2SM

High Mountain Areas Supplementary Material

Coordinating Lead Authors:

Regine Hock (USA), Golam Rasul (Nepal)

Lead Authors:

Carolina Adler (Switzerland/Australia), Bolívar Cáceres (Ecuador), Stephan Gruber (Canada/ Germany), Yukiko Hirabayashi (Japan), Miriam Jackson (Norway), Andreas Kääb (Norway), Shichang Kang (China), Stanislav Kutuzov (Russia), Alexander Milner (UK), Ulf Molau (Sweden), Samuel Morin (France), Ben Orlove (USA), Heidi Steltzer (USA)

Contributing Authors:

Simon Allen (Switzerland), Lukas Arenson (Canada), Soumyadeep Banerjee (India), lestyn Barr (UK), Roxana Bórquez (Chile), Lee Brown (UK), Bin Cao (China), Mark Carey (USA), Graham Cogley (Canada), Andreas Fischlin (Switzerland), Alex de Sherbinin (USA), Nicolas Eckert (France), Marten Geertsema (Canada), Marca Hagenstad (USA), Martin Honsberg (Germany), Eran Hood (USA), Matthias Huss (Switzerland), Elizabeth Jimenez Zamora (Bolivia), Sven Kotlarski (Switzerland), Pierre-Marie Lefeuvre (Norway/France), Juan Ignacio López Moreno (Spain), Jessica Lundquist (USA), Graham McDowell (Canada), Scott Mills (USA), Cuicui Mou (China), Santosh Nepal (Nepal), Jeannette Noetzli (Switzerland), Elisa Palazzi (Italy), Nick Pepin (UK), Christian Rixen (Switzerland), Maria Shahgedanova (UK), S. McKenzie Skiles (USA), Christian Vincent (France), Daniel Viviroli (Switzerland), Gesa Weyhenmeyer (Sweden), Pasang Yangjee Sherpa (Nepal/USA), Nora M. Weyer (Germany), Bert Wouters (Netherlands), Teppei J. Yasunari (Japan), Qinglong You (China), Yangjiang Zhang (China)

Review Editors:

Georg Kaser (Austria), Aditi Mukherji (India/Nepal)

Chapter Scientists:

Pierre-Marie Lefeuvre (Norway/France), Santosh Nepal (Nepal)

This chapter supplementary material should be cited as:

Hock, R., G. Rasul, C. Adler, B. Cáceres, S. Gruber, Y. Hirabayashi, M. Jackson, A. Kääb, S. Kang, S. Kutuzov, Al. Milner, U. Molau, S. Morin, B. Orlove, and H. Steltzer, 2019: High Mountain Areas Supplementary Material. In: *IPCC Special Report on the Ocean and Cryosphere in a Changing Climate* [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Available from https://www.ipcc.ch/srocc/.

Table of contents

2SM

SM2.1	Details of High Mountain Regional Glacier and Permafrost Areas	2SM-3
SM2.2	Details of Studies on Temperature Observations and Projections	2SM-3
SM2.3	Details of Studies on Precipitation Observations and Projections	2SM-7
SM2.4	Details of Studies on Snow Cover Observations and Projections	2SM-13
SM2.5	Details on Climate Models used in Figure 2.3	2SM-16
SM2.6	Synthesis of Recent Studies Reporting on Past and Projected Changes of River Runoff	2SM-17
SM2.7	Details of Studies on Peak Water	2SM-22
SM2.8	Details of Studies on Observed Impacts Attributed to Cryosphere Changes	2SM-25
SM2.9	Details of Studies on Adaptations in Response to Cryosphere Changes	2SM-32
Referenc	es	2SM-47

SM2.1 Details of High Mountain Regional Glacier and Permafrost Areas

The regional glacier and permafrost areas shown in Figure 2.1 are listed in Table SM2.1. Glacier area is taken from the Randolph Glacier Inventory (RGI6.0, RGI Consortium (2017)) and includes all glaciers within the depicted regions boundaries. Permafrost area is taken from Obu et al. (2019) but restricted to only include the permafrost in mountains, as defined based on a ruggedness index larger than 3.5 (Gruber, 2012, Figure 2.1). Within each high mountain region, regional permafrost area is calculated on a grid with 30 arc-second resolution (~1 km), as the sum of fractional permafrost area multiplied by the area of each grid cell; permanent snow and ice are excluded and masked based on landcover data from the European Space Agency Climate Change Initiative (ESA CCI Land Cover).

Two global-scale permafrost modelling studies (Gruber, 2012; Obu et al., 2019) provide suitable data with models differing in input, model structure, and assumptions. The data by Obu et al. (2019),

extended to the southern hemisphere, are used since they provide permafrost fractional area (permafrost probability) directly. Their model was forced by remotely sensed land surface temperature, land cover and ERA-Interim climate reanalysis data, and statistically accounted for sub-grid variability of ground temperature due to snow and land cover. By contrast, (Gruber, 2012) used heuristics and mean annual air temperature to derive an approximate index of fractional permafrost area. Bounds of uncertainty were estimated by using two forcing climate data sets (reanalysis data from National Centers for Environmental Prediction (NCEP) and data from the Climatic Research Unit, CRU TS 2.0), and several sets of model parameters, resulting in five maps in total. Assuming the index to represent the fractional permafrost area, aggregated results for high mountain permafrost areas are similar to the estimate based on Obu et al. (2019). For high mountain areas, the five models by Gruber (2012) yield areas varying from 3.6 to 5.2 million km² and the model of Obu et al. (2019) results in 3.7 million km². The percentage of permafrost in high mountain areas relative to the global permafrost area, computed separately for each model, is 27–29% for Gruber (2012) and 27% for Obu et al. (2019).

Table SM2.1 | Glacier and permafrost area in high mountain regions shown in Figure 2.1. Glacier area is from the Randolph Glacier Inventory (RGI6.0, RGI Consortium (2017)). Permafrost areas are based on Obu et al. (2019).

High Mountain Region	Glacier Area (km²)	Permafrost Area (km ²)
Alaska	86,725	307,767
Western Canada and USA	14,524	256,254
Iceland	11,060	4,023
Scandinavia	2,949	8,306
Central Europe	2,092	7,124
Caucasus and Middle East	1,307	10,181
North Asia	2,410	2,234,058
High Mountain Asia	97,605	866,667
Low Latitudes	2,341	673
Southern Andes	29,429	27,172
New Zealand	1,162	180
All high mountain regions	251,614	3,722,405

SM2.2 Details of Studies on Temperature Observations and Projections

Table SM2.2Overview of studies reporting trends in past surface air temperature including mean annual, seasonal and monthly mean values of daily mean, minimum
and maximum temperature, per high mountain region (as defined in Figure 2.1) with published observations. Global syntheses are listed at the top of the table. Obs.
stations refers to observation stations. Elevations are in meters (m) above sea level.

Location	Temperature (temp.) indicator	Trend (°C per decade)	Time period	Dataset	Reference
		bal syntheses			
>500 m, 30°N–70°N	Annual mean value of minimum daily temp.	0.21	1951–1989	250 obs. stations	Diaz and Bradley (1997)
<500 m, 30°N–70°N	Annual mean value of minimum daily temp.	0.04	II	993 obs. stations	"
>500 m with mean annual temp. from -5°C to 5°C	Mean annual temp.	0.23	1948–2002	269 obs. stations	Pepin and Lundquist (2008)
>500 m with mean annual temp. <-5°C or >5°C	Mean annual temp.	0.12	н	1,084 obs. stations	u
>500 m	Mean annual temp.	0.40	1982–2010	640 obs. stations	Zeng et al. (2015)

Location	Temperature (temp.) indicator	Trend (°C per decade)	Time period	Dataset	Reference
<500 m	Mean annual temp.	0.32	u	2,020 obs. stations	"
>500 m	Mean annual temp.	0.30	1961–2010	910 obs. stations	Wang et al. (2016)
<500 m	Mean annual temp.	0.24	"	1,742 obs. stations	"
>500 m	Winter mean temp.	0.4	1961–2010	739 obs. stations	Qixiang et al. (2018)
<500 m	Winter mean temp.	0.35	u	1,262 obs. station	"
		n Canada and US			
Colorado and Pacific Northwest, <4,000 m	Annual mean value of minimum daily temp.	0.37	1979–2006	Gridded dataset (based on obs. stations without homogenization)	Diaz and Eischeid (2007)
>4,000 m	Annual mean value of minimum daily temp.	0.75	"	ш	"
Mt. Washington, northeast USA, 1,905 m	Mean annual temp.	0.35	1970–2005	1 obs. station	Ohmura (2012)
Pinkham Notch, northeast USA, 613 m	Mean annual temp.	0.31	u	1 obs. station	u
Northwest USA	Annual mean value of minimum daily temp.	0.17	1981–2012	Gridded dataset (based on homogenized obs. station)	Oyler et al. (2015)
Whole North America, >500 m	Mean annual temp.	0.14	1948–1998	552 obs. stations	Pepin and Seidel (2005)
	C(entral Europe			
Switzerland	Mean annual temp.	0.35	1959–2008	Gridded dataset (based on 91 homogenized obs. stations)	Ceppi et al. (2012)
u	Autumn mean temp.	0.17	"	<i>u</i>	и
u	Winter mean temp.	0.40	u	и	ш
u	Spring mean temp.	0.39	"	и	и
u.	Summer mean temp.	0.46	"	и	ш
Switzerland	Mean annual temp.	0.13	1864–2016	Gridded dataset (based on 19 homogenized obs. stations)	Begert and Frei (2018)
Switzerland, 203–815 m	Mean annual temp.	0.35	1981–2017	47 obs. stations	Rottler et al. (2019)
Switzerland, 910–1,878 m	ш	0.31	"	34 obs. stations	ш
Switzerland, 1,968–3,850 m	"	0.25	"	12 obs. stations	"
Swiss Alps	Mean April temp.	0.51	1961–2011	6 obs. stations	Scherrer et al. (2012)
Jungfraujoch, 3,580 m	Mean annual temp.	0.43	1970–2011	1 obs. station	Ohmura (2012)
Sonnblick, 3,109 m	Mean annual temp.	0.30	1980–2011	1 obs. station	и
Col de Porte, 1,325 m	Winter mean temp. (December to April)	0.3	1960–2017	1 obs. station	Lejeune et al. (2019)
Mont-Blanc, 4,300 m	Mean temp. (from englacial obs.)	0.14	1900–2004	1 obs. site	Gilbert and Vincent (2013)
Trentino, 203–875 m	Mean annual temp.	0.49	1976–2010	12 obs. stations	Tudoroiu et al. (2016)
Trentino, 925–2,125 m	и	0.27	"	12 obs. stations	н
Abruzzo Region	Mean annual temp.	0.15	1951–2012	24 obs. stations	Scorzini and Leopardi (2019)
Central Pyrenees	Annual mean value of maximum daily temp.	0.11	1910–2013	155 obs. stations	Pérez-Zanón et al. (2017)
н	"	0.57	1970–2013	u	и
u	Annual mean value of minimum daily temp.	0.06	1910–2013	u	ш
и	u u	0.23	1970–2013	u	Ш
	Caucasu	us and Middle Ea		I	· · · · · · · · · · · · · · · · · · ·
Whole area	Mean annual temp.	0.14	1958–2000	Reanalysis data	Diaz et al. (2003)
и	<i>u</i>	0.26	1974–1998		ш
Central Palestinian Mountains	Mean annual temp.	0.33	1970–2011	6 obs. stations	Hammad and Salameh (2019)

Chapter 2 Supplementary Material

Location	Temperature (temp.) indicator	Trend (°C per decade)	Time period	Dataset	Reference
	So	uthern Andes		I	
18°S–42°S	Mean annual temp.	-0.05	1950–2010	75 obs. stations	Vuille et al. (2015)
Central Andes, 10°S–25°S, free atmosphere (500 hPa)	Mean annual temp.	0.16–0.41	1979–2008	Reanalyses	Russell et al. (2017)
Subtropical Andes, 30°S–37°S	Winter mean temp.	0.4	1980–2005	Reanalysis	Zazulie et al. (2017)
u	u	0.2	u	Gridded observation dataset	и
u	Summer mean temp.	0.3	u	Reanalysis	и
,	и	No trend	"	Gridded observation dataset	u
	Low Latitud	les (Andes and A	frica)		
Tropical Andes, 2°N–18°S	Mean annual temp.	0.13	1950–2010	546 obs. stations	Vuille et al. (2015)
La Paz, Bolivia	Mean annual temp.	-0.70	1985–2010	1 obs. station	Ohmura (2012)
East Africa	Mean annual temp.	0.18	1958–2000	Reanalysis	Diaz et al. (2003)
u		0.18	1974–1998		
South and East Africa, >500 m	Mean annual temp.	0.14	1948–1998	41 obs. stations	Pepin and Seidel (2005)
	· ·	Mountain Asia			
Hindu Kush Himalaya	Mean annual temp.	0.1	1901–2014	122 obs. stations	Krishnan et al. (2019)
"	<i>и</i>	0.2	1951-2014	"	"
Mukteshwar, India, 2,311 m	Mean annual temp.	0.48	1980-2010	1 obs. station	Ohmura (2012)
Toutouhe, China, 4,535 m	Mean annual temp.	0.48	1970-2005	1 obs. station	"
	Mean annual temp.	0.02	1970-2003	Reanalysis	Diaz et al. (2002)
Himalaya "				"	Diaz et al. (2003)
		0.23	1974–1998		
Tibetan Plateau "	Mean temp., wet season (May to September)	0.40	1979–2011	83 obs. stations	Gao et al. (2015)
	Mean temp., dry season (October to April)	0.54			
Tibetan Plateau, >3000 m	Mean annual temp.	0.69	1981–2006	47 obs. stations	Qin et al. (2009)
Tibetan Plateau, 1,000–3,000 m	и	0.55	u	24 obs. stations	u
Tibetan Plateau, 4,500–5,000 m	Mean value of winter minimum daily temp.	0.85	1961–2006	Obs. stations.	Liu et al. (2009)
n	Annual mean value of minimum daily temp.	0.53	u	Obs. stations.	"
Tibetan Plateau, >2,000 m	Mean value of winter minimum daily temp.	0.61	u	116 obs. stations.	u
<i>u</i>	Annual mean value of minimum daily temp.	0.42	"	"	u
Tibetan Plateau, >2,000 m	Mean annual temp.	0.16	1955–1996	97 obs. stations	Liu and Chen (2000)
u	Winter mean temp.	0.32	u	97 obs. stations	"
China 600–800 m	Mean annual temp.	0.05	1961–1990	12 obs. stations	u
Tibetan Plateau, 2,400–2,600 m	Mean annual temp.	0.15	ш	4 obs. stations	u
Tibetan Plateau, 4,200–4,400 m	Mean annual temp.	0.25	u	6 obs. stations	u
Tibetan Plateau, >2,000 m	Mean annual temp.	0.28	1961–2007	72 obs. stations	Guo et al. (2012)
Tibetan Plateau, >2,000 m	Winter mean temp.	0.40	1961–2004	71 obs. stations	You et al. (2010a)
u	Summer mean temp.	0.20	u	"	u
u	Mean annual temp.	0.25	"		u
Tibetan Plateau	Winter mean temp.	0.37	1961–2001	ERA40 Reanalysis	You et al. (2010b)
n	Summer mean temp.	0.17		u u	ш
	Mean annual temp.	0.23	u	и	и
Indian Himalaya	Mean annual temp.	0.25	1901–2002	3 obs. stations	Bhutiyani et al. (2007)
Himalaya (Nepal), 1,200–2,000 m	Annual mean value of maximum daily temp.	0.10	1963-2009	3 obs. station	Nepal (2016)
Himachal Pradesh	, ,	0.23		4 obs. stations	Dimri and Dash (2012)
	Winter mean temp.		1975-2006		
Kashmir	Winter mean temp.	0.2	1975–2006	12 obs. stations	
Australia - E00 m	Mana annual tanun	Australia	1040 4000	14 alta atatian	Denin and C 111 (2007)
Australia, >500 m	Mean annual temp.	0.16	1948–1998	14 obs. stations	Pepin and Seidel (2005)
		Japan			

2SM

Table SM2.3 Overview of studies reporting future trends in surface air temperature including mean annual, seasonal and monthly mean values of daily mean, minimum and maximum temperature, per high mountain region (as defined in Figure 2.1). Global syntheses are listed at the top of the table. Obs. stations refer to observation stations. GCM is General Circulation Model. RCM is Regional Climate Model. Elevations are in meters (m) above sea level. CMIP5 is Coupled Model Intercomparison Project Phase 5. SRES is Special Report on Emissions Scenarios. RCP is Representative Concentration Pathway.

Location	Temperature (temp.) indicator	Change (°C per decade)	Time period	Scenario	Method	Reference
			Global scale			
13 mountain ranges	Mean annual temp.	0.48	1961–1990 vs 2070–2099	SRES-A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
13 mountain ranges	Mean annual temp.	0.25	1961–1990 vs 2070–2099	SRES B1	u	u
		·	Alaska			
North America, >55°N	Mean annual temp.	0.61	1961–1990 to 2070–2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
u	u	0.35	u	SRES B1	u	ш
		We	stern Canada and USA	1		
Colorado Rockies	Spring temp. (April)	up to 1	1995–2005 to 2045–2055	SRES A2	Pseudo global warming runs: RCMs	Letcher and Minder (2015)
North America, <55°N	Mean annual temp.	0.49	1961–1990 to 2070–2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
North America, <55°N	Mean annual temp.	0.27	u	SRES B1	и	и
	-		Iceland	1	1	1
Full domain	Mean annual temp.	0.21–0.40	2000–2100	RCP8.5	Downscaled GCMs using RCMs	Gosseling (2017)
			Central Europe			
European Alps	Mean annual temp.	0.25	1961–1990 to 2021–2050	SRES A1B	Downscaled GCMs using RCMs	Gobiet et al. (2014)
и	"	0.36	1961–1990 to 2069–2098	u	u	u
Switzerland	Mean annual temp.	0.14	1981–2010 to 2070–2099	RCP2.6	Downscaled GCMs using RCMs (EURO-CORDEX)	CH2018 (2018)
и	u	0.26	u	RCP4.5	u	u
u	u	0.49	u	RCP8.5	u	u
Austria	Mean annual temp.	0.23	1971–2000 to 2071–2100	RCP4.5	Downscaled GCMs using RCMs (EURO-CORDEX)	Chimani et al. (2016)
II.	u	0.4	u –	RCP8.5	"	Ш
			Scandinavia			
Whole area, <500 m	Winter mean temp.	0.45	1961–1990 to 2070–2099	SRES A1B	Downscaled GCMs using RCMs	Kotlarski et al. (2015)
Whole area, ~1,500 m	Summer mean temp.	0.27	u	"	"	ш
Whole area	Mean annual temp.	0.54	1961-1990 to 2070-2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
u	"	0.31	1961–1990 to 2070–2099	SRES B1	Downscaled GCMs	u
		Саι	casus and Middle East			
Iran mountain areas	Mean annual temp.	0.45	1961–1990 to 2071–2000	SRES A2	Downscaled GCM	Babaeian et al. (2015)
u	и	0.30	u	SRES B2	u	
			North Asia			·
Whole area	Mean annual temp.	0.76	1961–1990 to 2070–2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
u	и	0.43	u	SRES B1	u	u
			Southern Andes			
Whole area	Mean annual temp.	0.34	1961–1990 to 2070–2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)
	1		и	CDEC 04	u	
u	ш	0.18		SRES B1		
и и	" Winter and summer temp.	0.18	2006–2100	RCP4.5	CMIP5 GCMs	Zazulie et al. (2018)

Chapter 2 Supplementary Material

Location	Temperature (temp.) indicator	Change (°C per decade)	Time period	Scenario	Method	Reference			
Low Latitudes (Andes)									
Tropical Andes	Mean annual temp.	0.3	1961-2000 to 2080-2100	RCP8.5	Downscaled GCMs	Vuille et al. (2018)			
Bolivian Andes	Mean annual temp.	0.34–0.4	1950-2000 to 2040-2069	SRES A1B	Downscaled GCMs	Rangecroft et al. (2016)			
II	n	0.38-0.44	1950-2000 to 2070-2099	"	и	u			
Quelccaya ice cap, Peru, 5,680 m	Mean annual temp.	0.25	2006–2100	RCP4.5	Bias corrected CMIP5 GCMs	Yarleque et al. (2018)			
"	"	0.57	"	RCP8.5	u	"			
			High Mountain Asia						
Himalaya/ Tibetan Plateau, ~1,600 m	Mean value of winter minimum daily temp.	0.32	1971–2000 to 2071–2100	RCP8.5	CMIP5 GCMs	Palazzi et al. (2017)			
Himalaya/ Tibetan Plateau, ~4,100 m	u	0.75	и	u	u	u			
Hindu Kush Himalaya	Winter mean temp.	0.6	1976–2005 to 2066–2095	RCP8.5	RCMs	Sanjay et al. (2017)			
	Summer mean temp.	0.54	11	"	n	и			
Himalaya	Winter mean temp.	0.57	1970–2005 to 2070–2099	RCP8.5	RCMs	Dimri et al. (2018)			
	Summer mean temp.	0.45	11	"	"	и			
Tibetan Plateau, ~4,500 m	Mean annual temp.	0.65	2006–2050	RCP8.5	Downscaled GCMs	Guo et al. (2016)			
Tibetan Plateau, 2,000–2,200 m	u	0.51	и	u	u	u			
Kashmir Himalaya	Annual mean value of minimum daily temp.	0.07	1980–2010 to 2041–2070	RCP2.6	Downscaled GCM	Shafiq et al. (2019)			
и	u	0.13	н	RCP8.5	u	u			
u	u	0.04	1980–2010 to 2071–2100	RCP2.6	u	"			
u	u	0.15	u	RCP8.5	u	"			
u	Annual mean value of maximum daily temp.	0.11	1980–2010 to 2041–2070	RCP2.6	u	"			
и	и	0.19	u	RCP8.5	u	u			
и	и	0.08	1980–2010 to 2071–2100	RCP2.6	u	и			
и	u	0.22	u	RCP8.5	u	u			
			New Zealand						
New Zealand	Mean annual temp.	0.33	1961–1990 to 2070–2099	SRES A1F1	Downscaled GCMs	Nogués-Bravo et al. (2007)			
и	u	0.17	1961–1990 to 2070–2099	SRES B1	Downscaled GCMs	"			

SM2.3 Details of Studies on Precipitation Observations and Projections

Table SM2.4 | Overview of recent studies providing evidence for past changes in precipitation, per high mountain region (as defined in Figure 2.1). Obs. stations refer to observation stations. Elevations are in meters (m) above sea level.

Location	Precipitation (precip.) indicator	Change	Time period	Dataset	Reference				
	Alaska								
Alaska	Annual precip.	Increase 8–40%, depending on the region	1949–2016	18 obs. stations	Wendler et al. (2017)				
	Western Canada and USA								
California	Winter precip.	Insignificant	1920–2014	Gridded dataset based on 102 obs. stations	Mao et al. (2015)				
Canada	Ratio of snowfall to total precip.	1948–2012		Gridded dataset based on obs. stations	Vincent et al. (2015)				
	Iceland								
Whole area	Winter precip.	Insignificant	1961–2000	Reanalysis and 40 obs. stations	Crochet (2007)				

Location	Precipitation (precip.) indicator	Change	Time period	Dataset	Reference
		Central Europe			
European Alps	Total precip.	Insignificant, dominated by internal variability	1901–2008	Gridded dataset based on obs. stations	Masson and Frei (2016)
European Alps	Daily precip.	Insignificant change due to high variability	1980–2010	43 obs. stations	Kormann et al. (2015a)
Swiss Alps	Fraction of days with snowfall over days with precip. (annual), <1,000 m	-20%	1961–2008	Subset within 52 obs. stations	Serquet et al. (2011)
"	", 1,000–2,000 m	-10 to -20%	"	u	"
u	", >2,000 m	-5%	u	"	и
"	Fraction of days with snowfall over days with precip. (spring), <1,000 m	-30 to -50%	u	Subset within 28 obs. stations	u
"	", 1,000–2,000 m	-10 to -30%	u	u	и
и	", >2,000 m	-5 to -10%	u	u	и
Abruzzo Region	Total precip.	-1.8% per decade (not significant)	1951–2012	46 obs. stations	Scorzini and Leopardi (2019)
Pyrenees	Total precip.	Insignificant decrease (-0.6% per decade)	1950–1999	24 obs. stations	López-Moreno (2005)
Carpathian mountain regions	Total precip.	No significant trend	1961–2010	Gridded data based on obs. stations	Spinoni et al. (2015)
		Scandinavia			
Finland	Annual snowfall over total precip. ratio	Decrease (-1.9% per decade)	1909–2008	3 obs. stations	Irannezhad et al. (2017)
		Caucasus and Middle East			
Greater Caucasus	Total precip.	-9 mm yr ⁻¹	1936–2012	90 obs. stations	Elizbarashvili et al. (2017)
Adjara mountains	u	6 mm yr ⁻¹	"	Subset of 90 obs. stations	
		Southern Andes			
Chile and Argentina	Annual precip.	General decrease (up to \sim -6 mm yr ⁻¹) with positive values in the southwest corner of the region	1979–2010	Gridded dataset from obs. stations, and reanalyses	Rusticucci et al. (2014)
Subtropical Andes, 30°S–37°S	Winter precip.	<-0.1 mm d ⁻¹ per decade, insignificant	1980–2005	Gridded dataset from obs. stations, and reanalyses	Zazulie et al. (2017)
11		-0.1 mm d ⁻¹ per decade	1980–2005	u	"
"	Summer precip.	-0.3 mm d ⁻¹ per decade, insignificant	1980–2005	u	
11	u	-0.2 mm d ⁻¹ per decade, insignificant	1980–2005	u	
		Low Latitudes (Andes and Afric			
Claro River (Colombian Andean Central mountain range)	Annual precip.	Insignificant	1981–2003	7 obs. stations	Ruiz et al. (2008)
47 mountain protected areas in five national parks in the tropical belt (30°S–30°N, including Central America, South America, Africa, South Asia, Southeast Asia)	Annual precip.	Insignificant, except decrease in Africa 1982–2006 and reanalyses		Krishnaswamy et al. (2014)	
Kenya	Precip.	Decrease (March to May, long rains) and increase (October to December, short rains).	1979–2011	50 obs. stations	Schmocker et al. (2016)
		North Asia			
Northern Altai	Annual precip.	-0.14 mm yr ⁻¹	1966–2015	9 obs. stations	Zhang et al. (2018)
Southern Altai	"	0.89 mm yr ⁻¹	"	8 obs. stations	"

Chapter 2 Supplementary Material

Location	Precipitation (precip.) indicator	Change	Time period	Dataset	Reference
		High Mountain Asia			
Hindu-Kush Karakoram	Precip. (December to April)	Insignificant	1950–2010	Gridded dataset from obs. station, and reanalyses	Palazzi et al. (2013)
Himalaya	Precip. (June to September)	-0.021 to -0.01 mm d ⁻¹ yr ⁻¹	1950–2009	u	u
Karakoram	Winter precip.	Significant increasing trend	1961–1999	17 obs. stations	Archer and Fowler (2004)
Middle and East Tian Shan	Snowfall fraction	Decrease, from 27 to 25%	1960–2014	Gridded dataset based on obs. stations	Chen et al. (2016)
West Tian Shan	Winter precip.	23%	1960–2014	in situ	u
Monsoon-dominated regions, easternmost Himalaya	Annual precip. trend	-13.7 ± 2.4 mm yr ⁻¹	1994–2012	7 obs. stations	Salerno et al. (2015)
и	Precip. during monsoon months	-9.3 mm yr ⁻¹	u	u	u
Northwestern Indian Himalaya	Snowfall fraction	Significant decrease (3 out of 7 stations)	1991–2005	10 obs. stations	Bhutiyani et al. (2010)
н	Winter precip. trend	Increasing but statistically insignificant	1866–2006	Subset of 10 obs. stations	u
н	Monsoon and annual precip. trend	Significant decreasing	и	u	и
Tibetan Plateau	Annual precip.	1.43 mm yr ⁻¹ , large spatial variations	1960–2014	71 obs. stations	Deng et al. (2017)
Hengduan Mountain region	Annual precip.	Insignificant decrease	1961–2011	90 obs. stations	Xu et al. (2018)
	Spring precip.	Insignificant increase	u	u	u
Hindu Kush Himalaya	95th percentile of precip.	Insignificant changes	1960–2000	Gridded datasets using obs. stations, 5 specific obs. stations	Panday et al. (2015)
		New Zealand and Australia			
New Zealand	Annual precip.	Absence of marked trends, seasonally and geographically variable	1900–2010	294 obs. stations	Caloiero (2014); Caloiero (2015)
Southeast Australia	Annual precip.	Reduction since 1970s	1901–2012	Obs. stations	Grose et al. (2015)
		Japan			
Whole region	Intense precip.	30% per century	1898–2003	Obs. stations (61 at daily time resolution)	Fujibe et al. (2005)
u	Weak precip.	-20% per century	"	u	"

Table SM2.5 | Overview of recent studies providing evidence for future changes in precipitation, per high mountain region (as defined in Figure 2.1). Obs. stations refer to observation stations. GCM is General Circulation Model. RCM is Regional Climate Model. SRES is Special Report on Emissions Scenarios. RCP is Representative Concentration Pathways. CMIP3 is Coupled Model Intercomparison Project Phase 3. CMIP5 is Coupled Model Intercomparison Project Phase 5. Elevations are in meters (m) above sea level.

Location	Precipitation (precip.) indicator	Change	Time period	Scenario	Method	Reference			
	Alaska								
South and Southeast Alaska	Snow day fraction	-15 to 7%	1970–1999 to 2040–2069	RCP4.5	Statistically downscaled GCMs	Littell et al. (2018)			
u	II	-25 to 4%	II	RCP8.5	"	"			
u	u	-22 to 4%	1970–1999 to 2070–2099	RCP4.5	u	"			
u	u	-41 to -6%	"	RCP8.5	"	"			
		Western Ca	anada and USA						
Western USA, 'Warm mountain sites'	Snowfall amount	-70 to -35%	1950–2005 to 2040–2069	RCP8.5	Statistically downscaled GCMs	Lute et al. (2015)			
Western USA, 'Cold mountain sites'	и	-20 to -5%		II	u	u			

Location	Precipitation (precip.) indicator	Change	Time period	Scenario	Method	Reference
Western USA, 'Warm mountain sites'	90% percentile of snowfall events	-30%	"	н	"	
Western USA, 'Cold mountain sites'	90% percentile of snowfall events	5%	и		"	"
Southern California	Winter snowfall; 1,500–2,000 m	-40%	1981-2000 to 2041-2060	RCP2.6	Downscaled GCMs	Sun et al. (2016)
"	"; 2,000–2,500 m	-22%	u	"	u	"
u	"; >2,500 m	-8%	и	и		u
u	Winter snowfall; 1,500–2,000 m	-52%	u	RCP8.5	"	"
"	"; 2,000–2,500 m	-28%	u	u	u	u
"	"; >2,500 m	-11%	"	"	u	"
"	Winter snowfall; 1,500–2,000 m	-43%	1981–2000 to 2081–2100	RCP2.6	"	и
"	"; 2,000–2,500 m	-26%	u	"	"	"
"	"; >2,500 m	-13%	<i>u</i>	"	"	"
u	Winter snowfall; 1,500–2,000 m	-78%	и	RCP8.5	н	<i>u</i>
"	"; 2000–2500 m	-48%	и	ш	u	
	"; >2500 m	-18%	и	н	ш	и
Western Canada	Winter precip.	11%	1979–1994 to 2045–2060	RCP8.5	Downscaled GCMs	Erler et al. (2017)
"	<i>"</i>	17%	1979–1994 to 2085–2100	"	"	"
			celand			
Whole area	Annual precip.	Insignificant	1981–2000 to 2081–2100	RCP4.5, RCP8.5	Downscaled GCMs using RCMs	Gosseling (2017)
		Cent	ral Europe	I		<u> </u>
Greater Alpine Region	Winter precip.	12.3%	1971–2000 to 2071–2100	RCP4.5	5 EUROCORDEX GCM/RCM pairs	Smiatek et al. (2016)
u	Spring precip.	5.7%	u	и		
"	Summer precip.	-1.7%	<i>и</i>			"
"	Autumn precip.	2.3%	и	н	и	и
"	Number of days with precip. >15 mm	10.9%				ш
Alpine Region	Winter (December to February) precip.	8%	1981–2010 to 2020–2049	RCP4.5	EUROCORDEX GCM/RCM pairs (0.11°)	Rajczak and Schär (2017)
u	и	6%	"	RCP8.5	"	"
u	"	12%	1981–2010 to 2070–2100	RCP4.5	u	"
u	п	17%	и	RCP8.5	и	и
Switzerland	Annual precip.	0.6 %	1981–2010 to 2070–2099	RCP2.6	EUROCORDEX GCM/RCM pairs	CH2018 (2018)
u	Winter (December to February) precip.	8.8%	11	"	н	u
u	Annual precip.	3%	u	RCP4.5	н	"
и	Winter (December to February) precip.	12.9%	u	и	Ш	и
u –	Annual precip.	3.3%	и	RCP8.5	u	"
и	Winter (December to February) precip.	23.7%	11	"	н	u
Austria	Annual precip.	7.1%	1971–2000 to 2071–2100	RCP4.5	EUROCORDEX GCM/RCM pairs	Chimani et al. (2016)
и	Winter (December to February) precip.	10.6%	u	"	"	u
u	Annual precip.	8.7%	n	RCP8.5	u	и
п	Winter (December to February) precip.	22.7%	n	u	н	
Alps	Annual solid precip.	-25%	1981–2010 to 2070–2099	RCP4.5	EUROCORDEX GCM/RCM pairs (0.11°)	Frei et al. (2018)

Chapter 2 Supplementary Material

Location	Precipitation (precip.) indicator	Change	Time period	Scenario	Method	Reference
II	u	-45%	"	RCP8.5	u	"
Pyrenees, <1,500 m	Frequency and intensity of heavy snowfall events	Decrease	1960-1990 to 2070-2100	SRES A2	Dynamically downscaled GCM	López-Moreno et al. (2011)
Pyrenees, >2,000 m	"	Insignificant except at high altitude (30% increase)	"	u	и	"
Pyrenees, >2,000 m	u	20–30%	"	SRES B2	u	"
Carpathian mountains	Summer precip.	Decrease by up to -20 mm per month	1971-2000 to 2071-2100	RCP8.5	Multiple GCM/RCM pairs	Alberton et al. (2017)
		Sca	ndinavia			
Scandinavian mountains (high elevation)	Annual snowfall	20%	1961–1990 to 2071–2100	SRES A1B	Multiple GCM/RCM pairs	Räisänen and Eklund (2012)
		Caucasus a	nd Middle East			
Iran mountain areas	Annual precip.	Precip. increase	1961-1990 to 2071-2000	SRES A2	Downscaled GCM	Babaeian et al. (2015)
Ш	и	n	и	SRES B2	u	
Alborz mountains	Annual precip., winter precip.	No significant change detected	1981-2000 to 2081-2100	RCP4.5, RCP8.5	3 CMIP5 GCMs	Zarenistanak (2018)
		Low Lati	tudes (Andes)			
Subtropical Andes, 30°S–37°S	Winter and summer precip.	No clear trend	2006–2100	RCP4.5, RCP8.5	GCMs	Zazulie et al. (2018)
Tropical Andes	Annual precip.	Geographically variable. Precip. increase up to ~2,000 m. No significant changes on eastern slope >2,000 m, decrease in the western slope >4,000 m	1961–1990 to 2071–2100	SRES A2, B2	Downscaled GCM	Urrutia and Vuille (2009)
Central Andes	Annual precip.	-19 to -33%	1961–2010 to 2071–2100	RCP8.5	Multiple GCMs	Neukom et al. (2015)
	1	High M	ountain Asia			
Himalaya	Summer precip.	0.008–0.014 mm d ⁻¹ yr ⁻¹	2006–2100	RCP8.5	GCM multi-member ensemble	Palazzi et al. (2013)
Eastern Himalaya	Annual precip.	15–27% (most in summer)	1970–1999 to 2070–2099	SRES B1, A1B, A2 and RCP8.5	CMIP3 and CMIP5 GCMs	Panday et al. (2015)
Western Himalaya-Karakoram	Annual precip.	1–5% (due to increase in winter precip.)	"	u	и	"
Hindu Kush Himalaya	Daily 99% precip. quantile	50% on average	1981–2010 to 2071–2100	RCP8.5	Downscaled GCMs	Wijngaard et al. (2017)
Northwest Himalaya and Karakoram	Precip., June to September	-0.1%	1976–2005 to 2036–2065	RCP4.5	CORDEX GCM/ RCM pairs	Sanjay et al. (2017)
и	Precip., December to April	7%	"	u	u	u
u	Precip., June to September	3.5%	1976–2005 to 2066–2095	u	u	u
н	Precip., December to April	14.1%	"	u	u	n
н	Precip., June to September	3.7%	1976–2005 to 2036–2065	RCP8.5	u	n
н	Precip., December to April	12.8%	"	n	u	n
н	Precip., June to September	3.9%	1976–2005 to 2066–2095	u	u	u
u	Precip., December to April	12.9%		u	u	u
Central Himalaya	Precip., June to September	4.4%	1976–2005 to 2036–2065	RCP4.5	u	u
Ш	Precip., December to April	-0.7%	II	u	u	u
"	Precip., June to September	10.5%	1976-2005 to 2066-2095	"	"	"

Location	Precipitation (precip.) indicator	Change	Time period	Scenario	Method	Reference
"	Precip., December to April	1.5%	u	u	"	u
и	Precip., June to September	9.1%	1976-2005 to 2036-2065	RCP8.5	u	и
"	Precip., December to April	-1.3%	Ш	"	u	и
и	Precip., June to September	19.1%	1976-2005 to 2066-2095	"	u	и
и	Precip., December to April	-8.8%	u	u	u	и
Southeast Himalaya and Tibetan Plateau	Precip., June to September	6.8%	1976–2005 to 2036–2065	RCP4.5	u	
н	Precip., December to April	3.1%	и	u	u	н
и	Precip., June to September	10.4%	1976–2005 to 2066–2095	"	u	н
"	Precip., December to April	3.7%	u	"	u	"
и	Precip., June to September	10.2%	1976–2005 to 2036–2065	RCP8.5	"	u
и	Precip., December to April	0.9%	и	ш	u	u
н	Precip., June to September	22.6%	1976–2005 to 2066–2095	Ш	u	н
u	Precip., December to April	0.6%	"	"	u	"
Tibetan Plateau	Annual precip.	3.2%	1961–2005 to 2006–2035	RCP2.6, RCP8.5	CMIP5 GCMs	Su et al. (2013)
"	"	6%	1961–2005 to 2036–2099	RCP2.6	u	н
н	u	12%	u	RCP8.5	u	н
Eastern Tibetan Plateau	Annual snowfall	-15%	1986–2005 to 2080–2099	RCP4.5	RCM driven by several GCMs	Zhou et al. (2018)
Kashmir Himalaya	Annual precip.	9%	1980–2010 to 2041–2070	RCP2.6	Downscaled GCM	Shafiq et al. (2019)
и	ш	12%	11	RCP8.5	"	н
н	ш	11%	1980–2010 to 2071–2100	RCP2.6	u	н
и	и	14%	и	RCP8.5	u	u
Northern Tian Shan	Annual precip.	5%	1976–2005 to 2070–2099	RCP8.5	CMIP5 GCMs	Yang et al. (2017)
Western Tian Shan and northern Kunlun Mountains	Solid precip.	-26.5%		n	II	u
		AL	ıstralia	I	1	1
Southeast Australia	Annual precip.	-5% (high variability)	1950–2005 to 2020–2039	RCP2.6	Downscaled GCMs	Grose et al. (2015)
u	u	-5% (high variability)	u	RCP8.5	"	u
u	u	-5% (high variability)	1950–2005 to 2080–2099	RCP2.6	u	и
и	"	-10% (high variability)	u	RCP8.5	u	
Tokai region	99th percentile of daily precip.	10–50% in winter (December to February)	1984–2004 to 2080–2100	RCP8.5	Single dynamically downscaled GCM (MRI AGCM)	Murata et al. (2016)
Central Japan	Winter snowfall (November to March)	Decrease in most parts of Japan (up to 300 mm), increase in the central part of northern Japan	1950–2011 to 2080–2099	4°C warming in 2080–2099 with respect to 1861–1880, under RCP8.5	MRI-AGCM3.2 (dynamically downscaled)	Kawase et al. (2016)
u	Heavy snowfall (10 years return period)	Increase (10 mm) in the inland areas of central and in northern Japan		u		u

SM2.4 Details of Studies on Snow Cover Observations and Projections

Table SM2.6 | Synthesis of recent studies reporting past changes in snow cover in high mountain areas, per high mountain region (as defined in Figure 2.1). SWE is snow water equivalent. Obs. stations refer to observation stations. Elevations are in meters (m) above sea level.

Whole area •Duration SWEDecrease20th century 10th centuryRemote sensing 10th centuryBeyon et al. (2017) ••SwitIncrease (10th century)1840-presentInfinite vidence from glociar accumulationWester 12001 (10th century)Wester 12001 (10th century)Wester 12001 (10th century)Mode et al. (2018) (10th century)•Springims SWEDecrease for 22% station (10th century)1955-presentin situ observationsMode et al. (2018) (10th century)•April 1SWEDecrease for 22% station (10th century)1952-2016of situ observationsZeng et al. (2018) (10th century)CanadoDecrease for 22% station (10th 135% of pixels1952-2017of situ observationsZeng et al. (2018) (10th century)CanadoDecrease for 22% station (10th 135% of pixels1952-2016of situ observationsZeng et al. (2018) (10th century)WoleDecrease for 22% station (10th 135% of pixelsDecrease a line 19002 (10th 135% of pixelsMode et al. (2017) (10th century)Selve et al. (2017) (10th 141)CanadoDecrease a line 19002 (10th 12th 141)Decrease a line 19002 (10th 12th 141)Mode et al. (2017) (10th 141)CanadoDecrease a line 19002 (10th 12th 141)Mode et al. (2018) (10th 141)Mode et al. (2017) (10th 141)CanadoDecrease a line 19002 (10th 14th 14th 14th 14th 14th 14th 14th 14	Location	Snow variable	Change	Time period	Dataset	Reference																																																																																																		
SWE Decrease 20th century * * * Mountainous Alaska Soow at high elevation increase 1840-present midlect enidence from glicit accumulation glicit accumulation Worksi et al. (2017) Western USA Springtime SWE Decrease for 22% stations 1955-present * Mate et al. (2018) Western USA Arriel TSWE -15 to :05% 1955-present * * Western USA Arriel TSWE Decrease by 41% on swrage to present * * * Western USA Arriel TSWE Decrease 0-10 days per decode 1950-2012 In stru observators Delever et al. (2017) Worker avo Duration Decrease 1-10 days per decode 1950-2012 In stru observators Delever et al. (2016) Worke avo Duration Secrease 1-10 days per decode 1950-2012 In stru observators Beniston et al. (2017) European Algn SWE Decrease in tata 1900 Md2 20th century- present In situ, cenanitypes Beniston et al. (2016) Swiss Algn Ossis date 12 days later on average 1970-2015 11	Whole area	Duration	Alaska	20th contuny	Pomoto concina	Prown at al. (2017)																																																																																																		
Munitations Alaska Strow at high elevation Increase Itself Indianct evidence from gibber accumulation Winski et al. (2017) Western USA Springtime SVE Decrease for 32% stations 1955 present in situ observations More et al. (2018) * April 1 SVE 15 to 30% 1955 present in situ observations Zeng et al. (2018) Canada Decrease 2 +12 days per decade 1982-2016 Gridded preduct based on in situ observations Zeng et al. (2018) Canada Decrease -10 days per decade 1980-2010 Remote sensing Remote sensing Whole area Daraton Decrease at 100 elevation Mol 20th century- step decrease in the 1980s Mol 20th century- generat In situ, reanalyses Remote sensing Remote sensing<	"				-																																																																																																			
Weitern USASpringtime SVEDecrease for \$2% stations1955-presentA nak underwationsMothe et al. (2018)"April 1 SWE-15 to -30%1955-present	Mountainous Alaska		Increase			Winski et al. (2017)																																																																																																		
* April 1 SWE 115 to 30% 1955-present * * Westem USA Annual maximum SWE Docrase by 41% on average book of patients 1982-2016 Griddled product based on ab observations Zeng et al. (2018) Canada Duration Decrease 2-12 days per decade 1980-2012 <i>Ins situ</i> observations Dedeer et al. (2017) Canada Duration Decrease 0-10 days per decade 1980-2010 Renote sensing Brown et al. (2017) Canada Duration Decrease 1-10 days per decade 1980-2010 Renote sensing Berown et al. (2017) Canada Duration Decrease a low elevation, stop decrease in late 1990s, present Md 2010 century- present So days renotes sensing Berison et al. (2017) European Alps SVE Decrease a low elevation, stop decrease in late 1990s, present 1985-2011 Optical renote sensing Hister et al. (2017) European Alps Ourset date 12 days later on average at 200-300 m 1902-2015 11 dots. statons Keier et al. (2018) Suss Alps Onset date 12 days later on average so days set observations 1980-2009 Modelling based on in situ observations Marke et al. (2018) Cantra Alps, 2,200 m - - - - - CanternAlps, 180 Mef enset 2 weeks		1	Western Canada	and USA																																																																																																				
Applie SystemApplie System156 5-30%1595 - greatent1595 - greatentGridded product based on is it u observationsZeng et al. (2018)CanadaAmual maximum SWDecrease 2-12 days per decade1982-2016Sin stru observationsDeclease 4.0018CanadaDurationDecrease 2-12 days per decade1980-2010Remote sensingBeron et al. (2017)Whole areaDurationDecrease 100 days per decade1980-2010Remote sensingBeron et al. (2017)European AlpsSine dapthDecrease at low elevation, step decrease 1 late 1980s.Mid 20th century- persentIn situ, reanalysesBeriston et al. (2017)European AlpsSineOperrase at low elevation, step decrease 1 late 1980s.Mid 20th century- persentIn situ, reanalysesBeriston et al. (2017)European AlpsOurst date12 days later on average1970-201511 dots. stationsKein et al. (2014)Sinis AlpsOnset date26 days earlier on average1970-201511 dots. stationsKein et al. (2014)Sinis AlpsOnset date26 days earlier on average1970-201511 dots. stationsKein et al. (2014)Sinis AlpsSiniw cover days-13 to 18 dapending on the region1980-2019Midelling based modelling based modelling basedSiniw Cover days-13 to 4 dapending on the region1980-2015In situ observationsMide et al. (2016)Siniw Cover days13 to -18 dapending on the region1980-2015In situ observationsMide et al. (2016) </td <td>Western USA</td> <td>Springtime SWE</td> <td>Decrease for 92% stations</td> <td>1955–present</td> <td>In situ observations</td> <td>Mote et al. (2018)</td>	Western USA	Springtime SWE	Decrease for 92% stations	1955–present	In situ observations	Mote et al. (2018)																																																																																																		
Wettern DSAAnnual maximum SMfor 13% of pixels1982–2016on in situ observationsZeng eft eft. (2018)CanadaDurationDecrease 2–10 days per decade1980–2010Remote sensingBetter et al (2017)Central LiverUnationDecrease a 100 elevation, step decrease in late 1990sMid 20th century- presentIn situ observationsRemote sensingBensiton et al (2017)Central LiverUnationDecrease a 100 elevation, step decrease in late 1990sMid 20th century- presentIn situ observationsMary et al (2017)European AlpsSWEDecrease a 100 elevation, art 700–900 m in the southesst and southwest Alps1985-2011Optical remote sensingHister et al (2014)Swiss AlpsOnset date12 days later on average1970-201511 dbs. stationsKeller et al (2017)Swiss AlpsOnset date12 days later on average1970-201511 dbs. stationsMarke et al (2017)Curstan Alps, SuponSow cover days13 to 18 depending on the region1980-10719 to 1980-10719 to 1980-1079 to 1980-1079 to 1980-2009In situ observationsMarke et al (2017)Austina Alps, SuponPresent20 decrease in majority of stations1980-2015In situ observationsMarke et al (2017)Curstan LiverQuerees elevation13 to 18 depending on the region1980-2019In situ observationsMarke et al (2017)Curstan Alps, SuponPresent13 to 18 depending on the region1980-2019	и	April 1 SWE	-15 to -30%	1955–present	u	u																																																																																																		
Internation Duration Decrease 0-10 days per decade 1980-2010 Remote sensing Brown et al. (2017 European Alps Snow depth Decrease at low elevation, step decrease in late 1980s Mid 20th century— step decrease in late 1980s In situ, reanalyses Beniston et al. (20 rease) European Alps SVE Decrease at low elevation, and base 1980s Mid 20th century— step decrease in late 1980s Insignificant trend, decrease at low elevation, and southwest Alps Marty et al. (2017) Stoks stations Marty et al. (2017) European Alps Duration 1700-900 mit the southeast and southwest Alps 1985-2011 Optical remote sensing Hisiker et al. (2016) Swiss Alps Onset date 12 days later on average 1970-2015 11 dots. stations Klein et al. (2018) Sustain Alps, Souto on Snow cover days -13 to -18 depending on the region 1950-1973 to 1800 Modelling based on in situ observations Marke et al. (2018) Austrian Alps, Sustom Duration -200 (central Austria) * * * * 2.000-2.300 m Austrian Alps, Sustom Duration -24 days 1958-2009 Local rennalysis Durand et al.	Western USA	Annual maximum SWE		1982–2016	· ·	Zeng et al. (2018)																																																																																																		
Which areaDurationDecrease 0-10 days per decade1980-2010Remote sensingBrown et al (2017 Remote sensing)European Alps and PyrenesSnow depthDecrease at low elevation, step decrease in late 1980s at 000 entities of the earth of the e	Canada	Duration	Decrease 2–12 days per decade	1950–2012	In situ observations	DeBeer et al. (2016)																																																																																																		
Central Europe Central Europe European Alps Snow depth Decrease at low elevation, step decrease in late 1980s Mid 20th century- present In situ, reanalyses Reid et al. (2016) European Alps SWE Decrease at low elevation, step decrease in late 1980s Mid 20th century- present S4 obs. stations Marty et al. (2017) European Alps Duration Image: Im		1	Iceland	1																																																																																																				
European Alps and Pyrenees Snow depth Decrease in late 1980s Mid 20th century- present In situ, reanalyses Beniston et al (20 Red et al, (2016) European Alps SWE Decrease in late 1980s Mid 20th century- present 14 slos, stations Marty et al (2017) European Alps Duration Insignificant trend, decrease and southwest Alps 1985-2011 Optical remote sensing Missler et al. (2016) Swiss Alps Onset date 12 days later on average 1970-2015 11 obs. stations Klein et al. (2016) Souto and Alps, Souto and Souto and Souto and alps, Souto and Souto and Souto and Sout	Whole area	Duration	Decrease 0–10 days per decade	1980–2010	Remote sensing	Brown et al. (2017)																																																																																																		
and PyreneesNow depthstep decrease in late 1980spresent <i>In STU, Feanayees</i> Reid et al. (2016)European AlpsSWEDecrease at low elevation, at 200 00 m in the southeast at 200-00 m in the southeast presentMid Dut entury- presentOptical remote sensing attain Alps, and aboutt wat Alps and southwat Alps, and southwat Alps, attain A		1	Central Eur	ope																																																																																																				
European AlpsSWEstep decrease in late 1380spresent's 96 dots stationsMarty et al. (201 AEuropean AlpsDurationInsignificant trend, decrease and southwest Alps1995-2011Optical remote sensingHisler et al. (201 ASwiss AlpsOnset date12 days later on average1970-201511 dots. stationsKlein et al. (201 A"Melt out date26 days earlier on average''''Austrian Alps, 500-2,000 mSnow cover days-13 to 18 depending on the region 1980-20091900-2009Modelling based on <i>in stru</i> observationsMarke et al. (201 BAustrian Alps, 52,500 m'-12 to 14 depending on the region 2000-2,500 m'''Austrian Alps, 52,500 m'-20 (central Austria)'''Austrian Alps, 52,500 mDuration24 days1958-2009Local reanalysisDurate et al. (200 F"French AlpsMet on set2 (central Austria)''''"Rench AlpsMet on set2 (central Austria)1975-2002In <i>situ</i> observationsPiliber et al. (201 S)"Prenees, <1,000 m		Snow depth		-	In situ, reanalyses	Beniston et al. (2018) Reid et al. (2016)																																																																																																		
European AlpsDurationat 700-900 m in the southeast and southwest Alps1985-2011Optical remote sensingHüsler et al (2014)Swiss AlpsOnset date12 days later on average1970-201511 obs. stationsKlein et al (2014)*Meth-out date26 days earlier on average1970-201511 obs. stationsKlein et al (2014)*Meth-out date26 days earlier on average1950-1979 to 1980-2009Modelling based on <i>in stu</i> observationsMarke et al (2018)Substian Alps, 	European Alps	SWE		-	54 obs. stations	Marty et al. (2017b)																																																																																																		
* Met out date 26 days earlier on average * Met out date 26 days earlier on average * Method * Modelling based on in situ observations Marke et al. (2018) Austrian Alps, S00-2000 m Snow cover days -13 to -18 depending on the region (1980-2009) 1950-1979 to (1980-2009) Modelling based on in situ observations Marke et al. (2018) Austrian Alps, S00-2,500 m * -20 (central Austria) * * * Austrian Alps, 5,2500 m * -20 (central Austria) * * * * Austrian Alps, 5,2500 m * -20 (central Austria) * * * * * Austrian Alps, 5,2500 m * -20 (central Austria) * * * * * * * Austrian Alps, 5,2500 m * -20 (central Austria) *	European Alps	Duration	at 700–900 m in the southeast	1985–2011	Optical remote sensing	Hüsler et al. (2014)																																																																																																		
Inder out dateZe days earlier on averageInsert on averageInsert on averageAustrian Alps, 500-2,000Snow cover days-13 to -18 depending on the region1950-1979 to 1980-2009Modelling based on <i>in situ</i> observationsMarke et al. (2018) on <i>situ</i> observationsAustrian Alps, 2,000-2,500 m*-12 to -14 depending on the region***Austrian Alps, >2,500 m*-00 (central Austria)****Prench Alps, 1,800 mDuration-24 days1958-2009Local reanalysisDuran et al. (2007) Beniston et al. (2007)Prench Alps, 1,800 mMelt onset2 weeks earlier >3,000 m1980-2015In <i>situ</i> observations and modelling**Melt intensity15% stronger >3,000 m****Pyrenees, <1,000 m	Swiss Alps	Onset date	12 days later on average	1970–2015	11 obs. stations	Klein et al. (2016)																																																																																																		
500-2,000 m Snow cover days -13 to -18 depending on the region 1980-2009 on in situ observations Marke et al. (2018, 2009, 2,000 m) Austrian Alps, 2,200 m * -12 to -14 depending on the region * * * * Austrian Alps, 2,2500 m * -20 (central Austria) * * * * Austrian Alps, 2,2500 m Duration -24 days 1958-2009 Local reanalysis Duran et al. (2009, 2000,	II	Melt-out date	26 days earlier on average	u	и	"																																																																																																		
2.000-2.500 m	• •	Snow cover days	-13 to -18 depending on the region		5	Marke et al. (2018)																																																																																																		
Austrial Alps, 2, 200 mlTorusPure of the function of the fun		и	-12 to -14 depending on the region	u	u	u																																																																																																		
French AlpsMelt onset2 weeks earlier >3,000 m1980–2015In situ observationsThibert et al. (2013)"Melt intensity15% stronger >3,000 m"In situ observations and modelling"Pyrenees, <1,000 m	Austrian Alps, >2,500 m	"	-20 (central Austria)	"	"	"	"Melt intensity15% stronger >3,000 m"In situ observations and modelling.Pyrenees, <1,000 m	French Alps, 1,800 m	Duration	-24 days	1958–2009	Local reanalysis	Durand et al. (2009)	"""Melt intensity15% stronger >3,000 m"""modelling"""Pyrenees, <1,000 m	French Alps	Melt onset	2 weeks earlier >3,000 m	1980–2015	In situ observations	Thibert et al. (2013)	Pyrenees, <1,000 m Snow cover duration Decrease in majority of stations 1975–2002 In situ observations Beniston et al. (2019) Pyrenees, >1,000 m " Decrease in majority of stations " " " Pyrenees, >1,000 m " Decrease in majority of stations " " " Pyrenees, >1,000 m " Decrease in majority of stations " " " Pyrenees, >1,000 m Number of days with snow depth above 5, 30 and 50 cm Increase until ~1980 then decrease (not statistically significant, high variability) 1935–2015 In situ observations Albalat et al. (2018) Norway Snow depth and SWE Decrease at low elevation 20th century In situ observations Skaugen et al. (2017) " " Increase at higher elevation 20th century In situ observations Skaugen et al. (2017) " " Increase at higher elevation 20th century In situ observations Skaugen et al. (2017) Southern Finland Snow cover duration -2.4 days per decade " " " Central Caucasus, 2,300 m Amount of winter snow <td>u</td> <td>Melt intensity</td> <td>15% stronger >3,000 m</td> <td>u</td> <td></td> <td>и</td>	u	Melt intensity	15% stronger >3,000 m	u		и	Pyrenees, >1,000 m Number of days with snow depth above 5, 30 and 50 cm Increase until ~1980 then decrease (not statistically significant, high variability) 1935–2015 In situ observations Albalat et al. (2018) Norway Snow depth and SWE Decrease at low elevation 20th century In situ observations Skaugen et al. (2017) Norway Snow depth and SWE Decrease at low elevation 20th century In situ observations Skaugen et al. (2017) Northern Finland Snow cover duration -2.4 days per decade 1961–2014 Gridded dataset based on <i>in situ</i> (2019) Luomaranta et al. (2019) Southern Finland " -5.7 days per decade " " " " Central Caucasus, 2,300 m Amount of winter snow Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014) Northwestern Iran Snow cover duration Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014)	Pyrenees, <1,000 m	Snow cover duration	Decrease in majority of stations	1975–2002	In situ observations	Pons et al. (2010); Beniston et al. (2018	Pyrenees, Andorra, 1,645 msnow depth above 5, 30 and 50 cmdecrease (not statistically significant, high variability)1935–2015In situ observationsAlbalat et al. (2018)ScandinaviaNorwaySnow depth and SWEDecrease at low elevation20th centuryIn situ observationsSkaugen et al. (2017) Derrase at low elevation""Increase at higher elevation20th century""Northern FinlandSnow cover duration-2.4 days per decade1961–2014Gridded dataset based on in situ observationsLuomaranta et al. (2019)Southern Finland"-5.7 days per decade"""Central Caucasus, 2,300 mAmount of winter snowDeclining since late 1980s1968–2013In situ observationsVolodicheva et al. (2014)Northwestern IranSnow cover durationDeclining since late 1980s1981–201128 in situ observationsArkian et al. (2014)	Pyrenees, >1,000 m	ш	Decrease in majority of stations		и	ш	NorwaySnow depth and SWEDecrease at low elevation20th centuryIn situ observationsSkaugen et al. (2013) Beniston et al. (2014) Beniston et al. (2014)""Increase at higher elevation20th century""Northern FinlandSnow cover duration-2.4 days per decade1961–2014Gridded dataset based on <i>in situ</i> observationsLuomaranta et al. (2019)Southern Finland"-5.7 days per decade"""Caucasus and Midle EastCentral Caucasus, 2,300 mAmount of winter snowDeclining since late 1980s1968–2013In situ observationsVolodicheva et al. (2014)Northwestern IranSnow cover durationDecrease at most stations1981–201128 in situ observationsArkian et al. (2014)	Pyrenees, Andorra, 1,645 m	snow depth above 5,	decrease (not statistically	1935–2015	In situ observations	Albalat et al. (2018)	NorwaySnow depth and SWEDecrease at low elevation20th centuryIn situ observationsDyrrdal et al. (2013) Beniston et al. (2017)""Increase at higher elevation20th century"""Northern FinlandSnow cover duration-2.4 days per decade1961–2014Gridded dataset based on in situ observationsLuomaranta et al. (2019)Southern Finland"-5.7 days per decade""""Central Caucasus, 2,300 mAmount of winter snowDeclining since late 1980s1968–2013In situ observationsVolodicheva et al. (2014)Northwestern IranSnow cover durationDecrease at most stations1981–201128 in situ observationsArkian et al. (2014)			Scandinav				Northern Finland Snow cover duration -2.4 days per decade 1961–2014 Gridded dataset based on <i>in situ</i> (2019) Southern Finland " -5.7 days per decade " " " Southern Finland " -5.7 days per decade " " " Caucasus and Midle East Central Caucasus, 2,300 m Amount of winter snow Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014) Northwestern Iran Snow cover duration Decrease at most stations 1981–2011 28 in situ observations Arkian et al (2014)	Norway	Snow depth and SWE	Decrease at low elevation	20th century	In situ observations	Skaugen et al. (2012 Dyrrdal et al. (2013); Beniston et al. (2018	Northern Finland Snow cover duration -2.4 days per decade 1961–2014 observations (2019) Southern Finland " -5.7 days per decade " " " " Caucasus and Middle East Central Caucasus, 2,300 m Amount of winter snow Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014) Northwestern Iran Snow cover duration Decrease at most stations 1981–2011 28 in situ observations Arkian et al (2014)	и	"	Increase at higher elevation	20th century	и		Southern Finland Processes Central Caucasus, 2,300 m Amount of winter snow Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014) Northwestern Iran Snow cover duration Decrease at most stations 1981–2011 28 in situ observations Arkian et al. (2014)	Northern Finland	Snow cover duration	-2.4 days per decade	1961–2014			Central Caucasus, 2,300 m Amount of winter snow Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014) Northwestern Iran Snow cover duration Decrease at most stations 1981–2011 28 in situ observations Arkian et al (2014)	Southern Finland	"	-5.7 days per decade		"	u	Central Caucasus, 2,300 m winter snow Declining since late 1980s 1968–2013 In situ observations (2014) Northwestern Iran Snow cover duration Decrease at most stations 1981–2011 28 in situ observations Arkian et al (2014)			Caucasus and Mi	ddle East			Northwestern Iran Decrease at most stations 1981–2011 28 in situ observations Arkian et al. (2014	Central Caucasus, 2,300 m		Declining since late 1980s	1968–2013	In situ observations			Northwestern Iran		Decrease at most stations	1981–2011	28 <i>in situ</i> observations	Arkian et al. (2014)
Austrian Alps, >2,500 m	"	-20 (central Austria)	"	"	"																																																																																																			
"Melt intensity15% stronger >3,000 m"In situ observations and modelling.Pyrenees, <1,000 m	French Alps, 1,800 m	Duration	-24 days	1958–2009	Local reanalysis	Durand et al. (2009)																																																																																																		
"""Melt intensity15% stronger >3,000 m"""modelling"""Pyrenees, <1,000 m	French Alps	Melt onset	2 weeks earlier >3,000 m	1980–2015	In situ observations	Thibert et al. (2013)																																																																																																		
Pyrenees, <1,000 m Snow cover duration Decrease in majority of stations 1975–2002 In situ observations Beniston et al. (2019) Pyrenees, >1,000 m " Decrease in majority of stations " " " Pyrenees, >1,000 m " Decrease in majority of stations " " " Pyrenees, >1,000 m " Decrease in majority of stations " " " Pyrenees, >1,000 m Number of days with snow depth above 5, 30 and 50 cm Increase until ~1980 then decrease (not statistically significant, high variability) 1935–2015 In situ observations Albalat et al. (2018) Norway Snow depth and SWE Decrease at low elevation 20th century In situ observations Skaugen et al. (2017) " " Increase at higher elevation 20th century In situ observations Skaugen et al. (2017) " " Increase at higher elevation 20th century In situ observations Skaugen et al. (2017) Southern Finland Snow cover duration -2.4 days per decade " " " Central Caucasus, 2,300 m Amount of winter snow <td>u</td> <td>Melt intensity</td> <td>15% stronger >3,000 m</td> <td>u</td> <td></td> <td>и</td>	u	Melt intensity	15% stronger >3,000 m	u		и																																																																																																		
Pyrenees, >1,000 m Number of days with snow depth above 5, 30 and 50 cm Increase until ~1980 then decrease (not statistically significant, high variability) 1935–2015 In situ observations Albalat et al. (2018) Norway Snow depth and SWE Decrease at low elevation 20th century In situ observations Skaugen et al. (2017) Norway Snow depth and SWE Decrease at low elevation 20th century In situ observations Skaugen et al. (2017) Northern Finland Snow cover duration -2.4 days per decade 1961–2014 Gridded dataset based on <i>in situ</i> (2019) Luomaranta et al. (2019) Southern Finland " -5.7 days per decade " " " " Central Caucasus, 2,300 m Amount of winter snow Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014) Northwestern Iran Snow cover duration Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014)	Pyrenees, <1,000 m	Snow cover duration	Decrease in majority of stations	1975–2002	In situ observations	Pons et al. (2010); Beniston et al. (2018																																																																																																		
Pyrenees, Andorra, 1,645 msnow depth above 5, 30 and 50 cmdecrease (not statistically significant, high variability)1935–2015In situ observationsAlbalat et al. (2018)ScandinaviaNorwaySnow depth and SWEDecrease at low elevation20th centuryIn situ observationsSkaugen et al. (2017) Derrase at low elevation""Increase at higher elevation20th century""Northern FinlandSnow cover duration-2.4 days per decade1961–2014Gridded dataset based on in situ observationsLuomaranta et al. (2019)Southern Finland"-5.7 days per decade"""Central Caucasus, 2,300 mAmount of winter snowDeclining since late 1980s1968–2013In situ observationsVolodicheva et al. (2014)Northwestern IranSnow cover durationDeclining since late 1980s1981–201128 in situ observationsArkian et al. (2014)	Pyrenees, >1,000 m	ш	Decrease in majority of stations		и	ш																																																																																																		
NorwaySnow depth and SWEDecrease at low elevation20th centuryIn situ observationsSkaugen et al. (2013) Beniston et al. (2014) Beniston et al. (2014)""Increase at higher elevation20th century""Northern FinlandSnow cover duration-2.4 days per decade1961–2014Gridded dataset based on <i>in situ</i> observationsLuomaranta et al. (2019)Southern Finland"-5.7 days per decade"""Caucasus and Midle EastCentral Caucasus, 2,300 mAmount of winter snowDeclining since late 1980s1968–2013In situ observationsVolodicheva et al. (2014)Northwestern IranSnow cover durationDecrease at most stations1981–201128 in situ observationsArkian et al. (2014)	Pyrenees, Andorra, 1,645 m	snow depth above 5,	decrease (not statistically	1935–2015	In situ observations	Albalat et al. (2018)																																																																																																		
NorwaySnow depth and SWEDecrease at low elevation20th centuryIn situ observationsDyrrdal et al. (2013) Beniston et al. (2017)""Increase at higher elevation20th century"""Northern FinlandSnow cover duration-2.4 days per decade1961–2014Gridded dataset based on in situ observationsLuomaranta et al. (2019)Southern Finland"-5.7 days per decade""""Central Caucasus, 2,300 mAmount of winter snowDeclining since late 1980s1968–2013In situ observationsVolodicheva et al. (2014)Northwestern IranSnow cover durationDecrease at most stations1981–201128 in situ observationsArkian et al. (2014)			Scandinav																																																																																																					
Northern Finland Snow cover duration -2.4 days per decade 1961–2014 Gridded dataset based on <i>in situ</i> (2019) Southern Finland " -5.7 days per decade " " " Southern Finland " -5.7 days per decade " " " Caucasus and Midle East Central Caucasus, 2,300 m Amount of winter snow Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014) Northwestern Iran Snow cover duration Decrease at most stations 1981–2011 28 in situ observations Arkian et al (2014)	Norway	Snow depth and SWE	Decrease at low elevation	20th century	In situ observations	Skaugen et al. (2012 Dyrrdal et al. (2013); Beniston et al. (2018																																																																																																		
Northern Finland Snow cover duration -2.4 days per decade 1961–2014 observations (2019) Southern Finland " -5.7 days per decade " " " " Caucasus and Middle East Central Caucasus, 2,300 m Amount of winter snow Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014) Northwestern Iran Snow cover duration Decrease at most stations 1981–2011 28 in situ observations Arkian et al (2014)	и	"	Increase at higher elevation	20th century	и																																																																																																			
Southern Finland Processes Central Caucasus, 2,300 m Amount of winter snow Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014) Northwestern Iran Snow cover duration Decrease at most stations 1981–2011 28 in situ observations Arkian et al. (2014)	Northern Finland	Snow cover duration	-2.4 days per decade	1961–2014																																																																																																				
Central Caucasus, 2,300 m Amount of winter snow Declining since late 1980s 1968–2013 In situ observations Volodicheva et al. (2014) Northwestern Iran Snow cover duration Decrease at most stations 1981–2011 28 in situ observations Arkian et al (2014)	Southern Finland	"	-5.7 days per decade		"	u																																																																																																		
Central Caucasus, 2,300 m winter snow Declining since late 1980s 1968–2013 In situ observations (2014) Northwestern Iran Snow cover duration Decrease at most stations 1981–2011 28 in situ observations Arkian et al (2014)			Caucasus and Mi	ddle East																																																																																																				
Northwestern Iran Decrease at most stations 1981–2011 28 in situ observations Arkian et al. (2014	Central Caucasus, 2,300 m		Declining since late 1980s	1968–2013	In situ observations																																																																																																			
	Northwestern Iran		Decrease at most stations	1981–2011	28 <i>in situ</i> observations	Arkian et al. (2014)																																																																																																		

High Mountain Areas

Location	Snow variable	Change	Time period	Dataset	Reference			
		Southern Aı						
Whole area	Snow covered area	Insignificant decrease (high variability)	2000–2015	Optical remote sensing	Malmros et al. (2018)			
Whole area	Snow covered area	Decrease	1979–2006	Passive microwave satellite	Le Quesne et al. (2009)			
		Low Latitudes (including	g tropical Andes)					
	Compared to mid and high latitude mountain areas seasonal snow cover has limited relevance in the tropical Andes and other tropical areas, except in the immediate vicinity of glaciers. Satellite-based observations are too short to address long-term trends.							
		High Mountai	n Asia					
Himalaya and Tibetan Plateau	Snow covered area	Insignificant trend (high variability compared to record length)	2000–2015	Optical remote sensing	Tahir et al. (2015); Gurung et al. (2017); Bolch et al. (2019); Li et al. (2018)			
Himalaya	SWE	-10.60 kg m ⁻² yr ⁻¹ for areas >500 m	1987–2009	Passive microwave remote sensing	Smith and Bookhagen (2018); Wang et al. (2018)			
Southeast Australia	SWE	Reduction, especially in springtime	Mid-20th century– present	In situ observations	Fiddes et al. (2015); Di Luca et al. (2018)			
и	Duration	Reduction, especially in springtime	и	u	и			

Table SM2.7 | Synthesis of recent studies reporting 21st century projections in snow cover in high mountain areas, per high mountain region (as defined in Figure 2.1). SWE is snow water equivalent. GCM is General Circulation Model. RCM is Regional Climate Model. RCP is Representative Concentration Pathways. CMIP5 is Coupled Model Intercomparison Project Phase 5.

Location	Snow variable	Change	Time period	Scenario	Method	Reference
Mountainous Alaska	SWE	-10 to -30%	1970–1999 to 2040–2069	RCP8.5	Multiple GCM/RCM pairs	Littell et al. (2018)
u	SWE	-40 to -60%	1970–1999 to 2070–2099	u	u	и
			Western Canada an	d USA		
Western USA	April 1 SWE	-50%	1965–2005 to 2010–2040	RCP8.5	Multiple GCM/RCM pairs	Naz et al. (2016)
u	Duration	-10 to -100 days	1976–2005 to 2071–2100	RCP8.5	u	Musselman et al. (2018)
u	Peak annual SWE	-6.2 kg m ⁻² per decade	2013–2038	RCP8.5	Post-processed CMIP5 GCM	Fyfe et al. (2017)
			Iceland			
Low elevation	Snow depth	-100%	1981-2000 to 2081-2100	RCP8.5	Single RCM	Gosseling (2017)
Top of central Vatnajökull	Snow depth	20%	1981–2000 to 2081–2100	ш	11	и
			Central Europe			
European Alps	Winter SWE <1,500 m	-40%	1971–2000 to 2020–2049	SRES A1B	Multiple GCM/RCM pairs	Steger et al. (2012); Gobiet et al. (2014); Beniston et al. (2018)
u	"	-70%	1971-2000 to 2070-2099	u	"	и
"	Winter SWE > 2,500 m	-10%	1971-2000 to 2020-2049	"	u	и
"	11	-40%	1971-2000 to 2070-2099	"	u	и
French Alps, 1,500 m	Winter snow depth	-20%	1986–2005 to 2030–2050	RCP2.6	Adjusted multiple GCM/RCM pairs	Verfaillie et al. (2018)
"	"	-30%	u	RCP8.5	u	и
"	"	-30%	1986–2005 to 2080–2100	RCP2.6	"	u
"	"	-80%	"	RCP8.5	"	u
European Alps	Similar results as above ar snow cover duration in sp	5 5	the asymmetrical seasonal snow dec 1).	line pattern (stro	nger trend for reduced	Marty et al. (2017a); Terzago et al. (2017) Hanzer et al. (2018)

Location	Snow variable	Change	Time period	Scenario	Method	Reference
			Scandinavia			
Northern Scandinavia	Duration and SWE	Decrease at low elevation, marginal changes at high elevation	1971–2000 to 2010–2100	A1B	GCM downscaled using RCM	Räisänen and Eklund (2012); Beniston et al. (2018)
Norway	Duration	-14 to -32%	1981–2010 to 2021–2050	RCP4.5	Adjusted multiple GCM/RCM pairs	Scott et al. (2019)
"	11	-15 to -50%	и	RCP8.5	u	u
"	11	-34 to -64%	1981–2010 to 2071–2100	RCP4.5	u	и
"	11	-38 to -89%	и	RCP8.5	u	u .
			Caucasus and Middl	e East		
West Caucasus, 567 m	Snow cover duration	-35 to 40%	1991–2000 to 2041–2050	B2	Downscaled GCM	Sokratov et al. (2014)
			Southern Ande	s	1	
Whole area	Mean SWE	-13%	1980–2010 to 2035–2065	RCP4.5	Multiple RCM	López-Moreno et al. (2017)
"	u	-17%	и	RCP8.5	"	"
"	Duration	-7 days	<i>II</i>	RCP4.5	"	<i>u</i>
"	u	-10 days	Ш	RCP8.5	"	"
Limarí river basin, north central Chile	Peak SWE (>5,000 m)	-32%	1961–1990 to 2071–2000	B2	Single GCM/RCM pair	Vicuña et al. (2011)
"	"; 2,500–3,000 m	-82%	u	u	и	u
"	"; 2,000–2,500 m	-100%	и	u	"	"
"	Peak SWE (>5,000 m)	-41%	u	A2	u	u
u	"; 2,500–3,000 m	-96%	"	u	u	"
u	"; 2,000–2,500 m	-100%	"	u	u	u
			High Mountain A			
Hindu Kush and Karakoram	Winter snow depth (December to April)	-7%	1986–2005 to 2031–2050	RCP8.5	Multiple GCMs	Terzago et al. (2014)
u	u	-28%	1986–2005 to 2081–2100	u	u	"
Himalaya	u	-25%	1986–2005 to 2031–2050	u	u	u
"	II	-55%	1986-2005 to 2081-2100	II	"	"
			New Zealand and Au			
Australia	SWE	Reduction, especially below 1,000 m	1980–1999 to 2030–2049	SRES A1B	Multiple downscaled GCMs	Hendrikx et al. (2013)
Australia	SWE	-15%	1990–2009 to 2020–2040	SRES A2	Multiple downscaled GCMs	Di Luca et al. (2018)
"	u	-60%	1990–2009 to 2060–2080	"	u	и
New Zealand	SWE; 1,000 m	-3 to -44%	1980–1999 to 2030–2049	SRES A1B	Multiple downscaled GCMs	Hendrikx et al. (2012)
"	"; 2,000 m	-8 to -22%	u	"	и	и
u	"; 1,000 m	-32 to -79%	1980–1999 to 2080–2099	"	u	u
"	"; 2,000 m	-6 to -51%	u	"	u	и
			Japan			
Japan	Winter snow depth, low elevation	-50%	Base: 1990s Future: time period corresponding to 2°C warming	2°C global warming (from SRES A1B)	Multiple downscaled GCMs (time sampling)	Katsuyama et al. (2017)
n	"; high elevation	-10%	u	н	u	u
mountain catchment	SWE	-36%	1981–2000 to 2046–2065	SRES A1B	Multiple downscaled GCMs	Bhatti et al. (2016)

SM2.5 Details on Climate Models used in Figure 2.3

Table SM2.8 List of Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Models (GCM) and where available, Regional Climate Models (RCM) used for projecting the winter and summer air temperature (T) and snow water equivalent (SWE), for Representative Concentration Pathway (RCP)2.6 and RCP8.5, for the five regions represented in Figure 2.3: Rocky Mountains in North America, Subtropical Central Andes, European Alps, Hindu Kush and Karakoram, and Himalaya. For the Rocky Mountains, Hindu Kush and Karakoram, and Himalaya only RCP8.5 data were used.

			cky ntains	Sul	otropical C	Central Ar	ıdes		Europe	an Alps		Karal	Cush and Coram; alaya
GCM (default is r1i1p1)	RCM (driven by corresponding GCM)	RC	P8.5	RCI	P2.6	RCI	P8.5	RCP2.6		RC	P8.5	RCI	98.5
		т	SWE	т	SWE	т	SWE	т	SWE	т	SWE	т	SWE
ACCESS1-0						х						X	
ACCESS1-3						х						X	
Bcc-csm1-1				х		х						Х	
BNU-ESM												X	
CanESM2	CCCma-CanRCM4 UQAM-CRCM5	X X	X X									X	
CCSM4				х	х	х	х					X	
CESM1-BGC						Х						Х	Х
CESM1-CAM5				Х	X	Х	х					Х	
CMCC-CM						Х							Х
				х	Х	х	х					X	
	CLMcom-CCLM4-8-17									х	X		
CNRM-CM5	CNRM-ALADIN53							х		х	Х		
	SMHI-RCA4									х			
CSIRO-Mk3-6-0												X	
EC-Earth (r8i1p1)													х
EC-EARTH				х		х							
FGOALS-g2												X	
GFDL-CM3												X	
GFDL-ESM2G												X	
	NCAR-WRF	Х	X										
GISS-E2-R												X	
HadGEM2-CC						Х						X	
				Х		Х							
HadGEM2-ES	NCAR-WRF	Х	Х										
	CLMcom-CCLM4-8-17									X	X		
	SMHI-RCA4									X			
ICHEC-EC-EARTH	CLMcom-CCLM4-8-17									x	X		
(r12i1p1)	SMHI-RCA4							Х		X	~		
ICHEC-EC-EARTH								~		~			
(r3i1p1)	DMI-HIRHAM5							Х		Х			
IPSL-CM5A-LR												X	
IPSL-CM5A-MR												X	
	SMHI-RCA									X			
IPSL-CM5B-LR						v						X	
MIROC5 MIROC-ESM-				Х		X						X	
CHEM												X	
MIROC-ESM												Х	

			cky ntains	Sub	otropical (Central Ar	ıdes		Europe	an Alps		Karak	Cush and Coram; alaya
GCM (default is r1i1p1)	RCM (driven by corresponding GCM)	RCI	28.5	RCI	2.6	RCI	28.5	RC	P2.6	RCI	P8.5	RCI	28.5
		т	SWE	т	SWE	т	SWE	т	SWE	т	SWE	т	SWE
MRI-CGCM3				х	х	х	х					Х	
	NCAR-WRF	Х	х										
MPI-M-MPI-	UQAM-CRCM5	Х	х										
ESM-LR	CLMcom-CCLM4-8-17									Х	Х		
	MPI-CSC-REMO2009							х	X	Х	Х		
	SMHI-RCA4									Х			
MPI-M-MPI-													
ESM-LR (r2i1p1)	MPI-CSC-REMO2009							х	Х	Х	Х		
MPI-M-MPI-													
ESM-MR	UQAM-CRCM5	х	Х										
MRI-ESM1						х	х						
NorESM1-M												Х	
Ensemble members		7	7	8	4	14	5	5	2	13	7	23	3

SM2.6 Synthesis of Recent Studies Reporting on Past and Projected Changes of River Runoff

Table SM2.9 | Synthesis of recent studies reporting on past and projected changes in river runoff, per high mountain region (as defined in Figure 2.1). Entries per region are sorted according to increasing percentage of glacier cover for past and projected changes separately. Note that studies on annual runoff that are listed in Table SM2.10 are not listed here. The year of peak water given there indicates the year before which annual runoff is increasing and beyond which it is decreasing. RCP is Representative Concentration Pathway. GCM is General Circulation Model. SRES is Special Report on Emissions Scenario.

Location	Basin area (% glacier cover)	Variable (change)	Cause	Time period	Method	Scenario	Reference
			Global-scale				
97 snow sensitive basins in 421 basins in northern hemisphere	(glacier melt not considered in model)	Spring to summer snowmelt runoff (decrease)	Transition of snowfall to rainfall	1955–2005 to 2006–2080	Model, 19 GCMs	RCP8.5	Mankin et al. (2015)
Gulf of Alaska	420,300 km ² (17%)	Annual runoff (1–2 km ³ yr ⁻¹)	Increased glacier melt	1980–2014	Model	Past	Beamer et al. (2016)
Gulkana, Wolverine	24.6 km ² and 31.5 km ² (>50%)	Summer runoff (increase)	Increased glacier melt	1966–2011	2 stream gauges	Past	O'Neel et al. (2014)
Gulf of Alaska	420,300 km ²	Annual runoff (25–46%)	Increased glacier melt	1984–2014 to 2070–2099	Downscaled GCMs	RCP4.5 RCP8.5	Beamer et al. (2016)
u		December to February runoff (93–201%)	Transition of snowfall to rainfall	"	u	II	и
"		Spring peak (1 month earlier)	Earlier snowmelt	"	ш	II	u

Location	Basin area (% glacier cover)	Variable (change)	Cause	Time period	Method	Scenario	Reference
			Western Canada and US	A			
South and Central Columbia Basin	0.1–19%	August runoff (decrease)	Decreased snow and glacier melt	1975–2012	20 stream gauges, hydro-graph separation	Past	Brahney et al. (2017)
Canadian Rocky Mountains and adjacent ranges	166–1,170 km ² (0–23.4%), no data in some basins	Summer runoff (decrease in glacierized basins)	Decreased glacier melt, decreased precipitation	1955–2010, depending on sites	6 stream gauges	Past	Fleming and Dahlke (2014)
Bridge river, British Columbia (Canada)	139 km ² (52.6% in 2014)	Winter runoff (increase)	Increased glacier melt	1979–2014	Stream gauge	Past	Moyer et al. (2016)
"	n	Summer runoff (decrease)	Decreased glacier melt	"	"	"	u
Sierra Nevada, northeast of California (USA)	4,781 km² (0%)	Winter runoff (~19%)	Transition of snowfall to rainfall, increased precipitation	1964–2014 to 2015–2064	7 GCMs	RCP4.5, RCP8.5	Sultana and Choi (2018)
u	u	Spring peak (1 month early)	Earlier snowmelt		u	н	u
Athabasca (Canada)	161,000 km ² (0%)	Summer runoff (6–76 %)	Increased snowmelt, increased precipitation	1983–2013 to 2061–2100	Downscaled 1 GCM	RCP4.5, RCP8.5	Shrestha et al. (2017)
"	u	Winter runoff (3–114%)	Transition of snowfall to rainfall		u	н	
Whole USA	(not significant)	Winter runoff (increase in snow dominated basins)	Transition of snowfall to rainfall	1961–2005 to 2011–2050	Downscaled 10 GCMs	RCP8.5	Naz et al. (2016)
"	u	Spring peak (earlier in snow-dominated basins)	Earlier snowmelt	u	u	и	
Western North America	(not significant)	Winter runoff (increase)	Transition of snowfall to rainfall	1965–2005 to 2010–2050	Downscaled 10 GCMs	RCP8.5	Pagán et al. (2016)
"	"	Summer runoff (decrease)	Decreased snowmelt	u	u	н	u
ш	u	Spring peak (6–11 days earlier)	Earlier snowmelt		u	II	u
Western USA	(not significant)	Spring peak (1.5–4 weeks early)	Earlier snowmelt	1960–2005 to 2080–2100	Downscaled 10 GCMs	RCP4.5, RCP8.5	Li et al. (2017)
British Columbia	0–8%	Winter runoff (45–95%)	Increased snowmelt, increased rainfall	1961–1990 to 2041–2070	Downscaled 8 GCMs	SRES B1, A1B	Schnorbus et al. (2014)
u	II	Summer runoff (-58 to -9%)	Decreased snowmelt, transition of snowfall to rainfall	"	u	u	u
Nooksack (USA)	2,000 km ² (<1%)	Winter runoff (39–88%)	Transition of snowfall to rainfall	1950–1999 to 2060–2090	Downscaled 3 GCMs	SRES A2, B1	Dickerson-Lange and Mitchell (2014)
"	u	Summer runoff (-50 to -26%)	Decreased snowmelt		u		"
"	u	Spring peak (1 month early)	Earlier snowmelt		u	н	
и	n	Annual peak (increase, 1 month later)	Decreased snowmelt, increased extreme precipitation	"	u	u	u
Fraser, North America	240,000 km ² (1.5%)	Winter runoff (increase)	Transition of snowfall to rainfall	1980–2009 to 2040–2069	Downscaled 12 GCMs	RCP4.5 RCP8.5	Islam et al. (2017)
u	"	Summer runoff (decrease)	Decreased snowmelt, transition of snowfall to rainfall	"	u	u	u
II.		Annual peak (20–30 days earlier)	Earlier snowmelt	u	u	IJ	IJ

Chapter 2 Supplementary Material

Location	Basin area (% glacier cover)	Variable (change)	Cause	Time period	Method	Scenario	Reference
			Central Europe				
Alps	(some including glaciers)	Winter runoff (increase in glacier- or snow- dominated basins)	Transition of snowfall to rainfall	1961–2005	177 stream gauges	Past	Bard et al. (2015)
u	II	Spring peak (earlier)	Earlier snowmelt and glacier melt	II	ш	и	и
Alps (northern Italy)	~100– 10,000 km ² (some including glaciers)	Winter runoff (increase at >1,800 m above sea level)	Transition of snowfall to rainfall	1921–2011	23 stream gauges	Past	Bocchiola (2014)
"	"	Summer runoff (decrease)	Decreased snowmelt and glacier melt, increased evapotranspiration	"	ш	u	u
Western Austria	(0–71.9%)	Annual flow (increase at high elevations, decrease at low elevations)	Increased and decreased glacier melt	1980–2010	32 stream gauges	Past	Kormann et al. (2015b)
Middle and upper Rhine	144,231 km² (<1%)	Winter runoff (4–51%)	Transition of snowfall to rainfall, earlier snowmelt	1979–2008 to 2021–2050 and 2070– 2099	10 GCM-RCMs	SRES A1B	Bosshard et al. (2014)
н	и	Summer runoff (-40 to -9%)	Decreased snowmelt	u	u	и	u
Gigerwaldsee (Switzerland)	97 km² (<1%)	Summer runoff (decrease)	Decreased glacier melt	1992–2021 to 2035–2064 and 2069–2098	7 GCM-RCMs	SRES A1B	Etter et al. (2017)
Swiss Alps	20–1,577 km ² (0–4%)	Summer runoff (-32 to -56%)	Transition of snowfall to rainfall, Earlier snowmelt	1980–2009 to 2070–2099	10 GCM-RCMs	SRES A1B	Jenicek et al. (2018)
Swiss Alps	231–1,696 km ² (0–22%)	Winter runoff (increase at high elevations)	Transition of snowfall to rainfall	1980–2009 to 2020–2049, 2045–2074, 2070–2099	10 GCM-RCMs	RCP2.6, SRES A1B, A2	Addor et al. (2014)
European Alps	(glacierized)	Annual runoff (decrease)	Decreased glacier melt	1980–2009 to 2010–2039, 2040–2069, 2070–2099	4 GCMs	RCP2.6, RCP4.5, RCP8.5	Farinotti et al. (2016)
"	u	Summer runoff (decrease)	Decreased glacier melt	u	u	u	u
Alps, Po (Italy)	71,000 km ² (small)	Winter runoff (increase)	Transition of snowfall to rainfall	1960–1990 to 2020–2050	2 RCMs	SRES A1B	Coppola et al. (2014)
"	"	Spring peak (1 month earlier)	Earlier snowmelt	"	u	u	"
Canton Graubünden	7,214 km ² (2.4%, ~20% in high elevation catchments)	Winter runoff (increase)	Transition of snowfall to rainfall	2000–2010 to 2021–2050, 2070–2095	10 RCMs	SRES A1B	Bavay et al. (2013)
"	"	Summer runoff (decrease)	Decreased snowmelt, decreased precipitation		u	н	u
Ш	u	Spring peak (earlier)	Earlier snowmelt	u	"	"	u
Göscheneralpsee, Dammareuss subcatchment (central Switzerland)	95 km² (20%), 10 km² (50%)	Summer runoff (decrease)	Decreased snow melt, decreased glacier melt	1981–2010 to 2021–2050, 2070–2099	10 RCMs	SRES A1B	Kobierska et al. (2013)
Findelen, Swiss Alps	21.18 km ² (70%)	Annual runoff (decrease)	Decreased glacier melt	1976–2086	1 RCM	SRES A2	Uhlmann et al. (2013)
и	u	Spring peak (earlier)	Earlier snowmelt	и	"		и

Location	Basin area (% glacier cover)	Variable (change)	Cause	Time period	Method	Scenario	Reference
			Scandinavia				
Arctic coastal Norway	56–422 km ² (0–34.9%), no data in some basins	Winter runoff (increase)	Transition of snowfall to rainfall	1955–2010, depending on sites	7 stream gauges	Past	Fleming and Dahlke (2014)
n	u	Summer runoff (decrease basins including glaciers)	Decreased glacier melt	"	u	u	n
Whole Scandinavia	(including glaciers)	Winter runoff increase ~40%, excluding southern Sweden and Denmark)	Transition of snowfall to rainfall	1980–2009 to 2041–2070	6 GCM-RCMs	SRES A1B	Räty et al. (2017)
н	u	Summer runoff (decrease ~40%)	Decreased snowmelt, increased evapotranspiration	u		u	u
			Caucasus and Middle Ea				
Eastern Anatolia (Turkey)	(0%)	Snowmelt peak (~1 week earlier)	Earlier snowmelt	1970–2010	15 stream gauges	Past	Yucel et al. (2015)
и	IJ	Snowmelt peak (~4 weeks earlier)	Earlier snowmelt	1961–1990 to 2070–2099	Single GCM-RCM	SRES A2	u
Euphrates-Tigris	880,000 km ² (0%)	Snowmelt peak (18–39 days earlier)	Earlier snowmelt	1961–1990 to 2041–2070, 2071–2099	3 GCM-RCMs	SRES A1F1, A2, B1	Bozkurt and Sen (2013)
			Low Latitudes (tropical An	des)			
La Paz (Bolivia)	18–78 km ² (5–12%)	Annual runoff (no significant change)	Decreased ice melt compensated by increased precipitation	1963–1007	4 stream gauges and model	Past	Soruco et al. (2015)
Zongo (Bolivia)	3 km ² (35% in 1987)	Annual runoff (-4% and -24% in later period)	Decreased glacier melt	1987–2010 to 2030–2050, 2080–2100	Downscaled 11 GCMs	RCP4.5	Frans et al. (2015)
u		Wet season runoff (increase)	Transition of snowfall to rainfall		"		u
			Southern Andes				
Elqui (Chile)	222–3,572 km ² (7.02 km ² in total)	Annual runoff (no significant change)	Decreased glacier melt compensated by increased precipitation	1970–2009	4 stream gauges	Past	Balocchi et al. (2017)
Rio del Yeso (Andes of central Chile)	62 km² (19%)	Annual runoff (decrease)	Decreased snowmelt	2000–2015	Model	Past	Burger et al. (2019)
Juncal (Chile)	(including glaciers)	Seasonal runoff peak (1month earlier)	Earlier snowmelt, transition of snowfall to rainfall	2001–2010 to 2041–2050, 2051–2060, 2060–2100	12 GCMs	RCP4.5, RCP8.5	Ragettli et al. (2016)
			High Mountain Asia				
Astore, Gilgit, Katchura, (upper Indus)	3,750 km ² , 12,800 km ² , 115,289 km ² , (not significant)	Spring and summer runoff (increase)	Increased snowmelt, transition of snowfall to rainfall	1970–2005	Stream gauge	Past	Reggiani and Rientjes (2015)
Hunza, (upper Indus)	13,925 km ² (including glaciers)	Spring and Summer runoff (decrease)	Decreased glacier melt	"	u	u	u
Naryn (Tien Shan)	3,879 km ² (10% in 1970s) and 5,547 km ² (12% in 1970s)	Spring and autumn runoff (increase)	Increased snowmelt and ice melt	1965–2007	2 stream gauges	Past	Kriegel et al. (2013)
H	u	Winter-early spring runoff (increase)	Increased snowmelt, transition of snowfall to rainfall	"	u	u	и
Tien Shan	(including glaciers)	Annual runoff (increase for higher fraction of glacier area)	Increased ice melt	1960–2014	23 stream gauges	Past	Chen et al. (2016)

Chapter 2 Supplementary Material

2SM

Location	Basin area (% glacier cover)	Variable (change)	Cause	Time period	Method	Scenario	Reference
Toxkan, Kunmalik, Kaidu, Huangshuigou (Tien Shan)	4,298– 19,166 km ² (including glaciers)	Winter-spring runoff (increased, earlier)	Earlier snow and glacier melt	1961–2008, depending on site	4 stream gauges	Past	Shen et al. (2018)
Kakshaal and, Tarim	18,410 km ² (4.4%)	Summer runoff (increase)	Increased ice melt, increased precipitation	1957–2004	Model	Past	Duethmann et al. (2015)
Sari-Djaz, Tarim	12,948 km ² (20.9%)	Summer runoff (increase)	Increased ice melt	"	u	"	"
Shigar (Karakoram)	7,040 km² (30%)	June and July runoff (increase and turn to decrease from 2000–2010)	Decreased snowmelt	1985–2010	Stream gauges, hydrograph separation	Past	Mukhopadhyay and Khan (2014)
н	"	August runoff (increase)	Increased glacier melt	"	"	"	u
Chhota Shigri (Western Himalaya)	~35 km² (46.5%)	Summer runoff (14–22%)	Increased glacier melt	1955–1969 to 1970–1984, 1985–1999, 2000–2014	RCM and mass- balance model	Past	Engelhardt et al. (2017)
Sikeshu (Tien Shan)	921 km ² (37%)	Annual runoff (increase)	Increased glacier melt	1964–2004	1 stream gauge	Past	Wang et al. (2015)
Upper Indus	~425,000 km ² (5%)	June and July runoff in lower elevations (decrease)	Decreased snowmelt, decreased precipitation	1971–2000 to 2071–2100	4 GCM-RCMs	RCP4.5, RCP8.5	Lutz et al. (2016a)
н	n	Winter runoff in lower elevation (increase)	Increased precipitation, transition of snowfall to rainfall	u	u	u	u
"		Spring peak (earlier)	Earlier snow and glacier melt	"	u	H	u
Chu (Tien Shan)	9,548 km² (2–7%)	Annual runoff (–27.7 to -6.6%)	Decreased glacier melt	1966–1995 to 2016–2045, 2066–2095	5 GCMs	RCP2.6, RCP4.5, RCP8.5	Ma et al. (2015)
и		Spring peak (decrease, 1 month earlier)	Decreased glacier melt, earlier snowmelt	"	u	II	
Upper basin of Indus, Brahmaputra, Ganges, Salween, Mekong	(0.2–5.4%)	Spring peak (decrease, earlier)	Earlier snowmelt, transition of snowfall to rainfall	1998–2007 to 2041–2050	4 GCMs	RCP4.5, RCP8.5	Lutz et al. (2014)
Naryn (Tien Shan)	58,205 km ² (2%)	Annual runoff (decrease)	Decreased precipitation, decreased snowmelt	1966–1995 to 2016–2045, 2066–2095	5 GCMs	RCP2.6, RCP4.5, RCP8.5	Gan et al. (2015)
и		Winter runoff (–2.2 to 19.8%)	Decreased precipitation, decreased snowmelt	"	u	II	u
"		Spring peak (1 month earlier)	Earlier snowmelt	"	u	"	
Chon Kemin (Kyrgyz-Kazakh region)	1,037 km ² (11%)	Summer runoff (-15 to -4%, -66 to -9%)	Decreased ice melt	1955–1999 to 2000–2049, 2050–2099	4 GCMs	RCP2.6, RCP8.5	Sorg et al. (2014a)
"	"	Spring runoff (7–23%, 18–62%)	Increased winter precipitation, increased snowmelt	u	u	u	u
Beida River, upper Heihe (China)	565–6,706 km ² (total 318.2 km ²)	Annual runoff (increase)	Increased glacier melt	1957–2013	3 stream gauges	Past	Wang et al. (2017b)
Lhasa, upper Brahmaputra	32,800 km ² (2% in 1970, 1.3–11.5% for selected sub-basins)	Early summer runoff (decrease)	Decreased snowmelt, increased evapotranspiration	1971–2000 to 2011–2040, 2051–2080	Single GCM-RCM	SRES A1B, A2, B2	Prasch et al. (2013)
Koshi (Nepal)	3,712 km ² (13%)	Summer runoff (decrease)	Decreased snow melt	2000–2010 to 2040–2050, 2086–2096	5 GCM- RCMs	SRES A1B	Nepal (2016)

High Mountain Areas

Location	Basin area (% glacier cover)	Variable (change)	Cause	Time period	Method	Scenario	Reference
Upper Langtang (Himalaya)	(including glaciers)	Peak runoff (increase)	Transition of snowfall to rainfall	2001–2010 to 2041–2050, 2051–2060, 2060–2100	12 GCMs	RCP4.5, RCP8.5	Ragettli et al. (2016)
Langtang (Himalaya)	360 km² (46%)	Annual runoff (increase)	Increased glacier melt	1961–1990 to 2021–2050, 2071–2100	8 GCMs	RCP4.5, RCP8.5	Immerzeel et al. (2013)
Baltoro	1,415 km ² (46%)	Annual runoff (increase)	Increased glacier melt		u	u	u
Chhota Shigri (Western Himalaya)	~35 km ² (46.5%)	Spring-summer runoff (increase)	Earlier snow and glacier melt	1951–2099 to 2070–2099	GCM-RCM	RCP4.5, RCP8.5	Engelhardt et al. (2017)
u	u	Summer runoff (decrease)	Decreased glacier melt	u	u	u	"
Hunza, upper Indus (Western Himalaya)	13,567 km ² (including glaciers)	Spring runoff (increase, earlier in 2 GCMs, decrease in 1 GCM)	Early snow melt	1980–2010 to 2030–2059, 2070–2099	3 GCMs	RCP2.6, RCP8.5	Garee et al. (2017)
	u	Summer runoff (decrease in 2 GCMs, slight increase in 1 GCM)	Decreased glacier melt		и	u	u
			New Zealand and SE Austr				
Upper Waitaki (New Zealand)	9,490 km² (including glaciers)	Late winter-spring runoff (increase)	Transition of snowfall to rainfall	1980–1999 to 2030–2049, 2030–2049, 2080–2099	Downscaled 12 GCMs	SRES A1B	Caruso et al. (2017)
и	u	Summer runoff (decrease)	Decreased snowmelt, decreased precipitation	u	u	u	u
		Other region	s (affected by snow cover b	ut lacking glaciers)			
Eastern Scotland	749 km ² (0%)	Winter runoff (increase)	Transition of snowfall to rainfall, precipitation increase	1960–1991 to 2010–2039, 2030–2059, 2070–2099	11 RCMs	SRES A1F1, A1B, B1	Capell et al. (2014)
Shubuto, Hokkaido (Japan)	367.1 km ² (0%)	Spring peak (~14 days earlier)	Earlier snowmelt	2046–2065	5 GCMs	SRES A1B	Bhatti et al. (2016)

SM2.7 Details of Studies on Peak Water

Table SM2.10 Overview of studies providing estimates of the timing of peak water for the individual glaciers or glacier-fed river basins plotted in Figure 2.6. Peak water is the approximate year derived from observations or modelling (past) and modelling (future) when on average annual runoff reaches a maximum due to glacier shrinkage. Years are approximated from the information presented in each study, and in some cases represent an average of results from different scenarios (see remarks). *Local* refers to estimates for individual glaciers (no matter glacier area) and river basins with multiple glaciers but total glacier cover less than 150 km². All other estimates are referred to as *regional*. Glacier area refers to reported area typically referring to the beginning of the study period. Glacier cover refers to the glacier area in percent of the river basin's area.

Glacier/basin name	Domain type	Peak water (year)	Glacier area (km²)	Glacier cover (%)	Reference	Remarks; scenario (if reported)
Copper River basin	regional	~2070	~13,000	~21	Valentin et al. (2018)	RCP4.5
Wolverine	local	~2050	17	67	Van Tiel et al. (2018)	No clear peak; RCP4.5
Wolverine	local	~2035	17	67	van hei et al. (2018)	No clear peak; RCP8.5
			Western Canada			
Hood	local	~2015	~9	100	Frans et al. (2016)	Runoff from glacier area
Bridge	local	~2015	73	53	Moyer et al. (2016)	Qualitative statement: At/close to peak water
Mica basin	regional	~2000	1,080	52	Jost et al. (2012)	Already past peak water; year not reported
Bridge	local	~2000	73	53	Stahl et al. (2008)	Already past peak water; year not reported

Chapter 2 Supplementary Material

Glacier/basin name	Domain type	Peak water (year)	Glacier area (km²)	Glacier cover (%)	Reference	Remarks; scenario (if reported)	
Hoh	local	1988	18	100			
Stehekin	local	1985	19	100			
Cascade	local	1984	12	100	France et al. (2010)	Runoff from glacier area;	
Hood	local	1995	5	100	Frans et al. (2018)	RCP4.5	
Thunder	local	2040	32	100	-		
Nisqually	local	2053	18	100			
Several basins in Western Canada	regional	~2000	150		Fleming and Dahlke (2014)	"Peak Water already over" (qualitative statement); runoff data analysis	
Western Canada, coastal Alaska	regional	~2035	26,700	100	Clarke et al. (2015)	Runoff from glacier area; Peak water varying between ~2023 and 2055; RCP2.6	
Western Canada, coastal Alaska	regional	~2042	26,700	100		Runoff from glacier area; Peak water varying between ~2024 and 2065; RCP8.5	
			Iceland				
Southern Vatnajökull, Langjökull, Hofsjökull	local/ regional	~2055	~5,000	100	Björnsson and Pálsson (2008)		
		Ce	ntral Europe (Europea	n Alps)			
Gries	local	2020	5	49			
Silvretta	local	2015	5	5	-		
Rhone	local	2042	18	46		A1B	
Gorner	local	2035	51	63	Farinotti et al. (2012)		
Aletsch	local	2050	117	59	-		
Trift	local	2045	17	43	-		
Zinal	local	2047	11	65		A1B	
Moming	local	2039	6	63	Huss et al. (2008)		
Weisshorn	local	2035	3	39			
Morteratsch	local	2020	16	15			
Forno	local	2042	7	34	Huss et al. (2010)	A1B	
Albigna	local	2020	6	30			
Plaine Morte	local	2055	8	100	Reynard et al. (2014)	A1B	
Findel	local	2035	16	74	Uhlmann et al. (2013)		
Findel	local	~2050	16	74	Huss et al. (2014)	A1B (Peak water 2035–2065 depending on climate model	
Swiss Alps		1997	<0.05	100	-		
Swiss Alps	local (>100 glaciers)	2000	0.05–0.125	100	Huss and Fischer (2016)		
Swiss Alps	(2.100 gluciers)	2004	0.125–0.5	100			
			High Mountain Asia				
Chon Kemin basin	regional	~2045	112	11	- Sora at al. (2014a)	RCP2.6	
Chon Kemin basin	regional	~2025	112	11	Sorg et al. (2014a)	RCP8.5	
Largest rivers of China	regional	~2070	~30,000		Su et al. (2016)	Peak water unclear from study; RCP2.6	
Largest rivers of China	regional	~2070	~30,000		– Su et al. (2016)	Peak water unclear from study; RCP8.5	
Hailuogou	local	~2050	45	36	Zhang et al. (2015)	No clear peak; declining glacier runoff after 2050; RCP4.5	
Hailuogou	local	~2070	45	36		RCP8.5	
Kakshaal basin	regional	~2018	740	4	Duethmann et al.	Runoff from glacier area;	
Sari-Djaz basin	regional	~2033	2,580	20	(2016)	aggregate of different emission scenarios; RCP2.6/RCP8.5	

Glacier/basin name	Domain type	Peak water (year)	Glacier area (km²)	Glacier cover (%)	Reference	Remarks; scenario (if reported)
Naryn basin	regional	~2020	1,160	2		RCP2.6
Naryn basin	regional	~2030	1,160	2	Gan et al. (2015)	RCP4.5
Naryn basin	regional	~2050	1,160	2		RCP8.5
Urumqi	local	2020	2	52	Gao et al. (2018)	RCP4.5
Yangbajing basin	regional	~2025	312	11	Prasch et al. (2013)	Peak water between 2011 and 2040; A1B
Headwaters of Brahmaputra, Ganges, Indus	regional	~2050	~30,000		Lutz et al. (2014)	RCP4.5
All High Mountain Asia glaciers	regional	~2030	~90,000	100	Kraaijenbrink et al.	RCP4.5
All High Mountain Asia glaciers	regional	~2050	~90,000	100	(2017)	RCP8.5
Chhota Shigri	local	2040	16	46	Engelhardt et al. (2017)	No clear peak; RCP4.5
Chhota Shigri	local	2020	16	46	Engenarut et al. (2017)	No clear peak; RCP8.5
Hypothetical	local	2055	50	1	Page and Calling (2006)	Runoff from glacier area
Hypothetical	local	2064	50	1	Rees and Collins (2006)	Runon nom glacier area
Langtang	local	2045	120	100		RCP4.5
Baltoro	local	2048	520	100	Immerzeel et al. (2013)	RCP8.5
Langtang	local	2044	120	100	minerzeer et al. (2015)	RCP4.5
Baltoro	local	2065	520	100		RCP8.5
Langtang	local	~2055	120	34	Ragettli et al. (2016)	RCP4.5
Langtang	local	~2070	120	34	Ragettil et al. (2016)	RCP8.5
			Low Latitudes (Andes			
Rio Santa basin	regional	~2005	200	2	Carey et al. (2014)	"Peak water already over" (qualitative statement)
Zongo	local	2010	3	21	Frans et al. (2015)	
Cordillera Blanca	regional	~1995	480		Polk et al. (2017)	"Peak water already over" (qualitative statement)
Sub-basins of Rio Santa		~1990	200	2	Baraer et al. (2012)	Analysis of observations
			Scandinavia			
Nigardsbreen	gardsbreen local ~2080 45 70				No clear peak; RCP4.5	
Nigardsbreen	local	~2080	45	70	Van Tiel et al. (2018)	No clear peak; RCP8.5
			Southern Andes			
Juncal	local	2030	34	14	Ragettli et al. (2016)	RCP4.5
Juncal	local	2020	34	14	hayetti et dl. (2010)	RCP8.5

SM2.8 Details of Studies on Observed Impacts Attributed to Cryosphere Changes

Table SM2.11 Overview of studies documenting observed impacts on ecosystems, other natural systems and human systems over the past several decades that can at least partly be attributed to changes in the cryosphere, per high mountain region (as defined in Figure 2.1). Other additional climatic or non-climatic drivers are not listed. 'Attribution Confidence' refers to the strength of the evidence in attributing the impact to cryosphere changes (H for high, M for medium, L for low). Only studies where the 'Attribution Confidence' is at least medium are listed. Also listed whether or not the impact is positive (pos), neg (neg) or mixed for the impacted system. Figure 2.8 is based on the data provided in this table.

Location	Affected sector or system	Impact	Cryosphere change	Attribution confidence	Positive/ negative/ mixed	Reference
		Alaska				
Alaska	Landslides	Increase in frequency of large rock avalanches	Permafrost degradation	М	neg	Coe et al. (2017)
Alaska	Terrestrial ecosystems (tundra)	Population performance of a large mammal (dall sheep)	Spring snow cover	Μ	mixed	van de Kerk et al. (2018)
Alaska	Terrestrial ecosystems (tundra; forest)	Decline in abundance & offspring recruitment of a large mammal (mountain goat)	Harsh winter conditions (extreme weather events); delayed spring onset/end of snow season	М	neg	Rattenbury et al. (2018)
Alaska	Culture, Tourism	Route change for Iditarod dog-sled race	Insufficient snow cover, lack of river/lake ice	Н	neg	Hagenstad et al. (2018)
		Western Canada	and USA			
British Columbia	Hydropower	Change in runoff timing	Reduction in peak winter snow accumulation, glacier decline	H (snow) M (glacier)	mixed	Jost et al. (2012); Jost and Weber (2013)
Sacramento River basin, California	Hydropower	Change in runoff timing	Reduced snowpack due to more precipitation as rain	н	neg	Van Lienden et al. (2014)
San Joaquin River basin, California	Hydropower	Change in runoff timing	Reduced snowpack due to more precipitation as rain	М	neg	Van Lienden et al. (2014)
Upper Colorado River, USA	Hydropower	Change in runoff timing	Earlier snowmelt runoff	н	neg	Kopytkovskiy et al. (2015)
British Columbia	Landslides	Increase in landslide frequency	Glacier retreat and loss	М	neg	Cloutier et al. (2017)
Entire Western USA	Floods	Decrease in frequency of rain-on-snow flood event at lower elevation	Decrease in duration and depth of snow cover	М	pos	McCabe et al. (2007)
Entire Western USA	Floods	Increase in frequency of rain-on-snow flood event at higher elevation	Increase in frequency of rainfall at high elevation in winter	М	neg	и
Canada/USA	Terrestrial ecosystems (tundra; forest)	Population dynamics of wolverines and other mammals and birds	Winter snowpack decline and temperature anomalies	Н	mixed	Brodie and Post (2010); Zimoval et al., (2018)
Colorado Rocky Mountains	Terrestrial ecosystems (tundra)	Changes in vegetation distribution (shrub and tundra expansion)	Spring snow cover (snow water equivalent)	М	pos	Bueno de Mesquita et al. (2018)
Mid-elevation Northern Rocky Mountains	Terrestrial ecosystems (forest)	Fire extent, fire season severity, and fire season duration increase	Earlier spring snowmelt	М	neg	Westerling (2016)
Colorado Rocky Mountains	Terrestrial ecosystems (tundra)	Changing upper and lower boundaries of alpine tundra, and within plant community shifts	Snow changes	М	mixed	Suding et al. (2015)
Cascade Mountains	Terrestrial ecosystems (tundra)	Change in abundance of a small mammal (pika) at different elevations	Record low snowpack (snow drought)	н	mixed	Johnston et al. (2019)
Colorado Rocky Mountains	Terrestrial ecosystems (subalpine meadows)	Decrease in peak season net ecosystem production	Earlier snowmelt, longer early season drought	М	neg	Sloat et al. (2015)

Location	Affected sector or system	Impact	Cryosphere change	Attribution confidence	Positive/ negative/ mixed	Reference
Montana	Freshwater ecosystems	Loss of endemic invertebrates strongly dependent on glacier water fed habitats	Decreased glacier runoff due to glacier decline	М	neg	Giersch et al. (2017) Muhlfeld et al. (2011)
Rocky Mountains	Freshwater ecosystems	Cutthroat trout and bull trout range reduced	Decreased glacier runoff due to glacier decline	М	neg	Young et al. (2018)
Western USA and Western Canada	Tourism	Reduced operating capabilities of ski resorts	Less snow	н	neg	Steiger et al. (2017); Hagenstad et al. (2018)
Cascades, USA	Tourism	Reduced ice-climbing opportunities and reduced attractions for summer trekking	Glacier retreat	М	neg	Orlove et al. (2019)
		Iceland				
Sandá í Þistilfirð, Iceland	Hydropower	Change in timing of input	Change in seasonality of snowmelt	М	neg	Einarsson and Jónsson (2010)
Austari- Jökulsá, Iceland	Hydropower	Change in timing of input	Change in seasonality of snowmelt and glacier decline	М	neg	Einarsson and Jónsson (2010)
Northern Iceland	Landslides	Large debris slide	Deep thawing of ground ice	Н	neg	Sæmundsson et al. (2018)
Iceland	Freshwater ecosystems	Change in species interactions and loss of taxa	Decreased runoff due to glacier decline	М	neg	Milner et al. (2017)
Jokulsarlon	Tourism	Glacier-based tourism	Positive effect – picturesque glacial lagoon formed by glacier retreat	н	pos	Þórhallsdóttir and Ólafsson (2017)
		Central Eur				
European Alps	Water quality	Increased heavy metal concentrations in lakes	Release of solutes from thawing permafrost	М	neg	Thies et al. (2007)
European Alps	Water quality	Increased heavy metal concentrations in lakes	Release of solutes from thawing permafrost	М	neg	llyashuk et al. (2018)
European Alps	Water quality	Increased heavy metal concentrations in streams	Release of solutes from thawing permafrost	М	neg	Thies et al. (2013)
Carpathians, Eastern Europe	Hydropower	Reduced water inflow in input due to change in runoff timing	Reduction of perennial snowpacks and earlier snowmelt – reduced input and change in seasonality of input	М	neg	Alberton et al. (2017)
Löntsch, Switzerland	Hydropower	Increase in runoff (short-term)	Slight glacier decline	м	pos	Hänggi and Weingartner (2011) Weingartner et al., (2013)
Löntsch, Switzerland	Hydropower	Change in runoff and timing	Snow cover – slightly more precipitation/snow, slightly less snow cover, slight increase in snowmelt	М	mixed	"
Oberhasli, Switzerland	Hydropower	Change in timing of runoff	Glaciers – significant reduction, decrease of glacier melt with slightly earlier maximum	М	neg	Weingartner et al. (2013)
Göscheneralp reservoir, Switzerland	Hydropower	Change in timing of input	Snow cover – minor change of seasonality	М	-	"
Gougra, Switzerland	Hydropower	Increase in input	Glaciers – significant reduction, increase in runoff	М	pos	"
Gougra, Switzerland	Hydropower	Change in timing of input	Snow cover – change in timing of runoff	М	neg	n
Switzerland	Hydropower	Increased water inflow	Glacier retreat	н	pos	Schaefli et al. (2019)
Italian Alps	Hydropower	Decreased water supply for run-of-river hydropower	Glacier retreat has reduced summer runoff	М	neg	Orlove et al. (2019)

Chapter 2 Supplementary Material

Location	Affected sector or system	Impact	Cryosphere change	Attribution confidence	Positive/ negative/ mixed	Reference
French and Italian Alps	Landslides	Increase in rock avalanche frequency	Glacier retreat and permafrost degradation	М	neg	Ravanel and Deline (2011); Fischer et al. (2012); Ravanel et al. (2017)
Swiss Alps	Landslides	Increase in frequency of large debris flows	Permafrost degradation	М	neg	Stoffel and Graf (2015)
European Alps	Landslides	Rock glacier destabilisation	Permafrost thaw	Н	neg	Roer et al. (2008)
European Alps	Landslides	Increasing debris flows and small rock fall	Permafrost thaw	Н	neg	Kummert et al. (2017)
European Alps	Landslides	Rock glacier collapse	Permafrost thaw	Н	neg	Bodin et al. (2016)
European Alps	Landslides	Increasing rockfall during heat waves	Permafrost thaw	Н	neg	Ravanel et al. (2017)
European Alps	Landslides	Increasing rockfall	Permafrost thaw	Н	neg	Ravanel et al. (2010)
European Alps	Landslides	Increasing rockfall during recent decades	Permafrost thaw	М	neg	Ravanel and Deline (2011)
Swiss Alps	Landslides	Increase in debris transport into steep slopes and destabilisation of rock glaciers	Permafrost degradation	М	neg	Kääb et al. (2007)
European Alps	Snow avalanche	More avalanches involving wet snow	Changes in snow cover characteristics	М	neg	Pielmeier et al. (2013) Naaim et al. (2016)
European Alps	Snow avalanche	Decrease in total number of avalanches at lower elevation	Changes in snow cover characteristics	М	pos	Eckert et al. (2013); Lavigne et al. (2015)
Tatras mountains	Snow avalanche	Decline in mass and intensity of large avalanches	Changes in snow cover characteristics	М	pos	Gadek et al. (2017)
European Alps	Floods	Decrease in rain on snow flood event at lower elevation and in spring	Change in duration and depth of snow cover and change in precipitation type (rain compared to snow)	м	pos	Freudiger et al. (2014); Moran-Tejéda et al. (2016)
European Alps	Floods	Increase in rain on snow flood event at higher elevation and in winter	Change in duration and depth of snow cover and change in precipitation type (rain vs. snow)	М	neg	"
Poland (Białowieża Forest)	Terrestrial ecosystems	Increased predation pressure in a mammal (weasel) due to phenological camouflage mismatch	Decreasing number of snow cover days	М	neg	Atmeh et al. (2018)
Pyrenees	Terrestrial ecosystems	Availability duration of high quality food for a bird (ptarmigan)	Earlier snowmelt	М	pos	García-González et al. (2016)
Swiss Alps	Terrestrial ecosystems (tundra)	Alpine grassland species colonize the snowbeds	Shorter snow cover duration	М	mixed	Matteodo et al. (2016)
Italian Alps	Terrestrial ecosystems (tundra)	Soil and plant community development can be very slow under some soil/bedrock conditions (serpentinite)	Glacier retreat	н	mixed	D'Amico et al. (2017)
French Pyrenees	Freshwater ecosystems	Increased local diversity; decreased regional diversity	Decreased runoff due to glacier decline	н	mixed	Khamis et al. (2016)
French Pyrenees	Freshwater ecosystems	Reduction in genetic diversity	Decreased runoff due to glacier decline	М	neg	Finn et al. (2013)
Swiss Alps	Freshwater ecosystems	Upward shift of invertebrate communities as hydrological regime and water temperatures change	Glacier retreat	н	mixed	Finn et al. (2010)
Italian Alps	Freshwater ecosystems	Loss of endemic invertebrates	Decreased runoff due to glacier decline	н	neg	Lencioni (2018)
Western Balkans	Freshwater ecosystems	Loss of native trout	Decreased runoff due to glacier decline	М	neg	Papadaki et al. (2016)
Austrian Alps	Freshwater ecosystems	Increased diatom biodiversity	Decreased runoff due to glacier decline	М	pos	Fell et al. (2018)

Location	Affected sector or system	Impact	Cryosphere change	Attribution confidence	Positive/ negative/ mixed	Reference
European Alps	Infrastructure	Structure instability	Permafrost thaw	М	neg	Phillips and Margreth (2008)
European Alps and Pyrenees	Tourism	Reduction in ski lift revenues and operating capabilities of ski resorts	Reduction of snow cover duration	н	neg	Steiger et al. (2017)
European Alps	Tourism	Changes in the safety of mountaineering routes	Glacier decline, permafrost thaw (impact on ground instability)	Н	neg	Ritter et al. (2012); Duvillard et al. (2015); Ravanel et al. (2017); Mourey et al. (2019)
Italian Alps	Culture	Aesthetic quality; Local residents find the dark peaks in summer to be unattractive	Glacier retreat	Н	neg	Brugger et al. (2013)
Italian Alps	Culture	Local residents feel that the identity of their village is weakening as the peaks have less ice and snow	Reduced ice and snow cover	Н	neg	Jurt et al. (2015)
		Scandinavia/I				
Northern Norway	Hydropower	More water for hydropower	Thinning of glacier, changed routing of glacier-dammed lake	н	pos	Engeset et al. (2005)
Northern Norway	Landslides	Increase in debris transport into steep slopes	Increase in rock glacier speed	М	neg	Eriksen et al. (2018)
Norway	Terrestrial ecosystems (tundra; forest)	Increased mortality from predation of a small mammal species (mountain hare) due to camouflage mismatch	Snow cover duration	Н	neg	Pedersen et al. (2017)
Norway	Terrestrial ecosystems (tundra)	Invertebrate, plant and fungal communities develop during primary succession	Glacier retreat	н	pos	Matthews and Vater (2015)
Finland	Tourism	Reduction in ski lift revenues	Reduced snow cover duration	М	neg	Falk and Vieru (2017)
		Caucasus and M	iddle East			
Central Caucasus	Snow avalanche	Increased risk of large avalanches	Glacier decline, change in snow conditions	м	neg	Aleynikov et al. (2011) Volodicheva et al. (2014)
Central Caucasus	Floods	Increased risk of outburst floods	Glacier decline, permafrost thaw (impact on ground instability)	М	neg	Petrakov et al. (2012) Chernomorets et al. (2018)
Western Caucasus	Tourism	Ski tourism	Reduction of snow cover duration	М	neg	Sokratov et al. (2014)
		North As				
Russia (Altai mountains)	Terrestrial ecosystems (tundra)	Soil properties, plant, fungi and microbial communities develop during primary succession	Glacier retreat	Н	mixed	Cazzolla Gatti et al. (2018)
		Southern A				
Central Chile	Water resources	Reduced water supply reserves	Reduction and melt/collapse of rocky glaciers	L/M	neg	Navarro et al. (2018)
Patagonia	Glacier lakes	Increase in size and number of glacier lakes; risk of outburst floods (e.g., at new locations)	Glacier decline	Н	neg	Navarro et al. (2018); Wilson et al. (2018) Colavitto et al. (2012)
Central Chile	Floods	Increase in maximum annual flow	Snow and glacier melt, shifts in peak flow (increasing)	М	neg	Pizarro et al. (2013)
Chilean and Argentinean Andes	Floods	Increase in GLOF frequency, partially due to glacier shrinkage and lake growth	Glacier decline	М	neg	Anacona et al., (2015a)
Chile	Agriculture	Increased water availability for irrigation and agricultural yields	Increased runoff due to more glacier melt	М	pos	Young et al. (2010)
Chilean Patagonia	Freshwater ecosystem	Spawn rates for certain fish species negatively affected (some of great commercial value for the region)	Changes in water temperature and salinity due to changing ice and snow melt	L/M	neg	Landaeta et al. (2012)

Chapter 2 Supplementary Material

Location	Affected sector or system	Impact	Cryosphere change	Attribution confidence	Positive/ negative/ mixed	Reference
		Low Latitu				
Cordillera Blanca, Peruvian Andes	Water resources	Drinking water supply in rural areas	Reduced glacier contribution to groundwater which maintains springs	н	neg	Baraer et al. (2012)
Peruvian Andes	Agriculture	Negative impact on crops, pastures and livestock	Reduced runoff due to glacier retreat	М	neg	Mark et al. (2010); Bury et al. (2011)
Central Andes (Bolivia, Peru)	Terrestrial ecosystems (tundra)	Constrained plant primary succession	Glacier retreat	М	neg	(Zimmer et al., 2018)
Northern Andes (Ecuador)	Terrestrial ecosystems (tundra)	Upward shifts of vegetation zones and maximum elevation of species	Glacier retreat	L/M	pos	Morueta-Holme et al. (2015)
Ecuador	Freshwater ecosystems	Decrease in regional biodiversity	Reduced runoff due to glacier decline	М	neg	Milner et al. (2017)
Ecuador	Freshwater ecosystems	Downstream shift of macro-invertebrates	Reduced runoff due to glacier decline	М	pos	Jacobsen et al. (2014)
Tropical Andes	Tourism	Closure of a ski resort	Glacier disappearance, reduced snow cover	н	neg	Kaenzig et al. (2016)
Peruvian Andes	Culture	Spiritual value: concern among local residents who seek to restore relations with the local mountain deity	Glacier retreat and lesser snowmelt on a major mountain have reduced flow in a river	н	neg	Stensrud (2016)
Ecuadorian Andes	Culture	Loss of indigenous knowledge, especially among youth and children, in a setting where such knowledge is closely linked to the physical presence of the glacier	Glacier decline and disappearance	м	neg	Rhoades et al. (2008)
Peruvian Andes	Culture	Spiritual value: the site of a major pilgrimage was altered, making it more difficult for pilgrims to access the site, and creating distress and concern for them	Glacier retreat	Н	neg	Allison (2015)
Peruvian Andes	Migration	Emigration and increased wage labour migration: Glacier runoff used to irrigate pasture, so herders increased their temporary migration for wage labour opportunities; the greater propensity of younger adults to migrate alters the demographic composition of the herding community, with a larger proportion of elderly and female than previously	Reduced runoff due to glacier retreat and lesser snowmelt runoff	м	neg	Alata et al. (2018)
Bolivian Andes	Migration	Increased emigration and declines in the productivity of irrigated agriculture	Reduced runoff due to glacier retreat	м	neg	Brandt et al. (2016)
		High Mounta	_			
Nepal	Water resources	Drinking water supply in rural areas reduced	Glacier retreat and reduced snow cover	М	neg	McDowell et al. (2013)
Several regions	Hydropower	More/less water for hydropower depending on timing for different regions	Increased/decreased runoff due to glacier decline and change in snowpack	н	mixed	Lutz et al. (2016b)
Gilgit-Baltistan, Pakistan	Agriculture	Reduced water availability for irrigation of crops on a major mountain	Reduced runoff due to glacier retreat and less snowmelt	н	neg	Nüsser and Schmidt (2017)
Nepal	Agriculture	Reduction in quality of pasture, which reduces the capacity of the area to support livestock	Reduced snow cover duration	М	neg	Shaoliang et al. (2012)
Nepal	Agriculture	Decreased agricultural production	More erratic snowfall	М	neg	Gentle and Maraseni (2012)
Nepal	Agriculture	Less favourable potato planting conditions	Seasonally delayed snowfall	М	neg	Sujakhu et al. (2016)
Nepal	Agriculture	Reduced soil moisture, which reduces crop yield	Reduced snow cover	М	neg	Prasain (2018)
Pakistan	Agriculture	Irrigation	Reduced runoff due to glacier retreat	М	neg	Nüsser and Schmidt (2017)

Location	Affected sector or system	Impact	Cryosphere change	Attribution confidence	Positive/ negative/ mixed	Reference
Nepal	Agriculture	Reduced yields due drying of soils in winter and reduced moisture input in spring	Reduced snow cover	М	neg	Smadja et al. (2015)
Himalaya	Snow avalanche	Increase in occurrence of avalanches	Change in snow conditions (more wet snow conditions)	М	neg	Ballesteros-Cánovas et al. (2018)
Himalaya	Glacier lakes	Increase in size and number of glacier lakes	Glacier retreat	н	mixed	Frey et al. (2010); (Gardelle et al., 2011)
Himalaya	Glacier lakes	Risk of outburst floods (e.g., at new locations)	Glacier retreat led to increase in number and size of glacier lakes	Н	neg	Carrivick and Tweed (2016); Harrison et al. (2018); Veh et al. (2019)
Himalaya	Glacier lakes	Increased exposure of (growing) tourism/pilgrims to glacier lake outburst floods	Glacier retreat and lake formation	н	neg	Uniyal (2013)
Himalaya	Glacier lakes	Increase in exposure of hydropower plants to glacier lake outburst floods	Glacier retreat and lake formation	М	neg	Schwanghart et al. (2016)
China (Tibetan plateau, Hailuogou glacier)	Terrestrial ecosystems (forest)	Fungal community composition change during succession	Glacier retreat	Н	pos	Tian et al. (2017)
Quinghai-Tibetan Plateau	Carbon sequestration and nitrogen cycle (tundra)	Change in Net Ecosystem Exchange causes loss of carbon and nitrogen accompanied by extremely slow vegetation recovery	Permafrost thaw	Н	neg	Mu et al. (2017)
Himalayas (Ladakh)	Terrestrial ecosystems (tundra)	Decrease in dry-adapted plant cover	High snowfall and rapid freeze-thaw cycles	Н	mixed	Dolezal et al. (2016)
Tibetan Plateau	Alpine cold meadow (tundra)	Decline in alpine cold meadow vegetation	Permafrost thaw increases thickness of active layer	Н	neg	Wang et al. (2011)
Western Himalaya	Terrestrial ecosystems (tundra)	Herb species richness and abundance increases in treeline ecotone with earlier snowmelt	Earlier snow melt	M/H	pos	Adhikari (2018)
Northern China, Northwest China, Tibetan Plateau	Terrestrial ecosystems (forest)	Greater tree growth in regions with more snow; no effect of snow where snow accumulation is low	Snow accumulation	н	mixed	Wu et al. (2018)
Tibetan Plateau	Terrestrial ecosystems (tundra)	Greenness change for alpine meadow and alpine steppe across much of the Plateau	Permafrost presence or absence; soil moisture	М	mixed	Wang et al. (2016)
Greater Himalayan range and the Tibetan Plateau	Rangeland vegetation (tundra)	Changes in growing season (including shortening in dry areas), vegetation phenology, and lowered soil moisture	Shifted snow season	Н	mixed	Paudel & Andersen (2013)
Himalayas	Northern Hemisphere vegetation cover including tundra	Increased growing-season productivity and soil moisture ("greening")	Changes in snow cover	Н	pos	Wang et al. (2018)
Himalaya and Tibetan Plateau	Tourism	Changes in access routes to Baishui Glacier No. 1	Glacier retreat	М	neg	Wang et al. (2010)
Bhutan	Tourism	High elevation trekking: trails damaged and trekking routes limited	Increased runoff due to increased snowmelt and glacier melt	М	neg	Hoy et al. (2016)
Tibet	Culture	Spiritual value: a number of sacred mountains are altered, causing distress for the local population, who view this change as the product of their own spiritual and moral failings	Glacier retreat	М	neg	Salick et al. (2012)
Tibetan Plateau	Culture	Aesthetic value of glaciers reduced	Glacier surfaces have become dirtier	М	neg	Wang et al. (2017a)

Location	Affected sector or system	Impact	Cryosphere change	Attribution confidence	Positive/ negative/ mixed	Reference			
Uttarakhand, India	Culture	Spiritual value – rising concern for local population who view the changes in sacred mountains as the product of their own religious and moral failings	Glacier retreat	М	neg	Drew (2012)			
Nepal	Culture	Causing people to experience concern about divine beings and proper rituals	Reduced snow cover	М	neg	Becken et al. (2013)			
Nepal	Migration	Increased emigration due to declining irrigation water and agricultural yields	Reduced runoff due to less snow cover	М	neg	Prasain (2018)			
	New Zealand, Japan, Other								
New Zealand	Landslides	Rock avalanches from lower permafrost limit	Thaw/degradation of permafrost	М	neg	Allen et al. (2011)			
New Zealand	Freshwater ecosystems	Loss of cold tolerant taxa	Reduced runoff due to glacier decline	М	neg	Cadbury et al. (2010)			
Japan (Taisetsu Mountains, Hokkaido)	Terrestrial ecosystems (tundra)	Changes in vegetation structure (shrubs & forbs)	Accelerated snow melt and drier soil conditions	М	mixed	Amagai et al. (2018)			
Japan (Taisetsu Mountains, Hokkaido)	Terrestrial ecosystems (forest)	Plant (bamboo) encroachment into alpine zones	Changes in soil water dry-down rates associated with snowmelt	М	pos	Winkler et al. (2016)			
New England, northeast USA	Tourism	Closure of ski resorts	Reduced snow fall and snow cover	н	neg	Beaudin and Huang (2014); Hamilton et al. (2003)			

SM2.9 Details of Studies on Adaptations in Response to Cryosphere Changes

Table SM2.12 | Documented individual adaptation actions, per country (grouped by regions as defined in Figure 2.1), for sectors addressed in this chapter, i.e., Agriculture, Biodiversity, Water, Energy, Natural Hazards (Hazards), Tourism & recreation (Tourism), Settlements & habitability (Habitability), Intrinsic & cultural values (Cultural). 'Other' is a merged category for other sectors and 'Undefined' refers to adaptation where no clear classification to a specific sector could be allocated. The adaptations are listed across their scale of relevance and/or implementation (Local, Regional, Global), as well as classification of type of adaptation as either 'formal policy', 'autonomous' or 'undefined'. Key climatic drivers are listed that have links to (or changes in) cryosphere changes are described, which include: Temperature change 'Temperature'; Precipitation change in terms of amount and timing ('Precip. (amount, timing)'); Precipitation change in terms of changes in state (e.g., snow to rain) ('Precip. (phase)'); Glacier change where non-hydrological impacts were associated ('Glacier (non-hydro)'); Glacial hydrology change ('Glacier (hydro)'); Snow cover change where non-hydrological impacts were associated with a hydrology change ('Snow (hydro)'); 'Permafrost thaw'; and ecosystem changes in terms of flora and/or fauna ('Ecosystem'). Entries for each region are sorted in alphabetical order of the references.

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference			
	Alaska								
USA	Undefined	Multi-stakeholder adaptation planning exercise	Regional	Undefined	Snow (non-hydro), Ecosystem	Knapp et al. (2014)			
			Caucasus and M	iddle East					
Russia	Hazards	Instillation of GLOF (glacial lake outburst flood) early warning system	Regional	Formal Policy	Glacier (hydro), Extremes (hydro)	Petrakov et al. (2012)			
			Central Eu						
	Water	Efforts of ACQWA projects to address vulnerability associated with hydrological changes	Regional		Temperature, Precip. (amount, timing), Glacier (hydro)	Beniston et al. (2011)			
	Flooding/hazards planning – Water, Third Rhone Correction Hazards Flooding/hazards planning – MINERVE MINERVE	5 1 5	– Local, Regional	Formal Policy					

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference	
Switzerland, Italy, Chile, Kyrgyzstan	Agriculture, Energy, Water	Impact assessment for adaptation planning	Global	Undefined	Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, non-hydro), Permafrost thaw	Beniston and Stoffel (2014)	
		Artificial snow production					
		Nocturnal skiing	-				
		Protection and conservation of snowpack		Autonomous		Campos Rodrigues et al. (2018)	
Spain	Tourism	Diversification of snow-based activities	Regional		Temperature, Precip. (amount, timing), Snow (non-hydro)		
		Expansion of skiable area					
		Accessing economic assistance (government & insurance)					
		Turning ski resorts into multi-recreation facility					
France	Tourism, Hazards	Installation of ladders	Local	Autonomous	Temperature, Glacier (non-hydro, hydro), Permafrost thaw	Duvillard et al. (2015)	
Austria	Tourism	Cover ski runs with textile to reduce ablation Grooming ski slopes	Local	Autonomous	Snow (non-hydro)	Fischer et al. (2011)	
Switzerland		Cover snow with sawdust			Temperature, Precip. (amount,		
Italy	Tourism	to preserve for skiing	Regional	Autonomous	timing), Snow (non-hydro)	Grünewald et al. (2018)	
	Tourism	Installing a hanging bridge across the deep gorge to allow mountain access	Local	Autonomous	Glacier (hydro), Snow (hydro), Extremes (hydro), Permafrost thaw	Haeberli et al. (2016)	
Switzerland	Hazards	Installation of early warning system	Regional	Undefined			
	Undefined	Project to support adaptation planning – NELAK		Formal Policy			
	Water	Lake level lowering	Hadefared	Undefined			
		Flood retention	Undefined				
	Water	Policy incentives for 'resilience- based' water infrastructure projects	Regional	Formal Policy	Temperature, Precip. amount, timing), Glacier (hydro), Snow (hydro)	Hill (2013)	
Switzerland		Shared water utility service to spread risks among stakeholders					
		Policy for reducing water use in periods of drought		Undefined	Show (ilyaro)		
		Artificial snow production			Temperature, Glacier (non-hydro, hydro), Snow (non-hydro), Permafrost thaw, Ecosystem	Hill et al. (2010)	
Switzerland	Tourism	Consortium for tourism planning and diversification	Undefined	Autonomous			
	Undefined	Project to support adaptation planning – CIPRA	Regional	Formal Policy			
Switzerland, France	Energy, Water	Glacier-fed rivers and climate change project – GLAC-HYDROECO-NET	Undefined	Formal Policy	Glacier (hydro), Ecosystem	Khamis et al. (2014)	
	Tourism	Establishment of Chamonix Department of Trail Maintenance	-		Formal Palia		
France	Tourism, Hazards	Construction of bridge to access to refuge on Mont Blanc		Formal Policy	Temperature, Glacier (non-hydro, hydro), Permafrost thaw	Mourey and Ravanel (2017)	
		Route modifications, opening trail connecting other refuges		Autonomous			
		Installation of ladders					

Chapter 2 Supplementary Material

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
Austria, Germany, Switzerland	Undefined	Assessment of adaptation knowledge and needs	Global	Formal Policy	Glacier (hydro), Snow (hydro), Extremes (hydro)	Muccione et al. (2016)
Austria		Switching to other tourism activities	Undefined	Undefined	Clasier (non hydro)	Orlove (2009b)
Austria, Switzerland	Tourism	Resorts covering glaciers			Glacier (non-hydro), Snow (non-hydro)	
Italy		Redistributing available snow				
Switzerland	Hazards	Creating hazard maps and restricting construction		Formal Policy	Glacier (hydro), Snow (non-hydro), Extremes (hydro)	
Spain	Tourism	Modelling how ski area change and tourism impacts in support of planning process	Undefined	Formal Policy	Temperature, Snow (non-hydro)	Pons-Pons et al. (2012)
	Tourism	Artificial snow production		Autonomous		
Spain	Undefined	Project to support adaptation planning – ESPON-CLIMATE	Undefined	Formal Policy	Snow (non-hydro)	Pons et al. (2014)
Austria	Tourism	Evaluation of impacts of climate change on alpine trails to support planning	Regional	Formal Policy	Glacier (hydro), Permafrost thaw	Ritter et al. (2012)
Austria	Tourism	Artificial snow production	Regional	Autonomous	Temperature, Snow (non-hydro)	Steiger and Mayer (2008)
			High Mounta	ain Asia		
India	Agriculture	Development of state action plan on climate change Hazard risk and vulnerability assessment to support planning	Regional	Formal Policy	Precip. (amount, timing), Glacier (hydro), Extremes (hydro)	Azhoni and Goyal (2018)
	Agriculture, Water	Spring water rejuvenation project	Local			
	Habitability	Building stone embankments to avoid flooding			Temperature, Precip. (amount, timing), Extremes (hydro)	-
	Other	Increase the range of crops covered under insurance				
	Undefined	Improving access to better technology in agriculture			Temperature, Precip. (amount, timing)	
		Capacity building for farmers for water efficient farm practice			Temperature,	
	Agriculture	Limiting cultivation Extremes (hydro)	Precip. (amount, timing), Extremes (hydro)			
	Agriculture,	Field bunding to control erosion			Temperature, Precip. (amount, timing)	
India	Water	Afforestation	Local	Undefined		Bhadwal et al. (2013)
		Promoting water efficient irrigation				
	Water	Construction of water harvesting				
		and storage structure				
		Increase public awareness of water conservation			Temperature, Precip. (amount, timing), Extremes (hydro)	
		Knowledge sharing exercises				
		Water conservation structure like dams, surface water bodies, field bunding				
		Water harvesting structures				

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
Tajikistan	Agriculture, Energy, Culture, Habitability, Water, Other	Stakeholder workshop providing information for adaptation planning	Undefined	Formal Policy	Temperature, Precip. (amount, timing), Glacier (non-hydro)	Bizikova et al. (2015)
		National Adaptation Programme of Action Nepal	-	Formal Policy	_	
		Local Adaptation Plan of Action				
		Research and monitoring of glacial lakes				
		Early warning systems				
		Disaster management systems			Snow (non hydro)	
	Undefined	Weather monitoring and forecasting	Regional		Snow (non-hydro), Extremes (hydro)	
Nepal		Snow and ice management training		Undefined		Byers et al. (2014)
		Alternative house construction strategies				
		Public awareness building				
		Firefighting training and equipment	-			
	Other	Insurance coverage and clothing for porters	Regional	Undefined	Snow (non-hydro), Extremes (hydro)	
	Agriculture	Nurseries and afforestation	5			
	Undefined	Labour migration		Autonomous	Glacier (hydro), Ecosystem	Christmann and Aw-Hassan (2015)
		Appointed villager to regularly check all glaciers	_			
		Opening a training centre for adaptation in mountain villages				
		Planting trees				
Tajikistan		Initiate a watershed development committee	-			
		Building water reservoir				
		Crop and livestock diversification				
	Agriculture loc and ada	Supporting education of local person in agriculture and engineering to increase adaptation capacity in community	- Local			
	Undefined	Participatory discussion of adaptation strategies for rangeland	-	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro)	
Uzbekistan	Agriculture	Establish pastoral user groups				
		Establish fenced seed isles for yearly natural seeding				
		Seasonal grazing management				
India	Water	Artificial glacier construction	Local	Autonomous	Temperature, Glacier (hydro)	Clouse (2014)
India	Water	Reservoirs built and snow fences installed to capture/ store snow in winter for use as irrigation in summer	Local	Autonomous	Snow (hydro)	Banerji and Basu (2010)

Chapter 2 Supplementary Material

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
India	Undefined	Moving to new location to escape perennial water scarcity Reduce overall hectare of cropland in production Shrink livestock holding to fit available pasturage	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro)	Clouse (2016)
	Habitability Habitability, Water	Snow barrier bands Building new irrigation canals and rerouting water		Formal Policy		
	Culture	Use of reservoirs to store water	Regional			
	Water	Evaluation of artificial ice reservoirs			Temperature, Glacier (hydro)	
India	Agriculture	Installation of improved water mills		Autonomous		Clouse et al. (2017)
	Agriculture, Water	Building ice stupa to store water	Local		Glacier (hydro), Snow (hydro)	
India	Agriculture	Government watershed improvement programs	Regional	Formal Policy	Glacier (hydro), Snow (hydro)	Dame and Nüsser (2011)
India	Undefined	Spread coal onto glaciers to ensure regeneration	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro)	Gagné (2016)
India, Nepal, Pakistan	Undefined	Collaborative adaptation research initiative – CARIAA	Regional	Formal Policy	Glacier (hydro), Snow (hydro)	Cochrane et al. (2017)
Nepal	Water	Multiple livelihood options to buffer against seasonal losses in one sector	Local	Autonomous	Precip. (amount, timing), Extremes (hydro, non-hydro)	Becken et al. (2013)
Nepal	Agriculture Undefined	Switching crop types Early warning systems and community-based flood management Training for flood preparedness and responses Using traditional remedies to rehabilitate victims of diseases Borrowing from neighbours	- Local	Autonomous	Precip. (amount, timing), Glacier (hydro), Extremes (non-hydro)	Dewan (2015)
		Vulnerable Group Feeding program Framework and strategy for disaster risk management National strategy for disaster risk management Flood risk reduction program Building tube wells for drinking water		Formal Policy		
	Water	Raising houses on stilts	Undefined	Undefined		
	Hazards	Funds to support social resilience				
China	Undefined	Policies to address the impact of permafrost degradation	Undefined Forma	- Formal Policy	Permafrost thaw	Fang et al. (2011)
		Special fund for climate change adaptation				
China	Undefined	Project to support adaptation planning – RECAST	Regional	Formal Policy	Precip. (amount, timing), Glacier (hydro)	Fricke et al. (2009)
China	Habitability	Relocation of settlement	Local	Autonomous	Extremes (hydro)	Diemberger et al. (2015)

2SM

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
China	Tourism	Assessment to support sustainable glacier tourism	Regional	Formal Policy	Temperature, Glacier (non-hydro)	Wang et al. (2010)
		Tourism diversification		Autonomous		
		Restricting tourism access		Formal Policy		
		Shifting to different seasonal pasture				
		Sharing pasture within community				
China	Agriculture	Cultivating fodder to feed in winter	Local	Autonomous	Temperature, Precip. (amount, timing),	Fu et al. (2012)
		Build small livestock sheds			Snow (non-hydro)	
		Selling new products				
		Pasture management activities				
	Agriculture, Water	Water saving irrigation measures		Formal Policy	Temperature	
China	Agriculture	Rotational grazing	Regional		Temperature, Precip. (amount, timing), Glacier (hydro)	Gao et al. (2014)
	Undefined	Fencing grassland and grass planting		Undefined		
Nepal	Hazards	GLOF early warning system		Formal Policy	Glacier (hydro), Extremes (hydro)	Kattelmann (2003)
	Agriculture	Creating community forest user groups			Temperature, Precip. (amount, timing), Extremes (hydro), Ecosystem	Gentle and Maraseni (2012)
		Reliance on traditional institutional arrangements	Local	Autonomous		
		Storage of grains				
		Purchasing irrigated land				
		Switch to new agriculture technology/crop types				
		Institutional support from Community Forest User Groups				
Nepal	Agriculture, Culture, Water	Transhumant pastoralism as adaptation strategy				
		Money lending				
		Cash saving				
	Undefined	Take loans in times of food scarcity				
		Reduce food intake	-			
		Migration/selling labour				
Kyrgyzstan	Agriculture, Energy, Water	Impact assessment for adaptation planning	Global	Undefined	Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, non-hydro), Permafrost thaw	Beniston and Stoffel (2014)
Kyrgyzstan	Agriculture	Introduction of new crops with lower water requirements	Local	Autonomous	Temperature, Glacier (hydro), Snow (hydro)	Hill et al. (2017)
Kyrgyzstan, Uzbekistan	Water	Establishment of centre for transboundary water governance	Regional	Formal Policy	Glacier (hydro)	Hoelzle et al. (2017)

Chapter 2 Supplementary Material

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
	Agriculture	Growing crops at higher altitudes Regulate agriculture and grazing rights to allow ecosystem recovery				
India	Agriculture, Culture	Storage and crop fodder Reliance on traditional knowledge	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro), Ecosystem	Ingty (2017)
		Diversify to tourism			Show (lydro), Ecosystem	
	Tourism	Migration State action plan on climate change	Regional	Formal Policy		
India	Habitability, Water	Evaluating efficacy of artificial glaciers	Local	Formal Policy	Glacier (hydro)	Nüsser et al. (2018)
	Hazards	Disaster risk reduction demonstration in schools	Local	Formal Policy	Temperature,	
India	Agriculture	Populating potato and peas		Undefined	Precip. (amount, timing), Glacier (hydro),	Kaul and Thornton (2014)
	Agriculture, Other	Insurance schemes for crops	Undefined	Formal Policy	Extremes (hydro)	
	Water	Participatory project to underpin adaptation planning	- Local	Formal Policy		
	Agriculturo	Plant less water-intensive crops				
India	Agriculture	Irrigate fields timeshare			Precip. (amount, timing),	Kelkar et al. (2008)
		Sell land and livestock			Glacier (hydro), Snow (hydro)	
	Undefined	Find other jobs				
		Take loans				
	Agriculture	Crop diversification		Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro), Extremes (hydro)	
Negal		Construction of greenhouses	Level			
Nepal	Agriculture, Tourism	Diversify to tourism, agropastoralism, agroforestry	Local			Konchar et al. (2015)
	Undefined	New roofing material				
Nepal	Agriculture	Changing crops and agricultural practices using Indigenous and local knowledge	Local	Autonomous	Temperature, Snow (non-hydro), Snow (hydro)	Manandhar et al. (2011)
Nepal	Tourism	Assessment of ecotourism as adaptation measure for conservation area	Regional	Undefined	Precip. (amount, timing, phase state), Extremes (non-hydro)	Adler et al. (2013)
Nepal	Habitability	Local relocation of settlement after decreased water supply	Local	Autonomous	Snow (hydro)	Barnett et al. (2005)
	Agriculture	Crop diversification			Temperature, Precip. (amount,	
Nepal	Undefined	Cross border trade and day labour trips	Local	Autonomous	timing), Snow (non-hydro)	Onta and Resurreccion (2011)
Nepal	Water	Lake lowering	Regional	Formal Policy	Extremes (hydro)	Orlove (2009b)
Nepal	Undefined	Project to support adaptation planning – Climate Witness Project Establishing a Designated National Authority	Regional	Formal Policy	Glacier (hydro), Snow (non-hydro), Extremes (hydro)	Rai and Gurung (2005)

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
Nepal	Undefined	Lake lowering Modelling impact of GLOF	Undefined	Formal Policy	Glacier (hydro), Extremes (hydro)	Somos-Valenzuela et al. (2015)
		to support planning Limiting water consumption to drinking and cooking requirements				
Nepal	Water	Roof water collection system	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro),	McDowell et al. (2013)
		Hire assistants to help with water retrieval activities			Extremes (hydro)	
	Undefined	Collecting fuelwood for heating				
Nepal, India	Hazards, Water	Bilateral Committee on Flood Forecasting	Regional	Formal Policy	Glacier (hydro), Snow (hydro), Extremes (hydro)	Lebel et al. (2010)
		Crop diversification				
India	Agriculture	Change timing of agricultural activities	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Snow	Meena et al. (2019)
		Agropastoralism to diversify livelihood			(hydro)	
		Changing agricultural patterns		Autonomous	Precip. (amount, timing), Glacier (hydro), Extremes (hydro)	
	Agriculture	Switching to other types of animal husbandry	Local			
		Adopt horticulture				
India		Establish forest councils and village forest committee				Maikhuri et al. (2017)
		Migration				
	Undefined	Take loans and insurance				
	Hazards	Instillation of GLOF early warning system	– Regional	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro), Extremes (hydro)	Meenawat and Sovacool (2011)
	Undefined	Lowering lake water levels				
Bhutan		Community awareness and capacity building activities				
		GLOF Risk Reduction Projects				
Bhutan, Nepal	Undefined	Assessment of adaptation knowledge and needs	Global	Formal Policy	Glacier (hydro), Snow (hydro), Extremes (hydro)	Muccione et al. (2016)
		India National Action Plan on Climate Change	Undefined		Temperature, Precip. (amount,	
India	Water	National Water Policy		Formal Policy	timing), Glacier (hydro),	Moors et al. (2011)
		Project to support adaptation planning – Highnoon	Regional		Extremes (hydro)	
		Crop diversification				
		Crop diversification				
		Agropastoralism to diversify livelihood			Temperature, Precip. (amount,	
India	Agriculture	Convert irrigated land into rainfed	Local	Autonomous	timing), Glacier (hydro), Ecosystem	Negi et al. (2017)
		Switching away from livestock rearing				
		Use of moisture conserving cropping techniques				
	Undefined	Migration			Extremes (hydro)	

Chapter 2 Supplementary Material

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
Pakistan	Habitability	Relocation after hazard event	Local	Autonomous	Extremes (hydro, non-hydro)	Kreutzmann (2012)
Pakistan	Water	Construction of water channels for irrigation and domestic water supply	Local	Autonomous	Glacier (hydro)	Nüsser and Schmidt (2017)
Pakistan	Undefined	Migration	Local	Autonomous	Glacier (hydro), Snow (hydro)	Parveen et al. (2015)
Pakistan	Undefined	Household renovations Precautionary savings	Local	Autonomous	Precip. (amount, timing), Glacier (hydro), Extremes (hydro, non-hydro)	Shah et al. (2017)
		Irrigation scheme/program				
Pakistan	Water	Poverty alleviation and physical infrastructure development program	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro)	Spies (2016)
Kyrgyzstan, Tajikistan, Uzbekistan, Kazakhstan	Undefined	Identification of steps for overcoming adaptation challenges – ACQWA project	Regional	Formal Policy	Temperature, Glacier (hydro), Snow (hydro)	Sorg et al. (2014b)
		Water user associations				
		Water allocation strategy	Regional	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro)	Stucker et al. (2012)
	Water	Water rationing				
		Water sharing				
		Integrate Integrated Water Resource Management (IWRM) principles into institutions	Local	Undefined		
Kyrgyzstan, Tajikistan		Clean and repair canals		Autonomous		
	Agriculture	Expand orchards				
		Do not plant a second crop				
		Crop diversification				
	Hazards	Early warning system				
	Undefined	IWRM project	Undefined	Formal Policy		
	Agriculture, Biodiversity, Energy, Hazards, Water	Development of sectoral adaptation plans				Xenarios et al. (2018)
Kazakhstan	Agriculture, Habitability, Water	Introduction of water saving technologies	Regional			
		Decrease livestock pressure on pasture			Glacier (hydro),	
	Agriculture	Realization of pasture management plans		Formal Policy	Snow (hydro), Extremes (hydro)	
		Establishment of the Public Seed Funds				
	Water	Development of water user associations		-		
Tajikistan	Agriculture, Biodiversity, Water	Environmental land management and rural livelihoods project	Local			

Image: state in the state in	Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
highlight Readed Excitation shared based and scale actualities International based based and scale actualities International based based and scale actualities International based based based and scale actualities International based based based based and scale actualities International based based based based and scale actualities International based based based based and scale actualities International based based based based based based and scale actualities International based		Hazards,			Formal Policy		
Image: series of the stand protecting particles of the stand protecting for the stand protecting f		Habitability	Infrastructure improvements				
Handform Finance of voluments of the same of voluments of the same of voluments of the same of voluments of the same of voluments of voluments of voluments (voluments) Present of voluments) Present of voluments (voluments) Present of voluments) Present of voluments Present of volume	Tajikistan		Developing evacuation maps	Local			
index index <th< td=""><td></td><td>Hazards</td><td>J. J. J</td><td></td><td>Autonomous</td><td></td><td></td></th<>		Hazards	J. J		Autonomous		
Biodiversity Agriculture Byggszehn Water Biodiversity Agriculture Water Regional anangements Regional booling anangements Regional booling ananagements Regional booling anangements			-			-	Xenarios et al. (2018)
Kazakton (synystame hysikatian kysynystame hysikatian kysynystame hysikatian kysynystame hysikatian Agriculture karakton kysynystame hysikatian Sourowledge situant kaskton konvoledge situant konvoledge s		Biodiversity,	-	Regional		Extremes (hydro)	
Agriculture, Wester Decumentation, dissemination local Leal Lead	Kyrgyzstan,	Hazards,		Negional	Formal Policy		
Belivia Undefined Migration Local Autonomous Glacker (hydro) Brank et al. (2017) Bolivia Vater Construction of reservoirs for water storage Regional Formal Policy Temperature, Precip. (amount tomperature, Glacker (hydro) Representation of the service of the storage Representation of the water storage Representation of the storage	ing not set	-	and preservation of local knowledge relevant	Local			
Bolivia Water Construction of reservoirs for water storage Regional Formal Policy Temperature, Precip (amount timing), Glacier (hydro) Buytaert et al (2017) Bolivia Undefined Migration Local Autonomous Temperature, Precip (amount timing), Glacier (hydro) Kenzig (2015) Bolivia Toutism Rebranding the loss of glacier chance tourism' Regional Autonomous Temperature, Precip (amount timing), Snow (hydro) Kenzig et al (2016) Bolivia Toutism Rebranding the loss of glacier chance tourism' Regional Autonomous Temperature, Precip (amount timing), Snow (hydro) Kenzig et al (2016) Bolivia Agriculture Switching to cash crops Autonomous Temperature, Precip, (amount timing), Snow (hydro), Prema- sonaliable Kenzig et al (2016) Bolivia Might irrigation comunity members Might irrigation conunally members Autonomous Temperature, Precip, (amount timing), Snow (hydro), Prema- premafros thaw, Ecosystem Bolivia Undefined Migration Local Autonomous Glacier (hydro) Yager 2015) Bolivia Undefined Magriculture lacidares for project to support adaptation planning – REA P		-		Low Latitudes	(Andes)		
Bolivia Water water storage Regional Formal Policy stmingl, Glader (hydro) Buytaert et al. (2017) Bolivia Indefined Migration Local Autonomous Temperature, Glader (hydro) Rearading the loss of glader (hydro)	Bolivia	Undefined	Migration	Local	Autonomous	Glacier (hydro)	Brandt et al. (2016)
Bolivia Undefined Migration Local Autonomous Snow (hydro), Extremes (hydro) Kaenzig (2015) Bolivia Tourism Rebranding the loss of glacies chance tourism' Regional Autonomous Imperature, Precip. (amount, timily). Snow (hydro) Kaenzig et al. (2016) Agriculture Might infigation Precipient on early towns Preprinting the loss of glacies Regional Kaenzig et al. (2016) Bolivia Agriculture Migrating to early towns Preprinting the loss of glacies	Bolivia	Water		Regional	Formal Policy		Buytaert et al. (2017)
Bolivia Tourism as an opportunity for 'last chance tourism' Regional Autonomous Imperature, Prece, (anound timing), Show (hydro) Kaenzig et al (2016) Bolivia Agriculture Switching to cash crops Autonomous Imperature, Prece, (anound timing), Show (hydro) Kaenzig et al (2016) Bolivia Agriculture Might irrigation is available Imperature, Precip, (anount, timing), Glacier (hydro), Show (hydro), Extremes (hydro), Permafrost thaw, Ecosystem MeDowell and Hess (2012) Bolivia Migrating to nearby towns Local Autonomous Glacier (hydro), Show (hydro), Extremes (hydro), Permafrost thaw, Ecosystem Yage (2015) Bolivia Vater Project to support adaptation planning – PPCR Autonomous Glacier (hydro) Yager (2015) Bolivia Mater Project to support adaptation planning – PRA Project to support adaptation planning – NAA Fermal Policy Fermal Policy Temperature, Ecosystem Huggel et al. (2015) Bolivia Bioliversiny Water Project to support adaptation planning – MACico Colombiano Water Project to support adaptation planning – MACico Colombiano Prevecto Glaciares; PACC Fermal Policy Fermal Policy Huggel et al. (2015) Peruticipation planni	Bolivia	Undefined	Migration	Local	Autonomous	Snow (hydro), Extremes	Kaenzig (2015)
Agriculture Night irrigation is available Night irrigation is available Night irrigation is available Autonomous Autonomous Temperature, Precip. (amount, timing), Glacier (hydro), Scow (hydro), Extremes (hydro), Permafrost thaw, Ecosystem McDowell and Hess (2012) Bolivia Migrating to nearby towns to work Inclusion Sharing work between community members Autonomous Glacier (hydro), Extremes (hydro), Permafrost thaw, Ecosystem McDowell and Hess (2012) Bolivia Undefined Mgration Local Autonomous Glacier (hydro) Yager (2015) Bolivia Undefined Mgration Local Autonomous Glacier (hydro) Yager (2015) Bolivia, Colombia Agriculture, Habitability Water Project to support adaptation planning - PRA Fermal Policy Fermal Policy Fermal Policy Fermal Policy Fermal Policy Haugel et al. (2015) Peru Agriculture, Haards, Water Project to support adaptation planning - NAP Project to support adaptation planning - Maizacolombiano Proyecto Glaciaers; PACC Fermal Policy Fermal Policy Fermal Policy Haugel et al. (2015) Haards, Project to support adaptation planning - NAP Agriculture, Project to support a	Bolivia	Tourism	as an opportunity for 'last	Regional	Autonomous		Kaenzig et al. (2016)
PerformationDefaulting until irrigation is availableDelay planting until irrigation is availableLocalAutonomousTemperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro), Externes (hydro), Permafrost thaw, EcosystemMcDowell and Hess (2012)BoliviaUndefinedMigrating to nearby towns to workLocalAutonomousGlacier (hydro)McDowell and Hess (2012)BoliviaUndefinedMigrationLocalAutonomousGlacier (hydro)Yager (2015)BoliviaUndefinedMigrationLocalAutonomousGlacier (hydro)Yager (2015)BoliviaWaterProject to support adaptation planning – PPCRProject to support adaptation planning – INAPProject to support adaptation planning – INAPUndefinedFremperature, EcosystemHuggel et al. (2015)Bolivia, ColombiaAgriculture, Habratoli, WaterProject to support adaptation planning – INAPUndefinedFremperature, EcosystemHuggel et al. (2015)PeruMagriculture, Habratoli, WaterProject to support adaptation planning – Marzo ColombianoUndefinedFremperature, EcosystemHuggel et al. (2015)PeruMagriculture, Hazards, WaterProject to support adaptation planning – Marzo ColombianoProject to support adaptation planning – Proyecto Glaciares; PACCTemperature, Extremes (hydro)Huggel et al. (2015)PeruMagriculture, Hazards, WaterProject to support adaptation planning – Proyecto Glaciares; PACCTemperature, Extremes (hydro)Temperature, Extremes (hydro) <td></td> <td></td> <td>Switching to cash crops</td> <td></td> <td rowspan="5">Autonomous</td> <td rowspan="6">timing), Glacier (hydro), Snow (hydro), Extremes (hydro),</td> <td></td>			Switching to cash crops		Autonomous	timing), Glacier (hydro), Snow (hydro), Extremes (hydro),	
BoliviaImage: Image: Image		Agriculture	Night irrigation				
Bolivia Ludefined Migrating to nearby towns to work Local Autonomous (hydro), Extremes (hydro), Permafrost thaw, Ecosystem MCDowell and Hess (2012) Bolivia Undefined Migrating to nearby towns to work Local Autonomous (hydro), Extremes (hydro), Permafrost thaw, Ecosystem MCDowell and Hess (2012) Bolivia Undefined Migrating to nearby towns sessement to inform adaptation Local Autonomous Glacier (hydro) Yager (2015) Bolivia, Colombia, Ecuador, Peru Migrating Project to support adaptation planning – PRA Local Autonomous Glacier (hydro) Yager (2015) Bolivia, Colombia, Ecuador, Peru Agriculture, Habitability, Water Project to support adaptation planning – PRAA Project to support adaptation planning – MACO Project to support			,, , , ,				
Indefined Participatory vulnerability assessment to inform adaptationCommunity membersPerticipatory vulnerability assessment to inform adaptationBoliviaUndefinedMigrationLocalAutonomousGlacier (hydro)Yager (2015)Bolivia, Colombia, Ecaudor, PeruVaterProject to support adaptation planning – PPCRFroject to support adaptation planning – PPCRFroject to support adaptation planning – PPAAFroject to support adaptation planning – PRAAFroject to support adaptation planning – NAPFormal PolicyFuger at a support adaptation planning – INAPColombia, Ecaudor, PeruAgriculture, Habitability, WaterProject to support adaptation planning – INAPIndefinedFormal PolicyFormal PolicyBiodiversity, WaterProject to support adaptation planning – INAPProject to support adaptation planning – INAPFormal PolicyFormal PolicyFormal PolicyPeruAgriculture, Hazards, WaterProject to support adaptation planning – Proyecto Glaciares; PACCProject to support adaptation planning – Project to support adaptation planning – Project to support adaptation planning – NAPFormal PolicyPeruAgriculture, Hazards, WaterProject to support adaptation planning – Project of Glaciares; PACCProject to support adaptation planning – Project of support adaptation planning – Project of Glaciares; PACCTemperature, Extermes flowdrow	Bolivia		to work	Local			
Image: constraint		Undefined	community members				
BoliviaWaterProject to support adaptation planning – PPCRBolivia, Colombia, Ecuador, PeruAgriculture, Biodiversity, WaterProject to support adaptation planning – PRAAProject to support adaptation planning – PRAAAgriculture, Habitability, WaterProject to support adaptation planning – INAPProject to support adaptation planning – INAPProject to support adaptation planning – INAPProject to support adaptation planning – Macizo ColombianoProject to support adaptation planning – Macizo Colombiano							
Bolivia Water planning – PPCR Bolivia, Colombia, Ecuador, Peru Agriculture, Biodiversity, Water Project to support adaptation planning – INAP Project to support adaptation planning – INAP Formal Policy Temperature, Ecosystem Huggel et al. (2015) Biodiversity, Water Project to support adaptation planning – INAP Undefined Formal Policy Temperature, Ecosystem Huggel et al. (2015) Biodiversity, Water Project to support adaptation planning – Peru Project to support adaptation planning – Neverto Glaciares; PACC Formal Policy Temperature, Extremes (hydro)	Bolivia	Undefined	Migration	Local	Autonomous	Glacier (hydro)	Yager (2015)
Colombia, Ecuador, PeruBiodiversity, WaterProject to support adaptation planning - PRAAProject to support adaptation planning - INAPProject to support adaptation planning - Macizo ColombianoProject to support adaptationProject to support adap	Bolivia	Water					
Habitability, Water Project to support adaptation planning – INAP Undefined Formal Policy Temperature, Ecosystem Huggel et al. (2015) Biodiversity, Water Project to support adaptation planning – Macizo Colombiano Undefined Formal Policy Huggel et al. (2015) Peru Agriculture, Hazards, Water Project to support adaptation planning – Proyecto Glaciares; PACC Formal Policy Temperature, Ecosystem Huggel et al. (2015) Hazards, Hazards, Project to support adaptation planning – Proyecto Glaciares; PACC Temperature, Extremes (hydro) Temperature, Extremes (hydro)	Colombia,	Biodiversity,					
Biodiversity, Water Project to support adaptation planning – Macizo Colombiano Agriculture, Hazards, Water Project to support adaptation planning – Proyecto Glaciares; PACC Hazards, Project to support adaptation Hazards, Project to support adaptation	Colombia	Habitability,		Undefined	Formal Policy	Temperature, Ecosystem	Huggel et al. (2015)
Hazards, Water adaptation planning – Proyecto Glaciares; PACC Hazards, Project to support adaptation		-			,		Huggei et al. (2015)
Hazards, Project to support adaptation (hydro)	Peru	Hazards,	adaptation planning –				

Chapter 2 Supplementary Material

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
Ecuador	Agriculture, Hazards, Other	Climate Change Action Plan	Undefined	Formal Policy	Temperature, Precip (amount, timing), Extremes (hydro)	Anguelovski et al. (2014)
Ecuador	Water	Construction of infrastructure to transfer water between basins	Regional	Formal Policy	Temperature, Precip (amount, timing), Glacier (hydro)	Buytaert and De Bièvre (2012)
Peru, Chile	Water	Establishment of adaptation plan	Regional	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro)	Mills-Novoa et al. (2017)
Colombia, Peru	Undefined	Assessment of adaptation knowledge and needs	Global	Formal Policy	Glacier (hydro), Snow (hydro), Extremes (hydro)	Muccione et al. (2016)
Peru	Undefined	Migration	Local	Autonomous	Glacier (hydro)	Alata et al. (2018)
Peru	Water	National Water Authority	Local	Formal Policy	Temperature, Glacier (hydro)	Bury et al. (2013)
	Undefined	GLOF assessment				
	Habitability, Water	GLOF prevention program through monitoring and engineering projects			Temperature, Extremes (hydro)	
Peru		Initiation of GLOF assessment program	Regional	Formal Policy		Carey et al. (2012)
	Water	Installation of floodgates to control water level			Glacier (hydro), Extremes (hydro)	
		National System of Hydrological Resource Management				
Peru	Water	Project to support adaptation planning – CGIAR	Regional	Formal Policy	Glacier (hydro)	Condom et al. (2012)
Peru	Agriculture, Biodiversity, Culture, Tourism, Water		Local	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro)	Doughty (2016)
Peru	Agriculture	Crop diversification	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro)	Doughty (2016)
Peru	Water, Hazards	Potential for multi-purpose projects to address GLOFs and water availability	Regional	Undefined	Glacier (hydro), Extremes (hydro)	Drenkhan et al. (2019)
Peru	Undefined	Project to support adaptation planning – CONAM + IGP	Regional	Formal Policy	Glacier (hydro)	Lagos (2007)
	Undefined	Project to support adaptation planning – Adapts project				
	Agriculture, Biodiversity	Protection of upstream forests	Regional			
	Water	Surface storage dams		-	Temperature,	
Peru		Low-cost gravity drip irrigation system		Formal Policy	Precip. (amount, timing), Glacier (hydro),	Lasage et al. (2015)
	Agriculture	Changing the frequency of irrigation	Local		Giacler (nydro), Snow (hydro)	
		Crop diversification				
	Water	Water harvesting using roof-water systems				

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
Peru	Undefined	Establish an integrated regional database on natural resources, climate, and vulnerability Align the national and regional institutional and legal frameworks to deal with the expected effects of climate change Integrated management of reforestation, soil conservation, terrace management, monitoring systems, and capacity building National Climate Change Strategy	Regional	Undefined	Temperature, Precip. (amount, timing), Glacier (hydro),	Lee et al. (2014)
	Water	Construction of small structures for water storage and distribution and improved management of irrigated areas			Extremes (hydro)	
	Hazards	Integrating existing early warning systems to enhance emergency management				
	Agriculture	Conserving native crop varieties Pest management practices Improved pastures and fodder				
Peru	Agriculture	conservation practices Reducing planting activities	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro)	Lennox and Gowdy (2014)
Peru	Agriculture	Crop diversification Moving to livestock-based	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Extremes (hydro)	Lennox (2015)
		economy to sell milk rather than planting crops			Precip. (phase state)	
Peru	Agriculture	Livestock, land, and labour diversification Economic diversification	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Extremes (hydro), Permafrost thaw	Lopez-i-Gelats et al. (2015)
Peru	Agriculture, Energy	Project to support adaptation planning – PROCLIM	Regional	Formal Policy	Precip. (amount, timing), Extremes (hydro)	Orlove (2009a)
Peru	Agriculture	Line irrigation canals with cement and install plastic pipes	Local	Autonomous	Glacier (hydro), Snow (hydro)	Orlove et al. (2019)
Peru	Undefined	Glacier change assessment in support of adaptation planning	Undefined	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro)	Peduzzi et al. (2010)
Peru	Agriculture	Changing agricultural calendar Increasing pesticide use Crop diversification Cultivating in furrows Burning shrubs, grass, manure to generate heat Increasing livestock mobility	Local	Autonomous	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (non-hydro), Extremes (hydro), Ecosystem	Postigo (2014)
	Water	Water boards regulating water			Temperature, Precip. (amount,	
Peru	Agriculture	Pasture rotation Creating irrigation channel	Local	Autonomous Formal Policy	timing), Glacier (hydro), Snow (hydro), Ecosystem	Postigo et al. (2008)
Peru	Water	Hillside infiltration systems in grasslands	Regional	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro)	Somers et al. (2018)

Chapter 2 Supplementary Material

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
		Election of water allocator	Local	Autonomous		
Peru	Water	Making micro dams	Undefined	Formal Policy	Glacier (hydro), Extremes (hydro)	Stensrud (2016)
		Installing water pipes	Regional	· · · · · · · · · · · · · · · · · · ·		
Peru	Water	Migration to towns for work	Local	Autonomous	Glacier (hydro), Extremes (hydro)	Wrathall et al. (2014)
		Livelihood diversification				
	Agriculture	Getting grazing rights to other areas				
		Agricultural and crop diversification		Autonomous	Precip. (amount, timing),	
Peru	Water	Timed allocation of water flow to individuals	Local	Autonomous	Glacier (hydro), Extremes (hydro)	Young and Lipton (2006)
	Undefined	Seeking foreign funding, skills, attention for help				
	Other	Migration				
	Biodiversity	Conservation corridor		Formal Policy		
			New Zeal	and		
		Constructing cantilevered				
New Zealand	Tourism	bridge to the glacier	– Regional	Autonomous	Temperature, Precip. (amount, timing), Glacier (non-hydro)	Espiner and Becken (2014)
		Using boats to ferry tourists after glacial lake appeared				
	Tourism	Artificial snow production	– Regional	Autonomous		Hopkins and Maclean (2014)
		Transitioning to year-round tourism			Snow (non-hydro)	
New Zealand		Forming conglomerate business ventures				
		Developing new ski slopes				
New Zealand	Tourism	Assessment of stakeholder perceptions for adaptation planning	Regional	Formal Policy	Glacier (non-hydro), Snow (non-hydro)	Stewart et al. (2016)
		for adaptation planning	Scandina	wia		
			Scanuma	IVIA		
		Changing activities at ski area				
		Changing time of use of ski area				
Norway	Tourism	Changing ski areas within Norway	Regional	Autonomous	Temperature, Precip. (amount, timing), Snow (non-hydro)	Demiroglu et al. (2018)
		Artificial snow production				
		Salting glacier surface				
Norway	Tourism	Diversifying locations of tourism activity	Undefined	Autonomous	Glacier (non-hydro)	Furunes and Mykletun (2012)
Norway	Energy	Water resource and energy directorate	Undefined	Formal Policy	Glacier (hydro)	Orlove (2009a)
			Southern A			
Chile	Undefined	Participatory project to identify adaptive options	Regional	Formal Policy	Precip. (amount, timing), Snow (hydro)	Aldunce et al. (2016)
Chile	Habitability	Local relocation of settlements after GLOF event in 1977	Local	Formal Policy	Extremes (hydro)	Anacona et al. (2015b)

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference
Chile	Agriculture, Energy, Water	Impact assessment for adaptation planning	Global	Undefined	Temperature, Precip. (amount, timing, phase state), Glacier (hydro), Extremes (hydro, non-hydro), Permafrost thaw	Beniston and Stoffel (2014)
	Agriculture	Provide financing and subsidies to farmers				
		Declaration of drought zones				
		Water data system improvement	Regional	Formal Policy	Temperature, Precip. (amount,	
Chile		Water transfer using trucks			timing), Glacier (hydro), Snow	Clarvis et al. (2014)
	Water	Dam construction			(non-hydro), Snow (hydro)	
		Traditional water distribution strategies	Local	Autonomous		
		Crop diversification				
		Water allocation policy				
		Infrastructure to support irrigation security			Temperature, Glacier (hydro), Snow (hydro)	Hill (2013)
		Policies for drought periods		Formal Policy		
Chile	Water	Policy to improve irrigation efficiency	Regional			
		Policy for better water resources management under increasing scarcity				
		Water allocation policy		Autonomous		
	Undefined	Reinforcing doors and roofs	Local	Autonomous		Young et al. (2010)
		Couples do not marry to receive subsidy to increase portable water			Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro)	
	Agriculture	Migration to areas with more vegetation				
		Companies using more efficient irrigation systems	Undefined	Autonomous		
		Public funds made available to improve irrigation efficiency	Regional	Formal Policy		
		Companies securing water rights	Undefined	Autonomous		
Chile		Creating water storage ponds				
		Subsidies made available for single mother for water payments	Local	Formal Policy		
	Water	Reducing intake of water canals		Autonomous		
		Reduce water use and seize water rights				
		Policy to extend water access	Regional			
		Constructing water canals and pool structures	. regional	Formal Policy		
	Hazards	Municipal Emergency Committee provides alerts for harsh seasons				
Peru, Chile	Water	Adaptation plan for water management	Regional	Formal Policy	Temperature, Precip. (amount, timing), Glacier (hydro), Snow (hydro)	Mills-Novoa et al. (2017)

Chapter 2 Supplementary Material

Region country	Sector	Description of adaptation	Scale of relevance/ implementation	Type of adaptation	Climatic driver of adaptation	Reference	
		Baseline assessment to support adaptation – SSHRC			Temperature,		
Argentina, Chile, Bolivia	Undefined	Baseline assessment to support adaptation – IAI	Regional	Formal Policy	Glacier (hydro), Snow (hydro),	Montana et al. (2016)	
		Baseline assessment to support adaptation – CLACSO-CROP			Extremes (hydro)		
Argentina	Habitability,	Glacier protection law Argentina	Regional	Formal Policy	Glacier (non-hydro, hydro)	Anacona et al. (2018)	
Chile	Water, Other	Glacier protection law Chile	Negional	Tormar Toncy			
			Western Canada	a and USA			
Canada	Tourism	Artificial snow production	Local	Undefined	Snow (hydro)	Da Silva et al. (2019)	
Canada	Hazards, Habitability	Creation of adaptation strategy	Local	Formal Policy	Temperature, Precip. (amount, timing), Extremes (hydro), Ecosystem	Picketts (2013)	
Canada	Hazards, Habitability	Creation of steering committee for adaptation planning	Local	Formal Policy	Temperature, Precip. (amount, timing), Extremes (hydro)	Picketts et al. (2016)	
Canada		Artificial snow production			Glacier (non-hydro), Snow (non-hydro)	Orlove (2009a)	
USA	Tourism	Creation of the Sustainable Slopes program	Undefined	Undefined			
USA	Undefined	Establishment of adaptation partnerships	Global	Formal Policy	Temperature, Precip. (amount, timing), Snow (hydro)	Halofsky et al. (2018)	
		Artificial snow production		Undefined	Snow (hydro)	Hagenstad et al. (2018)	
USA	Tourism	Diversification of tourism to other seasons/non-snow reliant	Local ant	Autonomous			
		Infrastructure to support fish and ranchers	Regional		Temperature, Glacier (hydro), Snow (hydro)		
USA	Undefined	Establishment of Tribal Climate Resilience Program		Formal Policy		McNeeley (2017)	
		Establishment of Climate Science Centers and Landscape Conservation Cooperative	Local		Show (iyulo)		
USA	Undefined	Assessment of adaptation knowledge and needs	Global	Formal Policy	Glacier (hydro), Snow (hydro), Extremes (hydro)	Muccione et al. (2016)	
USA	Tourism	Develop alternative tourism (local heritage, wildlife viewing)	Local	Autonomous	Glacier (non-hydro), Snow (non-hydro)	Orlove et al. (2019)	
USA	Habitability	Vulnerability analysis and adaptations strategy	Local	Formal Policy	Temperature, Precip. (amount, timing), Snow (hydro), Extremes (hydro)	Strauch et al. (2015)	
Iceland							
Iceland	Tourism, Hazards	Participatory planning to shift to safer glacier hiking routes	Local	Autonomous	Glacier (non-hydro)	Welling et al. (2019)	

References

- Addor, N. et al., 2014: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. *Water Resour. Res.*, 50(10), 7541–7562, doi:10.1002/2014wr015549.
- Adhikari, B.S., R. Kumar, and S.P. Singh, 2018: Early snowmelt impact on herb species composition, diversity and phenology in a western Himalayan treeline ecotone. *Trop. Ecol.*, **59**(2), 365–382. [Available at: http://www. tropecol.com/pdf/open/PDF_59_2/16%20Adhikari,%20Kumar%20&%20 Singh.pdf].
- Adler, C.E., D. McEvoy, P. Chhetri and E. Kruk, 2013: The role of tourism in a changing climate for conservation and development. A problem-oriented study in the Kailash Sacred Landscape, Nepal. *Policy Sci.*, 46(2), 161–178, doi:10.1007/s11077-012-9168-4.
- Alata, E., B. Fuentealba, J. Recharte, B. Fuentealba and J. Recharte, 2018: El despoblamiento de la Puna: efectos del cambio climático y otros factores. *Revista Kawsaypacha*, 2, 49–69, doi:10.18800/kawsaypacha. 201802.003.
- Albalat, A. et al., 2018: Climatic trends in snow observations in Andorra. In: International Snow Science Workshop Proceedings, Innsbruck, Austria, pp. 586–588. [Available at: http://arc.lib.montana.edu/snow-science/ item/2604].
- Alberton, M. et al., 2017: *Outlook on climate change adaptation in the Carpathian mountains.* United Nations Environment Programme, GRID-Arendal and Eurac Research, Nairobi, Vienna, Arendal and Bolzano, 54 pp. [Available at: http://www.grida.no/publications/381].
- Aldunce, P. et al., 2016: Unpacking resilience for adaptation: Incorporating practitioners' experiences through a transdisciplinary approach to the case of drought in Chile. *Sustainability*, 8(9), 905, doi:10.3390/su8090905.
- Aleynikov, A.A., N.A. Volodicheva, A.D. Oleynikov and D.A. Petrakov, 2011: Glacier and avalanche hazards in the recreational complex "Chegetskaya Polyana" in the Elbrus region, *Ice and Snow*, 2(114), 45–52. [Available at: https://istina.msu.ru/publications/article/6617514].
- Allen, S.K., S.C. Cox and I.F. Owens, 2011: Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts. *Landslides*, 8(1), 33–48, doi:10.1007/s10346-010-0222-z.
- Allison, E.A., 2015: The spiritual significance of glaciers in an age of climate change. WiRes. Clim. Change, 6(5), 493–508, doi:10.1002/wcc.354.
- Amagai, Y., G. Kudo and K. Sato, 2018: Changes in alpine plant communities under climate change: Dynamics of snow-meadow vegetation in northern Japan over the last 40 years. *Appl. Veg. Sci.*, **21**, 561–571, doi:10.1111/ avsc.12387.
- Anacona, P.I. et al., 2018: Glacier protection laws: Potential conflicts in managing glacial hazards and adapting to climate change. *Ambio*, doi:10.1007/s13280-018-1043-x.
- Anacona, P. I., A. Mackintosh and K. Norton, 2015a: Hazardous processes and events from glacier and permafrost areas: lessons from the Chilean and Argentinean Andes. *Earth Surface Processes and Landforms* **40**(1): 2–21. doi:10.1002/esp.3524.
- Anacona, P.I., A. Mackintosh and K. Norton, 2015b: Reconstruction of a glacial lake outburst flood (GLOF) in the Engaño valley, chilean patagonia: Lessons for GLOF risk management. *Sci. Total Environ.*, **527–528**, 1–11, doi:10.1016/j.scitotenv.2015.04.096.
- Anguelovski, I., E. Chu and J. Carmin, 2014: Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. *Global Environ. Chang.*, **27**, 156–167, doi:10.1016/j. gloenvcha.2014.05.010.
- Archer, D.R. and H.J. Fowler, 2004: Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. *Hydrol. Earth Syst. Sc.*, 8(1), 47–61, doi:10.5194/ hess-8-47–2004.

- Arkian, F., M. Karimkhani and H. Taheri, 2014: Variability and trends in the duration and depth of snow cover in Iran in thirty years. J. Earth Sci. Clim. Change, 5(10), 1, doi:10.4172/2157-7617.1000239.
- Atmeh, K., A. Andruszkiewicz and K. Zub, 2018: Climate change is affecting mortality of weasels due to camouflage mismatch. *Sci Rep*, 8(7648), doi:10.1038/s41598-018–26057-5.
- Azhoni, A. and M. K. Goyal, 2018: Diagnosing climate change impacts and identifying adaptation strategies by involving key stakeholder organisations and farmers in Sikkim, India: Challenges and opportunities. *Sci. Total Environ.*, 626, 468–477, doi:10.1016/j.scitotenv.2018.01.112
- Babaeian, I., R. Modirian, M. Karimian and M. Zarghami, 2015: Simulation of climate change in Iran during 2071–2100 using PRECIS regional climate modelling system. *Desert*, 20(2), 123–134, doi:10.22059/ jdesert.2015.56476.
- Ballesteros-Cánovas, J. A. et al., 2018: Climate warming enhances snow avalanche risk in the Western Himalayas. *PNAS*, **115**(13), 3410–3415, doi:10.1073/pnas.1716913115.
- Balocchi, F., R. Pizarro, T. Meixner and F. Urbina, 2017: Annual and monthly runoff analysis in the Elqui River, Chile, a semi-arid snow-glacier fed basin. *Tecnología y Ciencias del Agua*, 8(6), 23–35, doi:10.24850/ j-tyca–2017-06-02.
- Banerji, G. and S. Basu, 2010: Adapting to climate change in Himalayan cold deserts. *Int. J. Clim. Change Str.*, 2(4), 426–448, doi:10.1108/ 17568691011089945.
- Baraer, M. et al., 2012: Glacier recession and water resources in Peru's Cordillera Blanca. J. Glaciol., 58 (207), 134–150, doi:10.3189/2012JoG11J186.
- Bard, A. et al., 2015: Trends in the hydrologic regime of Alpine rivers. *J. Hydrol.*, **529**, 1823–1837, doi:10.1016/j.jhydrol.2015.07.052.
- Barnett, T.P., J.C. Adam and D.P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. *Nature*, 438(7066), 303–309, doi:10.1038/nature04141.
- Bavay, M., T. Grünewald and M. Lehning, 2013: Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. *Adv. Water Resour.*, 55, 4–16, doi:10.1016/j.advwatres.2012.12.009.
- Beamer, J.P., D.F. Hill, A.A. Arendt and G.E. Liston, 2016: High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed. *Water Resour. Res.*, 52(5), 3888–3909, doi:10.1002/2015WR018457.
- Beaudin, L. and J.C. Huang, 2014: Weather conditions and outdoor recreation: A study of New England ski areas. *Ecol. Econ.*, **106**, 56–68, doi:10.1016/j. ecolecon.2014.07.011.
- Becken, S., A.K. Lama and S. Espiner, 2013: The cultural context of climate change impacts: Perceptions among community members in the Annapurna Conservation Area, Nepal. *Environmental Development*, 8, 22–37, doi:10.1016/J.ENVDEV.2013.05.007.
- Begert, M. and C. Frei, 2018: Long-term area-mean temperature series for Switzerland – Combining homogenized station data and high resolution grid data. *Int. J. Climatol.*, **38**(6), 2792–2807, doi:10.1002/joc.5460.
- Beniston, M. et al., 2018: The European mountain cryosphere: a review of its current state, trends, and future challenges. *The Cryosphere*, **12**(2), 759–794, doi:10.5194/tc-12-759–2018.
- Beniston, M. and M. Stoffel, 2014: Assessing the impacts of climatic change on mountain water resources. *Sci. Total Environ.*, **493**, 1129–1137, doi:10.1016/j.scitotenv.2013.11.122.
- Beniston, M., M. Stoffel and M. Hill, 2011: Impacts of climatic change on water and natural hazards in the Alps: Can current water governance cope with future challenges? Examples from the European "ACQWA" project. *Environ. Sci. Policy*, **14**, 734–743, doi:10.1016/j.envsci.2010.12.009.
- Bhadwal, S. et al., 2013: Adaptation to changing water resource availability in Northern India with respect to Himalayan Glacier retreat and changing

monsoons using participatory approaches. *Sci. Total Environ.*, **468**, S152–S161, doi:10.1016/j.scitotenv.2013.05.024.

- Bhatti, A.M., T. Koike and M. Shrestha, 2016: Climate change impact assessment on mountain snow hydrology by water and energy budget-based distributed hydrological model. *J. Hydrol.*, **543**, 523–541, doi:10.1016/J.JHYDROL.2016.10.025.
- Bhutiyani, M.R., V.S. Kale and N.J. Pawar, 2007: Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. *Clim. Change*, **85**(1), 159–177, doi:10.1007/s10584-006-9196-1.
- Bhutiyani, M.R., V.S. Kale and N.J. Pawar, 2010: Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. *Int. J. Climatol.*, **30**(4), 535–548, doi:10.1002/joc.1920.
- Bizikova, L., L. Pintér and N. Tubiello, 2015: Normative scenario approach: a vehicle to connect adaptation planning and development needs in developing countries. *Reg. Environ. Change*, **15**(7), 1433–1446, doi:10.1007/ s10113-014-0705-x.
- Björnsson, H. and F. Pálsson, 2008: Icelandic glaciers. Jökull, 58, 365–386.
- Bocchiola, D., 2014: Long term (1921–2011) hydrological regime of Alpine catchments in Northern Italy. *Adv. Water Resour.*, **70**, 51–64, doi:10.1016/j. advwatres.2014.04.017.
- Bodin, X. et al., 2016: The 2006 collapse of the Bérard Rock Glacier (southern French Alps). *Permafrost and Periglacial Processes*, **28** (1), 209–223, doi:10.1002/ppp.1887.
- Bolch, T. et al., 2019: *Status and change of the cryosphere in the extended Hindu Kush Himalaya region*. [Wester, A. Mishra, A. Mukherji and A.B. Shrestha (eds.)]. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, Springer International Publishing, Cham, Switzerland, 209–255, doi:10.1007/978-3-319-92288-1_7.
- Bosshard, T., S. Kotlarski, M. Zappa and C. Schär, 2014: Hydrological climateimpact projections for the Rhine River: GCM–RCM uncertainty and separate temperature and precipitation effects. J. Hydrometeorol., 15(2), 697–713, doi:10.1175/JHM-D-12-098.1.
- Bozkurt, D. and O.L. Sen, 2013: Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. *J. Hydrol.*, **480**, 149–161, doi:10.1016/j.jhydrol.2012.12.021.
- Brahney, J. et al., 2017: Evidence for a climate-driven hydrologic regime shift in the Canadian Columbia Basin. *Can. Water Resour. J.*, 42(2), 179–192, do i:10.1080/07011784.2016.1268933.
- Brandt, R., R. Kaenzig and S. Lachmuth, 2016: Migration as a risk management strategy in the context of climate change: Evidence from the Bolivian Andes. [Milan, A., B. Schraven, K. Warner and N. Cascone (eds.)]. Migration, Risk Management and Climate Change: Evidence and Policy Responses, Springer International Publishing, Cham, 6, 43–61. doi:10.1007/978-3-319-42922-9, ISBN 978-3-319-42920-5.
- Brodie, J.F. and E. Post, 2010: Nonlinear responses of wolverine populations to declining winter snowpack. *Popul. Ecol.*, **52**(2), 279–287, doi:10.1007/ s10144-009-0189-6.
- Brown, R. D. et al., 2017: Arctic terrestrial snow cover. [AMAP, 2017, Snow, Water, Ice and Permafrost in the Arctic (SWIPA)]. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp. 25–64. ISBN 978-82-7971-101-8.
- Brugger, J., K.W. Dunbar, C. Jurt and B. Orlove, 2013: Climates of anxiety: Comparing experience of glacier retreat across three mountain regions. *Emot. Space, Soc.*, 6, 4–13, doi:10.1016/j.emospa.2012.05.001.
- Bueno de Mesquita, C.P. et al., 2018: Topographic heterogeneity explains patterns of vegetation response to climate change (1972–2008) across a mountain landscape, Niwot Ridge, Colorado. *Arct. Antarct. Alp. Res.*, **50**(1), e1504492, doi:10.1080/15230430.2018.1504492.
- Burger, F. et al., 2019: Interannual variability in glacier contribution to runoff from a high-elevation Andean catchment: understanding the role of debris cover in glacier hydrology. *Hydrol. Process.*, 33(2), 214–229, doi:10.1002/ hyp.13354.

- Bury, J. et al., 2013: New geographies of water and climate change in Peru: Coupled natural and social transformations in the Santa River Watershed. *Ann. Am. Assoc. Geogr.*, **103**(2), 363–374, doi:10.1080/00045608.2013.7 54665.
- Bury, J.T. et al., 2011: Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. *Clim. Change*, **105** (1–2), 179–206, doi:10.1007/s10584-010-9870-1.
- Buytaert, W. and B. De Bièvre, 2012: Water for cities: The impact of climate change and demographic growth in the tropical Andes. *Water Resour. Res.*, 48(8), 897, doi:10.1029/2011WR011755.
- Buytaert, W. et al., 2017: Glacial melt content of water use in the tropical Andes. *Environ. Res. Lett.*, **12**, 1–8, doi:10.1088/1748-9326/aa926c.
- Byers, A.C., D. C. McKinney, S. Thakali and M. Somos-Valenzuela, 2014: Promoting science-based, community-driven approaches to climate change adaptation in glaciated mountain ranges: HiMAP. *Geography*, 99, 143–152.
- Cadbury, S.L., A.M. Milner and D.M. Hannah, 2010: Hydroecology of a New Zealand glacier-fed river: linking longitudinal zonation of physical habitat and macroinvertebrate communities. *Ecohydrology*, **4**(4), 520–531, doi:10.1002/eco.185.
- Caloiero, T., 2014: Analysis of daily rainfall concentration in New Zealand. *Nat. Hazards*, **72**(2), 389–404, doi:10.1007/s11069-013-1015-1.
- Caloiero, T., 2015: Analysis of rainfall trend in New Zealand. *Environ. Earth. Sci.*, **73**(10), 6297–6310, doi:10.1007/s12665-014-3852-y.
- Campos Rodrigues, L., J. Freire-González, A. Gonzalez Puig and I. Puig-Ventosa, 2018: Climate change adaptation of alpine ski tourism in Spain. *Climate*, **6**(2), 29, doi:10.3390/cli6020029.
- Capell, R., D. Tetzlaff, R. Essery and C. Soulsby, 2014: Projecting climate change impacts on stream flow regimes with tracer-aided runoff modelspreliminary assessment of heterogeneity at the mesoscale. *Hydrol. Process.*, 28(3), 545–558, doi:10.1002/hyp.9612.
- Carey, M. et al., 2014: Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru). J. Hydrol., **518**, 60–70, doi:10.1016/j.jhydrol.2013.11.006.
- Carey, M. et al., 2012: An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru. *Clim. Change*, **112**(3–4), 733-767, doi:10.1007/s10584-011-0249-8.
- Carrivick, J.L. and F.S. Tweed, 2016: A global assessment of the societal impacts of glacier outburst floods. *Global Planet. Change*, **144**, 1–16, doi:10.1016/j.gloplacha.2016.07.001.
- Caruso, B., S. Newton, R. King and C. Zammit, 2017: Modelling climate change impacts on hydropower lake inflows and braided rivers in a mountain basin. *Hydrol. Sci. J.*, **62**(6), 928–946, doi:10.1080/02626667.2016.1267860.
- Cazzolla Gatti, R. et al., 2018: The last 50 years of climate-induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological succession. *Ecol. Evol.*, **8**(15), 7401–7420, doi:10.1002/ ece3.4258.
- Ceppi, P., S. C. Scherrer, A. M. Fischer and C. Appenzeller, 2012: Revisiting Swiss temperature trends 1959–2008. *Int. J. Climatol.*, **32**(2), 203–213, doi:10.1002/joc.2260.
- CH2018, 2018: Climate Scenarios for Switzerland, Technical Report. National Centre for Climate Services, Zurich, 271 pp. ISBN 9783952503140. doi:10.18751/Climate/Scenarios/CH2018/1.0.
- Chen, Y. et al., 2016: Changes in Central Asia's water tower: Past, present and future. *Sci. Rep.*, **6**, 35458, doi:10.1038/srep35458.
- Chernomorets, S.S. et al., 2018: The outburst of Bashkara glacier lake (Central Caucasus, Russia) on September 1, 2017. *Kriosfera Zemli*, **22**(2), 61–70, doi:10.21782/EC2541-9994–2018–2(61-70).
- Chimani, B. et al., 2016: *ÖKS15-Klimaszenarien für Österreich. Daten, Methoden und Klimaanalyse, Projektendbericht.* Wien. CCCA Data Centre. [Available at: https://hdl.handle.net/20.500.11756/06edd0c9].

- Christmann, S. and A.A. Aw-Hassan, 2015: A participatory method to enhance the collective ability to adapt to rapid glacier loss: the case of mountain communities in Tajikistan. *Clim. Change*, **133**(2), 267–282, doi:10.1007/ s10584-015-1468-1.
- Clarke, G.K.C. et al., 2015: Projected deglaciation of western Canada in the twenty-first century. *Nat. Geosci.*, 8(5), 372–377, doi:10.1038/ngeo2407.
- Clarvis, M.H. et al., 2014: Governing and managing water resources under changing hydro-climatic contexts: The case of the upper Rhone basin. *Environ. Sci. Policy*, **43**, 56–67, doi:10.1016/j.envsci.2013.11.005.
- Clouse, C., 2014: Learning from artificial glaciers in the Himalaya: design for climate change through low-tech infrastructural devices. *Journal of Landscape Architecture*, **9**(3), 6–19. doi:10.1080/18626033.2014.968411
- Clouse, C., 2016: Frozen landscapes: climate-adaptive design interventions in Ladakh and Zanskar. *Landscape Res.*, **41**(8), 821–837, doi:10.1080/01426 397.2016.1172559.
- Clouse, C., N. Anderson and T. Shippling, 2017: Ladakh's artificial glaciers: climate-adaptive design for water scarcity. *Clim. Dev.*, 9(5), 428–438, doi: 10.1080/17565529.2016.1167664.
- Cloutier, C. et al., 2016: Potential impacts of climate change on landslides occurrence in Canada. In: Slope Safety Preparedness for Impact of Climate Change [Ho, K., S. Lacasse and L. Picarelli (eds.)]. Taylor & Francis Group, Florida, pp. 71–104. ISBN 978113803230
- Cochrane, L. et al., 2017: A reflection on collaborative adaptation research in Africa and Asia. *Reg. Environ. Change*, **17**(5), 1553–1561.
- Coe, J.A., E.K. Bessette-Kirton and M. Geertsema, 2017: Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery. *Landslides*, **15**(3), 393–407, doi:10.1007/s10346-017-0879-7.
- Colavitto, B., D. Orts and A. Folguera, 2012: El caso del ourburst flood histórico de la laguna Derrumbe, Cholila, Chubut. Colpaso de dique morénico en la Cordillera Norpatagónica. *Revista de la Asociación Geológica Argentina*, **69**(3), 457–465.
- Condom, T. et al., 2012: Simulating the implications of glaciers' retreat for water management: a case study in the Rio Santa basin, Peru. *Water Int.*, **37**(4), 442–459, doi:10.1080/02508060.2012.706773.
- Coppola, E. et al., 2014: Changing hydrological conditions in the Po basin under global warming. *Sci. Total Environ.*, **493**, 1183–1196, doi:10.1016/j. scitotenv.2014.03.003.
- Crochet, P., 2007: A study of regional precipitation trends in Iceland using a high-quality gauge network and ERA-40. *J. Clim.*, **20**(18), 4659–4677, doi:10.1175/JCLI4255.1.
- D'Amico, M.E., M. Freppaz, E. Zanini and E. Bonifacio, 2017: Primary vegetation succession and the serpentine syndrome: the proglacial area of the Verra Grande glacier, North-Western Italian Alps. *Plant Soil*, **415**(1–2), 283–298, doi:10.1007/s11104-016-3165-x.
- Da Silva, L. et al., 2019: Analyse économique des mesures d'adaptation aux changements climatiques appliquée au secteur du ski alpin au Québec. Ouranos, Montréal, 119 pp.
- Dame, J. and M. Nüsser, 2011: Food security in high mountain regions: Agricultural production and the impact of food subsidies in Ladakh, Northern India. *Food Security*, **3**(2), 179–194, doi:10.1007/s12571-011-0127–2.
- DeBeer, C.M., H.S. Wheater, S.K. Carey and K.P. Chun, 2016: Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis. *Hydrol. Earth Syst. Sc.*, **20**(4), 1573–1598, doi:10.5194/hess–20-1573–2016.
- Demiroglu, O.C., H. Dannevig and C. Aall, 2018: Climate change acknowledgement and responses of summer (glacier) ski visitors in Norway. Scandinavian Journal of Hospitality and Tourism, 18(4), 419–438.
- Deng, H., N.C. Pepin and Y. Chen, 2017: Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res-Atmos., 122(14), 7323–7341, doi:10.1002/2017JD026524.

- Dewan, T. H., 2015: Societal impacts and vulnerability to floods in Bangladesh and Nepal. Weather and Climate Extremes, 7, 36–42. doi:10.1016/j. wace.2014.11.001
- Di Luca, A., J.P. Evans and F. Ji, 2018: Australian snowpack in the NARCliM ensemble: evaluation, bias correction and future projections. *Clim. Dyn.*, **51**(1–2), 639-666, doi:10.1007/s00382-017-3946-9.
- Diaz, H.F. and R.S. Bradley, 1997: Temperature variations during the last century at high elevation sites. *Clim. Change*, **36**(3-4), 253–279, doi:10.1023/A:1005335731187.
- Diaz, H.F. and J.K. Eischeid, 2007: Disappearing "alpine tundra" Köppen climatic type in the western United States. *Geophys. Res. Lett.*, 34(18), L18707, doi:10.1029/2007GL031253.
- Diaz, H.F., J.K. Eischeid, C. Duncan and R.S. Bradley, 2003: Variability of freezing levels, melting season indicators, and snow cover for selected high-elevation and continental regions in the last 50 years. *Clim. Change*, 59(1/2), 33–52, doi:10.1023/A:1024460010140.
- Dickerson-Lange, S.E. and R. Mitchell, 2014: Modeling the effects of climate change projections on streamflow in the Nooksack River basin, Northwest Washington. *Hydrol. Process.*, 28(20), 5236–5250. doi:10.1002/hyp.10012.
- Diemberger, H., A. Hovden and E.T. Yeh, 2015: The honour of the snow-mountains is the snow: Tibetan livelihoods in a changing climate. [Huggel, C., M. Carey, J.J. Clague and A. Kääb (eds.)], *The High-Mountain Cryosphere: Environmental Changes and Human Risks*. Cambridge University Press, Cambridge, 249–271. doi:10.1017/CB09781107588653.014.
- Dimri, A.P. and S.K. Dash, 2012: Wintertime climatic trends in the western Himalayas. *Clim. Change*, **111**(3), 775–800, doi:10.1007/s10584-011-0201-y.
- Dimri, A.P., D. Kumar, A. Choudhary and P. Maharana, 2018: Future changes over the Himalayas: Mean temperature. *Global Planet. Change*, **162**, 235– 251, doi:10.1016/j.gloplacha.2018.01.014.
- Dolezal, J. et al., 2016: Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep., 6, 1–13, doi:10.1038/srep24881.
- Doughty, C.A., 2016: Building climate change resilience through local cooperation: a Peruvian Andes case study. *Reg. Environ. Change*, 16(8), 2187–2197.
- Drenkhan, F., C. Huggel, L. Guardamino and W. Haeberli, 2019: Managing risks and future options from new lakes in the deglaciating Andes of Peru: The example of the Vilcanota-Urubamba basin. *Sci. Total Environ.*, **665**, 465–483, doi:10.1016/j.scitotenv.2019.02.070.
- Drew, G., 2012: A retreating goddess? Conflicting perceptions of ecological change near the Gangotri-Gaumukh Glacier. *Journal for the Study of Religion, Nature and Culture*, **6**(3), doi:10.1558/jsrnc.v6i3.344.
- Duethmann, D. et al., 2015: Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resour. Res., 51(6), 4727–4750, doi:10.1002/2014wr016716.
- Duethmann, D., C. Menz, T. Jiang and S. Vorogushyn, 2016: Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large. *Environ. Res. Lett.*, **11**(5), 054024, doi:10.1088/1748-9326/11/5/054024.
- Durand, Y. et al., 2009: Reanalysis of 47 years of climate in the French Alps (1958–2005): Climatology and trends for snow cover. *J. Appl. Meteorol. Climatol.*, **48**(12), 2487–2512, doi:10.1175/2009JAMC1810.1.
- Duvillard, P.A., L. Ravanel and P. Deline, 2015: Risk assessment of infrastructure destabilisation due to global warming in the high French Alps. *Revue de Géographie Alpine*, **103**(2), doi:10.4000/rga.2896.
- Dyrrdal, A.V., T. Saloranta, T. Skaugen and H.B. Stranden, 2013: Changes in snow depth in Norway during the period 1961–2010. *Hydrol. Res.*, **44**(1), 169–179, doi:10.2166/nh.2012.064.
- Eckert, N. et al., 2013: Temporal trends in avalanche activity in the French Alps and subregions: from occurrences and runout altitudes to unsteady return periods. *J. Glaciol.*, **59**(213), 93–114, doi:10.3189/2013JoG12J091.
- Einarsson, B. and S. Jónsson, 2010: The effect of climate change on runoff from two watersheds in Iceland. Reykjavík, Icelandic Meteorological

Office. Techn. Rep. 2010-016, 45 pp. [Available at: https://en.vedur.is/ media/ces/2010_016.pdf].

- Elizbarashvili, M. et al., 2017: Georgian climate change under global warming conditions. Ann. Agrar., 15(1), 17–25, doi:10.1016/J.AASCI.2017.02.001.
- Engelhardt, M. et al., 2017: Meltwater runoff in a changing climate (1951– 2099) at Chhota Shigri Glacier, Western Himalaya, Northern India. Ann. Glaciol., 58(75), 47–58, doi:10.1017/aog.2017.13.
- Engeset, R. V., T. V. Schuler and M. Jackson, 2005: Analysis of the first jökulhlaup at Blåmannsisen, northern Norway, and implications for future events. *Ann. Glaciol.*, 42, 35–41, doi:10.3189/172756405781812600.
- Eriksen, H. et al., 2018: Recent acceleration of a rock glacier complex, Ádjet, Norway, documented by 62 Years of remote sensing observations. *Geophys. Res. Lett.*, **45**(16), 8314–8323, doi:10.1029/2018GL077605.
- Erler, A.R., A.R. Erler and W.R. Peltier, 2017: Projected hydroclimatic changes in two major river basins at the Canadian West Coast based on high-resolution regional climate simulations. J. Clim., 30(20), 8081–8105, doi:10.1175/JCLI-D-16-0870.1.
- Espiner, S. and S. Becken, 2014: Tourist towns on the edge: conceptualising vulnerability and resilience in a protected area tourism system. J. Sustain. Tour., 22(4), 646–665, doi:10.1080/09669582.2013.855222.
- Etter, S., N. Addor, M. Huss and D. Finger, 2017: Climate change impacts on future snow, ice and rain runoff in a Swiss mountain catchment using multi-dataset calibration. J. Hydrol. Reg. Stud., 13, 222–239, doi:10.1016/j. ejrh.2017.08.005.
- Falk, M. and M. Vieru, 2017: Demand for downhill skiing in subarctic climates. Scandinavian Journal of Hospitality and Tourism, **17**(4), 388–405, doi:10.1 080/15022250.2016.1238780.
- Fang, Y., D. Qin and Y. Ding, 2011: Frozen soil change and adaptation of animal husbandry: a case of the source regions of Yangtze and Yellow Rivers. *Environ. Sci. Policy*, **14** (5), 555–568.
- Farinotti, D., A. Pistocchi and M. Huss, 2016: From dwindling ice to headwater lakes: could dams replace glaciers in the European Alps? *Environ. Res. Lett.*, **11**(5), 054022, doi:10.1088/1748-9326/11/5/054022.
- Farinotti, D. et al., 2012: Runoff evolution in the Swiss Alps: Projections for selected high-alpine catchments based on ENSEMBLES scenarios. *Hydrol. Process.*, 26(13), 1909–1924, doi:10.1002/hyp.8276.
- Fell, S.C. et al., 2018: Declining glacier cover threatens the biodiversity of alpine river diatom assemblages. *Glob. Change Biol.*, 24(12), 5828–5840, doi:10.1111/qcb.14454.
- Fiddes, S.L., A.B. Pezza and V. Barras, 2015: A new perspective on Australian snow. Atmos. Sci. Lett., 16(3), 246–252, doi:10.1002/asl2.549.
- Finn, D. S., K. Räsänen and C. T. Robinson, 2010: Physical and biological changes to a lengthening stream gradient following a decade of rapid glacial recession. *Global Change Biol.*, **16**(12), 3314–3326, doi:10.1111/ j.1365–2486.2009.02160.x.
- Fischer, A., M. Olefs and J. Abermann, 2011: Glaciers, snow and ski tourism in Austria's changing climate. Ann. Glaciol., 52(58), 89–96, doi:10.3189/172756411797252338.
- Fischer, L. et al., 2012: On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. *Nat. Hazard. Earth. Sys.*, **12**(1), 241–254, doi:10.5194/ nhess-12–241–2012.
- Fleming, S.W. and H.E. Dahlke, 2014: Modulation of linear and nonlinear hydroclimatic dynamics by mountain glaciers in Canada and Norway: Results from information-theoretic polynomial selection. *Can. Water Resour. J.*, **39**(3), 324–341, doi:10.1080/07011784.2014.942164.
- Frans, C. et al., 2016: Implications of decadal to century scale glacio-hydrological change for water resources of the Hood River basin, OR, USA. *Hydrol. Process.*, **30**(23), 4314–4329, doi:10.1002/hyp.10872.
- Frans, C. et al., 2018: Glacier recession and the response of summer streamflow in the Pacific Northwest United States, 1960–2099. Water Resour. Res., 32(5), 772, doi:10.1029/2017WR021764.

- Frans, C. et al., 2015: Predicting glacio-hydrologic change in the headwaters of the Zongo River, Cordillera Real, Bolivia. *Water Resour. Res.*, **51**(11), 9029–9052, doi:10.1002/2014WR016728.
- Frei, P., S. Kotlarski, M.A. Liniger and C. Schär, 2018: Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models. *The Cryosphere*, **12**(1), 1–24, doi:10.5194/tc-12-1–2018.
- Freudiger, D., I. Kohn, K. Stahl and M. Weiler, 2014: Large-scale analysis of changing frequencies of rain-on-snow events with flood-generation potential. *Hydrol. Earth Syst. Sc.*, 18(7), 2695–2709, doi:10.5194/hess-18–2695–2014.
- Frey, H. et al., 2010: A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials. *Nat. Hazard. Earth. Sys.*, 10(2), 339–352, doi:10.5194/nhess-10-339–2010.
- Fricke, K., T. Sterr, O. Bubenzer and B. Eitel, 2009: The oasis as a megacity: Urumqi's fast urbanisation in a semiarid environment. *Die Erde*, **140**(4), 449–463.
- Fu, Y. et al., 2012: Climate change adaptation among tibetan pastoralists: Challenges in enhancing local adaptation through policy support. *Environ. Manage.*, **50**(4), 607–621, doi:10.1007/s00267-012-9918–2.
- Fujibe, F., N. Yamazaki, M. Katsuyama and K. Kobayashi, 2005: The increasing trend of intense precipitation in Japan based on four-hourly data for a hundred years. SOLA, 1, 41–44, doi:10.2151/sola.2005-012.
- Furunes, T. and R.J. Mykletun, 2012: Frozen adventure at risk? A 7-year follow-up study of Norwegian glacier tourism. *Scandinavian Journal of Hospitality and Tourism*, **12**(4), 324–348, doi:10.1080/15022250.2012.7 48507.
- Fyfe, J.C. et al., 2017: Large near-term projected snowpack loss over the western United States. *Nat. Commun.*, 8, 14996, doi:10.1038/ ncomms14996.
- Gadek, B. et al., 2017: Snow avalanche activity in Żleb Żandarmerii in a time of climate change (Tatra Mts., Poland). *Catena*, **158**, 201–212, doi:10.1016/j. catena.2017.07.005.
- Gagné, K., 2016: Cultivating Ice over Time: On the idea of timeless knowledge and places in the Himalayas. *Anthropologica*, 58(2), 193–210.
- Gan, R., Y. Luo, Q. Zuo and L. Sun, 2015: Effects of projected climate change on the glacier and runoff generation in the Naryn River Basin, Central Asia. J. Hydrol., 523, 240–251, doi:10.1016/j.jhydrol.2015.01.057.
- Gao, H. et al., 2018: Modelling glacier variation and its impact on water resource in the Urumqi Glacier No. 1 in Central Asia. *Sci. Total Environ.*, 644, 1160–1170, doi:10.1016/j.scitotenv.2018.07.004.
- Gao, Q.-z. et al., 2014: Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau. *Mitig. Adapt. Strat. Gl.*, 19(2), 199–209.
- Gao, Y., J. Xu and D. Chen, 2015: Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J. Clim., 28(7), 2823–2841, doi:10.1175/JCLI-D-14-00300.1.
- García-González, R. et al., 2016: Influence of snowmelt timing on the diet quality of Pyrenean rock ptarmigan (Lagopus muta pyrenaica): implications for reproductive success. *PLOS ONE*, **11**(2), e0148632, doi:10.1371/journal. pone.0148632.
- Gardelle, J., Y. Arnaud and E. Berthier, 2011: Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. *Global Planet. Change*, **75**(1–2), 47–55, doi:10.1016/j. gloplacha.2010.10.003.
- Garee, K. et al., 2017: Hydrological modeling of the upper indus basin: A case study from a high-altitude glacierized catchment Hunza. *Water*, **9** (1), 17. doi:10.3390/w9010017.
- Gentle, P. and T.N. Maraseni, 2012: Climate change, poverty and livelihoods: adaptation practices by rural mountain communities in Nepal. *Environ. Sci. Policy*, **21**, 24–34, doi:10.1016/j.envsci.2012.03.007.
- Giersch, J.J. et al., 2017: Climate-induced glacier and snow loss imperils alpine stream insects. *Global Change Biol.*, 23(7), 2577–2589, doi:10.1111/ gcb.13565.

- Gilbert, A. and C. Vincent, 2013: Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures. *Geophys. Res. Lett.*, 40, 2102–2108, doi:10.1002/grl.50401.
- Gobiet, A. et al., 2014: 21st century climate change in the European Alps-a review. *Sci. Total Environ.*, **493**, 1138–1151, doi:10.1016/j. scitotenv.2013.07.050.
- Gosseling, M., 2017: CORDEX climate trends for Iceland in the 21st century. Reykjavik, Icelandic Meteorological Office, Techn. Rep. 2017-009, 44 pp. [Available at: https://en.vedur.is/media/vedurstofan-utgafa-2017/VI_2017_ 009.pdf].
- Grose, M. et al., 2015: Southern Slopes Cluster Report, Climate Change in Australia Projections for Australia's Natural Resource Management Regions: Cluster Reports, eds. Ekström, M et al. CSIRO and Bureau of Meteorology, Australia, 65 pp.
- Gruber, S., 2012: Derivation and analysis of a high-resolution estimate of global permafrost zonation. *The Cryosphere*, **6**(1), 221–233, doi:10.5194/tc-6–221–2012.
- Grünewald, T., F. Wolfsperger and M. Lehning, 2018: Snow farming: conserving snow over the summer season. *The Cryosphere*, **12**(1), 385– 400, doi:10.5194/tc-12-385–2018.
- Guo, D., H. Wang and D. Li, 2012: A projection of permafrost degradation on the Tibetan Plateau during the 21st century. J. Geophys. Res-Atmos., 117(D5), D05106-n/a, doi:10.1029/2011JD016545.
- Guo, D., E. Yu and H. Wang, 2016: Will the Tibetan Plateau warming depend on elevation in the future? J. Geophys. Res-Atmos., 121(8), 3969–3978, doi:10.1002/2016JD024871.
- Gurung, D.R. et al., 2017: Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya. *Int. J. Climatol.*, **37**(10), 3873–3882, doi:10.1002/joc.4961.
- Haeberli, W. et al., 2016: New lakes in deglaciating high-mountain regions opportunities and risks. *Clim. Change*, **139**(2), 201–214, doi:10.1007/ s10584-016-1771-5.
- Hagenstad, M., E. Burakowski and R. Hill, 2018: *The economic contributions of winter sports in a changing climate*. In: International Snow Science Workshop (ISSW). Proceedings of the International Snow Science Workshop (ISSW), Innsbruck, Austria; 7-12 Oct. 2018: 531–536. [Available at: http://arc.lib.montana.edu/snow-science/item/2591].
- Halofsky, J E., D.L. Peterson and H.R. Prendeville, 2018: Assessing vulnerabilities and adapting to climate change in northwestern US forests. *Clim. Change*, **146**(1–2), 89–102, doi:10.1007/s10584-017-1972-6.
- Hamilton, L.C. et al., 2003: Warming winters and New Hampshire's lost ski areas: an integrated case study. *Int. J. Sociol. Soc. Pol.*, 23(10), 52–73, doi:10.1108/01443330310790309.
- Hammad, A.A. and A.M. Salameh, 2019: Temperature analysis as an indicator of climate change in the Central Palestinian Mountains. *Theor. Appl. Climatol.*, **136**, 1453–1464, doi:10.1007/s00704-018–2561-y.
- Hänggi, P. and R. Weingartner, 2011: Inter-annual variability of runoff and climate within the Upper Rhine River basin, 1808–2007. *Hydrol. Sci. J.*, 56(1), 34–50, doi:10.1080/02626667.2010.536549.
- Hanzer, F., K. Förster, J. Nemec and U. Strasser, 2018: Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach. *Hydrol. Earth Syst. Sc. Discussions*, 22(2), 1593–1614, doi:10.5194/hess–22-1593–2018.
- Harrison, S. et al., 2018: Climate change and the global pattern of moraine-dammed glacial lake outburst floods. *The Cryosphere*, **12**(4), 1195–1209, doi:10.5194/tc-12-1195–2018.
- Hendrikx, J., E.Ö. Hreinsson, M.P. Clark and A.B. Mullan, 2012: The potential impact of climate change on seasonal snow in New Zealand: Part I-an analysis using 12 GCMs. *Theor. Appl. Climatol.*, **110** (4), 607–618, doi:10.1007/s00704-012-0711-1.
- Hendrikx, J., C. Zammit, E.Ö. Hreinsson and S. Becken, 2013: A comparative assessment of the potential impact of climate change on the ski industry

in New Zealand and Australia. *Clim. Change*, **119**(3–4), 965–978, doi:10.1007/s10584-013-0741-4.

- Hill, A., C. Minbaeva, A. Wilson and R. Satylkanov, 2017: Hydrologic controls and water vulnerabilities in the Naryn River Basin, Kyrgyzstan: A socio-hydro case study of water stressors in Central Asia. *Water*, 9(5), 325, doi:10.3390/w9050325.
- Hill, M., 2013: Adaptive capacity of water governance: Cases from the Alps and the Andes. *Mt. Res. Dev.*, **33**(3), 248–259, 12, doi:10.1659/ MRD-JOURNAL-D-12-00106.1.
- Hill, M., A. Wallner and J. Furtado, 2010: Reducing vulnerability to climate change in the Swiss Alps: a study of adaptive planning. *Clim. Policy*, **10**(1), 70–86, doi:10.3763/cpol.2008.0536.
- Hoelzle, M. et al., 2017: Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia. *Geosci. Instrum. Meth.*, 6(2), 397–418, doi:10.5194/gi-6-397–2017.
- Hopkins, D. and K. Maclean, 2014: Climate change perceptions and responses in Scotland's ski industry. *Tourism Geogr.*, 16, 400–414, doi:10.1080/146 16688.2013.823457.
- Hoy, A. et al., 2016: Climatic changes and their impact on socio-economic sectors in the Bhutan Himalayas: an implementation strategy. *Reg. Environ. Change*, **16**(5), 1401–1415, doi:10.1007/s10113-015-0868-0.
- Huggel, C., M. Carey, J.J. Clague and A. Kääb (eds.), 2015a: *The high-mountain cryosphere: Environmental changes and human risks*. Cambridge University Press, Cambridge. 363 pp. ISBN 9781107065840.
- Hüsler, F. et al., 2014: A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. *The Cryosphere*, **8**(1), 73–90, doi:10.5194/tc-8-73–2014.
- Huss, M., D. Farinotti, A. Bauder and M. Funk, 2008: Modelling runoff from highly glacierized alpine drainage basins in a changing climate. *Hydrol. Process.*, 22(19), 3888–3902, doi:10.1002/hyp.7055.
- Huss, M. and M. Fischer, 2016: Sensitivity of very small glaciers in the Swiss Alps to future climate change. *Front. Earth Sci.*, **4**, 34, doi:10.3389/ feart.2016.00034.
- Huss, M., S. Usselmann, D. Farinotti and A. Bauder, 2010: Glacier mass balance in the south-eastern Swiss Alps since 1900 and perspectives for the future. *Erdkunde*, **64**(2), 119–140, doi:10.3112/erdkunde.2010.02.02.
- Huss, M., M. Zemp, P.C. Joerg and N. Salzmann, 2014: High uncertainty in 21st century runoff projections from glacierized basins. J. Hydrol., 510, 35–48, doi:10.1016/j.jhydrol.2013.12.017.
- Ilyashuk, B.P. et al., 2018: Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes. *Global Change Biol.*, 24(4), 1548–1562, doi:10.1111/gcb.13985.
- Immerzeel, W.W., F. Pellicciotti and M.F.P. Bierkens, 2013: Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. *Nat. Geosci.*, 6(9), 742–745, doi:10.1038/ngeo1896.
- Ingty, T., 2017: High mountain communities and climate change: adaptation, traditional ecological knowledge, and institutions. *Clim. Change*, **145**(1–2), 41–55, doi:10.1007/s10584-017–2080-3.
- Irannezhad, M. et al., 2017: Long-term variability and trends in annual snowfall/total precipitation ratio in Finland and the role of atmospheric circulation patterns. *Cold Reg. Sci. Technol.*, **143**, 23–31, doi:10.1016/J. COLDREGIONS.2017.08.008.
- Islam, S.U., S.J. Déry and A.T. Werner, 2017: Future climate change impacts on snow and water resources of the Fraser River Basin, British Columbia. J. Hydrometeorol., 18(2), 473–496, doi:10.1175/JHM-D-16-0012.1.
- Jacobsen, D. et al., 2014: Runoff and the longitudinal distribution of macroinvertebrates in a glacier-fed stream: implications for the effects of global warming. *Freshw. Biol.*, 59(10), 2038–2050, doi:10.1111/fwb.12405.
- Jenicek, M., J. Seibert and M. Staudinger, 2018: Modeling of future changes in seasonal snowpack and impacts on summer low flows in Alpine catchments. *Water Resour. Res.*, **54**, 538–556, doi:10.1002/2017WR021648.

- Johnston, A.N. et al., 2019: Ecological consequences of anomalies in atmospheric moisture and snowpack. *Ecology*, **100**(4), doi:10.1002/ ecy.2638.
- Jost, G., R. Moore, B. Menounos and R. Wheate, 2012: Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River Basin, Canada. *Hydrol. Earth Syst. Sc.*, **16**(3), 849–860, doi:10.5194/hess-16-849–2012.
- Jost, G. and F. Weber, 2013: Potential Impacts of Climate Change on BC Hydro's Water Resources. BC Hydro, Canada. [Available at: www.bchydro. com/content/dam/hydro/medialib/internet/documents/about/climate_ change_report_2012.pdf. Accessed on 06/08/2019].
- Jurt, C. et al., 2015: Local perceptions in climate change debates: insights from case studies in the Alps and the Andes. *Clim. Change*, **133**(3), 511–523, doi:10.1007/s10584-015-1529-5.
- Kääb, A., R. Frauenfelder and I. Roer, 2007: On the response of rockglacier creep to surface temperature increase. *Global Planet. Change*, 56(1), 172–187, doi:10.1016/j.gloplacha.2006.07.005.
- Kaenzig, R., 2015: Can glacial retreat lead to migration? A critical discussion of the impact of glacier shrinkage upon population mobility in the Bolivian Andes. *Popul. Environ.*, 36(4), 480–496, doi:10.1007/s11111-014-0226-z.
- Kaenzig, R., M. Rebetez and G. Serquet, 2016: Climate change adaptation of the tourism sector in the Bolivian Andes. *Tourism Geogr.*, **18** (2), 111–128, doi:10.1080/14616688.2016.1144642.
- Katsuyama, Y., M. Inatsu, K. Nakamura and S. Matoba, 2017: Global warming response of snowpack at mountain range in northern Japan estimated using multiple dynamically downscaled data. *Cold Reg. Sci. Technol.*, **136**, 62–71, doi:10.1016/j.coldregions.2017.01.006.
- Kattelmann, R., 2003: Glacial lake outburst floods in the Nepal Himalaya: A manageable hazard? *Nat. Hazards*, 28(1), 145–154, doi:10.1023/A:1021130101283.
- Kaul, V. and T.F. Thornton, 2014: Resilience and adaptation to extremes in a changing Himalayan environment. *Reg. Environ. Change*, 14(2), 683–698. doi:0.1007/s10113-013-0526-3
- Kawase, H. et al., 2016: Enhancement of heavy daily snowfall in central Japan due to global warming as projected by large ensemble of regional climate simulations. *Clim. Change*, **139**(2), 265–278, doi:10.1007/s10584-016-1781-3.
- Kelkar, U., K.K. Narula, V.P. Sharma and U. Chandna, 2008: Vulnerability and adaptation to climate variability and water stress in Uttarakhand State, India. *Global Environ. Chang.*, **18**(4), 564–574. doi:10.1016/j. gloenvcha.2008.09.003
- Khamis, K., L.E. Brown, D.M. Hannah and A.M. Milner, 2016: Glaciergroundwater stress gradients control alpine river biodiversity. *Ecohydrology*, 9(7), 1263–1275, doi:10.1002/eco.1724.
- Khamis, K. et al., 2014: Alpine aquatic ecosystem conservation policy in a changing climate. *Environ. Sci. Policy*, **43**, 39–55, doi:10.1016/j. envsci.2013.10.004.
- Klein, G. et al., 2016: Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. *Clim. Change*, **139**(3–4), 637–649, doi:10.1007/s10584-016-1806-y.
- Knapp, C. et al., 2014: Parks, people, and change: the importance of multistakeholder engagement in adaptation planning for conserved areas. *Ecol. Sco.* **19**(4). doi:10.5751/ES-06906-190416
- Kobierska, F. et al., 2013: Future runoff from a partly glacierized watershed in Central Switzerland: A two-model approach. *Adv. Water Resour.*, 55, 204–214. doi: 10.1016/j.advwatres.2012.07.024.
- Konchar, K. M. et al., 2015: Adapting in the shadow of Annapurna: a climate tipping point. *J. Ethnobiol.* **35**(3), 449–471, doi:10.2993/0278-0771-35.3.449.
- Kopytkovskiy, M., M. Geza and J.E. McCray, 2015: Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin. J. Hydrol. Reg. Stud., 3, 473–493, doi:10.1016/j.ejrh.2015.02.014.

- Kormann, C., T. Francke and A. Bronstert, 2015a: Detection of regional climate change effects on alpine hydrology by daily resolution trend analysis in Tyrol, Austria. J. Water. Clim. Change, 6(1), 124–143, doi:10.2166/ wcc.2014.099.
- Kormann, C., T. Francke, M. Renner and A. Bronstert, 2015b: Attribution of high resolution streamflow trends in Western Austria – An approach based on climate and discharge station data. *Hydrol. Earth Syst. Sc.*, **19**(3), 1225– 1245, doi:10.5194/hess-19-1225–2015.
- Kotlarski, S., D. Lüthi and C. Schär, 2015: The elevation dependency of 21st century European climate change: An RCM ensemble perspective. *Int. J. Climatol.*, **35**(13), 3902–3920, doi:10.1002/joc.4254.
- Kraaijenbrink, P.D.A., M.F.P. Bierkens, A.F. Lutz and W.W. Immerzeel, 2017: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. *Nature*, 549(7671), 257–260, doi:10.1038/nature23878.
- Kreutzmann, H., 2012: After the flood. Mobility as an adaptation strategy in high Mountain Oases. The case of pasu in Gojal, Hunza valley, Karakoram. Die Erde: Journal of the Geographical Society of Berlin, 143(1–2), 49–73.
- Kriegel, D. et al., 2013: Changes in glacierisation, climate and runoff in the second half of the 20th century in the Naryn basin, Central Asia. *Global Planet. Change*, **110**, 51–61, doi:10.1016/j.gloplacha.2013.05.014.
- Krishnan, R. et al., 2019: Unravelling Climate Change in the Hindu Kush Himalaya: Rapid Warming in the Mountains and Increasing Extremes. In: The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People [Wester, P., A. Mishra, A. Mukherji and A.B. Shrestha (eds.)]. Springer International Publishing, Cham, 57–97.
- Krishnaswamy, J., R. John and S. Joseph, 2014: Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. *Global Change Biol.*, 20(1), 203–215, doi:10.1111/gcb.12362.
- Kummert, M., R. Delaloye and L. Braillard, 2017: Erosion and sediment transfer processes at the front of rapidly moving rock glaciers: Systematic observations with automatic cameras in the western Swiss Alps. *Permafrost Periglac.*, 29(1), 21–33, doi:10.1002/ppp.1960.
- Lagos, P., 2007: Peru's approach to climate change in the Andean mountain region. *Mt. Res. Dev.*, **27**(1), 28–32, doi:10.1659/0276-4741(2007)27[28:PA TCCI]2.0.CO;2.
- Landaeta, M.F. et al., 2012: Larval fish distribution, growth and feeding in Patagonian fjords: potential effects of freshwater discharge. *Environ. Biol. Fish.*, **93**(1), 73–87, doi:10.1007/s10641-011-9891-2.
- Lasage, R. et al., 2015: A stepwise, participatory approach to design and implement community based adaptation to drought in the Peruvian Andes. *Sustainability*, **7**(2), 1742–1773, doi:10.3390/su7021742.
- Lavigne, A., N. Eckert, L. Bel and E. Parent, 2015: Adding expert contributions to the spatiotemporal modelling of avalanche activity under different climatic influences. J. R. Stat. Soc. C-Appl., 64(4), 651–671, doi:10.1111/ rssc.12095.
- Le Quesne, C. et al., 2009: Long-term glacier variations in the Central Andes of Argentina and Chile, inferred from historical records and tree-ring reconstructed precipitation. *Palaeogeogr. Palaeocl.*, **281**(3–4), 334–344, doi:10.1016/j.palaeo.2008.01.039.
- Lebel, L., J. Xu, R. C. Bastakoti and A. Lamba, 2010: Pursuits of adaptiveness in the shared rivers of Monsoon Asia. *Int. Environ. Agreem-P.*, **10**(4), 355–375. doi:10.1007/s10784-010-9141-7.
- Lee, D. R. et al., 2014: Developing local adaptation strategies for climate change in agriculture: A priority-setting approach with application to Latin America. *Global Environ. Chang.*, **29**, 78–91. doi: 10.1016/j. gloenvcha.2014.08.002.
- Lejeune, Y. et al., 2019: 57 years (1960–2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m of altitude). *Earth Syst. Sci. Data*, **11**, 71–88, doi:10.5194/essd-11-71–2019.
- Lencioni, V., 2018: Glacial influence and stream macroinvertebrate biodiversity under climate change: Lessons from the Southern Alps. *Sci. Total Environ.*, **622**, 563-575, doi:10.1016/j.scitotenv.2017.11.266.

- Lennox, E., 2015: Double exposure to climate change and globalization in a Peruvian highland community. *Soc. Nat. Resourc.*, **28**(7), 781–796, doi:1 0.1080/08941920.2015.1024364.
- Lennox, E. and J. Gowdy, 2014: Ecosystem governance in a highland village in Peru: Facing the challenges of globalization and climate change. *Ecosyst. Serv.*, **10**, 155–163, doi:10.1016/j.ecoser.2014.08.007
- Letcher, T.W. and J.R. Minder, 2015: Characterization of the simulated regional snow albedo feedback using a regional climate model over complex terrain. J. Clim., 28(19), 7576–7595, doi:10.1175/JCLI-D-15-0166.1.
- Li, D. et al., 2017: How much runoff originates as snow in the western United States, and how will that change in the future? *Geophys. Res. Lett.*, **44**(12), 6163–6172, doi:10.1002/2017GL073551.
- Li, X. et al., 2018: Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing. *Atmos. Res.*, **200**, 77–87, doi:10.1016/J.ATMOSRES.2017.10.002.
- Littell, J. et al., 2018: Alaska snowpack response to climate change: Statewide snowfall equivalent and snowpack water scenarios. *Water*, **10**(5), 668, doi:10.3390/w10050668.
- Liu, X. and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. *Int. J. Climatol.*, **20**(14), 1729–1742, doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.
- Liu, X., Z. Cheng, L. Yan and Z.-Y. Yin, 2009: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. *Global Planet. Change*, **68**(3), 164–174, doi:10.1016/j. gloplacha.2009.03.017.
- Lopez-i-Gelats, F. et al., 2015: Adaptation strategies of Andean pastoralist households to both climate and non-climate changes. *Hum. Ecol.*, **43**(2), 267–282, doi:10.1007/s10745-015-9731-7.
- López-Moreno, J.-I., S. Goyette, S.M. Vicente-Serrano and M. Beniston, 2011: Effects of climate change on the intensity and frequency of heavy snowfall events in the Pyrenees. *Clim. Change*, **105**(3–4), 489–508, doi:10.1007/ s10584-010-9889-3.
- López-Moreno, J.I., 2005: Recent variations of snowpack depth in the Central Spanish Pyrenees. *Arct. Antarct. Alp. Res.*, **37**(2), 253–260, doi:10.1657/1523-0430(2005)037[0253:RVOSDI]2.0.CO;2.
- López-Moreno, J.I. et al., 2017: Hydrological and depositional processes associated with recent glacier recession in Yanamarey catchment, Cordillera Blanca (Peru). *Sci. Total Environ.*, **579**, 272–282, doi:10.1016/j. scitotenv.2016.11.107.
- Luomaranta, A., J. Aalto and K. Jylhä, 2019: Snow cover trends in Finland over 1961–2014 based on gridded snow depth observations. *Int. J. Climatol.*, **39**(7), 3147–3159, doi:10.1002/joc.6007.
- Lute, A.C., J.T. Abatzoglou and K.C. Hegewisch, 2015: Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. *Water Resour. Res.*, 51(2), 960–972, doi:10.1002/2014WR016267.
- Lutz, A. et al., 2016a: Climate change impacts on the upper Indus hydrology: Sources, shifts and extremes. *PLOS ONE*, **11**(11), e0165630, doi:10.1371/ journal.pone.0165630.
- Lutz, A. et al., 2016b: Impacts of climate change on the cryosphere, hydrological regimes and glacial lakes of the Hindu Kush Himalayas: A review of current knowledge. ICIMOD Research Report 2016/3. ISBN: 9789291154050.
- Lutz, A.F., W.W. Immerzeel, A.B. Shrestha and M.F.P. Bierkens, 2014: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. *Nat. Clim. Change*, 4(7), 587–592, doi:10.1038/ nclimate2237.
- Ma, C. et al., 2015: Impact of climate change on the streamflow in the glacierized Chu River Basin, Central Asia. J. Arid Land, 7(4), 501–513, doi:10.1007/s40333-015-0041-0.
- Maikhuri, R.K. et al., 2017: Socio-ecological vulnerability: Assessment and coping strategy to environmental disaster in Kedarnath valley,

Uttarakhand, Indian Himalayan Region. *Int. J. Disast. Risk Re.*, **25**, 111–124, doi:10.1016/j.ijdrr.2017.09.002.

- Malmros, J.K. et al., 2018: Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016). *Remote Sens. Environ.*, **209**, 240–252, doi:10.1016/J.RSE.2018.02.072.
- Manandhar, S., D.S. Vogt, S.R. Perret and F. Kazama, 2011: Adapting cropping systems to climate change in Nepal: A cross-regional study of farmers' perception and practices. *Reg. Environ. Change*, **11**(2), 335–348, doi:10.1007/s10113-010-0137-1.
- Mankin, J.S. et al., 2015: The potential for snow to supply human water demand in the present and future. *Environ. Res. Lett.*, **10**(11), 114016, doi:10.1088/1748-9326/10/11/114016.
- Mao, Y., B. Nijssen and D.P. Lettenmaier, 2015: Is climate change implicated in the 2013–2014 California drought? A hydrologic perspective. *Geophys. Res. Lett.*, **42**(8), 2805–2813, doi:10.1002/2015GL063456.
- Mark, B.G. et al., 2010: Climate change and tropical Andean glacier recession: Evaluating hydrologic changes and livelihood vulnerability in the Cordillera Blanca, Peru. *Ann. Am. Assoc. Geogr.*, **100**(4), 794–805, doi:10.1080/0004 5608.2010.497369.
- Marke, T., F. Hanzer, M. Olefs and U. Strasser, 2018: Simulation of past changes in the Austrian snow cover 1948–2009. J. Hydrometeorol., 19(10), 1529–1545, doi:10.1175/JHM-D-17-0245.1.
- Marty, C., S. Schlögl, M. Bavay and M. Lehning, 2017a: How much can we save? Impact of different emission scenarios on future snow cover in the Alps. *The Cryosphere*, **11**(1), 517–529, doi:10.5194/tc-11-517–2017.
- Marty, C., A.-M. Tilg and T. Jonas, 2017b: Recent evidence of large-scale receding snow water equivalents in the European Alps. *J. Hydrometeorol.*, **18**(4), 1021–1031, doi:10.1175/JHM-D-16-0188.1.
- Masson, D. and C. Frei, 2016: Long-term variations and trends of mesoscale precipitation in the Alps: Recalculation and update for 1901–2008. *Int. J. Climatol.*, **36**(1), 492–500, doi:10.1002/joc.4343.
- Matteodo, M., K. Ammann, E.P. Verrecchia and P. Vittoz, 2016: Snowbeds are more affected than other subalpine–alpine plant communities by climate change in the Swiss Alps. *Ecol. Evol.*, 6(19), 6969–6982, doi:10.1002/ ece3.2354.
- Matthews, J.A. and A.E. Vater, 2015: Pioneer zone geo-ecological change: Observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. *Catena*, **135**, 219–230, doi:10.1016/j. catena.2015.07.016.
- McCabe, G.J. et al., 2007: Rain-on-snow events in the Western United States. *Bull. Am. Meteor. Soc.*, **88**(3), 319–328, doi:10.1175/BAMS-88-3-319.
- McDowell, G. et al., 2013: Climate-related hydrological change and human vulnerability in remote mountain regions: a case study from Khumbu, Nepal. *Reg. Environ. Change*, **13**(2), 299–310, doi:10.1007/s10113-012-0333–2.
- McDowell, J.Z. and J.J. Hess, 2012: Accessing adaptation: Multiple stressors on livelihoods in the Bolivian highlands under a changing climate. *Global Environ. Chang.*, **22**(2), 342–352, doi:10.1016/j.gloenvcha.2011.11.002.
- McNeeley, S.M., 2017: Sustainable Climate Change Adaptation in Indian Country. *Weather Clim. Soc.*, **9**(3), 392–403, doi:10.1175/ wcas-d-16-0121.1.
- Meena, R.K. et al., 2019: Local perceptions and adaptation of indigenous communities to climate change: Evidences from High Mountain Pangi valley of Indian Himalayas. *Indian J. Tradit. Know.*, **18**(1), 58–67. [Available at: http://nopr.niscair.res.in/handle/123456789/45689].
- Meenawat, H. and B.K. Sovacool, 2011: Improving adaptive capacity and resilience in Bhutan. *Mitig. Adapt. Strat. Gl.*, **16**(5), 515–533, doi:10.1007/ s11027-010-9277-3.
- Mills-Novoa, M. et al., 2017: Bringing the hydrosocial cycle into climate change adaptation planning: lessons from two andean mountain water towers. *Ann. Am. Assoc. Geogr.*, **107**(2), 393-402, doi:10.1080/24694452. 2016.1232618.

- Milner, A.M. et al., 2017: Glacier shrinkage driving global changes in downstream systems. *PNAS*, **114**(37), 9770–9778, doi:10.1073/ pnas.1619807114.
- Montana, E., H.P. Diaz and M. Hurlbert, 2016: Development, local livelihoods, and vulnerabilities to Global Environ. Chang. in the South American Dry Andes. *Reg. Environ. Change*, **16**(8), 2215—2228, doi:10.1007/s10113-015-0888-9.
- Moors, E.J. et al., 2011: Adaptation to changing water resources in the Ganges basin, northern India. *Environ. Sci. Policy*, **14**(7), 758–769, doi:10.1016/j. envsci.2011.03.005.
- Moran-Tejéda, E., J.I. López-Moreno, M. Stoffel and M. Beniston, 2016: Rain-on-snow events in Switzerland: recent observations and projections for the 21st century. *Clim. Res.*, **71**(2), 111–125, doi:10.3354/cr01435.
- Morueta-Holme, N. et al., 2015: Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. *PNAS*, **112**(41), 12741– 12745, doi:10.1073/pnas.1509938112.
- Mote, P.W. et al., 2018: Dramatic declines in snowpack in the western US. npj Climate and Atmospheric Science, 1(1), 2, doi:10.1038/s41612-018-0012-1.
- Mourey, J., M. Marcuzzi., L. Ravanel. and F. Pallandre., 2019: Effects of climate change on high Alpine environments: the evolution of mountaineering routes in the Mont Blanc massif (Western Alps) over half a century. *Arct. Antarct. Alp. Res.*, **51**(1), 176–189, doi:10.1080/15230430.2019.1612216.
- Mourey, J. and L. Ravanel, 2017: Evolution of access routes to high mountain refuges of the Mer de Glace Basin (Mont Blanc Massif, France). *Revue de Géographie Alpine*, **105**(4), doi:10.4000/rga.3790.
- Moyer, A.N., R.D. Moore and M.N. Koppes, 2016: Streamflow response to the rapid retreat of a lake-calving glacier. *Hydrol. Process.*, **30**(20), 3650–3665, doi:10.1002/hyp.10890.
- Mu, C.C. et al., 2017. Permafrost collapse shifts alpine tundra to a carbon source but reduces N₂O and CH₄ release on the northern Qinghai-Tibetan Plateau. *Geophys. Res. Lett.*, 44(17): 8945–8952, doi:10. 1002/2017GL074338.
- Muccione, V., N. Salzmann and C. Huggel, 2016: Scientific knowledge and knowledge needs in climate adaptation Policy. *Mt. Res. Dev.*, 36(3), 364– 375, doi:10.1659/mrd-journal-d-15-00016.1.
- Muhlfeld, C.C. et al., 2011: Climate change links fate of glaciers and an endemic alpine invertebrate. *Clim. Change*, **106**(2), 337–345, doi:10.1007/ s10584-011-0057-1.
- Mukhopadhyay, B. and A. Khan, 2014: Rising river flows and glacial mass balance in central Karakoram. *J. Hydrol.*, **513**, 192—203, doi:10.1016/j. jhydrol.2014.03.042.
- Murata, A., H. Sasaki, H. Kawase and M. Nosaka, 2016: Identification of key factors in future changes in precipitation extremes over Japan using ensemble simulations. *Hydrol. Res. Lett.*, **10**(4), 126–131, doi:10.3178/ hrl.10.126.
- Musselman, K.N. et al., 2018: Projected increases and shifts in rain-on-snow flood risk over western North America. *Nat. Clim. Change*, 8(9), 808–812, doi:10.1038/s41558-018-0236-4.
- Naaim, M. et al., 2016: Impact of climate warming on avalanche activity in French Alps and increase of proportion of wet snow avalanches. *Houille Blanche*, **59**(6), 12–20, doi:10.1051/lhb/2016055.
- Navarro, F., H. Andrés, F. Acuña and F. José, 2018: Glaciares rocosos en la zona semiárida de Chile: relevancia de un recurso hídrico sin protección normativa. *Cuadernos de Geografía: Revista Colombiana de Geografía*, 27(2), 338–355, doi:10.15446/rcdg.v27n2.63370.
- Naz, B.S. et al., 2016: Regional hydrologic response to climate change in the conterminous United States using high-resolution hydroclimate simulations. *Global Planet. Change*, **143**, 100–117, doi:10.1016/j. gloplacha.2016.06.003.
- Negi, V.S. et al., 2017: Climate change impact in the Western Himalaya: people's perception and adaptive strategies. J. Mt. Sci., 14(2), 403–416, doi:10.1007/s11629-015-3814-1.

- Nepal, S., 2016: Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. J. Hydro-Environ. Res., 10, 76–89, doi:10.1016/j.jher.2015.12.001.
- Neukom, R. et al., 2015: Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100. *Environ. Res. Lett.*, **10**(8), 084017, doi:10.1088/1748-9326/10/8/084017.
- Nogués-Bravo, D., M.B. Araújo, M.P. Errea and J.P. Martínez-Rica, 2007: Exposure of global mountain systems to climate warming during the 21st Century. *Global Environ. Chang.*, **17**(3–4), 420–428, doi:10.1016/j. gloenvcha.2006.11.007.
- Nüsser, M. et al., 2018: Socio-hydrology of "artificial glaciers" in Ladakh, India: assessing adaptive strategies in a changing cryosphere. *Reg. Environ. Change*, **48**(2), 1–11, doi:10.1007/s10113-018-1372-0.
- Nüsser, M. and S. Schmidt, 2017: Nanga Parbat revisited: Evolution and dynamics of sociohydrological interactions in the Northwestern Himalaya. *Ann. Am. Assoc. Geogr.*, **107**(2), 403–415, doi:10.1080/24694452.2016.1 235495.
- O'Neel, S., E. Hood, A.A. Arendt and L. Sass, 2014: Assessing streamflow sensitivity to variations in glacier mass balance. *Clim. Change*, **123**(2), 329–341, doi:10.1007/s10584-013-1042-7.
- Obu, J. et al., 2019: Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km² scale. *Earth-Sci. Rev.*, **193**, 299–316, doi:j.earscirev.2019.04.023.
- Ohmura, A., 2012: Enhanced temperature variability in high-altitude climate change. *Theor. Appl. Climatol.*, **110**(4), 499–508, doi:10.1007/s00704-012-0687-x.
- Onta, N. and B.P. Resurreccion, 2011: The role of gender and caste in climate adaptation strategies in Nepal: Emerging change and persistent inequalities in the far-western region. *Mt. Res. Dev.*, **31**(4), 351–356, doi:10.1659/MRD-JOURNAL-D-10-00085.1.
- Orlove, B., 2009a: The past, the present and some possible futures of adaptation. [Adger, W. N., I. Lorenzoni and K. L. OBrien (eds.)]. Adapting to climate change: Thresholds, values, governance. Cambridge University Press, Cambridge, 131-163. ISBN: 978-0-521-76485-8.
- Orlove, B., 2009b: Reviewing the limits of human adaptation to climate. *Environment*, **51**(3), 22–34, doi:10.3200/ENVT.51.3.22-34.
- Orlove, B. et al., 2019: Framing climate change in frontline communities: anthropological insights on how mountain dwellers in the USA, Peru, and Italy adapt to glacier retreat. *Reg. Environ. Change*, **19**(5), 1295–1309, doi:10.1007/s10113-019-01482-y.
- Oyler, J.W. et al., 2015: Artificial amplification of warming trends across the mountains of the western United States. *Geophys. Res. Lett.*, **42**(1), 153–161, doi:10.1002/2014GL062803.
- Pagán, B.R. et al., 2016: Extreme hydrological changes in the southwestern US drive reductions in water supply to Southern California by mid century. *Environ. Res. Lett.*, **11**, 1–11, doi:10.1088/1748-9326/11/9/094026.
- Palazzi, E., J. von Hardenberg and A. Provenzale, 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res-Atmos., 118(1), 85–100, doi:10.1029/2012JD018697.
- Palazzi, E.L., L. Filippi and J. v. Hardenberg, 2017: Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations. *Clim. Dyn.*, 48(11–12), 3991–4008, doi:10.1007/ s00382-016-3316-z.
- Panday, P.K., J. Thibeault and K.E. Frey, 2015: Changing temperature and precipitation extremes in the Hindu Kush-Himalayan region: an analysis of CMIP3 and CMIP5 simulations and projections. *Int. J. Climatol.*, **35**(10), 3058–3077, doi:10.1002/joc.4192.
- Papadaki, C. et al., 2016: Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. *Sci. Total Environ.*, **540**, 418–428, doi:10.1016/j.scitotenv.2015.06.134.
- Parveen, S., M. Winiger, S. Schmidt and M. Nüsser, 2015: Irrigation in Upper Hunza: Evolution of socio-hydrological interactions in the

Karakoram, northern Pakistan. *Erdkunde*, **69**(1), 69–85, doi:10.3112/ erdkunde.2015.01.05.

- Paudel, K. P. and Andersen, P., 2013. Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. *Clim. Change*, **117**(1–2): 149-162.
- Pedersen, S., M. Odden and H.C. Pedersen, 2017: Climate change induced molting mismatch? Mountain hare abundance reduced by duration of snow cover and predator abundance. *Ecosphere*, **8**(3), e01722, doi:10.1002/ecs2.1722.
- Peduzzi, P., C. Herold and W.C. Silverio Torres, 2010: Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru). *Cryosphere*, 4(3), 313–323, doi:10.5194/tc-4-313–2010.
- Pepin, N.C. and J.D. Lundquist, 2008: Temperature trends at high elevations: Patterns across the globe. *Geophys. Res. Lett.*, **35**(14), L14701, doi:10.1029/2008GL034026.
- Pepin, N.C. and D.J. Seidel, 2005: A global comparison of surface and free-air temperatures at high elevations. J. Geophys. Res., 110(3), 1–15, doi:10.1029/2004JD005047.
- Pérez-Zanón, N., J. Sigró and L. Ashcroft, 2017: Temperature and precipitation regional climate series over the central Pyrenees during 1910–2013. *Int. J. Climatol.*, **37**(4), 1922–1937, doi:10.1002/joc.4823.
- Petrakov, D. et al., 2012: Monitoring of Bashkara Glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst. *Nat. Hazards*, **61**(3), 1293–1316, doi:10.1007/s11069-011-9983-5.
- Phillips, M. and S. Margreth, 2008: Effects of ground temperature and slope deformation on the service life of snow-supporting structures in mountain permafrost: Wisse Schijen, Randa, Swiss Alps. In: *Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska*, 1990, pp. 1417–1422.
- Picketts, I.M. et al., 2016: Climate change adaptation strategies for transportation infrastructure in Prince George, Canada. *Reg. Environ. Change*, **16**(4), 1109–1120, doi:10.1007/s10113-015-0828-8.
- Picketts, I.M., Curry, J., S.J. Déry and S.J. Cohen, 2013: Learning with practitioners: climate change adaptation priorities in a Canadian community. *Clim. Change*, **118** (2), 321–337, doi:10.1007/s10584-012-0653-8.
- Pielmeier, C., F. Techel, C. Marty and T. Stucki, 2013: Wet snow avalanche activity in the Swiss Alps – Trend analysis for mid-winter season. In: International Snow Science Workshop Grenoble – Chamonix Mont-Blanc – October 07-11, 2013, pp. 1240–1246.
- Pizarro, R. et al., 2013: Influencia del cambio climático en el comportamiento de los caudales máximos en la zona Mediterránea de Chile. *Tecnología y Ciencias del Agua*, 4, 05–19. [Available at: http://www.scielo.org.mx/ scielo.php?script=sci_arttext&pid=S2007-24222013000200001&lng=es& nrm=iso].
- Polk, M.H. et al., 2017: Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru's Cordillera Blanca. *Appl. Geogr.*, **78**, 94–103, doi:10.1016/j.apgeog.2016.11.004.
- Pons, M. et al., 2014: Climate change influence on winter tourism in the Pyrenees. Experience from the NIVOPYR research project. *Pirineos*, **169**(6), 1–12, doi:10.3989/Pirineos.2014.169006.
- Pons, M. R., D. San-Martin, S. Herrera and J.M. Gutierrez, 2010: Snow trends in Northern Spain: analysis and simulation with statistical downscaling methods. *Int. J. Climatol.*, **30**(12), 1795–1806, doi:10.1002/joc.2016.
- Pons-Pons, M. et al., 2012: Modeling climate change effects on winter ski tourism in Andorra. *Clim. Res.*, 54(3), 197–207, doi:10.3354/cr01117.
- Postigo, J.C., 2014: Perception and resilience of Andean populations facing climate change. J. Ethnobiol. 34(3), 383–400, doi:10.2993/0278-0771-34.3.383.
- Postigo, J.C., K.R. Young and K.A. Crews, 2008: Change and continuity in a pastoralist community in the High Peruvian Andes. *Hum. Ecol.*, **36**(4), 535–551, doi:10.1007/s10745-008-9186-1.

- Prasain, S., 2018: Climate change adaptation measure on agricultural communities of Dhye in Upper Mustang, Nepal. *Clim. Change*, **148**(1–2), 279–291, doi:10.1007/s10584-018–2187-1.
- Prasch, M., W. Mauser and M. Weber, 2013: Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. *The Cryosphere*, **7**(3), 889–904, doi:10.5194/tc-7-889–2013.
- Qin, J., K. Yang, S. Liang and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. *Clim. Change*, **97**(1), 321–327, doi:10.1007/s10584-009-9733-9.
- Qixiang, W., M. Wang and X. Fan, 2018: Seasonal patterns of warming amplification of high-elevation stations across the globe. *Int. J. Climatol.*, 38(8), 3466–3473, doi:10.1002/joc.5509.
- Ragettli, S., W.W. Immerzeel and F. Pellicciotti, 2016: Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. *PNAS*, **113**(33), 9222–9227, doi:10.1073/pnas.1606526113.
- Rai, S.C. and A. Gurung, 2005: Raising awareness of the impacts of climate change: Initial steps in shaping policy in Nepal. *Mt. Res. Dev.*, 25(4), 316–321, doi:10.1659/0276-4741(2005)025[0316:RAOTIO]2.0.CO;2.
- Räisänen, J. and J. Eklund, 2012: 21st Century changes in snow climate in Northern Europe: A high-resolution view from ENSEMBLES regional climate models. *Clim. Dyn.*, **38**(11–12), 2575–2591, doi:10.1007/s00382-011-1076-3.
- Rajczak, J. and C. Schär, 2017: Projections of future precipitation extremes over europe: a multimodel assessment of climate simulations. J. Geophys. Res-Atmos., 122(20), 10773–10800, doi:10.1002/2017JD027176.
- Rangecroft, S., A.J. Suggitt, K. Anderson and S. Harrison, 2016: Future climate warming and changes to mountain permafrost in the Bolivian Andes. *Clim. Change*, **137**(1–2), 231–243, doi:10.1007/s10584-016-1655-8.
- Rattenbury, K.L. et al., 2018: Delayed spring onset drives declines in abundance and recruitment in a mountain ungulate. *Ecosphere*, **9**(11), doi:10.1002/ecs2.2513.
- Räty, O., H. Virta, T. Bosshard and C. Donnelly, 2017: Regional climate model and model output statistics method uncertainties and the effect of temperature and precipitation on future river discharges in Scandinavia. *Hydrol. Res.*, 48(5), 1363–1377, doi:10.2166/nh.2017.127.
- Ravanel, L. et al., 2010: Rock falls in the Mont Blanc Massif in 2007 and 2008. *Landslides*, **7**(4), 493–501, doi:10.1007/s10346-010-0206-z.
- Ravanel, L. and P. Deline, 2011: Climate influence on rockfalls in high-Alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the 'Little Ice Age'. *The Holocene*, **21**(2), 357–365, doi:10.1177/0959683610374887.
- Ravanel, L., P. Deline, C. Lambiel and C. Vincent, 2013: Instability of a high alpine rock ridge: the lower Arête Des Cosmiques, Mont Blanc massif, France. *Geografiska Annaler. Series A, Physical Geography*, **95**(1), 51–66, doi:10.1111/geoa.12000.
- Ravanel, L., F. Magnin and P. Deline, 2017: Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. *Sci. Total Environ.*, **609**, 132–143, doi:10.1016/j. scitotenv.2017.07.055.
- Rees, H.G. and D.N. Collins, 2006: Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. *Hydrol. Process.*, **20**(10), 2157–2169, doi:10.1002/hyp.6209.
- Reggiani, P. and T.H.M. Rientjes, 2015: A reflection on the long-term water balance of the Upper Indus Basin. *Hydrol. Res.*, 46, 446–462, doi:10.2166/ nh.2014.060.
- Reid, P.C. et al., 2016: Global impacts of the 1980s regime shift. *Global Change Biol.*, **22**(2), 682–703, doi:10.1111/gcb.13106.
- Reynard, E. et al., 2014: Interdisciplinary assessment of complex regional water systems and their future evolution: how socioeconomic drivers can matter more than climate. *WiRes. Water*, **1**(4), 413–426, doi:10.1002/ wat2.1032.

- RGI Consortium, 2017: Randolph Glacier Inventory A dataset of global glacier outlines: version 6.0: Technical report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media, doi.org/10.7265/N5-RGI-60.
- Rhoades, R.E., X. Zapata Rios and J.A. Ochoa, 2008: Mama Cotacachi: History, local perceptions, and social impacts of climate change and glacier retreat in the Ecuadorian Andes. In: *Darkening Peaks: Glacier Retreat, Science, and Society* [Orlove, B., E. Wiegant and B.H. Luckman (eds.)]. University of California Press, Berkeley, pp. 216–228.
- Ritter, F., M. Fiebig and A. Muhar, 2012: Impacts of global warming on mountaineering: A classification of phenomena affecting the alpine trail network. *Mt. Res. Dev.*, **32**(1), 4–15, doi:10.1659/MRD-JOURNAL-D-11-00036.1.
- Roer, I. et al., 2008: Observations and considerations on destabilizing active rock glaciers in the European Alps. In: *Ninth International Conference on Permafrost*, University of Alaska Fairbanks [Kane, D. L. and K. M. Hinkel (eds.)], Institute of Northern Engineering, 2, pp. 1505–1510.
- Rottler, E., C. Kormann, T. Francke and A. Bronstert, 2019: Elevation-dependent warming in the Swiss Alps 1981–2017: Features, forcings and feedbacks. *Int. J. Climatol.*, **39**(5), 2556–2568, doi:10.1002/joc.5970.
- Ruiz, D., H.A. Moreno, M.E. Gutiérrez and P.A. Zapata, 2008: Changing climate and endangered high mountain ecosystems in Colombia. *Sci. Total Environ.*, **398**, 122–132, doi:10.1016/J.SCITOTENV.2008.02.038.
- Russell, A.M. et al., 2017: Are the Central Andes mountains a warming hot spot? J. Clim., 30(10), 3589–3608, doi:10.1175/JCLI-D-16-0268.1.
- Rusticucci, M., N. Zazulie and G.B. Raga, 2014: Regional winter climate of the southern central Andes: Assessing the performance of ERA-Interim for climate studies. *J. Geophys. Res-Atmos.*, **119**(14), 8568–8582, doi:10.1002/2013JD021167.
- Saavedra, F.A., S.K. Kampf, S.R. Fassnacht and J.S. Sibold, 2018: Changes in Andes snow cover from MODIS data, 2000–2016. *The Cryosphere*, **12**(3), 1027–1046, doi:10.5194/tc-12-1027–2018.
- Sæmundsson, Þ. et al., 2018: The triggering factors of the Móafellshyrna debris slide in northern Iceland: Intense precipitation, earthquake activity and thawing of mountain permafrost. *Sci. Total Environ.*, 621, 1163–1175, doi:10.1016/j.scitotenv.2017.10.111.
- Salerno, F. et al., 2015: Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). *The Cryosphere*, 9(3), 1229–1247, doi:10.5194/tc-9-1229–2015.
- Salick, J., A. Byg and K. Bauer, 2012: Contemporary Tibetan cosmology of climate change. *Journal for the Study of Religion, Nature & Culture*, 6(4), doi:10.1558/jsrnc.v6i4.447.
- Sanjay, J. et al., 2017: Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. *Adv. Clim. Change Res.*, 8(3), 185–198, doi:10.1016/j.accre.2017.08.003.
- Schaefli, B. et al., 2019: The role of glacier retreat for Swiss hydropower production. *Renew. Energ.*, **132**, 615–627, doi:10.1016/j.renene.2018. 07.104.
- Scherrer, S.C., P. Ceppi, M. Croci-Maspoli and C. Appenzeller, 2012: Snow-albedo feedback and Swiss spring temperature trends. *Theor. Appl. Climatol.*, **110**(4), 509–516, doi:10.1007/s00704-012-0712-0.
- Schmocker, J. et al., 2016: Trends in mean and extreme precipitation in the Mount Kenya region from observations and reanalyses. *Int. J. Climatol.*, 36(3), 1500–1514, doi:10.1002/joc.4438.
- Schnorbus, M., A. Werner and K. Bennett, 2014: Impacts of climate change in three hydrologic regimes in British Columbia, Canada. *Hydrol. Process.*, 28, 1170–1189, doi:10.1002/hyp.9661.
- Schwanghart, W. et al., 2016: Uncertainty in the Himalayan energy-water nexus: estimating regional exposure to glacial lake outburst floods. *Environ. Res. Lett.*, **11**(7), 074005, doi:10.1088/1748-9326/11/7/074005.
- Scorzini, A. R. and M. Leopardi, 2019: Precipitation and temperature trends over central Italy (Abruzzo Region): 1951–2012. *Theor. Appl. Climatol.*, 135, 959–977, doi:10.1007/s00704-018–2427-3.

- Scott, D., R. Steiger, H. Dannevig and C. Aall, 2019: Climate change and the future of the Norwegian alpine ski industry. *Current Issues in Tourism*, doi: 10.1080/13683500.2019.1608919.
- Serquet, G., C. Marty, J.-P. Dulex and M. Rebetez, 2011: Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. *Geophys. Res. Lett.*, 38(7),L07703,doi:10.1029/2011GL046976.
- Shafiq, M. u. et al., 2019: Assessment of present and future climate change over Kashmir Himalayas, India. *Theor. Appl. Climatol.*, **137**(3–4), 3183– 3195, doi:10.1007/s00704-019-02807-x.
- Shah, A.A., J. Ye, M. Abid and R. Ullah, 2017: Determinants of flood risk mitigation strategies at household level: a case of Khyber Pakhtunkhwa (KP) province, Pakistan. *Nat. Hazards*, **88**(1), 415–430, doi:10.1007/ s11069-017–2872-9
- Shaoliang, Y., M. Ismail and Y. Zhaoli, 2012: Pastoral Communities' Perspectives on Climate Change and Their Adaptation Strategies in the Hindukush-Karakoram-Himalaya. Springer Netherlands, Dordrecht, 307–322. doi:10.1007/978-94-007-3846-1, ISBN 978-94-007-3845-4.
- Shen, Y.J. et al., 2018: Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains. J. Hydrol., 557, 173– 181, doi:10.1016/j.jhydrol.2017.12.035.
- Shrestha, N.K., X. Du and J. Wang, 2017: Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada. *Sci. Total Environ.*, 601–602, 425–440, doi:10.1016/j.scitotenv.2017.05.013.
- Skaugen, T., H.B. Stranden and T. Saloranta, 2012: Trends in snow water equivalent in Norway (1931–2009). *Hydrol. Res.*, **43**(4), 489–499, doi:10.2166/nh.2012.109.
- Sloat, L.L., A.N. Henderson, C. Lamanna and B.J. Enquist, 2015: The effect of the foresummer drought on carbon exchange in subalpine meadows. *Ecosystems*, 18(3), 533–545, doi:10.1007/s10021-015-9845-1.
- Smadja, J. et al., 2015: Climate change and water resources in the Himalayas: Field study in four geographic units of the Koshi basin, Nepal. *Revue de Géographie Alpine*, **103**(2), doi:10.4000/rga.2910.
- Smiatek, G., H. Kunstmann and A. Senatore, 2016: EURO-CORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change. J. Geophys. Res-Atmos., 121(13), 7710–7728, doi:10.1002/2015JD024727.
- Smith, T. and B. Bookhagen, 2018: Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009). *Sci. Adv.*, 4, e1701550, doi:10.1126/sciadv.1701550.
- Sokratov, S.A., Y.G. Seliverstov and A.L. Shnyparkov, 2014: Assessment of the economic risk for the ski resorts of changes in snow cover duration. *Ice and Snow*, **54**(3), 100–106, doi:10.15356/2076-6734–2014-3-100-106.
- Somers, L.D. et al., 2018: Does hillslope trenching enhance groundwater recharge and baseflow in the Peruvian Andes? *Hydrol. Process.*, 32(3), 318–331, doi:10.1002/hyp.11423.
- Somos-Valenzuela, M.A. et al., 2015: Assessing downstream flood impacts due to a potential GLOF from Imja Tsho in Nepal. *Hydrol. Earth Syst. Sc.*, **19**(3), 1401–1412, doi:10.5194/hess-19-1401–2015.
- Sorg, A., M. Huss, M. Rohrer and M. Stoffel, 2014a: The days of plenty might soon be over in glacierized Central Asian catchments. *Environ. Res. Lett.*, **9**(10), 104018, doi:10.1088/1748-9326/9/10/104018.
- Sorg, A. et al., 2014b: Coping with changing water resources: The case of the Syr Darya river basin in Central Asia. *Environ. Sci. Policy*, **43**, 68–77, doi:10.1016/j.envsci.2013.11.003.
- Soruco, A. et al., 2015: Contribution of glacier runoff to water resources of La Paz city, Bolivia (16° S). *Ann. Glaciol.*, **56**(70), 147–154, doi:10.3189/2015AoG70A001.
- Spies, M., 2016: Glacier thinning and adaptation assemblages in Nagar, Northern Pakistan. *Erdkunde*, **70**(2), 125–140, doi:10.3112/ erdkunde.2016.02.02.
- Spinoni, J. et al., 2015: Climate of the Carpathian Region in the period 1961– 2010: climatologies and trends of 10 variables. *Int. J. Climatol.*, **35**(7), 1322–1341, doi:10.1002/joc.4059.

- Stahl, K. et al., 2008: Coupled modelling of glacier and streamflow response to future climate scenarios. *Water Resour. Res.*, 44(2), 20,355, doi:10.1029/2007WR005956.
- Steger, C., S. Kotlarski, T. Jonas and C. Schär, 2012: Alpine snow cover in a changing climate: a regional climate model perspective. *Clim. Dyn.*, 41(3–4), 735–754, doi:10.1007/s00382-012-1545-3.
- Steiger, R. and M. Mayer, 2008: Snowmaking and climate change. *Mt. Res. Dev.*, **28**(3), 292–298, doi:10.1659/mrd.0978.
- Steiger, R. et al., 2017: A critical review of climate change risk for ski tourism. *Current Issues in Tourism*, **22**(11), 1343–1379, doi:10.1080/13683500.20 17.1410110.
- Stensrud, A.B., 2016: Climate change, water practices and relational worlds in the Andes. *Ethnos*, 81(1), 75–98, doi:10.1080/00141844.2014.929597.
- Stewart, E.J. et al., 2016: Implications of climate change for glacier tourism. *Tourism Geogr.*, **18**(4), 377–398, doi:10.1080/14616688.2016.1198416.
- Stoffel, M. and C. Graf, 2015: Debris-flow activity from high-elevation, periglacial environments. [Huggel, C., M. Carey, J. J. Clague and A. Kääb (eds.)]. Cambridge University Press, Cambridge, 295–314. ISBN: 978-1-107-06584-0.
- Strauch, R.L. et al., 2015: Adapting transportation to climate change on federal lands in Washington State, USA.. *Clim. Change*, **130** (2), 185–199, doi:10.1007/s10584-015-1357-7.
- Stucker, D., J. Kazbekov, M. Yakubov and K. Wegerich, 2012: Climate change in a small transboundary tributary of the Syr Darya Calls for effective cooperation and adaptation. *Mt. Res. Dev.*, **32**(3), 275–285, doi:10.1659/ MRD-JOURNAL-D-11-00127.1.
- Su, F. et al., 2013: Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. J. Clim., 26(10), 3187–3208, doi:10.1175/ JCLI-D-12-00321.1.
- Su, F. et al., 2016: Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. *Global Planet. Change*, **136**, 82–95, doi:10.1016/j.gloplacha.2015.10.012.
- Suding, K.N. et al., 2015: Vegetation change at high elevation: scale dependence and interactive effects on Niwot Ridge. *Plant Ecol. Divers.*, 8(5–6), 713–725, doi:10.1080/17550874.2015.1010189.
- Sujakhu, N.M. et al., 2016: Farmers' perceptions of and adaptations to changing climate in the Melamchi Valley of Nepal. *Mt. Res. Dev.*, 36(1), 15–30, doi:10.1659/MRD-JOURNAL-D-15-00032.1.
- Sultana, R. and M. Choi, 2018: Sensitivity of streamflow response in the snow-dominated Sierra Nevada watershed using projected CMIP5 Data. J. Hydrol. Eng., 23(8), 05018015, doi:10.1061/(ASCE)HE.1943-5584.0001640.
- Sun, F. et al., 2016: Twenty-first-century snowfall and snowpack changes over the southern California Mountains. J. Clim., 29(1), 91–110, doi:10.1175/ JCLI-D-15-0199.1.
- Tahir, A.A. et al., 2015: Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region). *Sci. Total Environ.*, **505**, 748–761, doi:10.1016/J.SCITOTENV.2014.10.065.
- Terzago, S., J. von Hardenberg, E. Palazzi and A. Provenzale, 2017: Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models. *The Cryosphere*, **11**(4), 1625–1645, doi:10.5194/tc-11-1625–2017.
- Terzago, S. et al., 2014: Snowpack changes in the Hindu Kush–Karakoram– Himalaya from CMIP5 Global Climate Models. *J. Hydrometeorol.*, **15** (6), 2293–2313, doi:10.1175/JHM-D-13-0196.1.
- Thibert, E., N. Eckert and C. Vincent, 2013: Climatic drivers of seasonal glacier mass balances: an analysis of 6 decades at Glacier de Sarennes (French Alps). *The Cryosphere*, **7**(1), 47–66, doi:10.5194/tc-7-47–2013.
- Thies, H. et al., 2007: Unexpected response of high alpine lake waters to climate warming. *Environ. Sci. Technol.*, 41(21), 7424–7429, doi:10.1021/ es0708060.

- Thies, H. et al., 2013: Evidence of rock glacier melt impacts on water chemistry and diatoms in high mountain streams. *Cold Reg. Sci. Technol.*, 96, 77–85, doi:10.1016/j.coldregions.2013.06.006.
- Tian, L. et al., 2017: Two glaciers collapse in western Tibet. J. Glaciol., 63(237), 194-197, doi:10.1017/jog.2016.122.
- Tudoroiu, M. et al., 2016: Negative elevation-dependent warming trend in the Eastern Alps. *Environ. Res. Lett.*, **11**, 044021, doi:10.1088/1748-9326/11/4/044021.
- Uhlmann, B., F. Jordan and M. Beniston, 2013: Modelling runoff in a Swiss glacierized catchment – Part II: Daily discharge and glacier evolution in the Findelen basin in a progressively warmer climate. *Int. J. Climatol.*, 33(5), 1301–1307, doi:10.1002/joc.3516.
- Uniyal, A., 2013: Lessons from Kedarnath tragedy of Uttarakhand Himalaya, India. *Current Science*, **105**(11), 1472–1474. [Available at: https://www. currentscience.ac.in/cs/Volumes/105/11/1472.pdf].
- Urrutia, R. and M. Vuille, 2009: Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. *J. Geophys. Res.*, **114**(D2), D02108, doi:10.1029/2008JD011021.
- Valentin, M.M., T.S. Hogue and L.E. Hay, 2018: Hydrologic regime changes in a high-latitude glacierized watershed under future climate conditions. *Water*, **10**(2), 128, doi:10.3390/w10020128.
- van de Kerk, M. et al., 2018: Range-wide variation in the effect of spring snow phenology on dall sheep population dynamics. *Environ. Res. Lett.*, **13**(7), doi:10.1088/1748-9326/aace64.
- Van Lienden, B., A. Munevar and T. Das, 2014: West-Wide Climate Risk Assessment, Sacramento and San Joaquin Basins Climate Impact Assessment. US Department of the Interior, Bureau of Reclamation. 66 pp.
- Van Tiel, M. et al., 2018: The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments. *Hydrol. Earth Syst. Sc.*, **22**(1), 463–485, doi:10.5194/hess–22-463–2018.
- Veh, G. et al., 2019: Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. *Nat. Clim. Change*, 9(5), 379–383, doi:10.1038/s41558-019-0437-5.
- Verfaillie, D. et al., 2018: Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps. *The Cryosphere*, **12**(4), 1249–1271, doi:10.5194/tc-12-1249–2018.
- Vicuña, S., R.D. Garreaud and J. McPhee, 2011: Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. *Clim. Change*, **105**(3–4), 469–488, doi:10.1007/s10584-010-9888-4.
- Vigano, G. et al., 2016: Effects of future climate change on a river habitat in an Italian alpine catchment. J. Hydrol. Eng., 21(2), doi:10.1061/(ASCE) HE.1943-5584.0001293.
- Vincent, L.A. et al., 2015: Observed trends in Canada's climate and influence of low-frequency variability modes. *J. Clim.*, **28**(11), 4545–4560, doi:10.1175/ JCLI-D-14-00697.1.
- Volodicheva, N.A., A.D. Oleynikov and N.N. Volodicheva, 2014: Catastrophic avalanches and methods of their control. *Ice and Snow*, **54**(4), 63–71, doi:10.15356/2076-6734–2014-4-.
- Vuille, M. et al., 2018: Rapid decline of snow and ice in the tropical Andes Impacts, uncertainties and challenges ahead. *Earth-Sci. Rev.*, **176**, 195–213, doi:10.1016/j.earscirev.2017.09.019.
- Vuille, M. et al., 2015: Impact of the global warming hiatus on Andean temperature. J. Geophys. Res-Atmos., 120(9), 3745–3757, doi:10.1002/2015JD023126.
- Wang, L. et al., 2015: Glacier changes in the Sikeshu River basin, Tienshan Mountains. *Quartern. Int.*, **358**, 153–159, doi:10.1016/j. quaint.2014.12.028.
- Wang, X. and Wang, T. and Guo, H. and Liu, D. and Zhao, Y. and Zhang, T. and Liu, Q. and Piao, S., 2018. Disentangling the mechanisms behind winter

snow impact on vegetation activity in northern ecosystems. *Glob. Change Biol.*, **24**(4): 1651–1662, doi:10.1111/gcb.13930.

- Wang, L., Y. Zeng and L. Zhong, 2017a: Impact of climate change on tourism on the Qinghai-Tibetan Plateau: Research based on a literature review. *Sustainability*, 9(9), 14, doi:10.3390/su9091539.
- Wang, G. and Bai, W. and Li, N. and Hu, H., 2011. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. *Clim. Change*, **106**(3): 463–482, doi:10.1007/s10584-010-9952-0.
- Wang, S., Y. He and X. Song, 2010: Impacts of climate warming on Alpine glacier tourism and adaptive measures: A case study of Baishui Glacier No. 1 in Yulong Snow Mountain, Southwestern China. J. Earth. Sci., 21(2), 166–178, doi:10.1007/s12583-010-0015–2.
- Wang, S., T. Yao, L. Tian and J. Pu, 2017b: Glacier mass variation and its effect on surface runoff in the Beida River catchment during 1957–2013. J. Glaciol., 63(239), 523–534, doi:10.1017/joq.2017.13.
- Wang, X. et al., 2018: Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. *Global Change Biol.*, 24(4), 1651–1662, doi:10.1111/gcb.13930.
- Wang, X. et al., 2016: The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau. *Global Planet. Change*, **147**, 40–53, doi:10.1016/J. GLOPLACHA.2016.10.014.
- Wangchuk, K. and J. Wangdi, 2018: Signs of climate warming through the eyes of yak herders in northern Bhutan. *Mt. Res. Dev.*, 38(1), 45–52, doi:10.1659/MRD-JOURNAL-D-17-00094.1.
- Weingartner, R., B. Schädler and P. Hänggi, 2013: Auswirkungen der Klimaänderung auf die schweizerische Wasserkraftnutzung. *Geogr. Helv.*, 68(4), 239–248, doi:10.5194/gh-68–239–2013.
- Welling, J., R. Ólafsdóttir, Þ. Árnason and S. Guðmundsson, 2019: Participatory planning under scenarios of glacier retreat and tourism growth in southeast Iceland. *Mt. Res. Dev.*, **39**(2), doi.org/10.1659/MRD-JOURNAL-D-18-00090.1.
- Wendler, G., T. Gordon and M. Stuefer, 2017: On the precipitation and precipitation change in Alaska. *Atmosphere*, 8(12), 253, doi:10.3390/ atmos8120253.
- Westerling, A.L., 2016: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. *Philos. T. R. Soc. B.*, **371**(1696), 20150178, doi:10.1098/rstb.2015.0178.
- Wijngaard, R.R. et al., 2017: Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. *PLOS ONE*, **12**(12), e0190224, doi:10.1371/journal.pone.0190224.
- Wilson, R. et al., 2018: Glacial lakes of the Central and Patagonian Andes. Glob. Planet. Change, 162, 275–291, doi:10.1016/j.gloplacha.2018.01.004.
- Winkler, D. E., Amagai, Y., Huxman, T. E., Kaneko, M., & Kudo, G., 2016. Seasonal dry-down rates and high stress tolerance promote bamboo invasion above and below treeline. *Plant Ecol.*, 217(10): 1219-1234, doi:10.1007/s11258-016-0649-y.
- Winski, D. et al., 2017: Industrial-age doubling of snow accumulation in the Alaska Range linked to tropical ocean warming. *Sci. Rep.*, 7, 17869, doi:10.1038/s41598-017-18022-5.
- Wrathall, D.J. et al., 2014: Migration amidst climate rigidity traps: Resource politics and social-ecological possibilism in Honduras and Peru. Ann. Am. Assoc. Geogr., 104(2), 292–304, doi:10.1080/00045608.2013.873326.
- Wu, X. et al., 2018: Uneven winter snow influence on tree growth across temperate China. *Global Change Biol.*, 25(1), 144–154, doi:10.1111/ gcb.14464.
- Xenarios, S. et al., 2018: Climate change and adaptation of mountain societies in Central Asia: uncertainties, knowledge gaps, and data constraints. *Reg. Environ. Change*, **31**(3–4), 1113, doi:10.1007/s10113-018-1384-9.
- Xu, F. et al., 2018: Temperature and precipitation trends and their links with elevation in the Hengduan Mountain region, China. *Clim. Res.*, **75**(2), 163– 180, doi:10.3354/cr01516.

- Yager, K., 2015: Satellite imagery and community perceptions of climate change impacts and landscape change. [Barnes, J and M. Dove (eds.)]. Climate Cultures: Anthropological Perspectives on Climate Change. Yale University Press, New Haven, 146–168.
- Yang, J., G. Fang, Y. Chen and P. De-Maeyer, 2017: Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging. J.Arid Land, 9(4), 622–634, doi:10.1007/s40333-017-0100-9.
- Yang, Y. et al., 2018: Permafrost and drought regulate vulnerability of Tibetan Plateau grasslands to warming. *Ecosphere*, **9**(5), e02233, doi:10.1002/ecs2.2233.
- Yarleque, C. et al., 2018: Projections of the future disappearance of the Quelccaya Ice Cap in the Central Andes. *Sci. Rep.*, 8(1), 15564, doi:10.1038/ s41598-018-33698-z.
- You, Q. et al., 2010a: Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. *Global Planet. Change*, **72**, 11–24, doi:10.1016/j. gloplacha.2010.04.003.
- You, Q. et al., 2010b: Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. *Global Planet. Change*, **71**(1–2), 124–133, doi:10.1016/j.gloplacha.2010.01.020.
- Young, E. F. et al., 2018: Stepping stones to isolation: Impacts of a changing climate on the connectivity of fragmented fish populations. *Evol. Appl.*, **11**(6), 978–994, doi:10.1111/eva.12613.
- Young, G. et al., 2010: Vulnerability and adaptation in a dryland community of the Elqui Valley, Chile. *Clim. Change*, **98**(1–2), 245–276, doi:10.1007/ s10584-009-9665-4.
- Young, K.R. and J.K. Lipton, 2006: Adaptive governance and climate change in the tropical highlands of western South America. *Clim. Change*, **78**(1), 63–102, doi:10.1007/s10584-006-9091-9.
- Yucel, I., A. Güventürk and O.L. Sen, 2015: Climate change impacts on snowmelt runoff for mountainous transboundary basins in eastern Turkey. *Int. J. Climatol.*, 35(2), 215–228, doi:10.1002/joc.3974.
- Zarenistanak, M., 2018: Historical trend analysis and future projections of precipitation from CMIP5 models in the Alborz mountain area, Iran. *Meteorol. Atmos. Phys.*, 1–22, doi:10.1007/s00703-018-0636-z.
- Zazulie, N., M. Rusticucci and G.B. Raga, 2017: Regional climate of the subtropical central Andes using high-resolution CMIP5 models – part I: past performance (1980–2005). *Clim. Dyn.*, **49**, 3937–3957, doi:10.1007/ s00382-017-3560-x.
- Zazulie, N., M. Rusticucci and G.B. Raga, 2018: Regional climate of the Subtropical Central Andes using high-resolution CMIP5 models. Part II: future projections for the twenty-first century. *Clim. Dyn.*, **51**(7–8), 2913– 2925, doi:10.1007/s00382-017-4056-4.
- Zeng, X., P. Broxton and N. Dawson, 2018: Snowpack change from 1982 to 2016 over conterminous United States. *Geophys. Res. Lett.*, 45(23), 12,940–12,947, doi:10.1029/2018GL079621.
- Zeng, Z. et al., 2015: Regional air pollution brightening reverses the greenhouse gases induced warming-elevation relationship. *Geophys. Res. Lett.*, **42**(11), 4563–4572, doi:10.1002/2015GL064410.
- Zhang, D., Y. Yang and B. Lan, 2018: Climate variability in the northern and southern Altai Mountains during the past 50 years. *Sci. Rep.*, **8**, 3238, doi:10.1038/s41598-018–21637-x.
- Zhang, Y., Y. Hirabayashi, Q. Liu and S. Liu, 2015: Glacier runoff and its impact in a highly glacierized catchment in the southeastern Tibetan Plateau: Past and future trends. J. Glaciol., **61**(228), 713–730, doi:10.3189/2015JoG14J188.
- Zhou, B. et al., 2018: Historical and future changes of snowfall events in China under a warming background. *J. Clim.*, **31**(15), 5873–5889, doi:doi. org/10.1175/JCLI-D-17-0428.1.
- Zimmer, A. et al., 2018: Time lag between glacial retreat and upward migration alters tropical alpine communities. *Perspect. Plant Ecol. Evol. Syst.*, **30**, 89–102, doi:10.1016/j.ppees.2017.05.003.

Zimova, M. et al., 2018: Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? *Biol. Rev.*, 93(3), 1478–1498, doi:10.1111/brv.12405.
Pórhallsdóttir, G. and R. Ólafsson, 2017: A method to analyse seasonality in the distribution of tourists in Iceland. *J. Outdoor Recreat.*, 19, 17–24, doi:10.1016/j.jort.2017.05.001.