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Executive Summary 1 
 2 
The changing ocean and cryosphere already impact Low-Lying Islands and Coasts (LLIC), including 3 
Small Island Developing States, with cascading and compounding risks, and may push beyond current 4 
adaptation limits (high confidence1). With a significant contribution to the global population (>10%), 5 
Gross Domestic Product (~14%), livelihoods and cultural heritage, LLIC of all latitudes are hotspots, sharing 6 
commonalities as well as showing context-specificities in their exposure and vulnerability to climate change 7 
(high confidence). The continuum of coastal adaptation options ranges from hard engineering to ecosystem-8 
based measures, and from ‘holding-the-line’ to relocation of people, assets and activities. The combinations 9 
of measures will vary across geographies, depending on the scale of observed and projected impacts, 10 
societies’ adaptive capacity and the establishment of new, transformational governance structures (high 11 
confidence) (Sections 4.4.3, 4.4.4, 5.5.2, 6.8, 6.9, Cross-Chapter Box 2 in Chapter 1).  12 
 13 
 14 
Introduction 15 
 16 
Low-Lying Islands and Coasts (LLIC) include a wide diversity of systems, from continental coasts 17 
(including deltas and marine habitats such as coral reefs and wetlands) to small islands (including Small 18 
Island Developing States, SIDS); from the tropics to polar regions; and with various demographic, political 19 
and socio-economic characteristics (e.g., urban or rural, developing and developed) (Figure CCB7.1). LLIC 20 
below 10 m of elevation are estimated to host >10% of the global population (Neumann et al., 2015) and 21 
generate about 14% of the global Gross Domestic Product (GDP) (Kummu et al., 2016). LLIC are at the 22 
frontline of the impacts of climate-related changes to the ocean and cryosphere, for both extreme events and 23 
slow onset changes, due to their low elevations, sensitive ecosystems and natural resources (Section 1.4.2), 24 
as well as increasing anthropogenic pressures at the coastline (Sections 1.4.3, 4.3.2.2). Impacts on coastal 25 
morphology, ecosystems and dependent human communities are already detectable, with high risks expected 26 
to increase in the course of the 21st century (Gattuso et al., 2015; Nagelkerken and Connell, 2015) (medium 27 
evidence, high agreement), even under a +1.5°C warming scenario (Hoegh-Guldberg et al., in press). The 28 
magnitude of risks (Cross-Chapter Box 1 in Chapter 1) will depend on future greenhouse gas emissions and 29 
the associated climate change, other drivers such as population movement into risk-prone areas, and 30 
societies’ additional efforts to adapt. This integrative Cross-Chapter Box focuses on societal impacts of, and 31 
adaptation to climate-related ocean and cryosphere changes, including discussing the future habitability of 32 
LLIC. 33 
 34 
 35 
 36 

                                                
1 FOOTNOTE: In this Report, the following summary terms are used to describe the available evidence: limited, 
medium, or robust; and for the degree of agreement: low, medium, or high. A level of confidence is expressed using 
five qualifiers: very low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given 
evidence and agreement statement, different confidence levels can be assigned, but increasing levels of evidence and 
degrees of agreement are correlated with increasing confidence (see Section 1.9.3 and Figure 1.4 for more details). 
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 1 
Figure CCB7.1: The global distribution of low-lying islands and coasts (LLIC), illustrated by the Low Elevation 2 
Coastal Zone (elevation data from National Geophysical Data Center, 1999; LECZ, as defined by McGranahan et al., 3 
2007) and islands with highest elevation up to 10 m above sea level (Weigelt et al., 2013). In addition, the map shows 4 
geographies that the scientific literature identifies as being particularly at risk: Small Island Developing States (SIDS; 5 
UN-OHRLLS, n.d.), coastal megacities (cities with more than 10 million inhabitants, within 100 km from coast, and 6 
maximum 50 m above sea level; Pelling and Blackburn, 2013; UN-DESA, 2018) and deltas (Tessler et al., 2015). 7 
 8 
 9 
Drivers of Impacts and Risks 10 
 11 
LLIC are subject to the same climate-related drivers of impacts and risks as for other islands and coasts 12 
(overview in IPCC Working Group II AR5 Chapter 5: Wong et al., 2014), for both extreme events, e.g., 13 
marine heat waves, tropical/extra-tropical storms and associated storm surges; and slow onset changes, e.g., 14 
retreat of ice sheets, sea ice and permafrost thaw (and hence exposure to waves and erosion), sea level rise, 15 
hypoxia, and ocean warming and acidification (processes detailed in Sections 1.3.2, 2.3, 3.3, 3.4, 4.2, 5.2, 16 
6.2-6.6).  17 
 18 
Despite regional to local variability in magnitude (Carson et al., 2016; Cazenave et al., 2018), accelerating 19 
sea level rise will combine with storm surges and waves to increase flooding, shoreline changes (including 20 
erosion) and salinization of soils, groundwater and surface waters (Section 4.3.3). Arctic sea level rise also 21 
has the potential to accelerate permafrost thawing (Sections 4.3.4.1, 6.8, Box 6.1). Moreover, projections of 22 
extreme sea levels show that, for many coastal areas, events which are presently occurring once every 23 
hundred years will occur once every year by the end of the century (Section 4.2.3.4.1, Figure 4.10).  24 
 25 
In addition, changes in the ocean and cryosphere physics and chemistry will have major impacts on marine 26 
and coastal organisms and ecosystems, including transitional zones such as seagrass and mangroves (very 27 
high confidence) (Sections 1.3.1, 1.3.2, 4.3.3, 5.2, 5.3). Ocean acidification will combine with ocean 28 
warming and deoxygenation to cause major impacts on benthic and pelagic organisms, associated 29 
ecosystems (e.g., coral reefs, oyster beds) and top predators. Species’ abundance and distribution will 30 
therefore change, with consequences on ecosystem services to human societies (e.g., coastal protection, food 31 
security). Such impacts are extensively discussed in Sections 4.3.3.2, 5.2.2.4, 5.2.3-5.2.5, 5.3.3, 5.4.1, 6.4.2, 32 
6.5.2, 6.6.2, 6.7.2 and 6.8.2.  33 
 34 
Anthropogenic drivers already play a major role in shaping exposure and vulnerability to climate-related 35 
hazards, e.g., in the Arctic (e.g., Ford et al., 2012; Ford et al., 2014; Marino, 2015), in temperate (e.g., Muir 36 
et al., 2014; Petzold, 2017) and tropical (e.g., Ratter et al., 2016; Duvat et al., 2017; Weir and Pittock, 2017) 37 
small islands, and in coastal cities (e.g., Kates et al., 2006; Rosenzweig and Solecki, 2014; Paterson et al., 38 
2017; Texier-Teixeira and Edelblutte, 2017). Such a contribution is expected to increase in the absence of 39 
adequate adaptation measures (high confidence). At the local scale, the drivers of exposure and vulnerability 40 
include, for example, coastal constructions, pollution, sand mining and unsustainable resource extraction 41 
(e.g., in the Comoros; Betzold and Mohamed, 2016; Ratter et al., 2016). Another example is the loss of 42 
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Indigenous Knowledge and Local Knowledge (IK & LK; see Cross-Chapter Box 3 in Chapter 1 and Section 1 
4.3.2.6) due to modern, externally-driven socioeconomic dynamics that diminish the cultural importance of 2 
IK- & LK-based practices, in combination with dependency on monetization and external markets (Hay, 3 
2013; Campbell, 2015), unsustainable livelihood practices and poor consideration of natural hazards 4 
(Ignatowski and Rosales, 2013; Miller Hesed and Paolisso, 2015; Ford et al., 2016; Janif et al., 2016). The 5 
loss of IK & LK and associated cultural heritage limits both the ability to recognise and respond to 6 
environmental risk (Hiwasaki et al., 2014; McMillen et al., 2014; Campbell, 2015; Lazrus, 2015; Morrison, 7 
2017; Nunn et al., 2017) and the empowerment of local communities (high confidence) (Walshe and Nunn, 8 
2012; Hilhorst et al., 2015; Tharakan, 2015; Iloka, 2016; Nunn et al., 2016). 9 
 10 
Population growth is another major driver of exposure and vulnerability (Kummu et al., 2016; Bongaarts and 11 
O'Neill, 2018), especially in medium-to-mega coastal cities (e.g., Garschagen and Romero-Lankao, 2015; 12 
McCubbin et al., 2015; Yan et al., 2015; Yin et al., 2015; Kummu et al., 2016; Liu et al., 2016; Fawcett et 13 
al., 2017; Hay, 2017). For the year 2000, the Low Elevation Coastal Zones (LECZ) were estimated to host 14 
around 625 million people (Lichter et al., 2011; Neumann et al., 2015), with the vast majority (517 million) 15 
living in non-developed contexts. By 2100, the LECZ population may increase to as much as 1.14 billion 16 
under a Shared Socioeconomic Pathway (SSP) where countries focus on domestic, or even regional, issues 17 
(SSP3; Jones and O’Neill, 2016). At the local scale, intertwined drivers including population growth, rural 18 
exodus and marginalisation, coastal tourism development, changes in construction modes, human-induced 19 
sediment starvation, and degradation of vegetated coastal ecosystems (e.g., mangroves and salt-marshes) 20 
drive—as well as are driven by—more overarching processes such coastal urbanisation, inadequate land use 21 
planning, coastal squeeze, conflicting resource use and socioeconomic inequalities (Section 4.3.2). Such a 22 
complexity in territorial dynamics have resulted in major changes in coastal settlement patterns in recent 23 
decades (Section 4.3.2.2), especially a growing concentration of people and assets in risk-prone coastal areas 24 
(very high confidence). This is also the case in rural LLIC, e.g., remote atolls in the Pacific (Storey and 25 
Hunter, 2010; Kumar and Taylor, 2015; Lazrus, 2015; Duvat et al., 2017), that are now increasingly exposed 26 
to brackish and polluted groundwater, with implications for water security, wealth and health. 27 
 28 
 29 
Overview of the Observed and Projected Impacts on Geographies and Major Sectors 30 
 31 
Coastal cities and megacities—Cities, especially megacities with over 10 million inhabitants, are at serious 32 
risk from climate-related ocean and cryosphere changes (Pelling and Blackburn, 2013; Hinkel et al., 2014; 33 
Abadie, 2018). Over half of today’s global population lives in cities and megacities, many of which are 34 
located in the LECZ, including New York City, Tokyo, Jakarta, Mumbai, Shanghai, Lagos and Cairo (see 35 
Figure CB5.1; UN-DESA, 2015). In some of the world’s largest coastal cities, present flood losses reach up 36 
to 1% of city GDP (Hallegatte et al., 2013). The direct economic impacts of Hurricane Sandy in 2012 in 37 
New York, New Jersey and Connecticut, USA, were ~62.5 billion USD, >11% of which has been attributed 38 
to anthropogenic sea level rise (Strauss et al., submitted). Future flood losses in the 136 largest coastal cities 39 
are projected to rise from 6 billion to USD/year at present to 1 trillion USD/year in 2050, based on the 40 
compounding effects of future growth in population and assets, sea level rise and continued subsidence, 41 
along with the assumption of no significant adaptation measures (Hallegatte et al., 2013). In addition to 42 
important impacts on coastal megacities and large port cities (Box 4.3), small and mid-sized cities are also 43 
considered highly vulnerable because of fast growth rates and lack of political, human and financial 44 
capacities for risk reduction compared to larger cities (Birkmann et al., 2016). 45 
 46 
At a more local scale, and regardless the size of the city, coastal property values and development will be 47 
affected by sea level changes and impacts of coastal storms and other weather and climate-related hazards. 48 
Real estate values and the cost and availability of insurance will be impacted by flood risks (McNamara and 49 
Keeler, 2013; Putra et al., 2015). Properties are at risk of losing value also due to coastal landscape 50 
degradation (McNamara and Keeler, 2013; Fu et al., 2016) and increasing negative risk perceptions. The 51 
economic consequences manifest in declining rental incomes, business activities and local unemployment 52 
(Rubin and Hilton, 1996). 53 
 54 
Coastal megacities, especially, are critical nodes for transboundary risks (Atteridge and Remling, 2018; 55 
Miller et al., 2018) as they substantially contribute to national economies and serve as a hub for global trade 56 
and transportation networks. The 2011 floods in Bangkok, for example, not only resulted in direct losses of 57 
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46.5 billion USD (World Bank, 2012; Haraguchi and Lall, 2015), but also in massive flow-on effects on 1 
supply chains across the globe (Abe and Ye, 2013). Urbanisation could, however, also provide opportunities 2 
for risk reduction, given cities are engines of economic growth and centres of innovation, political attention 3 
and private sector investments (Garschagen and Romero-Lankao, 2015). 4 
 5 
Small islands—In the context of accelerating sea level rise, the extreme events occurring today, such as 6 
storms, tropical cyclones, droughts and increasing marine heat waves (Herring et al., 2017), provide striking 7 
illustrations of the high vulnerability of small island systems (high confidence). With respect to category five 8 
tropical storms, for example, cyclone Pam devastated Vanuatu in 2015 with 449.4 million USD in losses for 9 
an economy with a GDP of 758 million USD (Government of Vanuatu, 2015). Tropical cyclone Winston in 10 
2017 caused 43 deaths in Fiji and losses of more than 1.4 billion USD for an economy with a GDP of 3.4 11 
billion USD (Government of Fiji, 2016). In 2017, hurricanes Maria and Irma swept through 15 Caribbean 12 
countries and islands, such as Saint-Martin/Sint-Maarten (Duvat et al., 2019). Rebuilding in three countries 13 
alone—Dominica, Barbuda and the British Virgin Islands—will cost an estimated 5 billion USD (UNDP, 14 
2017). The Post-Disaster Needs Assessment for Dominica concluded that hurricane Maria resulted in total 15 
damages of 930.9 million USD and losses of 380.2 million USD, which amounts to 226% of 2016 GDP (The 16 
Government of the Commonwealth of Dominica, 2017; Section 6.8.5 and Box 6.1). In 2018, category four 17 
tropical cyclone Gita struck the islands of ‘Eua and Tongatapu, impacting 80% of the population of Tonga 18 
and resulting in 165 million USD of losses (Government of Tonga, 2018).  19 
 20 
A growing concern is the risk that some island nations may become uninhabitable due to climate change 21 
(Gerrard and Wannier, 2013; Yamamoto and Esteban, 2014; Donner, 2015), with implications for 22 
sovereignty and statehood. Recent studies suggest some atolls may become uninhabitable by the middle of 23 
the 21st century because sea level rise exacerbates wave-driven flooding that, in turn, compromises the 24 
integrity of freshwater lenses (Cheriton et al., 2016), as observed on Roi-Namur Island, Marshall Islands 25 
(Storlazzi et al., 2018). On the other hand, and consistent with greater sediment delivery from increased 26 
wave height and energy associated with rising sea level and extreme events, other studies document positive 27 
shoreline and surface area changes over the recent decades to century for atoll reef islands in the Pacific and 28 
Indian oceans (Mann and Westphal, 2014; McLean and Kench, 2015; Albert et al., 2016; Kench et al., 2018; 29 
Duvat, accepted). Out of ~700 studied islands to date, ~73% were stable in surface area over the last forty to 30 
seventy years, and ~15% and ~11% increased and decreased in size, respectively (Duvat, accepted). In 31 
Tuvalu, for example, total land area of eight out of nine atolls occurred despite relatively rapid sea level rise 32 
of ~15 cm between 1971 and 2014 (Kench et al., 2018). In the Solomon Islands with rates of sea level rise of 33 
7–10 mm per year exceeding the global average (Becker et al., 2012), a study of 33 reef islands showed five 34 
vegetated islands had disappeared and six islands showed severe shoreline erosion (Albert et al., 2016). In 35 
Micronesia, a study showed the disappearance of several reef islands, severe erosion in leeward reef edge 36 
islands and coastal expansion in mangrove areas (Nunn et al., 2017). There is thus high confidence that atoll 37 
reef islands are not ‘static landforms’ and that, for a modest rate of sea level rise, they can accommodate 38 
rising sea levels over time. Such a capacity will, however, probably be limited in the case of higher sea level 39 
rise rates (Section 4.2) as well as by the impacts of ocean warming and acidification on the reef system 40 
(Gattuso et al., 2015; Hoegh-Guldberg et al., in press; Sections 4.3.3, 5.3.3). 41 
 42 
Deltas and estuaries—In a context of both sea level rise and high human disturbances to sediment supply, 43 
e.g., due to damming and land use change upstream from the coast (Kondolf et al., 2014), marine flooding is 44 
already affecting deltas around the world (Brown et al., 2018). It is estimated that ~260,000 km2 have been 45 
temporarily submerged over the 1990s/2000s (Syvitski et al., 2009; Wong et al., 2014). The recurrence of El 46 
Niño associated floods in the San Juan River delta, Colombia, led to the relocation of several villages, 47 
including El Choncho, San Juan de la Costa, Charambira and Togoroma (Correa and Gonzalez, 2000). 48 
Another major issue in deltas is the intrusion of saline and/or brackish water due to sea level rise and storm 49 
surges (Section 4.3.3.1.3, Box 4.3). A positive correlation between rising sea level and increasing residual 50 
salinity has been reported in the Delaware Estuary, USA (Ross et al., 2015), in the Ebro Delta, Spain 51 
(Genua-Olmedo et al., 2016) and in the Mekong Delta, Vietnam (Smajgl et al., 2015; Gugliotta et al., 2017). 52 
In Bangladesh, freshwater fish species are expected to lose habitat as a result of increasing salinity, with 53 
important consequences for fish-dependent communities (Dasgupta et al., 2017). Other concerns include 54 
limitations in drinking water supply (Wilbers et al., 2014), the induced effects of salinity on the abundance 55 
and toxicity of cholera vibrio (vibrio cholerae), for example in the Ganges Delta (Batabyal et al., 2014), and 56 
consequences on future local agriculture. With respect to rice cultivation, recent studies emphasise the 57 
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prevailing role of combined surface elevation and soil salinity, e.g., in the Ebro delta, Spain, where Genua-1 
Olmedo et al. (2016) estimate the rice production index will decrease from 61.2% in 2010 to 33.8% by 2100, 2 
for a 1.8 m sea level rise scenario—which is considerably above the likely range of Representative 3 
Concentration Pathway 8.5 (RCP8.5; Section 4.2). In coastal Bangladesh, oilseed, sugarcane and jute 4 
cultivation have ceased due to already high salinity levels (Khanom, 2016). Negative effects are expected on 5 
all dry-season crops over the next 15 to 45 years, especially in the southwestern coastal Bangladesh (Kabir et 6 
al., 2018). 7 
 8 
Polar regions—In Arctic LLIC especially, climate-related ocean and cryosphere changes combine to 9 
negatively impact not only the economy and life-styles of the communities, but also the local cultural 10 
identity, self-sufficiency, IK & LK and related skills (Lacher, 2015; Sections 3.4.3, 3.5, 4.3.2.2). Changes in 11 
fish and seabird populations amplified by climate change have an impact on ecosystems and livelihoods in 12 
Arctic island communities dependent on their local natural capital, such as the Lofoten, Norway (Dannevig 13 
and Hovelsrud, 2016; Kaltenborn et al., 2017), or West Greenland (Hamilton et al., 2003). There are 14 
currently 178 Alaskan communities facing coastal erosion issues, with 26 in a very critical situation, such as 15 
Newtok, Shishmaref, Kivilina, and north-western coastal communities on the Chukchi Sea (Bronen and 16 
Chapin III, 2013). An additional factor unique to the polar regions compared to other LLIC is the decrease in 17 
seasonal sea ice extent in the Arctic (Section 3.1.1), which reduces the physical protection of the land 18 
(Overeem et al., 2011; Fang et al., 2018). Autumn storms also have greater open water fetch due to lower sea 19 
ice extent and can produce strong wind-generated waves in the open water (Lantuit et al., 2011). At the same 20 
time, the increase in ground temperatures weakens the mechanical stability of frozen ground (Romanovsky 21 
et al., 2010). Together these mechanisms of increased wave energy, decreased stability of permafrost and sea 22 
level rise, are increasing erosion of locations where coastal settlements are situated on permafrost and 23 
discontinuous permafrost (Section 3.4.3). In Alaska, for example, coastal communities such as Selawik are 24 
facing both permafrost thawing, subsidence and river bank erosion (AMAP, 2017). 25 
 26 
As in other LLIC, impacts in polar regions will be reinforced by anthropogenic drivers enrooted in the recent 27 
decades of history (e.g., socio-economic adjustments after government policies requiring children to attend 28 
school) and that resulted in the construction of infrastructure in near-shore areas, with the assumption of 29 
stable coastlines. While risk levels vary by village, in several cases, infrastructure has been lost and 30 
subsistence use areas modified (Bronen, 2011; Marino, 2012; Gorokhovich et al., 2013; Marino, 2015). 31 
More broadly, in the Arctic, ‘indigenous peoples (…) have been pushed into marginalized territories that are 32 
more sensitive to climate impacts’ (Ford et al., 2016: 350), with consequences in terms of undermining 33 
aspects of socio-cultural resilience. 34 
 35 
Impacts on critical sectors and livelihoods—Climate change economic impacts for LLIC are expected to be 36 
particularly significant in the coming decades to century, due to the convergence of the anticipated increase 37 
in the number of LECZ inhabitants (Jones and O’Neill, 2016; Merkens et al., 2016), the remaining high 38 
dependency of societies on ocean and marine ecosystems and services (Section 5.4.1, 5.4.2), and increased 39 
detrimental effects of climate-related ocean and cryosphere changes on natural and human systems (medium 40 
evidence, high agreement) (Hsiang et al., 2017; United Nations, 2017). The degree of economic impacts will, 41 
however, vary across geographies due to context-specific physical settings and exposure and vulnerability 42 
levels (Birkmann and Welle, 2015). For example, the average annual losses due to climate change as a 43 
percentage of the GDP are expected to be much higher in SIDS compared with the global average (UN-44 
OHRLLS, 2015; Section 5.5.3.1). 45 
 46 
Ocean and cryosphere changes threaten critical LLIC sectors, both economy-related and non-economic, such 47 
as employment, livelihood, poverty, health (Kim et al., 2014; Weatherdon et al., 2016; Sections 1.4.3., 48 
5.4.2), well-being and food security (Sections 4.4.4, 5.4.2), as well as public budgets and investments. For 49 
example, considering 21st century sea level rise scenarios of 25–123 cm (all RCPs considered), Hinkel et al. 50 
(2014) estimate that annual losses from future marine flooding to amount to 0.3–9.3% of global GDP in 51 
2100. Coastal protection will inevitably have economic costs (DiSegni and Shechter, 2013), whether it 52 
involves hard coastal protection (Muis et al., 2017) or ecosystem-based approaches (Narayan et al., 2016; 53 
Pontee et al., 2016). Coastal agriculture (e.g., rice crops; Smajgl et al., 2015; Genua-Olmedo et al., 2016), 54 
and fisheries and aquaculture provide another example (Sections 4.3.3.3.2, 4.3.3.3.5, 5.4.1). Marine fisheries 55 
revenues are projected to be negatively impacted in 89% of the world’s fishing countries under RCP8.5 in 56 
the 2050s relative to the present day (Hilmi et al., 2015). The fact that >90% of the world’s rural poor are 57 
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located in the LECZ of 15 developing countries (Barbier, 2015) and that these regions are highly dependent 1 
on fish for their dietary consumption (Blanchard et al., 2012), raises a serious concern about future food 2 
security (FAO et al., 2017). But not all regions are equally threatened, with Lam et al. (2016) estimating that 3 
the impacts on fisheries will be more important in SIDS, Africa and Southeast Asia. Cascading effects are 4 
also expected from risks to coral reefs and associated living resources, both on direct consumption by local 5 
communities and through disturbances to the broader food web chains (Sections 5.4.1, 5.4.2). 6 
 7 
Coastal tourism contributes to LLIC economies through direct and indirect employment and income. It could 8 
be affected in various ways by ocean- and cryosphere-related changes (Sections 4.3.3.3.4, 5.4.2.2.3). Coastal 9 
infrastructure and facilities, such as harbours and resorts (e.g., in Ghana; Sagoe-Addy and Appeaning Addo, 10 
2013), as well as ecosystems that are of value for tourism—e.g., coral reefs supporting diving and 11 
snorkelling (Spalding et al., 2017)—are prone to storm waves. For coral reefs for recreational activities and 12 
tourism only, Chen et al. (2015) estimated that the global economic impact of the expected decline in reef 13 
coverage (between 6.6 and 27.6% under RCPs 2.6 and 8.5, respectively) will range from 1.9 to 12.0 billion 14 
USD/year. Saline intrusion due to sea level rise challenges island resorts relying to a substantial degree on 15 
groundwater and (sub-)surface water reservoirs for their freshwater supply (Emmanuel et al., 2009). The 16 
future appeal of tourism destinations will also depend on sea surface temperature, including induced effects 17 
such as an increase in invasive species, e.g., jellyfishes (Burge et al., 2014; Weatherdon et al., 2016), as well 18 
as on how tourists and tourism developers perceive the risks induced by ocean-related changes (e.g., 19 
Shakeela et al., 2013; Davidson and Sahli, 2015). This will combine with the influence of changes in 20 
climatic conditions in tourists’ areas of origin (Bujosa and Rosselló, 2013; Amelung and Nicholls, 2014; 21 
Hoegh-Guldberg et al., in press) and of non-climatic components such as accommodation and travel prices. 22 
Importantly, estimating the effects on global-to-local tourism flows remains challenging (Rosselló-Nadal, 23 
2014; Wong et al., 2014). 24 
 25 
From a broader perspective, human migration, relocation and displacement will be a growing challenge for 26 
LLIC (medium evidence, high agreement) (Adger et al., 2014; Birk and Rasmussen, 2014; Milan and Ruano, 27 
2014; Thomas, 2015; Hajra et al., 2017; Stojanov et al., 2017; Sections 3.3.5, 3.5.5, 4.4.3, 6.3.5). Changes in 28 
the basic conditions of LLIC habitability—e.g., shoreline retreat, soil and groundwater salinization, depletion 29 
in fish resources, increase in health diseases—will impact people’s mobility and may result in displacement 30 
to safer locations (Connell, 2016; Janif et al., 2016). It is estimated that sea level rise associated with a 2°C 31 
warmer world could submerge the homeland of 280 million people globally by the end of this century 32 
(Strauss et al., 2015). While significantly higher risks of human displacement are expected in low-income 33 
LLIC, for example in Guatemala (Milan and Ruano, 2014) and Myanmar (Brakenridge et al., 2017), the 34 
issue also concerns developed countries. People displaced by hurricanes in the Gulf Coast, USA, are already 35 
creating an economic impact on both permanent and temporary hosting areas, e.g., in tourism-dependent 36 
coastal cities and harbours (Logan et al., 2016). However, based on empirical evidence that people are rarely 37 
moving exclusively due to changes in ocean- and cryosphere-based conditions, recent studies conclude that 38 
migration pressures as a result of habitual disasters and increasing hazards strongly interact with other 39 
migration pressures on the ground, including other environmental stresses and/or economic and political 40 
motivations (high confidence) (Hartmann, 2010; Kelman, 2015; Marino and Lazrus, 2015; Hamilton et al., 41 
2016; Bettini, 2017; Stojanov et al., 2017; Perumal, 2018). 42 
 43 
 44 
Responses: Adaptation Strategies in Practice 45 
 46 
A wide range of adaptation measures are currently implemented worldwide (Sections 1.5.2. 2.4.3.3., 3.5.5, 47 
4.4.2, 4.4.3, 5.5.2, 6.9, Figure 1.3), including the installation of major infrastructures to address sea level 48 
rise, such as armouring of coasts (e.g., seawalls, groynes, revetments, rip-raps), soft engineering (e.g., beach 49 
nourishment, dune restoration), reclamation works to build new lands seaward and upwards, ecosystem-50 
based measures (e.g., vegetation planting, coral farming), community-based approaches (e.g., social 51 
networks, education campaigns, economic diversification) and institutional innovations (e.g., marine 52 
protected areas, evacuation plans). The effectiveness of the measures to reduce vulnerability highly depends 53 
on local context-specificities (Gattuso et al., 2018), in addition to the magnitude and timing of local climate 54 
impacts (Hoegh-Guldberg et al., in press). 55 
 56 
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Protection with hard coastal defences is commonly used to prevent inundation from peak tides and storm 1 
surges (Section 4.4.2). In already severely damaged environments, such as megacities, hard coastal defences 2 
are considered to be successful options (Hallegatte et al., 2013; Hinkel et al., 2018). In less disrupted 3 
environments, however, they can lead to detrimental effects, such as seawalls exacerbating processes of 4 
coastal erosion, e.g., by reflecting wave energy (Donner and Webber, 2014; Albert et al., 2016; Betzold and 5 
Mohamed, 2016), and hamper the ability of beach-dune systems to buffer waves (Pilkey and Cooper, 2014; 6 
David et al., 2016). These effects are resulting from to the typical design and placement of such coastal 7 
structures. For example, during the tropical cyclone Oli in 2010 on Tubuai Island, French Polynesia, the 8 
waves extracted many blocks from the non-consolidated coastal structures, which then acted like 9 
cannonballs and increased the damages (Etienne, 2012). Adaptation-labelled measures ‘may [thus] lead to 10 
increased risk of adverse climate-related outcomes, increased vulnerability to climate change, or diminished 11 
welfare’ (Noble et al., 2014: 857) and therefore be maladaptive (Barnett and O’Neill, 2013; Juhola et al., 12 
2016; Magnan et al., 2016). As a result, alternatives have emerged, such as ecosystem-based design 13 
measures including coconut fibre blankets (Schlurmann et al., 2014), plantations of seagrass (Paul et al., 14 
2012; Paul and Gillis, 2015), artificial reefs made from bio-rock materials (Beetham et al., 2017; Goreau and 15 
Prong, 2017) and bamboo breakwater (Schmitt et al., 2013; David et al., 2016). Soft protection systems used 16 
in 69 studies were found to be 70% effective for coral reefs, 62–79% for salt marshes, 36% for seagrass 17 
meadows and 31% for mangroves (Narayan et al., 2016). Ecosystem-based measures are usually considered 18 
low-regret in that they stabilise the coastal vegetation and protect against coastal hazards, while at the same 19 
time enhancing the adaptive capacity of natural ecosystems (medium evidence, high agreement) (Sections 20 
2.4, 3.5, 5.5.2, 6.9). Other options being considered include the construction of new, artificial islands or 21 
floating islands anchored to the seabed (Yamamoto and Esteban, 2014). 22 
 23 
Relocation of communities and economic activities is increasingly being considered as an adaptation option 24 
to climate-related changes in the ocean and cryosphere (medium confidence) (IPCC, 2014; Shayegh et al., 25 
2016; Allgood and McNamara, 2017; Hauer, 2017; Morrison, 2017; Perumal, 2018; Section 4.4.3.5). It is, 26 
however, accompanied by discussions on related costs and impacts on the wellbeing of the people who are 27 
relocated (Null and Herzer Risi, 2016). Coastal retreat is underway in various LLIC around the world, e.g., 28 
in Alaska and the US (Bronen and Chapin III, 2013; Bronen, 2015; Ford et al., 2015; Logan et al., 2016; 29 
Hino et al., 2017), Guatemala (Milan and Ruano, 2014), Western Colombia (Correa and Gonzalez, 2000), 30 
the Caribbean (Apgar et al., 2015; Rivera-Collazo et al., 2015) and Vietnam (Collins et al., 2017). 31 
Environmentally-induced relocation is not necessarily new, e.g., in the Pacific (Nunn, 2014; Boege, 2016). 32 
The Gilbertese people from Kiribati moved to the Solomon Islands during the 1950s/1960s, as a result of 33 
long periods of droughts and subsequent environmental degradation (Birk and Rasmussen, 2014; Tabe, 34 
2016; Weber, 2016). In Papua New Guinea, several (unsuccessful) attempts to relocate the Carteret Islanders 35 
have been made since the 1960s as a result of land shortages, salt-water inundation, food insecurity, sea level 36 
rise and coastal erosion (Edwards, 2013; Burkett, 2015; Pascoe, 2015; UNDP, 2016). According to a new 37 
relocation programme established in 2006, half of the population is expected to be relocated to Bougainville 38 
mainland by 2020 (Ferris, 2011; UNDP, 2016). In the Solomon Islands, the relocation of the Taro Township 39 
(Choiseul Province) as a result of rising sea level and coastal erosion is already underway (Haines and 40 
McGuire, 2014; Haines, 2016), while the inhabitants of Ontong Java and Sikaina atolls have requested the 41 
government to assist with the relocation to the mainland of Malaita, or elsewhere, due to recent prolonged 42 
droughts and salt-water intrusion (Monson and Foukona, 2014). In Alaska, some communities (e.g., 43 
Newtok) responded to changing environmental conditions with self-initiated relocation efforts, and Alaska 44 
state funding has been allocated to assist them (Bronen, 2015; Hamilton et al., 2016). Relocation also covers 45 
economic activities, as illustrated with shellfish aquaculture relocation in the West coast of the US due to 46 
ocean acidification-driven crises (Cooley et al., 2016). It is important to note that conflict escalation is a 47 
serious concern in the resettlement areas between newcomers and locals or between different groups of 48 
newcomers, particularly under conditions of land scarcity, high population density and (perceived) inequality 49 
(Connell and Lutkehaus, 2017; Boege, 2018). 50 
 51 
Regardless the option, adaptation is fully recognised as being a societal challenge, and not merely a question 52 
of technological solutions (medium evidence, high agreement) (Jones and Clark, 2014; McCubbin et al., 53 
2015; Gerkensmeier and Ratter, 2018). Enhancing adaptation implies various socio-political and economic 54 
framings, coping capacities and cross-scale social and economic impacts. As a result, community-based 55 
decision-making, sustainable spatial planning and new institutional arrangements gain increasing attention 56 
(Sections 4.4.5, 4.4.6, Box 5.4, Cross-Chapter Box 2 in Chapter 1). Such approaches can involve working 57 
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with local informal and formal institutions (Barron et al., 2012), enhancing risk ownership by communities 1 
through participative approaches (McEwen et al., 2017), establishing collaborative community networks 2 
(Hernández-González et al., 2016), and better integrating LLIC communities’ IK & LK (see McMillen et al., 3 
2014; Cross-Chapter Box 3 in Chapter 1). Small island communities, in particular, can strengthen their 4 
adaptive capacities by building on relatively high degrees of social capital, i.e., dense social networks, 5 
collective action, reciprocity, and relations of trust (Petzold and Ratter, 2015; Barnett and Waters, 2016; 6 
Petzold, 2016; Kelman, 2017). The aim of all these approaches is both to facilitate the effective 7 
implementation of adaptive action, and create widespread acceptance of adaptation policies by stakeholders 8 
and local populations. 9 
 10 
Participatory scenario building processes, collaborative landscape planning and co-design of ecosystem-11 
based management for LLIC resilience are also already applied and promising approaches to actively engage 12 
all levels of society in the exploration of future adaptation scenarios. Experiences are reported for the 13 
German North Sea coast (Karrasch et al., 2017), Tenerife Island in the Atlantic Ocean (Hernández-González 14 
et al., 2016) and the Pacific region (Burnside-Lawry et al., 2017). This observation suggests that while 15 
adaptation-labelled measures currently applied ‘on the ground’ are mainly reactive and short-term, long-term 16 
approaches are emerging (Noble et al., 2014; Wong et al., 2014). It is illustrated by the development of 17 
‘adaptation pathways’—i.e., long-term adaptation strategies based upon decision cycles that, over time, 18 
explore and sequence a set of possible actions (including cost-benefits) based on alternative external, 19 
uncertain developments (Haasnoot et al., 2013; Barnett et al., 2014; Wise et al., 2014; Werners et al., 2015; 20 
Hermans et al., 2017; Section 4.4.5.3.4). Key expected benefits are an improved consideration of both the 21 
evolving nature of vulnerability (Denton et al., 2014; Dilling et al., 2015; Duvat et al., 2017; Fawcett et al., 22 
2017) and climate change uncertainty (O’Brien et al., 2012; Brown et al., 2014; Noble et al., 2014), as well 23 
as better anticipation of the risks of maladaptation (Magnan and Duvat, 2018). Practical applications of 24 
adaptation pathways in LLIC are occurring, e.g., in the Netherlands (Haasnoot et al., 2013), Indonesia 25 
(Butler et al., 2014), New York City (Rosenzweig and Solecki, 2014) and Singapore (Buurman and Babovic, 26 
2017). As adaptation pathways usually bring together multiple sectors, institutions and stakeholders, they lay 27 
the foundations for the elaboration of LLIC-specific Climate Resilient Development Pathways (CRDP), 28 
broadly defined as sustainable development pathways simultaneously promoting climate resilience (Olsson 29 
et al., 2014; Roy et al., in press). 30 
 31 
 32 
Conclusions 33 
 34 
LLIC are hot spots of climate-related changes to the ocean and the cryosphere, whether they are urban or 35 
rural, continental or island, at any latitude and regardless their level of development (high confidence). Over 36 
the course of the 21st century, they are expected to experience both increasing risks (high confidence) and 37 
limits to adaptation (Figure CCB7.2; Section 4.3.4.2), which has the potential to significantly increase the 38 
level of loss and damage experienced by local to global coastal livelihoods (e.g., fishing, logistics or 39 
tourism) (Djalante et al., in press). In addition, ocean and cryosphere changes have the potential to 40 
accumulate in compound events and cause cascades of impacts through economic, environmental and social 41 
processes (medium evidence, high agreement) (Box 6.1). This is the case when coastal flooding and riverine 42 
inundation occur together (Section 4.3.4.1), e.g., during the 2012 Superstorm Sandy in New York City, USA 43 
(Rosenzweig and Solecki, 2014); the 2014 cyclone Bejisa in Reunion Island, France (Duvat et al., 2016); or 44 
the 2017 Hurricane Harvey in Houston, USA (Emanuel, 2017). Cascade effects far beyond the extent of the 45 
original impacts bring the risk in LLIC of slowing down and reversing overall development achievements, 46 
particularly on poverty reduction (low evidence, medium agreement) (Hallegatte et al., 2016). Global time 47 
series analysis of risk and vulnerability trends show that many Pacific island states have fallen behind the 48 
global average in terms of progress made in the reduction of social vulnerability towards natural hazards 49 
over the past years (Feldmeyer et al., 2017). There is medium confidence that these findings may well be 50 
indicative of the situation for other LLIC (Hay et al., accepted).  51 
 52 
In addition, LLIC provide relevant illustrations of some of the IPCC Reasons for Concern (RFC) that 53 
describe potentially dangerous anthropogenic interference with the climate system (McCarthy et al., 2001; 54 
IPCC, 2014). LLIC especially illustrate the risks to unique and threatened systems (RFC1), and risks 55 
associated with extreme weather and compound events (RFC2), and the uneven distribution of impacts 56 
(RFC3). Using this frame, O'Neill et al. (2017) estimate that the potential for coastal protection and 57 
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ecosystem-based adaptation will reach significant limits by 2100 in the case of a 1-m rise in sea level (see 1 
also Section 4.2.2.5), suggesting the need for research into the crossing of environmental and/or 2 
anthropogenic tipping points (Sections 6.2, 4.2.3). The evidence presented above suggests, first, that the 3 
drivers and timing of the future habitability of LLIC will vary from one case to another (Manley et al., 2016; 4 
Hay et al., 2018). Second, that future storylines of risks will also critically depend on the multi-decadal 5 
effectiveness of coastal nations’ and communities’ responses (medium evidence, high agreement). This will, 6 
in turn, partly depend on transformation of risk management regimes in order to harness these potentials and 7 
shift course towards CRDPs (low evidence, high agreement) (Solecki et al., 2017). 8 
 9 
 10 

 11 
Figure CCB7.2: The storyline of risk for LLIC. From left to right, this figure shows that ocean- and cryosphere-related 12 
hazards (e.g., ocean acidification, sea level rise) will combine with anthropogenic drivers (e.g., settlement trends, 13 
socioeconomic inequalities) to explain impacts on various LLIC geographies (cities, islands, deltas, polar regions). 14 
Depending on the combinations of responses (dots) along a continuum going from hard engineering to ecosystem-based 15 
approaches, and from ‘holding-the-line’ to relocation, risks will increase or decrease in the coming decades. Some 16 
responses will enhance adaptation (blue dots), when others will rather contribute to maladaptation (brown dots). 17 
 18 
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