6SM

Interlinkages between desertification, land degradation, food security and greenhouse gas fluxes: Synergies, trade-offs and integrated response options Supplementary Material

Coordinating Lead Authors:

Pete Smith (United Kingdom), Johnson Nkem (Cameroon), Katherine Calvin (The United States of America)

Lead Authors:

Donovan Campbell (Jamaica), Francesco Cherubini (Norway/Italy), Giacomo Grassi (Italy/EU), Vladimir Korotkov (The Russian Federation), Anh Le Hoang (Viet Nam), Shuaib Lwasa (Uganda), Pamela McElwee (The United States of America), Ephraim Nkonya (Tanzania), Nobuko Saigusa (Japan), Jean-Francois Soussana (France), Miguel Angel Taboada (Argentina)

Contributing Authors:

Cristina Arias-Navarro (Spain), Otavio Cavalett (Brazil), Annette Cowie (Australia), Joanna House (United Kingdom), Daniel Huppmann (Austria), Jagdish Krishnaswamy (India), Alexander Popp (Germany), Stephanie Roe (The Philippines/The United States of America), Raphael Slade (United Kingdom), Lindsay Stringer (United Kingdom), Matteo Vizzarri (Italy)

Review Editors:

Amjad Abdulla (Maldives), Ian Noble (Australia), Yoshiki Yamagata (Japan), Taha Zatari (Saudi Arabia)

Chapter Scientists:

Frances Manning (United Kingdom), Dorothy Nampanzira (Uganda)

This chapter supplementary material should be cited as:

Smith, P., J. Nkem, K. Calvin, D. Campbell, F. Cherubini, G. Grassi, V. Korotkov, A.L. Hoang, S. Lwasa, P. McElwee, E. Nkonya, N. Saigusa, J.-F. Soussana, M.A. Taboada, 2019: Interlinkages Between Desertification, Land Degradation, Food Security and Greenhouse Gas Fluxes: Synergies, Trade-offs and Integrated Response Options Supplementary Material. In: *Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems* [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Portner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.

Table of contents

Supplementary information for Section 6.4.1	6SM-3
Supplementary information for Section 6.4.3	6SM-10
Supplementary information for Section 6.5.4	6SM-46
References	6SM-47

Supplementary information for Section 6.4.1

Section 6.4.1 includes tables of feasibility dimensions for each of the 40 response options. This section includes the supporting material for those classifications.

Table SM6.1	Feasibility of land management response options in agriculture	, considering cost, technologica	, institutional, socio-cultural and	environmental and geophysical barriers and saturation
	and reversibility.			

Response option	Saturation	Reversibility	Cost	Technological	Institutional	Socio-cultural	Environmental and geophysical
Increased food productivity				Limited ability to define and measure indicators of sustainable intensification (Barnes and Thomson 2014)	Better access to credit, services, inputs and markets (Schut et al. 2016)	Educational – for example, educational needs of women, (Pretty and Bharucha 2014), and cultural or behavioural (Martin et al. 2015b)	Since increasing food productivity can be limited by climatic and environmental factors (Olesen and Bindi 2002)
Improved cropland management			USD74 to USD226 ha ⁻¹	For example, the need for further development of nitrification inhibitors (Singh and Verma 2007)	Can be institutional in some regions – for example, poor sustainability frameworks (Madlener et al. 2006)	Educational (e.g., lack of knowledge) (Reichardt et al. 2009) and cultural or behavioural (e.g., promotion of cover crops needs to account for farmers' needs (Roesch-McNally et al. 2017)	For example, land access (Bryan et al. 2009; Bustamante et al. 2014)
Improved grazing land management			<usd1 kg="" meat<sup="" of="">-1 (Rolfe et al. 2011)</usd1>	For example, the need for further development of nitrification inhibitors (Singh and Verma 2007)	Can be institutional in some regions – for example, the need for extension services (Ndoro et al. 2014)	Educational – for example, poor knowledge of best animal husbandry practices among farmers (Ndoro et al. 2014), and cultural or behavioural – for example, strong cultural importance of livestock and traditional practices in some communities (Herrero et al. 2016)	For example, unless degraded, grazing lands are already closer to saturation than croplands (Smith et al. 2015)
Improved livestock management			120 to 621 USD ha ⁻¹ (Barnhart et al. 2000)	For example, many dietary additives are still at low technology readiness level (Beauchemin et al. 2008)	Can be institutional in some regions – for example, need for extension services (Ndoro et al. 2014)	Educational – for example, poor knowledge of best animal husbandry practices among farmers (Ndoro et al. 2014), and cultural or behavioural – for example, strong cultural importance of livestock in some communities (Herrero et al. 2016)	For example, climate suitability of different cattle breeds in a changing climate (Thornton et al. 2009; Rojas- Downing et al. 2017)
Agroforestry			<5 USD tCO2e ⁻¹ (Torres et al. 2010) Note that lack of reliable financial support could be a barrier (Hernandez-Morcillo et al. 2018)	There are likely to be relatively few technological barriers (Smith et al. 2007)	Institutional in some regions – for example, seed availability (Lillesø et al. 2011)	Educational – for example, poor knowledge of how best to integrate trees into agro-ecosystems, (Meijer et al. 2015), lack of information, (Hernandez-Morcillo et al. 2018) and cultural or behavioural – for example, farmers' perceptions, (Meijer et al. 2015)	Susceptibility to pests (Sileshi et al. 2008)
Agricultural diversification			Minimal (Wimmer and Sauer 2016) Diversification results in cost saving and risk reduction, thus expected cost is minimal Note that it is not always economically viable (Barnes et al. 2015)	Technological, biophysical, educational, and cultural barriers may emerge that limit the adoption of more diverse farming systems by farmers (Barnett and Palutikof 2015; Ahmed and Stepp 2016; Roesch-McNally et al. 2016)		Technological, biophysical, educational, and cultural barriers may emerge that limit the adoption of more diverse farming systems by farmers (Barnett and Palutikof 2015; Ahmed and Stepp 2016; Roesch-McNally et al. 2016)	Technological, biophysical, educational, and cultural barriers may emerge that limit the adoption of more diverse farming systems by farmers (Barnett and Palutikof 2015; Ahmed and Stepp 2016; Roesch- McNally et al. 2016)

Chapter 6 Supplementary Material

Response option	Saturation	Reversibility	Cost	Technological	Institutional	Socio-cultural	Environmental and geophysical
Reduced grassland conversion to cropland			Minimal (Garibaldi et al. 2017) With increased demand for livestock products, it is expected that livestock has higher returns than crops Note that avoiding conversion is low cost, but there may be significant opportunity costs associated with foregone production of crops	Since the response option involves not cultivating a current grassland, there are likely to be few biophysical or technological barriers	There could be institutional barriers in some regions (e.g., poor governance to prevent conversion)	Educational (e.g., poor knowledge of the impacts of ploughing grasslands), and cultural or behavioural (e.g., strong cultural importance of crop production in some communities)	Since the response option involves not cultivating a current grassland, there are likely to be few biophysical or technological barriers
Integrated water management			Minimal (Lubell et al. 2014) Integrated water management expected to reduce production costs and increase economic efficiency				

Table SM6.2 | Feasibility of land management response options in forests, considering cost, technological, institutional, socio-cultural and environmental and geophysical barriers and saturation and reversibility.

Response option	Saturation	Reversibility	Cost	Technological	Institutional	Socio-cultural	Environmental and geophysical
Forest management			70 to 160 USD ha ⁻¹ (Singer 2016)		For example, better access to credit and markets, etc	Educational (e.g., limited knowledge of the most appropriate techniques)	Forest management affects the climate also through biophysical effects and the emissions of biogenic volatile organic compounds (BVOCs), which are both influenced by species composition
Reduced deforestation and forest degradation			500 to 2,600 USD ha ⁻¹ Agricultural expansion is the major driver of deforestation in developing countries. Cost of reducing of deforestation is based on opportunity cost of not growing the most common crop in developing countries (Maize) for six years to reach tree maturity, with yield of 8 t ha ⁻¹ (high); 5 tons ha ⁻¹ (medium) and 1.5 t ha ⁻¹ and price of 329 USD t ⁻¹ Also, reduced deforestation practices have relatively moderate costs, but they require transaction and administration costs (Overmars et al. 2014; Kindermann et al. 2008)		For example, land tenure, economic disincentives and transaction costs (Kindermann et al. 2008)	Educational (e.g., little information available in some regions) and cultural (different realities, e.g., small holder versus industrial production)	For example, susceptibility to climate and other unpredicted events (Ellison et al. 2017)
Reforestation and forest restoration			10 to 100 USD tCO2e ⁻¹ (McLaren 2012)			Educational (e.g., low genetic diversity of planted forests) and cultural (e.g., care of forest cultures)	For example, availability of native species seedlings for planting
Afforestation			10 to 100 USD tCO ₂ e ⁻¹ (McLaren 2012)		For example, policymakers' commitment (Medugu et al. 2010)		

Table SM6.3 | Feasibility of land management response options for soils, considering cost, technological, institutional, socio-cultural and environmental and geophysical barriers and saturation and reversibility.

Response option	Saturation	Reversibility	Cost	Technological	Institutional	Socio-cultural	Environmental and geophysical
Increased soil organic carbon content			50 to 170 USD ha ⁻¹ (FAO 2014) Based on smallholder farming – which accounts for 72% farms in the world; farmers in India (medium farmers) and largescale farmers in the USA (FAO 2014). The cost indicated is only for manure application and ignores other costs for work done under business as usual (BAU). Assumes application of 10 t ha ⁻¹ of organic manure after every three years and minimum tillage	For example, difficult to measure and verify (Smith 2006)	Can be institutional in some regions – for example, lack of institutional capacity (Bustamante et al. 2014)	Educational (e.g., poor knowledge of best practices among farmers) (Reichardt et al. 2009) though cultural or behavioural barriers are likely to be small compared to other barriers (Smith et al. 2007; Wollenberg et al. 2016)	For example, soil type (Baveye et al. 2018)
Reduced soil erosion			50 to 240 USD ha ⁻¹ (Morokong and Blignaut 2019) Based on prevention of soil erosion using terraces with rocks. Costs reported are only for avoided loss of carbon sequestration	Limited technology choices and technical support (Haregeweyn et al. 2015)	For instance, in Ethiopia farmers have shown an increased understanding of the soil erosion problem, but soil conservation programmes face a host of barriers related to limited access to capital, limited benefits, land tenure insecurity (Haregeweyn et al. 2015)	Poor community participation (Haregeweyn et al. 2015)	
Reduced soil salinisation			50 to 250 USD ha ⁻¹ (ICARDA 2012) For NENA region, salinity control recommended practice is deep ploughing, done once every four to five years to break down the hardpan subsoil. Deep ploughing costs 200 USD ha ⁻¹ for the four-year cycle or 50 USD ha ⁻¹ for each cropping season	For example, lack of appropriate irrigation technology; (Machado and Serralheiro 2017; CGIAR 2016; Bhattacharyya et al. 2015)	Lack of alternative irrigation infrastructure (Evans and Sadler 2008; CGIAR 2016)	Educational (poor knowledge of the causes and salinisation and how to address it) (Greene et al. 2016; Dagar et al. 2016) and cultural or behavioural, such as persistence of traditional practices (Greene et al. 2016; Dagar et al. 2016)	For example, lack of alternative water sources (Bhattacharyya et al. 2015; Dagar et al. 2016)
Reduced soil compaction			Negative cost (McLaren 2012)	Both compaction process and remediation technologies are well known (Antille et al. 2016) but technological barriers exist (e.g., few decision support systems for implementation of precision management of traffic compaction)		Educational – for example, knowledge gaps (Antille et al. 2016b)	Some soils are prone to compaction (Antille et al. 2016)
Biochar addition to soil			100 to 800 USD tCO ₂ e ⁻¹ (McLaren 2012) A small amount of biochar potential could be available at negative cost, and some at low cost, depending on markets for the biochar as a soil amendment (Shackley et al. 2011; Meyer et al. 2011; Dickinson et al. 2014)	For example, feedstock and pyrolysis temperature have large impacts on biochar properties	Can be institutional in some regions – for example, lack of quality standards (Guo et al. 2016)	Educational – for example, low awareness among end users (Guo et al. 2016) and cultural or behavioural (Guo et al. 2016)	For example, land available for biomass production (Woolf et al. 2010)

Chapter 6 Supplementary Material

Table SM6.4 | Feasibility of land management response options in any/other ecosystems, considering cost, technological, institutional, socio-cultural and environmental and geophysical barriers and saturation and reversibility.

Response option	Saturation	Reversibility	Cost	Technological	Institutional	Socio-cultural	Environmental and geophysical
Fire management			0.2 to 6.5 USD billion per country per year (USA, Australia, Canada)	Technologies for fire management exist, but the cost of implementation is relatively moderate, since it requires constant maintenance (North et al. 2015) and can be excessive for some local communities	For example, lack of social or political acceptance (Freeman et al. 2017)	Educational – for example, poor knowledge of best practices, liability issues, casualty risks and little tolerance for management errors (North et al. 2015)	For example, susceptibility to climate and other unpredicted events (Hurteau et al. 2014) or steep or remote areas to its application (North et al. 2015)
Reduced landslides and natural hazards				The implementation of practices for management of landslides and natural hazards is based on engineering works and more resilient cropping systems (Noble et al. 2014; Gill and Malamud 2017), which are often limited by their high costs, as well as biophysical, technological and educational barriers	In the tropics, the most cited barriers for implementing landslide risk reduction measures are scientific and political in nature, and the ratio of implemented versus recommended landslide risk reduction measures is low for most landslide risk reduction components (Maes et al. 2017)	The implementation of practices for management of landslides and natural hazards is based on engineering works and more resilient cropping systems (Noble et al. 2014; Gill and Malamud 2017), which are often limited by their high costs, as well as biophysical, technological and educational barriers	The implementation of practices for management of landslides and natural hazards is based on engineering works and more resilient cropping systems (Noble et al. 2014; Gill and Malamud 2017), which are often limited by their high costs, as well as biophysical, technological and educational barriers
Reduced pollution including acidification			2 to 13 USD per household (Van Houtven et al. 2017)	For example, lack of technology to inject fertilisers below ground to prevent ammonia emissions (Shah et al. 2018)	For example, poor regulation and enforcement of environmental regulations (Yamineva and Romppanen 2017)		Since air pollution is transboundary, sources are often far distant from the site of impact; (Begum et al. 2011)
Management of invasive species/ encroachment			500 to 6,632 USD per ha (Jardine and Sanchirico 2018) High cost is for California invasive alien species control; low cost from control in Massachusetts	In the case of natural enemies, it can be technological (Dresner et al. 2015)	Where agricultural extension and advice services are poorly developed	Education can be a barrier, where populations are unaware of the damage caused by the invasive species. Cultural or behavioural barriers are likely to be small	Restoration programmes can take a long time (Dresner et al. 2015)
Restoration and reduced conversion of coastal wetlands			Costs for coastal wetland restoration projects vary, but they can be cost- effective at scale (Erwin 2009)		Can be institutional in some regions – for example, poor governance of wetland use in some regions (Lotze et al. 2006)	Educational (e.g., lack of knowledge of impact of wetland conversion), though technological and cultural or behavioural barriers are likely to be small compared to other barriers	For example, loss of large predators, herbivores, spawning and nursery habitat (Lotze et al. 2006)
Restoration and reduced conversion of peatlands			4 to 20 USD tCO ₂ e ⁻¹ (McLaren 2012)		Can be institutional in some regions – for example, lack of inputs (Bonn et al. 2014)	Educational – for example, lack of skilled labour (Bonn et al. 2014), though technological and cultural or behavioural barriers are likely to be small compared to other barriers	For example, site inaccessibility (Bonn et al. 2014)
Biodiversity conservation			10 to 50 USD tCO ₂ e ⁻¹ (Minx et al. 2018)				

Table SM6.5 | Feasibility of land management response options specifically for carbon dioxide removal (CDR), considering cost, technological, institutional, socio-cultural and environmental and geophysical barriers and saturation and reversibility.

Response option	Saturation	Reversibility	Cost	Technological	Institutional	Socio-cultural	Environmental and geophysical
Enhanced weathering of minerals			10 to 40 USD tCO ₂ e ⁻¹ (McLaren 2012) The main cost (and large energy input) is in the mining and comminution of the minerals (Renforth et al. 2012) with higher total costs compared to other low-cost land management options (Smith et al. 2016a)	High energy costs of comminution (Smith et al. 2016a)	In some regions – for example, lack of infrastructure for this new technology (Taylor et al. 2016)	Educational (e.g., lack of knowledge of how to use these new materials in agriculture). Cultural barriers could occur in some regions, for example, due to minerals lying under undisturbed natural areas where mining might generate public acceptance issues (Renforth et al. 2012)	For example, limited and inaccessible mineral formations (Renforth et al. 2012)
Bioenergy and BECCS		BECCS 'is one of the NET options that is less vulnerable to reversal' (Fuss et al. 2018)	50 to 250 USD tCO2e ⁻¹ (McLaren 2012)	While there are a few small BECCS demonstration facilities, BECCS has not been implemented at scale (Kemper 2015)	Institutional barriers include governance issues (Vaughan and Gough 2016)	Cultural barriers include social acceptance (Sanchez and Kammen 2016) with CCS facing concerns of safety and environmental issues and bioenergy facing additional scrutiny because of competition for land and water	Competition for land and water

Table SM6.6 | Feasibility of demand management response options, considering cost, technological, institutional, socio-cultural and environmental and geophysical barriers and saturation and reversibility.

Response option	Saturation	Reversibility	Cost	Technological	Institutional	Socio-cultural	Environmental and geophysical
Dietary change				Inadequate storage options (e.g., for fresh fruit and vegetables)	Barriers might also be institutional in some regions – for example, poorly developed dietary health advice (Wardle et al. 2000)	Cultural or behavioural – for example, diets are deeply culturally embedded and behaviour change is extremely difficult to effect, even when health benefits are well known (Macdiarmid et al. 2016); educational – such as poor knowledge of what constitutes a healthy diet (Wardle et al. 2000)	Poor accessibility of healthy foods such and fruit and vegetables (Hearn et al. 1998; Lock et al. 2005)
Reduced post-harvest losses				Lack of low-cost storage and preservation technologies	Barriers are largely institutional, since solutions may require dismantling and redesigning current food value chains	There are few biophysical, educational or cultural barriers, since preventing food loss is a priority in many developing countries	There are few biophysical, educational or cultural barriers, since preventing food loss is a priority in many developing countries
Reduced food waste (consumer or retailer)				Barriers in developing countries include reliability of transportation networks, market reliability, education, technology, capacity, and infrastructure (Kummu et al. 2012)	Specific barriers to reducing consumption waste in industrialised countries include inconvenience, lack of financial incentives, lack of public awareness, low cost of food, quality standards and regulations, consumers' ability to buy food products at any time, generalised oversupply in the distribution, and low prioritisation, among others (Kummu et al. 2012; Graham-Rowe et al. 2014; Diaz-Ruiz et al. 2018). Barriers in developing countries include reliability of transportation networks, market reliability, education, technology, capacity, and infrastructure (Kummu et al. 2012)	Specific barriers to reducing consumption waste in industrialised countries include inconvenience, lack of financial incentives, lack of public awareness, and low prioritisation (Kummu et al. 2012; Graham- Rowe et al. 2014). Barriers in developing countries include reliability of transportation networks, market reliability, education, technology, capacity, and infrastructure (Kummu et al. 2012)	

Response option	Saturation	Reversibility	Cost	Technological	Institutional	Socio-cultural	Environmental and geophysical
Material substitution			Negligible (McLaren 2012)	Improved treatments to prevent against fire and moisture needed (Ramage et al. 2017)	Construction companies hesitant to take risks associated with wooden buildings and insurance companies rate wooden buildings as higher risk (Gustavsson et al. 2006)	People perceive adverse effects of wood products on forests and increased risk of fire (Gustavsson et al. 2006)	

Table SM6.7 | Feasibility of supply management response options, considering cost, technological, institutional, socio-cultural and environmental and geophysical barriers and saturation and reversibility.

Response option	Saturation	Reversibility	Cost	Technological	Institutional	Socio-cultural	Environmental and geophysical
Sustainable sourcing		Reversibility could be an issue and, while there are low-cost options, the implementations can be expensive			There are institutional barriers in some contexts (e.g., in low income African, Asian and Latin American countries where challenges associated with food insecurity and climate change vulnerability are more acute) (Ingram et al. 2016)	No obvious biophysical or cultural barriers	No obvious biophysical or cultural barriers
Management of supply chains					Political will within trade regimes, economic laissez-faire policies that discourage interventions in markets, and the difficulties of coordination across economic sectors (Cohen et al. 2009; Gilbert 2012; Poulton et al. 2006)		
Enhanced urban food systems				There are likely to be few biophysical, technological or cultural or behavioural barriers to implementing improved urban food systems, though institutional and education barriers could play a role	There are likely to be few biophysical, technological or cultural or behavioural barriers to implementing improved urban food systems, though institutional and education barriers could play a role	There are likely to be few biophysical, technological or cultural or behavioural barriers to implementing improved urban food systems, though institutional and education barriers could play a role	There are likely to be few biophysical, technological or cultural or behavioural barriers to implementing improved urban food systems, though institutional and education barriers could play a role
Improved food processing and retailing			The implementation of strategies to improve the efficiency and sustainability of retail and agri-food industries can be expensive	Adoption of specific sustainability instruments and eco-innovation practices	Successful implementation is dependent on organisational capacity, the agility and flexibility of business strategies, the strengthening of public- private policies and effectiveness of supply-chain governance	No obvious cultural or behavioural barriers, but educational barriers exist	No obvious biophysical and cultural or behavioural barriers
Improved energy use in food systems				For example, low levels of farm mechanisation	For example, energy efficiency in agriculture depends strongly on the technology level (Vlontzos et al. 2014)	Educational (e.g., poor knowledge of alternative energy sources), and behavioural or cultural – for example, high levels of repetitive labour, making farming unattractive to the youth, and disproportionally affecting women; (Baudron et al. 2015)	

Table SM6.8 | Feasibility of risk management response options, considering cost, technological, institutional, socio-cultural and environmental and geophysical barriers and saturation and reversibility.

Response option	Saturation	Reversibility	Cost	Technological	Institutional	Socio-cultural	Environmental and geophysical
Management of urban sprawl			0.5 to 3 USD trillion yr ⁻¹ globally (New Climate Economy 2018) Global cost of prevention of urban sprawl by: densification; provision of sustainable and affordable housing; and investment in shared, electric, and low-carbon transport		Barriers to policies against urban sprawl include institutional barriers to integrated land-use planning, and the costs to national governments of restricting or buying back development rights (Tan et al. 2009)		
Livelihood diversification			Barriers to diversification include the fact that poorer households and female headed households may lack assets to invest in new income streams or have a lack of education about new income sources (Berman et al. 2012; Ahmed and Stepp 2016; Ngigi et al. 2017)			Barriers to diversification include the fact that poorer households and female-headed households may lack assets to invest in new income streams, or have a lack of education about new income sources (Berman et al. 2012; Ahmed and Stepp 2016; Ngigi et al. 2017)	
Use of local seeds						Barriers to seed sovereignty include concerns about equitability in access to seed networks and the difficulty of sustaining such projects when development donors leave (Reisman 2017), and disputes over the intellectual property rights associated with seeds (Timmermann and Robaey 2016)	
Disaster risk management			Barriers to early warnig systems include cost; an early warning system for the 80 most climate-vulnerable countries in the world is estimated to cost 2 billion USD over five years to develop (Hallegatte 2012)		Institutional and governance barriers such as coordination and synchronisation among levels also effect some EWS (Birkmann et al. 2015)		
Risk-sharing instruments			10 to 90 USD ha ⁻¹ (Schnitkey and Sheridan 2017) Insurance cost depends on value of crops. We use maize as an example in USA (high) and Sub-Saharan Africa (low)				

Chapter 6 Supplementary Material

Interlinkages

Supplementary information for Section 6.4.3

Section 6.4.3 includes tables regarding interactions for each of the 40 response options with Nature's Contributions to People (NCP) and Sustainable Development Goals (SDGs). This section includes the supporting material for those classifications.

Table SM6.9 | Impacts on Nature's Contributions to People of integrated response options based on land management.

Integrate options ba manag	l response sed on land ement	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regula- tion of climate	Regula- tion of ocean acidifica- tion	Regula- tion of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspi- ration	Physical and psy- chological experien- ces	Supporting identities	Mainte- nance of options
	Increased food productivity	Higher productivity spares land (e.g., Balmford et al. 2018) especially if intensification is done sustainably.	Likely may reduce native pollinators if reliant on increased chemical inputs (Potts et al. 2010) but not if through sustainable intensification.	N/A	N/A	Increased food productivity might be achieved through increased pesticide or fertiliser use, which causes runoff and dead zones in oceans (Beusen et al. 2016).	Food productivity increases could impact on water quality if increases in chemicals used, but evidence is mixed on sustainable intensification (Rockström et al. 2009; Mueller et al. 2012).	Food productivity increases could impact on water flow due to demand for irrigation (Rockström et al. 2009; Mueller et al. 2012).	Intensification through additional input of nitrogen fertiliser can result in negative impacts on climate, soil, water and air pollution (Tilman et al. 2002).	N/A	Increasing food production through agro- chemicals may increase pest resistance over time (Tilman et al. 2002).	N/A	Sustainable intensification has potential to close yield gaps (Tilman et al. 2011).	N/A	N/A	N/A	N/A	N/A	N/A
Agriculture	Improved cropland management	Improved cropland management can contribute to diverse agreecosystems (Tscharmtke et al. 2005) and promotes soil biodiversity (Oehl et al. 2017)	Better crop management can contribute to maintaining native pollinators (Gardiner et al. 2009).	N/A	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Cropland conversion has major impacts on water quantity (Scanlon et al. 2007). Cropland management practices such as conservation tillage improve downstream water quality (Fawcett et al. 1994).	Cropland conversion leads to poorer water quality due to runoff (Scanlon et al. 2007).	Improved cropland management has positive impacts on soils (see main text) (Kern and Johnson 1993)	N/A	Some forms of improved cropland management can decrease pathogens and pests (Tscharrtke et al. 2016).	NA	Conservation agriculture contributes to food productivity and reduces food insecurity (Rosegrant and Cline 2003; Dar and Laxmipathi Gowda 2013; Godfray and Garnett 2014)	N/A	N/A	N/A	N/A	Many cropping systems have cultural components (Tengberg et al. 2012)	N/A
	Improved grazing land management	Can contribute to improved habitat (Pons et al. 2003; Plantureux et al. 2005).	N/A	N/A	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Likely will improve water quality (Hibbert 1983)	Likely will improve water flow (Hibbert 1983)	Improved grassland management increases soil carbon and quality (Conant et al. 2001)	N/A	N/A	N/A	Improved grassland management could contribute to food security (O'Mara 2012)	Grassland management can provide other materials (e.g., biofuel materials) (Prochnow et al. 2009)	N/A	N/A	N/A	Many pastoralists have close cultural connections to livestock (Ainslie 2013)	N/A
	Improved livestock management	Can contribute to improved habitat if more efficient animals used, leading to less feed required (Strassburg et al. 2014)	N/A	N/A	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	N/A	Improved industrial livestock production can reduce water contamination (e.g., reduced effluents) (Hooda et al. 2000). Improved livestock management can contribute to better water quality such as through manure management (Herrero et al. 2013)	N/A	N/A	N/A	N/A	Improved livestock management can contribute to reduced food insecurity among smallholder pastoralists (Hooft et al. 2012).	Livestock production also produces materials for use (leather, etc) (Hesse 2006)	N/A	N/A	N/A	Many pastoralists have close cultural connections to livestock (Ainslie 2013)	N/A

Interlinkages

Interlinkages

Integrate options ba mana	d response ised on land gement	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regula- tion of climate	Regula- tion of ocean acidifica- tion	Regula- tion of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspi- ration	Physical and psy- chological experien- ces	Supporting identities	Mainte- nance of options
	Agroforestry	Agroforestry mimics natural diversity and can improve habitat (Jose 2009)	Even intensive agroforestry can be beneficial for pollinators (Klein et al. 2002).	Trees in the landscape can remove air pollutants (Sutton et al. 2007)	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Planting trees on farms can increase soil water infiltration capacity (llstedt et al. 2007). Agroforestry can be used to increase ecosystem services benefits, such as water quantity and quality (lose 2009)	N/A	Likely to improve soil (Rao et al. 1997)	Agroforestry can reduce vulnerability to hazards like wind and drought (Thorlakson and Neufeldt 2012)	Landscape diversity generally improves opportunities for biological pest control (Gardiner et al. 2009); reduces pests/ pathogens on smallholder farms (Vignola et al. 2015)	Agroforestry can be used to produce biomass for energy (Mbow et al. 2014b)	Agroforestry contributes to food productivity and reduces food insecurity (Mbow et al. 2014b)	Produces timber, firewood and animal fodder (Mbow et al. 2014b)	Can provide medicinal and other resources (Rao et al. 2014)	N/A	N/A	Many cropping systems have cultural components (Rao et al. 2014)	Can contribute to maintaining diversity through native plantings (Rao et al. 2014)
	Agricultural diversification	Crop diversification improves resilience through enhanced diversity to mimic more natural systems and provide in-field habitat for natural pest defences (Lin 2011)	Diversification can enhance pollinator diversity (Altieri and Letourneau 1982; Sardiñas and Kremen 2015)	N/A	N/A	N.A	N/A	N/A	Diversification can introduce some crops that may have positive soil qualities (eg nitrogen fixation) and crop rotation with multiple crops can improve soil carbon (McDaniel et al. 2014)	N/A	Diverse agroecosystems tend to have less detrimental impacts from pests (Gardiner et al. 2009; Altieri and Letourneau 1982)	N/A	Diversification is associated with increased access to income and additional food sources for the farming household (Pretty et al. 2003; Ebert 2014)	Diversification could provide additional materials and farm benefits (Van Huylenbroeck et al. 2007)	Some agricultural diversification can produce medicinal plants (Chauhan 2010)	N/A	WA	Many cropping systems have cultural components (Rao et al. 2014)	Can contribute to maintaining diversity through native plantings (Sardiñas and Kremen 2015)
Agriculture	Avoidance of conversion of grassland to cropland	Can preserve natural habitat (Peeters 2009)	N/A	N/A	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Will likely improve water quality (inferred from improved soil quality in (Saviozzi et al. 2001)	Will likely improve water flow (inferred from improved soil quality in (Saviozzi et al. 2001)	Will improve soil quality (Saviozzi et al. 2001)	N/A	Diverse agroecosystems tend to have less detrimental impacts from pests (Gardiner et al. 2009; Altieri and Letourneau 1982)	N/A	Reducing cropland conversion can reduce food production (West et al. 2010)	N/A	N/A	N/A	N/A	N/A	Retaining natural ecosystems can preserve genetic diversity (Ekins et al. 2003)
	Integrated water management (IWM)	Ecosystem health and services can be enhanced by improving water management (Boelee et al. 2011). Securing ecosystem (Lloyd et al. 2013), integrated ecosystem-based management into water resources planning and management, linking ecosystem services and water security (Bernex 2016), improving correlation between amount of water resources and supply ecosystem services, combining water resources management and supply of ecosystem services (Liu et al. 2016)	Some integrated water management strategies generate synergies between multiple ecosystem services, such as pollination, yield and farm profitability (Hipólito et al. 2018).	IWM practices exert strong influence on ecosystem structure and function, with potentially large implications for regulating air quality (Xia et al. 2017; Nordman et al. 2018).	IWM supports favourable forests conditions, thereby influencing the storage and flow of water in watersheds (Eisenbies et al. 2007) which are important for regulating microclimates (Pierzynski et al. 2017)	N/A	Improving regulations for water sharing, trading and pricing (ADB 2016), water- smart appliance, water-smart landscapes (Dawadi and Ahmad 2013), common and unconventional water sources in use (Rengasamy 2006) will increase water quantity.	Improving regulation to prevent aquifer and surface water depletion, controlling over water extraction, improvement of water management and management of landslides and natural hazards. Watering shifting sand dunes (sprinkler), water resources conservation (Nejad 2013; Pereira et al. 2002), enhancing rainwater management, reducing recharge and increasing water use in discharge areas (DERM 2011)	IWM provide co-benefits such as healthier soils, more resilient and productive ecosystems (Grey and Sadoff 2007; Liu et al. 2017; Scott et al. 2011)	Change in water availability through improving co-managing floods and groundwater depletion at the river basin such as Managed Aquifer Recharge (MAR), Underground Taming of Floods for Irrigation (UTFI), restore over-allocated or brackish aquifers, groundwater dependent ecosystems protection, reducing evaporation losses are significantly contributed to response climate change and reduced impacts of extreme weather event in desertification areas (Dillon and Arshad 2016)		IWM can support the production of biomass for energy and firewood (Mbow et al. 2014b)	Increasing demand for food, fibre and feed will put great strains on land, water, energy and other resources (WBCSD 2014). Water conservation and balance in the use of natural resources enforcement (water resources, water conservation measures, water allocations) (Ward and Pulido- Velazquez 2008). are good options to response climate change and nature's prevention.	IWM supports favourable forests conditions thereby providing wood and fodder and other materials (Locatelli et al. 2015b). However, conservation restrictions on the storage and flow of water in watersheds (Eisenbies et al. 2007) can restrict the access to resources (e.g., firewood).					

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Integrate options ba manag	d response sed on land gement	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regula- tion of climate	Regula- tion of ocean acidifica- tion	Regula- tion of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspi- ration	Physical and psy- chological experien- ces	Supporting identities	Mainte- nance of options
Forests	Forest management and forest restoration	Forest landscape restoration specifically aims to regain ecological integrity and enhance human well-being in deforested or degraded forest landscape (Maginnis and Jackson 2007; Stanturf et al. 2014). For example, facilitating tree species mixture means storing at least as much carbon as monocultures while enhancing biodiversity (Hulvey et al. 2013). Selective logging techniques are mid-way between deforestation and total protection, allowing to retain substantial levels of biodiversity, carbon, and timber stocks (Putz et al. 2012)	Likely contributes to native pollinators (Kremen et al. 2012, 2007)	Trees remove air pollution by the interception of particulate matter on plant surfaces and the absorption of gaseous pollutants through the leaf stomata. Computer simulations with local environmental data reveal that trees and forests in the conterminous USA removed 17.4 million tonnes (t) of air pollution in 2010 (range: 9.0–23.2 million 1, with human health effects valued at 6.8 billion USD (range: 1.5–13.0 billion	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Forest cover can stabilise intense runoff during storms and flood events (Locatelli et al. 2015b). Mangroves can protect coastal zones from extreme events (hurricanes) or sea level rise. However, forests can also have adverse side effects for reduction of water yield and water availability for human consumption (Bryan and Crossman 2013).	Forests tend to maintain water quality by reducing runoff and trapping sediments and nutrients (Medugu et al. 2010; Salvati et al. 2014). Precipitation filtered through forested catchments delivers purified ground and surface water (co-benefits) (Calder 2005; Ellison et al. 2017; Neary et al. 2009)	Forests counteract wind-driven degradation of soils, and contribute to soil erosion protection and soil fertility enhancement for agricultural resilience (Locatelli et al. 2015b).	Forest cover can stabilise land against catastrophic movements associated with wave action and intense runoff during storms and flood events (Locatelli et al. 2015b). Reducing harvesting rates and prolonging rotation periods may induce an increased vulnerability of stands to external disturbances and catastrophic events (Yousefpour et al. 2018). Forest management strategies may decrease stand-level structural complexity and may make forest ecosystems more susceptive to natural disasters like wind throws, fires, and diseases (Seidl et al. 2014).	Forests can contribute to weed and pest control and landscape diversity generally improves opportunities for biological pest control (Gardiner et al. 2009)	Sustainable forest management (SFM) may increase availability of biomass for energy (Sikkema et al. 2014b; Kraxner et al. 2013)	The proximity of forest to cropland constitutes a threat to livelihoods in terms of crop raiding by wild animals and in constraints in availability of land for farming (Fev et al. 2017). The competition for land between afforestation/ reforestation/ reforestation/ reforestation/ reforestation/ reforestation/ and agricultural production is a potentially large adverse side effect (Boysen et al. 2017a,b; Kreidenweis et al. 2016; Smith et al. 2016; Smith et al. 2013). An increases in global forest area can lead to increases in food prices through increasing land competition (Calvin et al. 2014; Kreidenweis et al. 2015; Reilly et al. 2012; Smith et al. 2013; Wise et al. 2009)	Forests provide wood and fodder and other materials (Locatelli et al. 2015b). However, conservation restrictions to preserve ecosystem integrity can restrict the access to resources (e.g., firewood).	Can provide medicinal and other resources.	Natural ecosystems often inspire learning (Turtle et al. 2015)	Forest landscape restoration specifically aims to enhance human well- being (Maginnis and Jackson 2007; Stanturf et al. 2014). Afforestation/ reforestation and avoided deforestation and avoided deforestation benefit biodiversity and species richness, and generally improve the cultural and recreational value of ecosystems (co-benefits) (Knoke et al. 2014)	Many forest landscapes have cultural ecosystems services components (Plieninger et al. 2015)	Retaining natural ecosystems can preserve genetic diversity (Ekins et al. 2003)
	Reduced deforestation and forest degradation	Reduced deforestation can enhance connectivity between forest areas and conserve biodiversity hotspots (Ellison et al. 2017; Locatelli et al. 2011, 2015b)	Likely contributes to native pollinators (Kremen et al. 2012)	Trees can improve air pollution problems (Nowak et al. 2014)	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Forests tend to maintain water quality by reducing runoff and trapping sediments and nutrients (Medugu et al. 2010; Salvati et al. 2014)	Due to evapotranspiration, trees recharge atmospheric moisture, contributing to rainfall locally and in distant location, and trees' microbial flora and biogenic volatile organic compounds can directly promote rainfall (Arneth et al. 2010). Trees enhance soil infiltration and, under suitable conditions, improve groundwater recharge (Calder 2005; Ellison et al. 2017; Neary et al. 2009).	Forests counteract wind-driven degradation of soils, and contribute to soil erosion protection and soil fertility enhancement for agricultural resilience (Locatelli et al. 2015b)	Forest cover can stabilise land against catastrophic movements associated with wave action and intense runoff during storms and flood events (Locatelli et al. 2015b)	Landscape diversity generally improves opportunities for biological pest control (Gardiner et al. 2009)	Reduced deforestation may increase availability of some wood for energy and industry	The proximity of forest to cropland constitutes a threat to livelihoods in terms of crop raiding by wild animals (Few et al. 2017). The competition for land between afforestation/ reforestation and agricultural production is a potentially large adverse side effects (Boysen et al. 2017a,b; Kreidenweis et al. 2016; Smith et al. 2014; Kreidenweis et al. 2016; Reilly et al. 2017; Wise et al. 2017; Wise et al. 2017; Wise et al. 2017;	Could increase availability of biomass (Griscom et al. 2017)	Reduced deforestation can protect forest medicinal plants (Arnold and Pérez 2001)	Natural ecosystems learning (Turtle et a	: often inspire Il 2015)	Many forest landscapes have cultural ecosystems services components (Plieninger et al. 2015)	Retaining natural ecosystems can preserve genetic diversity (Ekins et al. 2003)

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Integrat options b mana	d response ssed on land gement	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regula- tion of climate	Regula- tion of ocean acidifica- tion	Regula- tion of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspi- ration	Physical and psy- chological experien- ces	Supporting identities	Mainte- nance of options
	Reforestation	Forest landscape restoration specifically aims to regain ecological integrity and enhance human well-being in deforested or degraded forest landscape (Maginnis and Jackson 2007; Stanturf et al. 2014). Adverse side effects potentially associated to forests include establishment of non-native species, especially with the risks related to the spread of exotic fast-growing tree species (Brundu and Richardson 2016; Ellison et al. 2017).	Likely contributes to native pollinators if native forest species used (Kremen et al. 2007)	Trees can improve air pollution problems (Nowak et al. 2014)	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Forests tend to maintain water quality by reducing runoff and trapping sediments and nutrients (Medugu et al. 2010; Salvati et al. 2014).	Particular activities associated with forest landscape restoration, such as mixed planting, assisted natural regeneration, and reducing impact of disturbances (e.g., prescribed burning) have positive implications for fresh water supply (Ciccarese et al. 2012; Suding et al. 2015).	Forests contribute to soil erosion protection and soil fertility enhancement (Locatelli et al. 2015b)	Forest cover can stabilise land against catastrophic movements associated with wave action and intense runoff during storms and flood events (Locatelli et al. 2015b). Some forest ecosystems can be susceptive to natural disasters like wind throws, fires, and diseases (Seidl et al. 2014)	NA	Reforestation can increase availability of biomass for energy (Swisher 1994)	The proximity of forest to cropland constitutes a threat to livelihoods in terms of crop raiding by wild animals and in constraints in availability of land for farming (Few et al. 2017). The competition for land between afforestation/ reforestation/ and agricultural production is a potentially large adverse side effect (Boysen et al. 2017a,b; Kreidenweis et al. 2013). An increase in global forest area can lead to increases in food prices through increasing land competition (Calvin et al. 2014; Kreidenweis et al. 2016; Reilly et al. 2012; Smith et al. 2013; Wise et al. 2013; Wise et al. 2013; Wise et al. 2013; Wise et al.	Forests provide wood and fodder and other materials (Locatelli et al. 2015b). However, conservation restrictions to preserve ecosystem integrity can restrict the access to resources (e.g., firewood).	Source of medicines (UNEP 2016)	Natural ecosystems often inspire learning (Turtle et al. 2015)	Afforestation/ reforestation can increase areas available for recreation and tourism opportunities (Knoke et al. 2014)	Many forest landscapes have cultural ecosystems services components (Plieninger et al. 2015)	
rorests	Afforestation	Forest landscape restoration specifically aims to regain ecological integrity and enhance human well-being in deforested or degraded forest landscape (Maginnis and Jackson 2007; Stanturf et al. 2014). In the case of afforestation, simply changing the use of land to planted forests is not sufficient to increase abundance of indigenous species, as they depend on type of vegetation, scale of the land transition, and time required for a population to establish (Barry et al. 2014).	N/a	N/A	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Depends on where reforesting occurs, and with what species (Scott et al. 2005). Trees enhance soil infiltration and, under suitable conditions, improve groundwater recharge (Calder 2005; Ellison et al. 2017; Neary et al. 2009)	Afforestation using some exotic species can upset the balance of evapotranspiration regimes, with negative impacts on water availability, particularly in arid regions (Ellison et al. 2017; Locatelli et al. 2017; Locatelli et al. 2015b; Trabucco et al. 2008). Afforestation in arid and semi- arid regions using species that have evapotranspiration rates exceeding the regional precipitation may aggravate the groundwater decline (Locatelli et al. 2015b; Lu et al. 2016). Changes in runoff affect water supply but can also contribute to changes in flood risks, and irrigation of forest plantations can increase water consumption (Sterling et al. 2013)	Afforestation and reforestation options are frequently used to counteract land degradation problems (Yirdaw et al. 2017), whereas when they are established on degraded lands they are instrumental to preserve natural forests (co- benefit) (Buongiorno and Zhu 2014). Afforestation runs the risk of decreasing soil nutrients, especially in intensively managed plantations; in one study, afforestation sites had lower soil phosphorus (P) and nitrogen (N) content (Berthrong et al. 2009)	Some afforestation may make forest ecosystems more susceptive to natural disasters like wind throws, fires, and diseases (Seidl et al. 2014)	NA	Afforestation may increase availability of biomass for energy use (Obersteiner et al. 2006)	Future needs for food production are a constraint for large-scale afforestation plans (Locatelli et al. 2015b). Global food crop demand is expected by 50%–97% between 2005 and 2050 (Valin et al. 2014). Future carbon prices will facilitate deployment of afforestation projects at expenses of food availability (adverse side effect), but more liberalised trade in agricultural commodities could buffer food price increases following afforestation in tropical regions (Kreidenweis et al. 2016).	Could increase availability of biomass (Griscom et al. 2017)	N/A	N/A	Green spaces support psychological well-being (Coldwell and Evans 2018)	Afforestation/ reforestation can increase areas available for recreation and tourism opportunities (Knoke et al. 2014)	N/A

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Integrat options b man	ed response Jased on land agement	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regula- tion of climate	Regula- tion of ocean acidifica- tion	Regula- tion of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspi- ration	Physical and psy- chological experien- ces	Supporting identities	Mainte- nance of options
	Increased soil organic carbon content	Improving soil carbon can increase overall resilience of landscapes (Tscharntke et al. 2005)	N/A	N/A	See main text for mitigation potentials	Rivers transport dissolved organic matter to oceans (Hedges et al. 1997), but unclear if improved SOM will decrease this and by how much.	Soil organic matter (SOM) is known to increase water filtration and can regulate downstream flows (Keesstra et al. 2016)	Soil organic matter is known to increase water filtration and protects water quality (Lehmann and Kleber 2015)	Increasing SOM contributes to healthy soils (Lehmann and Kleber 2015)	N/A	Increased SOM decreases pathogens in soil (Lehmann and Kleber 2015)	N/A	Lal (2006) notes that 'Food-grain production in developing countries can be increased by 24-39 (32±11) million Mgy-1 through improving soil quality by increasing the SOC pool and reversing degradation processes.'	In terms of raw materials, numerous products (e.g., pharmaceuticals, clay for bricks and ceramics, silicon from sand used in electronics, and other minerals; (Sindelar 2015) are provided by soils.	In terms of raw materials, numerous products (e.g., pharmaceuticals, clay for bricks and ceramics, silicon from sand used in electronics, and other minerals; (Sindelar 2015) are provided by soils.	N/A	N/A	N/A	N/A
	Reduced soil erosion	Managing soil erosion decreases need for expanded cropland into habitats (Pimentel et al. 1995)	N/A	Particulate matter pollution, a main consequence of wind erosion, imposes severe adverse impacts on materials, structures and climate which directly affect the sustainability of urban cities (Al-Thani et al. 2018)	N/A	N//A	Managing soil erosion improves water quality (Pimentel et al. 1995)	Managing soil erosion improves water flow (Pimentel et al. 1995)	Will improve soil quality (Keesstra et al. 2016)	Reducing soil erosion reduces vulnerability to hazards like wind storms in dryland areas and landslides in mountainous areas (El-Swaify 1997)	N/A	N/A	Managing erosion can lead to increased food production on croplands; however, other forms of management (revegetation, zero tillage) might reduce land available for food.	N/A	N/A	N/A/	N/A	N/A	N/A
Soils	Reduced soil salinisation	Salinisation decreases soil microbial diversity (Nie et al. 2009)	N/A	N/A	N/A	N/A	N/A	Management of soil salinity improves water quality (Kotb et al. 2000; Zalidis et al. 2002; Soane and Van Ouwerkerk 1995)	Will improve soil quality (Keesstra et al. 2016)	N/A	N/A	N/A	Reversing degradation contributes to food productivity and reduces food insecurity (Shifferaw and Holden 1999; Pimentel et al. 1995)	N/A	N/A	N/A/	N/A	N/A	N/A
	Reduced soil compaction	Preventing compaction can reduce need to expand croplands (Lal 2001)	N/A	N/A	NA	N/A	Compaction can increase water runoff (Soane and Van Ouwerkerk 1995). Management of soil compaction improves water quality and quantity (Soane and Van Ouwerkerk 1995; Zalidis et al. 2002)	Management of soil compaction improves water quality and quantity (Soane and Van Ouwerkerk 1995; Zalidis et al. 2002)	Will improve soil quality (Keesstra et al. 2016)	Compaction in soils increases rates of runoff and can contribute to floods (Hümann et al. 2011)	N/A	N/A	Compactions reduces agricultural productivity and thus contributes to food insecurity (Nawaz et al. 2013)	N/A	NA	N/A	N/A	N/A	N/A
	Biochar addition to soil	N/A	N/A	N/A	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Biochar improves soil water filtration and retention (Spokas et al. 2012; Beck et al. 2011)	Biochar improves soil water filtration and retention (Spokas et al. 2012; Beck et al. 2011)	Can improve soil quality (Sohi 2012)	N/A	N/A	N/A	Contributes to increased food production (Smith 2016) (Jeffery et al. 2017)	N/A	N/A	N/A	N/A	N/A	N/A
Other ecosystems	Fire management	Proactive fire management can improve natural habitat (Burrows 2008)	Reducing fire risk can improve habitat for pollinators (Brown et al. 2017)	Fire management improves air quality particularly in the periurban interface (Bowman and Johnston 2005)	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Fires affect water quality and flow due to erosion exposure (Townsend and Douglas 2000)	Fires affect water quality and flow due to erosion exposure (Townsend and Douglas 2000)	Fire cause damage to soils, therefore fire management can improve them (Certini 2005)	Will reduce risk of wildfires as a hazard (McCaffrey 2004)	Landscape diversity generally improves opportunities for biological pest control (Gardiner et al. 2009)	Will increase availability of biomass, as fuel removal is a key management strategy (Becker et al. 2009)	N/A	N/A	N/A	N/A	Reduced wildlife risk will increase recreation opportunities in landscapes (Venn and Calkin 2011)	N/A	Retaining natural ecosystems can preserve genetic diversity (Ekins et al. 2003)
	Reduced landslides and natural hazards	Can preserve natural habitat (Dolidon et al. 2009)	N/A	N/A	N/A	N/A	Likely will improve water quality (Dolidon et al. 2009)	Likely will improve water flow (Dolidon et al. 2009)	Will improve soil quality (Keesstra et al. 2016)	Will reduce risk of disasters (Dolidon et al. 2009; Kousky 2010)	N/A	N/A	Landslides are one of the natural disasters that have impacts on food security (De Haen and Hemrich 2007)	N/A	N/A	N/A	N/A	N/A	N/A

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Integrate options ba mana	d response sed on land gement	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regula- tion of climate	Regula- tion of ocean acidifica- tion	Regula- tion of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspi- ration	Physical and psy- chological experien- ces	Supporting identities	Mainte- nance of options
	Reduced pollution including acidification	Air pollution like acid rain has major impacts on habitats like lakes (Schindler et al. 1989)	Pollution interferes with scents, which impact pollinators ability to detect resources (McFrederick et al. 2008)	Will improve air quality with public health benefits (Nemet et al. 2010)	See main text for mitigation potentials	N/A	N/A	Pollution increases acidity of surface water, with likely ecological effects (Larssen et al. 1999)	Soil acidification due to air pollution in a serious problem in many countries (Hou et al. 2013)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Management of invasive species/ encroachment	Improved management of IAS can lead to improved habitat and ecosystems (Richardson and Wilgen 2004)	Invasive species can disrupt native plant- pollinator relations (Ghazoul 2004)	N/A	N.A	N/A	Many invasives can reduce water flow (Richardson and Wilgen 2004)	Invasive species can reduce water quality (Burnett et al. 2007; Chamier et al. 2012)	Likely to improve soil as invasive species generally have negative effects (Ehrenfeld and Scott 2001)	N/A	Many IAS are harmful pests (Charles and Dukes 2008)	N/A	IAS can compete with crops and reduce crop yields by billions of dollars annually (Pejchar and Mooney 2009)	Many invasives are important suppliers of materials (Pejchar and Mooney 2009)	N/A	N/A	N⁄A	N/A	Reducing invasives can increase biological diversity of native organisms (Simberloff 2005)
	Restoration and avoided conversion of coastal wetlands	Will preserve natural habitat (Griscom et al. 2017)	Will promote natural pollinators (Seddon et al. 2016)	N/A	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	The creation or restoration of wetlands, tidal marshes, or mangroves provide water retention and protect coastal cities from storm surge flooding and shoreline erosion during storms. Wetlands store freshwater and enhance water quality (Bobbink et al. 2006)	Wetlands store freshwater and enhance water quality (Bobbink et al. 2006)	Will improve soil quality (Griscom et al. 2017)	The creation or restoration of wetlands, tidal marshes, or mangroves provide water retention and protect coastal cities from storm surge flooding and shoreline erosion during storms (Gittman et al. 2014; Haddad et al. 2016; Kaplan and Hepcan 2009)	Landscape diversity generally improves opportunities for biological pest control (Gardiner et al. 2009)	N/A	Mixed evidence: can affect agriculture/ fisheries production when competition for land occurs, or could increase food production when ecosystems are restored (Crooks et al. 2011)	Could increase availability of biomass (Griscom et al. 2017)	Wetlands can be sources of medicines (UNEP 2016)	Natural ecosystems often inspire learning (Turtle et al. 2015)	Natural environments support psychological well-being (Coldwell and Evans 2018)	Natural environments support psychological well-being (Coldwell and Evans 2018)	Retaining natural ecosystems can preserve genetic diversity (Ekins et al. 2003)
Other ecosystems	Restoration and avoided conversion of peatlands	Will preserve natural habitat (Griscom et al. 2017)	Could promote natural pollinators (Seddon et al. 2016)	N/A	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Peatland restoration will improve water quality as they play important roles in water retention and drainage (Johnston 1991)	Peatland restoration will improve water quality as they play important roles in water retention and drainage (Johnston 1991)	Will improve soil quality (Griscom et al. 2017)	N/A	Landscape diversity generally improves opportunities for biological pest control (Gardiner et al. 2009)	Will reduce supply of any biomass or energy sourced from peatlands (Pin Koh 2007)	May reduce land available for smallholders in tropical peatlands (Jewitt et al. 2014)	Will reduce supply of some materials sourced from peatlands (e.g palm oil, timber) (Murdiyarso et al. 2010)	Natural ecosystems are often source of medicines (UNEP 2016)	Natural ecosystems often inspire learning (Turtle et al. 2015)	Natural environments support psychological well-being (Coldwell and Evans 2018)	Natural environments support psychological well-being (Coldwell and Evans 2018)	Retaining natural ecosystems can preserve genetic diversity (Ekins et al. 2003)
	Biodiversity conservation	Biodiversity conservation includes measures aiming to promote species richness and natural habitats, and to mantain them through protected areas (Cromsigt et al. 2018)	Reduced or absent populations of seed- dispersing animals result in poor to no dispersal, especially of large-seeded trees that depend on large animals such as elephants (Anzures-Dadda et al. 2011; Brodie and Aslan 2012; Beaune et al. 2013; Brockerhoff et al. 2017). Animal pollination, which is fundamental to the reproduction and persistence of most flowering plants, is an important ecosystem service (Millennium Ecosystem Assessment (MA) 2005) As biodiversity contributes to various ecosystem processes, functions and services, the declining diversity and abundance of pollinators (mainly insects and birds) has raised concerns about the effects on both wild and crop plants (Potts et al. 2010)	Trees in the landscape ensured by protected areas can remove air pollutants (Sutton et al. 2007)	See main text for mitigation potentials		Many actions taken to increase biodiversity (eg protected areas) can also have incidental effects of improving water quantity (Egoh et al. 2009)	Many actions taken to increase biodiversity (eg protected areas) can also have incidental effects of improving water quality (Egoh et al. 2009)	Management of wild animals and protected habitats can influence soil conditions via changes in fire frequency (as grazers lower grass and vegetation densities as potential fuels) and nutrient cycling and transport (by adding nutrients to soils). Conserving and restoring megafauna in northem regions also prevents thawing of permafrost. Management of wild animals can influence land degradation processes by grazing, trampling and compacting soil surfaces, thereby altering surface temperatures and chemical reactions affecting sediment and carbon retention. (Cromsigt et al. 2018; Schmitz et al. 2018)	Management of wild animals can influence fire frequency as grazers lower grass and vegetation densities as potential fuels (Schmitz et al. 2014)			Regulation of wild animals affects food for hunting and availability of potential feed for livestock (Cromsigt et al. 2018)		Source of medicines (UNEP 2016)	Natural ecosystems often inspire learning (Turtle et al. 2015)	indigenous peoples commonly link forest landscapes and biodiversity to tribal identities, association with place, kinship ties, customs and protocols, stories, and songs (Gould et al. 2014); (Lyver et al. 2017b,a)		Retaining natural ecosystems can preserve genetic diversity (Ekins et al. 2003)

6SM

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Integrate options ba manag	l response sed on land jement	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regula- tion of climate	Regula- tion of ocean acidifica- tion	Regula- tion of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspi- ration	Physical and psy- chological experien- ces	Supporting identities	Mainte- nance of options
	Enhanced weathering of minerals	N/A	N/A	N/A	See main text for mitigation potentials	Addition of basic minerals counteracts ocean acidification (Taylor et al. 2016).	N/A	May have negative effects on water quality (Atekwana et al. 2005)	Could improve soil quality (Rau and Caldeira 1999; Kantola et al. 2017)	N/A	N/A	N/A	Can contribute to increase food production by replenishing plant available silicon, potassium and other plant nutrients (Beerling et al. 2018)	N/A	N/A	N/A	N/A	Na	N/A
Carbon dioxide removal	Bioenergy and BECCS	Likely will reduce natural habitat with negative effects on biodiversity (Hof et al. 2018)	Would reduce natural pollinators due to decreased natural habitat if in competition (Keitt 2009)	The use of BECCS could reduce air pollution (IPCC 2018)	See main text for mitigation potentials	Mitigation potential (see main text) will reduce ocean acidification.	Will likely require water for plantations of fast growing trees and models show high risk of water scarcity if BECCS is deployed on widespread scale (Smith et al. 2016a; Hejazi et al. 2014a; Popp et al. 2011a) through both increases in water withdrawals (Hejazi et al. 2014a; Bonsch et al. 2015) and changes in surface runoff (Clbin et al. 2016)	Bioenergy can affect freshwater quality via changes in nitrogen runoff from fertiliser application. However, the sign of the effect depends on what would have happened absent any bioenergy production, with some studies indicating improvements in water quality (Ng et al. 2010) and others showing declines (Sinha et al. 2019)	Will likely decrease soil quality if exotic fast growing trees used (Stoy et al. 2018)	N/A	N/A	BECCS and biofuels can contribute up to 300 EJ of primary energy by 2100 (Clarke et al. 2014)	BECCS will likely lead to significant trade-offs with food production (Smith et al. 2016a; Popp et al. 2017; Fujimori et al. 2019)	N/A	N/A	N/A	BECCS would drive land-use conversion and reduce opportunities for recreation/ tourism.	BECCS would drive land-use conversion and reduce culturally significant landscapes.	BECCS would drive land-use conversion and reduce genetic diversity.

Table SM6.10 | Impacts on Nature's Contributions to People of integrated response options based on value chain management.

Integrated options bas chain mar	response ed on value nagement	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regulation of climate	Regulation of ocean acidifi- cation	Regulation of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspiration	Physical and psychological experiences	Supporting identities	Maintenance of options
	Dietary change	Will lead to reduced expansion of ag lands, which can increase natural habitat (Tilman et al. 2001)	N/A	N/A	See main text on climate mitigation impacts	N/A	Will reduce water consumption if less water- intensive food/ livestock needs to be produced (Tilman et al. 2001)	Reduced meat consumption will improve water quality (Stoll- Kleemann and O'Riordan 2015)	N/A	N/A	N/A	N/A	Will help increase global food supplies (Kastner et al. 2012)	N/A	N/A	N/A	N/A	N/A	N/A
Demand management	Reduced post- harvest losses	Will lead to reduced expansion of ag lands, which can increase natural habitat (Tilman et al. 2001)	N/A	N/A	See main text on climate mitigation impacts	N/A	Will reduce water consumption if less water- intensive food/ livestock needs to be produced (Tilman et al. 2001)	N/A	N/A	N/A	Reducing postharvest losses will include measures to deal with pests, some of which could be biological (Wilson and Pusey 1985)	N/A	Will help increase global food supplies (Kastner et al. 2012)	N/A	N/A	N/A	N/A	N/A	N/A
	Reduced food waste (consumer or retailer)	Improved storage and distribution reduces food waste and the need for compensatory intensification of agricultural areas thereby creating co-benefits for reduced land degradation (Stathers et al. 2013)			See main text on climate mitigation impacts		Will reduce water consumption if less water- intensive food/ livestock needs to be produced (Tilman et al. 2001)	Reduced food production will reduce N fertiliser use, improving water quality (Kibler et al. 2018)	N/A	N/A	N/A	N/A	Will help increase global food supplies (Kastner et al. 2012)	N/A	N/A	N/A	N/A	N/A	N/A

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Integratec options bas chain mar	l response ed on value nagement	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regulation of climate	Regulation of ocean acidifi- cation	Regulation of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspiration	Physical and psychological experiences	Supporting identities	Maintenance of options
Demand management	Material substitution	Material substitution increases demand for wood, which can lead to loss of habitat (Sathre and Gustavsson 2006)			See main text on climate mitigation impacts	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Material substitution supplies building materials to replace concrete and other nonrewewables (Gustavsson and Sathre 2011)	N/A	N/A	N/A	N/A	N/A
	Sustainable sourcing	Forest certification and other sustainable sourcing schemes can reduce habitat fragmentation as compared to conventional supply chains (Brown et al. 2001; Rueda et al. 2015)	N/A	Forest certification improved air quality in Indonesia by 5% due to reduced incidence of fire (Miteva et al. 2015)	N/A	N/A	Forest certification has led to improved water flow due to decreased road construction for logging (Miteva et al. 2015)	Forest certificaiton has improved riparian waterways and reduced chemical inputs in some schemes (Rueda et al. 2015)	N/A	N/A	N/A	Sustainable sourcing can supply energy like biomass (Sikkema et al. 2014a)	Sustainable sourcing can supply food and other goods (Smith 2008a)	Sustainable sourcing is increasingly important in timber imports (Irland 2008)	Sustainable sourcing can supply medicinals (Pierce and Laird 2003)	N/A	N/A	N/A	N/A
Supply	Management of supply chains	N/A	N/A	Better management of supply chains may reduce energy use and air pollution in transport (Zhu et al. 2018)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Improved supply chains will help increase global food supplies (Hamprecht et al. 2005)	Improved supply chains will help increase material supplies due to efficiency gains (Burritt and Schaltegger 2014)	N/A	N/A	N/A	N/A	N/A
Mi su Supply management Er fo	Enhanced urban food systems	Urban gardening can improve habitat and biodiversity in cities (Orsini et al. 2014; Lin et al. 2015)	Urban beekeeping has been important in keeping pollinators alive (Gunnarsson and Federsel 2014)	Urban agriculture can increase vegetation cover and improve air quality in urban areas (Cameron et al. 2012; Lin et al. 2015)	See main text on climate mitigation impacts	N/A	Water access often a constraint on urban agriculture and can increase demands (de Bon et al. 2010; Badami and Ramankutty 2015)	Urban agriculture can exacerbate urban water pollution problems (pesticide runoff, etc) (Pothukuchi and Kaufman 1999)	N/A	N/A	N/A	N/A	Local urban food production is often more accessible to local populations and can increase food security (Eigenbrod and Gruda 2015)	N/A	N/A	Urban agriculture can be used for teaching and learning (Travaline and Hunold 2010)	N/A	Urban agriculture can promote cultural identities (Baker 2010)	Urban food can contribute to preserving local genetic diversity
	Improved food processing and retail	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Improved energy use in food systems	N/A	N/A	N/A	See main text on climate mitigation impacts	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table SM6.11 | Impacts on Nature's Contributions to People of integrated response options based on risk management.

	Integrated response options based on risk management	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regulation of climate	Regulation of ocean acidification	Regulation of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspiration	Physical and psychological experiences	Supporting identities	Maintenance of options
Ţ	Management of urban sprawl	Reducing urban sprawl can help preserve natural habitat in periurban areas (Pataki et al. 2011)	Reducing urban sprawl will help reduce loss of natural pollinators from habitat conversion (Cane 2005)	Urban sprawl is a major contributor to air pollution (Frumkin 2002)	See main text on climate mitigation impacts		Managing urban sprawl can increase water availability (Pataki et al. 2011)	Urban sprawl is associated with higher levels of water pollution due to loss of filtering vegetation and increasing impervious surfaces (Romero and Ordenes 2004; Tu et al. 2007; Pataki et al. 2011)	Likely to be beneficial for soils as soil sealing is major problem in urban areas (Scalenghe and Marsan 2009)	N/A	N/A		Urban sprawl often competes with land for food production and can reduce overall yields (Chen 2007; Barbero-Sierra et al. 2013)	N/A	NA	NA	N/A	N/A	N/A
	Livelihood diversification	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Diversification is associated with increased access to income and additional food sources for the household (Pretty et al. 2003)	Diversification can increase access to materials (Smith et al. 2017)	N/A	N/A	N/A	N/A	N/A

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Integrated response options based on risk management	Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regulation of climate	Regulation of ocean acidification	Regulation of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontamination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspiration	Physical and psychological experiences	Supporting identities	Maintenance of options
Use of local seeds	Use of commercial seeds can contribute to habitat loss (Upreti and Upreti 2002)	Use of open pollinated seeds is beneficial for pollinators and creates political will to conserve them (Helicke 2015)	N/A	N/A	N/A	Local seeds often have lower water demands, as well as less use of pesticides that can contaminate water (Adhikari 2014)	Likely to contribute to less pollution as local seeds are usually grown organically (Adhikari 2014)	Likely to contribute to better soils as local seeds are usually grown organically (Adhikari 2014)	N/A	Local seeds often need less pesticides thereby reducing pest resistance (Adhikari 2014)	N/A	Local seeds can lead to more diverse and healthy food in areas with strong food sovereignty networks (Coomes et al. 2015; Bisht et al. 2018). However local seeds often are less productive than improved varieties.		Many local seeds can have multiple functions, including medicinals (Hammer and Teklu 2008)	Passing on seed information is important cultural learning process (Coomes et al. 2015)		Seeds associated with specific cultural identities for many (Coomes et al. 2015)	Food sovereignty movements have promoted saving of genetic diversity of crops through on-farm maintenance (Isakson 2009)
Disaster risk management	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	Disaster risk management (DRM) helps people avoid extreme events and adapt to climate change (Mechler et al. 2014)	N/A	N/A	Famine early warning systems have been successful in Sahelian Africa to alert authorities to impending food shortages so that food acquisition and transportation from outside the region can begin, potentially helping millions of people (Genesio et al. 2011; Hillbruner and Moloney 2012)		N/A	N/A	N/A	N/A	N/A
Risk sharing instruments	Commercial crop insurance often encourages habitat conversion; Wright and Wimberly (2013) found a 531,000 ha decline in grasslands in the Upper Midwest of the USA 2006–2010 due to crop conversion driven by higher prices and access to insurance.	Crop insurance is likely to impact natural polinators due to incentives for production (Horowitz and Lichtenberg 1993)	N/A	N/A	N/A	N/A	Likely to have negative effect as crop insurance encourages more pesticide use (Horowitz and Lichtenberg 1993)	One study found a 1% increase in farm receipts generated from subsidised farm programmes (including crop insurance and others) increased soil erosion by 0.135 tons per acre (Goodwin and Smith 2003)	N/A	Crop insurance increases nitrogen use and leads to treating more acreage with both herbicides and insecticides (Horowitz and Lichtenberg 1993)	N/A	Crop insurance has generally lead to (modest) expansions in cultivated land area and increased food production (Claassen et al. 2011a; Goodwin et al. 2004)		Insurance encourages monocropping leading to loss of genetic diversity for future (Glauber 2004)	N/A	N/A	N/A	Insurance encourages monocropping leading to loss of genetic diversity for future (Glauber 2004)

Table SM6.12 | Impacts on the UN SDG of integrated response options based on land management.

Int o la	egrated response ptions based on nd management	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to Achieve the Goal
	Increased food productivity	Increasing farm yields for smallholders contributes to poverty reduction (Pretty et al. 2003; Irz et al. 2001)	Increasing farm yields for smallholders reduces food insecurity (Pretty et al. 2003; Irz et al. 2001)	Increased food productivity leads to better health status (Rosegrant and Cline 2003; Dar and Laxmipathi Gowda 2013)	N/A	Increased productivity can benefit female farmers, who make up 50% of agricultural labor in sub-Saharan Africa (Ross et al. 2015)	Food productivity increases could impact water quality if increases in chemicals used, but evidence is mixed on sustainable intensification (Rockström et al. 2009; Mueller et al. 2012)	N/A	Increased agricultural production generally (Lal 2006) contributes to increased economic growth.	N/A	Increased agricultural production can contribute to reducing inequality among smallholders (Datt and Ravallion 1998)	Increased food production can increase urban food security (Ellis and Sumberg 1998)	N/A	See main text on climate mitigation and adaptation	Increased food productivity might be achieved through increased pesticide or fertiliser use, which causes runoff and dead zones in oceans (Beusen et al. 2016)	See main text on desertification and degradation	N/A	Improved agricultural productivity generally correlates with increases in trade in agricultural goods (Fader et al. 2013)
Agriculture	Improved cropland management	Improved cropland management increases yields for smallholders and contributes to poverty reduction (Pretty et al. 2003; Irz et al. 2001; Schneider and Gugerty 2011)	Conservation agriculture contributes to food productivity and reduces food insecurity (Rosegrant and Cline 2003; Dar and Laxmipathi Gowda 2013; Godfray and Garnett 2014) Land consolidation has played an active role in China to in increase cultivated land area, promoting agricultural production cacle, improving rural production conditions and living environment, alle-viating ecological risk and supporting for rural development (Zhou et al. 2019)	Conservation agriculture contributes to improved health through several pathways, including reduced fertiliser/ pesticide use which cause health impacts (frisman et al. 2011) as well as improved food security.	N/A	N/A	Cropland management practices such as conservation tillage improve downstream and groundwater water quality (Fawcett et al. 1994; Foster 2018). Good management practices can substantially decrease P losses from existing land use, to achieve 'good' water quality in catchment in New Zealand, United Kingdom and United States	N/A	Increased agricultural production generally (Lal 2006) contributes to increased economic growth, mainly in smallholder agriculture (Abraham and Pingali 2017)	N/A	Increased agricultural production can contribute to reducing inequality among smallholders (Datt and Ravallion 1998; Abraham and Pingali 2017)	N/A	Improved conservation agriculture contributes to sustainable production goals (Hobbs et al. 2008)	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	NA	Improved agricultural productivity generally correlates with increases in trade in agricultural goods (Fader et al. 2013)

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Inte op Iar	grated response tions based on id management	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to Achieve the Goal
	Improved grazing land management	Increases yields for smallholders and contributes to poverty reduction (Boval and Dixon 2012)	Improved grassland management could contribute to food security (O'Mara 2012)	Improved livestock and grazing management could contribute to better health among smallholder pastoralists (Hooft et al. 2012), but pathways are not entirely clear.	N/A	N/A	Grassland management practices can improve downstream and groundwater water quality (Foster 2018).	N/A	Improved land management for livestock can increase economic productivity, especially in global South (Pender et al. 2006)	N/A	Improved pastoral management strategies can contribute to reducing inequality but are context specific (Lesorogol 2003)	N/A	Improved grassland management contributes to sustainable production goals (O'Mara 2012)	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	Grazing land management requires collective action and therefore can increase social capital and build institutions (Mearns 1996)	N/A
	Improved livestock management	Improved livestock management (e.g., better breeding) can contribute to poverty reduction for smallholder pastoralists (Hooft et al. 2012)	Improved livestock management can contribute to reduced food insecurity among smallholder pastoralists (Hooft et al. 2012).	N/A	N/A	N/A	Improved industrial livestock production can reduce water contamination (e.g., reduced effluents) (Hooda et al. 2000). Improved livestock management can contribute to better water quality such as through manure management (Herrero et al. 2013)	N/A	Improved livestock management can increase economic productivity and employment opportunities in global South (Mack 1993)	N/A	N/A	NA	Sustainable livestock management contributes to sustainable production goals (De Wit et al. 1995)	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	Improved livestock productivity would likely correlate with increases in trade (Herrero et al. 2009)
	Agroforestry	Agroforestry can be usefully used for poverty reduction (Leakey and Simons 1998)	Agroforestry contributes to food productivity and reduces food insecurity (Mbow et al. 2014b)	Agroforestry positively contributes to food productivity and nutritious diets (Haddad 2000)	N/A	Increased use of agroforestry can benefit female farmers as it requires low overhead, but land tenure issues must be paid attention to (Kiptot and Franzel 2012)	Agroforestry can be used to increase ecosystem services benefits, such as water quantity and quality (Jose 2009)	Agroforestry could increase biomass for energy (Mbow et al. 2014b)	Agroforestry and other forms of employment in forest management make major contributions to global GDP (Pimentel et al. 1997)	N/A	Agroforestry promotion can contribute to reducing inequality among smallholders (Leßmeister et al. 2018)	N/A	Agroforestry contributes to sustainable production goals (Mbow et al. 2014b)	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	NA	N/A
Agriculture	Agricultural diversification	Agricultural diversification is associated with increased welfare and incomes and decreased levels of poverty in several country studies (Arslan et al. 2018; Asfaw et al. 2018; Weinberger and Lumpkin 2007)	Diversification is associated with increased access to income and additional food sources for the farming household (Pretty et al. 2003; Ebert 2014). Diversification can also reduce the risk of crop pathogens spreading across landscapes (Lin 2011)	More diversified agriculture leads to diversified diets which have better health outcomes (Block and Webb 2001; Ebert 2014; Kadiyala et al. 2014), particularly for women and children (Pretty et al. 2003)	N/A	NA	N/A	N/A	Agricultural diversification can lead to economic growth (Rahman 2009; Pingali and Rosegrant 1995). It allows farmers to choose a strategy that both increases resilience and provides economic benefits, including functional biodiversity at multiple spatial and/or temporal scales, through practices developed via traditional and/ or agroecological scientific knowledge (Lin 2011; Kremen et al. 2012)	N/A	Increased agricultural diversification can contribute to reducing inequality among smallholders (Makate et al. 2016) although there is mixed evidence of inequality also increasing in commercialised systems (Pingali and Rosegrant 1995; Weinberger and Lumpkin 2007)	N/A	N/A		N/A	See main text on desertification and degradation	N/A	N/A
	Avoidance of conversion of grassland to cropland	May reduce land available for cropping or livestock for poorer farmers; some grassland restoration programmes in China have been detrimental to poor pastoralists (Foggin 2008)	Can affect food security when competition for land occurs (O'Mara 2012)	N/A	N/A	N/A	Retaining grasslands contributes to better water retention and improved quality (Scanlon et al. 2007)	N/A	Reduced cropland expansion may decrease GDP (Lewandrowski et al. 1999)	N/A	N/A	N/A	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A

6SM

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Inte op Iar	grated response itions based on id management	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to Achieve the Goal
Agriculture	Integrated water management	Green water harvesting contributes to alleviate poverty in Sub-Saharan Africa (RocKström and Falkenmark 2015). Improving water irrigation (Rengasamy 2006) improving rainfed agriculture (Integrating soil and water management, rainfall infiltration and water harvesting, provides a large co-benefit to delivery of food security and poverty reduction (UNCTAD 2011)	Integrated, efficient, equitable and sustainable water resource management (as water for agroecosystem) plays importance for food production and benefits to people (Lloyd et al. 2013)	Water is a finite and irreplaceable resource that is fundamental to human well- being. It is only renewable if well managed. Integrated water management is vital option for reducing the global burden of disease and improving the health, welfare and productivity of populations. Today, more than 1.7 billion people live in river basins where depletion through use exceeds natural recharge, a trend that will see two-thirds of the world's population living in water- stressed countries by 2025 (UNWater 2015)	N/A	Involving both women and men in integrated water resources initiatives can increase project effectiveness and efficiency (Green and Baden 1995)	Water resource management is intended to solve watershed problems on a sustainable basis, and these problems can be categorised into lack of water (quantity), deterioration in water quality, ecological effects, poor public participation, and low output economic value for investment in watershed-related activities (Lee et al. 2018) Integrated water management, increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity, and substantially reduce the number of people suffering from water scarcity (UNWater 2015).	N/A	Water is at the core of sustainable development and is critical for socio- economic development, healthy ecosystems and for human survival itself. Integrated water managment can play a key enabling role in strengthening the resilience of social, economic and environmental systems in the light of rapid and unpredictable changes (UNWater 2015).	N/A	IWM can increase access of industry to water for economic growth (Rahaman and Varis 2005)	Water is a limiting factor in urban growth and IWM can help improve access to urban water supplies (Bao and Fang 2012)	Poor sectoral coordination and institutional fragmentation have triggered an unsustainable use of resources and threatened the long-term sustainability of food, water, and energy security (Rasul 2016)	See main text on climate mitigation and adaptation	IWM on land is likely to improve water quality runoff into oceans (Agboola and Braimoh 2009)	See main text on desertification and degradation	Integrated water management, increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity, and substantially reduce the number of people suffering from water scarcity (UNWater 2015).	
Forestry	Forest management and forest restoration	May contribute to poverty reduction if conditions are right (Blomley and Ramadhani 2006; Donovan et al. 2006) but conflicting data, as it may also favor large landowners who are less poor (Rametsteiner and Simula 2003).	Forest expansion can affect crop production when competition for land occurs (Angelsen 2010). An increase in global forest area can lead to increases in food prices through increasing land competition (Calvin et al. 2014; Kreidenweis et al. 2016; Reilly et al. 2012; Smith et al. 2013; Wise et al. 2009)	N/A	N/A	Women face challenges in sustainable forest management (Mwangi et al. 2011) but N/A how SFM affects gender equity.	Forests tend to maintain water quality by reducing runoff and trapping sediments and nutrients (Medugu et al. 2010; Salvati et al. 2014). Due to evapotranspiration, trees recharge atmospheric moisture, contributing to rainfall locally and in distant location, and trees' microbial flora and biogenic volatile organic compounds can directly promote rainfall (Arneth et al. 2010). Trees enhance soil infiltration and, under suitable conditions, improve groundwater recharge Calder 2005; Ellison et al. 2017a; Neary et al. 2009b.) Particular activities associated with forest landscape restoration, such as mixed planting, assisted natural regeneration, and reducing impact of disturbances (e.g., prescribed burning) have positive implications for fresh water supply (Ciccarese et al. 2015).	SFM may increase availability of biomass for energy (Kraxner et al. 2013; Sikkema et al. 2013)	Forest management often require employment for active replanting, etc. (Ros-Tonen et al. 2008)	Forestry supplies wood for industrial use (Gustavsson and Sathre 2011)	N/A	Community forest management can contribute to stronger communities (Pagdee et al. 2006)	Forest management contributes to sustainable production goals, e.g., through certification of timber (Rametsteiner and Simula 2003).	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	Sustainable forest management often requires collective action institutions (Ros-Tonen et al. 2008)	Sustainable forest management can contribute to increases in demand for wood products (e.g., certification) (McDonald and Lane 2004)

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Inte op Ian	grated response tions based on d management	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to Achieve the Goal
	Reduced deforestation and forest degradation	May contribute to poverty reduction but conflicting data. Although poverty is a focus of many REDD+ projects (Arhin 2014), evidence is thin that poverty reduction has actually happened (Corbera et al. 2017; Pokorny et al. 2013; Scheba 2018) and in some cases benefits have been captured by wealthier participants	Avoided deforestation can affect crop production when competition for land occurs (Angelsen 2010).	Reduced deforestation can enhance human well-being by microclimatic regulation for protecting people from heat stresses (Locatelli et al. 2015b) and generally improve the cultural and recreational value of ecosystems (Knoke et al. 2014).	N/A	Unclear how avoided deforestation might enhance gender equity, but REDD+ projects need to pay attention to gender issues to be successful (Westholm and Arora-Jonsson 2015)	Forests tend to maintain water quality by reducing runoff and trapping sediments and nutrients (Medugu et al. 2010; Salvati et al. 2014). Due to evapotranspiration, trees recharge atmospheric moisture, contributing to rainfall locally and in distant location, and trees' microbial flora and biogenic volatile organic compounds can directly promote rainfall (Ameth et al. 2010). Trees enhance soil infiltration and, under suitable conditions, improve groundwater recharge (Calder 2005; Ellison et al. 2017; Neary et al. 2009).	Avoiding deforestation can take biofuel land out of production as they both tend to compete for land (Dixon et al. 2016)	Reduced forest exploitation may decrease GDP and thus needs to be compensated for (e.g., REDD+) (Combes Motel et al. 2009)	N/A	REDD+ has been shown to have no impact on inequality (Shrestha et al. 2017) or to increase inequality in some project areas (Andersson et al. 2018; Pelletier et al. 2018)	N/A	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	Likely to contribute to decline in trade in forest products, but increases in partnerships between donors and countries with REDD+ (Combes Motel et al. 2009)
Forestry	Reforestation	May contribute to poverty reduction but conflicting data (Tschakert 2007). Many projects for reforestation may have some small impacts on poor households, while others actually increased poverty due to land losses or lack of economic impacts (Jindal et al. 2008)	Forest expansion can affect crop production when competition for land occurs (Angelsen 2010). An increase in global forest area can lead to increases in food prices through increasing land competition (Calvin et al. 2014; Kreidenweis et al. 2016; Reilly et al. 2012; Smith et al. 2013; Wise et al. 2009)	Reforestation can enhance human well-being by microclimatic regulation for protecting people from heat stresses (Locatelli et al. 2015b) and generally improve the cultural and recreational value of ecosystems (Knoke et al. 2014). Trends of forest resources of nations are found to positively correlate with UNDP Human Development Index (Kauppi et al. 2018).	N/A	N/A	Particular activities associated with forest landscape restoration, such as mixed planting, assisted natural regeneration, and reducing impact of disturbances (e.g., prescribed burning) have positive implications for fresh water supply (Ciccarese et al. 2012; Suding et al. 2015).	Reforestation can increase availability of biomass for energy (Swisher 1994)	Reforestation often require employment for active replanting, etc (lindal et al. 2008)	NA	N/A	N/A	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
	Afforestation	Although some have argued that afforestation can be a tool for poverty reduction (Holden et al. 2003), afforestation can compete with land available for cropping and poor farmers often do not benefit from afforestation projects (McElwee 2009)	Future needs for food production are a constraint for large-scale afforestation plans (Locatelli et al. 2015b). Global food crop demand is expected by 50%–97% between 2005 and 2050 (Valin et al. 2014). Future carbon prices will facilitate deployment of afforestation projects at expenses of food availability (adverse side effect), but more liberalised trade in agricultural commodities could buffer food price increases following afforestation in tropical regions (Kreidenweis et al. 2016)	Afforestation can enhance human well-being by microclimatic regulation for protecting people from heat stresses (Locatelli et al. 2015b) and generally improve the cultural and recreational value of ecosystems (Knoke et al. 2014). Trends of forest resources of nations are found to positively correlate with UNDP Human Development Index (Kauppi et al. 2018)	N/A	N/A	Afforestation using some exotic species can upset the balance of evapotranspiration regimes, with negative impacts on water availability particularly in arid regions (Ellison et al. 2017; Locatelli et al. 2015); Trabucco et al. 2008). Afforestation in arid and semi-arid regions using species that have evapotranspiration rates exceeding the regional precipitation may aggravate the groundwater decline (Locatelli et al. 2015); Lu et al. 2016). Changes in runoff affect water supply but can also contribute to changes in flood risks, and irrigation of forest plantations can increase water consumption (Sterling et al. 2013)	Afforestation may increase availability of biomass for energy use (Obersteiner et al. 2016).	Afforestation often requires employment for active replanting, etc. (Mather and Murray 1987)	NA	N/A	N/A	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
Soil management	Increased soil organic carbon content	Can increase yields for smallholders, which can contribute to poverty reduction, but because adoption often depends on exogenous factors, these need to be taken into consideration (Wollni et al. 2010; Kassie et al. 2013)	Lal (2006) notes that 'Food- grain production in developing countries can be increased by 24–39 (32+-11) million Mgy-1 through improving soil quality by increasing the SOC pool and reversing degradation processes.'	There is evidence that increasing soil organic carbon could be effective in reducing the prevalence of disease-causing helminths (Lal 2016; Wall et al. 2015). Also indirectly contributes to food productivity which may have impact on diets.	N/A	Gender impacts use of soil organic matter (SOM) practices (Quansah et al. 2001), but N/A how the relationship works in reverse.	SOM is known to increase water filtration and protects water quality (Lehmann and Kleber 2015)	N/A	Increased agricultural production generally (Lal 2006) contributes to increased economic growth.	N/A	Increased agricultural production can contribute to reducing inequality among smallholders (Datt and Ravallion 1998).	N/A	Improved conservation agriculture contributes to sustainable production goals (Hobbs et al. 2008)	See main text on climate mitigation and adaptation	Rivers transport dissolved organic matter to oceans (Hedges et al. 1997), but unclear if improved SOM will decrease this and by how much.	See main text on desertification and degradation	N/A	N/A

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Inte op Iar	egrated response stions based on nd management	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to Achieve the Goal
	Reduced soil erosion	Can increases yields for smallholders and contributes to poverty reduction (Ananda and Herath 2003)	Contributes to agricultural productivity and reduces food insecurity (Shiferaw and Holden 1999; Pimentel et al. 1995)	Contributes to food productivity and improves farmer health (Shiferaw and Holden 1999; Pimentel et al. 1995)	N/A	N/A	Various researchers showed a relationship between impact of soil erosion and degradation on water quality indicating the source of pollutant as anthropogenic and industrial activities. in China (Issaka and Ashraf 2017). Managing soil erosion improves water quality (Pimentel et al. 1995)	N/A	N/A	N/A	N/A	Particulate matter pollution, a main consequence of wind erosion, imposes severe adverse impacts on materials, structures and climate which directly affect the sustainability of urban cities (Al-Thani et al. 2018)	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
Soil management	Reduced soil salinisation	Salinisation can impoverish farmers (Duraiappah 1998), therefore preventing or reversing can increases yields for smallholders and contributes to poverty reduction.	Reversing degradation contributes to food productivity and reduces food insecurity (Shiferaw and Holden 1999; Pimentel et al. 1995)	Salinisation is known to have human health impacts: wind- borne dust and respiratory health; altered ecology of mosquito-borne diseases; and mental health consequences (Jardine et al. 2007)	N/A	N/A	Management of soil salinity improves water quality and quantity (Kotb et al. 2000; Zalidis et al. 2002)	N/A	N/A	N/A	N/A	N/A	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
	Reduced soil compaction	Soil compaction and other forms of degradation can impoverish farmers (Scherr 2000) prevention of compaction thus contributes to poverty reduction.	Compactions reduces agricultural productivity and thus contributes to food insecurity (Nawaz et al. 2013)	Soil compaction has human health consequences as it contributes to runoff of water and pollutants into surface and groundwaters (Soane and Van Ouwerkerk 1994)	N/A	N/A	Management of soil compaction improves water quality and quantity (Soane and Van Ouwerkerk 1994; Zalidis et al. 2002)	N/A	N/A	N/A	N/A	N/A	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
	Biochar addition to soil	Land to produce biochar may reduce land available for smallholders, and it tends to be unaffordable for poor farmers; as of yet, few biochar projects have shown poverty reduction benefits (Leach et al. 2012)	Could potentially affect crop production if competition for land occurs (Ennis et al. 2012)	N/A	N/A	N/A	Biochar improves soil water filtration and retention (Spokas et al. 2012)	N/A	N/A	N/A	N/A	N/A	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
tem management	Fire management	N/A	N/A	Fire management reduces health risks from particulates (Bowman and Johnston 2005)	N/A	N/A	Fires affect water quality and flow due to erosion exposure (Townsend and Douglas 2000)	N/A	N/A	N/A	N/A	Wildfires can threaten property and human health in urban areas, with unique vulnerabilities (Gill and Stephens 2009); Winter and Fried 2010), therefore management will reduce risk to urban areas.	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
Other ecosyst	Reduced landslides and natural hazards	Landslides can increase vulnerability to poverty (Msilimba 2010), therefore management will reduce risks to the poor.	Landslides are one of the natural disasters that have impacts on food security (De Haen and Hemrich 2007)	Managing landslides reduces health risks (Haines et al. 2006)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Landslide hazards are a major risk to urban areas (Smyth and Royle 2000)	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
	Reduced pollution including acidification	N/A	N/A	Reducing acid deposition reduces health risks, including respiratory illnesses and increased morbidity (Lübkert- Alcamo and Krzyzanowski 1995; Larssen et al. 1999)	N/A	N/A	Pollution increases acidity of surface water, with likely ecological effects (Larssen et al. 1999)	N/A	N/A	Management of pollution can increase demand for new technologies (Popp 2006).	N/A	Management of pollution can reduce exposure to health risks in urban areas (Bartone 1991)	N/A	See main text on climate mitigation and adaptation	Reduction in pollution can improve water quality running to oceans (Doney et al. 2007)	See main text on desertification and degradation	N/A	N/A

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Inte op Ian	grated response tions based on d management	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to Achieve the Goal
	Management of invasive species/ encroachment	Invasive species removal policies have been beneficial to the poor (Van Wilgen and Wannenburgh 2016)	Invasive alien species (IAS) can compete with crops and reduce crop yields by billions of dollars annually (Pejchar and Mooney 2009)	IAS have strong negative effects on human well-being (Pejchar and Mooney 2009)	N/A	N/A	IAS like the golden apple snail/zebra mussel have damaged aquatic ecosystems (Pejchar and Mooney 2009)	N/A	IAS removal policies can increase employment due to need for labour (Van Wilgen and Wannenburgh 2016)	N/A	N/A	N/A	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
-	Restoration and avoided conversion of coastal wetlands	Impacts on poverty are mixed (Kumar et al. 2011). May reduce land available for cropping, and poor design can impoverish people (Ingram et al. 2006; Mangora 2011). Can also decrease vulnerability to coastal storms, however (Jones et al. 2012; Feagin et al. 2010)	Mixed evidence: can affect agriculture/fisheries production when competition for land occurs, or could increase food production when ecosystems are restored (Crooks et al. 2011)	Wetlands contribute to local well-being (Crooks et al. 2011) and restoration generally improve the cultural and recreational value of ecosystems (Knoke et al. 2014).	N/A	N/A	Wetlands store freshwater and enhance water quality (Bobbink et al. 2006)	N/A	Restoration projects often require employment for active replanting, etc. (Crooks et al. 2011)	Protecting coastal wetlands may reduce infrastructure projects in coastal areas (e.g., sea dikes, etc.) (Jones et al. 2012)	N/A	N/A	N/A	See main text on climate mitigation and adaptation	Restoration of coastal wetlands can play a large role in providing habitat for marine fish species (Bobbink et al. 2006; Hale et al. 2009)	See main text on desertification and degradation	N/A	N/A
ent	Restoration and avoided conversion of peatlands	May reduce land available for smallholders in tropical peatlands (Jewitt et al. 2014)	Can affect crop production when competition for land occurs, although much use of peatlands in tropics is for palm oil, not food (Senaratna Sellamuttu et al. 2011)	NA	N/A	N/A	Peatland restoration will improve water quality as they play important roles in water retention and drainage (Johnston 1991)	Peatlands in tropics are often used for biofuels and palm oil, so may reduce the availability of these (Danielsen et al. 2009)	Reduced peatland exploitation may decrease GDP in Southeast Asia (Koh et al. 2011)	N/A	N/A	N/A	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
Other ecosystem manageme	Biodiversity conservation	There is mixed evidence on the impacts of biodiversity conservation measures on poverty	Biodiversity, and its management, is crucial for improving sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition 2016). Indirectly, the loss of pollinators (due to combined causes, including the loss of habitats and flowering species) would contribute to 1.42 million additional deaths per year from non-communicable and malnutrition-related diseases, and 27.0 million lost disability-adjusted life-years (DALYs) per year (Smith et al. 2015). However, at the same time, some options to preserve biodiversity, like protected areas, may potentially conflict with food production by local communities (Molotoks et al. 2017)	Biodiversity, and its management, is crucial for improving sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition 2016).	N/A	N/A	33 out of 105 of the largest urban areas worldwide rely on biodiversity conservation measures such as protected areas for some, or all, of their drinking water (Secretariat of the Convention on Biological Diversity 2008)	Some biodiversity conservation measures might increase access to biomass supplies (Erb et al. 2012)							Biodiversity conservation measures like protected areas can increase ocean biodiversity (Selig et al. 2014)	Indigenous peoples' roles in biodiversity conservation can increase institutions and conflict resolution (Garnett et al. 2018)	Indigenous peoples commonly link forest landscapes and biodiversity to tribal identities, association with place, kinship ties, customs and protocols, stories, and songs (Gould 2014; Lyver et al. 2017b,a)	
	Enhanced weathering of minerals	N/A	N/A	N/A	N/A	N/A	Mineral weathering can affect the chemical composition of soil and surface waters (Katz 1989)	N/A	N/A	Will require development of new technologies (Schuiling and Krijgsman 2006)	N/A	N/A	N/A	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
Carbon dioxide removal (CDR)	Bioenergy and bioenergy with carbon capture and storage (BECCS)	Bioenergy production could create jobs in agriculture, but could also compete for land with alternative uses. Therefore, bioenergy could have positive or negative effects on poverty rates among smallholders, among other social effects (IPCC 2018).	Biofuel plantations may lead to decreased food security through competition for land (Locatelli et al. 2015b). BECCS will likely lead to significant trade-offs with food production (Popp et al. 2011b; Smith et al. 2016a).	BECCS could have positive effects through improvements in air and water quality (IPCC 2018), but BECS could have negative effects on health and well-being through impacts on food systems (Burns and Nicholson 2017). Additionally, there is a non-negligible risk of leakage of sequestered CO2 (IPCC 2018).	No direct interaction (IPCC 2018).	No direct interaction (IPCC 2018).	Will likely require water for plantations of fast-growing trees and models show high risk of water scarcity if BECCS is deployed on widespread scale (IPCC 2018).	BECCS and biofuels can contribute up to 300 EJ of primary energy by 2100 (Cross- Chapter Box 7); bioenergy can provide clean, affordable energy (IPCC 2018).	Access to clean, affordable energy will help economic growth (IPCC 2018).	BECCS will require development of new technologies (Smith et al. 2016a)	No direct interaction (IPCC 2018).	No direct interaction (IPCC 2018).	Switching to bioenergy reduces depletion of natural resources (IPCC 2018).	See main text on climate mitigation and adaptation	Reductions in carbon emissions will reduce ocean acidification. See main text on climate mitigation.	See main text on desertification and degradation	No direct interaction (IPCC 2018).	No direct interaction (IPCC 2018).

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Table SM6.13 | Impacts on the UN SDG of integrated response options based on value chain interventions.

Integrated	response options based on value chain manage- ment	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to achieve the Goal
	Dietary change	Reduced meat consumption can free up land for other activities to reduce poverty (Röös et al. 2017; Stoll-Kleemann and O'Riordan 2015). However, reduced demand for livestock will have a negative effect on pastoralists and could suppress demand for other inputs (grains) that would affect poor farmers (Garnett 2011; IPCC 2018)	High-meat diets in developed countries may limit improvement in food security in developing countries (Rosegrant et al. 1999); dietary change can contribute to food security goals (Godfray et al. 2010; Bajželj et al. 2014b)	Overnutrition contributes to worse health outcomes, including diabetes and obesity (Tilman and Clark 2014; McMichael et al. 2007). Dietary change away from meat consumption has major health benefits, including reduced heart disease and mortality (Popkin 2008; Friel et al. 2008). Dietary change could contribute to 5.1 million avoided deaths per year (Springmann et al. 2016)	No direct interaction (IPCC 2018)	No direct interaction (IPCC 2018)	Reduced meat consumption will reduce water consumption. Muller et al. (2017) found that lower-impact agriculture could be practiced if dietary change and waste reduction were implemented, leading to lower GHG emissions, lower rates of deforestation, and decreases in use of fertiliser (nitrogen and phosphorus), pesticides, water and energy. However, Tom et al. (2016) found water footprints of fruit/ veg dietary shift in the USA to increase by 16%	Dietary shifts away from meat to fish/ fruits/vegetables increases energy use in the USA by over 30% (Tom et al. 2016)	Health costs of meat-heavy diets add to health care costs and reduce GDP (Popkin 2008)	N/A	There are currently large discrepancies in diets between developed and developing nations (Sans and Combris 2015). Dietary change will reduce food inequality by reducing meat over-consumption in Western countries and free up some cereals for consumption in poorer diets (Rosegrant et al. 1999)	Dietary change is most needed in urbanised, industrialised countries and can help contribute to demand for locally grown fruits and vegetables (Tom et al. 2016)	A dietary shift away from meat can contribute to sustainable consumption by reducing GHG emissions and reducing cropland and pasture requirements (Stehfest et al. 2009; Bajželj et al. 2014b).	See main text on climate mitigation and adaptation	Dietary change away from meat might put increased pressure on fish stocks (Vranken et al. 2014; Mathijs 2015). Overall reduced emissions would decrease rate of ocean acidification (Doney et al. 2009)	See main text on desertification and degradation	N/A	N/A
Demand management	Reduced post- harvest losses (PHL)	Reducing food losses from storage and distribution operation can increase economic well-being without additional investment in production activities (Bradford et al. 2018; Temba et al. 2016)	Reducing food losses increases food availability, nutrition, and lower prices (Sheahan and Barrett 2017b; Abass et al. 2014; Affognon et al. 2015)	Improved storage enhances food quality and can reduce mycotoxin intake (Bradford et al. 2018; Temba et al. 2013; Tirado et al. 2013; Tirado et al. 2010) especially in humid climates (Bradford et al. 2018). The perishability and safety of fresh foods are highly susceptible to temperature increase (Bisbis et al. 2016).	Reduced losses can increase income that could be spent on education, but no data is available.	Post-harvest losses do have a gender dimension (Kaminski and Christiaensen 2014), but unclear if reducing losses will contribute to gender equality (Rugumamu 2009)	Kummu et al. (2012) reported that 24% of global freshwater use and 23% of global fertiliser use is attributed to food losses. Reduced PHL can decrease need for additional agricultural production and irrigation.	Reduced losses would reduce energy demands in production; 2030 ±160 trillion BTU of energy were embedded in wasted food in 2007 in the USA (Cuéllar and Webber 2010)	In East and Southern Africa, PHL for six major cereals was 1.6 billion USD or 15% of total production value; reducing losses would thus boost GDP substantially in developing countries with PHL (Hodges et al. 2011)	Reducing PHL can involve improving infrastructure for farmers and marketers (Parfitt et al. 2010)	Poorer households tend to experience more PHL, and thus reducing PHL can contribute to reducing inequality among farmers (Hodges et al. 2011).	N/A	Reducing PHL contributes to sustainable production goals (Parfitt et al. 2010)	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	PHLs contribute to higher food prices and constraints on trade (Tefera 2012)
	Reduced food waste (consumer or retailer)	Food waste tends to rise as incomes rise (Parfitt et al. 2010; Liu et al. 2013), so it is not clear what the relationship to poverty is. Could be potentially beneficial as it would free up money to spend on other activities (Dorward 2012). Redistribution of food surplus to the poor could also have impacts on poverty (Papargyropoulou et al. 2014)	People who are already food insecure tend not to waste food (Nahman et al. 2012). Reduced food waste would increase the supply of food (FAO 2011b; Smith 2013), but it is unclear if this would benefit those who are food insecure in developing countries (Hertel and Baldos 2016).	Food waste can increase with healthier diets (Parizeau et al. 2015). Health and safety standards can restrict some approaches to reducing food waste (Halloran et al. 2014). Changes in packaging to reduce waste might have negative health impacts (e.g., increased contamination) (Claudio 2012)	N/A	Reducing food waste within households often falls to women (Stefan et al. 2013) and can increase their labour workload (Hebrok and Boks 2017). Women also generate more food waste and could be a site for intervention (Thyberg and Tonjes 2016)	Kummu et al. (2012) reported that 24% of global freshwater and 23% of global fertiliser is used in the production of food losses, so reduction in food waste could provide significant co-benefits for freshwater provision and on nutrient cycling (Kummu et al. 2012). Muller et al. (2017) found that lower impact agriculture could be practiced if dietary change and waste reduction were implemented, leading to lower GHG emissions, lower rates of deforestation, and decreases in use of fertiliser (nitrogen and phosphorus), pesticides, water and energy.	Reduced losses would reduce energy demands in production; 2030±160 trillion BTU of energy were embedded in wasted food in 2007 in the USA (Cuéllar and Webber 2010). Food waste can be a sustainable source of biofuel (Uçkun Kiran et al. 2014)	Waste generation has grown faster than GDP in recent years (Thagersen 1996) Households in the UK throw out 745 USD of food and drink each year as food waste; South Africans throw out 7 billion USD worth of food per year (Nahman and de Lange 2013). Reductions of post-consumer waste would increase household income (Hodges et al. 2011)	Food waste could be an important source of needed chemicals for industrial development in resource- constrained countries (Lin et al. 2013)	Wealthier households tend to waste more food (Parfitt et al. 2010), but unclear how reducing waste may contribute to reducing inequality.	There have been large increases in the throughput of materials such as the food-waste stream, import and solid-waste accumulation in urban areas (Grimm et al. 2008). Reducing compostable food waste reduces need for landfills (Smit and Nasr 1992; Zaman and Lehmann 2011)	Post-consumer food waste in industrialised countries (222 million ton) is almost as high as the total net food production in sub- Saharan Africa (230 million ton). (FAO 2011b), thereby reducing waste contributes to sustainable consumption.	See main text on climate mitigation and adaptation	Reducing food waste may be related to food packaging, which is a major source of ocean pollution, but relationship is not known (Hoornweg et al. 2013).	See main text on desertification and degradation	N/A	Food waste can contribute to higher food prices and constraints on trade (Tefera 2012)

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Integrated response	options based on value chain manage- ment	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to achieve the Goal
Demand management	Material substitution	N/A	Could increase demand for wood and compete with land for agriculture, but no evidence of this yet.	N/A	N/A	N/A	If water is used efficiently in production of wood, likely to be positive impact over cement production (Gustavsson and Sathre 2011)	Concrete frames require 60–80% more energy than wood (Börjesson and Gustavsson 2000). Material substitution can reduce embodied energy of buildings construction by up to 20% (Thormark 2006; Upton et al. 2008)	The relationship between material substitution and GDP growth is unclear (Moore et al. 1996)	Material substitution may reduce need for industrial production of cement etc. (Petersen and Solberg 2005)	N/A	Changing materials for urban construction can reduce cities' ecological footprint (Zaman and Lehmann 2013)	Material substitution is a form of sustainable production/ consumption which replaces cement and other energy- intensive materials with wood (Fiksel 2006)	See main text on climate mitigation and adaptation	Overall reduced emissions would decrease rate of ocean acidification (Doney et al. 2009)	See main text on desertification and degradation	N/A	N/A
upply management	Sustainable sourcing	Value-adding has been promoted as a successful poverty reduction strategy in many countries (Lundy et al. 2002; Whitfield 2012; Swanson 2006). Volatility of food supply and food price spikes in 2007 increased the number of people under the poverty line by between 100 million people (Ivanic and Martin 2008) to 450 million people (Brinkman et al. 2009), and caused welfare losses of 3% or more for poor households in many countries (Zezza et al. 2009).	Poor farmers can benefit from value- adding and new markets (Bamman 2007) and may help to improve food security by increasing its economic performance and revenues to local farmers (Reidsma et al. 2010). However, much value-adding is captured upstream, not by poor producers (McMichael and Schneider 2011). Food prices strongly affect food security (Lewis and Witham 2012; Regmi and Meade 2013; Fujimori et al. 2019), and policies to decrease volatility will likely have strong impacts on food security (Timmer 2009; Torlesse et al. 2013; Raleigh et al. 2015;	Value-chains can help increase the nutritional status of food reaching consumers (Fan and Pandya-Lorch 2012)	Value-adding can increase income that could be spent on education, but no data available	Women are highly employed in value- added agriculture in many developing countries, but do not always gain substantive benefits (Dolan and Sorby 2003). Value-chains that target women could increase gender equity, but data are scare (Gengenbach et al. 2018)	Value-added products might require additional water use (Guan and Hubacek 2007), but depends on context.	N/A	Value-adding and export diversification generates additional employment and expands GDP in developing countries in particular (Newfarmer et al. 2009)	Value adding can create incentives to improve infrastructure in processing (Delgado 2010). Expanding value chains can incorporate new sources of food producers into industrial systems of distribution (Bloom and Hinrichs 2011)	Value-adding can be an important component of additional employment for poorer areas, and can contribute to reductions in overal linequality. However, data shows that high-value agriculture is not always a pathway toward enhanced welfare (Dolan and Sorby 2003), and much value-adding is captured not by smallholders but higher up the chain (Neilson 2007)	Value-adding can increase incentives to keep peri-urban agriculture, but faces threats from rising land prices in urban areas (Midmore and Jansen 2003)	Value-adding in agriculture (.e.g., fair trade, organic) can be an important source of sustainable consumption and production (De Haen and Réquillart 2014)	See main text on climate mitigation and adaptation	NA	See main text on desertification and degradation	N/A	Value-adding has a strong relationship to expanding trade in developing courtries in particular (Newfarmer et al. 2009)
5	Management of supply chains	Reducing food transport costs generally helps poor farmers (Altman et al. 2009). More than 200 million USD is generated in fresh fruit and veg trade between Kenya and the UK; much has contributed to poverty reduction and better transport could increase the amount generated (MacGregor and Vorley 2006; Muriithi and Matz 20015, Volatility of food supply and food price spikes in 2007 increased the number of people under the poverty line by between 100 million people (Ivanic and Martin 2008) to 450 million people (Brinkman et al. 2009), and caused welfare losses of 3% or more for poor households.	Improving storage efficiency can reduce food waste and health risks associated with poor storage management practices (James and James 2010; Bradford et al. 2018; Temba et al. 2018; Temba et al. 2018; Temba et al. 2018; Trado et al. 2018; Trado et al. 2019; Tr	Access to quality food is a major contributor to whether a diet is healthy or not (Neff et al. 2009). Increased distribution and access of packaged foods, however, can decrease health outcomes (Galal et al. 2010; Monteiro et al. 2011)	Reduction in staple food price costs to consumers in Bangladesh from food stability policies saved rural households 887 USD million total (Torlesse et al. 2003), but N/A if this increased spending on education in households.	Women and girls are often the most effected in households when there are food shortages (Kerr 2005; Hadley et al. 2008)	Food imports can contribute to water scarcity through 'embodied' or 'virtual' water accounting (Yang and Zehnder 2002; Guan and Hubacek 2007; Hanjra and Qureshi 2010; Jiang 2009)	Food supply chains and flows have adverse effects due to reliance on non-renewable energy (Kurian 2017; Scott 2017). Shifts to biofuels can destabilise food supplies (Tirado et al. 2010; Chakauya et al. 2009)	Food supply instability is often driven by price volatility, which can be driven by rapid economic growth, and which can contribute to consumer price inflation and higher import costs as a percentage of GDP leading to account deficits (Gilbert and Morgan 2010)	Excessive disruptions in food supply can place strains on infrastructure (e.g., needing additional storage facilities) (Yang and Zehnder 2002). Improved food transport can create demands for improved infrastructure (Akkerman et al. 2010; Shively and Thapa 2016). For example, weatherproofing transport systems and improving the efficiency of food trade (Ingram et al. 2016; Stathers et al. 2013) especially in countries with inadequate infrastructure and weak food distribution systems (Vermeulen et al. 2012b), can strengthen climate resilience against future climate-related shocks (Ingram et al. 2016; Stathers et al. 2013)	Food volatility makes it more challenging to supply food to vulnerable regions, and likely increases inequality (Baldos and Hertel 2015; Frank et al. 2017; Porter et al. 2014; Wheeler and von Braun 2013). Improved food distribution could reduce inequality in access to high- quality nutritious foods. Food -nsecure consumers benefit from better access and distribution (e.g., elimination of food deserts) (Ingram 2011; Coveney and O'Dwyer 2009)	Improved food distribution can contribute to better food access and stronger urban communities (Kantor 2001; Hendrickson et al. 2006). Food price spikes often hit urban consumers the hardest in food- importing countries, and increasing stability can reduce risk of food riots (Cohen and Garrett 2010)	Improved storage and distribution are likely to contribute to sustainable production by impacting on biomass of paper/ card and aluminum and iron-ore mining used for food packaging (Ingram et al. 2016).	See main text on climate mitigation and adaptation	NA	See main text on desertification and degradation	N/A	Better transport improves chances for expanding trade in developing countries (Newfarmer et al. 2009), Well-planned trade systems may act as a buffer to supply food to vulnerable regions (Baldos and Hertel 2015; Frank et al. 2017; Porter et al. 2014; Wheeler and von Braun 2013).

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Integrated response	options based on value chain manage- ment	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to achieve the Goal
	Enhanced urban food systems (UFS)	Regional food systems present opportunities for interconnectedness of the food system's component resilient food supply systems and city-regions have an important role (Brinkley et al. 2013; Rocha 2016). However, there is mixed evidence on urban agriculture's contribution to poverty reduction (Ellis and Sumberg 1998).	Food insecurity in urban areas is often invisible (Crush and Frayne 2011). Improved UFS manage flows of food into, within, and out of the cities and have large role to play in reducing urban food security (Smit 2016; Benis and Ferrão 2017; Brinkley et al. 2013; Rocha 2016; Maxwell and Wiebe 1999), particularly in fostering regional food self-reliance (Aldababseh et al. 2018; Bustamante et al. 2014).	Since urban poor spend a great deal of their budget on food and urban diets are exposed to more unhealthy 'fast foods' (Dixon et al. 2007), local UFS can contribute to enhanced nutrition in urban areas (Tao et al. 2015; Maxwell 1999; Neff et al. 2009). However, local urban agriculture also may introduce pollution into food systems through toxins in soil and water (Binns et al. 2003).	School feeding programmes in urban areas can increase educational attendance and outcomes (Ashe and Sonnino 2013).	Urban and Peri- urban Agriculture and Forestry (UPAF) addresses gender- based differences in accessing food since women play an important role in the provisioning of urban food (Tao et al. 2015; Binns and Lynch 1998). Women also dominate informal urban food provisioning (wet markets, street food) (Smith 1998).	Water access is often a constraint on urban agriculture (de Bon et al. 2010; Badami and Ramankutty 2015). Urban agriculture can exacerbate urban water pollution problems (pesticide runoff, etc) (Pothukuchi and Kaufman 1999)	Local food production and use can reduce energy use, due to lower demand of resources for production, transport and infrastructure (Lee- Smith 2010), but depends on context (Mariola 2008; Coley et al. 2009)	UFS have as one aim to stimulate local economic development and increase employment in urban agriculture and food processing (Smith 1998). As many as 50% of some cities' retail jobs are in food- related sector (Pothukuchi and Kaufman 1999)	Urban food provisioning creates demands for expanded infrastructure in processing, refrigeration, and transportation (Pothukuchi and Kaufman 1999)	Many UFS in global South (e.g., Belo Horizonte, Brazil) have goals to reduce inequality in access to food. (Dixon et al. 2007; Allen 2010)	UFS aim at improving the health status of urban dwellers, reducing their exposure to pollution levels, and stimulating economic development (Tao et al. 2015)	UFS aim to combine sustainable production and consumption with local foodsheds (Tao et al. 2015; Allen 2010)	See main text on climate mitigation and adaptation	Overall reduced emissions would decrease rate of ocean acidification (Doney et al. 2009)	See main text on desertification and degradation	Building a resilient regional food system requires adjusting to the social and cultural environment and locally-specific natural resource base and building local institutions (Akhar et al. 2016). Production of food within cities can potentially lead to less likelihood of urban food shortages, and conflicts (Cohen and Garrett 2010)	N/A
Supply management	Improved food processing and retailing	Food processing has been a useful strategy for poverty reduction in some countries (Weinberger and Lumpkin 2007; Haggblade et al. 2010).	Efficiency in food processing and supply chains can contribute to more food reaching consumers and improved nutrition (Vermeulen et al. 2012b; Keding et al. 2013)	Improved processing and distribution and storage systems can provide safer and healthier food to consumers (Vermeulen et al. 2012b) and reduce food waste and health risks associated with poor storage management practices (James and James 2010), although overpackaged prepared foods that are less healthy are also on rise (Monteiro 2009; Monteiro et al. 2011).	N/A	Improved food processing can displace street venders and informal food sellers, who are predominantly women (Smith 1998; Dixon et al. 2007).	Food processing and packaging activities such as washing, heating, cooling are heavily dependent on freshwater, so improved postharvest storage and distribution could reduce water demand via more efficiently performing systems (Garcia and You 2016).	Food processing and packaging activities such as heating and cooling are heavily dependent on energy, so improved efficiency could reduce energy demand (Garcia and You 2016).	Phytosanitary barriers currently prevent much food export from developing countries, and improvements in processing would increase exports and GDP (Henson and Loader 2001; Jongwanich 2009).	Improvements in processing, refrigeration, and transportation will require investments in improved infrastructure (Ingram 2011).	N/A	Improved food transport can reduce cities' ecological footprints and reduce overall emissions (Du et al. 2006).	Improved food processing and agro- retailing contributes to sustainable production (Ingram 2011).	See main text on climate mitigation and adaptation	Overall reduced emissions would decrease rate of ocean acidification (Doney et al. 2009)	See main text on desertification and degradation	N/A	Improved processing increases chances for expanding trade in developing countries (Newfarmer et al. 2009)
	Improved energy use in food systems	Might possibly have impact on poverty by reducing farmer costs, but no data.	Utilising energy- saving strategies can support reduced food waste (Ingram et al. 2016) and increased production efficiencies (Smith and Gregory 2013).	Organic agriculture is associated with increased energy efficiency, which have can have co-benefits by reduced exposure to agrochemicals by farm workers (Gomiero et al. 2008).	N/A	Increased efficiency might reduce women's labour workloads on farms (Rahman 2010) but data is scarce.	Increased energy efficiency (e.g., in irrigation) can lead to more efficient water use (Rothausen and Conway 2011; Ringler and Lawford 2013).	Increased energy efficiency will reduce demands for energy but can have rebound effect in expanded acreage (Swanton et al. 1996)	There is no clear association between higher energy use in agriculture and economic growth; these have become decoupled in many countries (Bonny 1993). Data is unclear though on economic impacts of potential cost savings.	N/A	N/A	N/A	Reducing energy use in agriculture contributes to sustainable production goals (Ingram et al. 2016).	See main text on climate mitigation and adaptation	Overall reduced emissions would decrease rate of ocean acidification (Doney et al. 2009).	See main text on desertification and degradation	N/A	N/A

Table SM6.14 | Impacts on the UN SDG of integrated response options based on risk management.

Inte spo bas ma	egrated re- nse options sed on risk magement	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to achieve the Goal
Man. urba	agement of n sprawl	Inner-city poverty closely associated with urban sprawl in US context (Frumkin 2002; Powell 1999; Jargowsky 2002; Deng and Huang 2004).	There are likely to be some benefits for food security since it is often agricultural land that is sealed by the urban expansion (Barbero-Sierra et al. 2013). Some evidence for sprawl reducing food production, particularly in China (Chen 2007).	Strong association between urban sprawl and poorer health outcomes (air pollution, obesity, traffic accidents) (Frumkin 2002; Lopez 2004; Freudenberg et al. 2005).	N/A	N/A	Urban sprawl is associated with higher levels of water pollution due to loss of filtering vegetation and increasing impervious surfaces (Romero and Ordenes 2004; Tu et al. 2007).	Sprawling or informal settlements often do not have access to electricity or other services, increasing chances that households rely on dirty fuels (Dhingra et al. 2008)	Sprawl is associated with rapid economic growth in some areas (Brueckner 2000). Reducing urban sprawl is part of many managed 'smart growth' plans, which may reduce overall economic growth in return for sustainability benefits (Godschalk 2003).	Urban sprawl often increases public infrastructure costs (Brueckner 2000), and densification and redevelopment can improve equality of access to infrastructure (Jenks and Burgess 2000).	Urban sprawl is associated with inequality (Jargowsky 2002)	Urban sprawl is associated with unsustainability, including increased transport and CO2 emissions, lack of access to services, and loss of civic life (Kombe 2005; Andersson 2006). Sustainable cities include compactness, sustainable transport, density, mixed land uses, diversity, passive solar design, and greening (Chen et al. 2008; Jabareen 2006; Andersson 2006).	Reducing urban sprawl and promoting community gardens and periurban agriculture can contribute to more sustainable production in cities (Turner 2011)	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	There are debates over the role of urban sprawl in reducing social capital and weakening participatory governance in cities (frumkin 2002; Nguyen 2010)	N/A

6SM

Chapter 6 Supplementary Material

Interlinkages

Interlinkages

Integrated re- sponse options based on risk management	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and Sanitation	GOAL 7: Affordable and Clean Energy	GOAL 8: Decent Work and Economic Growth	GOAL 9: Industry, Innovation and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and Communities	GOAL 12: Responsible Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong Institutions	GOAL 17: Partnerships to achieve the Goal
Livelihood diversification	Diversification is associated with increased welfare and incomes and decreased levels of poverty in several country studies (Arslan et al. 2018; Asfaw et al. 2018).	Diversification is associated with increased access to income and additional food sources for the household (Pretty 2003); likely some food security benefits but diversification can also lead to more purchased (unhealthy) foods (Niehof 2004; Barrett et al. 2001).	More diversified livelihoods have diversified diets which have better health outcomes (Block and Webb 2001; Kadiyala et al. 2014) particularly for women and children (Pretty 2003).	More diversified households tend to be more affluent, and have more disposal income for education (Ellis 1998; Estudillo and Otsuka 1999; Steward 2007), but diversification through migration may reduce educational outcomes for children (Gioli et al. 2014)	Women are participants in and benefit from livelihood diversification, such as having increased control over sources of household income (Smith 2014), although it can increase their labour requirements (Angeles and Hill 2009).	Lack of access to affordable water may inhibit livelihood diversification (Calow et al. 2010).	Access to clean energy can provide additional opportunities for livelihood diversification (Brew- Hammond 2010; Suckall et al. 2015).	Livelihood diversification by definition contributes to employment by providing additional work opportunities (Ellis 1998; Niehof 2004).	N/A	The relationship between livelihood diversification and inequality is inconclusive (Ellis 1998). In some cases, diversification reduces inequality (Adams 1994) while in others it increases it (Reardon et al. 2008).	One part of urban livelihoods in developing countries is the linkage between rural and urban areas through migration and remittances (Rakodi 1999; Rakodi and Lloyd-Jones 2002). This livelihood diversification can strengthen urban income (Ricci 2012).	Livelihood diversification does not always lead to sustainable production and consumption choices, but it can strengthen autonomy, potentially leading to better choices (Elmqvist and Olsson 2007; Schneider and Niederle 2010).	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	N/A	N/A
Use of local seeds	Many hundreds of millions of smallholders still rely on local seeds; without them they would have to find money to buy commercial seeds (Altieri et al. 2012; McGuire and Sperling 2016; Howard 2015).	Local seeds revive and strengthen local food systems (McMichael and Schneider 2011) and lead to more diverse and healthy food in areas with strong food sovereignty networks (Coomes et al. 2015; Bisht et al. 2018). However local seeds are often less productive than improved varieties.	Local seed use is associated with fewer pesticides (Altieri et al. 2012) loss of local seeds and substitution by commercial seeds is perceived by farmers to increase health risks (Mazzeo and Brenton 2013), although overall literature on links between food sovereignty and health is weak (Jones et al. 2015).	N/A	Women play important roles in preserving and using local seeds (Ngcoya and Kumarakulasingam 2017; Bezner Kerr 2013) and sovereignty movements paying more attention to gender needs (Park et al. 2015).	Local seeds often have lower water demands, as well as less use of pesticides that can contaminate water (Adhikari 2014).	N/A	Food sovereignty supporters believe that protecting smallholder agriculture provides more employment than commercial agriculture (Kloppenberg 2010).	N/A	Seed sovereignty advocates believe it will contribute to reduced inequality (Wittman 2011; Park et al. 2015) but there is inconclusive empirical evidence.	Seed sovereignty can help sustainable urban gardening (Demailly and Darly 2017) which can be part of a sustainable city by providing fresh, local food (Leitgeb et al. 2016).	Locally developed seeds can help protect local agrobiodiversity and can often be more climate resilient than generic commercial varieties, leading to more sustainable production (Coomes et al. 2015; Van Niekerk and Wynberg 2017).	See main text on climate mitigation and adaptation	N/A	See main text on desertification and degradation	Seed sovereignty is positively associated with strong local food movements, which contribute to social capital (McMichael and Schneider 2011; Coomes et al. 2015; Grey and Patel 2015).	Seed sovereignty could be seen as threat to free trade and imports of genetically modified seeds (Kloppenberg 2010; Howard 2015; Kloppenburg 2014).
Disaster risk management (DRM)	DRM can help prevent impoverishment as disasters are a major factor in poverty (Basher 2006; Fothergill and Peek 2004).	Famine early warning systems (EWS) have successfully prevent impending food shortages (Genesio et al. 2011; Hillbruner and Moloney 2012).	EWS is very important for public health to ensure that people can get shelter and medical care during disasters (Greenough et al. 2001; Ebi and Schmier 2005).	N/A	Women often disproportionately affected by disasters; gender-sensitive EWS can reduce their vulnerability (Enarson and Meyreles 2004; Mustafa et al. 2015)	Many EWS include water-monitoring components that contribute to access to clean water (Wilhite 2005; Iglesias et al. 2007). Some urban areas use water EWS successfully to monitor levels of contaminants (Hasan et al. 2009; Hou et al. 2013).	N/A	DRM can help minimise damage from disasters, which impacts on economic growth (Basher 2006).	DRM can help protect infrastructures from damage during disasters (Rogers and Tsirkunov 2011).	EWS can ensure that inequality is taken into account when making predictions of impacts (Khan et al. 1992).	EWS can be very effective in urban settings – for example, heat wave EWS and flooding EWS to minimise vulnerability (Parnell et al. 2007; Bambrick et al. 2011; Djordjević et al. 2011).	DRM can make sustainable production more possible by providing farmers with advance notice of environmental needs (Stigter et al. 2000; Parr et al. 2003).	See main text on climate mitigation and adaptation	EWS can play important role in marine management, for example, warnings of red tide, tsunami warnings for coastal communities (Lee et al. 2005; Lauterjung et al. 2010).	See main text on desertification and degradation	DRM can reduce risk of conflict (Meier et al. 2007), increase resilience of communities (Mathbor 2007) and strengthen trust in institutions (Altieri et al. 2012)	N/A
Risk-sharing instruments	Crop insurance reduces risks, which can improve poverty outcomes by avoiding catastrophic losses, but is often not used by poorest people (Platteau et al. 2017).	Availability of crop insurance has generally led to (modest) expansions in cultivated land area and increased food production (Claassen et al. 2011a; Goodwin et al. 2004).	General forms of social protection lead to better health outcomes; unclear how much crop insurance contributes (Tirivayi et al. 2016).	Households lacking insurance may withdraw children from school after crop shocks (Jacoby and Skoufias 1997; Bandara et al. 2015).	Women farmers vulnerable to crop shocks, but tend to be more risk-averse and sceptical of commercial insurance (Akter et al. 2016; Fletschner and Kenney 2014).	Crop insurance can be indexed to weather and water access and thereby increase adapation to water stress (Hoff and Bouwer 2003). Subsidised insurance can also be linked to reductions in pesticide use to reduce nonpoint source pollution, which has shown success in the USA and China (Luo et al. 2014)	N/A	Subsidised crop insurance contributes to economic growth in the USA (Atwood et al. 1996) but at considerable cost to the governance (Glauber 2004).	N/A	N/A	N/A	Crop insurance has been implicated as a driver of unsustainable production and disincentive to diversification (Bowman and Zilberman 2013), although community risk-sharing might increase diversification and production.	See main text on climate mitigation and adaptation	There is mixed evidence that crop insurance may encourage excess fertiliser use (Kramer et al. 1983; Wu 1999; Smith and Goodwin 1996), which contributes to ocean pollution; however, some governments are requiring reductions in onopoint source pollution from farms, otherwise farmers lose crop insurance (lho et al. 2015).	See main text on desertification and degradation	Community risk-sharing instruments can help strenthen resilience and institutions (Agrawal 2001).	Subsidised crop insurance can be seen as a subsidy and barrier to trade (Young and Westcott 2000).

Chapter 6 Supplementary Material

Supplementary information for Section 6.5.4

	IAM Study	Climate Change	Mitigation	Adaptation	Desertification	Land Degradation	Food Security	Other
Alexander et al. 2018	No			Yes				Yes
Baker et al. 2019	No		Yes					
Baldos and Hertel 2014	No						Yes	
Bauer et al. 2018	Yes		Yes					
Bertram et al. 2018	Yes		Yes				Yes	Yes
Ten Brink et al. 2018	Mixed				Yes	Yes	Yes	Yes
Calvin et al. 2013	Yes		Yes	Yes				
Calvin et al. 2014	Yes		Yes				Yes	Yes
Calvin et al. 2016a	Yes		Yes					
Calvin et al. 2016b	Yes		Yes					
Calvin et al. 2017	Yes		Yes				Yes	
Calvin et al. 2019	Yes		Yes					Yes
Chaturvedi et al. 2013	Yes		Yes					Yes
Clarke et al. 2014	Yes	Yes	Yes					Yes
Collins et al. 2013	No	Yes						
Daioglou et al. 2019	Yes		Yes					
Doelman et al. 2018	Yes		Yes				Yes	
Edmonds et al. 2013	Yes		Yes					
Favero and Massetti 2014	Yes	Yes	Yes					
Frank et al. 2015	IAM-land		Yes					
Frank et al. 2017	Yes		Yes				Yes	
Fricko et al. 2017	Yes		Yes					
Fujimori et al. 2017	Yes		Yes					
Fujimori et al. 2019	Yes		Yes				Yes	
Fuiimori et al. 2019	Mixed		Yes				Yes	
Gao and Brvan 2017	No		Yes			Yes	Yes	Yes
Graham et al. 2018	Yes							Yes
Grubler et al. 2018	Yes		Yes				Yes	Yes
Hanasaki et al. 2013	Yes							Yes
Harrison et al. 2016	Yes							Yes
Hasegawa et al. 2015a	Yes						Yes	
Hasegawa et al. 2015b	Yes						Yes	
Hasegawa et al. 2018	Mixed			Yes			Yes	
Heck et al. 2018	Mixed	Yes	Yes					Yes
Heiazi et al. 2014b	Yes		Yes					Yes
Hejazi et al. 2015	Yes		Yes					Yes
Humpenöder et al. 2014	Yes		Yes					
Humpenöder et al. 2018	IAM-land		Yes				Yes	Yes
Iver et al. 2018	Yes		Yes				Yes	Yes
lones et al 2013	Yes	Yes						105
Jones et al. 2015	Yes		Yes					
Kim et al 2016	Yes			Yes			Yes	Yes
Kraxner et al 2013	No		Yes					Yes
Kreidenweis et al 2016	Yes		Yes				Yes	
Krienler et al 2017	Vec		Yes				Vos	
Kriegler et al 2018a	Mixed		Yes				103	
Kriegler et al 2018h	Voc		Yes					
Kyle et al 2014	Yes		Yes	Yes				
Lamontageo et al 2019	Voc		Voc	105				
Lamontagne et al. 2018	105		162					

Interlinkages

Chapter 6 Supplementary Material

	IAM Study	Climate Change	Mitigation	Adaptation	Desertification	Land Degradation	Food Security	Other
Le Page et al. 2013	Yes		Yes					
Liu et al. 2017	No			Yes			Yes	
Lotze-Campen et al. 2013	Mixed			Yes			Yes	
Monier et al. 2018	Yes	Yes	Yes	Yes				Yes
Mouratiadou et al. 2016	Yes		Yes					Yes
Muratori et al. 2016	Yes		Yes				Yes	
Nelson et al. 2014	Mixed			Yes			Yes	
Newbold et al. 2015	Mixed							Yes
Obersteiner et al. 2016	IAM-land						Yes	Yes
Parkinson et al. 2019	Yes		Yes					Yes
Patrizio et al. 2018	No		Yes					Yes
Pedercini et al. 2018	No						Yes	Yes
Pikaar et al. 2018	IAM-land		Yes					Yes
Popp et al. 2014	Yes		Yes					
Popp et al. 2017	Yes		Yes				Yes	
Powers and Jetz 2019	No							Yes
Riahi et al. 2017	Yes		Yes				Yes	
Ringler et al. 2016	Yes			Yes			Yes	Yes
Rogelj et al. 2018b	Yes		Yes					
Springmann et al. 2018	No		Yes					Yes
Stehfest et al. 2019	Mixed							
Stevanovic et al. 2016	IAM-land			Yes				
Stevanović et al. 2017	IAM-land		Yes				Yes	
Tai et al. 2014	No						Yes	
Thornton et al. 2017	Yes	Yes	Yes	Yes			Yes	
UNCCD 2017	Mixed				Yes	Yes	Yes	Yes
Van Meijl et al. 2018	Mixed		Yes	Yes			Yes	
Van Vuuren et al. 2015	Yes		Yes				Yes	Yes
Van Vuuren et al. 2017a	Yes		Yes					
Van Vuuren et al. 2018	Yes		Yes					
Weindl et al. 2015	IAM-land			Yes			Yes	
Weindl et al. 2017	IAM-land		Yes					
Wiebe et al. 2015	Mixed			Yes			Yes	
Wolff et al. 2018	No				Yes	Yes		Yes
Wu et al. 2019	Yes							
Yamagata et al. 2018	No					Yes		Yes

References

- Abass, A.B. et al., 2014: Post-harvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. *J. Stored Prod. Res.*, **57**, 49–57, doi:10.1016/J.JSPR.2013.12.004.
- Abraham, M., and P. Pingali, 2017: Transforming smallholder agriculture to achieve the SDGs. *The Role of Small Farms in Food and Nutrition Security*, [L. Riesgo, S. Gomez-Y-Paloma, and K. Louhichi (eds.)] Springer, New York, USA.
- Adams, R.H., 1994: Non-farm income and inequality in rural Pakistan: A decomposition analysis. *J. Dev. Stud.*, **31**, 110–133, doi:10.1080/ 00220389408422350.
- ADB, 2016: Asian Water Development Outlook 2016: Strengthening Water Security in Asia and the Pacific. Asian Development Bank, Mandaluyong City, Philippines, 115 pp.
- Adhikari, J., 2014: Seed Sovereignty: Analysing the debate on hybrid seeds and GMOs and bringing about sustainability in agricultural development. *J. For. Livelihood*, **12**, 33–46.
- Affognon, H., C. Mutungi, P. Sanginga, and C. Borgemeister, 2015: Unpacking postharvest losses in sub-Saharan Africa: A meta-analysis. *World Dev.*, **66**, 49–68, doi:10.1016/J.WORLDDEV.2014.08.002.
- Agboola, J.I., and A.K. Braimoh, 2009: Strategic partnership for sustainable management of aquatic resources. *Water Resour. Manag.*, 23, 2761–2775, doi:10.1007/s11269-009-9407-4.

- Agrawal, A., 2001: Common property institutions and sustainable governance of resources. *World Dev.*, **29**, 1649–1672, doi:10.1016/S0305-750X(01)00063-8.
- Ahmed, S., and J.R. Stepp, 2016: Beyond yields: Climate change effects on specialty crop quality and agroecological management. *Elem. Sci. Anthr.*, 4, 92, doi:10.12952/journal.elementa.000092.
- Ainslie, A., 2013: The sociocultural contexts and meanings associated with livestock keeping in rural South Africa. *African J. Range Forage Sci.*, **30**, 35–38, doi:10.2989/10220119.2013.770066.
- Akhtar, P., Y. Tse, Z. Khan, and R. Rao-Nicholson, 2016: Data-driven and adaptive leadership contributing to sustainability: Global agri-food supply chains connected with emerging markets. *Int. J. Prod. Econ.*, 181, 392–401.
- Akkerman, R., P. Farahani, and M. Grunow, 2010: Quality, safety and sustainability in food distribution: A review of quantitative operations management approaches and challenges. *OR Spectr.*, **32**, 863–904, doi:10.1007/s00291-010-0223-2.
- Akter, S., T.J. Krupnik, F. Rossi, and F. Khanam, 2016: The influence of gender and product design on farmers' preferences for weather-indexed crop insurance. *Glob. Environ. Chang.*, **38**, 217–229, doi:10.1016/j. gloenvcha.2016.03.010.
- Al-Thani, H., M. Koç, and R.J. Isaifan, 2018: A review on the direct effect of particulate atmospheric pollution on materials and its mitigation for sustainable cities and societies. *Environ. Sci. Pollut. Res.*, 25, 27839–27857, doi:10.1007/s11356-018-2952-8.
- Aldababseh, A., M. Temimi, and P. Maghelal, 2018: Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. *Sustainability*, **10**, 803–836, doi:10.3390/su10030803.
- Alexander, P. et.al., 2018: Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. *Glob. Chang. Biol.*, 24, 2791–2809, doi:10.1111/gcb.14110.
- Allen, P., 2010: Realizing justice in local food systems. *Cambridge J. Reg. Econ. Soc.*, **3**, 295–308, doi:10.1093/cjres/rsq015.
- Altieri, M.A., and D.K. Letourneau, 1982: Vegetation management and biological control in agroecosystems. *Crop Prot.*, **1**, 405–430, doi:10.1016/0261-2194(82)90023-0.
- Altieri, M.A., F.R. Funes-Monzote, and P. Petersen, 2012: Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. *Agron. Sustain. Dev.*, **32**, 1–13, doi:10.1007/s13593-011-0065-6.
- Altman, M., T.G. Hart, and P.T. Jacobs, 2009: Household food security status in South Africa. *Agrekon*, **48**, 345–361, doi:10.1080/03031853.2009. 9523831.
- Ananda, J., and G. Herath, 2003: Soil erosion in developing countries: A socioeconomic appraisal. J. Environ. Manage., 68, 343–353, doi:10.1016/S0301-4797(03)00082-3.
- Andersson, E., 2006: Urban landscapes and sustainable cities. *Ecol. Soc.*, **11**, art34, doi:10.5751/ES-01639-110134.
- Andersson, K.P. et al., 2018: Wealth and the distribution of benefits from tropical forests: Implications for REDD+. *Land use policy*, **72**, 510–522, doi:10.1016/J.LANDUSEPOL.2018.01.012.
- Angeles, L.C., and K. Hill, 2009: The gender dimension of the agrarian transition: Women, men and livelihood diversification in two peri-urban farming communities in the Philippines. *Gender, Place Cult.*, **16**, 609–629, doi:10.1080/09663690903148465.
- Angelsen, A., 2010: Climate mitigation and food production in tropical landscapes special feature: Policies for reduced deforestation and their impact on agricultural production. *Proc. Natl. Acad. Sci. U.S.A.*, **107**, 19639–19644.
- Antille, D.L., J.M. Bennett, and T.A. Jensen, 2016: Soil compaction and controlled traffic considerations in Australian cotton-farming systems. *Crop Pasture Sci.*, 67, 1, doi:10.1071/CP15097.
- Anzures-Dadda, A., E. Andresen, M.L. Martínez, and R.H. Manson, 2011: Absence of howlers (Alouatta palliata) influences tree seedling densities

in tropical rain forest fragments in Southern Mexico. Int. J. Primatol., **32**, 634–651, doi:10.1007/s10764-011-9492-0.

- Arhin, A.A., 2014: Safeguards and dangerguards: a framework for unpacking the black box of safeguards for REDD+. *For. Policy Econ.*, **45**, 24–31, doi:10.1016/J.FORPOL.2014.05.003.
- Arneth, A. et al., 2010: From biota to chemistry and climate: Towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. *Biogeosciences*, 7, 121–149, doi:10.5194/bg-7-121-2010.
- Arnold, J.E.M., and M.R. Pérez, 2001: Can non-timber forest products match tropical forest conservation and development objectives? *Ecol. Econ.*, **39**, 437–447, doi:10.1016/S0921-8009(01)00236-1.
- Arslan, A. et al., 2018: Diversification under climate variability as part of a CSA strategy in rural Zambia. *J. Dev. Stud.*, **54**, 457–480, doi:10.1080/00 220388.2017.1293813.
- Asfaw, S., G. Pallante, and A. Palma, 2018: Diversification strategies and adaptation deficit: Evidence from rural communities in Niger. *World Dev.*, **101**, 219–234, doi:10.1016/J.WORLDDEV.2017.09.004.
- Ashe, L.M., and R. Sonnino, 2013: At the crossroads: new paradigms of food security, public health nutrition and school food. *Public Health Nutr.*, 16, 1020–1027, doi:10.1017/S1368980012004326.
- Atekwana, E.A., E. Atekwana, F.D. Legall, and R.V. Krishnamurthy, 2005: Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. *J. Contam. Hydrol.*, **80**, 149–167, doi:10.1016/J.JCONHYD.2005.06.009.
- Atwood, J.A., M.J. Watts, and A.E. Baquet, 1996: An examination of the effects of price supports and federal crop insurance upon the economic growth, capital structure, and financial survival of wheat growers in the northern High Plains. *Am. J. Agric. Econ.*, **78**, 212–224, doi:10.2307/1243792.
- Badami, M.G., and N. Ramankutty, 2015: Urban agriculture and food security: A critique based on an assessment of urban land constraints. *Glob. Food Sec.*, 4, 8–15, doi:10.1016/J.GFS.2014.10.003.
- Bajželj, B. et al., 2014: Importance of food-demand management for climate mitigation. Nat. Clim. Chang., 4, 924–929, doi:10.1038/nclimate2353.
- Baker, J.S., C.M. Wade, B.L. Sohngen, S. Ohrel, and A.A. Fawcett, 2019: Potential complementarity between forest carbon sequestration incentives and biomass energy expansion. *Energy Policy*, **126**, 391–401, doi:10.1016/J. ENPOL.2018.10.009.
- Baker, L.E., 2010: Tending cultural landscapes and food citizenship in Toronto's community gardens. *Geogr. Rev.*, 94, 305–325, doi:10.1111/ i.1931-0846.2004.tb00175.x.
- Baldos, U.L.C., and T.W. Hertel, 2014: Global food security in 2050: The role of agricultural productivity and climate change. *Aust. J. Agric. Resour. Econ.*, 58, 554–570, doi:10.1111/1467-8489.12048.
- Baldos, U.L.C., and T.W. Hertel, 2015: The role of international trade in managing food security risks from climate change. *Food Secur.*, 7, 275–290, doi:10.1007/s12571-015-0435-z.
- Balmford, A. et al., 2018: The environmental costs and benefits of high-yield farming. *Nat. Sustain.*, **1**, 477, doi:10.1038/s41893-018-0138-5.
- Bambrick, H.J., A.G. Capon, G.B. Barnett, R.M. Beaty, and A.J. Burton, 2011: Climate change and health in the urban environment: Adaptation opportunities in Australian cities. *Asia Pacific J. Public Heal.*, 23, 675–795, doi:10.1177/1010539510391774.
- Bamman, H., 2007: Participatory value chain analysis for improved farmer incomes, employment opportunities and food security. *Pacific Econ. Bull.*, 22, 113–125.
- Bandara, A., R. Dehejia, and S. Lavie-Rouse, 2015: The impact of income and non-income shocks on child labor: Evidence from a panel survey of Tanzania. *World Dev.*, **67**, 218–237, doi:10.1016/J.WORLDDEV.2014.10.019.
- Bao, C., and C. Fang, 2012: Water resources flows related to urbanization in China: Challenges and perspectives for water management and urban development. *Water Resour. Manag.*, **26**, 531–552, doi:10.1007/s11269-011-9930-y.

Interlinkages

- Barbero-Sierra, C., M.J. Marques, and M. Ruíz-Pérez, 2013: The case of urban sprawl in Spain as an active and irreversible driving force for desertification. *J. Arid Environ.*, **90**, 95–102, doi:10.1016/j.jaridenv.2012.10.014.
- Barnes, A.P., and S.G. Thomson, 2014: Measuring progress towards sustainable intensification: How far can secondary data go? *Ecol. Indic.*, **36**, 213–220, doi:10.1016/j.ecolind.2013.07.001.
- Barnes, A.P., H. Hansson, G. Manevska-Tasevska, S.S. Shrestha, and S.G. Thomson, 2015: The influence of diversification on long-term viability of the agricultural sector. *Land use policy*, **49**, 404–412, doi:10.1016/j. landusepol.2015.08.023.
- Barnett, J., and J. Palutikof, 2015: 26 The limits to adaptation. A comparative analysis. In: *Applied Studies in Climate Adaptation*, John Wiley & Sons, Ltd., UK, 231 pp.
- Barnhart, S., M. Duffy, and D. Smith, 2000: *Estimated cost of pasture and hay production*. Staff Gen. Res. Pap. Arch. 2035 Iowa State Univ. Dep. Econ.,.
- Barrett, C., T. Reardon, and P. Webb, 2001: Nonfarm income diversification and household livelihood strategies in rural Africa: Concepts, dynamics, and policy implications. *Food Policy*, **26**, 315–331, doi:10.1016/S0306-9192(01)00014-8.
- Barry, L.E., R.T. Yao, D.R. Harrison, U.H. Paragahawewa, and D.J. Pannell, 2014: Enhancing ecosystem services through afforestation: How policy can help. *Land use policy*, **39**, 135–145, doi:10.1016/J.LANDUSEPOL.2014.03.012.
- Bartone, C., 1991: Environmental challenge in third world cities. *J. Am. Plan. Assoc.*, **57**, 411–415, doi:10.1080/01944369108975515.
- Basher, R., 2006: Global early warning systems for natural hazards: Systematic and people-centred. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.*, 364, 2167–2182, doi:10.1098/rsta.2006.1819.
- Baudron, F. et al., 2015: Re-examining appropriate mechanization in Eastern and Southern Africa: Two-wheel tractors, conservation agriculture, and private sector involvement. *Food Secur.*, **7**, 889–904, doi:10.1007/s12571-015-0476-3.
- Bauer, N. et al., 2018: Global energy sector emission reductions and bioenergy use: Overview of the bioenergy demand phase of the EMF-33 model comparison. *Clim. Change*, 1–16, doi:10.1007/s10584-018-2226-y.
- Baveye, P.C., J. Berthelin, D. Tessier, and G. Lemaire, 2018: The "4 per 1000" initiative: A credibility issue for the soil science community? *Geoderma*, **309**, 118–123, doi:10.1016/j.geoderma.2017.05.005.
- Beauchemin, K.A., M. Kreuzer, F. O'Mara, and T.A. McAllister, 2008: Nutritional management for enteric methane abatement: A review. *Aust. J. Exp. Agric.*, 48, 21–27.
- Beaune, D., B. Fruth, L. Bollache, G. Hohmann, and F. Bretagnolle, 2013: Doom of the elephant-dependent trees in a Congo tropical forest. *For. Ecol. Manage.*, **295**, 109–117, doi:10.1016/J.FORECO.2012.12.041.
- Beck, D.A., G.R. Johnson, and G.A. Spolek, 2011: Amending greenroof soil with biochar to affect runoff water quantity and quality. *Environ. Pollut.*, **159**, 2111–2118, doi:10.1016/J.ENVPOL.2011.01.022.
- Becker, D.R., D. Larson, and E.C. Lowell, 2009: Financial considerations of policy options to enhance biomass utilization for reducing wildfire hazards. *For. Policy Econ.*, **11**, 628–635, doi:10.1016/J.FORPOL.2009.08.007.
- Beerling, D.J. et al., 2018: Farming with crops and rocks to address global climate, food and soil security. *Nat. Plants*, **4**, 138.
- Begum, B.A. et al., 2011: Long–range transport of soil dust and smoke pollution in the South Asian region. *Atmos. Pollut. Res.*, **2**, 151–157, doi:10.5094/APR.2011.020.
- Benis, K., and P. Ferrão, 2017: Potential mitigation of the environmental impacts of food systems through urban and peri-urban agriculture (UPA): A life cycle assessment approach. J. Clean. Prod., 140, 784–795, doi:10.1016/j.jclepro.2016.05.176.
- Berman, R., C. Quinn, and J. Paavola, 2012: The role of institutions in the transformation of coping capacity to sustainable adaptive capacity. *Environ. Dev.*, **2**, 86–100, doi:10.1016/j.envdev.2012.03.017.

- Bernex, N., 2016: *Linking Ecosystem Services and Water Security SDGs Offer a New Opportunity for Integration*. Global Water Partnership, Stockholm, Sweden.
- Berthrong, S.T., E.G. Jobbágy, and R.B. Jackson, 2009: A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. *Ecol. Appl.*, **19**, 2228–2241, doi:10.1890/08-1730.1.
- Bertram, C. et al., 2018: Targeted policies can compensate most of the increased sustainability risks in 1.5°C mitigation scenarios. *Environ. Res. Lett.*, **13**, 64038, doi:10.1088/1748-9326/aac3ec.
- Beusen, A.H.W. et al., 2016: Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. *Biogeosciences*, **13**, 2441–2451, doi:10.5194/bg-13-2441-2016.
- Bezner Kerr, R., 2013: Seed struggles and food sovereignty in northern Malawi. J. Peasant Stud., 40, 867–897, doi:10.1080/03066150.2013.848428.
- Bhattacharyya, R. et al., 2015: Soil degradation in India: Challenges and potential solutions. *Sustainability*, **7**, 3528–3570, doi:10.3390/su7043528.
- Binns, J.A., R.A. Maconachie, and A.I. Tanko, 2003: Water, land and health in urban and peri-urban food production: The case of Kano, Nigeria. *L. Degrad. Dev.*, **14**, 431–444, doi:10.1002/ldr.571.
- Binns, T., and K. Lynch, 1998: Feeding Africa's growing cities into the 21st century: The potential of urban agriculture. *J. Int. Dev.*, **10**, 777–793, doi:10.1002/(SICI)1099-1328(1998090)10:6<777::AID-JID532>3.0.CO;2-Z.
- Birkmann, J. et al., 2015: Scenarios for vulnerability: Opportunities and constraints in the context of climate change and disaster risk. *Clim. Change*, **133**, 53–68, doi:10.1007/s10584-013-0913-2.
- Bisbis, M.B., N. Gruda, and M. Blanke, 2018: Potential impacts of climate change on vegetable production and product quality A review. *J. Clean. Prod.*, **170**, 1602–1620, doi:10.1016/j.jclepro.2017.09.224.
- Bisht, I.S. et al., 2018: Farmers' rights, local food systems, and sustainable household dietary diversification: A case of Uttarakhand Himalaya in north-western India. *Agroecol. Sustain. Food Syst.*, **42**, 77–113, doi:10.108 0/21683565.2017.1363118.
- Block, S., and P. Webb, 2001: The dynamics of livelihood diversification in post-famine Ethiopia. *Food Policy*, **26**, 333–350, doi:10.1016/S0306-9192(01)00015-X.
- Blomley, T., and H. Ramadhani, 2006: Going to scale with participatory forest management: Early lessons from Tanzania. *Int. For. Rev.*, 8, 93–100, doi:10.1505/ifor.8.1.93.
- Bloom, J.D., and C.C. Hinrichs, 2011: Moving local food through conventional food system infrastructure: Value chain framework comparisons and insights. *Renew. Agric. Food Syst.*, **26**, 13–23, doi:10.1017/ S1742170510000384.
- Bobbink, R., D.F. Whigham, B. Beltman, and J.T.A. Verhoeven, 2006: Wetland functioning in relation to biodiversity conservation and restoration. *Wetlands: Functioning, Biodiversity Conservation, and Restoration,* Springer, Berlin, Heidelberg, Germany, 1–12.
- Boelee, E., T. Chiramba, and E. Khaka, 2011: *An Ecosystem Services Approach to Water and Food Security*. International Water Management Institute (IWMI), Colombo, Sri Lanka, 35 pp.
- de Bon, H., L. Parrot, and P. Moustier, 2010: Sustainable urban agriculture in developing countries. A review. *Agron. Sustain. Dev.*, **30**, 21–32, doi:10.1051/agro:2008062.
- Bonn, A., M. Reed, C. Evans, H. Joosten, and C.B. Services, 2014: Investing in nature: Developing ecosystem service markets for peatland restoration. *Ecosystem*, 9, 54–65, doi:10.1016/j.ecoser.2014.06.011.
- Bonny, S., 1993: Is agriculture using more and more energy? A French case study. *Agric. Syst.*, **43**, 51–66, doi:10.1016/0308-521X(93)90092-G.
- Bonsch, M. et al., 2015: Environmental flow provision: Implications for agricultural water and land-use at the global scale. *Glob. Environ. Chang.*, **30**, 113–132, doi:10.1016/j.gloenvcha.2014.10.015.

- Börjesson, P., and L. Gustavsson, 2000: Greenhouse gas balances in building construction: Wood versus concrete from life-cycle and forest land-use perspectives. *Energy Policy*, **28**, 575–588, doi:10.1016/S0301-4215(00)00049-5.
- Boval, M., and R.M. Dixon, 2012: The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. *Animal*, **6**, 748–762, doi:10.1017/ S1751731112000304.
- Bowman, D.M.J.S., and F.H. Johnston, 2005: Wildfire smoke, fire management, and human health. *Ecohealth*, **2**, 76–80, doi:10.1007/s10393-004-0149-8.
- Bowman, M.S., and D. Zilberman, 2013: Economic factors affecting diversified farming systems. *Ecol. Soc.*, **18**, art33, doi:10.5751/ES-05574-180133.
- Boysen, L.R., W. Lucht, and D. Gerten, 2017a: Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. *Glob. Chang. Biol.*, **23**, 4303–4317, doi:10.1111/qcb.13745.
- Boysen, L.R. et al., 2017b: The limits to global-warming mitigation by terrestrial carbon removal. *Earth's Futur.*, **5**, 463–474, doi:10.1002/2016EF000469.
- Bradford, K.J. et al., 2018: The dry chain: Reducing postharvest losses and improving food safety in humid climates. *Trends Food Sci. Technol.*, **71**, 84–93, doi:10.1016/j.tifs.2017.11.002.
- Brew-Hammond, A., 2010: Energy access in Africa: Challenges ahead. *Energy Policy*, **38**, 2291–2301, doi:10.1016/J.ENPOL.2009.12.016.
- Ten Brink, B.J.E. et al., 2018: Chapter 7: Scenarios of IPBES, land degradation and restoration. In: Land: The IPBES Assessment Report on Degradation and Restoration, [L. Montanarella, R. Scholes, and A. Brainich (eds.)], Intergovernmental Ecosystem, Platform on Biodiversity and Services, Bonn, Germany, 531–589 pp.
- Brinkley, C., E. Birch, and A. Keating, 2013: Feeding cities: Charting a research and practice agenda towards food security. J. Agric. food Syst. community Dev., 3, 81–87, doi:10.5304/jafscd.2013.034.008.
- Brinkman, H., S. De Pee, I. Sanogo, L. Subran, and M. Bloem, 2009: High food prices and the global financial crisis have reduced access to nutritious food and worsened nutritional status and health. J. Nutr., 140, 1535–161S, doi:10.3945/jn.109.110767.
- Brockerhoff, E.G. et al., 2017: Forest biodiversity, ecosystem functioning and the provision of ecosystem services. *Biodivers. Conserv.*, 26, 3005–3035, doi:10.1007/s10531-017-1453-2.
- Brodie, J.F., and C.E. Aslan, 2012: Halting regime shifts in floristically intact tropical forests deprived of their frugivores. *Restor. Ecol.*, **20**, 153–157, doi:10.1111/j.1526-100X.2011.00833.x.
- Brown, C., P. Alexander, S. Holzhauer, and M.D.A. Rounsevell, 2017: Behavioral models of climate change adaptation and mitigation in land-based sectors. *Wiley Interdiscip. Rev. Clim. Chang.*, **8**, e448, doi:10.1002/wcc.448.
- Brown, N.R., R.F. Noss, D.D. Diamond, and M.N. Myers, 2001: Conservation biology and forest certification: Working together toward ecological sustainability. *J. For.*, **99**, 18–25, doi:10.1093/jof/99.8.18.
- Brueckner, J.K., 2000: Urban sprawl: diagnosis and remedies. *Int. Reg. Sci. Rev.*, **23**, 160–171, doi:10.1177/016001700761012710.
- Brundu, G., and D.M. Richardson, 2016: Planted forests and invasive alien trees in Europe: A code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. *NeoBiota*, **30**, 5–47, doi:10.3897/neobiota.30.7015.
- Bryan, B.A., and N.D. Crossman, 2013: Impact of multiple interacting financial incentives on land use change and the supply of ecosystem services. *Ecosyst. Serv.*, **4**, 60–72, doi:10.1016/J.ECOSER.2013.03.004.
- Bryan, E., T.T. Deressa, G.A. Gbetibouo, and C. Ringler, 2009: Adaptation to climate change in Ethiopia and South Africa: Options and constraints. *Environ. Sci. Policy*, **12**, 413–426, doi:10.1016/j.envsci.2008.11.002.
- Buongiorno, J., and S. Zhu, 2014: Assessing the impact of planted forests on the global forest economy. *New Zeal. J. For. Sci.*, **44**, S2, doi:10.1186/1179-5395-44-S1-S2.

- Burnett, K.M., B.A. Kaiser, and J.A. Roumasset, 2007: Invasive species control over space and time: Miconia calvescens on Oahu, Hawaii. J. Agric. Appl. Econ., 39, 125–132, doi:10.1017/S1074070800028996.
- Burns, W., and S. Nicholson, 2017: Bioenergy and carbon capture with storage (BECCS): The prospects and challenges of an emerging climate policy response. *J. Environ. Stud. Sci.*, **7**, 527–534, doi:10.1007/s13412-017-0445-6.
- Burritt, R., and S. Schaltegger, 2014: Accounting towards sustainability in production and supply chains. *Br. Account. Rev.*, **46**, 327–343.
- Burrows, N.D., 2008: Linking fire ecology and fire management in southwest Australian forest landscapes. *For. Ecol. Manage.*, **255**, 2394–2406, doi:10.1016/J.FORECO.2008.01.009.
- Bustamante, M. et al., 2014: Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector. *Glob. Chang. Biol.*, 20, 3270–3290, doi:10.1111/gcb.12591.
- Calder, I.R., 2005: *Blue Revolution: Integrated Land and Water Resource Management*. Second Edition. Routledge, London, UK., 374 pp.
- Calow, R.C., A.M. MacDonald, A.L. Nicol, and N.S. Robins, 2010: Ground water security and drought in Africa: Linking availability, access, and demand. *Ground Water*, **48**, 246–256, doi:10.1111/j.1745-6584.2009.00558.x.
- Calvin, K. et al., 2013: Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM. *Clim. Change*, **117**, 545–560, doi:10.1007/s10584-012-0650-y.
- Calvin, K. et al., 2014: Trade-offs of different land and bioenergy policies on the path to achieving climate targets. *Clim. Change*, **123**, 691–704, doi:10.1007/s10584-013-0897-y.
- Calvin, K. et al., 2016a: Implications of uncertain future fossil energy resources on bioenergy use and terrestrial carbon emissions. *Clim. Change*, **136**, 57–68, doi:10.1007/s10584-013-0923-0.
- Calvin, K. et al., 2017: The SSP4: A world of deepening inequality. *Glob. Environ. Chang.*, **42**, 284–296, doi:10.1016/j.gloenvcha.2016.06.010.
- Calvin, K. et al., 2019: GCAM v5.1: Representing the linkages between energy, water, land, climate, and economic systems. *Geosci. Model Dev.*, **12**, 677–698, doi:10.5194/gmd-12-677-2019.
- Calvin, K. V, R. Beach, A. Gurgel, M. Labriet, and A.M. Loboguerrero Rodriguez, 2016b: Agriculture, forestry, and other land-use emissions in Latin America. *Energy Econ.*, **56**, 615–624, doi:https://doi.org/10.1016/j. eneco.2015.03.020.
- Cameron, R.W.F. et al., 2012: The domestic garden Its contribution to urban green infrastructure. *Urban For. Urban Green.*, **11**, 129–137, doi:10.1016/J. UFUG.2012.01.002.
- Cane, J., 2005: Bees, pollination and the challenges of sprawl. *Nature in Fragments: The Legacy of Sprawl* [Johnson, A. and M.W. Klemes, (eds.)]. Columbia University Press, New York, 109–124.
- Certini, G., 2005: Effects of fire on properties of forest soils: A review. *Oecologia*, **143**, 1–10, doi:10.1007/s00442-004-1788-8.
- CGIAR, 2016: *The drought crisis in the Central Highlands of Vietnam*. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Vietnam.
- Chakauya, E., G. Beyene, and R.K. Chikwamba, 2009: Food production needs fuel too: Perspectives on the impact of biofuels in southern Africa. *South African Journal of Science*, **105**, 174–181.
- Chamier, J., K. Schachtschneider, D. Le Maitre, P. Ashton, and B. Van Wilgen, 2012: Impacts of invasive alien plants on water quality, with particular emphasis on South Africa. *Water Sa*, **38**, 345–356, doi:10.4314/wsa. v38i2.19.
- Charles, H., and J.S. Dukes, 2008: Impacts of invasive species on ecosystem services. *Biological Invasions*. Springer, Berlin, Heidelberg, Germany, 217–237.
- Chaturvedi, V. et al., 2013: Climate mitigation policy implications for global irrigation water demand. *Mitig. Adapt. Strateg. Glob. Chang.*, **20**, 389–407, doi:10.1007/s11027-013-9497-4.

- Chauhan, R.S., 2010: Socioeconomic improvement through medicinal and aromatic plants (MAPs) cultivation in Uttarakhand, India. J. Sustain. Agric., 34, 647–658, doi:10.1080/10440046.2010.493390.
- Chen, H., B. Jia, and S.S.Y. Lau, 2008: Sustainable urban form for Chinese compact cities: Challenges of a rapid urbanized economy. *Habitat Int.*, 32, 28–40, doi:10.1016/J.HABITATINT.2007.06.005.
- Chen, J., 2007: Rapid urbanization in China: A real challenge to soil protection and food security. *Catena*, **69**, 1–15, doi:10.1016/J.CATENA.2006.04.019.
- Cibin, R., E. Trybula, I. Chaubey, S.M. Brouder, and J.J. Volenec, 2016: Watershed-scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. *GCB Bioenergy*, **8**, 837–848, doi:10.1111/gcbb.12307.
- Ciccarese, L., A. Mattsson, and D. Pettenella, 2012: Ecosystem services from forest restoration: Thinking ahead. *New For.*, **43**, 543–560, doi:10.1007/ s11056-012-9350-8.
- Claassen, R., F. Carriazo, J. Cooper, D. Hellerstein, and K. Ueda, 2011: Grassland to Cropland Conversion in the Northern Plains. The Role of Crop Insurance, Commodity, and Disaster Programs. United States Department of Agriculture, Washington, DC, USA, 85 pp.
- Clarke L., K. Jiang, K. Akimoto, M. Babiker, G. Blanford, K. Fisher-Vanden, J.-C. Hourcade, V. Krey, E. Kriegler, A. Löschel, D. McCollum, S. Paltsev, S. Rose, P.R. Shukla, M. Tavoni, B.C.C. van der Zwaan, and D.P. van Vuuren, 2014: Assessing Transformation Pathways. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Claudio, L., 2012: Our food: Packaging & public health. *Environ. Health Perspect.*, **120**, doi:10.1289/ehp.120-a232.
- Cohen, M.J., and J.L. Garrett, 2010: The food price crisis and urban food (in) security. *Environ. Urban.*, 22, 467–482, doi:10.1177/0956247810380375.
- Cohen, M.J., J. Clapp, and Centre for International Governance Innovation., 2009: *The Global Food Crisis: Governance Challenges and Opportunities*. Wilfrid Laurier University Press, Ontario, Canada, 267 pp.
- Coldwell, D.F., and K.L. Evans, 2018: Visits to urban green-space and the countryside associate with different components of mental well-being and are better predictors than perceived or actual local urbanisation intensity. *Landsc. Urban Plan.*, **175**, 114–122, doi:10.1016/J. LANDURBPLAN.2018.02.007.
- Coley, D., M. Howard, and M. Winter, 2009: Local food, food miles and carbon emissions: A comparison of farm shop and mass distribution approaches. *Food Policy*, **34**, 150–155, doi:10.1016/J.FOODPOL.2008.11.001.
- Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Combes Motel, P., R. Pirard, and J.L. Combes, 2009: A methodology to estimate impacts of domestic policies on deforestation: Compensated successful efforts for "avoided deforestation" (REDD). *Ecol. Econ.*, **68**, 680–691, doi:10.1016/J.ECOLECON.2008.06.001.
- Conant, R.T., and K. Paustian, and E.T. Elliott, 2001: Grassland management and conversion into grassland: Effects on soil carbon. *Ecol. Appl.*, **11**, 343– 355, doi:10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2.

- Coomes, O.T. et al., 2015: Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. *Food Policy*, **56**, 41–50, doi:10.1016/J.FOODPOL.2015.07.008.
- Corbera, E., C. Hunsberger, and C. Vaddhanaphuti, 2017: Climate change policies, land grabbing and conflict: Perspectives from Southeast Asia. *Can.* J. Dev. Stud. Can. d'études du développement, **38**, 297–304, doi:10.1080/ 02255189.2017.1343413.
- Coveney, J., and L.A. O'Dwyer, 2009: Effects of mobility and location on food access. *Health Place*, **15**, 45–55, doi:10.1016/J.HEALTHPLACE.2008.01.010.
- Cromsigt, J.P.G.M. et al., 2018: Trophic rewilding as a climate change mitigation strategy? *Philos. Trans. R. Soc. B Biol. Sci.*, **373**, 20170440, doi:10.1098/rstb.2017.0440.
- Crooks, S., D. Herr, J. Tamelander, and D. Laffoley, 2011: *Mitigating Climate Change Through Restoration and Management of Coastal Wetlands and Near-Shore Marine Ecosystems: Challenges and Opportunities*. The World Bank, Washington, DC, USA, 69 pp.
- Crush, J.S., and G.B. Frayne, 2011: Urban food insecurity and the new international food security agenda. *Dev. South. Afr.*, **28**, 527–544, doi:10.1 080/0376835X.2011.605571.
- Cuéllar, A.D., and M.E. Webber, 2010: Wasted food, wasted energy: the embedded energy in food waste in the United States. *Environ. Sci. Technol.*, 44, 6464–6469, doi:10.1021/es100310d.
- Dagar, J., P. Sharma, D. Sharma, and A. Singh, 2016: *Innovative Saline Agriculture*. Springer India, New Delhi, 1–519 pp.
- Daioglou, V., J.C. Doelman, B. Wicke, A. Faaij, and D.P. Van Vuuren, 2019: Integrated assessment of biomass supply and demand in climate change mitigation scenarios. *Glob. Environ. Chang.*, 54, 88–101, doi:10.1016/J. GLOENVCHA.2018.11.012.
- Danielsen, F. et al., 2009: Biofuel plantations on forested lands: Double jeopardy for biodiversity and climate. *Conserv. Biol.*, **23**, 348–358, doi:10.1111/j.1523-1739.2008.01096.x.
- Dar, W.D., and C.L. Laxmipathi Gowda, 2013: Declining agricultural productivity and global food security. *J. Crop Improv.*, **27**, 242–254, doi:10. 1080/15427528.2011.653097.
- Datt, G., and M. Ravallion, 1998: Farm productivity and rural poverty in India. *J. Dev. Stud.*, **34**, 62–85, doi:10.1080/00220389808422529.
- Dawadi, S., and S. Ahmad, 2013: Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. *J. Environ. Manage.*, **114**, 261–275, doi:10.1016/j. jenvman.2012.10.015.
- Delgado, C.L., 2010: Sources of growth in smallholder agriculture integration of smallholders with processors in sub-saharan Africa: The role of vertical and marketers of high value-added items. *Agrekon*, **38**, 165–198, doi:10.1 080/03031853.1999.9524913.
- Demailly, K.-E., and S. Darly, 2017: Urban agriculture on the move in Paris: The routes of temporary gardening in the neoliberal city. *ACME An Int. E-Journal Crit. Geogr*, University of British Columbia, Okanagan, Canada, 31 pp.
- Deng, F.F., and Y. Huang, 2004: Uneven land reform and urban sprawl in China: The case of Beijing. *Prog. Plann.*, **61**, 211–236, doi:10.1016/j. progress.2003.10.004.
- DERM, 2011: Salinity Management Handbook. Second Edition. Brisbane, Australia: Department of Environment and Resource Management, 188 pp.
- Dhingra, C., S. Gandhi, A. Chaurey, and P.K. Agarwal, 2008: Access to clean energy services for the urban and peri-urban poor: A case-study of Delhi, India. *Energy Sustain. Dev.*, **12**, 49–55, doi:10.1016/S0973-0826(09) 60007-7.
- Diaz-Ruiz, R., M. Costa-Font, and J.M. Gil, 2018: Moving ahead from foodrelated behaviours: An alternative approach to understand household food waste generation. J. Clean. Prod., 172, 1140–1151.
- Dickinson, D. et al., 2014: Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy, 7, 850–864, doi:10.1111/gcbb.12180.

- Dillon, P., and M. Arshad, 2016: Managed aquifer recharge in integrated water resource management. In: *Integrated Groundwater Management* [A.J. Jakeman, O. Barreteau, R.J. Hunt, J.-D. Rinaudo, and A. Ross (eds.).]. Springer, Cham, Switzerland, 435–452 pp.
- Dixon, J., A.M. Omwega, S. Friel, C. Burns, K. Donati, and R. Carlisle, 2007: The health equity dimensions of urban food systems. *J. Urban Heal.*, **84**, 118–129, doi:10.1007/s11524-007-9176-4.
- Dixon, P., H. van Meijl, M. Rimmer, L. Shutes, and A. Tabeau, 2016: RED versus REDD: Biofuel policy versus forest conservation. *Econ. Model.*, **52**, 366–374, doi:10.1016/J.ECONMOD.2015.09.014.
- Djordjević, S., D. Butler, P. Gourbesville, O. Mark, and E. Pasche, 2011: New policies to deal with climate change and other drivers impacting on resilience to flooding in urban areas: The CORFU approach. *Environ. Sci. Policy*, **14**, 864–873, doi:10.1016/J.ENVSCI.2011.05.008.
- Doelman, J.C. et al., 2018: Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and landbased climate change mitigation. *Glob. Environ. Chang.*, 48, 119–135, doi:10.1016/J.GLOENVCHA.2017.11.014.
- Dolan, C., and K. Sorby, 2003: *Gender and Employment in High-Value Agriculture Industries*. Agriculture & Rural Development Working Paper 7. World Bank, Washington, DC, USA.
- Dolidon, N., T. Hofer, L. Jansky, and R. Sidle, 2009: Watershed and forest management for landslide risk reduction. In: *Landslides – Disaster Risk Reduction*. Springer, Berlin Heidelberg, Germany, 633–649 pp.
- Doney, S.C. et al., 2007: Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. *Proc. Natl. Acad. Sci. U.S.A.*, **104**, 14580–14585, doi:10.1073/ pnas.0702218104.
- Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas, 2009: Ocean acidification: The other CO₂ problem. *Ann. Rev. Mar. Sci.*, **1**, 169–192, doi:10.1146/ annurev.marine.010908.163834.
- Donovan, J., D. Stoian, D. Macqueen, and S. Grouwels, 2006: The business side of sustainable forest management: Small and medium forest enterprise development for poverty reduction. *Nat. Resour. Perspect.*, **104**, 1–5.
- Dorward, L.J., 2012: Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment. *Food Policy*, **37**, 463–466, doi:10.1016/j.foodpol.2012.04.006.
- Dresner, M., C. Handelman, S. Braun, and G. Rollwagen-Bollens, 2015: Environmental identity, pro-environmental behaviors, and civic engagement of volunteer stewards in Portland area parks. *Environ. Educ. Res.*, **21**, 991–1010, doi:10.1080/13504622.2014.964188.
- Du, B., K. Zhang, G. Song, and Z. Wen, 2006: Methodology for an urban ecological footprint to evaluate sustainable development in China. *Int. J. Sustain. Dev. World Ecol.*, **13**, 245–254, doi:10.1080/13504500609469676.
- Duraiappah, A.K., 1998: Poverty and environmental degradation: A review and analysis of the nexus. *World Dev.*, **26**, 2169–2179, doi:10.1016/S0305-750X(98)00100-4.
- Ebert, A., 2014: Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. *Sustainability*, **6**, 319–335, doi:10.3390/ su6010319.
- Ebi, K.L., and J.K. Schmier, 2005: A stitch in time: Improving public health early warning systems for extreme weather events. *Epidemiol. Rev.*, **27**, 115–121, doi:10.1093/epirev/mxi006.
- Edmonds, J. et al., 2013: Can radiative forcing be limited to 2.6 Wm-2 without negative emissions from bioenergy and CO₂ capture and storage? *Clim. Change*, **118**, 29–43, doi:10.1007/s10584-012-0678-z.
- Egoh, B., B. Reyers, M. Rouget, M. Bode, and D.M. Richardson, 2009: Spatial congruence between biodiversity and ecosystem services in South Africa. *Biol. Conserv.*, **142**, 553–562, doi:10.1016/J.BIOCON.2008.11.009.
- Ehrenfeld, J.G., and N. Scott, 2001: Invasive species and the soil: Effects on organisms and ecosystem processes. *Ecol. Appl.*, **11**, 1259–1260, doi:10.1890/1051-0761(2001)011[1259:ISATSE]2.0.CO;2.

- Eigenbrod, C., and N. Gruda, 2015: Urban vegetable for food security in cities. A review. *Agron. Sustain. Dev.*, **35**, 483–498, doi:10.1007/s13593-014-0273-y.
- Eisenbies, M.H., W.M. Aust, J.A. Burger, and M.B. Adams, 2007: Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians — A review. *For. Ecol. Manage.*, 242, 77–98.
- Ekins, P., S. Simon, L. Deutsch, C. Folke, and R. De Groot, 2003: A framework for the practical application of the concepts of critical natural capital and strong sustainability. *Ecol. Econ.*, 44, 165–185, doi:10.1016/S0921-8009(02)00272-0.
- El-Swaify, S.A., 1997: Factors affecting soil erosion hazards and conservation needs for tropical steeplands. *Soil Technol.*, **11**, 3–16, doi:10.1016/S0933-3630(96)00111-0.
- Ellis, F., 1998: Household strategies and rural livelihood diversification. J. Dev. Stud., **35**, 1–38, doi:10.1080/00220389808422553.
- Ellis, F., and J. Sumberg, 1998: Food production, urban areas and policy responses. *World Dev.*, 26, 213–225, doi:10.1016/S0305-750X(97)10042-0.
- Ellison, D. et al., 2017: Trees, forests and water: Cool insights for a hot world. *Glob. Environ. Chang.*, **43**, 51–61, doi:10.1016/j.gloenvcha.2017.01.002.
- Elmqvist, B., and L. Olsson, 2007: Livelihood diversification: Continuity and change in the Sahel. *GeoJournal*, **67**, 167–180, doi:10.1007/s10708-007-9043-6.
- Enarson, E., and L. Meyreles, 2004: International perspectives on gender and disaster: Differences and possibilities. *Int. J. Sociol. Soc. Policy*, **24**, 49–93, doi:10.1108/01443330410791064.
- Ennis, C.J., A.G. Evans, M. Islam, T.K. Ralebitso-Senior, and E. Senior, 2012: Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology. *Crit. Rev. Environ. Sci. Technol.*, 42, 2311–2364, doi:10.1080 /10643389.2011.574115.
- Erb, K.H., H. Haberl, and C. Plutzar, 2012: Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. *Energy Policy*, **47**, 260–269, doi:https:// doi.org/10.1016/j.enpol.2012.04.066.
- Erisman, J.W., J. Galloway, S. Seitzinger, A. Bleeker, and K. Butterbach-Bahl, 2011: Reactive nitrogen in the environment and its effect on climate change. *Curr. Opin. Environ. Sustain.*, **3**, 281–290, doi:10.1016/J. COSUST.2011.08.012.
- Erwin, K.L., 2009: Wetlands and global climate change: The role of wetland restoration in a changing world. *Wetl. Ecol. Manag.*, **17**, 71–84, doi:10.1007/s11273-008-9119-1.
- Estudillo, J.P., and K. Otsuka, 1999: Green revolution, human capital, and offfarm employment: Changing sources of income among farm households in Central Luzon, 1966–1994. *Econ. Dev. Cult. Change*, **47**, 497–523, doi:10.1086/452417.
- Evans, R.G., and E.J. Sadler, 2008: Methods and technologies to improve efficiency of water use. *Water Resour. Res.*, **44**, 1–15, doi:10.1029/2007WR006200.
- Fader, M., D. Gerten, M. Krause, W. Lucht, and W. Cramer, 2013: Spatial decoupling of agricultural production and consumption: Quantifying dependences of countries on food imports due to domestic land and water constraints. *Environ. Res. Lett.*, 8, 14046, doi:10.1088/1748-9326/8/1/014046.
- Fan, S., and R. Pandya-Lorch, 2012: *Reshaping Agriculture for Nutrition and Health*. International Food Policy Research Institute, Washington, D.C., U.SA., 213 pp.
- FAO, 2011: *The State of the World's Land and Water Resources for Food and Agriculture. Managing Systems at Risk.* Food and Agriculture Organization of the United Nations, Rome, Italy, and Earthscan, London, UK, 308 pp.
- FAO, 2014: *The State of Food and Agriculture: Innovation in Family Farming.* Food and Agriculture Organization of the United Nations, Rome, Italy, 161 pp.

- Favero, A., and E. Massetti, 2014: Trade of woody biomass for electricity generation under climate mitigation policy. *Resour. Energy Econ.*, 36, 166–190, doi:10.1016/J.RESENEECO.2013.11.005.
- Fawcett, R., B. Christensen, and D. Tierney, 1994: The impact of conservatiAon tillage on pesticide runoff into surface water: A review and analysis. *J. Soil Water Conserv.*, **49**, 126–135.
- Few, R., A. Martin, and N. Gross-Camp, 2017: Trade-offs in linking adaptation and mitigation in the forests of the Congo Basin. *Reg. Environ. Chang.*, **17**, 851–863, doi:10.1007/s10113-016-1080-6.
- Fiksel, J., 2006: A framework for sustainable materials management. *JOM*, **58**, 15–22, doi:10.1007/s11837-006-0047-3.
- Fletschner, D., and L. Kenney, 2014: Rural women's access to financial services: Credit, savings, and insurance. In: *Gender in Agriculture*. Springer, Dordrecht, Netherlands, 187–208.
- Foggin, J.M., 2008: Depopulating the Tibetan grasslands. *Mt. Res. Dev.*, 28, 26–31, doi:10.1659/mrd.0972.
- Foster, S., 2018: Is UN Sustainable Development Goal 15 relevant to governing the intimate land-use/groundwater linkage? *Hydrogeol. J.*, **26**, 979–982, doi:10.1007/s10040-018-1782-6.
- Fothergill, A., and L.A. Peek, 2004: Poverty and disasters in the United States: A review of recent sociological findings. *Nat. Hazards*, **32**, 89–110, doi:10.1023/B:NHAZ.000026792.76181.d9.
- Frank, S. et al., 2015: The dynamic soil organic carbon mitigation potential of European cropland. *Glob. Environ. Chang.*, **35**, 269–278, doi:10.1016/j. gloenvcha.2015.08.004.
- Frank, S. et al., 2017: Reducing greenhouse gas emissions in agriculture without compromising food security? *Environ. Res. Lett.*, **12**, 105004, doi:10.1088/1748-9326/aa8c83.
- Freeman, J., L. Kobziar, E.W. Rose, and W. Cropper, 2017: A critique of the historical-fire-regime concept in conservation. *Conserv. Biol.*, **31**, 976–985, doi:10.1111/cobi.12942.
- Freudenberg, N., S. Galea, and D. Vlahov, 2005: Beyond urban penalty and urban sprawl: Back to living conditions as the focus of urban health. J. Community Health, 30, 1–11, doi:10.1007/s10900-004-6091-4.
- Fricko, O. et al., 2017: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. *Glob. Environ. Chang.*, **42**, 251–267, doi:10.1016/j.gloenvcha.2016.06.004.
- Friel, S., M. Marmot, A.J. McMichael, T. Kjellstrom, and D. Vågerö, 2008: Global health equity and climate stabilisation: A common agenda. *Lancet*, **372**, 1677–1683, doi:10.1016/S0140-6736(08)61692-X.
- Frumkin, H., 2002: Urban sprawl and public health. *Public Health Rep.*, **117**, 201–217, doi:10.1093/phr/117.3.201.
- Fujimori, S. et al., 2017: SSP3: AIM implementation of shared socioeconomic pathways. *Glob. Environ. Chang.*, **42**, 268–283, doi:10.1016/j. gloenvcha.2016.06.009.
- Fujimori, S. et al., 2019: A multi-model assessment of food security implications of well below 2°C scenario vans. *Nat. Commun.*, **2**, 386–396.
- Fuss, S. et al., 2018: Negative emissions part 2: Costs, potentials and side effects. *Environ. Res. Lett.*, **13**, 63002, doi:10.1088/1748-9326/aabf9f.
- Galal, O., M. Corroon, and C. Tirado, 2010: Urban environment and health: Food security. Asia Pacific J. Public Heal., 22, 254S–261S, doi:10.1177/1010539510372993.
- Gao, L., and B.A. Bryan, 2017: Finding pathways to national-scale land-sector sustainability. *Nature*, 544, 217–222, doi:10.1038/nature21694.
- Garcia, D.J., and F. You, 2016: The water-energy-food nexus and process systems engineering: A new focus. *Comput. Chem. Eng.*, **91**, 49–67, doi:10.1016/J.COMPCHEMENG.2016.03.003.
- Gardiner, M.M. et al., 2009: Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. *Ecol. Appl.*, **19**, 143–154, doi:10.1890/07-1265.1.
- Gariano, S., and F. Guzzetti, 2016: Landslides in a changing climate. *Earth-Science Rev.*, **162**, 227–252.

- Garibaldi, L.A. et al., 2017: Farming approaches for greater biodiversity, livelihoods, and food security. *Trends Ecol. Evol.*, **32**, 68–80.
- Garnett, S. et al., 2018: A spatial overview of the global importance of Indigenous lands for conservation. *Nat. Sustain.*, **1**, 369.
- Garnett, T., 2011: Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? *Food Policy*, **36**, S23–S32.
- Genesio, L. et al., 2011: Early warning systems for food security in West Africa: Evolution, achievements and challenges. *Atmos. Sci. Lett.*, **12**, 142–148, doi:10.1002/asl.332.
- Gengenbach, H., R.A. Schurman, T.J. Bassett, W.A. Munro, and W.G. Moseley, 2018: Limits of the new green revolution for Africa: Reconceptualising gendered agricultural value chains. *Geogr. J.*, **184**, 208–214, doi:10.1111/ geoj.12233.
- Ghazoul, J., 2004: Alien abduction: Disruption of native plantpollinator interactions by invasive species. *Biotropica*, **36**, 156–164, doi:10.1111/j.1744-7429.2004.tb00308.x.
- Gilbert, C.L., 2012: International agreements to manage food price volatility. *Glob. Food Sec.*, **1**, 134–142, doi:10.1016/J.GFS.2012.10.001.
- Gilbert, C.L., and C.W. Morgan, 2010: Food price volatility. *Philos. Trans. R. Soc. B Biol. Sci.*, **365**, 3023–3034, doi:10.1098/rstb.2010.0139.
- Gill, A.M., and S.L. Stephens, 2009: Scientific and social challenges for the management of fire-prone wildland–urban interfaces. *Environ. Res. Lett.*, 4, 34014, doi:10.1088/1748-9326/4/3/034014.
- Gill, J.C., and B.D. Malamud, 2017: Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework. *Earth-Science Rev.*, 166, 246–269, doi:10.1016/j.earscirev.2017.01.002.
- Gioli, G., T. Khan, S. Bisht, and J. Scheffran, 2014: Migration as an adaptation strategy and its gendered implications: A case study from the Upper Indus Basin. *Mt. Res. Dev.*, **34**, 255–265, doi:10.1659/MRD-JOURNAL-D-13-00089.1.
- Gittman, R.K., A.M. Popowich, J.F. Bruno, and C.H. Peterson, 2014: Marshes with and without sills protect estuarine shorelines from erosion better than bulkheads during a Category 1 hurricane. *Ocean Coast. Manag.*, **102**, 94–102, doi:10.1016/j.ocecoaman.2014.09.016.
- Glauber, J.W., 2004: Crop insurance reconsidered. Am. J. Agric. Econ., 86, 1179–1195, doi:10.1111/j.0002-9092.2004.00663.x.
- Global Panel on Agriculture and Food Systems for Nutrition, 2016: *Food Systems and Diets:Facing the Challenges of the 21st Century*. University of London Institutional Repository, London, UK, 132 pp.
- Godfray, H.C.J., and T. Garnett, 2014: Food security and sustainable intensification. *Philos. Trans. R. Soc. B Biol. Sci.*, **369**, 20120273–20120273, doi:10.1098/rstb.2012.0273.
- Godfray, H.C.J. et al., 2010: Food security: The challenge of feeding 9 billion people. Science, 327, 812–818, doi:10.1126/science.1185383.
- Godschalk, D.R., 2003: Urban hazard mitigation: Creating resilient cities. *Nat. Hazards Rev.*, 4, 136–143, doi:10.1061/(ASCE)1527-6988(2003)4:3(136).
- Gomiero, T., M.G. Paoletti, and D. Pimentel, 2008: Energy and environmental issues in organic and conventional agriculture. *CRC. Crit. Rev. Plant Sci.*, **27**, 239–254, doi:10.1080/07352680802225456.
- Goodwin, B.K., and V.H. Smith, 2003: An ex post evaluation of the conservation reserve, federal crop insurance, and other government programs: Program participation and soil erosion. *J. Agric. Resour. Econ.*, **28**, 201–216, doi:10.2307/40987182.
- Goodwin, M.L. Vandeveer, and J.L. Deal, 2004: An empirical analysis of acreage effects of participation in the federal crop insurance program. *Am. J. Agric. Econ.*, **86**, 1058–1077, doi:10.1111/j.0002-9092.2004.00653.x.
- Gould, K.A., 2014: Everyday expertise: Land regularization and the conditions for landgrabs in Peten, Guatemala. *Environ. Plan. A*, **46**, 2353–2368, doi:10.1068/a140188p.
- Gould, R.K. et al., 2014: The forest has a story: Cultural ecosystem services in Kona, Hawai'i. *Ecol. Soc.*, **19**, art55, doi:10.5751/ES-06893-190355.

- Graham-Rowe, E., D.C. Jessop, and P. Sparks, 2014: Identifying motivations and barriers to minimising household food waste. *Resour. Conserv. Recycl.*, 84, 15–23, doi:10.1016/j.resconrec.2013.12.005.
- Graham, N.T. et al., 2018: Water sector assumptions for the shared socioeconomic pathways in an integrated modeling framework. *Water Resour. Res.*, **0**, doi:10.1029/2018WR023452.
- Green, C., and S. Baden, 1995: Integrated water resources management: A gender perspective. *IDS Bull.*, **26**, 92–100, doi:10.1111/j.1759-5436.1995. mp26001013.x.
- Greene, R., W. Timms, P. Rengasamy, M. Arshad, and R. Cresswell, 2016: Soil and aquifer salinization: Toward an integrated approach for salinity management of groundwater. In: *Integrated Groundwater Management*, [A.J. Jakeman, O. Barreteau, R.J. Hunt, J.-D. Rinaudo, and A. Ross (eds.)]. Springer, Cham, Switzerland, 377–412.
- Greenough, G. et al., 2001: The potential impacts of climate variability and change on health impacts of extreme weather events in the United States. *Environ. Health Perspect.*, **109**, 191–198, doi:10.1289/ehp.109-1240666.
- Grey, D., and C.W. Sadoff, 2007: Sink or swim? Water security for growth and development. *Water Policy*, **9**, 545–571, doi:10.2166/wp.2007.021.
- Grey, S., and R. Patel, 2015: Food sovereignty as decolonization: Some contributions from Indigenous movements to food system and development politics. *Agric. Human Values*, **32**, 431–444, doi:10.1007/ s10460-014-9548-9.
- Grimm, N.B. et al., 2008: Global change and the ecology of cities. *Science.*, **319**, 756–760, doi:10.1126/SCIENCE.1150195.
- Griscom, B.W. et al., 2017: Natural climate solutions. *Proc. Natl. Acad. Sci.*, **114**, 11645–11650, doi:10.1073/pnas.1710465114.
- Grubler, A. et al., 2018: A low energy demand scenario for meeting the 1.5°C target and sustainable development goals without negative emission technologies. *Nat. Energy*, **3**, 515–527, doi:10.1038/s41560-018-0172-6.
- Guan, D., and K. Hubacek, 2007: Assessment of regional trade and virtual water flows in China. *Ecol. Econ.*, **61**, 159–170, doi:10.1016/J. ECOLECON.2006.02.022.
- Gunnarsson, B., and L.M. Federsel, 2014: Bumblebees in the city: Abundance, species richness and diversity in two urban habitats. *J. Insect Conserv.*, **18**, 1185–1191, doi:10.1007/s10841-014-9729-2.
- Guo, X. et al., 2016: Application of goethite modified biochar for tylosin removal from aqueous solution. *Colloids Surfaces A Physicochem. Eng. Asp.*, **502**, 81–88, doi:10.1016/J.COLSURFA.2016.05.015.
- Gustavsson, L., and R. Sathre, 2011: Energy and CO₂ analysis of wood substitution in construction. *Clim. Change*, **105**, 129–153, doi:10.1007/s10584-010-9876-8.
- Gustavsson, L. et al., 2006: The role of wood material for greenhouse gas mitigation. *Mitig. Adapt. Strateg. Glob. Chang.*, **11**, 1097–1127, doi:10.1007/s11027-006-9035-8.
- Haddad, J., S. Lawler, and C.M. Ferreira, 2016: Assessing the relevance of wetlands for storm surge protection: A coupled hydrodynamic and geospatial framework. *Nat. Hazards*, **80**, 839–861.
- Haddad, L., 2000: A conceptual framework for assessing agriculture–nutrition linkages. *Food Nutr. Bull.*, **21**, 367–373, doi:10.1177/1564826500021 00405.
- Hadley, C., D. Lindstrom, F. Tessema, and T. Belachew, 2008: Gender bias in the food insecurity experience of Ethiopian adolescents. *Soc. Sci. Med.*, 66, 427–438, doi:10.1016/J.SOCSCIMED.2007.08.025.
- De Haen, H., and G. Hemrich, 2007: The economics of natural disasters: Implications and challenges for food security. *Agric. Econ.*, **37**, 31–45, doi:10.1111/j.1574-0862.2007.00233.x.
- De Haen, H., and V. Réquillart, 2014: Linkages between sustainable consumption and sustainable production: Some suggestions for foresight work. *Food Secur.*, 6, 87–100, doi:10.1007/s12571-013-0323-3.
- Haggblade, S., P. Hazell, and T. Reardon, 2010: The rural non-farm economy: Prospects for growth and poverty reduction. *World Dev.*, **38**, 1429–1441, doi:10.1016/J.WORLDDEV.2009.06.008.

- Haines, A., R.S. Kovats, D. Campbell-Lendrum, and C. Corvalan, 2006: Climate change and human health: Impacts, vulnerability and public health. *Public Health*, **120**, 585–596, doi:10.1016/J.PUHE.2006.01.002.
- Hale, L. et al., 2009: Ecosystem-based adaptation in marine and coastal ecosystems. *Renew. Resour. J.*, **25**, 21–28.
- Hallegatte, S., 2012: A Cost Effective Solution to Reduce Disaster Losses in Developing Countries: Hydro-Meteorological Services, Early Warning, and Evacuation. World Bank Policy Research Working Paper No. 6058, World Bank, Washington, DC, USA.
- Halloran, A., J. Clement, N. Kornum, C. Bucatariu, and J. Magid, 2014: Addressing food waste reduction in Denmark. *Food Policy*, 49, 294–301, doi:10.1016/J.FOODPOL.2014.09.005.
- Hammer, K., and Y. Teklu, 2008: Plant Genetic Resources: Selected Issues from Genetic Erosion to Genetic Engineering. *Journal of Agriculture and Rural Development in the Tropics and Subtropics*, **109** (1), 15–50.
- Hamprecht, J., D. Corsten, M. Noll, and E. Meier, 2005: Controlling the sustainability of food supply chains. *Supply Chain Manag. An Int. J.*, **10**, 7–10, doi:10.1108/13598540510578315.
- Hanasaki, N. et al., 2013: A global water scarcity assessment under shared socio-economic pathways – part 2: Water availability and scarcity. *Hydrol. Earth Syst. Sci.*, **17**, 2393–2413, doi:10.5194/hess-17-2393-2013.
- Hanjra, M.A., and M.E. Qureshi, 2010: Global water crisis and future food security in an era of climate change. *Food Policy*, **35**, 365–377, doi:10.1016/J.FOODPOL.2010.05.006.
- Haregeweyn, N. et al., 2015: Soil erosion and conservation in Ethiopia. *Prog. Phys. Geogr.*, **39**, 750–774, doi:10.1177/0309133315598725.
- Harrison, P.A., R.W. Dunford, I.P. Holman, and M.D.A. Rounsevell, 2016: Climate change impact modelling needs to include cross-sectoral interactions. *Nat. Clim. Chang.*, **6**, 885, doi:10.1038/nclimate3039.
- Hasan, J., S. States, And, and R. Deininger, 2009: Safeguarding the security of public water supplies using early warning systems: A brief review. *J. Contemp. Water Res. Educ.*, **129**, 27–33, doi:10.1111/j.1936-704X.2004. mp129001007.x.
- Hasegawa, T. et al., 2015a: Consequence of climate mitigation on the risk of hunger. *Environ. Sci. Technol.*, 49, 7245–7253, doi:10.1021/es5051748.
- Hasegawa, T., S. Fujimori, K. Takahashi, and T. Masui, 2015b: Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways. *Environ. Res. Lett.*, **10**, 14010.
- Hasegawa, T. et al., 2018: Risk of increased food insecurity under stringent global climate change mitigation policy. *Nat. Clim. Chang.*, **8**, 699–703, doi:10.1038/s41558-018-0230-x.
- Hearn, M.D. et al., 1998: Environmental influences on dietary behavior among children: Availability and accessibility of fruits and vegetables enable consumption. J. Heal. Educ., 29, 26–32, doi:10.1080/10556699.1998. 10603294.
- Hebrok, M., and C. Boks, 2017: Household food waste: Drivers and potential intervention points for design An extensive review. *J. Clean. Prod.*, **151**, 380–392, doi:10.1016/J.JCLEPRO.2017.03.069.
- Heck, V., D. Gerten, W. Lucht, and A. Popp, 2018: Biomass-based negative emissions difficult to reconcile with planetary boundaries. *Nat. Clim. Chang.*, 8, 151–155, doi:10.1038/s41558-017-0064-y.
- Hedges, J.I., R.G. Keil, and R. Benner, 1997: What happens to terrestrial organic matter in the ocean? *Org. Geochem.*, **27**, 195–212, doi:10.1016/S0146-6380(97)00066-1.
- Hejazi, M. et al., 2014a: Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. *Technol. Forecast. Soc. Change*, **81**, 205–226, doi:10.1016/j. techfore.2013.05.006.
- Hejazi, M.I. et al., 2014b: Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. *Hydrol. Earth Syst. Sci.*, **18**, 2859–2883, doi:10.5194/hess-18-2859-2014.

- Hejazi, M.I. et al., 2015: 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. *Proc. Natl. Acad. Sci.*, **112**, 10635–10640, doi:10.1073/pnas.1421675112.
- Helicke, N.A., 2015: Seed exchange networks and food system resilience in the United States. J. Environ. Stud. Sci., 5, 636–649, doi:10.1007/s13412-015-0346-5.
- Hendrickson, D., C. Smith, and N. Eikenberry, 2006: Fruit and vegetable access in four low-income food deserts communities in Minnesota. *Agric. Human Values*, **23**, 371–383, doi:10.1007/s10460-006-9002-8.
- Henson, S., and R. Loader, 2001: Barriers to agricultural exports from developing countries: The role of sanitary and phytosanitary requirements. *World Dev.*, **29**, 85–102, doi:10.1016/S0305-750X(00)00085-1.
- Hernandez-Morcillo, M., P. Burgess, J. Mirck, A. Pantera, and T. Plieninger, 2018: Scanning agroforestry-based solutions for climate change mitigation and adaptation in Europe. *Environ. Sci. Policy*, **80**, 44–52.
- Herrero, M., P.K. Thornton, P. Gerber, and R.S. Reid, 2009: Livestock, livelihoods and the environment: Understanding the trade-offs. *Curr. Opin. Environ. Sustain.*, **1**, 111–120, doi:10.1016/J.COSUST.2009.10.003.
- Herrero, M., P.K. Thornton, K. Sones, J. de Leeuw, and M. Jeuken, 2013: Livestock and global change: emerging issues for sustainable food systems. *Proc. Natl. Acad. Sci.*, **110**, 20878–20881, doi:10.1073/PNAS.1321844111.
- Herrero, M. et al., 2016: Greenhouse gas mitigation potentials in the livestock sector. *Nat. Clim. Chang.*, **6**, 452–461, doi:10.1038/nclimate2925.
- Hertel, T.W., and U.L.C. Baldos, 2016: Attaining food and environmental security in an era of globalization. *Glob. Environ. Chang.*, **41**, 195–205, doi:10.1016/J.GLOENVCHA.2016.10.006.
- Hesse, C., 2006: *Pastoralism: Drylands' Invisible Asset? Development of a Framework for Assessing the Value of Pastoralism in East Africa*. IIED, London, UK, 39 pp.
- Hibbert, A.R., 1983: Water yield improvement potential by vegetation management on western rangelands. J. Am. Water Resour. Assoc., 19, 375–381., doi:10.1.1.464.9333.
- Hillbruner, C., and G. Moloney, 2012: When early warning is not enough Lessons learned from the 2011 Somalia famine. *Glob. Food Sec.*, **1**, 20–28, doi:10.1016/J.GFS.2012.08.001.
- Hine, J.L., 1993: Transport and marketing priorities to improve food security in Ghana and the rest of Africa. In: *Regional Food Security and Rural Infrastructure: an International Symposium*. Giessen, 21 pp.
- Hipólito, J., D. Boscolo, and B.F. Viana, 2018: Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. *Agric. Ecosyst. Environ.*, **256**, 218–225.
- Hobbs, P.R., K. Sayre, and R. Gupta, 2008: The role of conservation agriculture in sustainable agriculture. *Philos. Trans. R. Soc. B Biol. Sci.*, **363**, 543–555, doi:10.1098/rstb.2007.2169.
- Hodges, R.J., J.C. Buzby, and B. Bennett, 2011: Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. *J. Agric. Sci.*, doi:10.1017/S0021859610000936.
- Hof, C. et al., 2018: Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. *Proc. Natl. Acad. Sci.*, **115**, 13294 LP-13299, doi:10.1073/pnas.1807745115.
- Hoff, H., and L.M. Bouwer, 2003: Risk Management in Water and Climate The Role of Insurance and Other Financial Services Adaptation to Climate Change View Project Cities and Flood Management View Project. Dialogue on Water and Climate/Munich Reinsurance Company, Delft/Munich, 43 pp.
- Holden, S., S. Benin, B. Shiferaw, and J. Pender, 2003: Tree planting for poverty reduction in less-favoured areas of the Ethiopian highlands. *Small-scale For. Econ. Manag. Policy*, **2**, 63–80, doi:10.1007/s11842-003-006-6.
- Hooda, P.S., A.C. Edwards, H.A. Anderson, and A. Miller, 2000: A review of water quality concerns in livestock farming areas. *Sci. Total Environ.*, 250, 143–167, doi:10.1016/S0048-9697(00)00373-9.
- Hooft, K.E.V., T.S. Wollen, and D.P. Bhandari, 2012: Sustainable Livestock Management for Poverty Alleviation and Food Security. CABI, Wallingford, UK, 208 pp.

- Hoornweg, D., P. Bhada-Tat, and C. Kennedy, 2013: Waste production must peak this century. *Nature*, **502**, 615–617.
- Horowitz, J.K., and E. Lichtenberg, 1993: Insurance, moral hazard, and chemical use in agriculture. *Am. J. Agric. Econ.*, **75**, 926, doi:10.2307/1243980.
- Hou, S., A. Li, B. Han, and P. Zhou, 2013: An early warning system for regional rain-induced landslide hazard. *Int. J. Geosci.*, 4, 584–587, doi:10.4236/ ijg.2013.43053.
- Van Houtven, G., S. Pattanayak, F. Usmani, and J. Yang, 2017: What are households willing to pay for improved water access? Results from a metaanalysis. *Ecol. Econ.*, **136**, 126–135, doi:10.1016/j.ecolecon.2017.01.023.
- Howard, P.H., 2015: Intellectual property and consolidation in the seed industry. Crop Sci., 55, 2489, doi:10.2135/cropsci2014.09.0669.
- Hulvey, K.B. et al., 2013: Benefits of tree mixes in carbon plantings. *Nat. Clim. Chang.*, **3**, 869–874, doi:10.1038/nclimate1862.
- Hümann, M. et al., 2011: Identification of runoff processes The impact of different forest types and soil properties on runoff formation and floods. J. Hydrol., 409, 637–649, doi:10.1016/J.JHYDROL.2011.08.067.
- Humpenöder, F. et al., 2014: Investigating afforestation and bioenergy CCS as climate change mitigation strategies. *Environ. Res. Lett.*, **9**, 64029, doi:10.1088/1748-9326/9/6/064029.
- Humpenöder, F. et al., 2018: Large-scale bioenergy production: How to resolve sustainability trade-offs? *Environ. Res. Lett.*, **13**, 24011, doi:10.1088/1748-9326/aa9e3b.
- Hurteau, M.D., J.B. Bradford, P.Z. Fulé, A.H. Taylor, and K.L. Martin, 2014: Climate change, fire management, and ecological services in the southwestern US. *For. Ecol. Manage.*, **327**, 280–289, doi:10.1016/J.FORECO.2013.08.007.
- Van Huylenbroeck, G., V. Vandermeulen, E. Mettepenningen, and A. Verspecht, 2007: Multifunctionality of agriculture: A review of definitions, evidence and instruments living reviews in landscape research. *Living Rev. Landsc. Res*, 1, 3.
- ICARDA, 2012: Annual Report 2012: Science for Better Livelihoods in Dry Areas. International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon, 76 pp.
- Iglesias, A., L. Garrote, F. Flores, and M. Moneo, 2007: Challenges to manage the risk of water scarcity and climate change in the Mediterranean. *Water Resour. Manag.*, **21**, 775–788, doi:10.1007/s11269-006-9111-6.
- Iho, A., M. Ribaudo, and K. Hyytiäinen, 2015: Water protection in the Baltic Sea and the Chesapeake Bay: Institutions, policies and efficiency. *Mar. Pollut. Bull.*, **93**, 81–93, doi:10.1016/J.MARPOLBUL.2015.02.011.
- Ilstedt, U., A. Malmer, E. Verbeeten, and D. Murdiyarso, 2007: The effect of afforestation on water infiltration in the tropics: A systematic review and meta-analysis. *For. Ecol. Manage.*, **251**, 45–51, doi:10.1016/J. FORECO.2007.06.014.
- Ingram, J., 2011: A food systems approach to researching food security and its interactions with global environmental change. *Food Secur.*, doi:10.1007/ s12571-011-0149-9.
- Ingram, J. et al., 2016: Food security, food systems, and environmental change. *Solutions Journal*, **7**, 63–73.
- Ingram, J.C., G. Franco, C.R. Rio, and B. Khazai, 2006: Post-disaster recovery dilemmas: Challenges in balancing short-term and long-term needs for vulnerability reduction. *Environ. Sci. Policy*, **9**, 607–613, doi:10.1016/J. ENVSCI.2006.07.006.
- IPCC, 2018: Global Warming of 1.5°C An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, [V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 1552 pp.
- Irland, L.C., 2008: Developing markets for certified wood products: Greening the supply chain for construction materials. *J. Ind. Ecol.*, **11**, 201–216, doi:10.1162/jiec.2007.1052.

- Irz, X., L. Lin, C. Thirtle, and S. Wiggins, 2001: Agricultural productivity growth and poverty alleviation. *Dev. Policy Rev.*, **19**, 449–466, doi:10.1111/1467-7679.00144.
- Isakson, S.R., 2009: No hay ganancia en la milpa: The agrarian question, food sovereignty, and the on-farm conservation of agrobiodiversity in the Guatemalan highlands. J. Peasant Stud., 36, 725–759, doi:10.1080/03066150903353876.
- Issaka, S., and M.A. Ashraf, 2017: Impact of soil erosion and degradation on water quality: A review. *Geol. Ecol. Landscapes*, **1**, 1–11, doi:10.1080/247 49508.2017.1301053.
- Ivanic, M., and W. Martin, 2008: Implications of higher global food prices for poverty in low-income countries. *Agric. Econ.*, **39**, 405–416, doi:10.1111/ j.1574-0862.2008.00347.x.
- Iyer, G. et al., 2018: Implications of sustainable development considerations for comparability across nationally determined contributions. *Nat. Clim. Chang.*, 8, 124–129, doi:10.1038/s41558-017-0039-z.
- Jabareen, Y.R., 2006: Sustainable urban forms. J. Plan. Educ. Res., 26, 38–52, doi:10.1177/0739456X05285119.
- Jacoby, H.G., and E. Skoufias, 1997: Risk, financial markets, and human capital in a developing country. *Rev. Econ. Stud.*, **64**, 311, doi:10.2307/2971716.
- James, S.J., and C. James, 2010: The food cold-chain and climate change. *Food Res. Int.*, **43**, 1944–1956, doi:10.1016/j.foodres.2010.02.001.
- Jardine, A., P. Speldewinde, S. Carver, and P. Weinstein, 2007: Dryland salinity and ecosystem distress syndrome: Human health implications. *Ecohealth*, 4, 10–17, doi:10.1007/s10393-006-0078-9.
- Jardine, S.L., and J.N. Sanchirico, 2018: Estimating the cost of invasive species control. *J. Environ. Econ. Manage.*, **87**, 242–257.
- Jargowsky, P., 2002: Sprawl, concentration of poverty, and urban inequality. In: Urban Sprawl Causes, Consequences and Policy Responses [G.D. Squires (ed.)]. Urban Institute, Washington D.C., 39–72.
- Jeffery, S. et al., 2017: Biochar boosts tropical but not temperate crop yields. *Environ. Res. Lett.*, **12**, 53001, doi:10.1088/1748-9326/aa67bd.
- Jenks, M., and R. Burgess, 2000: *Compact Cities: Sustainable Urban Forms for Developing Countries*. Spon Press, London, UK and New York, USA, 356 pp.
- Jewitt, S.L., D. Nasir, S.E. Page, J.O. Rieley, and K. Khanal, 2014: Indonesia's contested domains. Deforestation, rehabilitation and conservation-withdevelopment in Central Kalimantan's tropical peatlands. *Int. For. Rev.*, 16, 405–420, doi:10.1505/146554814813484086.
- Jiang, Y., 2009: China's water scarcity. J. Environ. Manage., 90, 3185–3196, doi:10.1016/J.JENVMAN.2009.04.016.
- Jindal, R., B. Swallow, and J. Kerr, 2008: Forestry-based carbon sequestration projects in Africa: Potential benefits and challenges. *Nat. Resour. Forum*, 32, 116–130, doi:10.1111/j.1477-8947.2008.00176.x.
- Johnston, C.A., 1991: Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality. *Crit. Rev. Environ. Control*, 21, 491–565, doi:10.1080/10643389109388425.
- Jones, A.D. et al., 2013: Greenhouse gas policy influences climate via direct effects of land-use change. J. Clim., 26, 3657–3670, doi:10.1175/ JCLI-D-12-00377.1.
- Jones, A.D., K.V. Calvin, W.D. Collins, and J. Edmonds, 2015: Accounting for radiative forcing from albedo change in future global land-use scenarios. *Clim. Change*, **131**, 691–703, doi:10.1007/s10584-015-1411-5.
- Jones, H.P., D.G. Hole, and E.S. Zavaleta, 2012: Harnessing nature to help people adapt to climate change. *Nat. Clim. Chang.*, **2**, 504–509, doi:10.1038/nclimate1463.
- Jongwanich, J., 2009: The impact of food safety standards on processed food exports from developing countries. *Food Policy*, **34**, 447–457, doi:10.1016/J.FOODPOL.2009.05.004.
- Jose, S., 2009: Agroforestry for ecosystem services and environmental benefits: An overview. *Agrofor. Syst.*, **76**, 1–10, doi:10.1007/s10457-009-9229-7.

- Kadiyala, S., J. Harris, D. Headey, S. Yosef, and S. Gillespie, 2014: Agriculture and nutrition in India: Mapping evidence to pathways. *Ann. N.Y. Acad. Sci.*, 1331, 43–56, doi:10.1111/nyas.12477.
- Kaminski, J., and L. Christiaensen, 2014: *Post-Harvest Loss in Sub-Saharan Africa What do Farmers Say?* World Bank, Washington, DC, USA.
- Kantola, I.B., M.D. Masters, D.J. Beerling, S.P. Long, and E.H. DeLucia, 2017: Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. *Biol. Lett.*, 13, 20160714, doi:10.1098/rsbl.2016.0714.
- Kantor, L., 2001: Community food security programs improve food access. *Food Rev.*, **24**, 20–26.
- Kaplan, A., and Ş. Hepcan, 2009: An examination of ecological risk assessment at landscape scale and the management plan. In: *Decision Support for Natural Disasters and Intentional Threats to Water Security*, Springer, Netherlands, 237–251.
- Kassie, M., M. Jaleta, B. Shiferaw, F. Mmbando, and M. Mekuria, 2013: Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. *Technol. Forecast. Soc. Change*, 80, 525–540, doi:10.1016/J.TECHFORE.2012.08.007.
- Kastner, T., M.J.I. Rivas, W. Koch, and S. Nonhebel, 2012: Global changes in diets and the consequences for land requirements for food. *Proc. Natl. Acad. Sci. U.S.A.*, **109**, 6868–6872, doi:10.1073/pnas.1117054109.
- Katz, B.G., 1989: Influence of mineral weathering reactions on the chemicalcomposition of soil-water, springs, and ground-water, Catoctin Mountains, Maryland. *Hydrol. Process.*, 3, 185–202.
- Kauppi, P.E., V. Sandström, and A. Lipponen, 2018: Forest resources of nations in relation to human well-being. *PLoS One*, **13**, e0196248, doi:10.1371/ journal.pone.0196248.
- Keding, G.B., K. Schneider, and I. Jordan, 2013: Production and processing of foods as core aspects of nutrition-sensitive agriculture and sustainable diets. *Food Secur.*, 5, 825–846, doi:10.1007/s12571-013-0312-6.
- Keesstra, S.D. et al., 2016: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL, 2, 111–128, doi:10.5194/soil-2-111-2016.
- Keitt, T.H., 2009: Habitat conversion, extinction thresholds, and pollination services in agroecosystems. *Ecol. Appl.*, **19**, 1561–1573, doi:10.1890/08-0117.1.
- Kemper, J., 2015: Biomass and carbon dioxide capture and storage: A review. Int. J. Greenh. Gas Control, 40, 401–430, doi:10.1016/j.ijggc.2015.06.012.
- Kern, J.S., and M.G. Johnson, 1993: Conservation tillage impacts on national soil and atmospheric carbon levels. *Soil Sci. Soc. Am. J.*, **57**, 200, doi:10.2136/sssaj1993.03615995005700010036x.
- Kerr, R.B., 2005: Food security in Northern Malawi: Gender, kinship relations and entitlements in historical context. *J. South. Afr. Stud.*, **31**, 53–74, doi:10.1080/03057070500035679.
- Khan, M.M., N.B. Mock, and W.B. Bertrand, 1992: Composite indicators for famine early warning systems. *Disasters*, **16**, 195–206, doi:10.1111/j.1467-7717.1992.tb00398.x.
- Kibler, K.M., D. Reinhart, C. Hawkins, A.M. Motlagh, and J. Wright, 2018: Food waste and the food-energy-water nexus: A review of food waste management alternatives. *Waste Manag.*, **74**, 52–62, doi:10.1016/J. WASMAN.2018.01.014.
- Kim, S.H. et al., 2016: Balancing global water availability and use at basin scale in an integrated assessment model. *Clim. Change*, doi:10.1007/s10584-016-1604-6.
- Kindermann, G. et al., 2008: Global cost estimates of reducing carbon emissions through avoided deforestation. *Proc. Natl. Acad. Sci.*, **105**, 10302–10307, doi:10.1073/pnas.0710616105.
- Kiptot, E., and S. Franzel, 2012: Gender and agroforestry in Africa: A review of women's participation. *Agrofor. Syst.*, **84**, 35–58, doi:10.1007/s10457-011-9419-y.
- Klein, A.-M., I. Steffan-Dewenter, D. Buchori, and T. Tscharntke, 2002: Effects of land-use intensity in tropical agroforestry systems on coffee flower-

Interlinkages

visiting and trap-nesting bees and wasps. *Conserv. Biol.*, **16**, 1003–1014, doi:10.1046/j.1523-1739.2002.00499.x.

- Kloppenberg, J., 2010: Impeding dispossession, enabling repossession: Biological open source and the recovery of seed sovereignty. *J. Agrar. Chang.*, **10**, 367–388, doi:10.1111/j.1471-0366.2010.00275.x.
- Kloppenburg, J., 2014: Re-purposing the master's tools: the open source seed initiative and the struggle for seed sovereignty. J. Peasant Stud., 41, 1225–1246, doi:10.1080/03066150.2013.875897.
- Knoke, T. et al., 2014: Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlands. *Nat. Commun.*, 5, 5612, doi:10.1038/ncomms6612.
- Koh, L.P., J. Miettinen, S.C. Liew, and J. Ghazoul, 2011: Remotely sensed evidence of tropical peatland conversion to oil palm. *Proc. Natl. Acad. Sci.* U.S.A., 108, 5127–5132, doi:10.1073/pnas.1018776108.
- Kombe, W.J., 2005: Land use dynamics in peri-urban areas and their implications on the urban growth and form: The case of Dar es Salaam, Tanzania. *Habitat Int.*, 29, 113–135, doi:10.1016/S0197-3975(03)00076-6.
- Kotb, T.H., T. Watanabe, Y. Ogino, and K.K. Tanji, 2000: Soil salinization in the Nile Delta and related policy issues in Egypt. *Agric. Water Manag.*, 43, 239–261, doi:10.1016/S0378-3774(99)00052-9.
- Kousky, C., 2010: Using natural capital to reduce disaster risk. *J. Nat. Resour. Policy Res.*, **2**, 343–356, doi:10.1080/19390459.2010.511451.
- Kramer, R.A., W.T. McSweeny, and R.W. Stavros, 1983: Soil conservation with uncertain revenues and input supplies. *Am. J. Agric. Econ.*, 65, 694, doi:10.2307/1240457.
- Kraxner, F. et al., 2013: Global bioenergy scenarios Future forest development, land-use implications, and trade-offs. *Biomass and Bioenergy*, **57**, 86–96, doi:10.1016/J.BIOMBIOE.2013.02.003.
- Kreidenweis, U. et al., 2016: Afforestation to mitigate climate change: Impacts on food prices under consideration of albedo effects. *Environ. Res. Lett.*, **11**, 85001, doi:10.1088/1748-9326/11/8/085001.
- Kremen, C. et al., 2007: Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. *Ecol. Lett.*, **10**, 299–314.
- Kremen, C., A. Iles, and C. Bacon, 2012: Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. *Ecol. Soc.*, **17**, 44, doi: 10.5751/ES-05103-170444.
- Kriegler, E. et al., 2017: Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. *Glob. Environ. Chang.*, 42, doi:10.1016/j.gloenvcha.2016.05.015.
- Kriegler, E. et al., 2018a: Short term policies to keep the door open for Paris climate goals. *Environ. Res. Lett.*, **13**, 74022, doi:10.1088/1748-9326/aac4f1.
- Kriegler, E. et al., 2018b: Pathways limiting warming to 1.5°C: A tale of turning around in no time? *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.*, **376**, 20160457, doi:10.1098/rsta.2016.0457.
- Kumar, R. et al., 2011: Assessing wetland ecosystem services and poverty interlinkages: A general framework and case study. *Hydrol. Sci. J.*, **56**, 1602–1621, doi:10.1080/02626667.2011.631496.
- Kummu, M. et al., 2012: Lost-food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. *Sci. Total Environ.*, **438**, 477–489, doi:10.1016/J.SCITOTENV.2012.08.092.
- Kurian, M., 2017: The water-energy-food nexus: Trade-offs, thresholds and transdisciplinary approaches to sustainable development. *Environ. Sci. Policy*, **68**, 97–106, doi: 10.1016/j.envsci.2016.11.006.
- Kyle, P., C. Müller, K. Calvin, and A. Thomson, 2014: Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts. *Earth's Futur.*, 2, 83–98, doi:10.1002/2013EF000199.
- Lal, R., 2001: Soil degradation by erosion. *L. Degrad. Dev.*, **12**, 519–539, doi:10.1002/ldr.472.

- Lal, R., 2006: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. *L. Degrad. Dev.*, **17**, 197–209, doi:10.1002/ldr.696.
- Lal, R., 2016: Soil health and carbon management. *Food Energy Secur.*, 5, 212–222, doi:10.1002/fes3.96.
- Lamontagne, J.R. et al., 2018: Large ensemble analytic framework for consequence-driven discovery of climate change scenarios. *Earth's Futur.*, 6, 488–504, doi:10.1002/2017EF000701.
- Larssen, T. et al., 1999: Acid deposition and its effects in China: An overview. *Environ. Sci. Policy*, **2**, 9–24, doi:10.1016/S1462-9011(98)00043-4.
- Lauterjung, J., U. Münch, and A. Rudloff, 2010: The challenge of installing a tsunami early warning system in the vicinity of the Sunda Arc, Indonesia. *Hazards Earth Syst. Sci*, **10**, 641–646, doi:10.5194/nhess-10-641-2010.
- Leach, M., J. Fairhead, and J. Fraser, 2012: Green grabs and biochar: Revaluing African soils and farming in the new carbon economy. J. Peasant Stud., 39, 285–307, doi:10.1080/03066150.2012.658042.
- Leakey, R.R.B., and A.J. Simons, 1998: The Domestication and Commercialization of Indigenous Trees in Agroforestry for the Alleviation of Poverty. Springer, Dordrecht, 165–176.
- Lee-Smith, D., 2010: Cities feeding people: an update on urban agriculture in equatorial Africa. *Environ. Urban.*, **22**, 483–499, doi:10.1177/0956247810377383.
- Lee, J.H.W., I.J. Hodgkiss, K.T.M. Wong, and I.H.Y. Lam, 2005: Real time observations of coastal algal blooms by an early warning system. *Estuar. Coast. Shelf Sci.*, 65, 172–190, doi:10.1016/J.ECSS.2005.06.005.
- Lee, K.E. et al., 2018: An integrated approach for stakeholder participation in watershed management. In: *Environmental Risk Analysis for Asian-Oriented, Risk-Based Watershed Management*. Springer Singapore, Singapore, 135–143 pp.
- Lehmann, J., and M. Kleber, 2015: The contentious nature of soil organic matter. *Nature*, 528, 60, doi:10.1038/nature16069.
- Leitgeb, F., S. Schneider, and C.R. Vogl, 2016: Increasing food sovereignty with urban agriculture in Cuba. *Agric. Human Values*, **33**, 415–426, doi:10.1007/ s10460-015-9616-9.
- Lesorogol, C.K., 2003: Transforming institutions among pastoralists: Inequality and land privatization. *Am. Anthropol.*, **105**, 531–541, doi:10.1525/ aa.2003.105.3.531.
- Leßmeister, A. et al., 2018: The contribution of non-timber forest products (NTFPs) to rural household revenues in two villages in south-eastern Burkina Faso. *Agrofor. Syst.*, **92**, 139–155, doi:10.1007/s10457-016-0021-1.
- Lewandrowski, J., R. . Darwin, M. Tsigas, and A. Raneses, 1999: Estimating costs of protecting global ecosystem diversity. *Ecol. Econ.*, 29, 111–125, doi:10.1016/S0921-8009(98)00058-5.
- Lewis, K., and C. Witham, 2012: Agricultural commodities and climate change. *Clim. Policy*, **12**, 553–561, doi:10.1080/14693062.2012.728790.
- Liddle, M., 1997: Recreation Ecology: The Ecological Impact of Outdoor Recreation and Ecotourism. Chapman & Hall Ltd., London, UK, 639 pp.
- Lillesø, J.B.L. et al., 2011: Innovation in input supply systems in smallholder agroforestry: Seed sources, supply chains and support systems. *Agrofor. Syst.*, **83**, 347–359, doi:10.1007/s10457-011-9412-5.
- Lin, B.B., 2011: Resilience in agriculture through crop diversification: Adaptive management for environmental change. *Bioscience*, **61**, 183–193, doi:10.1525/bio.2011.61.3.4.
- Lin, B.B., S.M. Philpott, and S. Jha, 2015: The future of urban agriculture and biodiversity –Ecosystem services: challenges and next steps. *Basic Appl. Ecol.*, 16, 189–201, doi:10.1016/J.BAAE.2015.01.005.
- Lin, C.S.K. et al., 2013: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. *Energy Environ. Sci.*, **6**, 426, doi:10.1039/c2ee23440h.
- Liu, J., J. Lundqvist, J. Weinberg, and J. Gustafsson, 2013: Food losses and waste in China and their implication for water and land. *Environ. Sci. Technol.*, **47**, 10137–10144, doi:10.1021/es401426b.

- Liu, J. et al., 2016: Ecosystem services insights into water resources management in China: A case of Xi'an City. *Int. J. Environ. Res. Public Health*, **13**, doi:10.3390/ijerph13121169.
- Liu, J. et al., 2017: Water scarcity assessments in the past, present, and future. *Earth's Futur.*, **5**, 545–559, doi:10.1002/2016EF000518.
- Lloyd, G.J. et al., 2013: Water management for ecosystem health and food production. In: *Managing Water and Agroecosystems for Food Security* [E. Boelee (ed.)]. CAB International, UK, 142–155 pp.
- Locatelli, B., V. Evans, A. Wardell, A. Andrade, and R. Vignola, 2011: Forests and climate change in Latin America: Linking adaptation and mitigation. *Forests*, 2, 431–450, doi:10.3390/f2010431.
- Locatelli, B., C. Pavageau, E. Pramova, and M. Di Gregorio, 2015: Integrating climate change mitigation and adaptation in agriculture and forestry: Opportunities and trade-offs. *Wiley Interdiscip. Rev. Clim. Chang.*, 6, 585–598, doi:10.1002/wcc.357.
- Lock, K., J. Pomerleau, L. Causer, D.R. Altmann, and M. McKee, 2005: The global burden of disease attributable to low consumption of fruit and vegetables: Implications for the global strategy on diet. *Bull. World Health Organ.*, 83, 100–108, doi:10.1590/S0042-96862005000200010.
- Lopez, R., 2004: Urban sprawl and risk for being overweight or obese. *Am. J. Public Health*, **94**, 1574–1579, doi:10.2105/AJPH.94.9.1574.
- Lotze-Campen, H. et al., 2013: Impacts of increased bioenergy demand on global food markets: An AgMIP economic model intercomparison. *Agric. Econ.*, **45**, 103–116, doi:10.1111/agec.12092.
- Lotze, H. et al., 2006: Depletion, degradation, and recovery potential of estuaries and coastal seas. *Science (80-.).*, **312**, 1806–1809, doi:10.1126/ science.1128035.
- Lu, C., T. Zhao, X. Shi, and S. Cao, 2016: Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J. Clean. Prod., 176, 1213–1222, doi:https://doi.org/10.1016/j.jclepro.2016.03.046.
- Lubell, M., G. Robins, and P. Wang, 2014: Network structure and institutional complexity in an ecology of water management games. *Ecol. Soc.*, **19**, 23, doi: 10.5751/ES-06880-190423.
- Lübkert-Alcamo, B., and M. Krzyzanowski, 1995: Estimate of health impacts of acidifying air pollutants and tropospheric ozone in Europe. *Water, Air, Soil Pollut.*, **85**, 167–176, doi:10.1007/BF00483698.
- Lundy, M., C.F. Ostertag, and R. Best, 2002: *Value Adding, Agroenterprise and Poverty Reduction: A Territorial Approach for Rural Business Development*, Rural Agroenterprise Development Project, Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, 12 pp.
- Luo, L., Y. Wang, and L. Qin, 2014: Incentives for promoting agricultural clean production technologies in China. J. Clean. Prod., 74, 54–61, doi:10.1016/J. JCLEPRO.2014.03.045.
- Lyver, P.O.B. et al., 2017a: Key Māori values strengthen the mapping of forest ecosystem services. *Ecosyst. Serv.*, 27, 92–102, doi:10.1016/J. ECOSER.2017.08.009.
- Lyver, P.O.B., 2017b: An indigenous community-based monitoring system for assessing forest health in New Zealand. *Biodivers. Conserv.*, 26, 3183– 3212, doi:10.1007/s10531-016-1142-6.
- Macdiarmid, J., F. Douglas, and J. Campbell, 2016: Eating like there's no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. *Appetite*, 96, 487–493, doi:10.1016/j.appet.2015.10.011.
- MacGregor, J., and B. Vorley, 2006: Fair Miles? The concept of "food miles" through a sustainable development lens. *International Institute for Environment and Development (IIED)*, London, UK.
- Machado, R., and R. Serralheiro, 2017: Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. *Horticulturae*, **3**, 30, doi:10.3390/horticulturae3020030.
- Mack, S., 1993: Strategies for Sustainable Animal Agriculture in Developing Countries. FAO Expert Consultation held in Rome, Italy 10–14 December 1990., Rome, Italy.

- Madlener, R., C. Robledo, B. Muys, and J.T.B. Freja, 2006: A sustainability framework for enhancing the long-term success of LULUCF projects. *Clim. Change*, **75**, 241–271, doi:10.1007/s10584-005-9023-0.
- Maes, J. et al., 2017: Landslide risk reduction measures: A review of practices and challenges for the tropics. *Prog. Phys. Geogr.*, **41**, 191–221, doi:10.1177/0309133316689344.
- Maginnis, S., and W. Jackson, 2007: What is FLR and how does it differ from current approaches? In: *The Forest Landscape Restoration Handbook* [J. Rietbergen-McCracken, S. Maginnis, and A. Sarre (eds.)]. Earthscan, London, UK, 5–20 pp.
- Makate, C., R. Wang, M. Makate, and N. Mango, 2016: Crop diversification and livelihoods of smallholder farmers in Zimbabwe: Adaptive management for environmental change. *Springerplus*, **5**, 1135, doi:10.1186/s40064-016-2802-4.
- Mangora, M.M., 2011: Poverty and institutional management stand-off: A restoration and conservation dilemma for mangrove forests of Tanzania. *Wetl. Ecol. Manag.*, **19**, 533–543, doi:10.1007/s11273-011-9234-2.
- Mariola, M.J., 2008: The local industrial complex? Questioning the link between local foods and energy use. *Agric. Human Values*, **25**, 193–196, doi:10.1007/s10460-008-9115-3.
- Martin, S., A. Rieple, J. Chang, B. Boniface, and A. Ahmed, 2015: Small farmers and sustainability: Institutional barriers to investment and innovation in the Malaysian palm oil industry in Sabah. *J. Rural Stud.*, **40**, 46–58, doi:10.1016/J.JRURSTUD.2015.06.002.
- Mathbor, G.M., 2007: Enhancement of community preparedness for natural disasters. *Int. Soc. Work*, **50**, 357–369, doi:10.1177/0020872807076049.
- Mather, A.S., and N.C. Murray, 1987: Employment and private-sector afforestation in Scotland. J. Rural Stud., 3, 207–218, doi:10.1016/0743-0167(87)90070-2.
- Mathijs, E., 2015: Exploring future patterns of meat consumption. *Meat Sci.*, **109**, 112–116, doi:10.1016/J.MEATSCI.2015.05.007.
- Maxwell, D., 1999: The political economy of urban food security in sub-Saharan Africa. *World Dev.*, **27**, 1939–1953, doi:10.1016/S0305-750X(99)00101-1.
- Maxwell, D., and K. Wiebe, 1999: Land tenure and food security: Exploring dynamic linkages. *Dev. Change*, **30**, 825–849, doi:10.1111/1467-7660.00139.
- Mazzeo, J., and B. Brenton, 2013: Peasant resistence to hybrid seed in Haiti: The implications of humanitarian aid on food security and cultural identity. In: *Food and Identity in the Caribbean* [H. Garth (ed.)]. Bloomsbury Academic, London, 121–137 pp.
- Mbow, C., P. Smith, D. Skole, L. Duguma, and M. Bustamante, 2014: Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. *Curr. Opin. Environ. Sustain.*, **6**, 8–14, doi:10.1016/j.cosust.2013.09.002.
- McCaffrey, S.M., 2004: Fighting fire with education: What is the best way to reach out to homeowners? *J. For.*, **102**, 12–19, doi:10.1093/jof/102.5.12.
- McDaniel, M., L. Tiemann, and A. Grandy, 2014: Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. *Ecol. Appl.*, 24, 560–570, doi:10.1890/13-0616.1.
- McDonald, G.T., and M.B. Lane, 2004: Converging global indicators for sustainable forest management. *For. Policy Econ.*, 6, 63–70, doi:10.1016/ S1389-9341(02)00101-6.
- McElwee, P.D., 2009: Reforesting "bare hills" in Vietnam: Social and environmental consequences of the 5 million hectare reforestoration program. *AMBIO a J. Hum. Environ.*, **38**, 325–333.
- McFrederick, Q.S., J.C. Kathilankal, and J.D. Fuentes, 2008: Air pollution modifies floral scent trails. *Atmos. Environ.*, **42**, 2336–2348, doi:10.1016/J. ATMOSENV.2007.12.033.
- McGuire, S., and L. Sperling, 2016: Seed systems smallholder farmers use. *Food Secur.*, **8**, 179–195, doi:10.1007/s12571-015-0528-8.
- McLaren, D., 2012: A comparative global assessment of potential negative emissions technologies. *Process Saf. Environ. Prot.*, **90**, 489–500, doi:10.1016/J.PSEP.2012.10.005.

- McMichael, A.J., J.W. Powles, C.D. Butler, and R. Uauy, 2007: Food, livestock production, energy, climate change, and health. *Lancet*, **370**, 1253–1263, doi:10.1016/S0140-6736(07)61256-2.
- McMichael, P., and M. Schneider, 2011: Food security politics and the millennium development goals. *Third World Q.*, **32**, 119–139, doi:10.108 0/01436597.2011.543818.
- Mearns, R., 1996: Community, collective action and common grazing: The case of post-socialist Mongolia. *J. Dev. Stud.*, **32**, 297–339, doi:10.1080/00220389608422418.
- Mechler, R. et al., 2014: Managing unnatural disaster risk from climate extremes. *Nat. Clim. Chang.*, **4**, 235–237, doi:10.1038/nclimate2137.
- Medugu, N.I., M.R. Majid, F. Johar, and I.D. Choji, 2010: The role of afforestation programme in combating desertification in Nigeria. *Int. J. Clim. Chang. Strateg. Manag.*, **2**, 35–47, doi:10.1108/17568691011020247.
- Meier, P., D. Bond, and J. Bond, 2007: Environmental influences on pastoral conflict in the Horn of Africa. *Polit. Geogr.*, 26, 716–735, doi:10.1016/J. POLGEO.2007.06.001.
- Meijer, S.S., D. Catacutan, O.C. Ajayi, G.W. Sileshi, and M. Nieuwenhuis, 2015: The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. *Int. J. Agric. Sustain.*, **13**, 40–54, doi:10.1080/14735 903.2014.912493.
- Van Meijl, H. et al., 2018: Comparing impacts of climate change and mitigation on global agriculture by 2050. *Environ. Res. Lett.*, **13**, 64021, doi:10.1088/1748-9326/aabdc4.
- Meyer, S., B. Glaser, and P. Quicker, 2011: Technical, economical, and climaterelated aspects of biochar production technologies: A literature review. *Environ. Sci. Technol.*, 45, 9473–9483, doi:10.1021/es201792c.
- Midmore, D.J., and H.G.P. Jansen, 2003: Supplying vegetables to Asian cities: Is there a case for peri-urban production? *Food Policy*, **28**, 13–27, doi:10.1016/S0306-9192(02)00067-2.
- Millenium Ecosystem Assessment (MA), 2005: *Ecosystems and Human Well-Being: Synthesis*. Island Press, Washington, DC., 137pp.
- Minx, J.C. et al., 2018: Negative emissions part 1: Research landscape and synthesis. *Environ. Res. Lett.*, **13**, 63001, doi:10.1088/1748-9326/aabf9b
- Miteva, D.A., C.J. Loucks, and S.K. Pattanayak, 2015: Social and environmental impacts of forest management certification in Indonesia. *PLoS One*, **10**, e0129675, doi:10.1371/journal.pone.0129675.
- Molotoks, A., M. Kuhnert, T. Dawson, and P. Smith, 2017: Global hotspots of conflict risk between food security and biodiversity conservation. *Land*, 6, 67, doi:10.3390/land6040067.
- Monier, E. et al., 2018: Toward a consistent modeling framework to assess multi-sectoral climate impacts. *Nat. Commun.*, **9**, 660, doi:10.1038/ s41467-018-02984-9.
- Monteiro, C.A., 2009: Nutrition and health. The issue is not food, nor nutrients, so much as processing. *Public Health Nutr.*, **12**, 729–731, doi:10.1017/S1368980009005291.
- Monteiro, C.A., R.B. Levy, R.M. Claro, I.R.R. de Castro, and G. Cannon, 2011: Increasing consumption of ultra-processed foods and likely impact on human health: Evidence from Brazil. *Public Health Nutr.*, **14**, 5–13, doi:10.1017/S1368980010003241.
- Moore, D.J., J.E. Tilton, and D.J. Shields, 1996: Economic growth and the demand for construction materials. *Resour. Policy*, **22**, 197–205, doi:10.1016/S0301-4207(96)00037-2.
- Morokong, T., and J.N. Blignaut, 2019: Benefits and costs analysis of soil erosion control using rock pack structures: The case of Mutale Local Municipality, Limpopo Province, South Africa. *Land use policy*, **83**, 512–522.
- Mouratiadou, I. et al., 2016: The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways. *Environ. Sci. Policy*, 64, 48–58, doi:10.1016/j. envsci.2016.06.007.

- Msilimba, G.G., 2010: The socioeconomic and environmental effects of the 2003 landslides in the Rumphi and Ntcheu Districts (Malawi). *Nat. Hazards*, 53, 347–360, doi:10.1007/s11069-009-9437-5.
- Mueller, N.D. et al., 2012: Closing yield gaps through nutrient and water management. *Nature*, **490**, 254–257, doi:10.1038/nature11420.
- Muller, A. et al., 2017: Strategies for feeding the world more sustainably with organic agriculture. *Nat. Commun.*, **8**, 1290, doi:10.1038/s41467-017-01410-w.
- Muratori, M., K. Calvin, M. Wise, P. Kyle, and J. Edmonds, 2016: Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS). *Environ. Res. Lett.*, **11**, 95004, doi:10.1088/1748-9326/11/9/095004.
- Murdiyarso, D., K. Hergoualc'h, and L. V Verchot, 2010: Opportunities for reducing greenhouse gas emissions in tropical peatlands. *Proc. Natl. Acad. Sci. U.S.A.*, **107**, 19655–19660, doi:10.1073/pnas.0911966107.
- Muriithi, B.W., and J.A. Matz, 2015: Welfare effects of vegetable commercialization: Evidence from smallholder producers in Kenya. *Food Policy*, **50**, 80–91, doi:10.1016/J.FOODPOL.2014.11.001.
- Mustafa, D. et al., 2015: Gendering flood early warning systems: The case of Pakistan. *Environ. Hazards*, **14**, 312–328, doi:10.1080/17477891.2015.1 075859.
- Mwangi, E., R. Meinzen-Dick, and Y. Sun, 2011: Gender and sustainable forest management in East Africa and Latin America. *Ecol. Soc.*, **16**, art17, doi:10.5751/ES-03873-160117.
- Nahman, A., and W. de Lange, 2013: Costs of food waste along the value chain: Evidence from South Africa. *Waste Manag.*, **33**, 2493–2500, doi:10.1016/J.WASMAN.2013.07.012.
- Nahman, A., W. de Lange, S. Oelofse, and L. Godfrey, 2012: The costs of household food waste in South Africa. *Waste Manag.*, **32**, 2147–2153, doi:10.1016/J.WASMAN.2012.04.012.
- Nawaz, M.F., G. Bourrié, and F. Trolard, 2013: Soil compaction impact and modelling. A review. Agron. Sustain. Dev., 33, 291–309, doi:10.1007/ s13593-011-0071-8.
- Ndoro, J.T., M. Mudhara, and M. Chimonyo, 2014: Cattle commercialization in rural South Africa: Livelihood drivers and implications for livestock marketing extension. *J. Hum. Ecol.*, **45**, 207–221.
- Neary, D.G., G.G. Ice, and C.R. Jackson, 2009: Linkages between forest soils and water quality and quantity. *For. Ecol. Manage.*, **258**, 2269–2281, doi:10.1016/j.foreco.2009.05.027.
- Neff, R.A., A.M. Palmer, S.E. McKenzie, and R.S. Lawrence, 2009: Food systems and public health disparities. J. Hunger Environ. Nutr., 4, 282–314, doi:10.1080/19320240903337041.
- Neilson, J., 2007: Institutions, the governance of quality and on-farm value retention for Indonesian specialty coffee. *Singap. J. Trop. Geogr.*, **28**, 188–204, doi:10.1111/j.1467-9493.2007.00290.x.
- Nejad, A.N., 2013: Soil and water conservation for desertification control in Iran. In: *Combating Desertification in Asia, Africa and the Middle East: Proven practices* [G. Heshmati and V. Squires (eds.)]. Springer, Dordrecht, 377–400 pp.
- Nelson, G.C. et al., 2014: Climate change effects on agriculture: Economic responses to biophysical shocks. *Proc. Natl. Acad. Sci.*, **111**, 3274–3279, doi:10.1073/pnas.1222465110.
- Nemet, G.F., T. Holloway, and P. Meier, 2010: Implications of incorporating airquality co-benefits into climate change policymaking. *Environ. Res. Lett.*, **5**, 14007, doi:10.1088/1748-9326/5/1/014007.
- New Climate Economy, 2018: Unlocking the Inclusive Growth Story of the 21st Century: Accelerating Climate Action in Urgent Times. New Climate Economy, Washington DC, USA, 208 pp.
- Newbold, T. et al., 2015: Global effects of land use on local terrestrial biodiversity. *Nature*, **520**, 45–50, doi:10.1038/nature14324.
- Newfarmer, R.S., W. Shaw, and P. Walkenhorst, 2009: *Breaking into New Markets: Emerging lessons for Export Diversification*. World Bank, Washington, DC, USA, 265 pp.

- Ng, T.L., J.W. Eheart, X. Cai, and F. Miguez, 2010: Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop. *Environ. Sci. Technol.*, **44**, 7138–7144, doi:10.1021/ es9039677.
- Ngcoya, M., and N. Kumarakulasingam, 2017: The lived experience of food sovereignty: Gender, indigenous crops and small-scale farming in Mtubatuba, South Africa. *J. Agrar. Chang.*, **17**, 480–496, doi:10.1111/ joac.12170.
- Ngigi, M.W., U. Mueller, and R. Birner, 2017: Gender differences in climate change adaptation strategies and participation in group-based approaches: An intra-household analysis from rural Kenya. *Ecol. Econ.*, **138**, 99–108, doi:10.1016/j.ecolecon.2017.03.019.
- Nguyen, D., 2010: Evidence of the impacts of urban sprawl on social capital. *Environ. Plan. B Plan. Des.*, **37**, 610–627, doi:10.1068/b35120.
- Nie, M. et al., 2009: Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. *Soil Biol. Biochem.*, **41**, 2535–2542, doi:10.1016/J.SOILBIO.2009.09.012.
- Niehof, A., 2004: The significance of diversification for rural livelihood systems. *Food Policy*, **29**, 321–338, doi:10.1016/j.foodpol.2004.07.009.
- Van Niekerk, J., and R. Wynberg, 2017: Traditional seed and exchange systems cement social relations and provide a safety net: a case arotudym KwaZulu-Natal, South Africa. *Agroecol. Sustain. Food Syst.*, **41**, 1–25, doi:10.1080/21683565.2017.1359738.
- Noble, I.R. et al., 2014: Adaptation Needs and Options. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 833–868.
- Nordman, E.E., E. Isely, P. Isely, and R. Denning, 2018: Benefit-cost analysis of stormwater green infrastructure practices for Grand Rapids, Michigan, USA.J. Clean. Prod., 200, 501–510.
- North, M.P. et al., 2015: Reform forest fire management. *Science.*, **349**, 1280–1281, doi:10.1126/science.aab2356.
- Nowak, D.J., S. Hirabayashi, A. Bodine, and E. Greenfield, 2014: Tree and forest effects on air quality and human health in the United States. *Environ. Pollut.*, **193**, 119–129, doi:10.1016/j.envpol.2014.05.028.
- O'Mara, F., 2012: The role of grasslands in food security and climate change. *Ann. Bot.*, **110**, 1263–1270, doi:10.1093/aob/mcs209.
- Obersteiner, M. et al., 2006: Global supply of biomass for energy and carbon sequestration from afforestation/reforestation activities. *Mitig. Adapt. Strateg. Glob. Chang.*, **11**, 1003–1021, doi:10.1007/s11027-006-9031-z.
- Obersteiner, M. et al., 2016: Assessing the land resource-food price nexus of the Sustainable Development Goals. *Sci. Adv.*, **2**, e1501499, doi:10.1126/ sciadv.1501499.
- Oehl, F., E. Laczko, H.-R. Oberholzer, J. Jansa, and S. Egli, 2017: Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. *Biol. Fertil. Soils*, **53**, 777–797, doi:10.1007/s00374-017-1217-x.
- Olesen, J., and M. Bindi, 2002: Consequences of climate change for European agricultural productivity, land use and policy. *Eur. J. Agron.*, **16**, 239–262.
- Orsini, F. et al., 2014: Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. *Food Secur.*, **6**, 781–792, doi:10.1007/s12571-014-0389-6.
- Overmars, K.P., E. et al., 2014: Estimating the opportunity costs of reducing carbon dioxide emissions via avoided deforestation, using integrated assessment modelling. *Land use policy*, **41**, 45–60, doi:10.1016/J. LANDUSEPOL.2014.04.015.

- Pagdee, A., Y.S. Kim, and P.J. Daugherty, 2006: What makes community forest management successful: A meta-study from community forests throughout the world. *Soc. Nat. Resour.*, **19**, 33–52, doi:10.1080/08941920500323260.
- Le Page, Y. et al., 2013: Sensitivity of climate mitigation strategies to natural disturbances. *Environ. Res. Lett.*, 8, 15018, doi:10.1088/1748-9326/8/1/015018.
- Papargyropoulou, E., R. Lozano, J.K. Steinberger, N. Wright, and Z. bin Ujang, 2014: The food waste hierarchy as a framework for the management of food surplus and food waste. *J. Clean. Prod.*, **76**, 106–115, doi:10.1016/J. JCLEPRO.2014.04.020.
- Parfitt, J., M. Barthel, and S. Macnaughton, 2010: Food waste within food supply chains: Quantification and potential for change to 2050. *Philos. Trans. R. Soc. B Biol. Sci.*, **365**, 3065–3081, doi:10.1098/rstb.2010.0126.
- Parizeau, K., M. von Massow, and R. Martin, 2015: Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario. *Waste Manag.*, **35**, 207–217, doi:10.1016/J. WASMAN.2014.09.019.
- Park, C.M.Y., B. White, and Julia, 2015: We are not all the same: Taking gender seriously in food sovereignty discourse. *Third World Q.*, **36**, 584–599, doi:1 0.1080/01436597.2015.1002988.
- Parkinson, S. et al., 2019: Balancing clean water-climate change mitigation trade-offs. *Environ. Res. Lett.*, **14**, 14009, doi:10.1088/1748-9326/aaf2a3.
- Parnell, S., D. Simon, and C. Vogel, 2007: Global environmental change: Conceptualising the growing challenge for cities in poor countries. *Area*, **39**, 357–369, doi:10.1111/j.1475-4762.2007.00760.x.
- Parr, T.W., A.R.J. Sier, R.W. Battarbee, A. Mackay, and J. Burgess, 2003: Detecting environmental change: Science and society – perspectives on long-term research and monitoring in the 21st century. *Sci. Total Environ.*, **310**, 1–8, doi:10.1016/S0048-9697(03)00257-2.
- Pataki, D.E. et al., 2011: Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. *Front. Ecol. Environ.*, **9**, 27–36, doi:10.1890/090220.
- Patrizio, P. et al., 2018: Reducing US coal emissions can boost employment. *Joule*, **2**, 2633–2648, doi:10.1016/j.joule.2018.10.004.
- Pedercini, M., G. Zuellich, K. Dianati, and S. Arquitt, 2018: Toward achieving Sustainable Development Goals in Ivory Coast: Simulating pathways to sustainable development. *Sustain. Dev.*, **26**, 588–595, doi:10.1002/ sd.1721.
- Peeters, A., 2009: Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. *Grassl. Sci.*, **55**, 113–125, doi:10.1111/j.1744-697X.2009.00154.x.
- Pejchar, L., and H.A. Mooney, 2009: Invasive species, ecosystem services and human well-being. *Trends Ecol. Evol.*, **24**, 497–504, doi:10.1016/J. TREE.2009.03.016.
- Pelletier, J., N. Horning, N. Laporte, R.A. Samndong, and S. Goetz, 2018: Anticipating social equity impacts in REDD+ policy design: An example from the Democratic Republic of Congo. *Land use policy*, **75**, 102–115, doi:10.1016/J.LANDUSEPOL.2018.03.011.
- Pender, J., F. Place, S. Ehui, and I.F.P.R. Institute., 2006: *Strategies for Sustainable Land Management in the East African Highlands*. International Food Policy Research Institute, Washington DC, USA, 500 pp.
- Pereira, L.S., I. Cordery, and I. lacovides, 2002: *Coping with Water Scarcity*. UNESCO, Paris, France, 272 pp.
- Petersen, A.K., and B. Solberg, 2005: Environmental and economic impacts of substitution between wood products and alternative materials: A review of micro-level analyses from Norway and Sweden. *For. Policy Econ.*, **7**, 249–259, doi:10.1016/S1389-9341(03)00063-7.
- Pierce, A.R., and S.A. Laird, 2003: In search of comprehensive standards for non-timber forest products in the botanicals trade. *Int. For. Rev.*, **5**, 138– 147, doi:10.1505/IFOR.5.2.138.17418.
- Pierzynski, G., C.L. Brajendra, and R. Vargas, 2017: *Threats to Soils: Global Trends and Perspectives. Global Land Outlook Working Paper 28.*

Secretariat of the United Nations Convention to Combat Desertification, Bonn, Germany, 340 pp.

- Pikaar, I. et al., 2018: Decoupling livestock from land use through industrial feed production pathways. *Environ. Sci. Technol.*, **52**, 7351–7359, doi:10.1021/acs.est.8b00216.
- Pimentel, D. et al., 1995: Environmental and economic costs of soil erosion and conservation benefits. *Science (80-.).*, **267**, 1117–1123.
- Pimentel, D. et al., 1997: Economic and environmental benefits of biodiversity. *Bioscience*, 47, 747–757, doi:10.2307/1313097.
- Pin Koh, L., 2007: Potential habitat and biodiversity losses from intensified biodiesel feedstock production. *Conserv. Biol.*, **21**, 1373–1375, doi:10.1111/j.1523-1739.2007.00771.x.
- Pingali, P.L., and M.W. Rosegrant, 1995: Agricultural commercialization and diversification: Processes and policies. *Food Policy*, **20**, 171–185, doi:10.1016/0306-9192(95)00012-4.
- Plantureux, S., A. Peeters, and D. McCracken, 2005: Biodiversity in intensive grasslands. Effect of management, improvement and challenges. *Agron. Res.*, 3, 153–164.
- Platteau, J.-P., O. De Bock, and W. Gelade, 2017: The demand for microinsurance: A literature review. World Dev., 94, 139–156, doi:10.1016/j.worlddev.2017.01.010.
- Plieninger, T. et al., 2015: The role of cultural ecosystem services in landscape management and planning. *Curr. Opin. Environ. Sustain.*, **14**, 28–33, doi:10.1016/J.COSUST.2015.02.006.
- Pokorny, B., I. Scholz, and W. De Jong, 2013: REDD+ for the poor or the poor for REDD+? About the limitations of environmental policies in the Amazon and the potential of achieving environmental goals through pro-poor policies. *Ecol. Soc.*, **18**, 3, doi: 10.5751/ES-05458-180203.
- Pons, P., B. Lambert, E. Rigolot, and R. Prodon, 2003: The effects of grassland management using fire on habitat occupancy and conservation of birds in a mosaic landscape. *Biodivers. Conserv.*, **12**, 1843–1860, doi:10.1023/A:1024191814560.
- Popkin, B.M., 2008: Will China's nutrition transition overwhelm its health care system and slow economic growth? *Health Aff.*, **27**, 1064–1076, doi:10.1377/hlthaff.27.4.1064.
- Popp, A. et al., 2011a: The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. *Environ. Res. Lett.*, 6, 34017, doi:10.1088/1748-9326/6/3/034017.
- Popp, A. et al., 2011b: On sustainability of bioenergy production: Integrating co-emissions from agricultural intensification. *Biomass and Bioenergy*, **35**, 4770–4780, doi:10.1016/j.biombioe.2010.06.014.
- Popp, A. et al., 2014: Land-use transition for bioenergy and climate stabilization: Model comparison of drivers, impacts and interactions with other land use based mitigation options. *Clim. Change*, **123**, 495–509, doi:10.1007/s10584-013-0926-x.
- Popp, A. et al., 2017: Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang., 42, 331–345, doi:10.1016/j.gloenvcha.2016.10.002.
- Popp, D., 2006: International innovation and diffusion of air pollution control technologies: The effects of NOX and SO2 regulation in the US, Japan, and Germany. *J. Environ. Econ. Manage.*, **51**, 46–71, doi:10.1016/J. JEEM.2005.04.006.
- Porter, J.R., L. Xie, A.J. Challinor, K. Cochrane, S.M. Howden, M.M. Iqbal, D.B. Lobell, and M.I. Travasso, 2014: Food Security and Food Production Systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 485–533.

- Pothukuchi, K., and J.L. Kaufman, 1999: Placing the food system on the urban agenda: The role of municipal institutions in food systems planning. *Agric. Human Values*, **16**, 213–224, doi:10.1023/A:1007558805953.
- Potts, S.G. et al., 2010: Global pollinator declines: trends, impacts and drivers. *Trends Ecol. Evol.*, doi:10.1016/j.tree.2010.01.007.
- Poulton, C., J. Kydd, S. Wiggins, and A. Dorward, 2006: State intervention for food price stabilisation in Africa: Can it work? *Food Policy*, **31**, 342–356, doi:10.1016/J.FOODPOL.2006.02.004.
- Powell, J., 1999: Race, poverty, and urban sprawl: Access to opportunities through regional strategies. *Forum Soc. Econ.*, 28, 1–20, doi:10.1007/ BF02833980.
- Powers, R.P., and W. Jetz, 2019: Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. *Nat. Clim. Chang.*, 9, 323–329, doi:10.1038/s41558-019-0406-z.
- Pretty, J., 2003: Social capital and the collective management of resources. Science, 302, 1912–1914, doi:10.1126/science.1090847.
- Pretty, J., and Z.P.Z. Bharucha, 2014: Sustainable intensification in agricultural systems. Ann. Bot., 114, 1571–1596, doi:10.1093/aob/mcu205.
- Pretty, J.N., J.I.L. Morison, and R.E. Hine, 2003: Reducing food poverty by increasing agricultural sustainability in developing countries. *Agric. Ecosyst. Environ.*, 95, 217–234, doi:10.1016/S0167-8809(02)00087-7.
- Prochnow, A., M. Heiermann, M. Plöchl, T. Amon, and P.J. Hobbs, 2009: Bioenergy from permanent grassland – A review: 2. combustion. *Bioresour. Technol.*, **100**, 4945–4954, doi:10.1016/J.BIORTECH.2009.05.069.
- Putz, F.E. et al., 2012: Sustaining conservation values in selectively logged tropical forests: The attained and the attainable. *Conserv. Lett.*, 5, 296– 303, doi:10.1111/j.1755-263X.2012.00242.x.
- Quansah, C., P. Drechsel, B.B. Yirenkyi, and S. Asante-Mensah, 2001: Farmers' perceptions and management of soil organic matter – A case study from West Africa. *Nutr. Cycl. Agroecosystems*, **61**, 205–213, doi:10.1023/A:1013337421594.
- Rahaman, M.M., and O. Varis, 2005: Integrated water resources management: evolution, prospects and future challenges. *Sustain. Sci. Pract. Policy*, 1, 15–21, doi:10.1080/15487733.2005.11907961.
- Rahman, S., 2009: Whether crop diversification is a desired strategy for agricultural growth in Bangladesh? *Food Policy*, **34**, 340–349, doi:10.1016/J.FOODPOL.2009.02.004.
- Rahman, S., 2010: Women's labour contribution to productivity and efficiency in agriculture: Empirical evidence from Bangladesh. J. Agric. Econ., 61, 318–342, doi:10.1111/j.1477-9552.2010.00243.x.
- Rakodi, C., 1999: A capital assets framework for analysing household livelihood strategies: Implications for policy. *Dev. Policy Rev.*, **17**, 315–342, doi:10.1111/1467-7679.00090.
- Rakodi, C., and T. Lloyd-Jones, 2002: Urban Livelihoods: A People-Centred Approach to Poverty Reduction. Routledge-Earthscan, London, 288 pp.
- Raleigh, C., H.J. Choi, and D. Kniveton, 2015: The devil is in the details: An investigation of the relationships between conflict, food price and climate across Africa. *Glob. Environ. Chang.*, **32**, 187–199, doi:10.1016/j. gloenvcha.2015.03.005.
- Ramage, M.H. et al., 2017: The wood from the trees: The use of timber in construction. *Renew. Sustain. Energy Rev.*, 68, 333–359, doi:10.1016/J. RSER.2016.09.107.
- Rametsteiner, E., and M. Simula, 2003: Forest certification An instrument to promote sustainable forest management? *J. Environ. Manage.*, **67**, 87–98, doi:10.1016/S0301-4797(02)00191-3.
- Rao, M.R., P.K.R. Nair, and C.K. Ong, 1997: Biophysical interactions in tropical agroforestry systems. *Agrofor. Syst.*, 38, 3–50, doi:10.1023/A:1005971525590.
- Rao, M., M.C. Palada, and B.N. Becker, 2014: Medicinal and aromatic plants in agroforestry systems. *Agrofor. Syst.*, **61**, 107–122, doi:10.1023/ B:AGFO.0000028993.83007.4b.

- Rasul, G., 2016: Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. *Environ. Dev.*, 18, 14–25, doi:10.1016/J.ENVDEV.2015.12.001.
- Rau, G.H., and K. Caldeira, 1999: Enhanced carbonate dissolution: a Means of sequestering waste CO₂ as ocean bicarbonate. *Energy Convers. Manag.*, 40, 1803–1813, doi:10.1016/S0196-8904(99)00071-0.
- Reardon, T., J.E. Taylor, K. Stamoulis, P. Lanjouw, and A. Balisacan, 2008: Effects of non-farm employment on rural income inequality in developing countries: An investment perspective. *J. Agric. Econ.*, **51**, 266–288, doi:10.1111/j.1477-9552.2000.tb01228.x.
- Regmi, A., and B. Meade, 2013: Demand side drivers of global food security. *Glob. Food Sec.*, **2**, 166–171, doi:10.1016/j.gfs.2013.08.001.
- Reichardt, M., C. Jürgens, U. Klöble, J. Hüter, and K. Moser, 2009: Dissemination of precision farming in Germany: Acceptance, adoption, obstacles, knowledge transfer and training activities. *Precis. Agric.*, **10**, 525–545, doi:10.1007/s11119-009-9112-6.
- Reidsma, P., F. Ewert, A.O. Lansink, and R. Leemans, 2010: Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. *Eur. J. Agron.*, **32**, 91–102, doi:10.1016/j.eja.2009.06.003.
- Reilly, J. et al., 2012: Using land to mitigate climate change: Hitting the target, recognizing the trade-offs. *Environ. Sci. Technol.*, **46**, 5672–5679, doi:10.1021/es2034729.
- Reisman, E., 2017: Troubling tradition, community, and self-reliance: Reframing expectations for village seed banks. *World Dev.*, **98**, 160–168, doi:10.1016/J.WORLDDEV.2017.04.024.
- Renforth, P. et al., 2012: Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: The effects of gypsum dosing. *Sci. Total Environ.*, **421–422**, 253–259, doi:10.1016/J. SCITOTENV.2012.01.046.
- Rengasamy, P., 2006: World salinization with emphasis on Australia. J. Exp. Bot., 57, 1017–1023, doi:10.1093/jxb/erj108.
- Riahi, K. et al., 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. *Glob. Environ. Chang.*, **42**, 153–168, doi:10.1016/j.gloenvcha.2016.05.009.
- Ricci, L., 2012: Peri-urban livelihood and adaptive capacity: Urban development in Dar Es Salaam. *Cons. J. Sustain. Dev.*, **7**, 46–63, doi:10.7916/D8668DM1.
- Richardson, D.M., and B.W. Van Wilgen, 2004: Invasive alien plants in South Africa: How well do we understand the ecological impacts? *S. Afr. J. Sci.*, **100**, 45–52.
- Ringler, C., and R. Lawford, 2013: The nexus across Water, Energy, Land and Food (WELF): Potential for improved resource use efficiency? *Curr. Opin. Environ. Sustain.*, **5**, 617–624, doi:10.1016/J.COSUST.2013.11.002.
- Ringler, C. et al., 2016: Global linkages among energy, food and water: an economic assessment. J. Environ. Stud. Sci., 6, 161–171, doi:10.1007/ s13412-016-0386-5.
- Rocha, C., 2016: Belo horizonte: The opportunities and challenges of urban food security policy. In: *The Governance of City Food Systems: Case Studies From Around the World.* Fondazione Giangiacomo Feltrinelli, Milan, Italy, 154 pp.
- Rockström, J., and M. Falkenmark, 2015: Agriculture: Increase water harvesting in Africa. *Nature*, **519**, 283–285, doi:10.1038/519283a.
- Rockström, J. et al., 2009: Future water availability for global food production: The potential of green water for increasing resilience to global change. *Water Resour. Res.*, **45**, doi:10.1029/2007WR006767@10.1002/ (ISSN)1944-7973.LANDUSE1.
- Roesch-McNally, G.E., S. Rabotyagov, J.C. Tyndall, G. Ettl, and S.F. Tóth, 2016: Auctioning the forest: A qualitative approach to exploring stakeholder responses to bidding on forest ecosystem services. *Small-scale For.*, **15**, 321–333, doi:10.1007/s11842-016-9327-0.
- Roesch-McNally, G.E. et al., 2017: The trouble with cover crops: Farmers' experiences with overcoming barriers to adoption. *Renew. Agric. Food Syst.*, **33**, 322–333, doi:10.1017/S1742170517000096.

- Rogelj, J. et al., 2018: Scenarios towards limiting global mean temperature increase below 1.5°C. *Nat. Clim. Chang.*, 8, 325–332, doi:10.1038/s41558-018-0091-3.
- Rogers, D., and V. Tsirkunov, 2011: *Costs and Benefits of Early Warning Systems*. Global Assessment Report on Disaster Risk Reduction. International Strategy for Disaster Reduction (ISDR) and The World Bank, 16 pp.
- Rojas-Downing, M.M., A.P. Nejadhashemi, T. Harrigan, and S.A. Woznicki, 2017: Climate change and livestock: Impacts, adaptation, and mitigation. *Clim. Risk Manag.*, **16**, 145–163, doi:10.1016/j.crm.2017.02.001.
- Rolfe, K.M. et al., 2011: Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection. *J. Anim. Sci.*, **89**, 3452–3459.
- Romero, H., and F. Ordenes, 2004: Emerging urbanization in the Southern Andes. *Mt. Res. Dev.*, **24**, 197–201, doi:10.1659/0276-4741(2004)024[0197:EUIT SA]2.0.CO;2.
- Röös, E. et al., 2017: Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. *Glob. Environ. Chang.*, **47**, 1–12, doi:10.1016/J.GLOENVCHA.2017.09.001.
- Ros-Tonen, M.A. et al., 2008: Forest-related partnerships in Brazilian Amazonia: There is more to sustainable forest management than reduced impact logging. *For. Ecol. Manage.*, **256**, 1482–1497, doi:10.1016/J. FORECO.2008.02.044.
- Rosegrant, M.W., and S.A. Cline, 2003: Global food security: Challenges and policies. *Science*, **302**, 1917–1919, doi:10.1126/science.1092958.
- Rosegrant, M.W., N. Leach, and R.V. Gerpacio, 1999: Alternative futures for world cereal and meat consumption. *Proc. Nutr. Soc.*, 58, 219–234, doi:10.1017/S0029665199000312.
- Ross, K., Y. Zereyesus, A. Shanoyan, and V. Amanor-Boadu, 2015: The health effects of women empowerment: Recent evidence from Northern Ghana. *Int. Food Agribus. Manag. Rev.*, **18**, 127–144.
- Rothausen, S.G.S.A., and D. Conway, 2011: Greenhouse-gas emissions from energy use in the water sector. *Nat. Clim. Chang.*, **1**, 210–219, doi:10.1038/ nclimate1147.
- Rueda, X., N.E. Thomas, and E.F. Lambin, 2015: Eco-certification and coffee cultivation enhance tree cover and forest connectivity in the Colombian coffee landscapes. *Reg. Environ. Chang.*, **15**, 25–33, doi:10.1007/s10113-014-0607-y.
- Rugumamu, C., 2009: Assessment of post-harvest technologies and gender relations in maize loss reduction in Pangawe Village eastern Tanzania. *Tanzania J. Sci.*, **35**, 67–76.
- Salvati, L., A. Sabbi, D. Smiraglia, and M. Zitti, 2014: Does forest expansion mitigate the risk of desertification? Exploring soil degradation and landuse changes in a Mediterranean country. *Int. For. Rev.*, 16, 485–496, doi:1 0.1505/146554814813484149.
- Sanchez, D.L., and D.M. Kammen, 2016: A commercialization strategy for carbon-negative energy. *Nat. Energy*, **1**, 15002, doi:10.1038/ nenergy.2015.2.
- Sans, P., and P. Combris, 2015: World meat consumption patterns: An overview of the last fifty years (1961–2011). *Meat Sci.*, **109**, 106–111.
- Sardiñas, H.S., and C. Kremen, 2015: Pollination services from field-scale agricultural diversification may be context-dependent. *Agric. Ecosyst. Environ.*, **207**, 17–25, doi:10.1016/J.AGEE.2015.03.020.
- Sathre, R., and L. Gustavsson, 2006: Energy and carbon balances of wood cascade chains. *Resour. Conserv. Recycl.*, **47**, 332–355, doi:10.1016/J. RESCONREC.2005.12.008.
- Saviozzi, A., R. Levi-Minzi, R. Cardelli, and R. Riffaldi, 2001: A comparison of soil quality in adjacent cultivated, forest and native grassland soils. *Plant Soil*, **233**, 251–259, doi:10.1023/A:1010526209076.
- Scalenghe, R., and F.A. Marsan, 2009: The anthropogenic sealing of soils in urban areas. *Landsc. Urban Plan.*, **90**, 1–10, doi:10.1016/J. LANDURBPLAN.2008.10.011.
- Scanlon, B.R., I. Jolly, M. Sophocleous, and L. Zhang, 2007: Global impacts of conversions from natural to agricultural ecosystems on

water resources: Quantity versus quality. *Water Resour. Res.*, **43**, doi:10.1029/2006WR005486.

- Scheba, A., 2018: Market-based conservation for better livelihoods? The promises and fallacies of REDD+ in Tanzania. Land, 7, 119, doi:10.3390/ land7040119.
- Scherr, S.J., 2000: A downward spiral? Research evidence on the relationship between poverty and natural resource degradation. *Food Policy*, **25**, 479– 498, doi:10.1016/S0306-9192(00)00022-1.
- Schindler, D.W., S.E.M. Kasian, and R.H. Hesslein, 1989: Biological impoverishment in lakes of the midwestern and northeastern United States from acid rain. *Environ. Sci. Technol.*, 23, 573–580, doi:10.1021/ es00063a010.
- Schmitz, O.J. et al., 2014: Animating the carbon cycle. *Ecosystems*, **17**, 344–359, doi:10.1007/s10021-013-9715-7.
- Schmitz, O.J. et al., 2018: Animals and the zoogeochemistry of the carbon cycle. Science, 362, eaar3213, doi:10.1126/SCIENCE.AAR3213.
- Schneider, K., and P.M.K. Gugerty, 2011: Agricultural productivity and poverty reduction: Linkages and pathways. *Libr. Test J.*, 1, 56–74, doi:10.7152/12259.
- Schneider, S., and P.A. Niederle, 2010: Resistance strategies and diversification of rural livelihoods: The construction of autonomy among Brazilian family farmers. J. Peasant Stud., 37, 379–405, doi:10.1080/03066151003595168.
- Schnitkey, G., and B. Sheridan, 2017: Crop Insurance Premiums for 2017. Farmdoc Daily (7): 22. Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign, USA.
- Schuiling, R.D., and P. Krijgsman, 2006: Enhanced weathering: An effective and cheap tool to sequester CO₂. *Clim. Change*, **74**, 349–354, doi:10.1007/ s10584-005-3485-y.
- Schut, M. et al., 2016: Sustainable intensification of agricultural systems in the Central African Highlands: The need for institutional innovation. *Agric. Syst.*, **1**, 165–176, doi:10.1016/j.agsy.2016.03.005.
- Scott, A., 2017: Making governance work for water–energy–food nexus approaches. CKDN Working Paper, Climate and Development Knowledge Network (CDKN), Cape Town, South Africa.
- Scott, C.A. et al., 2011: Policy and institutional dimensions of the water–energy nexus. *Energy Policy*, **39**, 6622–6630, doi:10.1016/J.ENPOL.2011.08.013.
- Scott, D.F., L.A. Bruijnzeel, and J. Mackensen, 2005: The hydrological and soil impacts of forestation in the tropics. In: *Forests, Water and People in the Humid Tropics* [M. Bonel and L.A. Bruijnzeel (eds.)]. Cambridge University Press, Cambridge, UK, 622–651.
- Secretariat of the Convention on Biological Diversity, 2008: *Protected Areas in Today's World: Their Values and Benefits for the Welfare of the Planet*. 96 pp.
- Seddon, N. et al., 2016: Ecosystem-based Adaptation: A Win-Win Formula for Sustainability in a Warming World? IIED Briefing, Issue July 2016. International Institute for Environment and Development (IIED), London, UK.
- Seidl, R., M.J. Schelhaas, W. Rammer, and P.J. Verkerk, 2014: Increasing forest disturbances in Europe and their impact on carbon storage. *Nat. Clim. Chang.*, **4**, 806–810, doi:10.1038/nclimate2318.
- Selig, E.R. et al., 2014: Global priorities for marine biodiversity conservation. *PLoS One*, **9**, e82898, doi:10.1371/journal.pone.0082898.

Sen, A., 1992: Inequality Reexamined. Clarendon Press, Oxford, UK, 206pp.

- Senaratna Sellamuttu, S., S. de Silva, and S. Nguyen-Khoa, 2011: Exploring relationships between conservation and poverty reduction in wetland ecosystems: Lessons from 10 integrated wetland conservation and poverty reduction initiatives. *Int. J. Sustain. Dev. World Ecol.*, **18**, 328–340, doi:10.1 080/13504509.2011.560034.
- Shackley, S., J. Hammond, J. Gaunt, and R. Ibarrola, 2011: The feasibility and costs of biochar deployment in the UK. *Carbon Manag.*, 2, 335–356, doi:10.4155/cmt.11.22.
- Shah, P., A. Bansal, and R.K. Singh, 2018: Life cycle assessment of organic, BCI and conventional cotton: A comparative study of cotton cultivation

practices in India. In: *Designing Sustainable Technologies, Products and Policies.* Springer International Publishing AG, Switzerland, 67–77.

- Sheahan, M., and C.B. Barrett, 2017: Food loss and waste in sub-Saharan Africa: A critical review. *Food Policy*, **70**, 1–12, doi:10.1016/j. foodpol.2017.03.012.
- Shiferaw, B., and S. Holden, 1999: Soil erosion and smallholders' conservation decisions in the highlands of Ethiopia. World Dev., 27, 739–752, doi:10.1016/S0305-750X(98)00159-4.
- Shively, G., and G. Thapa, 2016: Markets, transportation infrastructure, and food prices in Nepal. Am. J. Agric. Econ., 99, aaw086, doi:10.1093/ ajae/aaw086.
- Shrestha, S., U.B. Shrestha, and K.S. Bawa, 2017: Contribution of REDD+ payments to the economy of rural households in Nepal. *Appl. Geogr.*, 88, 151–160, doi:10.1016/J.APGEOG.2017.09.001.
- Sikkema, R., M. Junginger, P. McFarlane, and A. Faaij, 2013: The GHG contribution of the cascaded use of harvested wood products in comparison with the use of wood for energy-a case study on available forest resources in Canada. *Environ. Sci. Policy*, **31**, 96–108, doi:10.1016/j. envsci.2013.03.007.
- Sikkema, R. et al., 2014a: Legal harvesting, sustainable sourcing and cascaded use of wood for bioenergy: Their coverage through existing certification frameworks for sustainable forest management. *Forests*, 5, 2163–2211, doi:10.3390/f5092163.
- Sikkema, R. et al., 2014b: Mobilization of biomass for energy from boreal forests in Finland; Russia under present sustainable forest management certification and new sustainability requirements for solid biofuels. *Biomass* and Bioenergy, **71**, 23–36, doi:10.1016/J.BIOMBIOE.2013.11.010.
- Sileshi, G., E. Kuntashula, P. Matakala, and P.N., 2008: Farmers' perceptions of tree mortality, pests and pest management practices in agroforestry in Malawi, Mozambique and Zambia, *Agroforestry Systems*, Vol. 72, Issue 2, pp. 87–101.
- Simberloff, D., 2005: Non-native species DO threaten the natural environment! J. Agric. Environ. Ethics, **18**, 595–607, doi:10.1007/s10806-005-2851-0.
- Sindelar, M., 2015: Harvests from Soil, Soils and products we use. Soil Science Society of America (SSSA), Wisconsin, USA, 2 pp.
- Singer, B., 2016: Financing sustainable forest management in developing countries: The case for a holistic approach. *Int. For. Rev.*, **18**, 96–109.
- Singh, S.N., and A. Verma, 2007: Environmental review: The potential of nitrification inhibitors to manage the pollution effect of nitrogen fertilizers in agricultural and other soils: A review. *Environ. Pract.*, 9, 266–279, doi:10.1017/S1466046607070482.
- Sinha, E., A.M. Michalak, K.V. Calvin, and P.J. Lawrence, 2019: Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. *Nat. Commun.*, **10**, 939, doi:10.1038/ s41467-019-08884-w.
- Smit, J., and J. Nasr, 1992: Urban agriculture for sustainable cities: Using wastes and idle land and water bodies as resources. *Environ. Urban.*, 4, 141–152, doi:10.1177/095624789200400214.
- Smit, W., 2016: Urban governance and urban food systems in Africa: Examining the linkages. *Cities*, 58, 80–86, doi:10.1016/j.cities.2016.05.001.
- Smith, B.G., 2008: Developing sustainable food supply chains. *Philos. Trans. R. Soc. B Biol. Sci.*, **363**, 849–861, doi:10.1098/rstb.2007.2187.
- Smith, D.W., 1998: Urban food systems and the poor in developing countries. *Trans. Inst. Br. Geogr.*, 23, 207–219, doi:10.1111/j.0020-2754.1998.00207.x.
- Smith, H.E., M.D. Hudson, and K. Schreckenberg, 2017: Livelihood diversification: The role of charcoal production in southern Malawi. *Energy Sustain. Dev.*, **36**, 22–36, doi:10.1016/J.ESD.2016.10.001.
- Smith, N.M., 2014: Gender and livelihood diversification: Maasai women's market activities in northern Tanzania. *J. Dev. Stud.*, 1–14, doi:10.1080/00 220388.2014.957278.

- Smith, P., 2006: Monitoring and verification of soil carbon changes under Article 3.4 of the Kyoto Protocol. *Soil Use Manag.*, **20**, 264–270, doi:10.1111/j.1475-2743.2004.tb00367.x.
- Smith, P., 2013: Delivering food security without increasing pressure on land. *Glob. Food Sec.*, **2**, 18–23, doi:10.1016/j.gfs.2012.11.008.
- Smith, P., 2016: Soil carbon sequestration and biochar as negative emission technologies. *Glob. Chang. Biol.*, 22, 1315–1324, doi:10.1111/gcb.13178.
- Smith, P., and P.J. Gregory, 2013: Climate change and sustainable food production. *Proc. Nutr. Soc.*, **72**, 21–28, doi:10.1017/S0029665112002832.
- Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O'Mara, C. Rice, B. Scholes, O. Sirotenko, 2007: Agriculture. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, [B. Metz, O. Davidson, P. Bosch, R. Dave, and L. Meyer, (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 497–540.
- Smith, P. et al., 2013: How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? *Glob. Chang. Biol.*, **19**, 2285–2302, doi:10.1111/gcb.12160.
- Smith, P. et al., 2015: Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. 1, 665–685, doi:10.5194/soil-1-665-2015.
- Smith, P. et al., 2016: Biophysical and economic limits to negative CO₂ emissions. *Nat. Clim. Chang.*, **6**, 42–50, doi:10.1038/NCLIMATE2870.
- Smith, V.H., and B.K. Goodwin, 1996: Crop insurance, moral hazard, and agricultural chemical use. *Am. J. Agric. Econ.*, **78**, 428, doi:10.2307/1243714.
- Smyth, C.G., and S.A. Royle, 2000: Urban landslide hazards: Incidence and causative factors in Niterói, Rio de Janeiro State, Brazil. *Appl. Geogr.*, 20, 95–118, doi:10.1016/S0143-6228(00)00004-7.
- Soane, B.D., and C. Van Ouwerkerk, 1994: Soil compaction problems in world agriculture. *Dev. Agric. Eng.*, **11**, 1–21, doi:10.1016/B978-0-444-88286-8.50009-X.
- Soane, B.D., and C. Van Ouwerkerk, 1995: Implications of soil compaction in crop production for the quality of the environment. *Soil Tillage Res.*, **35**, 5–22, doi:10.1016/0167-1987(95)00475-8.
- Sohi, S., 2012: Carbon storage with benefits. *Science*, **338**, 1034–1035, doi:10.1126/science.1227620.
- Spokas, K.A. et al., 2012: Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual., 41, 973, doi:10.2134/jeq2011.0069.
- Springmann, M. et al., 2016: Global and regional health effects of future food production under climate change: A modelling study. *Lancet*, **387**, 1937–1946, doi:10.1016/S0140-6736(15)01156-3.
- Springmann, M. et al., 2018: Options for keeping the food system within environmental limits. *Nature*, **562**, 519–525, doi:10.1038/s41586-018-0594-0.
- Stanturf, J.A., B.J. Palik, M.I. Williams, R.K. Dumroese, and P. Madsen, 2014: Forest restoration paradigms. *J. Sustain. For.*, **33**, S161–S194, doi:10.1080 /10549811.2014.884004.
- Stathers, T., R. Lamboll, and B.M. Mvumi, 2013: Postharvest agriculture in changing climates: Its importance to African smallholder farmers. *Food Secur.*, **5**, 361–392, doi:10.1007/s12571-013-0262-z.
- Stefan, V., E. van Herpen, A.A. Tudoran, and L. Lähteenmäki, 2013: Avoiding food waste by Romanian consumers: The importance of planning and shopping routines. *Food Qual. Prefer.*, 28, 375–381, doi:10.1016/J. FOODQUAL.2012.11.001.
- Stehfest, E. et al., 2009: Climate benefits of changing diet. *Clim. Change*, **95**, 83–102, doi:10.1007/s10584-008-9534-6.
- Stehfest, E. et al., 2019: Key determinants of global land-use projections. *Nat. Commun.*, **10**, 2166.
- Sterling, S.M., A. Ducharne, and J. Polcher, 2013: The impact of global landcover change on the terrestrial water cycle. *Nat. Clim. Chang.*, **3**, 385–390, doi:10.1038/Nclimate1690.

- Stevanovic, M. et al., 2016: The impact of high-end climate change on agricultural welfare. *Sci. Adv.*, **2**, doi:10.1126/sciadv.1501452.
- Stevanović, M. et al., 2017: Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: Consequences for food prices. *Environ. Sci. Technol.*
- Steward, A., 2007: Nobody farms here anymore: Livelihood diversification in the Amazonian community of Carvão, a historical perspective. *Agric. Human Values*, **24**, 75–92, doi:10.1007/s10460-006-9032-2.
- Stigter, C., M.V. Sivakumar, and D. Rijks, 2000: Agrometeorology in the 21st century: Workshop summary and recommendations on needs and perspectives. *Agric. For. Meteorol.*, **103**, 209–227, doi:10.1016/S0168-1923(00)00113-1.
- Stoll-Kleemann, S., and T. O'Riordan, 2015: The sustainability challenges of our meat and dairy diets. *Environ. Sci. Policy Sustain. Dev.*, 57, 34–48, doi: 10.1080/00139157.2015.1025644.
- Stoy, P.C. et al., 2018: Opportunities and trade-offs among BECCS and the food, water, energy, biodiversity, and social systems nexus at regional scales. *Bioscience*, **68**, 100–111, doi:10.1093/biosci/bix145.
- Strassburg, B.B.N. et al., 2014: When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. *Glob. Environ. Chang.*, 28, 84–97, doi:10.1016/J.GLOENVCHA.2014.06.001.
- Suckall, N., L.C. Stringer, and E.L. Tompkins, 2015: Presenting triple-wins? Assessing projects that deliver adaptation, mitigation and development co-benefits in rural sub-Saharan Africa. *Ambio*, **44**, 34–41, doi:10.1007/ s13280-014-0520-0.
- Suding, K. et al., 2015: Committing to ecological restoration. *Science*, **348**, 638 LP-640, doi:10.1126/science.aaa4216.
- Sutton, M.A. et al., 2007: Challenges in quantifying biosphere–atmosphere exchange of nitrogen species. *Environ. Pollut.*, **150**, 125–139, doi:10.1016/J. ENVPOL.2007.04.014.
- Swanson, B.E., 2006: Extension strategies for poverty alleviation: Lessons from China and India. *J. Agric. Educ. Ext.*, **12**, 285–299, doi:10.1080/13892240601062488.
- Swanton, C.J., S.D. Murphy, D.J. Hume, and D. Clements, 1996: Recent improvements in the energy efficiency of agriculture: Case studies from Ontario, Canada. *Agric. Syst.*, **52**, 399–418.
- Swisher, J.N., 1994: Forestry and biomass energy projects: Bottom-up comparisons of CO₂ storage and costs. *Biomass and Bioenergy*, 6, 359–368, doi:10.1016/0961-9534(94)00061-W.
- Tai, A.P.K., M.V. Martin, and C.L. Heald, 2014: Threat to future global food security from climate change and ozone air pollution. *Nat. Clim. Chang.*, 4, 817–821, doi:10.1038/nclimate2317.
- Tan, R., V. Beckmann, L. Van den Berg, and F. Qu, 2009: Governing farmland conversion: Comparing China with the Netherlands and Germany. *Land use policy*, 26, 961–974, doi:10.1016/J.LANDUSEPOL.2008.11.009.
- Tao, Y. et al., 2015: Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China. *Ecol. Appl.*, **318**, 210–216, doi:10.1016/j.ecolmodel.2015.04.027.
- Taylor, L.L. et al., 2016: Enhanced weathering strategies for stabilizing climate and averting ocean acidification. *Nat. Clim. Chang.*, **6**, 402–406, doi:10.1038/nclimate2882.
- Tefera, T., 2012: Post-harvest losses in African maize in the face of increasing food shortage. *Food Secur.*, **4**, 267–277, doi:10.1007/s12571-012-0182-3. 3.
- Temba, B.A. et al., 2016: Tools for defusing a major global food and feed safety risk: Nonbiological postharvest procedures to decontaminate mycotoxins in foods and feeds. *J. Agric. Food Chem.*, **64**, 8959–8972, doi:10.1021/acs. jafc.6b03777.
- Tengberg, A. et al., 2012: Cultural ecosystem services provided by landscapes: Assessment of heritage values and identity. *Ecosyst. Serv.*, **2**, 14–26, doi:10.1016/J.ECOSER.2012.07.006.
- Thøgersen, J., 1996: Wasteful food consumption: Trends in food and packaging waste. *Scand. J. Manag.*, **12**, 291–304, doi:10.1016/0956-5221(96)00011-5.

Interlinkages

- Thorlakson, T., and H. Neufeldt, 2012: Reducing subsistence farmers' vulnerability to climate change: Evaluating the potential contributions of agroforestry in western Kenya. *Agric. Food Secur.*, 1, 15, doi:10.1186/2048-7010-1-15.
- Thormark, C., 2006: The effect of material choice on the total energy need and recycling potential of a building. *Build. Environ.*, **41**, 1019–1026, doi:10.1016/J.BUILDENV.2005.04.026.
- Thornton, P.E. et al., 2017: Biospheric feedback effects in a synchronously coupled model of human and Earth systems. *Nat. Clim. Chang.*, **7**, 496–500, doi:10.1038/nclimate3310.
- Thornton, P.K., J. Van de Steeg, A. Notenbaert, and M. Herrero, 2009: The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. *Agric. Syst.*, **101**, 113–127, doi:10.1016/J.AGSY.2009.05.002.
- Thyberg, K.L., and D.J. Tonjes, 2016: Drivers of food waste and their implications for sustainable policy development. *Resour. Conserv. Recycl.*, **106**, 110–123, doi:10.1016/J.RESCONREC.2015.11.016.
- Tilman, D., and M. Clark, 2014: Global diets link environmental sustainability and human health. *Nature*, **515**, 518–522, doi:10.1038/nature13959.
- Tilman, D. et al., 2001: Forecasting agriculturally driven global environmental change. Science, 292, 281–284, doi:10.1126/science.1057544.
- Tilman, D., K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky, 2002: Agricultural sustainability and intensive production practices. *Nature*, **418**, 671–677, doi:10.1038/nature01014.
- Tilman, D., C. Balzer, J. Hill, and B.L. Befort, 2011: Global food demand and the sustainable intensification of agriculture. *Proc. Natl. Acad. Sci. U.S.A.*, **108**, 20260–20264, doi:10.1073/pnas.1116437108.
- Timmer, C., 2009: Preventing food crises using a food policy approach. *J. Nutr.*, **140**, 2245–2285.
- Timmermann, C., and Z. Robaey, 2016: Agrobiodiversity under different property regimes. J. Agric. Environ. Ethics, 29, 285–303, doi:10.1007/ s10806-016-9602-2.
- Tirado, M.C., R. Clarke, L.A. Jaykus, A. McQuatters-Gollop, and J.M. Frank, 2010: Climate change and food safety: a review. *Food Res. Int.*, **43**, 1745–1765, doi:10.1016/j.foodres.2010.07.003.
- Tirivayi, N., M. Knowles, and B. Davis, 2016: The interaction between social protection and agriculture: a review of evidence. *Glob. Food Sec.*, **10**, 52– 62, doi:10.1016/J.GFS.2016.08.004.
- Tom, M.S., P.S. Fischbeck, and C.T. Hendrickson, 2016: Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. *Environ. Syst. Decis.*, 36, 92–103, doi:10.1007/s10669-015-9577-y.
- Torlesse, H., L. Kiess, and M.W. Bloem, 2003: Association of household rice expenditure with child nutritional status indicates a role for macroeconomic food policy in combating malnutrition. J. Nutr., 133, 1320– 1325, doi:10.1093/jn/133.5.1320.
- Torres, A.B., R. Marchant, J.C. Lovett, J.C.R. Smart, and R. Tipper, 2010: Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation. *Ecol. Econ.*, 69, 469–477.
- Townsend, S.A., and M.M. Douglas, 2000: The effect of three fire regimes on stream water quality, water yield and export coefficients in a tropical savanna (northern Australia). *J. Hydrol.*, **229**, 118–137, doi:10.1016/ S0022-1694(00)00165-7.
- Trabucco, A., R.J. Zomer, D.A. Bossio, O. Van Straaten, and L.V. Verchot, 2008: Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies. *Agric. Ecosyst. Environ.*, **126**, 81–97, doi:10.1016/j.agee.2008.01.015.
- Travaline, K., and C. Hunold, 2010: Urban agriculture and ecological citizenship in Philadelphia. *Local Environ.*, **15**, 581–590, doi:10.1080/13 549839.2010.487529.

- Tschakert, P., 2007: Views from the vulnerable: Understanding climatic and other stressors in the Sahel. *Glob. Environ. Chang.*, **17**, 381–396, doi:10.1016/J.GLOENVCHA.2006.11.008.
- Tscharntke, T., A.M. Klein, A. Kruess, I. Steffan-Dewenter, and C. Thies, 2005: Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. *Ecol. Lett.*, **8**, 857–874, doi:10.1111/ j.1461-0248.2005.00782.x.
- Tscharntke, T. et al., 2016: When natural habitat fails to enhance biological pest control Five hypotheses. *Biol. Conserv.*, **204**, 449–458, doi:10.1016/J. BIOCON.2016.10.001.
- Tu, J., Z.-G. Xia, K.C. Clarke, and A. Frei, 2007: Impact of urban sprawl on water quality in Eastern Massachusetts, USA. *Environ. Manage.*, 40, 183–200, doi:10.1007/s00267-006.
- Turner, B., 2011: Embodied connections: Sustainability, food systems and community gardens. *Local Environ.*, **16**, 509–522, doi:10.1080/1354983 9.2011.569537.
- Turtle, C., I. Convery, and K. Convery, 2015: Forest schools and environmental attitudes: A case study of children aged 8–11 years. *Cogent Educ.*, **11**, 1100103, doi:10.1080/2331186X.2015.1100103.
- Uçkun Kiran, E., A.P. Trzcinski, W.J. Ng, and Y. Liu, 2014: Bioconversion of food waste to energy: A review. *Fuel*, **134**, 389–399, doi:10.1016/J. FUEL.2014.05.074.
- UNCCD, 2017: Global Land Outlook. UNCCD, Bonn, Germany, 340 pp.
- UNCTAD, 2011: Water for food Innovative Water Management Technologies for Food Security and Poverty Alleviation. New York, USA, and Geneva, Switzerland, 32 pp.
- UNEP, 2016: Options for Ecosystem-based Adaptation (EBA) in Coastal Environments: A Guide for Environmental Managers and Planners. United Nations Environment Programme (UNEP), Nairobi, Kenya, 110 pp.
- UNWater, 2015: Water for a Sustainable World. UNESCO, Paris, France, 122 pp.
- Upreti, B.R., and Y.G. Upreti, 2002: Factors leading to agro-biodiversity loss in developing countries: The case of Nepal. *Biodivers. Conserv.*, **11**, 1607–1621, doi:10.1023/A:1016862200156.
- Upton, B., R. Miner, M. Spinney, and L.S. Heath, 2008: The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. *Biomass and Bioenergy*, **32**, 1–10, doi:10.1016/J.BIOMBIOE.2007.07.001.
- Valin, H. et al., 2014: The future of food demand: Understanding differences in global economic models. Agric. Econ., 45, 51–67, doi:10.1111/agec.12089.
- Vaughan, N.E., and C. Gough, 2016: Expert assessment concludes negative emissions scenarios may not deliver. *Environ. Res. Lett.*, **11**, 95003, doi:10.1088/1748-9326/11/9/095003.
- Venn, T.J., and D.E. Calkin, 2011: Accommodating non-market values in evaluation of wildfire management in the United States: Challenges and opportunities. *Int. J. Wildl. Fire*, **20**, 327, doi:10.1071/WF09095.
- Vermeulen, S.J., B.M. Campbell, and J.S.I. Ingram, 2012: Climate change and food systems. *Annu. Rev. Environ. Resour.*, **37**, 195–222, doi:10.1146/ annurev-environ-020411-130608.
- Vignola, R. et al., 2015: Ecosystem-based Adaptation for smallholder farmers: Definitions, opportunities and constraints. *Agric. Ecosyst. Environ.*, **211**, 126–132, doi:10.1016/J.AGEE.2015.05.013.
- Vlontzos, G., S. Niavis, and B. Manos, 2014: A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries. *Renew. Sustain. Energy Rev.*, 40, 91–96, doi:10.1016/J.RSER.2014.07.153.
- Vranken, L., T. Avermaete, D. Petalios, and E. Mathijs, 2014: Curbing global meat consumption: Emerging evidence of a second nutrition transition. *Environ. Sci. Policy*, **39**, 95–106, doi:10.1016/J.ENVSCI.2014.02.009.
- Van Vuuren, D.P. et al., 2015: Pathways to achieve a set of ambitious global sustainability objectives by 2050: Explorations using the IMAGE integrated assessment model. *Technol. Forecast. Soc. Change*, **98**, 303–323, doi:10.1016/j.techfore.2015.03.005.

- Van Vuuren, D.P. et al., 2017: Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. *Glob. Environ. Chang.*, **42**, 237–250, doi:10.1016/J.GLOENVCHA.2016.05.008.
- Van Vuuren, D.P. et al., 2018: Alternative pathways to the 1.5°C target reduce the need for negative emission technologies. *Nat. Clim. Chang.*, **8**, 391–397, doi:10.1038/s41558-018-0119-8.
- Wall, D.H., U.N. Nielsen, and J. Six, 2015: Soil biodiversity and human health. *Nature*, **528**, 69, doi:10.1038/nature15744.
- Ward, F.A., and M. Pulido-Velazquez, 2008: Water conservation in irrigation can increase water use. *Proc. Natl. Acad. Sci.*, **105**, 18215–18220.
- Wardle, J., K. Parmenter, and J. Waller, 2000: Nutrition knowledge and food intake. Appetite, 34, 269–275, doi:10.1006/APPE.1999.0311.
- WBCSD, 2014: Co-Optimizing Solutions: Water and Energy for Food, Feed and Fiber. World Business Council for Sustainable Development (WBCSD), Geneva, Switzerland, 109 pp.
- Weinberger, K., and T.A. Lumpkin, 2007: Diversification into horticulture and poverty reduction: a research agenda. *World Dev.*, **35**, 1464–1480, doi:10.1016/J.WORLDDEV.2007.05.002.
- Weindl, I. et al., 2015: Livestock in a changing climate: Production system transitions as an adaptation strategy for agriculture. *Environ. Res. Lett.*, **10**, 94021, doi:10.1088/1748-9326/10/9/094021.
- Weindl, I. et al., 2017: Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics. *Glob. Planet. Change*, **159**, 1–10, doi:10.1016/j.gloplacha.2017.10.002.
- West, P.C. et al., 2010: Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. *Proc. Natl. Acad. Sci. U.S.A.*, **107**, 19645–19648, doi:10.1073/pnas.1011078107.
- Westholm, L., and S. Arora-Jonsson, 2015: Defining solutions, finding problems: Deforestation, gender, and REDD+ in Burkina Faso. *Conserv. Soc.*, **13**, 189, doi:10.4103/0972-4923.164203.
- Wheeler, T., and J. von Braun, 2013: Climate change impacts on global food security. *Science.*, **341**, 508–513, doi:10.1126/science.1239402.
- Whitfield, L., 2012: How countries become rich and reduce poverty: A review of heterodox explanations of economic development. *Dev. Policy Rev.*, **30**, 239–260, doi:10.1111/j.1467-7679.2012.00575.x.
- Wiebe, K. et al., 2015: Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. *Environ. Res. Lett.*, **10**, 85010, doi:10.1088/1748-9326/10/8/085010.
- Van Wilgen, B.W., and A. Wannenburgh, 2016: Co-facilitating invasive species control, water conservation and poverty relief: Achievements and challenges in South Africa's Working for Water programme. *Curr. Opin. Environ. Sustain.*, **19**, 7–17, doi:10.1016/J.COSUST.2015.08.012.
- Wilhite, D.A., 2005: *Drought and water crises*. [D. Wilhite (ed.)]. CRC Press, 432 pp.
- Wilson, C.L., and P.L. Pusey, 1985: Potential for biological control of postharvest plant diseases. *Plant Dis.*, **69**, 375–378, doi:10.1094/PD-69-375.
- Wimmer, S.G., and J. Sauer, 2016: *Diversification Versus Specialization: Empirical Evidence on the Optimal Structure of European Dairy Farms*. 56th Annual Conference, Bonn, Germany, September 28–30, 244882, German Association of Agricultural Economists (GEWISOLA).
- Wise, M. et al., 2009: Implications of limiting CO₂ concentrations for land use and energy. *Science*, **324**, 1183–1186, doi:10.1126/science.1168475.
- De Wit, J., J.K. Oldenbroek, H. Van Keulen, and D. Zwart, 1995: Criteria for sustainable livestock production: A proposal for implementation. *Agric. Ecosyst. Environ.*, **53**, 219–229, doi:10.1016/0167-8809(94)00579-4.
- Wittman, H., 2011: Food sovereignty: A new rights framework for food and nature? *Environ. Soc.*, **2**, 87–105, doi:10.3167/ares.2011.020106.
- Wolff, S., E.A. Schrammeijer, C.J.E. Schulp, and P.H. Verburg, 2018: Meeting global land restoration and protection targets: What would the world look like in 2050? *Glob. Environ. Chang.*, **52**, 259–272, doi:10.1016/j. gloenvcha.2018.08.002.
- Wollenberg, E. et al., 2016: Reducing emissions from agriculture to meet the 2°C target. *Glob. Chang. Biol.*, **22**, 3859–3864, doi:10.1111/gcb.13340.

- Wollni, M., D.R. Lee, and J.E. Thies, 2010: Conservation agriculture, organic marketing, and collective action in the Honduran hillsides. *Agric. Econ.*, 41, 373–384, doi:10.1111/j.1574-0862.2010.00445.x.
- Woolf, D., J.E. Amonette, F.A. Street-Perrott, J. Lehmann, and S. Joseph, 2010: Sustainable biochar to mitigate global climate change. *Nat. Commun.*, **1**, 1–9, doi:10.1038/ncomms1053.
- Wright, C.K., and M.C. Wimberly, 2013: Recent land use change in the Western Corn Belt threatens grasslands and wetlands. *Proc. Natl. Acad. Sci.*, **110**, 4134–4139, doi:10.1073/pnas.1215404110.
- Wu, J., 1999: Crop insurance, acreage decisions, and nonpoint-source pollution. Am. J. Agric. Econ., 81, 305, doi:10.2307/1244583.
- Wu, W. et al., 2019: Global advanced bioenergy potential under environmental protection policies and societal transformation measures. *GCB Bioenergy*, gcbb.12614, doi:10.1111/gcbb.12614.
- Xia, J. et al. 2017: Climate change and water resources: Case study of Eastern Monsoon Region of China. Adv. Clim. Chang. Res., 8, 63–67, doi:10.1016/j. accre.2017.03.007.
- Yamagata, Y., N. Hanasaki, A. Ito, T. Kinoshita, D. Murakami, and Q. Zhou, 2018: Estimating water–food–ecosystem trade-offs for the global negative emission scenario (IPCC-RCP2.6). *Sustain. Sci.*, **13**, 301–313, doi:10.1007/ s11625-017-0522-5.
- Yamineva, Y., and S. Romppanen, 2017: Is law failing to address air pollution? Reflections on international and EU developments. *Rev. Eur. Comp. Int. Environ. law*, **26**, 189–200.
- Yang, H., and A.J.B. Zehnder, 2002: Water scarcity and food import: A case study for southern Mediterranean countries. *World Dev.*, **30**, 1413–1430, doi:10.1016/S0305-750X(02)00047-5.
- Yirdaw, E., M. Tigabu, and A. Monge, 2017: Rehabilitation of degraded dryland ecosystems – review. *Silva Fenn.*, 51, 1673, doi:10.14214/sf.1673.
- Young, C.E., and P.C. Westcott, 2000: How decoupled is U.S. agricultural support for major crops? *Amer. J.Agr. Econ*, 82, 762–767, doi:10.1111/0002-9092.00076.
- Yousefpour, R. et al., 2018: Realizing mitigation efficiency of European commercial forests by climate smart forestry. *Sci. Rep.*, 8, 345, doi:10.1038/ s41598-017-18778-w.
- Zalidis, G., S. Stamatiadis, V. Takavakoglou, K. Eskridge, and N. Misopolinos, 2002: Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. *Agric. Ecosyst. Environ.*, 88, 137–146, doi:10.1016/S0167-8809(01)00249-3.
- Zaman, A.U., and S. Lehmann, 2011: Urban growth and waste management optimization towards "zero waste city." *City, Cult. Soc.*, **2**, 177–187, doi:10.1016/J.CCS.2011.11.007.
- Zaman, A.U., and S. Lehmann, 2013: The zero waste index: A performance measurement tool for waste management systems in a "zero waste city." J. Clean. Prod., 50, 123–132, doi:10.1016/J.JCLEPRO.2012.11.041.
- Zezza, A., G. Carletto, B. Davis, K. Stamoulis, and P. Winters, 2009: Rural income generating activities: Whatever happened to the institutional vacuum? Evidence from Ghana, Guatemala, Nicaragua and Vietnam. *World Dev.*, 37, 1297–1306, doi:10.1016/j.worlddev.2008.11.004.
- Zhou, Y., L. Guo, and Y. Liu, 2019: Land consolidation boosting poverty alleviation in China: theory and practice. *Land use policy*, **82**, 339–348, doi:10.1016/J.LANDUSEPOL.2018.12.024.
- Zhu, Z. et al., 2018: Recent advances and opportunities in sustainable food supply chain: A model-oriented review. *Int. J. Prod. Res.*, **56**, 5700–5722, doi:10.1080/00207543.2018.1425014.