro) 

Knowledge sharing exercises 
Water conservation structure like dams, surface 
water bodies, field bunding 
Water harvesting structures 

Tajikistan 

Agriculture, 
Energy, Culture, 
Habitability, Water, 
Other 

Stakeholder workshop providing information for 
adaptation planning Undefined Formal Policy Temperature, Precip. (amount, 

timing), Glacier (non-hydro) Bizikova et al. (2015) 

Nepal Undefined 

National Adaptation Programme of Action Nepal 

Regional 

Formal Policy 

Snow (non-hydro), Extremes 
(hydro) Byers et al. (2014) 

Local Adaptation Plan of Action 

Research and monitoring of glacial lakes 

Undefined 

Early warning systems 

Disaster management systems 

Weather monitoring and forecasting 

Snow and ice management training 

Alternative house construction strategies 

Public awareness building 

Firefighting training and equipment 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Other Insurance coverage and clothing for porters 

Agriculture Nurseries and afforestation 

Tajikistan 

Undefined 

Labour migration 

Local 

Autonomous Glacier (hydro), Ecosystem 

Christmann and Aw-
Hassan (2015) 

Appointed villager to regularly check all glaciers 
Opening a training center for adaptation in 
mountain villages 
Planting trees 

Initiate a watershed development committee 

Building water reservoir 

Agriculture 

Crop and livestock diversification 
Supporting education of local person in 
agriculture and engineering to increase adaptation 
capacity in community 

Uzbekistan 

Undefined Participatory discussion of adaptation strategies 
for rangeland 

Formal Policy Temperature, Precip. (amount, 
timing), Glacier (hydro) Agriculture 

Establish pastoral user groups 
Establish fenced seed isles for yearly natural 
seeding 
Seasonal grazing management 

India Water Artificial glacier construction Local Autonomous Temperature, Glacier (hydro) Clouse (2014) 

India Water 
Reservoirs built and snow fences installed to 
capture/store snow in winter for use as irrigation 
in summer 

Local Autonomous Snow (hydro) Banerji and Basu (2010) 

India 
Undefined 

Moving to new location to escape perennial water 
scarcity 

Local Autonomous 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Clouse (2016) Reduce overall hectare of cropland in production 

Shrink livestock holding to fit available pasturage 

Habitability Snow barrier bands 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Habitability, Water Building new irrigation canals and rerouting 
water Formal Policy 

India 

Culture Use of reservoirs to store water 

Regional 
Autonomous 

Temperature, Glacier (hydro) 
Clouse et al. (2017) 

Water Evaluation of artificial ice reservoirs 

Agriculture Installation of improved water mills 

Agriculture, Water Building ice stupa to store water Local Glacier (hydro), Snow (hydro) 

India Agriculture  Government watershed improvement programs Regional Formal Policy Glacier (hydro), Snow (hydro) Dame and Nüsser 
(2011) 

India Undefined Spread coal onto glaciers to ensure regeneration Local Autonomous Temperature, Precip. (amount, 
timing), Glacier (hydro) Gagné (2016) 

India, 
Nepal, 
Pakistan 

Undefined Collaborative adaptation research initiative - 
CARIAA Regional Formal Policy Glacier (hydro), Snow (hydro) Cochrane et al. (2017) 

Nepal Water Multiple livelihood options to buffer against 
seasonal losses in one sector Local Autonomous Precip. (amount, timing), 

Extremes (hydro, non-hydro) Becken et al. (2013) 

Nepal 

Agriculture Switching crop types 

Local 

Autonomous 

Precip. (amount, timing), Glacier 
(hydro), Extremes (non-hydro) Dewan (2015) 

Undefined 

Early warning systems and community-based 
flood management 
Training for flood preparedness and responses 
Using traditional remedies to rehabilitate victims 
of diseases 
Borrowing from neighbours 

Vulnerable Group Feeding program 

Formal Policy 

Framework and strategy for disaster risk 
management 
National strategy for disaster risk management 

Flood risk reduction program 

Water 
Building tube wells for drinking water 

Raising houses on stilts 
Undefined Undefined 

Hazards Funds to support social resilience 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

China Undefined 
Policies to address the impact of permafrost 
degradation Undefined 

Formal Policy Permafrost thaw Fang et al. (2011) 
Special fund for climate change adaptation Regional 

China Undefined Project to support adaptation planning - RECAST Regional Formal Policy Precip. (amount, timing), Glacier 
(hydro) Fricke et al. (2009) 

China Habitability Relocation of settlement Local Autonomous Extremes (hydro) Diemberger et al. (2015) 

China Tourism 

Assessment to support sustainable glacier tourism 

Regional 

Formal Policy 
Temperature, Glacier (non-
hydro) Wang et al. (2010) Tourism diversification 

 
Restricting tourism access 

China Agriculture 

Shifting to different seasonal pasture 

Local Autonomous Temperature, Precip. (amount, 
timing), Snow (non-hydro) Fu et al. (2012) 

Sharing pasture within community 

Cultivating fodder to feed in winter 

Build small livestock sheds 

Selling new products 

Pasture management activities 

China 

Agriculture, Water Water saving irrigation measures 

Regional 

Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro) Gao et al. (2014) Agriculture Rotational grazing 

Undefined 
Undefined Fencing grassland and grass planting 

Nepal Hazards GLOF early warning system 

Local 

Formal Policy 
Glacier (hydro), Extremes 
(hydro) Kattelmann (2003) 

Nepal Agriculture 

Creating community forest user groups 

Temperature, Precip. (amount, 
timing), Extremes (hydro), 
Ecosystem 

Gentle and Maraseni 
(2012) 

Reliance on traditional institutional arrangements 

Autonomous 

Storage of grains 

Purchasing irrigated land 

Switch to new agriculture technology/crop types 
Institutional support from Community Forest 
User Groups 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Agriculture, 
Culture, Water Transhumant pastoralism as adaptation strategy 

Undefined 

Money lending 

Cash saving 

Take loans in times of food scarcity 

Reduce food intake 

Migration/selling labor 

Kyrgyzstan Agriculture, 
Energy, Water Impact assessment for adaptation planning Global Undefined 

Temperature, Precip. (amount, 
timing, phase state), Glacier 
(hydro), Extremes (hydro, non-
hydro), Permafrost thaw 

Beniston and Stoffel 
(2014) 

Kyrgyzstan Agriculture Introduction of new crops with lower water 
requirements Local Autonomous Temperature, Glacier (hydro), 

Snow (hydro) Hill et al. (2017) 

Kyrgyzstan, 
Uzbekistan Water Establishment of centre for transboundary water 

governance Regional Formal Policy Glacier (hydro) Hoelzle et al. (2017) 

India 

Agriculture 

Growing crops at higher altitudes 

Local Autonomous Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro), Ecosystem 

Ingty (2017) 

Regulate agriculture and grazing rights to allow 
ecosystem recovery 
Storage and crop fodder 

Agriculture, 
Culture Reliance on traditional knowledge 

Tourism 

Diversify to tourism 

Migration 

State action plan on climate change Regional Formal Policy 

India Habitability, Water Evaluating efficacy of artificial glaciers Local Formal Policy Glacier (hydro) Nüsser et al. (2018) 

India 

Hazards DRR demonstration in schools 
Local 

Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro) 

Kaul and Thornton 
(2014) Agriculture Populating potato and peas Undefined 

Agriculture, Other Insurance schemes for crops Undefined Formal Policy 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

India 

Water Participatory project to underpin adaptation 
planning 

Local Formal Policy Precip. (amount, timing), Glacier 
(hydro), Snow (hydro) Kelkar et al. (2008) 

Agriculture 
Plant less water-intensive crops 

Irrigate fields timeshare 

Undefined 

Sell land and livestock 

Find other jobs 

Take loans 

Nepal 

Agriculture 
Crop diversification 

Local Autonomous 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro), Extremes (hydro) 

Konchar et al. (2015) 
Construction of greenhouses 

Agriculture, 
Tourism 

Diversify to tourism, agropastoralism, 
agroforestry 

Undefined New roofing material 

Nepal Agriculture changing crops and agricultural practices using 
Indigenous and local knowledge Local Autonomous Temperature, Snow (non-hydro), 

Snow (hydro) Manandhar et al. (2011) 

Nepal Tourism Assessment of ecotourism as adaptation measure 
for conservation area Regional Undefined Precip. (amount, timing, phase 

state), Extremes (non-hydro) Adler et al. (2013) 

Nepal Habitability Local relocation of settlement after decreased 
water supply Local Autonomous Snow (hydro) Barnett et al. (2005) 

Nepal 
Agriculture Crop diversification 

Local Autonomous Temperature, Precip. (amount, 
timing), Snow (non-hydro) 

Onta and Resurreccion 
(2011) Undefined Cross-border trade and day-labour trips 

Nepal Water Lake lowering Regional Formal Policy Extremes (hydro) Orlove (2009b) 

Nepal Undefined 
Project to support adaptation planning - Climate 
Witness Project Regional Formal Policy Glacier (hydro), Snow (non-

hydro), Extremes (hydro) Rai and Gurung (2005) 
Establishing a Designated National Authority 

Nepal Undefined 
Lake lowering 

Undefined Formal Policy Glacier (hydro), Extremes 
(hydro) 

Somos-Valenzuela et al. 
(2015) Modelling impact of GLOF to support planning 

Nepal Water 
Limiting water consumption to drinking and 
cooking requirements Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro) 

McDowell et al. (2013) 
Roof water collection system 
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Region 
Country Sector Description of Adaptation 

Scale of 
relevance / 
implementation 

Type of 
adaptation Climatic Driver of Adaptation Reference 

Hire assistants to help with water retrieval 
activities 

Undefined Collecting fuelwood for heating 

Nepal, India Hazards, Water Bilateral Committee on Flood Forecasting Regional Formal Policy Glacier (hydro), Snow (hydro), 
Extremes (hydro) Lebel et al. (2010) 

India Agriculture 

Crop diversification 

Local Autonomous 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Meena et al. (2019) Change timing of agricultural activities 

Agropastoralism to diversify livelihood 

India Agriculture 

Changing agricultural patterns 

Local Autonomous Precip. (amount, timing), Glacier 
(hydro), Extremes (hydro) Maikhuri et al. (2017) 

Switching to other types of animal husbandry 

Adopt horticulture 
Establish forest councils and village forest 
committee 
Migration 

 Undefined Take loans and insurance 

Bhutan 

Hazards Instillation of GLOF early warning system 

Regional Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro), Extremes (hydro) 

Meenawat and Sovacool 
(2011) Undefined 

Lowering lake water levels 
Community awareness and capacity building 
activities 
GLOF Risk Reduction Projects 

Bhutan, 
Nepal Undefined Assessment of adaptation knowledge and needs Global Formal Policy Glacier (hydro), Snow (hydro), 

Extremes (hydro) Muccione et al. (2016) 

India Water 

India National Action Plan on Climate Change 
Undefined 

Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro) 

Moors et al. (2011) National Water Policy 

Project to support adaptation planning - Highnoon Regional 

India Agriculture 
Crop diversification 

Local Autonomous 
Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Ecosystem 

Negi et al. (2017) 
Crop diversification 
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Agropastoralism to diversify livelihood 

Convert irrigated land into rainfed 

Switching away from livestock rearing 

Use of moisture conserving cropping techniques 

Undefined Migration Extremes (hydro) 

Pakistan Habitability Relocation after hazard event Local Autonomous Extremes (hydro, non-hydro) Kreutzmann (2012) 

Pakistan Water Construction of water channels for irrigation and 
domestic water supply Local Autonomous Glacier (hydro) Nüsser and Schmidt 

(2017) 
Pakistan Undefined Migration Local Autonomous Glacier (hydro), Snow (hydro) Parveen et al. (2015) 

Pakistan Undefined 
Household renovations 

Local Autonomous 
Precip. (amount, timing), Glacier 
(hydro), Extremes (hydro, non-
hydro) 

Shah et al. (2017) 
Precautionary savings 

Pakistan Water 
Irrigation scheme/program 

Local Autonomous Temperature, Precip. (amount, 
timing), Glacier (hydro) Spies (2016) Poverty alleviation and physical infrastructure 

development program 
Kyrgyzstan, 
Tajikistan, 
Uzbekistan, 
Kazakhstan 

Undefined Identification of steps for overcoming adaptation 
challenges - ACQWA project Regional Formal Policy Temperature, Glacier (hydro), 

Snow (hydro) Sorg et al. (2014b) 

Kyrgyzstan, 
Tajikistan 

Water  

Water user associations 

Regional Formal Policy 

Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Stucker et al. (2012) 

Water allocation strategy 

Water rationing 

Water sharing 

Integrate IWRM principles into institutions 

Local 

Undefined 

Clean and repair canals 
Autonomous 

Agriculture Expand orchards 
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Do not plant a second crop 

Crop diversification 

Hazards Early warning system 
Formal Policy 

Undefined Integrated Water Resource Management project Undefined 

Kazakhstan 

Agriculture, 
Biodiversity, 
Energy, Hazards, 
Water 

Development of sectoral adaptation plans 

Regional 

Formal Policy 

Glacier (hydro), Snow (hydro), 
Extremes (hydro) Xenarios et al. (2018) 

Agriculture, 
Habitability, Water Introduction of water-saving technologies 

Agriculture 

Decrease livestock pressure on pasture 

Realization of pasture management plans 

Establishment of the Public Seed Funds 

Tajikistan 

Water Development of water user associations 

Local 

Agriculture, 
Biodiversity, Water 

Environmental land management and rural 
livelihoods project 

Agriculture, 
Hazards, Water 

Capacity strengthening and livelihood 
diversification project 

Habitability Infrastructure improvements 

Autonomous 
Hazards 

Developing evacuation maps 

Constructing shelters for hazard protection 
Training of volunteers for the search and rescue 
activities 

Kazakhstan, 
Kyrgyzstan, 
Tajikistan 

Agriculture, 
Biodiversity, Water Initiation of Ecosystem-based Adaptation (EbA) 

Regional 
Formal Policy Agriculture, 

Hazards, Water Knowledge sharing arrangements 

Agriculture, Water Documentation, dissemination, and preservation 
of local knowledge relevant to adaptation Local 

Low Latitudes (Andes) 
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Bolivia Undefined Migration Local Autonomous Glacier (hydro)  Brandt et al. (2016) 

Bolivia Water Construction of reservoirs for water storage Regional Formal Policy Temperature, Precip (amount, 
timing), Glacier (hydro) Buytaert et al. (2017) 

Bolivia Undefined Migration Local Autonomous Temperature, Glacier (hydro), 
Snow (hydro), Extremes (hydro) Kaenzig (2015) 

Bolivia Tourism Rebranding the loss of glaciers as an opportunity 
for "last chance tourism" Regional Autonomous Temperature, Precip. (amount, 

timing), Snow (hydro) Kaenzig et al. (2016) 

Bolivia 

Agriculture 

Switching to cash crops 

Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro), Extremes (hydro), 
Permafrost thaw, Ecosystem 

McDowell and Hess 
(2012) 

Night irrigation 

Delay planting until irrigation is available 

Undefined 

Migrating to nearby towns to work 

Sharing work between community members 
Participatory vulnerability assessment to inform 
adaptation 

Bolivia Undefined Migration Local Autonomous Glacier (hydro)  Yager (2015) 

Bolivia Water Project to support adaptation planning - PPCR 

Undefined Formal Policy 
Temperature, Ecosystem 

Huggel et al. (2015) 

Bolivia, 
Colombia, 
Ecuador, 
Peru 

Agriculture, 
Biodiversity, Water Project to support adaptation planning - PRAA 

Colombia 

Agriculture, 
Habitability, Water Project to support adaptation planning - INAP 

Biodiversity, Water Project to support adaptation planning - Macizo 
Colombiano 

Peru 
Agriculture, 
Hazards, Water 

Project to support adaptation planning - Proyecto 
Glaciares; PACC 

Temperature, Extremes (hydro) Hazards, Water Project to support adaptation planning - IMACC 

Ecuador Agriculture, 
Hazards, Other Climate Change Action Plan Undefined Formal Policy Temperature, Precip (amount, 

timing), Extremes (hydro) 
Anguelovski et al. 
(2014) 

Ecuador Water Construction of infrastructure to transfer water 
between basins Regional Formal Policy Temperature, Precip (amount, 

timing), Glacier (hydro) 
Buytaert and De Bièvre 
(2012) 
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Peru, Chile Water Establishment of adaptation plan Regional Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Mills-Novoa et al. 
(2017) 

Colombia, 
Peru Undefined Assessment of adaptation knowledge and needs Global Formal Policy Glacier (hydro), Snow (hydro), 

Extremes (hydro) Muccione et al. (2016) 

Peru Undefined Migration Local Autonomous Glacier (hydro)  Alata et al. (2018) 

Peru Water National Water Authority Local Formal Policy Temperature, Glacier (hydro) Bury et al. (2013) 

Peru 

Undefined GLOF assessment 

Regional Formal Policy 

Temperature, Extremes (hydro) 

Carey et al. (2012) 

Habitability, Water GLOF prevention program through monitoring 
and engineering projects 

Water 

Initiation of GLOFF assessment program 

Installation of floodgates to control water level Glacier (hydro), Extremes 
(hydro) National System of Hydrological Resource 

Management 
Peru Water Project to support adaptation planning - CGIAR  Regional Formal Policy Glacier (hydro) Condom et al. (2012) 

Peru 

Agriculture, 
Biodiversity, 
Culture, Tourism, 
Water 

 Local Formal Policy Temperature, Precip. (amount, 
timing), Glacier (hydro) Doughty (2016) 

Peru Agriculture Crop diversification Local Autonomous Temperature, Precip. (amount, 
timing), Glacier (hydro) Doughty (2016) 

Peru Water, Hazards Potential for multi-purpose projects to address 
GLOFs and water availability Regional Undefined Glacier (hydro), Extremes 

(hydro) Drenkhan et al. (2019) 

Peru Undefined Project to support adaptation planning - CONAM 
+ IGP Regional Formal Policy Glacier (hydro) Lagos (2007) 

Peru 

Undefined Project to support adaptation planning - Adapts 
project  

Regional 

Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Lasage et al. (2015) 

Agriculture, 
Biodiversity Protection of upstream forests 

Water Surface storage dams 

Agriculture 
Low-cost gravity drip irrigation system 

Local 
Changing the frequency of irrigation 
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Crop diversification 

Water Water harvesting using roof-water systems 

Peru 

Undefined 

Establish an integrated regional database on 
natural resources, climate, and vulnerability. 

Regional Undefined 
Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro) 

Lee et al. (2014) 

Align the national and regional institutional and 
legal frameworks to deal with the expected effects 
of climate change 
Integrated management of reforestation, soil 
conservation, terrace management, monitoring 
systems, and capacity building 
National Climate Change Strategy 

Water 
Construction of small structures for water storage 
and distribution and improved management of 
irrigated areas 

Hazards Integrating existing early warning systems to 
enhance emergency management 

Agriculture 

Conserving native crop varieties 

Pest management practices 
Improved pastures and fodder conservation 
practices 

Peru Agriculture Reducing planting activities Local Autonomous Temperature, Precip. (amount, 
timing), Glacier (hydro) 

Lennox and Gowdy 
(2014) 

Peru Agriculture 
Crop diversification 

Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro) Lennox (2015) 

Moving to livestock based economy to sell milk 
rather than planting crops Precip. (phase state) 

Peru Agriculture 
Livestock, land, and labour diversification 

Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), 
Extremes (hydro), Permafrost 
thaw 

Lopez-i-Gelats et al. 
(2015) Economic diversification 

Peru Agriculture, Energy Project to support adaptation planning - 
PROCLIM Regional Formal Policy Precip. (amount, timing), 

Extremes (hydro) Orlove (2009a) 
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Peru Agriculture Line irrigation canals with cement and install 
plastic pipes Local Autonomous Glacier (hydro), Snow (hydro) Orlove et al. (2019) 

Peru Undefined Glacier change assessment in support of 
adaptation planning Undefined Formal Policy Temperature, Precip. (amount, 

timing), Glacier (hydro) Peduzzi et al. (2010) 

Peru 
Agriculture 

Changing agricultural calendar 

Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(non-hydro), Extremes (hydro), 
Ecosystem 

Postigo (2014) 

Increasing pesticide use 

Crop diversification 

Cultivating in furrows 

Burning shrubs, grass, manure to generate heat 

Increasing livestock mobility 

Water Water boards regulating water 

Peru Agriculture 
Pasture rotation 

Local 
Autonomous Temperature, Precip. (amount, 

timing), Glacier (hydro), Snow 
(hydro), Ecosystem 

Postigo et al. (2008) 
Creating irrigation channel Formal Policy 

Peru Water Hillside infiltration systems in grasslands Regional Formal Policy Temperature, Precip. (amount, 
timing), Glacier (hydro) Somers et al. (2018) 

Peru Water 

Election of water allocator Local Autonomous 
Glacier (hydro), Extremes 
(hydro) Stensrud (2016) Making micro dams Undefined 

Formal Policy 
Installing water pipes Regional 

Peru Water Migration to towns for work Local Autonomous Glacier (hydro), Extremes 
(hydro) Wrathall et al. (2014) 

Peru 

Agriculture 

Livelihood diversification 

Local Autonomous Precip. (amount, timing), Glacier 
(hydro), Extremes (hydro) 

Young and Lipton 
(2006) 

Getting grazing rights to other areas 

Agricultural and crop diversification 

Water Timed allocation of water-flow to individuals 

Undefined Seeking foreign funding, skills, attention for help 

Other Migration 
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Biodiversity Conservation corridor Formal Policy 

New Zealand 

New 
Zealand Tourism 

Constructing cantilevered bridge to the glacier 
Regional Autonomous Temperature, Precip. (amount, 

timing), Glacier (non-hydro) 
Espiner and Becken 
(2014) Using boats to ferry tourists after glacial lake 

appeared 

New 
Zealand Tourism 

Artificial snow production 

Regional Autonomous Snow (non-hydro) Hopkins and Maclean 
(2014) 

Transitioning to year-round tourism 

Forming conglomerate business ventures 

Developing new ski slopes 
New 
Zealand Tourism Assessment of stakeholder perceptions for 

adaptation planning Regional Formal Policy Glacier (non-hydro), Snow (non-
hydro) Stewart et al. (2016) 

Scandinavia 

Norway Tourism 

Changing activities at ski area 

Regional Autonomous Temperature, Precip. (amount, 
timing), Snow (non-hydro) Demiroglu et al. (2018) 

Changing time of use of ski area 

Changing ski areas within Norway 

Artificial snow production 

Salting glacier surface 

Norway Tourism Diversifying locations of tourism activity  Undefined Autonomous Glacier (non-hydro) Furunes and Mykletun 
(2012) 

Norway Energy Water resource and energy directorate Undefined Formal Policy Glacier (hydro) Orlove (2009a) 

Southern Andes 

Chile Undefined Participatory project to identify adaptive options Regional Formal Policy Precip. (amount, timing), Snow 
(hydro) Aldunce et al. (2016) 

Chile Habitability Local relocation of settlements after GLOF event 
in 1977 Local Formal Policy Extremes (hydro) Anacona et al. (2015) 

Chile Agriculture, 
Energy, Water Impact assessment for adaptation planning Global Undefined Temperature, Precip. (amount, 

timing, phase state), Glacier 
Beniston and Stoffel 
(2014) 
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(hydro), Extremes (hydro, non-
hydro), Permafrost thaw 

Chile 

Agriculture Provide financing and subsidies to farmers 

Regional Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(non-hydro), Snow (hydro) 

Clarvis et al. (2014) 
Water 

Declaration of drought zones 

Water data system improvement 

Water transfer using trucks 

Dam construction 

Traditional water distribution strategies  
Local Autonomous 

Crop diversification 

Chile Water 

Water allocation policy 

Regional 
Formal Policy Temperature, Glacier (hydro), 

Snow (hydro) Hill (2013) 

Infrastructure to support irrigation security 

Policies for drought periods 

Policy to improve irrigation efficiency 
Policy for better water resources management 
under increasing scarcity  
Water allocation policy Autonomous 

Chile 

Undefined 
Reinforcing doors and roofs 

Local Autonomous 

Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Young et al. (2010) 

Couples don't marry to receive subsidy to increase 
portable water 

Agriculture 

Migration to areas with more vegetation 
Companies using more efficient irrigation 
systems Undefined Autonomous 

Public funds made available to improve irrigation 
efficiency Regional Formal Policy 

Water 

Companies securing water rights Undefined 
Autonomous 

Creating water storage ponds 
Local Subsidies made available for single mother for 

water payments Formal Policy 
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Reducing intake of water canals 

Regional 

Autonomous 
Reduce water use and seize water rights 

Formal Policy 
Policy to extend water access 
Constructing water canals and pool structures 

Hazards Municipal Emergency Committee provides alerts 
for harsh seasons 

Peru, Chile Water Adaptation plan for water management Regional Formal Policy 
Temperature, Precip. (amount, 
timing), Glacier (hydro), Snow 
(hydro) 

Mills-Novoa et al. 
(2017) 

Argentina, 
Chile, 
Bolivia 

Undefined 

Baseline assessment to support adaptation - 
SSHRC 

Regional Formal Policy Temperature, Glacier (hydro), 
Snow (hydro), Extremes (hydro) Montana et al. (2016) Baseline assessment to support adaptation - IAI 

Baseline assessment to support adaptation - 
CLACSO-CROP 

Argentina Habitability, Water, 
Other 

Glacier protection law Argentina 
Regional Formal Policy Glacier (non-hydro, hydro) Anacona et al. (2018) 

Chile Glacier protection law Chile 
Western Canada and USA 
Canada Tourism Artificial snow production Local Undefined Snow (hydro) Da Silva et al. (2019) 

Canada Hazards, 
Habitability Creation of adaptation strategy Local Formal Policy 

Temperature, Precip. (amount, 
timing), Extremes (hydro), 
Ecosystem 

Picketts (2013) 

Canada Hazards, 
Habitability 

Creation of steering committee for adaptation 
planning Local Formal Policy Temperature, Precip. (amount, 

timing), Extremes (hydro) Picketts et al. (2016) 

Canada 
Tourism 

Artificial snow production 
Undefined Undefined Glacier (non-hydro), Snow (non-

hydro) Orlove (2009a) 
USA Creation of the Sustainable Slopes program 

USA Undefined Establishment of adaptation partnerships Global Formal Policy Temperature, Precip. (amount, 
timing), Snow (hydro) Halofsky et al. (2018) 

USA Tourism 
Artificial snow production 

Local 
Undefined 

Snow (hydro) Hagenstad et al. (2018) Diversification of tourism to other seasons/non-
snow reliant Autonomous 

USA Undefined Infrastructure to support fish and ranchers Regional Formal Policy McNeeley (2017) 
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Establishment of Tribal Climate Resilience 
Program Local Temperature, Glacier (hydro), 

Snow (hydro) Establishment of Climate Science Centers and 
Landscape Conservation Cooperative 

USA Undefined Assessment of adaptation knowledge and needs Global Formal Policy Glacier (hydro), Snow (hydro), 
Extremes (hydro) Muccione et al. (2016) 

USA Tourism Develop alternative tourism (local heritage, 
wildlife viewing) Local Autonomous Glacier (non-hydro), Snow (non-

hydro) Orlove et al. (2019) 

USA Habitability Vulnerability analysis and adaptations strategy Local Formal Policy 
Temperature, Precip. (amount, 
timing), Snow (hydro), Extremes 
(hydro) 

Strauch et al. (2015) 

Iceland 

Iceland Tourism, Hazards Participatory planning to shift to safer glacier 
hiking routes Local Autonomous Glacier (non-hydro) Welling et al. (2019) 
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