Working Group II: Impacts, Adaptation and Vulnerability

Other reports in this collection Biogeochemical Cycling and Pollution

Understanding of interactions of climate change with other human-caused pressures on lakes and streams is still in its infancy. No simulation models have been developed to assess the combined effects of these pressures on these systems. Eutrophication

Figure 5-8:
Diagram of complex interactions between climate change, watershed and lake processes, and water clarity of a eutrophic lake [modified from Lathrop (1998) and information in Lathrop et al. (1999)]. The left panel diagrams a warmer, dryer climate with less wind; the right panel diagrams a warmer, windier, and wetter climate with more extreme rain events. In both cases, the altered climate would be expected to change the water quality of the lake, but the complexity of relations leads to uncertain future water clarities. A "+" means an increase and a "-" means a decrease in the condition or process; a "?" means conflicting expectations. Greater blooms of phytoplankton lead to lower water clarity, and reduced blooms lead to greater clarity. Blooms depend on external and internal loading of phosphorus (P). Dryer climates lead to less external loading, whereas wetter climates or more episodic rains lead to more external loading. Warmer climates lead to warmer surface waters and increased vertical stability in the water column, thus less mixing and internal loading. Warmer waters also allow potential invasion by warmer loving, zooplaktivorous fish that can reduce zooplankton species that in turn reduce algal populations. Windier climates result in increased vertical mixing, thus greater internal loading.

Nutrient cycling would be altered by climate change in ways that could exacerbate existing water quality problems such as eutrophication (see Figure 5-8). Eutrophication of lakes results when nutrient inputs from catchments and recycling from bottom sediments are large. The result is excessive production of algae; blue-green algae reduce water quality for recreation and drinking. Deep coldwater habitats become anoxic, owing to greater rates of decomposition of sinking organic mater (Horne and Goldman, 1994).

Interaction between climate change and eutrophication is complex, and projections are somewhat contradictory (see Figure 5-8) because climate-influenced processes have interacting and often opposing effects (Magnuson et al., 1997; Schindler, 1997). Consider, for example, phosphate release from anoxic sediments. In a warmer climate, the longer period of summer stratification would increase the likelihood that anoxia develops below the thermocline (Stefan and Fang, 1993); this would increase the solubility of phosphates in sediment and increase nutrient recycling. At the same time, warmer climates would reduce the duration of ice cover in lakes, which would reduce winter anoxia and decrease sediment phosphate release in winter. This is further complicated by water column stability.

In Lake Mendota, Wisconsin (Lathrop et al., 1999), it is not surprising that one-third of observed year-to-year variation in summer water clarity is associated with variability in runoff (see Figure 5-8); more nutrient input leads to higher populations of phytoplankton, which reduce water clarity. Runoff would be influenced by differences in precipitation and the frequency of extreme rainfall events during autumn, winter, and spring. Precipitation trends differ around the world, and there is evidence for increased frequency of extreme rainfall events that may occur in different seasons of the year (see Chapter 4). Wetter climates or climates with more extreme rainfall events would increase export of nutrients and sediment to lakes and streams; dryer climates or those with more even rainfall would reduce export to lakes and streams. Extreme rainfall events would export more if they occurred at seasons when the earth was bare in agricultural watersheds.

In Lake Mendota, the other two-thirds of the variation in water clarity also is related to climate (see Figure 5-8). One-third is through climatic influences on vertical mixing, where warmer summers lead to greater water column stability, less recycling from deep water, and greater water clarity. The remaining one-third is related to the abundance of herbivorous zooplankton that eat phytoplankton. A warming climate would allow invasion of new species of fish that forage on the herbivorous zooplankton; in Lake Mendota, it probably would be the gizzard shad that lives in reservoirs south of Wisconsin (see Dettmers and Stein, 1996).

Several other complexities would lead to different results, depending on the change in precipitation patterns. For example, in a dryer climate, increases in water residence time (Schindler et al., 1996a) would increase the importance of nutrient recycling within lakes, and storage of nutrients in the sediments of lakes would be reduced (Hauer et al., 1997). This is complicated by changes in light penetration that occur if dissolved organic carbon (DOC) inputs are reduced (Magnuson et al., 1997; Schindler, 1997). DOC can reduce light penetration, so a reduction in DOC input would increase light availability and could lead to increases in primary production in deeper water. This influence would depend on whether climate becomes dryer or wetter.

Several empirical and simulation studies support the idea of increased eutrophication with climate change. Results of these studies contradict the expectations of reductions in nutrient loading from catchments in drier climates and greater stability of the water column in warmer climates.

Empirical relations (Regier et al., 1990; Lin and Regier, 1995) suggest that annual primary production by phytoplankton, zooplankton biomass, and sustained yields of fisheries all increase with temperature. Simulations for Lake Erie (Blumberg and Di Toro, 1990) and smaller lakes (Stefan and Fang, 1993) indicate that climate change leads to more eutrophic conditions with respect to loss of oxygen beneath the thermocline in summer. Ogutu-Ohwayo et al. (1997) suggest that recent changes in the regional climate of Lake Victoria in Africa may have reduced physical mixing and contributed to increases in deepwater anoxia and thus nutrient recycling contributing to eutrophication.

height="1" vspace="12">

Other reports in this collection

IPCC Homepage